Sample records for bubble trauma monitoring

  1. Gas Bubble Trauma Monitoring and Research of Juvenile Salmonids, 1994-1995 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hans, Karen M.


    This report describes laboratory and field monitoring studies of gas bubble trauma (GBT) in migrating juvenile salmonids in the Snake and Columbia rivers. The first chapter describes laboratory studies of the progression of GBT signs leading to mortality and the use of the signs for GBT assessment. The progression and severity of GBT signs in juvenile salmonids exposed to different levels of total dissolved gas (TDG) and temperatures was assessed and quantified. Next, the prevalence, severity, and individual variation of GBT signs was evaluated to attempt to relate them to mortality. Finally, methods for gill examination in fish exposed to high TDG were developed and evaluated. Primary findings were: (1) no single sign of GBT was clearly correlated with mortality, but many GBT signs progressively worsened; (2) both prevalence and severity of GBT signs in several tissues is necessary; (3) bubbles in the lateral line were the earliest sign of GBT, showed progressive worsening, and had low individual variation but may develop poorly during chronic exposures; (4) fin bubbles had high prevalence, progressively worsened, and may be a persistent sign of GBT; and (5) gill bubbles appear to be the proximate cause of death but may only be relevant at high TDG levels and are difficult to examine. Chapter Two describes monitoring results of juvenile salmonids for signs of GBT. Emigrating fish were collected and examined for bubbles in fins and lateral lines. Preliminary findings were: (1) few fish had signs of GBT, but prevalence and severity appeared to increase as fish migrated downstream; (2) there was no apparent correlation between GBT signs in the fins, lateral line, or gills; (3) prevalence and severity of GBT was suggestive of long-term, non-lethal exposure to relatively low level gas supersaturated water; and (4) it appeared that GBT was not a threat to migrating juvenile salmonids. 24 refs., 26 figs., 3 tabs.

  2. Expendable bubble tiltmeter for geophysical monitoring


    Westphal, J. A.; Carr, M. A.; Miller, W. F.; Dzurisin, Daniel


    An unusually rugged highly sensitive and inexpensive bubble tiltmeter has been designed, tested, and built in quantity. These tiltmeters are presently used on two volcanoes and an Alaskan glacier, where they continuously monitor surface tilts of geological interest. This paper discusses the mechanical, thermal, and electric details of the meter, and illustrates its performance characteristics in both large ( > 10^(-4) radian) and small ( < 10^(-6) radian) tilt environments. The meter's ult...

  3. Can airborne ultrasound monitor bubble size in chocolate? (United States)

    Watson, N.; Hazlehurst, T.; Povey, M.; Vieira, J.; Sundara, R.; Sandoz, J.-P.


    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product.

  4. Gas Bubble Disease Monitoring and Research of Juvenile Salmonids : Annual Report 1996.

    Energy Technology Data Exchange (ETDEWEB)

    Maule, Alec G.; Beeman, John W.; Hans, Karen M.; Mesa, M.G.; Haner, P.; Warren, J.J. [Geological Survey, Cook, WA (United States). Columbia River Research Lab.


    This document describes the project activities 1996--1997 contract year. This report is composed of three chapters which contain data and analyses of the three main elements of the project: field research to determine the vertical distribution of migrating juvenile salmonids, monitoring of juvenile migrants at dams on the Snake and Columbia rivers, and laboratory experiments to describe the progression of gas bubble disease signs leading to mortality. The major findings described in this report are: A miniature pressure-sensitive radio transmitter was found to be accurate and precise and, after compensation for water temperature, can be used to determine the depth of tagged-fish to within 0.32 m of the true depth (Chapter 1). Preliminary data from very few fish suggest that depth protects migrating juvenile steelhead from total dissolved gas supersaturation (Chapter 1). As in 1995, few fish had any signs of gas bubble disease, but it appeared that prevalence and severity increased as fish migrated downstream and in response to changing gas supersaturation (Chapter 2). It appeared to gas bubble disease was not a threat to migrating juvenile salmonids when total dissolved gas supersaturation was < 120% (Chapter 2). Laboratory studies suggest that external examinations are appropriate for determining the severity of gas bubble disease in juvenile salmonids (Chapter 3). The authors developed a new method for examining gill arches for intravascular bubbles by clamping the ventral aorta to reduce bleeding when arches were removed (Chapter 3). Despite an outbreak of bacterial kidney disease in the experimental fish, the data indicate that gas bubble disease is a progressive trauma that can be monitored (Chapter 3).

  5. Role of Noninvasive Hemoglobin Monitoring in Trauma (United States)


    AFRL-SA-WP-SR-2015-0002 Role of Noninvasive Hemoglobin Monitoring in Trauma Betty J. Tsuei, MD; Dennis J. Hanseman, PhD...August 2012 – August 2013 4. TITLE AND SUBTITLE Role of Noninvasive Hemoglobin Monitoring in Trauma 5a. CONTRACT NUMBER FA8650-12-2-6B14 5b...measurement of hemoglobin (Hgb) by standard laboratory complete blood count. Point-of-care testing (i.e., iSTAT®) can be a rapid method of evaluating

  6. Bubbles

    DEFF Research Database (Denmark)

    Dholakia, Nikhilesh; Turcan, Romeo V.


    A goal of our ongoing research stream is to develop a multidisciplinary metatheory of bubbles. In this viewpoint paper we put forward a typology of bubbles by comparing four types of assets – entertainment, commodities, financial securities (stocks), and housing properties – where bubbles could a...

  7. Influence of infection with Renibacterium salmoninarum on susceptibility of juvenile spring chinook salmon to gas bubble trauma (United States)

    Weiland, L.K.; Mesa, M.G.; Maule, A.G.


    During experiments in our laboratory to assess the progression and severity of gas bubble trauma (GBT) in juvenile spring chinook salmon Oncorhynchus tshawytscha, we had the opportunity to assess the influence of Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease, on the susceptibility of salmon to GBT. We exposed fish with an established infection of Rs to 120% total dissolved gas (TDG) for 96 h and monitored severity of GBT signs in the fins and gills, Rs infection level in kidneys by using an enzyme-linked immunosorbent assay (ELISA), and mortality. Mortality occurred rapidly after exposure to 120% TDG, with a LT20 (time necessary to kill 20% of the population) of about 37 h, which is at a minimum about 16% earlier than other bioassays we have conducted using fish that had no apparent signs of disease. Fish that died early (from 31 to 36 h and from 49 to 52 h) had significantly higher infection levels (mean ?? SE ELISA absorbance = 1.532 ?? 0.108) than fish that survived for 96h (mean ?? SE ELISA absorbance = 0.828 ?? 0.137). Fish that died early also had a significantly greater number of gill filaments occluded with bubbles than those that survived 96 h. Conversely, fish that survived for 96 h had a significantly higher median fin severity ranking than those that died early. Our results indicate that fish with moderate to high levels of Rs infection are more vulnerable to the effects of dissolved gas supersaturation (DGS) and die sooner than fish with lower levels of Rs infection. However, there is a substantial amount of individual variation in susceptibility to the apparent cumulative effects of DGS and Rs infection. Collectively, our findings have important implications to programs designed to monitor the prevalence and severity of GBT in juvenile salmonids in areas like the Columbia River basin and perhaps elsewhere.

  8. Lateral line pore diameters correlate with the development of gas bubble trauma signs in several Columbia River fishes (United States)

    Morris, R.G.; Beeman, J.W.; VanderKooi, S.P.; Maule, A.G.


    Gas bubble trauma (GBT) caused by gas supersaturation of river water continues to be a problem in the Columbia River Basin. A common indicator of GBT is the percent of the lateral line occluded with gas bubbles; however, this effect has never been examined in relation to lateral line morphology. The effects of 115, 125 and 130% total dissolved gas levels were evaluated on five fish species common to the upper Columbia River. Trunk lateral line pore diameters differed significantly (Plargescale sucker>northern pikeminnow≥chinook salmon≥redside shiner). At all supersaturation levels evaluated, percent of lateral line occlusion exhibited an inverse correlation to pore size but was not generally related to total dissolved gas level or time of exposure. This study suggests that the differences in lateral line pore diameters between species should be considered when using lateral line occlusion as an indicator of gas bubble trauma.

  9. Optical monitoring of bubble size and shape in a pulsating bubble surfactometer. (United States)

    Seurynck, Shannon L; Brown, Nathan J; Wu, Cindy W; Germino, Kevin W; Kohlmeir, Ellen K; Ingenito, Edward P; Glucksberg, Matthew R; Barron, Annelise E; Johnson, Mark


    The pulsating bubble surfactometer (PBS) is often used for in vitro characterization of exogenous lung surfactant replacements and lung surfactant components. However, the commercially available PBS is not able to dynamically track bubble size and shape. The PBS therefore does not account for bubble growth or elliptical bubble shape that frequently occur during device use. More importantly, the oscillatory volume changes of the pulsating bubble are different than those assumed by the software of the commercial unit. This leads to errors in both surface area and surface tension measurements. We have modified a commercial PBS through the addition of an image-acquisition system, allowing real-time determination of bubble size and shape and hence the accurate tracking of surface area and surface tension. Compression-expansion loops obtained with the commercially available PBS software were compared with those provided by the image-analysis system for dipalmitoylphosphatidylcholine, Infasurf, and Tanaka lipids (dipalmitoylphosphatidylcholine-palmitoyloleoylphosphatidyl-glycerol-palmitic acid, 68:22:9) at concentrations of 0.1 and 1.0 mg/ml and at frequencies of 1 and 20 cycles/min. Whereas minimum surface tension as determined by the image-analysis system is similar to that measured by the commercially available software, the maximum surface tension and the shapes of the interfacial area-surface tension loops are quite different. Differences are attributable to bubble drift, nonsinusoidal volume changes, and variable volume excursions seen with the modified system but neglected by the original system. Image analysis reveals that the extent of loop hysteresis is greatly overestimated by the commercial device and that an apparent, rapid increase in surface tension upon film expansion seen in PBS loops is not observed with the image-analysis system. The modified PBS system reveals new dynamic characteristics of lung surfactant preparations that have not previously been

  10. Monitoring of Herbicides in Aquatic Environments using the Bubble ...

    African Journals Online (AJOL)


    This study reports on the potential application of a cheaper sample preparation method termed 'bubble-in-drop' single ... agricultural processes per unit cost through elimination of pests that would threaten the success thereof. ... herbicides from various environmental and biological systems. Solid phase extraction and its ...

  11. Real-time on-line ultrasonic monitoring for bubbles in ceramic 'slip' in pottery pipelines. (United States)

    Yim, Geun Tae; Leighton, Timothy G


    When casting ceramic items in potteries, liquid 'slip' is passed from a settling tank, through overhead pipelines, before being pumped manually into the moulds. It is not uncommon for bubbles to be introduced into the slip as it passes through the complex piping network, and indeed the presence of bubbles is a major source of financial loss to the ceramics industry worldwide. This is because the bubbles almost always remain undetected until after the ceramic items have been fired in a kiln, during which process bubbles expand and create unwanted holes in the pottery. Since there it is usually an interval of several hours between the injection of the slip into the moulds, and the inspection of the items after firing, such bubble generation goes undetected on the production line during the manufacture of hundreds or even thousands of ceramic units. Not only does this mean hours of wasted staff time, power consumption and production line time: the raw material which makes up these faulty items cannot even be recycled, as fired ceramic cannot be converted back into slip. Currently, the state-of-the-art method for detecting bubbles in the opaque ceramic slip is slow and invasive, can only be used off-line, and requires expertise which is rarely available. This paper describes the invention, engineering and in-factory testing across Europe of an ultrasonic system for real-time monitoring for the presence of bubbles in casting slip. It interprets changes in the scattering statistics accompanying the presence of the bubbles, the latter being detected through perturbations in the received signal when a narrow-band ultrasonic probing wave is transmitted through the slip. The device can be bolted onto the outside of the pipeline, or used in-line. It is automated, and requires no special expertise. The acoustic problems which had to be solved were severe, and included making the system capable of monitoring the slip regardless of the material of pipe (plastic, steel, etc.) and

  12. Monitoring of Herbicides in Aquatic Environments using the Bubble ...

    African Journals Online (AJOL)


    costs faced in adopting the international methods for analysis and monitoring of commonly used herbicides. In the environment, they pose a threat of spreading and threatening biodiversity as some of them are classified as either endocrine disruptors and/or carcinogens.1,2 A number of methods have been developed and.

  13. TRAUMA

    African Journals Online (AJOL)

    purpose of this audit was to test this theory, using data from the Trauma Unit at Groote Schuur Hospital in Cape Town. The Trauma Unit at Groote Schuur Hospital ..... significant in predicting both crash incidence and severity.17. Study Limitations. This study gives insight into when busy times are expected and what types of ...

  14. TRAUMA

    African Journals Online (AJOL)

    as an indicator of EMS performance. Postoperative complications were graded according to Clavien-Dindo classification of surgical complications. Results: A total of 118 patients were admitted to the trauma surgery ward following abdominal trauma. The mechanism was penetrating 101 (85.6%) [stab wounds in 67 (56.8%) ...

  15. Evaluation of SOCOM Wireless Monitor in Trauma Patients (United States)


    pediatric burns : a 20 yr review of an ABA burn center. Presented at 10th Annual Academic Surgical Congress, Las Vegas, NV Feb 2015 24) Nissan >2000 adult and pediatric patients during ongoing fluid resuscitation, we showed that change in hematocrit was a more powerful predictor of...established the rationale for developing a MWVSM for use in pre hospital trauma tirage. In two studies in >4000 pediatric and adult trauma patients, we

  16. Enhanced lesion-to-bubble ratio on ultrasonic Nakagami imaging for monitoring of high-intensity focused ultrasound. (United States)

    Zhang, Siyuan; Li, Chong; Zhou, Fanyu; Wan, Mingxi; Wang, Supin


    This work explored the feasibility of using ultrasonic Nakagami imaging to enhance the contrast between thermal lesions and bubbles induced by high-intensity focused ultrasound (US) in a transparent tissue-mimicking phantom at different acoustic power levels. The term "lesion-to-bubble ratio" was proposed and defined as the ratio of the scattered power from the thermal lesion to the scattered power from the bubbles calculated in the various monitoring of images for high-intensity focused US. Two-dimensional radiofrequency data backscattered from the exposed region were captured by a modified diagnostic US scanner to estimate the Nakagami statistical parameter, m, and reconstruct the ultrasonic B-mode images and Nakagami parameter images. The dynamic changes in the lesion-to-bubble ratio over the US exposure procedure were calculated simultaneously and compared among video photos, B-mode images, and Nakagami images for monitoring of high-intensity focused US. After a small thermal lesion was induced by high-intensity focused US in the phantom, the lesion-to-bubble ratio values corresponding to the video photo, B-mode image, and Nakagami image were 5.3, 1, and 9.8 dB, respectively. When a large thermal lesion appeared in the phantom, the ratio values increased to 7.2, 3, and 14 dB. During US exposure, the ratio values calculated for the video photo, B-mode image, and Nakagami image began to increase gradually and rose to peak values of 8.3, 2.9, and 14.8 dB at the end of the US exposure. This preliminary study on a tissue-mimicking phantom suggests that Nakagami imaging may have a potential use in enhancing the lesion-to-bubble ratio for monitoring high-intensity focused US. Further studies in vivo and in vitro will be needed to evaluate the potential applications for high-intensity focused US. © 2014 by the American Institute of Ultrasound in Medicine.

  17. TRAUMA

    African Journals Online (AJOL)


    Nov 4, 2017 ... Introduction. Nonoperative management strategies have been suggested for the management of flail chest since the 1950s and most trauma surgeons still follow this approach today.1-4 However, follow-up studies on patients with rib fractures which have been managed nonoperatively have demostrated a ...

  18. TRAUMA

    African Journals Online (AJOL)

    key trauma procedures following successful completion of ATLS.10 However, it was noted that only 15% of all JDs had completed the ATLS course at the time of study.10 There is currently no literature focusing specifically on reasons for such low completion rate in our developing world setting. The aims of this study were to ...

  19. Exposure to Violence, Parental Monitoring, and Television Viewing as Contributors to Children's Psychological Trauma (United States)

    Singer, Mark I.; Flannery, Daniel J.; Guo, Shenyang; Miller, David; Leibbrandt, Sylvia


    This study examined the relative contributions of exposure to violence, parental monitoring, and television viewing habits to children's self-reported symptoms of psychological trauma. Children in grades 3-8 in 11 public schools completed an anonymous self-report questionnaire administered during usual school hours. The final sample was comprised…

  20. Trauma. (United States)

    Huisman, Thierry A G M; Poretti, Andrea


    Traumatic brain and spine injury (TBI/TSI) is a leading cause of death and lifelong disability in children. The biomechanical properties of the child's brain, skull, and spine, the size of the child, the age-specific activity pattern, and variance in trauma mechanisms result in a wide range of age-specific traumas and patterns of brain and spine injuries. A detailed knowledge about the various types of primary and secondary pediatric head and spine injuries is essential to better identify and understand pediatric TBI/TSI, which enhances sensitivity and specificity of diagnosis, will guide therapy, and may give important information about the prognosis. The purposes of this chapter are to: (1) discuss the unique epidemiology, mechanisms, and characteristics of TBI/TSI in children; (2) review the anatomic and functional imaging techniques that can be used to study common and rare pediatric TBI/TSI and their complications; (3) comprehensively review frequent primary and secondary brain injuries; and (4) to give a short overview of two special types of pediatric TBI/TSI: birth-related and nonaccidental injuries. © 2016 Elsevier B.V. All rights reserved.

  1. Science Bubbles

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Pedersen, David Budtz


    Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when...... bubbles appear in science, truth and reliability are the first victims. This paper explores how fashions in research funding and research management may turn science into something like a bubble economy....

  2. [Process indicators: tools for monitoring the management of severe trauma cases in Catalonia]. (United States)

    Prat, Salvi; Muñoz-Ortiz, Laura; Navarro, Salvador; Koo, Maylin; Jiménez-Fábrega, Xavier; Martínez-Cruz, Olga; Espallargues, Mireia


    Process indicators have been widely used to monitor the way trauma care is provided. We aimed to analyze whether data from a hospital's severe trauma register could facilitate the evaluation of aspects of the initial management of severe injuries. Observational, retrospective population-based study. A working group of experts selected a set of trauma care process indicators relevant to some aspects of initial care, diagnosis, and treatment of severely injured patients. Four of the indicators referred to prehospital care and 5 to hospital care. We calculated the observed and expected compliance rates for all the indicators. A total of 1526 cases (44.4%) were analyzed for 2013; 1908 (55.6%) were analyzed for 2014. We were able to evaluate 3 of the 4 prehospital process indicators: endotracheal intubation in patients with a score of 8 on the Glasgow coma scale (GCS) (84% compliance), venous access established before hospital arrival (83.4%), and placement of a neck collar to immobilize the cervical spine (72.7%). Compliance for the hospital-phase indicators were as follows: performance of a computed tomography scan of the head within 60 minutes in cases with a GCS of 13 (5.3% compliance, craniotomy in candidate patients within 2 hours of diagnosis (65%), diagnostic examination for abdominal injuries within 60 minutes in patients with systolic blood pressure 90 mm Hg (89.3%), and therapeutic laparotomy or angiography within 4 hours of abdominal injury in candidate patients with systolic blood pressure 90 mm Hg (51.7%). Compliance was 69.9% for the last process indicator: surgical treatment of open fractures within 8 hours of an accident. Our findings show that a hospital trauma register provides data about care process indicators that can allow us to monitor the quality of care of severely injured patients.

  3. Results of a near continuous glucose monitoring technology in surgical intensive care and trauma. (United States)

    Nohra, Eden; Buckman, Sara; Bochicchio, Kelly; Chamieh, Jad; Reese, Stacey; Merrill, Corinne; Schuerer, Douglas; Bochicchio, Grant V


    Near-continuous glucose monitoring is expected to increase time in range (TIR) of 80-120mg/dL and to avoid hypoglycemia without increasing workload. We investigated a near-continuous glucose monitor in surgical critically ill and trauma patients. Patients were enrolled at a surgical intensive care unit associated with a level 1 trauma center. Glucose measurements were compared to the gold standard Yellow Springs Instrument (YSI). The technology withdraws 0.13mL of blood every 15min from a central venous line, centrifuges the sample, and uses mid-infrared spectroscopy to measure glucose. We plotted a Clarke Error Grid, calculated Mean Absolute Relative Deviation (MARD) to analyze trend accuracy, and we present a Bland Altman plot of device versus standard glucose measurements. 24 patients were enrolled. One patient was withdrawn due to poor blood return from central venous line. A total of 347 glucose measurements from 23 patients were compared to the gold standard. 94.8% of the data points were in zone A of the Clarke Error Grid and 5.2% in zone B. The MARD was 8.02%. The majority of data points achieved the benchmark for accuracy. The remaining 5.2% are clinically benign. The MARD was below 10%. The Bland Altman plot shows good agreement between the device and reference glucose measurements. There were no device related adverse events. Our data suggests that near continuous monitoring via infrared spectroscopy is safe and accurate for use in critically ill surgical and trauma patients. A large scale multi-center study is underway to confirm these findings. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Bubble coalescence

    NARCIS (Netherlands)

    Orvalho, Sandra; Ruzicka, Marek C.; Olivieri, Giuseppe; Marzocchella, Antonio


    The goal of this study is to present new experimental data on the effect of the bubble approach velocity and liquid viscosity on pairwise bubble coalescence. Measurements were performed to investigate the dynamics of bubble coalescence under well-defined laboratory conditions. Air and pure

  5. Bubble impacts with microcantilevers. (United States)

    Stegmeir, Matthew; Longmire, Ellen; Ali, Mubassar; Mantell, Susan


    In the current study, we investigate bubbles in laminar channel flows impacting microcantilever obstacles. Static and resonating cantilevers instrumented with integrated strain gages are mounted perpendicular to the mean flow in a vertically-oriented channel with thickness 2mm, span 10mm, and length 585 mm. Steady, fully-developed upward flows with channel Reynolds numbers based on mean fluid velocity and hydraulic diameter of 0-2500 are considered. Bubbles of diameter 200-1000μm are introduced upstream of the test section, and impacts are observed using a microscope equipped with a high frame rate camera. Observations are made along the length of cantilevers backlit with white light. Strain gage signals are monitored and correlated to impact events. The effect of obstacles on bubble motion and deformation as well as the effect of bubble impacts on the cantilever will be discussed. The flow studies are part of a larger research program examining reliability and performance of vibrating microbeams.

  6. Bubble systems

    CERN Document Server

    Avdeev, Alexander A


    This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boil...

  7. Predictors of Mortality and Prehospital Monitoring Limitations in Blunt Trauma Patients (United States)

    Borovnik Lesjak, Vesna; Vujanović, Vitka; Pelcl, Tine; Križmarić, Miljenko


    This study aimed at determining predictors of in-hospital mortality and prehospital monitoring limitations in severely injured intubated blunt trauma patients. We retrospectively reviewed patients' charts. Prehospital vital signs, Injury Severity Score (ISS), initial Glasgow Coma Scale (GCS), Revised Trauma Score (RTS), arterial blood gases, and lactate were compared in two study groups: survivors (n = 40) and nonsurvivors (n = 30). There were no significant differences in prehospital vital signs between compared groups. Nonsurvivors were older (P = 0.006), with lower initial GCS (P < 0.001) and higher ISS (P < 0.001), along with higher lactate (P < 0.001) and larger base deficit (BD; P = 0.006), whereas RTS (P = 0.001) was lower in nonsurvivors. For predicting mortality, area under the curve (AUC) was calculated: for lactate 0.82 (P < 0.001), for ISS 0.82 (P < 0.001), and for BD 0.69 (P = 0.006). Lactate level of 3.4 mmol/L or more was 82% sensitive and 75% specific for predicting in-hospital death. In a multivariate logistic regression model, ISS (P = 0.037), GCS (P = 0.033), and age (P = 0.002) were found to be independent predictors of in-hospital mortality. The AUC for regression model was 0.93 (P < 0.001). Increased levels of lactate and BD on admission indicate more severe occult hypoperfusion in nonsurvivors whereas vital signs did not differ between the groups. PMID:25710039

  8. Bubble Combustion (United States)

    Corrigan, Jackie


    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  9. Optical modeling toward optimizing monitoring of intestinal perfusion in trauma patients

    Energy Technology Data Exchange (ETDEWEB)

    Akl, Tony [Texas A& M University; Wilson, Mark A. [University of Pittsburgh School of Medicine, Pittsburgh PA; Ericson, Milton Nance [ORNL; Cote, Gerard L. [Texas A& M University


    Trauma is the number one cause of death for people between the ages 1 and 44 years in the United States. In addition, according to the Centers of Disease Control and Prevention, injury results in over 31 million emergency department visits annually. Minimizing the resuscitation period in major abdominal injuries increases survival rates by correcting impaired tissue oxygen delivery. Optimization of resuscitation requires a monitoring method to determine sufficient tissue oxygenation. Oxygenation can be assessed by determining the adequacy of tissue perfusion. In this work, we present the design of a wireless perfusion and oxygenation sensor based on photoplethysmography. Through optical modeling, the benefit of using the visible wavelengths 470, 525 and 590nm (around the 525nm hemoglobin isobestic point) for intestinal perfusion monitoring is compared to the typical near infrared (NIR) wavelengths (805nm isobestic point) used in such sensors. Specifically, NIR wavelengths penetrate through the thin intestinal wall (~4mm) leading to high background signals. However, these visible wavelengths have two times shorter penetration depth that the NIR wavelengths. Monte-Carlo simulations show that the transmittance of the three selected wavelengths is lower by 5 orders of magnitude depending on the perfusion state. Due to the high absorbance of hemoglobin in the visible range, the perfusion signal carried by diffusely reflected light is also enhanced by an order of magnitude while oxygenation signal levels are maintained. In addition, short source-detector separations proved to be beneficial for limiting the probing depth to the thickness of the intestinal wall.

  10. Bubble, Bubble, Toil and Trouble. (United States)

    Journal of Chemical Education, 2001


    Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)

  11. Predictors of Mortality and Prehospital Monitoring Limitations in Blunt Trauma Patients

    Directory of Open Access Journals (Sweden)

    Matej Strnad


    Full Text Available This study aimed at determining predictors of in-hospital mortality and prehospital monitoring limitations in severely injured intubated blunt trauma patients. We retrospectively reviewed patients’ charts. Prehospital vital signs, Injury Severity Score (ISS, initial Glasgow Coma Scale (GCS, Revised Trauma Score (RTS, arterial blood gases, and lactate were compared in two study groups: survivors (n=40 and nonsurvivors (n=30. There were no significant differences in prehospital vital signs between compared groups. Nonsurvivors were older (P=0.006, with lower initial GCS (P<0.001 and higher ISS (P<0.001, along with higher lactate (P<0.001 and larger base deficit (BD; P=0.006, whereas RTS (P=0.001 was lower in nonsurvivors. For predicting mortality, area under the curve (AUC was calculated: for lactate 0.82 (P<0.001, for ISS 0.82 (P<0.001, and for BD 0.69 (P=0.006. Lactate level of 3.4 mmol/L or more was 82% sensitive and 75% specific for predicting in-hospital death. In a multivariate logistic regression model, ISS (P=0.037, GCS (P=0.033, and age (P=0.002 were found to be independent predictors of in-hospital mortality. The AUC for regression model was 0.93 (P<0.001. Increased levels of lactate and BD on admission indicate more severe occult hypoperfusion in nonsurvivors whereas vital signs did not differ between the groups.

  12. Bubble diagnostics (United States)

    Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.


    The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.

  13. Bubble Size Distributions on the North Atlantic and North Sea

    NARCIS (Netherlands)

    Leeuw, G. de; Cohen, L.H.


    Bubble size distributions were measured at open sea with optical bubble measuring systems(BMS)deployed from buoys at depths from 0.4 to l.5m. The BMS measures the bubbles in a small sample volume that is monitored with a video camera. The images are analyzed to obtain bubble size distributions in

  14. Filter Bubble vs. Preference Bubble


    Lindström, Hanna-Stiina; Soliman, Gabriela


    Tämän opinnäytetyön aiheena oli internetin personointi ja siitä aiheutuva filter bubble –ilmiö. Tarkoituksena oli tutkia kuluttajien suhtautumista ilmiöön, jota Suomessa ei vielä tunnisteta laajasti. Suhtautuminen haluttiin tuoda esiin vastakkainasettelun avulla. Filter bubble –näkökulma edusti tässä työssä ilmiön negatiivista suhtautumistapaa ja preference bubble –näkökulma positiivista. Opinnäytetyö oli tietopaketti yrityksille Filter bubble –ilmiön ominaisuuksista sekä sen käyttäytymisestä...

  15. Intracranial electrical impedance tomography: a method of continuous monitoring in an animal model of head trauma. (United States)

    Manwaring, Preston K; Moodie, Karen L; Hartov, Alexander; Manwaring, Kim H; Halter, Ryan J


    t test. Conductivity change within an ROI after injury was likewise compared with the same ROI before the injury making use of unpaired t tests with unequal variance. Eight animal subjects were studied, each undergoing 4 injury events including euthanasia. Changes in conductivity due to injury showed expected pathophysiologic effects in an ROI identified within the middle of the left hemisphere; this localization is reasonable given the actual site of injury (left hemisphere) and spatial warping associated with estimating a 3-dimensional conductivity distribution in 2-dimensional space. Results are shown as mean ± 1 SD. When averaged across all 8 animals, balloon inflation caused the mean Δσ within the ROI to shift by -11.4 ± 10.9 mS/m; balloon deflation by +9.4 ± 8.8 mS/m; blood injection by +19.5 ± 11.5 mS/m; death by -12.6 ± 13.2 mS/m. All induced injuries were detectable to statistical significance (P < 0.0001). This study confirms that the bedside EIT system with ICP/EIT combination sensor can detect induced trauma. Such a technique may hold promise for further research in the monitoring and management of traumatically brain-injured individuals.

  16. Leverage bubble (United States)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier


    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  17. Time-Dependent Changes in a Shampoo Bubble (United States)

    Chattopadhyay, Arun


    This article demonstrates the fascinating phenomenon of time evolution of a shampoo bubble through experiments that can be performed by undergraduate students. The changes in thickness of the bubble films with time are followed by UV-vis spectroscopy. The change in chemical composition as a bubble film evolves is monitored by FTIR spectroscopy. It is observed that the change in thickness of a typical shampoo bubble film enclosed in a container is gradual and slow, and the hydrocarbon components of the bubble drain from the bubble much more slowly than water. An additional agent, such as acetonitrile, strikingly alters the dynamics of evolution of such a bubble.

  18. Bubble drag reduction requires large bubbles

    CERN Document Server

    Verschoof, Ruben A; Sun, Chao; Lohse, Detlef


    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  19. Bubble bath soap poisoning (United States)

    ... Bubble bath soap poisoning To use the sharing features on this page, please enable JavaScript. Bubble bath soap poisoning occurs when someone swallows bubble bath soap. ...

  20. Lightweight Noninvasive Trauma Monitor for Early indication of Central Hypovolemia and Tissue Acidosis: A Review (United States)


    DHF). Dengue hemorrhagic fever shares many clinical fea- tures with trauma-induced hemorrhage and shock, including tachycardia , reduced pulse ...early and accurate diagnosis of in- ternal hemorrhage can be limited when using routine vital signs (e.g., pulse oximetry [SpO2], arterial blood...the middle finger of the left hand, which, in turn, was laid at heart level. Arterial oxygen saturation (SpO2) was measured using pulse oximetry (BCI

  1. Abdominal and thoracic focused assessment with sonography for trauma, triage, and monitoring in small animals. (United States)

    Lisciandro, Gregory R


    To review the nonradiologist use of ultrasound (US) in the setting of emergency and critical care, the development, clinical applications, and standardization of veterinary abdominal and thoracic focused assessment with sonography for trauma (FAST) techniques. Since the 1990s, the 4-point FAST US technique has been used for injury surveillance in people with blunt and penetrating trauma. FAST screens for free fluid in the abdominal, pleural, and pericardial cavities with high sensitivity and specificity. More recently, an extended FAST scan was developed for the rapid detection of pneumothorax. These techniques and newly created scans have been applied to other critically ill, nontraumatized, subsets of human patients. As a result, the terminology related to this field, eg, extended FAST, HHFAST, FFAST, FAFF, BOAST, SLOH, bedside US, '$ Approach,' protocols, and objectives have become convoluted despite having similar goals. The importance of US in the setting of emergency medicine is highlighted by the fact that this diagnostic modality has become an integral part of the core curriculum for nonradiologists including the American College of Surgeons, American College of Emergency Physicians, American Board of Emergency Medicine, Society of Academic Emergency Medicine, and all United States Accreditation Council for Graduate Medical Education Emergency Medicine residency programs. Veterinary applications of FAST techniques include an abdominal FAST technique with an abdominal FAST applied fluid scoring system, and a thoracic FAST technique. In an attempt to avoid the creation of numerous acronyms, veterinarians would be well served by making the 'T' in 'FAST' stand for 'Trauma,''Triage,' and 'Tracking.' These veterinary FAST techniques provide an extension of the physical examination for the emergency and critical care veterinarian potentially expediting diagnosis, prompting life-saving maneuvers, and guiding patient management. Further clinical research to

  2. Fama on bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    Eugene Fama has repeatedly expressed his discontent with the notion of an irrational bubble. However, he has never publicly expressed his opinion on rational bubbles. This is peculiar since such bubbles build naturally from the rational efficient markets paradigm that Fama strongly adheres to. On......, there is evidence of an explosive component in stock market valuation ratios, consistent with a rational bubble........ On empirical grounds Fama rejects bubbles by referring to the lack of reliable evidence that price declines are predictable. However, this argument cannot be used to rule out rational bubbles because such bubbles do not necessarily imply return predictability. On data samples that include the 1990s...

  3. First measurements of gas output from bubbling pools in a mud volcano at the periphery of Mt Etna (Italy): methodologies and implications for monitoring purposes (United States)

    Federico, Cinzia; Giudice, Gaetano; Liuzzo, Marco; Pedone, Maria; Cosenza, Paolo; Riccobono, Giuseppe


    Gases and brines emitted in the southern sector of Mt Etna from mofettes, mud pools and mud volcanoes come from an hydrothermal reservoir hosted within the clayey formations of the sedimentary basement (Chiodini et al., 1996). The gas emitted consists mainly of CO2, with CH4, N2 and He as minor species. CO2 and He stable isotopes indicate a clear magmatic origin for these gases, and their compositional changes during either eruptive or rest periods closely parallel that of crater fumaroles (Paonita et al., 2012). Altough these manifestations are the most significant CO2 emitters outside the crater area, their mass output has never been measured. We present the first measurements of gas flux from several bubbling mud pools in a mud volcano located in the village of Paternò (Lon 14.89° Lat 37.57°), in the southern flank of the volcano. We performed gas measurements using a home-made apparatus, able to capture all the bubbles over an area of 0.4 m2. Over an area of about 7000 m2, we measured the flow rate of every single bubbling pool, providing that it had a minimum flux rate of 0.5 l/min. The maximum measured flow rate for a single pool was 15 l/min. A preliminary estimate of the total CO2 output over the whole mud volcano is in the order of few t/d. At the same time, we measured the chemical composition of emitted gases in various pools, characterised by different gas flow rates, to calculate the output of CO2 and verify the effect of eventual chemical fractionation processes upon gas chemistry. During the same campaign of direct measurements, we also used a commercial infrared laser unit (GasFinder 2.0 from Boreal Laser Ltd) for measurement of volcanic CO2 path-integrated concentrations along cross-sections of the atmospheric plumes in the area. The GasFinder was set as to measure CO2 concentrations at 1 Hz rate. During the field campaigns, the position of the GasFinder unit was sequentially moved so as to scan the plumes from different viewing directions and

  4. Relationship between type of brain injury with Bispectral Index monitoring in intubated ICU trauma patients

    Directory of Open Access Journals (Sweden)

    Omid Moradi Moghaddam


    Conclusion: Different kinds of acute traumatic cranial lesions with different prognosis may have different values in BIS monitoring. Presence or absence of frontal lobe injury, had no statistically significant correlations with BIS values.

  5. Measuring bubbles in a bubbly wake flow (United States)

    Lee, Seung-Jae; Kawakami, Ellison; Arndt, Roger E. A.


    This paper presents measurements of the velocity and size distribution of bubbles in a bubbly wake. This was carried out by utilizing particle shadow velocimetry (PSV). This technique is a non-scattering approach that relies on direct in-line volume illumination by a pulsed source such as a light-emitting diode (LED). A narrow depth-of-field (DoF) is required for imaging a 2-dimensional plane within a flow volume. Shadows of the bubbles were collected by a high-speed camera. Once a reference image, taken when no bubbles were present in the flow, was subtracted from the images, the image was segmented using an edge detection technique. The Canny algorithm was determined to be best suited for this application. A curvature profile method was employed to distinguish individual bubbles within a cluster of highly overlapping bubbles. The utilized algorithm was made to detect partly overlapping bubbles and reconstruct the missing parts. The movement of recognized individual bubbles was tracked on a two dimensional plane within a flow volume. In order to obtain quantitative results, the wake of a ventilated hydrofoil was investigated by applying the shadowgraphy technique and the described bubble detection algorithm. These experiments were carried out in the high speed cavitation tunnel at Saint Anthony Falls Laboratory (SAFL) of the University of Minnesota. This research is jointly sponsored by the Office of Naval Re- search, Dr. Ron Joslin, program manager, and the Department of Energy, Golden Field Office.

  6. Fama on Bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom


    . However, this argument cannot be used to rule out rational bubbles because such bubbles do not necessarily imply return predictability, and return predictability of the kind documented by Fama does not rule out rational bubbles. On data samples that include the 1990s, there is evidence of an explosive......While Eugene Fama has repeatedly expressed his discontent with the notion of an “irrational bubble,” he has never publicly expressed his opinion on “rational bubbles.” On empirical grounds Fama rejects bubbles by referring to the lack of reliable evidence that price declines are predictable...

  7. Soap Bubbles and Crystals

    Indian Academy of Sciences (India)

    volume work summarizing his decades of research into soap bubbles and related phe- nomena due to surface tension. He gave the rules governing the geometry of bubbles, without any proof. It is a remarkable achievement as these experiments.

  8. Soap Bubbles and Logic. (United States)

    Levine, Shellie-helane; And Others


    Introduces questions and activities involving soap bubbles which provide students with experiences in prediction and logic. Examines commonly held false conceptions related to the shapes that bubbles take and provides correct explanations for the phenomenon. (ML)

  9. Economic Growth with Bubbles


    Alberto Martin


    This paper presents a stylized model of economic growth with bubbles. This model views asset price bubbles as a market-generated device to moderate the effects of frictions in financial markets, improving the allocation of investments and raising the capital stock and welfare. It shows that, contrary to conventional wisdom, bubbles can arise even if all investments in the economy are dynamically efficient.

  10. Soap Films and Bubbles. (United States)

    Rice, Karen


    Develops and explains a format for a workshop which focuses on soap films and bubbles. The plan consists of: a discussion to uncover what children know about bubbles; explanations of the demonstration equipment; the presentation itself; the assembly of the workshop kit; and time to play with the bubbles. (ML)

  11. Cavitation bubble dynamics. (United States)

    Lauterborn, W; Ohl, C D


    The dynamics of cavitation bubbles on water is investigated for bubbles produced optically and acoustically. Single bubble dynamics is studied with laser produced bubbles and high speed photography with framing rates up to 20.8 million frames per second. Examples for jet formation and shock wave emission are given. Acoustic cavitation is produced in water in the interior of piezoelectric cylinders of different sizes (up to 12 cm inner diameter). The filementary structure composed of bubbles is investigated and their light emission (sonoluminescence) studied for various driving strengths.

  12. Trauma in pregnancy. (United States)

    Mattox, Kenneth L; Goetzl, Laura


    The objective of this article was to review the existing standards of practice regarding trauma which occurs during pregnancy. The design of this study was to review the available data from the surgical and obstetrical literature regarding trauma during pregnancy. The design was also to incorporate the contemporary recommendations from the trauma resuscitation courses relating to trauma during pregnancy. Trauma occurs in 5% of pregnancies. A fetus is not considered to be viable until week 25. Motor vehicle accidents account for more than 50% of all trauma during pregnancy, with 82% of fetal deaths occurring during these automobile accidents. With life threatening trauma a 50% fetal loss rate exists. As anatomy, physiology, and even laboratory findings change during pregnancy, the clinician must consider both patients, the mother and fetus. Following blunt trauma abruption of the placenta is the more common cause of fetus loss. Anterior abdominal penetrating trauma almost never fails to injury the uterus and fetus in the last half of pregnancy. Preventive strategies exist in the areas of social violence, automobile restraints and use of alcohol and drugs by the mother. Perimortem caesarian section is rarely successful. Trauma during pregnancy is uncommon, but with increasing trauma severity leads to increased fetal loss. Preventive strategies exist and when admitted monitoring standards should be followed.

  13. Effect of bubble deformability on the vertical channel bubbly flow


    Dabiri, Sadegh; Lu, Jiacai; Tryggvason, Gretar


    This article describes the fluid dynamics video: "Effect of bubble deformability on the vertical channel bubbly flow". The effect of bubble deformability on the flow rate of bubbly upflow in a turbulent vertical channel is examined using direct numerical simulations. A series of simulations with bubbles of decreasing deformability reveals a sharp transition from a flow with deformable bubbles uniformly distributed in the middle of the channel to a flow with nearly spherical bubbles with a wal...

  14. Planar Soap Bubbles


    Vaughn, Rick


    The generalized soap bubble problem seeks the least perimeter way to enclose and separate n given volumes in R^m. We study the possible configurations for perimeter minimizing bubble complexes enclosing more than two regions. We prove that perimeter minimizing planar bubble complexes with equal pressure regions and without empty chambers must have connected regions. As a consequence, we show that the least perimeter planar graph that...

  15. Magnetic bubble materials. (United States)

    Giess, E A


    Physicists, materials scientists, and engineers combined to bring solid-state bubble devices into the computer memory and recording marketplace. Devices with smaller bubbles are being developed for increased data capacity and lower cost. Epitaxial garnet films made by isothermal dipping in molten solutions helped put the technology in place and will probably satisfy the material needs of future devices with bubbles scaled down from 2 to 0.5 micrometer in size.

  16. Sonochemistry and bubble dynamics. (United States)

    Mettin, Robert; Cairós, Carlos; Troia, Adriano


    The details of bubble behaviour in chemically active cavitation are still not sufficiently well understood. Here we report on experimental high-speed observations of acoustically driven single-bubble and few-bubble systems with the aim of clarification of the connection of their dynamics with chemical activity. Our experiment realises the sonochemical isomerization reaction of maleic acid to fumaric acid, mediated by bromine radicals, in a bubble trap set-up. The main result is that the reaction product can only be observed in a parameter regime where a small bubble cluster occurs, while a single trapped bubble stays passive. Evaluations of individual bubble dynamics for both cases are given in form of radius-time data and numerical fits to a bubble model. A conclusion is that a sufficiently strong collapse has to be accompanied by non-spherical bubble dynamics for the reaction to occur, and that the reason appears to be an efficient mixing of liquid and gas phase. This finding corroborates previous observations and literature reports on high liquid phase sonochemical activity under distinct parameter conditions than strong sonoluminescence emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Bubble and drop interfaces

    CERN Document Server



    The book aims at describing the most important experimental methods for characterizing liquid interfaces, such as drop profile analysis, bubble pressure and drop volume tensiometry, capillary pressure technique, and oscillating drops and bubbles. Besides the details of experimental set ups, also the underlying theoretical basis is presented in detail. In addition, a number of applications based on drops and bubbles is discussed, such as rising bubbles and the very complex process of flotation. Also wetting, characterized by the dynamics of advancing contact angles is discussed critically. Spec

  18. Blunt trauma in pregnancy. (United States)

    Grossman, Nancy Beth


    Trauma is the most common cause of nonobstetric death among pregnant women in the United States. Motor vehicle crashes, domestic violence, and falls are the most common causes of blunt trauma during pregnancy. All pregnant patients with traumatic injury should be assessed formally in a medical setting because placental abruption can have dire fetal consequences and can present with few or no symptoms. Evaluation and treatment are the same as for nonpregnant patients, except that the uterus should be shifted off the great vessels. After initial stabilization, management includes electronic fetal monitoring, ultrasonography, and laboratory studies. Electronic fetal monitoring currently is the most accurate measure of fetal status after trauma, although the optimal duration of monitoring has not been established. Prevention of trauma through proper seat belt use during pregnancy and recognition of domestic violence during prenatal care is important.

  19. Bubbles, Banks, and Financial Stability


    Kosuke Aoki; Kalin Nikolov


    This paper asks two main questions: (1) What makes some asset price bubbles more costly for the real economy than others? and (2) When do costly bubbles occur? We construct a model of rational bubbles under credit frictions and show that when bubbles held by banks burst this is followed by a costly financial crisis. In contrast, bubbles held by ordinary savers have relatively muted effects. Banks tend to invest in bubbles when financial liberalisation decreases their profitability.

  20. Single bubble sonoluminescence

    NARCIS (Netherlands)

    Brenner, Michael P.; Hilgenfeldt, Sascha; Lohse, Detlef


    Single-bubble sonoluminescence occurs when an acoustically trapped and periodically driven gas bubble collapses so strongly that the energy focusing at collapse leads to light emission. Detailed experiments have demonstrated the unique properties of this system: the spectrum of the emitted light

  1. Bubbles in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Lin, Jun


    Strain-induced deformations in graphene are predicted to give rise to large pseudomagnetic fields. We examine theoretically the case of gas-inflated bubbles to determine whether signatures of such fields are present in the local density of states. Sharp-edged bubbles are found to induce Friedel...

  2. Understanding the bubbles

    DEFF Research Database (Denmark)

    Turcan, Romeo V.

    that are identified to exist between the Internet and housing market bubbles: uncertainty and sentiments. The iteration between uncertainty and sentiments leads to the emergence of the third commonality: residue. The residue is the difference between the actors’ overall sentiment about exaggerated future prospects......Understanding how and why bubbles occur as well as whether these could be anticipated, managed, or even prevented is equally important as to know how to recover from them. To address these questions, a model of bubble emergence is put forward. The model builds on two fundamental commonalities...... of a new venture and intended outcomes of that new venture; the higher the residue, the higher the likelihood of the bubble emergence; as residue increases, the likelihood of bubble burst increases. One question that arises is whether one can manage the hype, hence the residue. In this, it is maintained...

  3. High-intensity focused ultrasound-triggered nanoscale bubble-generating liposomes for efficient and safe tumor ablation under photoacoustic imaging monitoring. (United States)

    Feng, Gang; Hao, Lan; Xu, Chunyan; Ran, Haitao; Zheng, Yuanyi; Li, Pan; Cao, Yang; Wang, Qi; Xia, Jizhu; Wang, Zhigang


    High-intensity focused ultrasound (HIFU) is widely applied to tumors in clinical practice due to its minimally invasive approach. However, several issues lower therapeutic efficiency in some cases. Many synergists such as microbubbles and perfluorocarbon nanoparticles have recently been used to improve HIFU treatment efficiency, but none were determined to be effective and safe in vivo. In this study, nanoscale bubble-generating liposomes (liposomes containing ammonium bicarbonate [Lip-ABC]) were prepared by film hydration followed by sequential extrusion. Their stable nanoscale particle diameter was confirmed, and their bubble-generating capacity after HIFU triggering was demonstrated with ultrasound imaging. Lip-ABC had good stability in vivo and accumulated in the tumor interstitial space based on the enhanced permeability and retention effect evaluated by photoacoustic imaging. When used to synergize HIFU ablation to bovine liver in vitro and implanted breast tumors of BALB/c nude mice, Lip-ABC outperformed the control. Importantly, all mice survived HIFU treatment, suggesting that Lip-ABC is a safe HIFU synergist.

  4. Herds of methane chambers grazing bubbles (United States)

    Grinham, Alistair; Dunbabin, Matthew


    Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique

  5. Chemistry in Soap Bubbles. (United States)

    Lee, Albert W. M.; Wong, A.; Lee, H. W.; Lee, H. Y.; Zhou, Ning-Huai


    Describes a laboratory experiment in which common chemical gases are trapped inside soap bubbles. Examines the physical and chemical properties of the gases such as relative density and combustion. (Author/MM)

  6. Bubble dynamics in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Hanke, Andreas [Institut fuer Theoretische Physik, Universitaet Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany); Metzler, Ralf [NORDITA-Nordic Institute for Theoretical Physics, Blegdamsvej 17, DK-2100 Copenhagen O (Denmark)


    The formation of local denaturation zones (bubbles) in double-stranded DNA is an important example of conformational changes of biological macromolecules. We study the dynamics of bubble formation in terms of a Fokker-Planck equation for the probability density to find a bubble of size n base pairs at time t, on the basis of the free energy in the Poland-Scheraga model. Characteristic bubble closing and opening times can be determined from the corresponding first passage time problem, and are sensitive to the specific parameters entering the model. A multistate unzipping model with constant rates recently applied to DNA breathing dynamics (Altan-Bonnet et al 2003 Phys. Rev. Lett. 90 138101) emerges as a limiting case. (letter to the editor)

  7. Systemic trauma. (United States)

    Goldsmith, Rachel E; Martin, Christina Gamache; Smith, Carly Parnitzke


    Substantial theoretical, empirical, and clinical work examines trauma as it relates to individual victims and perpetrators. As trauma professionals, it is necessary to acknowledge facets of institutions, cultures, and communities that contribute to trauma and subsequent outcomes. Systemic trauma-contextual features of environments and institutions that give rise to trauma, maintain it, and impact posttraumatic responses-provides a framework for considering the full range of traumatic phenomena. The current issue of the Journal of Trauma & Dissociation is composed of articles that incorporate systemic approaches to trauma. This perspective extends conceptualizations of trauma to consider the influence of environments such as schools and universities, churches and other religious institutions, the military, workplace settings, hospitals, jails, and prisons; agencies and systems such as police, foster care, immigration, federal assistance, disaster management, and the media; conflicts involving war, torture, terrorism, and refugees; dynamics of racism, sexism, discrimination, bullying, and homophobia; and issues pertaining to conceptualizations, measurement, methodology, teaching, and intervention. Although it may be challenging to expand psychological and psychiatric paradigms of trauma, a systemic trauma perspective is necessary on both scientific and ethical grounds. Furthermore, a systemic trauma perspective reflects current approaches in the fields of global health, nursing, social work, and human rights. Empirical investigations and intervention science informed by this paradigm have the potential to advance scientific inquiry, lower the incidence of a broader range of traumatic experiences, and help to alleviate personal and societal suffering.

  8. Colliding with a crunching bubble

    Energy Technology Data Exchange (ETDEWEB)

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen


    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  9. A Bubble Bursts (United States)


    RCW 79 is seen in the southern Milky Way, 17,200 light-years from Earth in the constellation Centaurus. The bubble is 70-light years in diameter, and probably took about one million years to form from the radiation and winds of hot young stars. The balloon of gas and dust is an example of stimulated star formation. Such stars are born when the hot bubble expands into the interstellar gas and dust around it. RCW 79 has spawned at least two groups of new stars along the edge of the large bubble. Some are visible inside the small bubble in the lower left corner. Another group of baby stars appears near the opening at the top. NASA's Spitzer Space Telescope easily detects infrared light from the dust particles in RCW 79. The young stars within RCW 79 radiate ultraviolet light that excites molecules of dust within the bubble. This causes the dust grains to emit infrared light that is detected by Spitzer and seen here as the extended red features.

  10. Bubble nuclei; Noyaux Bulles

    Energy Technology Data Exchange (ETDEWEB)

    Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)


    For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.

  11. Multivariate bubbles and antibubbles (United States)

    Fry, John


    In this paper we develop models for multivariate financial bubbles and antibubbles based on statistical physics. In particular, we extend a rich set of univariate models to higher dimensions. Changes in market regime can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. Moreover, our multivariate models are able to capture some of the contagious effects that occur during such episodes. We are able to show that declining lending quality helped fuel a bubble in the US stock market prior to 2008. Further, our approach offers interesting insights into the spatial development of UK house prices.

  12. Quality of trauma care and trauma registries. (United States)

    Pino Sánchez, F I; Ballesteros Sanz, M A; Cordero Lorenzana, L; Guerrero López, F


    Traumatic disease is a major public health concern. Monitoring the quality of services provided is essential for the maintenance and improvement thereof. Assessing and monitoring the quality of care in trauma patient through quality indicators would allow identifying opportunities for improvement whose implementation would improve outcomes in hospital mortality, functional outcomes and quality of life of survivors. Many quality indicators have been used in this condition, although very few ones have a solid level of scientific evidence to recommend their routine use. The information contained in the trauma registries, spread around the world in recent decades, is essential to know the current health care reality, identify opportunities for improvement and contribute to the clinical and epidemiological research. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  13. The Liberal Arts Bubble (United States)

    Agresto, John


    The author expresses his doubt that the general higher education bubble will burst anytime soon. Although tuition, student housing, and book costs have all increased substantially, he believes it is still likely that the federal government will continue to pour billions into higher education, largely because Americans have been persuaded that it…

  14. BEBC bubble chamber

    CERN Multimedia

    CERN PhotoLab


    Looking up into the interior of BEBC bubble chamber from the expansion cylinder. At the top of the chamber two fish-eye lenses are installed and three other fish-eye ports are blanked off. In the centre is a heat exchanger.

  15. Scanning bubble chamber pictures

    CERN Multimedia


    These were taken at the 2 m hydrogen bubble chamber. The photo shows an early Shiva system where the pre-measurements needed to qualify the event were done manually (cf photo 7408136X). The scanning tables were located in bld. 12. Gilberte Saulmier sits on foreground, Inge Arents at centre.

  16. Heavy liquid bubble chamber

    CERN Multimedia

    CERN PhotoLab


    The CERN Heavy liquid bubble chamber being installed in the north experimental hall at the PS. On the left, the 1180 litre body; in the centre the magnet, which can produce a field of 26 800 gauss; on the right the expansion mechanism.

  17. Bubble properties of heterogeneous bubbly flow in a square bubble column

    NARCIS (Netherlands)

    Bai, W.; Deen, N.G.; Kuipers, J.A.M.


    The present work focuses on the measurements of bubble properties in heterogeneous bubbly flows in a square bubble column. A four-point optical fibre probe was used for this purpose. The accuracy and intrusive effect of the optical probe was investigated first. The results show that the optical

  18. Characteristics of bubble plumes, bubble-plume bubbles and waves from wind-steepened wave breaking

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G. de


    Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened

  19. Bubbling controlled by needle movement

    Energy Technology Data Exchange (ETDEWEB)

    Vejrazka, Jiri; Fujasova, Maria; Stanovsky, Petr; Ruzicka, Marek C; Drahos, JirI [Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojova 135, 165 02 Prague (Czech Republic)], E-mail:


    A device for 'on-demand' production of bubbles is presented. The device is based on a movable needle, through which air is injected. Bubbling is controlled by a rapid needle movement, which induces the bubble detachment. Conditions for proper function of the device include the restriction on the flow rate through the needle, sufficient needle pressure drop and adequate needle acceleration. Functionality of the device is demonstrated. Bubbling from a stationary needle is also discussed and a scaling for bubble size is proposed for the case of short needles, to which a constant flow rate is imposed through tubes of a finite volume.

  20. Bubble Dynamics and Shock Waves

    CERN Document Server


    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  1. Models for power transformers monitoring in the intelligent electrical network: humidity and temperature of bubble generation; Modelos para el monitoreo de transformadores de potencia en la red electrica inteligente: humedad y temperatura de generacion de burbujas

    Energy Technology Data Exchange (ETDEWEB)

    Linan Garcia, Roberto; Ponce Noyola, David; Guzman Lopez, Arali [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Betancourt Ramirez, Enrique; Tamez Torres, Gerardo [PROLEC GE, (Mexico)


    This paper presents the development of two experimental models in order to ensure reliable operation of power transformers under emergency overload conditions. The first model estimates the moisture distribution in the transformer windings, while the second model estimates the safe operating temperature and time before steam bubbles generation presents. Additionally, an electronic device was designed and built, using the models developed, in order to monitor in real time both parameters. This device allows a more reliable operation of the transmission network, considering the transformers condition. [Spanish] Este documento presenta el desarrollo de dos modelos experimentales para asegurar la operacion confiable de transformadores de potencia bajo condiciones de sobrecarga de emergencia. El primer modelo estima la temperatura de operacion segura y el tiempo antes de que ocurra la generacion de burbujas de vapor. Ademas, se diseno y construyo un dispositivo electronico, usando los modelos desarrollados, con el fin de monitorear en tiempo real ambos parametros. Este dispositivo permite una operacion mas confiable de la red de transmision, considerando la condicion de los transformadores.

  2. Ring Bubbles of Dolphins (United States)

    Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)


    The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since

  3. Bubble dynamics in drinks

    Directory of Open Access Journals (Sweden)

    Broučková Zuzana


    Full Text Available This study introduces two physical effects known from beverages: the effect of sinking bubbles and the hot chocolate sound effect. The paper presents two simple „kitchen” experiments. The first and second effects are indicated by means of a flow visualization and microphone measurement, respectively. To quantify the second (acoustic effect, sound records are analyzed using time-frequency signal processing, and the obtained power spectra and spectrograms are discussed.

  4. Quantum Subcritical Bubbles (United States)

    Uesugi, T.; Morikawa, M.; Shiromizu, T.


    We quantize subcritical bubbles which are formed in the weakly first order phase transition. We find that the typical size of the thermal fluctuation reduces in quantum-statistical physics. We estimate the typical size and the amplitude of thermal fluctuations near the critical temperature in the electroweak phase transition using a quantum statistical average. Furthermore, based on our study, we discuss implications for the dynamics of phase transitions.

  5. Popping the filter bubble


    Hughes, Katie; Cronin, G; Welch, L


    So-called “fake news” is everywhere and is having a major impact on daily life from politics to education. The rapid growth of information and the numbers of people who can create it means that we need more sophisticated tools to process the news we receive. Join us to learn about different methods you can use to be your own fact checker and pop your filter bubble.

  6. BubbleDeck


    ECT Team, Purdue


    Conventional horizontal concrete slabs are heavy that limit their spans. Enhancement of span results in addition of beams that increases the cost of the structure. Thus, there is a need for a technology that will help in increasing the span by reducing weight of the span. BubbleDeck is a revolutionary construction method that virtually eliminates concrete from the middle of a floor slab between columns that does not perform any structural function, thereby dramatically reducing structural dea...

  7. Visualization and image based characterization of hydrodynamic cavity bubbles for kidney stone treatment


    Üzüşen, Doğan; Uzusen, Dogan


    Accurate detection, tracking and classification of micro structures through high speed imaging are very important in many biomedical applications. In particular, visualization and characterization of hydrodynamic cavity bubbles in breaking kidney stones have become a real challenge for researchers. Various micro imaging techniques have been used to monitor either an entire bubble cloud or individual bubbles within the cloud. The main target of this thesis is to perform an image based characte...

  8. Trauma in pregnancy

    Directory of Open Access Journals (Sweden)

    A Rudra


    Full Text Available Trauma is the most common non-obstetrical cause of death in pregnant women. Pregnancy must always be suspected in any female trauma patient of childbearing age until proved otherwise. Unique changes in anatomy and physiology that takes place during pregnancy alter the pathophysiology and location of maternal injuries in pregnancy, which may be significantly different from the non-pregnant state. Trauma from road traffic accidents, falls and domestic violence are the most common causes of abdominal blunt trauma. As pregnancy progresses, the change of accidental injury increases. Head and neck injuries, respiratory failure, and hypovolemic shock constitute the most frequent causes of trauma related maternal death in pregnancy. Even the pregnant woman with minor injuries should be carefully observed. Initial management is directed at resuscitation and stabilization of the mother that takes precedence over that of the fetus, unless vital signs cannot be maintained and perimortem cesarean section decided upon. Fetal monitoring should be maintained after satisfactory resuscitation and stabilization of the mother. Preventive measures include proper seat belt use and identifying and counseling victims of suspected domestic violence.

  9. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng


    The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubbles...... spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on the sources of bubble...

  10. In Search of the Big Bubble (United States)

    Simoson, Andrew; Wentzky, Bethany


    Freely rising air bubbles in water sometimes assume the shape of a spherical cap, a shape also known as the "big bubble". Is it possible to find some objective function involving a combination of a bubble's attributes for which the big bubble is the optimal shape? Following the basic idea of the definite integral, we define a bubble's surface as…

  11. Trauma Africa

    Directory of Open Access Journals (Sweden)

    Victor Y. Kong


    Full Text Available “Major Trauma. Dr. Kong, please come to the Trauma Unit immediately. Dr. Kong, please come to the Trauma Unit immediately.” Even though I have been working at Edendale Hospital as a trauma registrar for over a year, whenever I hear this announcement over the hospital intercom system, my heart beats just a little faster than normal. When I first arrived at Edendale my colleagues told me that the adrenaline rush I would experience after being called out to attend a new emergency would decrease over time, and indeed they were right. However, it is also true to say that on some occasions more than others, it is still felt more strongly than ever.

  12. Paediatric trauma

    African Journals Online (AJOL)

    Trauma Unit, Red Cross War Memorial Children's Hospital, Cape Town ... and international research projects, educational initiatives and advocacy roles on child safety initiatives regarding child injuries as well as child abuse. ... Road traffic.


    Directory of Open Access Journals (Sweden)

    Alojz Pleskovič


    Full Text Available Background. The most common cause of abdominal trauma is blunt trauma, gunshot wounds and stab wounds are rare. Most commonly injured organs in abdominal cavity are the spleen and the liver.Conclusions. Early diagnosis is very important and include precise phisical examination and all available diagnostic methods. The final decission about the method of treatmet depends on patients clinical condition, surgeon’s experience and other local conditions.

  14. Bubble measuring instrument and method (United States)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)


    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  15. Electroweak bubble wall speed limit (United States)

    Bödeker, Dietrich; Moore, Guy D.


    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can "run away," that is, achieve extreme ultrarelativistic velocities γ ~ 1014. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ~ 1/α. Though the bubble walls can move at almost the speed of light, they carry an infinitesimal share of the plasma's energy.

  16. Droplets, Bubbles and Ultrasound Interactions. (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel


    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  17. Na emission and bubble instability in single-bubble sonoluminescence. (United States)

    Choi, Pak-Kon; Takumori, Keisuke; Lee, Hyang-Bok


    Na emission in single-bubble sonoluminescence (SBSL) was observed from 0.1mM sodium dodecyl sulfate (SDS) solution containing a dissolved noble gas at a low acoustic pressure, at which a continuous spectral component was negligible. High-speed shadowgraph movies were captured at a frame rate of 30,000fps, which indicated that bubble dancing is responsible for the Na emission. The measured bubble path length was well correlated with the Na intensity. The disintegration of a daughter bubble followed by immediate coalescence was frequently observed, which may have been the cause of the bubble dancing. A comparison of the Na spectra obtained in SBSL and multibubble SL showed that the conditions under which Na emission is generated are twofold. A narrow component was observed in the Na spectrum in SBSL, while narrow and broad components were observed in MBSL. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Transfusion practices in trauma

    Directory of Open Access Journals (Sweden)

    V Trichur Ramakrishnan


    Full Text Available Resuscitation of a severely traumatised patient with the administration of crystalloids, or colloids along with blood products is a common transfusion practice in trauma patients. The determination of this review article is to update on current transfusion practices in trauma. A search of PubMed, Google Scholar, and bibliographies of published studies were conducted using a combination of key-words. Recent articles addressing the transfusion practises in trauma from 2000 to 2014 were identified and reviewed. Trauma induced consumption and dilution of clotting factors, acidosis and hypothermia in a severely injured patient commonly causes trauma-induced coagulopathy. Early infusion of blood products and early control of bleeding decreases trauma-induced coagulopathy. Hypothermia and dilutional coagulopathy are associated with infusion of large volumes of crystalloids. Hence, the predominant focus is on damage control resuscitation, which is a combination of permissive hypotension, haemorrhage control and haemostatic resuscitation. Massive transfusion protocols improve survival in severely injured patients. Early recognition that the patient will need massive blood transfusion will limit the use of crystalloids. Initially during resuscitation, fresh frozen plasma, packed red blood cells (PRBCs and platelets should be transfused in the ratio of 1:1:1 in severely injured patients. Fresh whole blood can be an alternative in patients who need a transfusion of 1:1:1 thawed plasma, PRBCs and platelets. Close monitoring of bleeding and point of care coagulation tests are employed, to allow goal-directed plasma, PRBCs and platelets transfusions, in order to decrease the risk of transfusion-related acute lung injury.

  19. Sonoporation from jetting cavitation bubbles

    NARCIS (Netherlands)

    Ohl, C.D.; Arora, M.; Ikink, Roy; de Jong, N.; Versluis, Michel; Delius, Michael; Lohse, Detlef


    The fluid dynamic interaction of cavitation bubbles with adherent cells on a substrate is experimentally investigated. We find that the nonspherical collapse of bubbles near to the boundary is responsible for cell detachment. High-speed photography reveals that a wall bounded flow leads to the

  20. Sonoporation from jetting cavitation bubbles

    NARCIS (Netherlands)

    C.-D. Ohl (Claus-Dieter); M. Arora (Manish); R. Ikink (Roy); N. de Jong (Nico); M. Versluis (Michel); M. Delius (Michael); D. Lohse (Detlef)


    textabstractThe fluid dynamic interaction of cavitation bubbles with adherent cells on a substrate is experimentally investigated. We find that the nonspherical collapse of bubbles near to the boundary is responsible for cell detachment. High-speed photography reveals that a wall bounded flow leads

  1. Bubble size distribution of foam

    NARCIS (Netherlands)

    den Engelsen, C.W.; den Engelsen, C.W.; Isarin, J.C.; Warmoeskerken, Marinus; Groot Wassink, J.; Groot Wassink, J.


    A procedure based upon image analysis has been adopted to study the influence of several physical parameters on bubble size in foam. A procedure has been described to account for the distribution of bubble size. Foam was generated in a rotor-stator mixer. In the present research, the nature of the

  2. Hadron bubbles in nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Troitskii, M.A.; Khodel' , V.A.


    Nonlinear effects in the interaction of hadrons with a nucleus are analyzed. It is shown that K/sup +/ mesons form bubbles in nuclear matter which are similar to electron bubbles in liquid helium. Charged pions produced in collisions of heavy relativistic ions may collect and form droplets approx.5--7 Fm in size containing approx.10/sup 2/ particles.

  3. Mr. Bubble Gum: "Not Now!"

    National Research Council Canada - National Science Library


    PreS-Gr 2-- Mr. Bubble Gum is a Level 3 book, the most difficult in this series. In four short stories of varying lengths, an older brother tells about his younger brother Eli, who "sticks to me like bubble gum...

  4. Bubble chamber: colour enhanced tracks

    CERN Multimedia


    This artistically-enhanced image of real particle tracks was produced in the Big European Bubble Chamber (BEBC). Liquid hydrogen is used to create bubbles along the paths of the particles as a piston expands the medium. A magnetic field is produced in the detector causing the particles to travel in spirals, allowing charge and momentum to be measured.

  5. Bubble columns : Structures or stability?

    NARCIS (Netherlands)

    Harteveld, W.K.


    The aim of the thesis is to contribute to the understanding of the hydrodynamics of the gravity driven bubbly flow that can be found in bubble columns. Special attention is paid to the large scale structures that have a strong impact on several key parameters such as the degree of mixing, mass and

  6. Phase diagrams for sonoluminescing bubbles

    NARCIS (Netherlands)

    Hilgenfeldt, Sascha; Lohse, Detlef; Brenner, Michael P.


    Sound driven gas bubbles in water can emit light pulses. This phenomenon is called sonoluminescence (SL). Two different phases of single bubble SL have been proposed: diffusively stable and diffusively unstable SL. We present phase diagrams in the gas concentration versus forcing pressure state

  7. Bubble coalescence in breathing DNA

    DEFF Research Database (Denmark)

    Novotný, Tomas; Pedersen, Jonas Nyvold; Ambjörnsson, Tobias


    We investigate the coalescence of two DNA bubbles initially located at weak segments and separated by a more stable barrier region in a designed construct of double-stranded DNA. The characteristic time for bubble coalescence and the corresponding distribution are derived, as well...

  8. Quantification of cell-bubble interactions in a 3D engineered tissue phantom. (United States)

    Walsh, C; Ovenden, N; Stride, E; Cheema, U


    Understanding cell-bubble interactions is crucial for preventing bubble related pathologies and harnessing their potential therapeutic benefits. Bubbles can occur in the body as a result of therapeutic intravenous administration, surgery, infections or decompression. Subsequent interactions with living cells, may result in pathological responses such as decompression sickness (DCS). This work investigates the interactions that occur between bubbles formed during decompression and cells in a 3D engineered tissue phantom. Increasing the tissue phantoms' cellular density resulted in decreased dissolved O2 (DO) concentrations (p = 0.0003) measured using real-time O2 monitoring. Direct microscopic observation of these phantoms, revealed a significant (p = 0.0024) corresponding reduction in bubble nucleation. No significant difference in growth rate or maximum size of the bubbles was measured (p = 0.99 and 0.23). These results show that bubble nucleation is dominated by DO concentration (affected by cellular metabolism), rather than potential nucleation sites provided by cell-surfaces. Consequent bubble growth depends not only on DO concentration but also on competition for dissolved gas. Cell death was found to significantly increase (p = 0.0116) following a bubble-forming decompression. By comparison to 2D experiments; the more biomimetic 3D geometry and extracellular matrix in this work, provide data more applicable for understanding and developing models of in vivo bubble dynamics.

  9. Deconvolution of acoustically detected bubble-collapse shock waves. (United States)

    Johansen, Kristoffer; Song, Jae Hee; Johnston, Keith; Prentice, Paul


    The shock wave emitted by the collapse of a laser-induced bubble is detected at propagation distances of 30, 40and50mm, using a PVdF needle hydrophone, with a non-flat end-of-cable frequency response, calibrated for magnitude and phase, from 125kHz to 20MHz. High-speed shadowgraphic imaging at 5×106 frames per second, 10nstemporal resolution and 256 frames per sequence, records the bubble deflation from maximum to minimum radius, the collapse and shock wave generation, and the subsequent rebound in unprecedented detail, for a single sequence of an individual bubble. The Gilmore equation for bubble oscillation is solved according to the resolved bubble collapse, and simulated shock wave profiles deduced from the acoustic emissions, for comparison to the hydrophone recordings. The effects of single-frequency calibration, magnitude-only and full waveform deconvolution of the experimental data are presented, in both time and frequency domains. Magnitude-only deconvolution increases the peak pressure amplitude of the measured shock wave by approximately 9%, from single-frequency calibration, with full waveform deconvolution increasing it by a further 3%. Full waveform deconvolution generates a shock wave profile that is in agreement with the simulated profile, filtered according to the calibration bandwidth. Implications for the detection and monitoring of acoustic cavitation, where the role of periodic bubble collapse shock waves has recently been realised, are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. [Vascular trauma]. (United States)

    Furuya, T; Nobori, M; Tanaka, N


    Vascular trauma is essentially acute arterial obstruction, often combined with hemorrhage, fracture, and infection. It can be both life-threatening and limb-threatening and needs an emergency operation. In vascular trauma patient, multiple fracture and organ injury, such as brain, lung, liver, spleen, kidney, or gastrointestinal tract should be evaluated to decide treatment priority. When the pulse distal from the injured site is absent or diminished, vascular trauma is most likely and reconstruction should be accomplished within "the golden time (6-8 hours)". Intimal damage followed by platelet aggregation and thrombus formation will necessitate resection and repair of the site instead of simple thrombectomy. Although autogenous vein is the first choice, artificial graft can be implanted for short segment in non-infected field.

  11. Growing bubbles rising in line

    Directory of Open Access Journals (Sweden)

    John F. Harper


    Full Text Available Over many years the author and others have given theories for bubbles rising in line in a liquid. Theory has usually suggested that the bubbles will tend towards a stable distance apart, but experiments have often showed them pairing off and sometimes coalescing. However, existing theory seems not to deal adequately with the case of bubbles growing as they rise, which they do if the liquid is boiling, or is a supersaturated solution of a gas, or simply because the pressure decreases with height. That omission is now addressed, for spherical bubbles rising at high Reynolds numbers. As the flow is then nearly irrotational, Lagrange's equations can be used with Rayleigh's dissipation function. The theory also works for bubbles shrinking as they rise because they dissolve.

  12. Children and Facial Trauma (United States)

    ... an ENT Doctor Near You Children and Facial Trauma Children and Facial Trauma Patient Health Information News ... staff at . What is facial trauma? The term facial trauma means any injury to ...

  13. Trauma Fact Sheet (United States)

    ... NIGMS NIGMS Home > Science Education > Physical Trauma Physical Trauma Tagline (Optional) Middle/Main Content Area PDF Version (572 KB) Other Fact Sheets What is physical trauma? Physical trauma is a serious injury to the ...

  14. Characterization of polymers by bubble inflation

    DEFF Research Database (Denmark)

    Christensen, Jens Horslund; Rasmussen, Henrik K.; Kjær, Erik Michael


    In order to characterise materials using a simple and relative inexpensive method, the bubble inflation technique was modified. A polymer plate is clamped between a Teflon coated heating plate and a heated cylinder. By applying air through the heating plate the polymer membrane deforms into the c......In order to characterise materials using a simple and relative inexpensive method, the bubble inflation technique was modified. A polymer plate is clamped between a Teflon coated heating plate and a heated cylinder. By applying air through the heating plate the polymer membrane deforms...... into the cylinder. The top position of the membrane is monitored by fibreoptic sensors positioned in the cylinder. The pressure difference across the membrane is measured as well. The deformation in this inflation device is nonuniform and is only equal biaxial in the top of the deformed membrane. Due to this......, the response is modelled using a finite element method in 3D Cartesian coordinates. The K-BKZ constitutive equation is used to model the nonlinear properties of the material. Using linear viscoelastic properties from oscillatory shear measurements and measurements of the bubble inflation, estimation...

  15. Trauma case review: A quality and safety feature of the Victorian State Trauma System. (United States)

    Pinto, Carolyn; Cameron, Peter A; Gabbe, Belinda; McLellan, Susan; Walker, Tony


    The aim of the present study was to describe the trauma case review process and its role in a regionalised trauma system. Victoria has a population of 5.9 million people, accounting for 26% of Australia's population. Victoria has been serviced by an inclusive, organised trauma system since 2000 comprising 138 health services with trauma designations and three major trauma services. Pre- and interhospital guidelines prescribe the timely transport of patients to the appropriate level of trauma service. A review of the role and contribution of 10 years of operation of the trauma case review group (CRG) was undertaken to describe the aims, processes and governance surrounding the implementation of an individual case review for specified major trauma patients. Specified patients were those identified by the Victorian State Trauma Registry as being managed outside of established Victorian State Trauma System prehospital and interhospital guidelines. A state-wide trauma case review process was implemented across the trauma system using data-informed detection flags and screening criteria. Using data from the Victorian State Trauma Registry, detection flags were correlated with patients at risk of a poorer outcome, thereby ensuring that all patients managed outside of the requirements of established trauma triage and transfer guidelines were subject to review. The CRG provides an individual review process as a technique for assessing and monitoring major trauma patient care and compliance with trauma system triage and transfer guidelines. The process has been effective as a quality and safety strategy by improving clinician knowledge of major trauma triage and transfer guidelines and facilitating improved compliance, particularly with interhospital transfers. Strong compliance has been achieved from health services with the requirement to internally review and respond to CRG concerns regarding 'high-risk' trauma cases. Anecdotal feedback from health services regarding

  16. Trauma renal


    Pereira Júnior, Gerson Alves; Paganelli, Fernando; Scarpelini, Sandro; Stracieri, Luís Donizetti Silva; Féres, Ornar; Andrade, José Ivan de


    Apresentamos uma revisão sobre trauma renal, com ênfase na avaliação radiológica, particularmente com o uso da tomografia computadorizada, que tem se tornado o exame de eleição, ao invés da urografia excretora e arteriografia. O sucesso no tratamento conservador dos pacientes com trauma renal depende de um acurado estadiamento da extensão da lesão, classificado de acordo com a Organ Injury Scaling do Colégio Americano de Cirurgiões. O tratamento conservador não-operatório é seguro e consiste ...

  17. Ballistic trauma

    Directory of Open Access Journals (Sweden)

    Parvathi Devi Munishwar


    Full Text Available Gunshot injuries are rather serious but uncommon type of trauma in India. Radiologists can contribute substantially in the evaluation and treatment of patients with gunshot wounds. Foreign bodies that enter a patient as a result of trauma are contaminated and produce a range of symptoms. Oral and maxillofacial gunshot injuries are usually fatal due to close proximity with vital structures. Here, we report a case in which radiographic evidence of foreign bodies in the right orofacial region exposed a history of a gunshot injury. The patient did not have any major complaints except for reduced mouth opening. These foreign bodies were clinically silent for approximately 12 years.

  18. Trauma in pregnancy: a systematic approach. (United States)

    Mirza, Fadi G; Devine, Patricia C; Gaddipati, Sreedhar


    Trauma in pregnancy remains one of the major contributors to maternal and fetal morbidity and mortality. Potential complications include maternal injury or death, shock, internal hemorrhage, intrauterine fetal demise, direct fetal injury, abruptio placentae, and uterine rupture. The leading causes of obstetric trauma are motor vehicle accidents, falls, assaults, and gunshots, and ensuing injuries are classified as blunt abdominal trauma, pelvic fractures, or penetrating trauma. Many of the assessment and management aspects of obstetric trauma are unique to pregnancy, although initial evaluation and resuscitation should always be maternally directed. Once maternal stability is established, vigilant evaluation of fetal well-being becomes warranted. Continuous fetal heart monitoring, ultrasonography, computed tomography, open peritoneal lavage, and/or exploratory laparotomy may be indicated in a case of obstetric trauma. In view of the significant impact of trauma on the pregnant woman and her fetus, preventive strategies are paramount. Copyright Thieme Medical Publishers.

  19. Perturbation of a radially oscillating single-bubble by a micron-sized object. (United States)

    Montes-Quiroz, W; Baillon, F; Louisnard, O; Boyer, B; Espitalier, F


    A single bubble oscillating in a levitation cell is acoustically monitored by a piezo-ceramics microphone glued on the cell external wall. The correlation of the filtered signal recorded over distant cycles on one hand, and its harmonic content on the other hand, are shown to carry rich information on the bubble stability and existence. For example, the harmonic content of the signal is shown to increase drastically once air is fully dissociated in the bubble, and the resulting pure argon bubble enters into the upper branch of the sonoluminescence regime. As a consequence, the bubble disappearance can be unambiguously detected by a net drop in the harmonic content. On the other hand, we perturb a stable sonoluminescing bubble by approaching a micron-sized fiber. The bubble remains unperturbed until the fiber tip is approached within a critical distance, below which the bubble becomes unstable and disappears. This distance can be easily measured by image treatment, and is shown to scale roughly with 3-4 times the bubble maximal radius. The bubble disappearance is well detected by the drop of the microphone harmonic content, but several thousands of periods after the bubble actually disappeared. The delay is attributed to the slow extinction of higher modes of the levitation cell, excited by the bubble oscillation. The acoustic detection method should however allow the early detection and imaging of non-predictable perturbations of the bubble by foreign micron-sized objects, such as crystals or droplets. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Trauma Theory

    DEFF Research Database (Denmark)

    Pedersen, Bodil Maria

    There are two main trends in psychological approaches to human suffering related to what we term trauma. Although they have their respective limitations both approaches may help us explore and alleviate human suffering. One trend, primarily using concepts like traumatic events and traumatisation...

  1. Eye trauma

    African Journals Online (AJOL)


    Feb 2, 2011 ... Industrial workers should be protected by safety glasses but injuries occur nonetheless. Eye trauma is frequent in homes, farms and backyards where safety glasses are not available. Angle-grinders, metal beating, hammering, fence mending, herding animals, forestry, fire fighting and cutting sugar cane ...


    African Journals Online (AJOL)

    deaths due to other trauma types (gunshot wounds, road traffic fatalities and assault) were documented. Ethical approval was obtained from the University of Pretoria, Faculty of Health. Science Research Ethics Committee, prior to commencement of this study. Descriptive statistical analysis was conducted with the aid of a ...


    African Journals Online (AJOL)

    of shock and who require “damage control” surgery are more likely to suffer a worse outcome, particularly when multiple physiological derangements .... Gun shot. 13. 15. Shot gun. 0. 1. Level of injury. Infrarenal. 11. 7. 0.248. Juxtarenal. 2. 7. Suprarenal. 2. 1. Retrohepatic. 2. 2. Trauma scores. RTS (mean). 7.28. 6.44. 0.095.


    African Journals Online (AJOL)

    and track this epidemic. A number of socio-political changes have continued, and these will impact on the trauma patterns seen in the country. Gun control legislation has been enforced since the turn of the millennium, and there have been ongoing attempts to demilitarise society by removing assault weapons. The ongoing ...

  5. The bubble legacy (United States)

    Hecht, Jeff


    Imagine an optics company - let's call it JDS Uniphase - with a market capitalization approaching the gross domestic product (GDP) of Ireland. Now imagine it merging with a laser company - say, SDL - that has a stock valuation of 41bn, higher than the GDP of Costa Rica. Finally, imagine a start-up with 109m in venture capital in its pocket but no product to its name (Novalux) turning down an offer of 500m as insufficient. It may be hard to believe, but these tales are true: they occurred in the year 2000 - an era when the laser, fibre-optics and photonics industries were the darlings of the financial world. Such was the madcap nature of that brief period that survivors call it simply "the bubble".

  6. Bubble size distribution and inner surface in a bubble flow (United States)

    Žitek, P.; Valenta, V.


    This paper follows the reports [4] and gives instructions on how to theoretically determine the bubble size and its distribution using the distribution function of Nukiyama-Tanasawa with friction factors.

  7. Sonochemistry and the acoustic bubble

    CERN Document Server

    Grieser, Franz; Enomoto, Naoya; Harada, Hisashi; Okitsu, Kenji; Yasui, Kyuichi


    Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the p

  8. Partial coalescence of soap bubbles (United States)

    Harris, Daniel M.; Pucci, Giuseppe; Bush, John W. M.


    We present the results of an experimental investigation of the merger of a soap bubble with a planar soap film. When gently deposited onto a horizontal film, a bubble may interact with the underlying film in such a way as to decrease in size, leaving behind a smaller daughter bubble with approximately half the radius of its progenitor. The process repeats up to three times, with each partial coalescence event occurring over a time scale comparable to the inertial-capillary time. Our results are compared to the recent numerical simulations of Martin and Blanchette and to the coalescence cascade of droplets on a fluid bath.

  9. Bubble stimulation efficiency of dinoflagellate bioluminescence. (United States)

    Deane, Grant B; Stokes, M Dale; Latz, Michael I


    Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors. Copyright © 2015 John Wiley & Sons, Ltd.

  10. New evidence on the first financial bubble

    NARCIS (Netherlands)

    Frehen, R.G.P.; Goetzmann, W.; Rouwenhorst, K.G.


    The Mississippi Bubble, South Sea Bubble and the Dutch Windhandel of 1720 together represent the world's first global financial bubble. We hand-collect cross-sectional price data and investor account data from 1720 to test theories about market bubbles. Our tests suggest that innovation was a key


    The Bubble Strip Method was developed for determining concentrations of dissolved H2 in ground water (1). This information canaid in assessing the viability of employing the strategyof monitored natural attenuation (MNA) to restore sites contaminated with chlorinated hydrocarbon...

  12. Comment on "Acoustical observation of bubble oscillations induced by bubble popping". (United States)

    Blanc, É; Ollivier, F; Antkowiak, A; Wunenburger, R


    We have reproduced the experiment of acoustic monitoring of spontaneous popping of single soap bubbles standing in air reported by Ding et al. [2aaPhys. Rev. E 75, 041601 (2007)]. By using a single microphone and two different signal acquisition systems recording in parallel the signal at the microphone output, among them the system used by Ding et al., we have experimentally evidenced that the acoustic precursors of bubble popping events detected by Ding et al. actually result from an acausal artifact of the signal processing performed by their acquisition system which lies outside of its prescribed working frequency range. No acoustic precursor of popping could be evidenced with the microphone used in these experiments, whose sensitivity is 1VPa-1 and frequency range is 500 Hz-100 kHz.

  13. Aspherical bubble dynamics and oscillation times

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, A.; Noack, J. [Meizinisches Laserzentrum Luebeck (Germany); Chapyak, E.J.; Godwin, R.P. [Los Alamos National Lab., NM (United States)


    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored by time-resolved photography and numerical simulations. The growth-collapse period of cylindrical bubbles of large aspect ratio (length:diameter {approximately}20) differs only slightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble size and energy even for aspherical bubbles. The change of the oscillation period of bubbles near solid walls and elastic (tissue-like) boundaries relative to that of isolated spherical bubbles is also investigated.

  14. Topological Privacy: Lattice Structures and Information Bubbles for Inference and Obfuscation (United States)


    NAME(S) AND ADDRESS(ES). Enter the name and address of the organization(s) financially responsible for and monitoring the work. 10. SPONSOR/MONITOR’S...release. Topological Privacy: Lattice Structures and Information Bubbles for Inference and Obfuscation Final Report to AFOSR Award FA9550-14-1-0012...44 10.7 Hidden Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 10.8 Bubbles

  15. The Housing Bubble Fact Sheet


    Dean Baker


    This paper explains the basic facts about the current housing market. It lays out the evidence that the rise in housing prices constitutes a housing bubble - and explains what can be expected when it inevitably collapses.

  16. Magnetism. Blowing magnetic skyrmion bubbles. (United States)

    Jiang, Wanjun; Upadhyaya, Pramey; Zhang, Wei; Yu, Guoqiang; Jungfleisch, M Benjamin; Fradin, Frank Y; Pearson, John E; Tserkovnyak, Yaroslav; Wang, Kang L; Heinonen, Olle; te Velthuis, Suzanne G E; Hoffmann, Axel


    The formation of soap bubbles from thin films is accompanied by topological transitions. Here we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally "blow" magnetic skyrmion bubbles from a geometrical constriction. The presence of a spatially divergent spin-orbit torque gives rise to instabilities of the magnetic domain structures that are reminiscent of Rayleigh-Plateau instabilities in fluid flows. We determine a phase diagram for skyrmion formation and reveal the efficient manipulation of these dynamically created skyrmions, including depinning and motion. The demonstrated current-driven transformation from stripe domains to magnetic skyrmion bubbles could lead to progress in skyrmion-based spintronics. Copyright © 2015, American Association for the Advancement of Science.

  17. Microstreaming from Sessile Semicylindrical Bubbles (United States)

    Hilgenfeldt, Sascha; Rallabandi, Bhargav; Guo, Lin; Wang, Cheng


    Powerful steady streaming flows result from the ultrasonic driving of microbubbles, in particular when these bubbles have semicylindrical cross section and are positioned in contact with a microfluidic channel wall. We have used this streaming in experiment to develop novel methods for trapping and sorting of microparticles by size, as well as for micromixing. Theoretically, we arrive at an analytical description of the streaming flow field through an asymptotic computation that, for the first time, reconciles the boundary layers around the bubble and along the substrate wall, and also takes into account the oscillation modes of the bubble. This approach gives insight into changes in the streaming pattern with bubble size and driving frequency, including a reversal of the flow direction at high frequencies with potentially useful applications. Present address: Mechanical and Aerospace Engineering, Missouri S &T.

  18. Methane rising from the Deep: Hydrates, Bubbles, Oil Spills, and Global Warming (United States)

    Leifer, I.; Rehder, G. J.; Solomon, E. A.; Kastner, M.; Asper, V. L.; Joye, S. B.


    Elevated methane concentrations in near-surface waters and the atmosphere have been reported for seepage from depths of nearly 1 km at the Gulf of Mexico hydrate observatory (MC118), suggesting that for some methane sources, deepsea methane is not trapped and can contribute to atmospheric greenhouse gas budgets. Ebullition is key with important sensitivity to the formation of hydrate skins and oil coatings, high-pressure solubility, bubble size and bubble plume processes. Bubble ROV tracking studies showed survival to near thermocline depths. Studies with a numerical bubble propagation model demonstrated that consideration of structure I hydrate skins transported most methane only to mid-water column depths. Instead, consideration of structure II hydrates, which are stable to far shallower depths and appropriate for natural gas mixtures, allows bubbles to survive to far shallower depths. Moreover, model predictions of vertical methane and alkane profiles and bubble size evolution were in better agreement with observations after consideration of structure II hydrate properties as well as an improved implementation of plume properties, such as currents. These results demonstrate the importance of correctly incorporating bubble hydrate processes in efforts to predict the impact of deepsea seepage as well as to understand the fate of bubble-transported oil and methane from deepsea pipeline leaks and well blowouts. Application to the DWH spill demonstrated the importance of deepsea processes to the fate of spilled subsurface oil. Because several of these parameters vary temporally (bubble flux, currents, temperature), sensitivity studies indicate the importance of real-time monitoring data.

  19. Using ionospheric scintillation observations for studying the morphology of equatorial ionospheric bubbles (United States)

    Dandekar, B. S.; Groves, K. M.


    For a study of the equatorial ionosphere, ionospheric scintillation data at VHF and L-band frequencies have been routinely collected by ground-based receivers at Ancon, Peru, Antofagasta, Chile, and Ascension Island, UK, since May 1994. The receivers routinely monitor VHF transmissions from two geosynchronous satellites located at 100°W longitude and 23°W longitude, and L-band signals from satellites located at 75°W longitude and 15°W longitude. This combination provides a network of seven usable, reasonably separated links for monitoring ionospheric equatorial bubble activity in the South American longitude sector. A data set of seven years covering the period from 1995 to 2001 was studied to determine the temporal, diurnal, and seasonal behavior of equatorial bubbles. The results of our statistical study are presented here. In general the equatorial ionospheric bubble activity shows a strong systematic and primary dependence in temporal, diurnal, and seasonal variation, and a secondary weak dependence on geomagnetic and solar flux activity. At present, the dependence on solar and magnetic activity is not usable for near-time and short-term prediction of the equatorial bubble activity. Equatorial bubbles usually start 1 hour after sunset, the activity peaks before local midnight, and vanishes by early morning. The activity peaks in the months of November and January-February and is practically absent (weak) from May to August. On a daily basis on the average one sees 1 to 3 bubbles. The duration of bubbles is about 70 min, and the time spacing between the bubbles is 1 to 2 hours. The bubble activity in general follows the phase of solar cycle activity. The observed systematic behavior of the equatorial bubbles allows for a now cast and short-term forecast of the bubble activity in the South American sector.

  20. Doughnut-shaped soap bubbles. (United States)

    Préve, Deison; Saa, Alberto


    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L. It is well known that the sphere is the solution for V=L(3)/6π(2), and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for Vbubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V<αL(3)/6π(2) cannot be stable and should not exist in foams, for instance.

  1. Bubbles and foams in microfluidics. (United States)

    Huerre, Axel; Miralles, Vincent; Jullien, Marie-Caroline


    Microfluidics offers great tools to produce highly-controlled dispersions of gas into liquid, from isolated bubbles to organized microfoams. Potential technological applications are manifold, from novel materials to scaffolds for tissue engineering or enhanced oil recovery. More fundamentally, microfluidics makes it possible to investigate the physics of complex systems such as foams at scales where the capillary forces become dominant, in model experiments involving few well-controlled parameters. In this context, this review does not have the ambition to detail in a comprehensive manner all the techniques and applications involving bubbles and foams in microfluidics. Rather, it focuses on particular consequences of working at the microscale, under confinement, and hopes to provide insight into the physics of such systems. The first part of this work focuses on bubbles, and more precisely on (i) bubble generation, where the confinement can suppress capillary instabilities while inertial effects may play a role, and (ii) bubble dynamics, paying special attention to the lubrication film between bubble and wall and the influence of confinement. The second part addresses the formation and dynamics of microfoams, emphasizing structural differences from macroscopic foams and the influence of the confinement.

  2. From rational bubbles to crashes (United States)

    Sornette, D.; Malevergne, Y.


    We study and generalize in various ways the model of rational expectation (RE) bubbles introduced by Blanchard and Watson in the economic literature. Bubbles are argued to be the equivalent of Goldstone modes of the fundamental rational pricing equation, associated with the symmetry-breaking introduced by non-vanishing dividends. Generalizing bubbles in terms of multiplicative stochastic maps, we summarize the result of Lux and Sornette that the no-arbitrage condition imposes that the tail of the return distribution is hyperbolic with an exponent μbubble model to arbitrary dimensions d: a number d of market time series are made linearly interdependent via d× d stochastic coupling coefficients. We derive the no-arbitrage condition in this context and, with the renewal theory for products of random matrices applied to stochastic recurrence equations, we extend the theorem of Lux and Sornette to demonstrate that the tails of the unconditional distributions associated with such d-dimensional bubble processes follow power laws, with the same asymptotic tail exponent μmodel and the non-stationary growth rate model) of the RE bubble model that provide two ways of reconciliation with the stylized facts of financial data.

  3. A bubble-based microfluidic gas sensor for gas chromatographs. (United States)

    Bulbul, Ashrafuzzaman; Kim, Hanseup


    We report a new proof-of-concept bubble-based gas sensor for a gas chromatography system, which utilizes the unique relationship between the diameters of the produced bubbles with the gas types and mixture ratios as a sensing element. The bubble-based gas sensor consists of gas and liquid channels as well as a nozzle to produce gas bubbles through a micro-structure. It utilizes custom-developed software and an optical camera to statistically analyze the diameters of the produced bubbles in flow. The fabricated gas sensor showed that five types of gases (CO2, He, H2, N2, and CH4) produced (1) unique volumes of 0.44, 0.74, 1.03, 1.28, and 1.42 nL (0%, 68%, 134%, 191%, and 223% higher than that of CO2) and (2) characteristic linear expansion coefficients (slope) of 1.38, 2.93, 3.45, 5.06, and 5.44 nL/(kPa (μL s(-1))(-1)). The gas sensor also demonstrated that (3) different gas mixture ratios of CO2 : N2 (100 : 0, 80 : 20, 50 : 50, 20 : 80 and 0 : 100) generated characteristic bubble diameters of 48.95, 77.99, 71.00, 78.53 and 99.50 μm, resulting in a linear coefficient of 10.26 μm (μL s(-1))(-1). It (4) successfully identified an injection (0.01 μL) of pentane (C5) into a continuous carrier gas stream of helium (He) by monitoring bubble diameters and creating a chromatogram and demonstrated (5) the output stability within only 5.60% variation in 67 tests over a month.

  4. Measuring online social bubbles

    Directory of Open Access Journals (Sweden)

    Dimitar Nikolov


    Full Text Available Social media have become a prevalent channel to access information, spread ideas, and influence opinions. However, it has been suggested that social and algorithmic filtering may cause exposure to less diverse points of view. Here we quantitatively measure this kind of social bias at the collective level by mining a massive datasets of web clicks. Our analysis shows that collectively, people access information from a significantly narrower spectrum of sources through social media and email, compared to a search baseline. The significance of this finding for individual exposure is revealed by investigating the relationship between the diversity of information sources experienced by users at both the collective and individual levels in two datasets where individual users can be analyzed—Twitter posts and search logs. There is a strong correlation between collective and individual diversity, supporting the notion that when we use social media we find ourselves inside “social bubbles.” Our results could lead to a deeper understanding of how technology biases our exposure to new information.



    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  6. [Investigation of serum cysteine concentration to monitor glomerular filtration rate for early diagnosis of acute kidney injury in patients with combined trauma]. (United States)

    Miziev, I A; Makhov, M Kh


    / To determine the early diagnostic criteria for acute kidney injury in patients with combined trauma using serum cystatin C as a biomarker in the diagnostic work-up of the affected patients. / The study comprised 42 patients who suffered combined trauma from 2015 to 2016. Cystatin C level was measured in serum. Blood sampling was done on the 1st, 3rd, 7th, 14th day of the injury. The patients were predominantly men (80%). Renal function was tested by measuring the rate of filtration and reabsorption using the Reberg-Tareev test. All patients were tested for the following parameters: serum and urine creatinine, 1-minute, 1-hour and 24-hour urine output, the rate of glomerular filtration and tubular reabsorption. / Forty (95.3%) patients had normal Reberg-Tareev test values. In 2 (4.7%) patients Reberg-Tareev test results were below normal values, which was associated with the development of acute renal failure on the sixth or seventh day after trauma. The overwhelming majority of patients with combined trauma had a normal serum creatinine level (n=38). In 33 (78.6%) patients serum cystatin C level was more than 30 percent above normal values. Moreover, an increase in the cystatin C level was observed in the first 3 days, with a gradual decrease thereafter. The glomerular filtration rate, according to the Reberg-Tareev test was reduced only in 4 patients, but when the Hawk formula was used to calculate GFR, it was reduced in 33 patients. On the 3rd day after trauma, based on the increase in the serum cystatin level, 12 patients were found to have subclinical acute renal damage. At the same time, this group of patients had normal azotemia parameters. These findings suggest that measuring glomerular filtration rate using serum cystatin C has a greater accuracy in detecting latent renal dysfunction.



    イシイ, セイゴ; ナリタ, ヒデキ; マエノ, ノリカズ; Seigo, ISHII; Hideki, NARITA; Norikazu, MAENO


    Bubble formation experiments were conducted for snow composed of ice spheres 303μm in diameter at various temperatures and applied pressures. By measuring volumes of closed-off bubbles at various densities, the bubble formation density (ρ_f) and the bubble close-off density (ρ_c) were obtained. ρ_f, that is the density at which bubble formation begins, decreased with lowering temperature or pressure. On the other hand, ρ_c, that is the density at which bubble formation finishes, increased wit...

  8. Spherical Solutions of an Underwater Explosion Bubble

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw


    Full Text Available The evolution of the 1D explosion bubble flow field out to the first bubble minimum is examined in detail using four different models. The most detailed is based on the Euler equations and accounts for the internal bubble fluid motion, while the simplest links a potential water solution to a stationary, Isentropic bubble model. Comparison of the different models with experimental data provides insight into the influence of compressibility and internal bubble dynamics on the behavior of the explosion bubble.

  9. On the Inception of Financial Representative Bubbles

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferrara


    Full Text Available In this work, we aim to formalize the inception of representative bubbles giving the condition under which they may arise. We will find that representative bubbles may start at any time, depending on the definition of a behavioral component. This result is at odds with the theory of classic rational bubbles, which are those models that rely on the fulfillment of the transversality condition by which a bubble in a financial asset can arise just at its first trade. This means that a classic rational bubble (differently from our model cannot follow a cycle since if a bubble exists, it will burst by definition and never arise again.

  10. Implementing Major Trauma Audit in Ireland. (United States)

    Deasy, Conor; Cronin, Marina; Cahill, Fiona; Geary, Una; Houlihan, Patricia; Woodford, Maralyn; Lecky, Fiona; Mealy, Ken; Crowley, Philip


    There are 27 receiving trauma hospitals in the Republic of Ireland. There has not been an audit system in place to monitor and measure processes and outcomes of care. The National Office of Clinical Audit (NOCA) is now working to implement Major Trauma Audit (MTA) in Ireland using the well-established National Health Service (NHS) UK Trauma Audit and Research Network (TARN). The aim of this report is to highlight the implementation process of MTA in Ireland to raise awareness of MTA nationally and share lessons that may be of value to other health systems undertaking the development of MTA. The National Trauma Audit Committee of the Royal College of Surgeons in Ireland, consisting of champions and stakeholders in trauma care, in 2010 advised on the adaptation of TARN for Ireland. In 2012, the Emergency Medicine Program endorsed TARN and in setting up the National Emergency Medicine Audit chose MTA as the first audit project. A major trauma governance group was established representing stakeholders in trauma care, a national project co-ordinator was recruited and a clinical lead nominated. Using Survey Monkey, the chief executives of all trauma receiving hospitals were asked to identify their hospital's trauma governance committee, trauma clinical lead and their local trauma data co-ordinator. Hospital Inpatient Enquiry systems were used to identify to hospitals an estimate of their anticipated trauma audit workload. There are 25 of 27 hospitals now collecting data using the TARN trauma audit platform. These hospitals have provided MTA Clinical Leads, allocated data co-ordinators and incorporated MTA reports formally into their clinical governance, quality and safety committee meetings. There has been broad acceptance of the NOCA escalation policy by hospitals in appreciation of the necessity for unexpected audit findings to stimulate action. Major trauma audit measures trauma patient care processes and outcomes of care to drive quality improvement at hospital and

  11. Bubble rearrangements dynamics in foams (United States)

    Le Merrer, Marie; Costa, Severine; Cohen-Addad, Sylvie; Hoehler, Reinhard


    Liquid foams are jammed dispersions of gas bubbles in a surfactant solution. Their structure evolves with time because surface tension drives a diffusive gas exchange between neighboring bubbles. This coarsening leads to a build-up of stresses which are relaxed upon local intermittent bubble rearrangements. These events govern the slow viscoelastic foam response, and similar bubble rearrangements are the elementary processes of plastic flow. Thus, the rearrangement duration is a key parameter describing how the microstructure dynamics control the macroscopic rheological response. We probe the duration of coarsening-induced rearrangements in 3D foams using a multiple light scattering technique (time resolved Diffusing-Wave Spectroscopy) as a function of the surfactant chemistry and the liquid fraction. As the foam becomes wetter, the confinement pressure of the packing goes to zero and the contacts between bubbles vanish. For mobile interfaces, we find that the rearrangements slow down as the jamming point is approached. These findings are compared to scaling laws which reveal an analogy between rearrangements dynamics in foams and granular suspensions.

  12. Ethnic diversity deflates price bubbles (United States)

    Levine, Sheen S.; Apfelbaum, Evan P.; Bernard, Mark; Bartelt, Valerie L.; Zajac, Edward J.; Stark, David


    Markets are central to modern society, so their failures can be devastating. Here, we examine a prominent failure: price bubbles. Bubbles emerge when traders err collectively in pricing, causing misfit between market prices and the true values of assets. The causes of such collective errors remain elusive. We propose that bubbles are affected by ethnic homogeneity in the market and can be thwarted by diversity. In homogenous markets, traders place undue confidence in the decisions of others. Less likely to scrutinize others’ decisions, traders are more likely to accept prices that deviate from true values. To test this, we constructed experimental markets in Southeast Asia and North America, where participants traded stocks to earn money. We randomly assigned participants to ethnically homogeneous or diverse markets. We find a marked difference: Across markets and locations, market prices fit true values 58% better in diverse markets. The effect is similar across sites, despite sizeable differences in culture and ethnic composition. Specifically, in homogenous markets, overpricing is higher as traders are more likely to accept speculative prices. Their pricing errors are more correlated than in diverse markets. In addition, when bubbles burst, homogenous markets crash more severely. The findings suggest that price bubbles arise not only from individual errors or financial conditions, but also from the social context of decision making. The evidence may inform public discussion on ethnic diversity: it may be beneficial not only for providing variety in perspectives and skills, but also because diversity facilitates friction that enhances deliberation and upends conformity. PMID:25404313

  13. Ethnic diversity deflates price bubbles. (United States)

    Levine, Sheen S; Apfelbaum, Evan P; Bernard, Mark; Bartelt, Valerie L; Zajac, Edward J; Stark, David


    Markets are central to modern society, so their failures can be devastating. Here, we examine a prominent failure: price bubbles. Bubbles emerge when traders err collectively in pricing, causing misfit between market prices and the true values of assets. The causes of such collective errors remain elusive. We propose that bubbles are affected by ethnic homogeneity in the market and can be thwarted by diversity. In homogenous markets, traders place undue confidence in the decisions of others. Less likely to scrutinize others' decisions, traders are more likely to accept prices that deviate from true values. To test this, we constructed experimental markets in Southeast Asia and North America, where participants traded stocks to earn money. We randomly assigned participants to ethnically homogeneous or diverse markets. We find a marked difference: Across markets and locations, market prices fit true values 58% better in diverse markets. The effect is similar across sites, despite sizeable differences in culture and ethnic composition. Specifically, in homogenous markets, overpricing is higher as traders are more likely to accept speculative prices. Their pricing errors are more correlated than in diverse markets. In addition, when bubbles burst, homogenous markets crash more severely. The findings suggest that price bubbles arise not only from individual errors or financial conditions, but also from the social context of decision making. The evidence may inform public discussion on ethnic diversity: it may be beneficial not only for providing variety in perspectives and skills, but also because diversity facilitates friction that enhances deliberation and upends conformity.

  14. Trauma renal

    Directory of Open Access Journals (Sweden)

    Gerson Alves Pereira Júnior

    Full Text Available Apresentamos uma revisão sobre trauma renal, com ênfase na avaliação radiológica, particularmente com o uso da tomografia computadorizada, que tem se tornado o exame de eleição, ao invés da urografia excretora e arteriografia. O sucesso no tratamento conservador dos pacientes com trauma renal depende de um acurado estadiamento da extensão da lesão, classificado de acordo com a Organ Injury Scaling do Colégio Americano de Cirurgiões. O tratamento conservador não-operatório é seguro e consiste de observação contínua, repouso no leito, hidratação endovenosa adequada e antibioti- coterapia profilática, evitando-se uma exploração cirúrgica desnecessária e possível perda renal. As indicações para exploração cirúrgica imediata são abdome agudo, rápida queda do hematócrito ou lesões associadas determinadas na avaliação radiológica. Quando indicada, a exploração renal após controle vascular prévio é segura, permitindo cuidadosa inspeção do rim e sua reconstrução com sucesso, reduzindo a probabilidade de nefrectomia.

  15. Aspherical bubble dynamics and oscillation times

    Energy Technology Data Exchange (ETDEWEB)

    Godwin, R.P.; Chapyak, E.J. [Los Alamos National Lab., NM (United States); Noack, J.; Vogel, A. [Medizinisches Laserzentrum Luebeck (Germany)


    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  16. Soap Bubbles on a Cold Day. (United States)

    Waiveris, Charles


    Discusses the effects of blowing bubbles in extremely cold weather. Describes the freezing conditions of the bubbles and some physical properties. Suggests using the activity with all ages of students. (MVL)

  17. Unorthodox bubbles when boiling in cold water (United States)

    Parker, Scott; Granick, Steve


    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

  18. Bubble nucleation in an explosive micro-bubble actuator

    NARCIS (Netherlands)

    van den Broek, D.M.; Elwenspoek, Michael Curt


    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure

  19. Does monetary policy generate asset price bubbles ?


    Blot, Christophe; Hubert, Paul; Labondance, Fabien


    This paper empirically assesses the effect of monetary policy on asset price bubbles and aims to disentangle the competing predictions of theoretical bubble models. First, we take advantage of the model averaging feature of Principal Component Analysis to estimate bubble indicators, for the stock, bond and housing markets in the United States and Euro area, based on the structural, econometric and statistical approaches proposed in the literature to measure bubbles. Second, we ...

  20. Eulerian simulations of bubble behaviour in a two-dimensional gas-solid bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Lu Huilin; Liu Wentie; Zhao Guangbo; He Yurong [Harbin Institute of Technology (China). Dept. of Power Engineering; Li Feng [Jiangxi Boiler Co. Ltd., Nanchang (China)


    In the present study, the CFD model is based on a two-fluid model extended with the kinetic theory of granular flow. The simulation results of bubble diameter and bubble rise velocity are compared to the Darton equation and the Davidson model in a free bubbling fluidized bed. The predicted values are in reasonable agreement with the values from the Darton bubble size equation and the Davidson model for isolated bubbles. It is shown that the break-up and direct wall interaction effects influence the dynamic bubble behavior in the free bubbling fluidized beds. (author)

  1. Are Australian and New Zealand trauma service resources reflective of the Australasian Trauma Verification Model Resource Criteria? (United States)

    Leonard, Elizabeth; Curtis, Kate


    The Australasian Trauma Verification Program was developed in 2000 to improve the quality of care provided at services in Australia and New Zealand. The programme outlines resources required for differing levels of trauma services. This study compares the human resources in Australia and New Zealand trauma services with those recommended by the Australasian College of Surgeons Trauma Verification Program. In September 2011, all trauma nurse coordinators in Australia and New Zealand were invited to participate in an electronic survey endorsed by the Australasian Trauma Society. This study expands on previous bi-national research and aimed to identify demographic and trauma service human resource levels. Fifty-three surveys (78%) were completed and all 27 Level 1 trauma centres represented. Of the Level 1 trauma centres, a trauma director and fellow were available at 16 (51.8%) and 14 (40.7%) centres, respectively. The majority (93%) had a full-time trauma coordinator although a trauma case manager was only available at 14 (48.1%) of Level 1 trauma centres. Despite the large amount of data collection and extraction required, trauma services had limited access to a data manager (50.9%) or clerical staff (36.9%). Human resources in Australian and NZ trauma services are not reflective of those recommended by the Australasian Trauma Verification Program. This impacts on the ability to coordinate trauma monitoring and performance improvement. Review of the Australasian Trauma Verification Model Resource Criteria is required. Injury surveillance in Australia and NZ is hampered by insufficient trauma registry resources. © 2014 Royal Australasian College of Surgeons.

  2. Behavior of a Large Bubble in a Horizontal Channel : 2nd Report, Large Bubble Penetrating into Running Liquid


    坂口, 忠司; 小澤, 守; 浜口, 八朗; 福永, 毅


    The behavior of a large bubble penetrating into running liquid in a horizontal pipe has been studied experimentally. The flow regime of the large bubble is classified into the following three regimes : a steadily moving bubble regime, a transition regime and a stationary bubble regime. In the steadily moving bubble regime, the large bubble penetrates at constant velocity and the shape of the bubble nose does not change along the pipe. An analysis of the behavior of the large bubble has been c...

  3. Vapor Bubbles in Flow and Acoustic Fields

    NARCIS (Netherlands)

    Prosperetti, Andrea; Hao, Yue; Sadhal, S.S


    A review of several aspects of the interaction of bubbles with acoustic and flow fields is presented. The focus of the paper is on bubbles in hot liquids, in which the bubble contains mostly vapor, with little or no permanent gas. The topics covered include the effect of translation on condensation

  4. Bubble Size Distributions in Coastal Seas

    NARCIS (Netherlands)

    Leeuw, G. de; Cohen, L.H.


    Bubble size distributions have been measured with an optical system that is based on imaging of a small sample volume with a CCD camera system, and processing of the images to obtain the size of individual bubbles in the diameter range from 30 to lOOO^m. This bubble measuring system is deployed from

  5. Mechanics of gas-vapor bubbles

    NARCIS (Netherlands)

    Hao, Yue; Zhang, Yuhang; Prosperetti, Andrea


    Most bubbles contain a mixture of vapor and incondensible gases. While the limit cases of pure vapor and pure gas bubbles are well studied, much less is known about the more realistic case of a mixture. The bubble contents continuously change due to the combined effects of evaporation and

  6. Frictional drag reduction by bubble injection (United States)

    Murai, Yuichi


    The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.

  7. Affirmative Discrimination and the Bubble (United States)

    Clegg, Roger


    In this essay, the author discusses how affirmative action contributed to an unnatural rise in enrollments in college. In considering the higher education bubble, he makes the case that as the opposition to preferences continues to build, the momentum of this trend will only increase as funding shrinks. He offers some tentative answers to a series…

  8. The Coming Law School Bubble (United States)

    Krauss, Michael I.


    In this article, the author explains how forty years of politicized hiring in the law schools has left its destructive mark. The results are potentially catastrophic: Market forces and internal law school policies may be combining to produce a legal education bubble the likes of which the country has never seen. (Contains 11 footnotes.)

  9. Models of cylindrical bubble pulsation (United States)

    Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.


    Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863

  10. The Big European Bubble Chamber

    CERN Multimedia


    The 3.70 metre Big European Bubble Chamber (BEBC), dismantled on 9 August 1984. During operation it was one of the biggest detectors in the world, producing direct visual recordings of particle tracks. 6.3 million photos of interactions were taken with the chamber in the course of its existence.

  11. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    van den Broek, D.M.; Elwenspoek, Michael Curt


    Explosive evaporation occurs when a thin layer of liquid reaches a very high temperature in a very short time. At these temperatures homogeneous nucleation takes place. The nucleated bubbles almost instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse and

  12. Droplets, Bubbles and Ultrasound Interactions

    NARCIS (Netherlands)

    Shpak, O.; Verweij, M.; de Jong, N.; Versluis, Michel; Escoffre, J.M.; Bouakaz, A.


    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to

  13. Electrolysis Bubbles Make Waterflow Visible (United States)

    Schultz, Donald F.


    Technique for visualization of three-dimensional flow uses tiny tracer bubbles of hydrogen and oxygen made by electrolysis of water. Strobe-light photography used to capture flow patterns, yielding permanent record that is measured to obtain velocities of particles. Used to measure simulated mixing turbulence in proposed gas-turbine combustor and also used in other water-table flow tests.

  14. Impurity bubbles in a BEC (United States)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm


    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  15. "Financial Bubbles" and Monetary Policy (United States)

    Tikhonov, Yuriy A.; Pudovkina, Olga E.; Permjakova, Juliana V.


    The relevance of this research is caused by the need of strengthening a role of monetary regulators to prevent financial bubbles in the financial markets. The aim of the article is the analysis of a problem of crisis phenomena in the markets of financial assets owing to an inadequate growth of their cost, owing to subjective reasons. The leading…

  16. Bubble bouncing at a clean water surface. (United States)

    Zawala, Jan; Dorbolo, Stéphane; Vandewalle, Nicolas; Malysa, Kazimierz


    Experiments on the coalescence time of submillimeter bubbles colliding with a distilled water/air interface either being at rest (undisturbed) or vibrating vertically (with controlled amplitude and frequency) were carried out. It was found that the outcome of the bubble collision (coalescence or bounce) depends on impact velocity and size of the bubble, i.e. the parameters determining the bubble deformation degree. With the surface at rest, when the deformation of the bubble was sufficiently high, bubble bouncing was observed. It was caused by the fact that the radius of the intervening liquid film formed between the colliding bubble and water/air interface was large enough to prevent the liquid layer from reaching its thickness of rupture within the time of bubble-interface contact. Coalescence occurred in a consecutive collision if the bubble deformation was below a threshold value, as a result of dissipation of the kinetic energy associated with the bubble motion. The hypothesis about the crucial role of the bubble deformation and size of the liquid film formed in the bouncing mechanism was confirmed in a series of experiments where the bubble collided with a vibrating water/air interface. It was shown that when the kinetic energy was properly re-supplied from an external source (interface vibrations), the spectacular phenomenon of "immortal" bubbles, dancing indefinitely at the water/air interface, was achieved. It was shown that "immortal" bubble formation is a consequence of a similarly high degree of the bubble shape deformation and consequently a large enough radius of the liquid film formed.

  17. Robust acoustic wave manipulation of bubbly liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gumerov, N. A., E-mail: [Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland 20742 (United States); Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076 (Russian Federation); Akhatov, I. S. [Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Ohl, C.-D. [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076 (Russian Federation); Sametov, S. P. [Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076 (Russian Federation); Khazimullin, M. V. [Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076 (Russian Federation); Institute of Molecule and Crystal Physics, Ufa Research Center of Russian Academy of Sciences, Ufa 450054 (Russian Federation); Gonzalez-Avila, S. R. [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)


    Experiments with water–air bubbly liquids when exposed to acoustic fields of frequency ∼100 kHz and intensity below the cavitation threshold demonstrate that bubbles ∼30 μm in diameter can be “pushed” away from acoustic sources by acoustic radiation independently from the direction of gravity. This manifests formation and propagation of acoustically induced transparency waves (waves of the bubble volume fraction). In fact, this is a collective effect of bubbles, which can be described by a mathematical model of bubble self-organization in acoustic fields that matches well with our experiments.

  18. Monitoring (United States)

    ... Heart Disease and Diabetes Blood Glucose Monitoring Insulin Injection Resources Mental Health and Diabetes Healthy Holiday Eating Lifestyle Resources Improve Medication Taking Spanish Language Resources AADE7 Self-Care Behaviors ...

  19. Bubbles generated from wind-steepened breaking waves: 2. Bubble plumes, bubbles, and wave characteristics

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw,


    Measurements of breaking-wave-generated bubble plumes were made in fresh (but not clean) water in a large wind-wave tunnel. To preserve diversity, a classification scheme was developed on the basis of plume dimensions and "optical density," or the plume's ability to obscure the background. Optically

  20. Simulations of Rising Hydrodynamic and Magnetohydrodynamic Bubbles (United States)

    Ricker, P. M.; Robinson, K.; Dursi, L. J.; Rosner, R.; Calder, A. C.; Zingale, M.; Truran, J. W.; Linde, T.; Caceres, A.; Fryxell, B.; Olson, K.; Riley, K.; Siegel, A.; Vladimirova, N.

    Motivated by recent Chandra and XMM-Newton observations of X-ray emission voids in galaxy cluster cooling flows, we have investigated the behavior of rising bubbles in stratified atmospheres using the FLASH adaptive-mesh simulation code. We present results from two-dimensional simulations with and without the effects of magnetic fields, and with varying bubble sizes and background stratifications. We find purely hydrodynamic bubbles to be unstable; a dynamically important magnetic field is required to maintain a bubble's integrity. This suggests that, even absent thermal conduction, for bubbles to be persistent enough to be regularly observed, they must be supported in large part by magnetic fields. We also observe that magnetically supported bubbles leave a tail as they rise. The structure of these tails may provide clues to the bubble's dynamical history.

  1. Bubble video experiments in the marine waters off Panarea Island (Italy): real-world data for modelling CO2 bubble dissolution and evolution (United States)

    Beaubien, Stan; De Vittor, Cinzia; McGinnis, Dan; Bigi, Sabina; Comici, Cinzia; Ingrosso, Gianmarco; Lombardi, Salvatore; Ruggiero, Livio


    , and dissolved gases. An in-house developed GasPro sensor was also mounted on the structure to monitor pCO2 over the entire 2.5 hour duration of the experiment. The obtained data were used as input into the Discrete Bubble Model (DBM) (e.g., McGinnis et al., 2011, doi:10.1029/2010JC006557). The DBM uses mass balance to predict the gas flux across the bubble surface, whereby gas flux direction depends on internal bubble gas concentration and ambient concentration, and considering the Henry's coefficient and partial pressure of the gas. The model uses bubble-size dependent relationships for the mass transfer rate and the bubble rise velocity. Important model input parameters include: bubble size; depth; ambient dissolved gas concentrations, temperature and salinity; and initial bubble gas concentrations. Measured and modelled results are compared, showing good general agreement. Based on the concentrations measured at the lowest level, the modelled and measured bubble concentrations match very closely. Bubble size values do not match as well if this initial concentration is used, however they improve as a value closer to 100% CO2 is applied. This preliminary study has shown promising results and highlight areas where experimental design and data quality should be improved in the next phase of the study.

  2. Double bubble with the big-bubble technique during deep anterior lamellar keratoplasty. (United States)

    Wise, Stephanie; Dubord, Paul; Yeung, Sonia N


    To report a case of intraoperative double bubble that formed during big-bubble DALK surgery in a patient with corneal scarring secondary to herpetic stromal keratitis. Case report. A 22 year old woman presented with a large corneal scar, likely secondary to previous herpetic stromal keratitis. She underwent big-bubble DALK surgery for visual rehabilitation. Intraoperatively, a mixed bubble with persistent type 2 bubble postoperatively was noted. The second bubble resorbed with clearance of the graft and good visual outcome after 6 weeks. This case report describes the unusual development of a mixed bubble during big-bubble DALK surgery. This graft cleared with resolution of the second bubble postoperatively without further surgical intervention.

  3. Application of Defocusing Technique to Bubble Depth Measurement


    Mugikura, Yuki


    The thesis presents a defocusing technique to extract bubble depth information. Typically, when a bubble is out of focus in an image, the bubble is ignored by applying a filter or thresholding. However, it is known that a bubble image becomes blurred as the bubble moves away from the focal plane. Then, this technique is applied to determine the bubble distance along the optical path based on the blurriness or intensity gradient information of the bubble. Using the image processing algorithm, ...

  4. Studying bubble-induced methane emissions from the East Siberian Arctic Shelf: the next step towards a quantitative assessment. (United States)

    Chernykh, D.; Shakhova, N. E.; Semiletov, I. P.; Yusupov, V.; Salomatin, A.; Leifer, I.


    Destabilization of subsea permafrost results in increasing permeability for gaseous methane long preserved in seabed deposits within and beneath permafrost. This process manifests as extensive methane ebullition, driving significantly elevated methane aqueous concentrations - up to three orders higher than atmospheric equilibrium. In places, bubbles release as a vigorous flow that often reach the surface; on echograms, such bubble plums create specific flare-like images. To detect, map, monitor, and analyze bubble-induced methane fluxes, in summer 2011 and 2012, sonar data were gathered over extensive seep fields in the East Siberian Arctic Shelf (ESAS) in frame of International Siberian Shelf Study (ISSS). To measure the bubble screen backscattering strength, the acoustic sensors were calibrated using a target ("ideal" sphere) provided by the manufacturer (SIMRAD). To establish a relationship between the backscattering strength of bubbles releasing from the seafloor and methane flux rate, an in-situ calibration using engineered seeps was performed. To apportion fraction of bubbles reaching the sea surface and assess remaining gaseous content of bubbles, in winter 2011-2013, direct in-situ observations of bubbles, ascending from the seafloor, were performed using high-speed high-resolution video camera. Results of inter-calibration between engineered quantitative in-situ calibrations and qualitative calibration recommended by manufacturer were applied to evaluate bubble-induced methane fluxes observed in the ESAS in summer 2011 and 2012.

  5. A New Active Cavitation Mapping Technique for Pulsed HIFU Applications – Bubble Doppler (United States)

    Li, Tong; Khokhlova, Tatiana; Sapozhnikov, Oleg; Hwang, Joo Ha; Sapozhnikov, Oleg; O’Donnell, Matthew


    In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents – color Doppler, pulse inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach - bubble Doppler – was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity. PMID:25265178

  6. Sexual assault trauma and trauma change. (United States)

    Ruch, L O; Leon, J J


    An exploratory model of variables affecting level of sexual assault trauma at given times and change in trauma levels over time is developed and tested using a sample of female rape victims admitted to a treatment center over a two-year period. Based on a one-way analysis of variance and multiple classification analysis, the findings indicate that a previous rape best explains trauma change, while victim's demographics, social supports, and other prior life stress variables are important at specific time periods during the rape trauma syndrome. Implications of these results are discussed in terms of treatment-related issues.

  7. Cavitation inception from bubble nuclei

    DEFF Research Database (Denmark)

    Mørch, Knud Aage


    . The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model......The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years......, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid...

  8. Conformal gravity and "gravitational bubbles"

    CERN Document Server

    Berezin, V A; Eroshenko, Yu N


    We describe the general structure of the spherically symmetric solutions in the Weyl conformal gravity. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions, consisting of two classes, is found. The first one contains the solutions with constant two-dimensional curvature scalar, and the representatives are the famous Robertson--Walker metrics. We called one of them the "gravitational bubbles", which is compact and with zero Weyl tensor. These "gravitational bubbles" are the pure vacuum curved space-times (without any material sources, including the cosmological constant), which are absolutely impossible in General Relativity. This phenomenon makes it easier to create the universe from "nothing". The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family, which can be conformally covered by the thee-para...

  9. Bubble entrapment through topological change

    KAUST Repository

    Thoroddsen, Sigurdur T.


    When a viscousdrop impacts onto a solid surface, it entraps a myriad of microbubbles at the interface between liquid and solid. We present direct high-speed video observations of this entrapment. For viscousdrops, the tip of the spreading lamella is separated from the surface and levitated on a cushion of air. We show that the primary mechanism for the bubble entrapment is contact between this precursor sheet of liquid with the solid and not air pulled directly through cusps in the contact line. The sheet makes contact with the solid surface,forming a wetted patch, which grows in size, but only entraps a bubble when it meets the advancing contact line. The leading front of this wet patch can also lead to the localized thinning and puncturing of the liquid film producing strong splashing of droplets.

  10. Lightweight Trauma Module - LTM (United States)

    Hatfield, Thomas


    Current patient movement items (PMI) supporting the military's Critical Care Air Transport Team (CCATT) mission as well as the Crew Health Care System for space (CHeCS) have significant limitations: size, weight, battery duration, and dated clinical technology. The LTM is a small, 20 lb., system integrating diagnostic and therapeutic clinical capabilities along with onboard data management, communication services and automated care algorithms to meet new Aeromedical Evacuation requirements. The Lightweight Trauma Module is an Impact Instrumentation, Inc. project with strong Industry, DoD, NASA, and Academia partnerships aimed at developing the next generation of smart and rugged critical care tools for hazardous environments ranging from the battlefield to space exploration. The LTM is a combination ventilator/critical care monitor/therapeutic system with integrated automatic control systems. Additional capabilities are provided with small external modules.

  11. [Trauma during pregnancy]. (United States)

    Siebenga, J; van der Schoot, J T; Keeman, J N


    Mortality due to trauma in pregnancy is not very common in the Netherlands. More often a pregnant woman presents herself for examination after trauma. Blunt trauma is more common in the third trimester. Minor trauma also needs good care, with special attention for solutio placentae. Maternal mortality after penetrating trauma is low because of the protection of vital organs by the uterus. With good treatment the mortality in pregnant trauma patients will not be higher than in nonpregnant patients. A rapid and effective resuscitation of the mother will give the foetus the best chance of survival.

  12. Soap bubbles in paintings: Art and science (United States)

    Behroozi, F.


    Soap bubbles became popular in 17th century paintings and prints primarily as a metaphor for the impermanence and fragility of life. The Dancing Couple (1663) by the Dutch painter Jan Steen is a good example which, among many other symbols, shows a young boy blowing soap bubbles. In the 18th century the French painter Jean-Simeon Chardin used soap bubbles not only as metaphor but also to express a sense of play and wonder. In his most famous painting, Soap Bubbles (1733/1734) a translucent and quavering soap bubble takes center stage. Chardin's contemporary Charles Van Loo painted his Soap Bubbles (1764) after seeing Chardin's work. In both paintings the soap bubbles have a hint of color and show two bright reflection spots. We discuss the physics involved and explain how keenly the painters have observed the interaction of light and soap bubbles. We show that the two reflection spots on the soap bubbles are images of the light source, one real and one virtual, formed by the curved surface of the bubble. The faint colors are due to thin film interference effects.

  13. Informational pathologies and interest bubbles

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Wiewiura, Joachim Schmidt


    This article contends that certain configurations of information networks facilitate specific cognitive states that are instrumental for decision and action on social media. Group-related knowledge and belief states—in particular common knowledge and pluralistic ignorance—may enable strong public...... signals. Indeed, some network configurations and attitude states foster informational pathologies that may fuel interest bubbles affecting agenda-setting and the generation of narratives in public spheres....

  14. BEBC Big European Bubble Chamber

    CERN Multimedia

    CERN PhotoLab


    A view of the dismantling of the magnet of BEBC, the 3.7 m European Bubble Chamber : iron magnetic shielding ; lower and upper parts of the vacuum enclosure of the magnet; turbo-molecular vacuum pumps for the "fish-eye" windows; the two superconducting coils; a handling platform; the two cryostats suspended from the bar of the travelling crane which has a 170 ton carrying capacity. The chamber proper, not dismantled, is inside the shielding.

  15. Bubble-induced cave collapse. (United States)

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine


    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned "natural" instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a "collapse". We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor.

  16. Direct observation of breathing dynamics at the mismatch induced DNA bubble with nanometre accuracy: a smFRET study. (United States)

    Paul, Tapas; Bera, Subhas C; Mishra, Padmaja P


    The detailed conformational dynamics of the melted region in double-stranded DNA has been studied using a combination of ensemble and single-molecule FRET techniques. We monitored the millisecond time scale fluctuation kinetics of the two strands at the bubble region that varies with the size of the bubble. As the individual strands at the melting bubble behave as single-stranded DNA, and hence fluctuate dynamically to attain energetically favored configurations, the rates of these fluctuations increase with increase in the bubble size. In different short DNAs under investigation, the two strands never cross each other to form a knot, irrespective of the number of base pair mismatches present. Rather, they prefer to stay apart from each other, as the size of the bubble increases and follow exactly an opposite trend for bubbles of smaller size. The range within which the bubble strands fluctuate are monitored with great accuracy in the nanometre resolution from the single-molecule FRET measurements. The shape of the bubble that plays a crucial role in determining the activity of the DNA was speculated. These results shall be useful in quantifying the chemical processes within DNA as well as to develop a deeper understanding of the activity of the DNA due to induced mismatches.

  17. Bubble capture by a propeller (United States)

    Caillé, François; Clanet, Christophe; Magnaudet, Jacques


    A small air bubble (radius a) is injected in water (kinematic viscosity nu) in the vicinity (distance r_0) of a propeller (radius r_p, angular frequency omega). We study experimentally and theoretically the conditions under which the bubble can be ‘captured’, i.e. deviated from its vertical trajectory (imposed by gravity g) and moved toward the centre of the propeller (r {=} 0). We show that the capture frequency omega_{scriptsizecapt} follows the relationship [omega_{hboxriptsizeit capt}=left(frac{2ga^2}{9betanu r_p f(hboxRe_b)}right)left(frac{r_0}{r_p}right)^2(1+\\cos\\varphi_0),] where beta is a dimensionless parameter characterizing the propeller, f(Re_b) is an empirical correction to Stokes' drag law which accounts for finite-Reynolds-number effects and pi/2-varphi_0 is the angle between the axis of the propeller and the line between the centre of the propeller and the point where the bubble is injected. This law is found to be valid as long as the distance d between the propeller and the water surface is larger than 3r_0. For smaller distances, the capture frequency increases; using an image technique, we show how the above expression is modified by the presence of the surface.

  18. Cluster Dynamics Modeling with Bubble Nucleation, Growth and Coalescence

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blondel, Sophie [Univ. of Tennessee, Knoxville, TN (United States); Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States)


    The topic of this communication pertains to defect formation in irradiated solids such as plasma-facing tungsten submitted to helium implantation in fusion reactor com- ponents, and nuclear fuel (metal and oxides) submitted to volatile ssion product generation in nuclear reactors. The purpose of this progress report is to describe ef- forts towards addressing the prediction of long-time evolution of defects via continuum cluster dynamics simulation. The di culties are twofold. First, realistic, long-time dynamics in reactor conditions leads to a non-dilute di usion regime which is not accommodated by the prevailing dilute, stressless cluster dynamics theory. Second, long-time dynamics calls for a large set of species (ideally an in nite set) to capture all possible emerging defects, and this represents a computational bottleneck. Extensions beyond the dilute limit is a signi cant undertaking since no model has been advanced to extend cluster dynamics to non-dilute, deformable conditions. Here our proposed approach to model the non-dilute limit is to monitor the appearance of a spatially localized void volume fraction in the solid matrix with a bell shape pro le and insert an explicit geometrical bubble onto the support of the bell function. The newly cre- ated internal moving boundary provides the means to account for the interfacial ux of mobile species into the bubble, and the growth of bubbles allows for coalescence phenomena which captures highly non-dilute interactions. We present a preliminary interfacial kinematic model with associated interfacial di usion transport to follow the evolution of the bubble in any number of spatial dimensions and any number of bubbles, which can be further extended to include a deformation theory. Finally we comment on a computational front-tracking method to be used in conjunction with conventional cluster dynamics simulations in the non-dilute model proposed.

  19. Interaction of positive streamers in air with bubbles floating on liquid surfaces: conductive and dielectric bubbles (United States)

    Babaeva, Natalia Yu; Naidis, George V.; Kushner, Mark J.


    The interaction of plasmas sustained in humid air with liquids produces reactive species in both the gas phase and liquid for applications ranging from medicine to agriculture. In several experiments, enhanced liquid reactivity has been produced when the liquid is a foam or a bubble coated liquid. To investigate the phenomena of streamers interacting with bubbles a two-dimensional computational investigation has been performed of streamer initiation and propagation on and inside hemispherical bubble-shells floating on a liquid surface. Following prior experiments, water and oil bubble-shells with an electrode located outside and inside the bubble were investigated. We found that positive air streamers interact differently with conductive water and dielectric oil bubbles. The streamer propagates along the external surface of a water bubble while not penetrating through the bubble due to screening of the electric field by the conducting shell. If the electrode is inserted inside the bubble, the path of the streamer depends on how deeply the electrode penetrates. For shallow penetration, the streamer propagates along the inner surface of the bubble. Due to the low conductivity of oil bubble-shells, the electric field from an external electrode penetrates into the interior of the bubble. The streamer can then be re-initiated inside the bubble.

  20. Bernoulli Suction Effect on Soap Bubble Blowing? (United States)

    Davidson, John; Ryu, Sangjin


    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  1. Single DNA denaturation and bubble dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, Ralf [Physics Department, Technical University of Munich, James Franck Strasse, 85747 Garching (Germany); Ambjoernsson, Tobias [Chemistry Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Hanke, Andreas [Department of Physics and Astronomy, University of Texas, 80 Fort Brown, Brownsville (United States); Fogedby, Hans C [Department of Physics and Astronomy, University of Arhus, Ny Munkegade, 8000 Arhus C (Denmark)], E-mail:


    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation bubbles and selectively single-stranded DNA binding proteins.

  2. Direct Numerical Simulation of the Lift Force in Bubbly Flows

    NARCIS (Netherlands)

    Dijkhuizen, W.; van Sint Annaland, M.; Kuipers, J.A.M.


    It is well-known that the lift force is responsible for the segregation of small and large bubbles encountered in bubbly flows through pipes and bubble columns: in the case of up flow small spherical bubbles move to the wall, while larger deformed bubbles move to the core region. Depending on the

  3. Military Sexual Trauma (United States)

    ... ZIP code here Enter ZIP code here Military Sexual Trauma Overview Programs & Services Articles & Fact Sheets Other Resources ... local Veterans Benefits Administration Regional Office . Overview Military sexual trauma (MST) is the term that the Department of ...

  4. Bursting the bubble of melt inclusions (United States)

    Lowenstern, Jacob B.


    Most silicate melt inclusions (MI) contain bubbles, whose significance has been alternately calculated, pondered, and ignored, but rarely if ever directly explored. Moore et al. (2015) analyze the bubbles, as well as their host glasses, and conclude that they often hold the preponderance of CO2 in the MI. Their findings entreat future researchers to account for the presence of bubbles in MI when calculating volatile budgets, saturation pressures, and eruptive flux.

  5. Cusped Bubbles Rising through Polyelectrolyte Solutions (United States)

    Belmonte, Andrew; Sostarecz, Michael


    It is well known that a bubble rising in a polymer fluid can have a cusp-like tail. We report on an experimental study of bubbles rising through solutions of glycerol/water with the addition of the polymer xanthan gum, a polyelectrolyte which becomes more rigid as the free ion concentration is increased. The addition of salt also decreases the elasticity of the xanthan gum solutions, and we observe its effects on the velocity and shape of the cusped bubble.

  6. Detailed Jet Dynamics in a Collapsing Bubble (United States)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed


    We present detailed visualizations of the micro-jet forming inside an aspherically collapsing cavitation bubble near a free surface. The high-quality visualizations of large and strongly deformed bubbles disclose so far unseen features of the dynamics inside the bubble, such as a mushroom-like flattened jet-tip, crown formation and micro-droplets. We also find that jetting near a free surface reduces the collapse time relative to the Rayleigh time.

  7. Asset Bubbles, Endogenous Growth, and Financial Frictions


    Hirano, Tomohiro; Yanagawa, Noriyuki


    This paper analyzes the effects of bubbles in an infinitely-lived agent model of endogenous growth with financial frictions and heterogeneous agents. We provide a complete characterization on the relationship between financial frictions and the existence of bubbles. Our model predicts that if the degree of pledgeability is sufficiently high or sufficiently low, bubbles can not exist. They can only arise at an intermediate degree. This suggests that improving the financial market condition mig...

  8. Bubbles, Financial Crises, and Systemic Risk


    Markus K. Brunnermeier; Martin Oehmke


    This chapter surveys the literature on bubbles, financial crises, and systemic risk. The first part of the chapter provides a brief historical account of bubbles and financial crisis. The second part of the chapter gives a structured overview of the literature on financial bubbles. The third part of the chapter discusses the literatures on financial crises and systemic risk, with particular emphasis on amplification and propagation mechanisms during financial crises, and the measurement of sy...

  9. Variations in pediatric trauma transfer patterns in Northern California pediatric trauma centers (2001-2009). (United States)

    Vogel, Lara D; Vongsachang, Hurnan; Pirrotta, Elizabeth; Holmes, James F; Holmes, James M; Sherck, John; Newton, Christopher; D'Souza, Peter; Spain, David A; Wang, N Ewen


    associated with near transfer compared to primary triage to a pediatric trauma center were identified, as well as characteristics associated with far transfer compared to catchment transfer. A total of 2,852 of 11,952 (23.9%) pediatric trauma patients were transfers. Near transfers comprised 24.5% of cases, catchment transfers were 37.4%, and far transfers were 38.2%. After controlling for demographic, clinical, and geographic factors, younger age, higher Injury Severity Score (ISS), public versus private insurance, and an injury mechanism of "fall" were associated with near transfer rather than direct triage. Older age, higher ISS, and mechanism of "motor vehicle crash" were associated with far rather than catchment transfer. This analysis of patterns of transfer to all pediatric trauma centers within Northern California gives the most comprehensive population view of pediatric trauma triage to date, to the authors' knowledge. Trauma transfers comprise an important minority of patients cared for at pediatric trauma centers. The number of near transfers documented indicates the potential to improve the primary triage process of patients to pediatric trauma centers. The frequency of far transfers substantiates the well-known shortage of pediatric trauma expertise. Development of regionwide standardized transfer protocols and agreements between hospitals, as well as standardized monitoring of the process and outcomes, could increase efficiency of care. © 2014 by the Society for Academic Emergency Medicine.

  10. Passive acoustic derived bubble flux and applications to natural gas seepage in the Mackenzie Delta, NWT, Canada and Coal Oil Point, CA (United States)

    Culling, D.; Leifer, I.; Dallimore, S.; Alcala, K.


    Minnaert equation predicts. Furthermore, bubbles from a cohesive media escaped in pulses of multiple bubbles, which caused significant inter-bubble acoustic coupling and mud-bubble interaction. The acoustic signature of subsurface bubble migration and concurrent sediment movements, including bubble pinch off, presented additional complexities. Use of passive acoustic derived flux was applied to natural gas seepage in the Mackenzie Delta in the North West Territories, Canada as well as offshore Coal Oil Point (COP), CA. Video data were used to calibrate the COP acoustic observations and showed a strong current impact for non-cohesive sediments. Seepage flux in the delta (cohesive sediments) was calibrated using a custom turbine tent that directly measured flux. Further applications of passive acoustic-derived seep fluxes include monitoring of marine pipelines for leaks, and studying biogenic wetlands ebullition as well as thermogenic and hydrate seepage.

  11. Trauma during pregnancy

    Directory of Open Access Journals (Sweden)

    Siddareddigari Velayudha Reddy


    Full Text Available Trauma in pregnancy presents a unique challenge, because of the anatomical and physiological changes of pregnancy, and the assessment and treatment of pregnant patients differ accordingly. In this review article, the focus is on familiarizing the anesthesiologists with physiological changes of pregnancy, their effect on response to trauma, resuscitation, and anesthetic management of trauma patient during pregnancy.

  12. in penetrating abdominal trauma

    African Journals Online (AJOL)

    particularly in trauma surgery. The benefits of ERAS/ERPs are well established. They have shown faster physiological patient recovery, and reduced length of hospital stay without. Enhanced recovery after surgery (ERAS) in penetrating abdominal trauma: A prospective single-center pilot study. TRAUMA. M R Moydien, R ...

  13. Trauma resuscitation time.

    NARCIS (Netherlands)

    Olden, G.D.J. van; Vugt, A.B. van; Biert, J.; Goris, R.J.A.


    Documenting the timing and organisation of trauma resuscitation can be utilised to assess performance standards, and to ensure a high quality of trauma resuscitation procedures. Since there is no European literature available on trauma resuscitation time (TRT) in the emergency room, the aim of this

  14. Stable bubble oscillations beyond Blake's critical threshold. (United States)

    Hegedűs, Ferenc


    The equilibrium radius of a single spherical bubble containing both non-condensable gas and vapor is determined by the mechanical balance at the bubble interface. This expression highlights the fact that decreasing the ambient pressure below the so called Blake's critical threshold, the bubble has no equilibrium state at all. In the last decade many authors have tried to find evidence for the existence of stable bubble oscillation under harmonic forcing in this regime, that is, they have tried to stabilize the bubble motion applying ultrasonic radiation on the bubble. The available numerical results provide only partial proof for the existence as they are usually based on linearized or weakly nonlinear (higher order approximation) bubble models. Here, based on numerical techniques of the modern nonlinear and bifurcation theory, the existence of stable bubble motion has been proven without any restrictions in nonlinearities. Although the model, applied in this paper, is the rather simple Rayleigh-Plesset equation, the presented technique can be extended to more complex bubble models easily. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Improvised bubble continuous positive airway pressure (BCPAP ...

    African Journals Online (AJOL)

    Improvised bubble continuous positive airway pressure (BCPAP) device at the National Hospital Abuja gives immediate improvement in respiratory rate and oxygenation in neonates with respiratory distress.

  16. Liquid jet formation through the interactions of a laser-induced bubble and a gas bubble (United States)

    Han, Bing; Liu, Liu; Zhao, Xiong-Tao; Ni, Xiao-Wu


    The mechanisms of the liquid jet formation from the interaction of the laser-induced and gas bubble pair are investigated and compared with the jet formation from the interaction of the laser-induced anti-phase bubble pair. The strobe photography experimental method and numerical simulations are implemented to obtain the parameter space of the optimum liquid jet, i.e. highest speed and lowest diameter. It is found that due to the enhanced "catapult effect", which is induced by the protrusion of the first bubble into the second bubble and the flip back of the elongated part of the first bubble, the optimum liquid jet of the second bubble of the laser-induced anti-phase bubble pair compared to that of the laser-induced and gas bubble pair is 54 %, 65 % and 11 % faster in speed, and 4 %, 44 % and 64 % smaller in diameter, for the 500 μm, 50 μm and 5 μm sized bubbles, respectively. The optimum dimensionless distance for the optimum jet of the laser-induced and the gas bubble is around 0.7, when the maximum bubble radius increases from ˜ 5μm to ˜500 μm, which is different from the laser-induced anti-phase bubble pairs. Besides, the optimum jet of the laser-induced bubble appeared when the bubbles are equal sized, while that of the gas bubble is independent of the relative bubble size, i.e. the liquid jet of the gas bubble has higher robustness in real liquid jet assisted applications when the laser-induced bubble size varies. However, the jet of bubble 2 could maintain a high speed (20 m/s - 35 m/s) and a low diameter (˜5 % of the maximum bubble diameter) over a big range of the dimensionless distance (0.6 - 0.9) for both of the 50 μm and 500 μm sized laser-induced equal sized anti-phase bubble pairs.

  17. Haemostatic resuscitation in trauma: the next generation. (United States)

    Stensballe, Jakob; Ostrowski, Sisse R; Johansson, Pär I


    To discuss the recent developments in and evolvement of next generation haemostatic resuscitation in bleeding trauma. Mortality from major trauma is a worldwide problem, and massive haemorrhage remains a major cause of potentially preventable deaths. Development of coagulopathy further increases trauma mortality emphasizing that coagulopathy is a key target in the phase of bleeding. The pathophysiology of coagulopathy in trauma reflects at least three distinct mechanisms that may be present isolated or coexist: acute traumatic coagulopathy, coagulopathy associated with the lethal triad, and consumptive coagulopathy. The concepts of 'damage control surgery' and 'damage control resuscitation' have been developed to ensure early control of bleeding and coagulopathy to improve outcome in bleeding trauma. Haemostatic resuscitation aims at controlling coagulopathy and consists of a ratio driven strategy aiming at 1 : 1 : 1, using tranexamic acid according to CRASH-2, and applying haemostatic monitoring enabling a switch to a goal-directed approach when bleeding slows. Haemostatic resuscitation is the mainstay of trauma resuscitation and is associated with improved survival. The next generation of haemostatic resuscitation aims at applying a ratio 1 : 1 : 1 driven strategy while using antifibrinolytics, haemostatic monitoring and avoiding critical fibrinogen deficiency by substitution.

  18. Colorful Demos with a Long-Lasting Soap Bubble. (United States)

    Behroozi, F.; Olson, D. W.


    Describes several demonstrations that feature interaction of light with soap bubbles. Includes directions about how to produce a long-lasting stationary soap bubble with an easily changeable size and describes the interaction of white light with the bubble. (DDR)

  19. Neural basis of economic bubble behavior. (United States)

    Ogawa, A; Onozaki, T; Mizuno, T; Asamizuya, T; Ueno, K; Cheng, K; Iriki, A


    Throughout human history, economic bubbles have formed and burst. As a bubble grows, microeconomic behavior ceases to be constrained by realistic predictions. This contradicts the basic assumption of economics that agents have rational expectations. To examine the neural basis of behavior during bubbles, we performed functional magnetic resonance imaging while participants traded shares in a virtual stock exchange with two non-bubble stocks and one bubble stock. The price was largely deflected from the fair price in one of the non-bubble stocks, but not in the other. Their fair prices were specified. The price of the bubble stock showed a large increase and battering, as based on a real stock-market bust. The imaging results revealed modulation of the brain circuits that regulate trade behavior under different market conditions. The premotor cortex was activated only under a market condition in which the price was largely deflected from the fair price specified. During the bubble, brain regions associated with the cognitive processing that supports order decisions were identified. The asset preference that might bias the decision was associated with the ventrolateral prefrontal cortex and the dorsolateral prefrontal cortex (DLPFC). The activity of the inferior parietal lobule (IPL) was correlated with the score of future time perspective, which would bias the estimation of future price. These regions were deemed to form a distinctive network during the bubble. A functional connectivity analysis showed that the connectivity between the DLPFC and the IPL was predominant compared with other connectivities only during the bubble. These findings indicate that uncertain and unstable market conditions changed brain modes in traders. These brain mechanisms might lead to a loss of control caused by wishful thinking, and to microeconomic bubbles that expand, on the macroscopic scale, toward bust. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Ultrasonography in trauma

    DEFF Research Database (Denmark)

    Weile, Jesper; Nielsen, Klaus; Primdahl, Stine C


    BACKGROUND: The Focused Assessment with Sonography in Trauma (FAST) protocol is considered beneficial in emergent evaluation of trauma patients with blunt or penetrating injury and has become integrated into the Advanced Trauma Life Support (ATLS) protocol. No guidelines exist as to the use...... of ultrasonography in trauma in Denmark. We aimed to determine the current use of ultrasonography for assessing trauma patients in Denmark. METHODS: We conducted a nation-wide cross-sectional investigation of ultrasonography usage in trauma care. The first phase consisted of an Internet-based investigation....... Twenty-one (95.5%) of the guidelines included and recommended FAST as part of trauma assessment. The recommended person to perform the examination was the radiologist in n = 11 (50.0%), the surgeon in n = 6 (27.3%), the anesthesiologist in n = 1 (4.5%), and unspecified in n = 3 (13.6%) facilities. FAST...

  1. Intraoperative review of different bubble types formed during pneumodissection (big-bubble) deep anterior lamellar keratoplasty. (United States)

    Goweida, Mohamed Bahgat Badawi


    To evaluate the preoperative factors and intraoperative complications of the 2 bubble types formed during big-bubble deep anterior lamellar keratoplasty (DALK). This is a retrospective review of medical records of a series of patients who underwent DALK using the big-bubble technique from September 2009 to March 2014. A total of 134 eyes were included in this study-89 eyes with advanced keratoconus, 35 eyes with post-microbial keratitis corneal scars, 8 eyes with stromal dystrophies, and 2 eyes with post-laser in situ keratomileusis ectasia. A type 1 bubble (white margin) was achieved in 56 eyes (41.8%), whereas a type 2 bubble (clear margin) was formed in 14 eyes (10.4%) and a mixed bubble was formed in 2 eyes (1.5%). Big-bubble formation failed in 62 (46.3%). All eyes with the type 1 bubble were completed as DALK; microperforation occurred in 4 eyes. Twelve of 14 eyes with the type 2 bubble were converted to penetrating keratoplasty because of large perforations. The type 2 bubble is more likely to form in elderly patients and those with deep corneal scars and thin corneas. Because of the high rate of conversion to penetrating keratoplasty, better surgical strategies may be needed to manage type 2 bubbles.

  2. Measurement of Bubble Size Distribution Based on Acoustic Propagation in Bubbly Medium (United States)

    Wu, Xiongjun; Hsiao, Chao-Tsung; Choi, Jin-Keun; Chahine, Georges


    Acoustic properties are strongly affected by bubble size distribution in a bubbly medium. Measurement of the acoustic transmission becomes increasingly difficulty as the void fraction of the bubbly medium increases due to strong attenuation, while acoustic reflection can be measured more easily with increasing void fraction. The ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright, an instrument for bubble size measurement that is under development tries to take full advantage of the properties of acoustic propagation in bubbly media to extract bubble size distribution. Properties of both acoustic transmission and reflection in the bubbly medium from a range of short single-frequency bursts of acoustic waves at different frequencies are measured in an effort to deduce the bubble size distribution. With the combination of both acoustic transmission and reflection, assisted with validations from photography, the ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright has the potential to measure bubble size distributions in a wider void fraction range. This work was sponsored by Department of Energy SBIR program

  3. Bubble aspect ratio in dense bubbly flows: experimental studies in low Morton-number systems (United States)

    Besagni, G.; Inzoli, F.; Ziegenhein, T.; Hessenkemper, H.; Lucas, D.


    Almost every modelling approach of bubbly flows includes assumptions concerning the bubble shape. Such assumptions are usually made based on single bubble experiments in quiescent flows, which is far away from the flow field observed in large-scale multiphase facilities. Considering low Morton-numbers and the highly deformable interface at medium and large Eötvös-numbers, the evaluation of the bubble shape in such systems under real flow conditions is highly desirable. In this study, we experimentally evaluate the bubble shape (in terms of aspect ratio), at low Morton-numbers, in different bubble column setups and a pipe flow setup under different operating conditions. The bubble shape in the bubble column experiments were obtained with cameras at Politecnico di Milano and Helmholtz-Zentrum Dresden Rossendorf (HZDR) whereas the shapes in the pipe flows were measured by the ultrafast electron beam X-ray tomography system (ROFEX) at HZDR. In the bubble column experiments almost the same shape is observed; conversely, the shape in the pipe flows distinctly depends on the flow conditions. In conclusion, in bubble columns the assumption of a constant shape regardless of the flow conditions is valid whereas in pipe flows the turbulence and shear rates can be strong enough to deform distinctly the bubbles.

  4. Bubble Movement on Inclined Hydrophobic Surfaces. (United States)

    Kibar, Ali; Ozbay, Ridvan; Sarshar, Mohammad Amin; Kang, Yong Tae; Choi, Chang-Hwan


    The movement of a single air bubble on an inclined hydrophobic surface submerged in water, including both the upward- and downward-facing sides of the surface, was investigated. A planar Teflon sheet with an apparent contact angle of a sessile water droplet of 106° was used as a hydrophobic surface. The volume of a bubble and the inclination angle of a Teflon sheet varied in the ranges 5-40 μL and 0-45°, respectively. The effects of the bubble volume on the adhesion and dynamics of the bubble were studied experimentally on the facing-up and facing-down surfaces of the submerged hydrophobic Teflon sheet, respectively, and compared. The result shows that the sliding angle has an inverse relationship with the bubble volume for both the upward- and downward-facing surfaces. However, at the same given volume, the bubble on the downward-facing surface spreads over a larger area of the hydrophobic surface than the upward-facing surface due to the greater hydrostatic pressure acting on the bubble on the downward-facing surface. This makes the lateral adhesion force of the bubble greater and requires a larger inclination angle to result in sliding.

  5. The Minnaert Bubble: An Acoustic Approach (United States)

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude; Leroy, Valentin


    We propose an "ab initio" introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian…

  6. The life and death of film bubbles (United States)

    Poulain, S.; Villermaux, E.; Bourouiba, L.


    Following its burst, the fragmentation of a large bubble (film bubble) at the air-water interface can release hundreds of micrometer-sized film-drops in the air we breathe. This mechanism of droplet formation is one of the most prominent sources of sea spray. Indoor or outdoor, pathogens from contaminated water are transported by these droplets and have also been linked to respiratory infection. The lifetime and thickness of bubbles govern the number and size of the droplets they produce. Despite these important implications, little is known about the factors influencing the life and death of surface film bubbles. In particular, the fundamental physical mechanisms linking bubble aging, thinning, and lifetime remain poorly understood. To address this gap, we present the results of an extensive investigation of the aging of film-drop-producing bubbles in various ambient air, water composition, and temperature conditions. We present and validate a generalized physical picture and model of bubble cap thickness evolution. The model and physical picture are linked to the lifetime of bubbles via a series of cap rupture mechanisms of increasing efficiency.

  7. Steady State Vapor Bubble in Pool Boiling. (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C


    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  8. Measuring the surface tension of soap bubbles (United States)

    Sorensen, Carl D.


    The objectives are for students to gain an understanding of surface tension, to see that pressure inside a small bubble is larger than that inside a large bubble. These concepts can be used to explain the behavior of liquid foams as well as precipitate coarsening and grain growth. Equipment, supplies, and procedures are explained.

  9. Microfluidics with ultrasound-driven bubbles

    NARCIS (Netherlands)

    Marmottant, P.; Marmottant, P.G.M.; Raven, J.P.; Gardeniers, Johannes G.E.; Bomer, Johan G.; Hilgenfeldt, Sascha; Hilgenfeldt, S.


    Microstreaming from oscillating bubbles is known to induce vigorous vortex flow. Here we show how to harness the power of bubble streaming in an experiment to achieve directed transport flow of high velocity, allowing design and manufacture of microfluidic MEMS devices. By combining oscillating

  10. Videotaping the Lifespan of a Soap Bubble. (United States)

    Ramme, Goran


    Describes how the use of a videotape to record the history of a soap bubble allows a study of many interesting events in considerable detail including interference fringes, convection and turbulence patterns on the surface, formation of black film, and the ultimate explosion of the bubble. (JRH)

  11. The Interaction of Two Underwater Explosion Bubbles (United States)

    Milligan, Charles; Duncan, James


    The interaction between two growing and collapsing underwater explosion bubbles is studied experimentally and numerically. In the experiments, the bubbles are generated by detonating small Lead Azide explosive charges submerged in a transparent water tank, and the resulting interactions are photographed using a high-speed camera. The parametric studies include simultaneous detonation of two charges of different sizes, and detonation of identically sized charges at staggered times. When the time delay between detonations is significant, the collapsing first bubble forms a jet directed away from the expanding second bubble and then re-expands nonspherically. During the re-expansion of the first bubble, a micro-jet forms in the second bubble. Eventually this micro-jet pierces the side of the second bubble farthest from the first and vortex rings are formed. Numerical simulations of the interaction phenomena are achieved using a boundary element method. By partitioning the system into computational sub-domains it is possible to replicate many relevant physical details including jet formation, fluid-fluid impact, and bubble re-expansion after complete jet penetration. The numerical results are in qualitative agreement with the experimental findings.

  12. Interaction of cavitation bubbles on a wall

    NARCIS (Netherlands)

    Bremond, Nicolas; Bremond, N.P.; Arora, M.; Dammer, S.M.; Lohse, Detlef


    We report experimental and numerical investigations on the dynamics of the cavitation of bubbles on a solid surface and the interaction between them with the help of controlled cavitation nuclei: hemispherical bubbles are nucleated from hydrophobic microcavities that act as gas traps when the

  13. Clustering and Lagrangian Statistics of Bubbles

    NARCIS (Netherlands)

    Martinez Mercado, J.


    Due to their relevance and occurrence in both natural phenomena and in industrial applications, the study and understanding of bubbly flows is currently an important topic for fluid dynamicists. Bubble columns are commonly used in bio- and petrochemical industries to enhance mixing, mass and heat

  14. The charged bubble oscillator: Dynamics and thresholds

    Indian Academy of Sciences (India)

    Technology-Bangalore (IIIT-B), 26/C Electronics City, Hosur Road, Bengaluru 560 100, India. 2School of Natural Sciences & Engineering, .... liquid, the difference in pressure causes expansion and rapid collapse of the bubble, followed ... of the dimensions of the bubble, we define an expansion- compression ratio that we ...

  15. The use of microholography in bubble chambers

    CERN Document Server

    Royer, H


    In-line holography has been used for the first time in a bubble chamber for the account of the CERN (Geneva, CH). The holograms were recorded with the help of a single-mode pulse laser. Bubble tracks of 25 microns in diameter have been reconstructed with a resolution of 2 microns. (12 refs).

  16. Laminar separation bubbles: Dynamics and control

    Indian Academy of Sciences (India)

    it thus are essential prerequisites for efficient design of these aerodynamic devices. Gaster. (1967) was the first to systematically explore the stability characteristics associated with the transition taking place in separation bubble. Many recent studies have been directed towards exploring the dynamics of separation bubbles ...

  17. Laminar separation bubbles: Dynamics and control

    Indian Academy of Sciences (India)

    This work is an experimental investigation of the dynamics and control of the laminar separation bubbles which are typically present on the suction surface of an aerofoil at a large angle of attack. A separation bubble is produced on the upper surface of a flat plate by appropriately contouring the top wall of the wind tunnel.

  18. Cavitation inception from bubble nuclei (United States)

    Mørch, K. A.


    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure–time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  19. Galactic Teamwork Makes Distant Bubbles (United States)

    Kohler, Susanna


    During the period of reionization that followed the dark ages of our universe, hydrogen was transformed from a neutral state, which is opaque to radiation, to an ionized one, which is transparent to radiation. But what generated the initial ionizing radiation? The recent discovery of multiple distant galaxies offers evidence for how this process occurred.Two Distant GalaxiesWe believe reionization occurred somewhere between a redshift of z = 6 and 7, because Ly-emitting galaxies drop out at roughly this redshift. Beyond this distance, were generally unable to see the light from these galaxies, because the universe is no longer transparent to their emission. This is not always the case, however: if a bubble of ionized gas exists around a distant galaxy, the radiation can escape, allowing us to see the galaxy.This is true of two recently-discovered Ly-emitting galaxies, confirmed to be at a redshift of z~7 and located near one another in a region known as the Bremer Deep Field. The fact that were able to see the radiation from these galaxies means that they are in an ionized HII region presumably one of the earlier regions to have become reionized in the universe.But on their own, neither of these galaxies is capable of generating an ionized bubble large enough for their light to escape. So what ionized the region around them, and what does this mean for our understanding of how reionization occurred in the universe?A Little Help From FriendsLocation in different filters of the objects in the Hubble Bremer Deep Field catalog. The z~7 selection region is outlined by the grey box. BDF-521 and BDF-3299 were the two originally discovered galaxies; the remaining red markers indicate the additional six galaxies discovered in the same region. [Castellano et al. 2016]A team of scientists led by Marco Castellano (Rome Observatory, INAF) investigated the possibility that there are other, faint galaxies near these two that have helped to ionize the region. Performing a survey

  20. On the possible ultrasonic inspection of micro-bubbles generated by the optical fiber tip

    Directory of Open Access Journals (Sweden)

    V. V. Kazakov


    Full Text Available We demonstrate the possibility of detection and monitoring of bubbles emerging near the tip of an optical fiber by means of ultrasonic method. The excitation of bubbles at their resonant frequencies is performed using short ultrasonic pulses having a wide frequency range simultaneously with their modulation by means of a long pulse of a monochromatic frequency. This method allows detection of bubbles of various sizes. Used signal processing method, which allows increased bubble detection accuracy, is proposed for research in environments of biological-like medium which show continuous variations in structure and properties when exposed to optical emission. The method has been demonstrated on model objects: in a liquid and in a biological tissue phantom using various methods of bubble generation (hydrolysis and optical emission. We studied bubble formation by the tip of a fiber of the surgical laser LSP-007/10 “IRE Polus” with a wavelength of 0.97μm coated with a highly absorbing graphite layer.

  1. Constraining hadronic models of the Fermi bubbles (United States)

    Razzaque, Soebur


    The origin of sub-TeV gamma rays detected by Fermi-LAT from the Fermi bubbles at the Galactic center is unknown. In a hadronic model, acceleration of protons and/or nuclei and their subsequent interactions with gas in the bubble volume can produce observed gamma ray. Such interactions naturally produce high-energy neutrinos, and detection of those can discriminate between a hadronic and a leptonic origin of gamma rays. Additional constraints on the Fermi bubbles gamma-ray flux in the PeV range from recent HAWC observations restrict hadronic model parameters, which in turn disfavor Fermi bubbles as the origin of a large fraction of neutrino events detected by IceCube along the bubble directions. We revisit our hadronic model and discuss future constraints on parameters from observations in very high-energy gamma rays by CTA and in neutrinos.

  2. Oscillation of large air bubble cloud

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)


    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  3. Bubble mobility in mud and magmatic volcanoes (United States)

    Tran, Aaron; Rudolph, Maxwell L.; Manga, Michael


    The rheology of particle-laden fluids with a yield stress, such as mud or crystal-rich magmas, controls the mobility of bubbles, both the size needed to overcome the yield stress and their rise speed. We experimentally measured the velocities of bubbles and rigid spheres in mud sampled from the Davis-Schrimpf mud volcanoes adjacent to the Salton Sea, Southern California. Combined with previous measurements in the polymer gel Carbopol, we obtained an empirical model for the drag coefficient and bounded the conditions under which bubbles overcome the yield stress. Yield stresses typical of mud and basaltic magmas with sub-mm particles can immobilize millimeter to centimeter sized bubbles. At Stromboli volcano, Italy, a vertical yield stress gradient in the shallow conduit may immobilize bubbles with diameter ≲ 1 cm and hinder slug coalescence.

  4. Mesoporous hollow spheres from soap bubbling. (United States)

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong


    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Primordial black hole formation by vacuum bubbles (United States)

    Deng, Heling; Vilenkin, Alexander


    Vacuum bubbles may nucleate during the inflationary epoch and expand, reaching relativistic speeds. After inflation ends, the bubbles are quickly slowed down, transferring their momentum to a shock wave that propagates outwards in the radiation background. The ultimate fate of the bubble depends on its size. Bubbles smaller than certain critical size collapse to ordinary black holes, while in the supercritical case the bubble interior inflates, forming a baby universe, which is connected to the exterior region by a wormhole. The wormhole then closes up, turning into two black holes at its two mouths. We use numerical simulations to find the masses of black holes formed in this scenario, both in subcritical and supercritical regime. The resulting mass spectrum is extremely broad, ranging over many orders of magnitude. For some parameter values, these black holes can serve as seeds for supermassive black holes and may account for LIGO observations.

  6. Interacting bubble clouds and their sonochemical production

    CERN Document Server

    Stricker, Laura; Rivas, David Fernandez; Lohse, Detlef


    Acoustically driven air pockets trapped in artificial crevices on a sur- face can emit bubbles which organize in (interacting) bubble clusters. With increasing driving power Fernandez Rivas et al. [Angew. Chem. Int. Ed., 2010] observed three different behaviors: clusters close to the very pits out of which they had been created, clusters pointing toward each other, and merging clusters. The latter behavior is highly undesired for technological purposes as it is associated with a reduction of the radical production and an enhancement of the erosion of the reactor walls. The dependence on the control parameters such as the distance of the pits and the conditions for cluster-merging are examined. The underlying mechanism, governed by the secondary Bjerknes forces, turns out to be strongly influenced by the nonlinearity of the bubble oscillations and not directly by the number of nucleated bubbles. The Bjerknes forces are found to dampen the bubble oscillations, thus reducing the radical production. Therefore, th...

  7. Bubble streams rising beneath an inclined surface (United States)

    Bird, James; Brasz, Frederik; Kim, Dayoung; Menesses, Mark; Belden, Jesse


    Bubbles released beneath a submerged inclined surface can tumble along the wall as they rise, dragging the surrounding fluid with them. This effect has recently regained attention as a method to mitigate biofouling in marine environment, such as a ship hull. It appears that the efficacy of this approach may be related to the velocity of the rising bubbles and the extent that they spread laterally as they rise. Yet, it is unclear how bubble stream rise velocity and lateral migration depend on bubble size, flow rate, and inclination angle. Here we perform systematic experiments to quantify these relationships for both individual bubble trajectories and ensemble average statistics. Research supported by the Office of Naval Research under Grant Number award N00014-16-1-3000.

  8. Effect of viscosity on bubble and pressure evolution (United States)

    Visuri, Steven R.; Celliers, Peter M.; Da Silva, Luiz B.; Matthews, Dennis L.


    The formation and evolution of acoustic waves and vapor bubbles as a result of laser irradiation have received considerable attention, particularly with respect to angioplasty, thrombolysis, and ophthalmic laser applications. Pressure waves and bubbles have been implicated in undesirable tissue damage yet they can be beneficially utilized while limiting their negative impact. Either planar or spherical pressure waves can be produced through manipulation of irradiation parameters and geometry. An OPO laser emitting approximately 5 ns pulses of visible radiation was delivered through an optical fiber to a cuvette containing dye dissolved in either water or glycerin. Absorption was varied by altering the dye concentration and wavelength of the OPO laser and the spot size was varied by employing multiple sizes of optical fiber. A nitrogen-pumped dye laser with a pulse duration of approximately 5 ns was used as an illumination source. A Mach-Zehnder interferometer technique enabled visualization and quantification of the pressure waves; bubble evolution was monitored with shadowgrams. A comparison was made between experimental and theoretical results for water and glycerin.

  9. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks (United States)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.


    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  10. Monitoring of Postoperative Bone Healing Using Smart Trauma-Fixation Device With Integrated Self-Powered Piezo-Floating-Gate Sensors. (United States)

    Borchani, Wassim; Aono, Kenji; Lajnef, Nizar; Chakrabartty, Shantanu


    Achieving better surgical outcomes in cases of traumatic bone fractures requires postoperative monitoring of changes in the growth and mechanical properties of the tissue and bones during the healing process. While current in-vivo imaging techniques can provide a snapshot of the extent of bone growth, it is unable to provide a history of the healing process, which is important if any corrective surgery is required. Monitoring the time evolution of in-vivo mechanical loads using existing technology is a challenge due to the need for continuous power while maintaining patient mobility and comfort. This paper investigates the feasibility of self-powered monitoring of the bone-healing process using our previously reported piezo-floating-gate (PFG) sensors. The sensors are directly integrated with a fixation device and operate by harvesting energy from microscale strain variations in the fixation structure. We show that the sensors can record and store the statistics of the strain evolution during the healing process for offline retrieval and analysis. Additionally, we present measurement results using a biomechanical phantom comprising of a femur fracture fixation plate; bone healing is emulated by inserting different materials, with gradually increasing elastic moduli, inside a fracture gap. The PFG sensor can effectively sense, compute, and record continuously evolving statistics of mechanical loading over a typical healing period of a bone, and the statistics could be used to differentiate between different bone-healing conditions. The proposed sensor presents a reliable objective technique to assess bone-healing progress and help decide on the removal time of the fixation device.

  11. Gas bubble dynamics in soft materials. (United States)

    Solano-Altamirano, J M; Malcolm, John D; Goldman, Saul


    Epstein and Plesset's seminal work on the rate of gas bubble dissolution and growth in a simple liquid is generalized to render it applicable to a gas bubble embedded in a soft elastic solid. Both the underlying diffusion equation and the expression for the gas bubble pressure were modified to allow for the non-zero shear modulus of the medium. The extension of the diffusion equation results in a trivial shift (by an additive constant) in the value of the diffusion coefficient, and does not change the form of the rate equations. But the use of a generalized Young-Laplace equation for the bubble pressure resulted in significant differences on the dynamics of bubble dissolution and growth, relative to an inviscid liquid medium. Depending on whether the salient parameters (solute concentration, initial bubble radius, surface tension, and shear modulus) lead to bubble growth or dissolution, the effect of allowing for a non-zero shear modulus in the generalized Young-Laplace equation is to speed up the rate of bubble growth, or to reduce the rate of bubble dissolution, respectively. The relation to previous work on visco-elastic materials is discussed, as is the connection of this work to the problem of Decompression Sickness (specifically, "the bends"). Examples of tissues to which our expressions can be applied are provided. Also, a new phenomenon is predicted whereby, for some parameter values, a bubble can be metastable and persist for long times, or it may grow, when embedded in a homogeneous under-saturated soft elastic medium.

  12. Urogenital trauma: imaging upper GU trauma

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Stanford M. E-mail:; Sandler, Carl M


    Objectives: This article will define the current controversies and concepts in the classification, clinical presentation, imaging approaches and management of upper urinary tract trauma. Materials and methods, results: This review will include the experience of the authors in the field of renal trauma over a 32-year period. Current thinking accepts the view that significant renal trauma is generally present when there is gross hematuria, signs of shock, or other clinical signs of severe injury. In most patients, suspected renal injury will be evaluated as a part of the overall assessment of the patient for suspected intraperitoneal injury. The authors will stress some exceptions to the rule. Conclusions: Most trauma experts now advocate conservative management, unless the patient is unstable or a renal vascular thrombosis or avulsion is suspected. Similarly, penetrating trauma to the kidney in and of itself no longer requires mandatory surgery. In the United States, computed tomography (CT), especially spiral CT, is considered the best diagnostic study, if available. Intravenous pyelography (IVP) is adequate if this is the only imaging modality available and if no concomitant injuries to the abdominal structure are suspected. Ultrasound, although strongly advocated in some countries, can lead to some significant false negatives. The diagnosis and management of unusual problems such as the traumatic AV fistula, the patient with an absent kidney or injury to the congenitally abnormal kidney, the serendipitous renal tumor in a patient with trauma, or serious bleeding after an apparent minor injury (i.e., spontaneous hemorrhage) are also reviewed in this article.

  13. Cellular High-Energy Cavitation Trauma - Description of a Novel In Vitro Trauma Model in Three Different Cell Types. (United States)

    Cao, Yuli; Risling, Mårten; Malm, Elisabeth; Sondén, Anders; Bolling, Magnus Frödin; Sköld, Mattias K


    The mechanisms involved in traumatic brain injury have yet to be fully characterized. One mechanism that, especially in high-energy trauma, could be of importance is cavitation. Cavitation can be described as a process of vaporization, bubble generation, and bubble implosion as a result of a decrease and subsequent increase in pressure. Cavitation as an injury mechanism is difficult to visualize and model due to its short duration and limited spatial distribution. One strategy to analyze the cellular response of cavitation is to employ suitable in vitro models. The flyer-plate model is an in vitro high-energy trauma model that includes cavitation as a trauma mechanism. A copper fragment is accelerated by means of a laser, hits the bottom of a cell culture well causing cavitation, and shock waves inside the well and cell medium. We have found the flyer-plate model to be efficient, reproducible, and easy to control. In this study, we have used the model to analyze the cellular response to microcavitation in SH-SY5Y neuroblastoma, Caco-2, and C6 glioma cell lines. Mitotic activity in neuroblastoma and glioma was investigated with BrdU staining, and cell numbers were calculated using automated time-lapse imaging. We found variations between cell types and between different zones surrounding the lesion with these methods. It was also shown that the injured cell cultures released S-100B in a dose-dependent manner. Using gene expression microarray, a number of gene families of potential interest were found to be strongly, but differently regulated in neuroblastoma and glioma at 24 h post trauma. The data from the gene expression arrays may be used to identify new candidates for biomarkers in cavitation trauma. We conclude that our model is useful for studies of trauma in vitro and that it could be applied in future treatment studies.

  14. Cellular High-Energy Cavitation Trauma – Description of a Novel In Vitro Trauma Model in Three Different Cell Types (United States)

    Cao, Yuli; Risling, Mårten; Malm, Elisabeth; Sondén, Anders; Bolling, Magnus Frödin; Sköld, Mattias K.


    The mechanisms involved in traumatic brain injury have yet to be fully characterized. One mechanism that, especially in high-energy trauma, could be of importance is cavitation. Cavitation can be described as a process of vaporization, bubble generation, and bubble implosion as a result of a decrease and subsequent increase in pressure. Cavitation as an injury mechanism is difficult to visualize and model due to its short duration and limited spatial distribution. One strategy to analyze the cellular response of cavitation is to employ suitable in vitro models. The flyer-plate model is an in vitro high-energy trauma model that includes cavitation as a trauma mechanism. A copper fragment is accelerated by means of a laser, hits the bottom of a cell culture well causing cavitation, and shock waves inside the well and cell medium. We have found the flyer-plate model to be efficient, reproducible, and easy to control. In this study, we have used the model to analyze the cellular response to microcavitation in SH-SY5Y neuroblastoma, Caco-2, and C6 glioma cell lines. Mitotic activity in neuroblastoma and glioma was investigated with BrdU staining, and cell numbers were calculated using automated time-lapse imaging. We found variations between cell types and between different zones surrounding the lesion with these methods. It was also shown that the injured cell cultures released S-100B in a dose-dependent manner. Using gene expression microarray, a number of gene families of potential interest were found to be strongly, but differently regulated in neuroblastoma and glioma at 24 h post trauma. The data from the gene expression arrays may be used to identify new candidates for biomarkers in cavitation trauma. We conclude that our model is useful for studies of trauma in vitro and that it could be applied in future treatment studies. PMID:26869990

  15. Cellular High-energy Cavitation Trauma - description of a novel in vitro trauma model in three different cell types.

    Directory of Open Access Journals (Sweden)

    Yuli eCao


    Full Text Available The mechanisms involved in traumatic brain injury (TBI have yet to be fully characterized. One mechanism that, especially in high energy trauma, could be of importance is cavitation. Cavitation can be described as a process of vaporization, bubble generation and bubble implosion as a result of a decrease and subsequent increase in pressure. Cavitation as an injury mechanism is difficult to visualize and model due to its short duration and limited spatial distribution. One strategy to analyze the cellular response of cavitation is to employ suitable in vitro models. The flyer plate is an in vitro high energy trauma model that includes cavitation as a trauma mechanism. A copper fragment is accelerated by means of a laser, hits the bottom of a cell culture well causing cavitation and shock waves inside the well and cell medium. We have found the flyer plate model to be efficient, reproducible and easy to control. In this study we have used the model to analyze the cellular response to microcavitation in SH-SY5Y neuroblastoma, Caco-2, and C6 glioma cell lines. Mitotic activity in neuroblastoma and glioma was investigated with BrdU staining, and cell numbers were calculated using automated time-lapse imaging. We found variations between cell types and between different zones surrounding the lesion with these methods. It was also shown that the injured cell cultures released S-100B in a dose dependent manner. Using gene expression microarray a number of gene families of potential interest were found to be strongly, but differently regulated in neuroblastoma and glioma at 24 hr post trauma. The data from the gene expression arrays may be used to identify new candidates for biomarkers in cavitation trauma. We conclude that our model is useful for studies of trauma in vitro and that it could be applied in future treatment studies.

  16. Observation of Microhollows Produced by Bubble Cloud Cavitation (United States)

    Yamakoshi, Yoshiki; Miwa, Takashi


    When an ultrasonic wave with sound pressure less than the threshold level of bubble destruction irradiates microbubbles, the microbubbles aggregate by an acoustic radiation force and form bubble clouds. The cavitation of bubble clouds produces a large number of microhollows (microdips) on the flow channel wall. In this study, microhollow production by bubble cloud cavitation is evaluated using a blood vessel phantom made of N-isopropylacrylamide (NIPA) gel. Microbubble dynamics in bubble cloud cavitation is observed by a microscope with a short pulse light emitted diode (LED) light source. Microhollows produced on the flow channel wall are evaluated by a confocal laser microscope with a water immersion objective. It is observed that a mass of low-density bubbles (bubble mist) is formed by bubble cloud cavitation. The spatial correlation between the bubble mist and the microhollows shows the importance of the bubble mist in microhollow production by bubble cloud cavitation.

  17. Highlighting intracranial pressure monitoring in patients with severe acute brain trauma Ressaltando a monitorização da pressão intracraniana em pacientes com traumatismo cerebral agudo grave

    Directory of Open Access Journals (Sweden)

    Antonio L. E Falcão


    Full Text Available Intracranial pressure (ICP monitoring was carried out in 100 patients with severe acute brain trauma, primarily by means of a subarachnoid catheter. Statistical associations were evaluated between maximum ICP values and: 1 Glasgow Coma Scale (GCS scores; 2 findings on computed tomography (CT scans of the head; and 3 mortality. A significant association was found between low GCS scores (3 to 5 and high ICP levels, as well as between focal lesions on CT scans and elevated ICP. Mortality was significantly higher in patients with ICP > 40 mm Hg than in those with ICP Monitorização da pressão intracraniana (PIC foi adotada em 100 pacientes com traumatismo cerebral agudo grave, usando-se preferencialmente um catéter subaracnóide. Associações estatísticas foram avaliadas entre valores máximos de PIC e : 1 número de pontos na Escala de Coma de Glasgow (ECG; 2 achados na tomografia computadorizada (TC da cabeça; e 3 mortalidade. Encontrou-se associação significante entre baixo número de pontos (3 a 5 na ECG e PIC elevada, assim como entre lesões focais na TC e hipertensão intracraniana. A mortalidade foi significantemente maior em pacientes com PIC > 40 mm Hg do que naqueles com PIC < 20 mm Hg.

  18. Dental Trauma Guide

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Lauridsen, Eva; Gerds, Thomas Alexander


    Diagnosis and treatment for traumatic dental injuries are very complex owing to the multiple trauma entities represented by six luxation types and nine fracture types affecting both the primary and the permanent dentition. When it is further considered that fracture and luxation injuries are often...... combined, the result is that more than 100 trauma scenarios exist, when the two dentitions are combined. Each of these trauma scenarios has a specific treatment demand and prospect for healing. With such a complexity in diagnosis and treatment, it is obvious that even experienced practitioners may have...... problems in selecting proper treatment for some of these trauma types. To remedy this situation, an Internet-based knowledge base consisting of 4000 dental trauma cases with long-term follow up is now available to the public and the professions on the Internet using the address http://www.DentalTrauma...

  19. Management of duodenal trauma

    Directory of Open Access Journals (Sweden)

    CHEN Guo-qing


    Full Text Available 【Abstract】Duodenal trauma is uncommon but nowadays seen more and more frequently due to the increased automobile accidents and violent events. The management of duodenal trauma can be complicated, especially when massive injury to the pancreatic-duodenal-biliary complex occurs simultaneously. Even the patients receive surgeries in time, multiple postoperative complications and high mortality are common. To know and manage duodenal trauma better, we searched the recent related literature in PubMed by the keywords of duodenal trauma, therapy, diagnosis and abdomen. It shows that because the diagnosis and management are complicated and the mortality is high, duodenal trauma should be treated in time and tactfully. And application of new technology can help improve the management. In this review, we discussed the incidence, diagnosis, management, and complications as well as mortality of duodenal trauma. Key words: Duodenum; Wounds and injuries; Diagnosis; Therapeutics


    Directory of Open Access Journals (Sweden)

    S. R. Gilarevsky


    Full Text Available Abstract. Contemporary algorithm of diagnostic examination of patients with suspected blunt cardiac trauma is presented. General aspects of monitoring and treatment of such patients are also discussed. 

  1. Nonlinear ultrasonic waves in bubbly liquids with nonhomogeneous bubble distribution: Numerical experiments. (United States)

    Vanhille, Christian; Campos-Pozuelo, Cleofé


    This paper deals with the nonlinear propagation of ultrasonic waves in mixtures of air bubbles in water, but for which the bubble distribution is nonhomogeneous. The problem is modelled by means of a set of differential equations which describes the coupling of the acoustic field and bubbles vibration, and solved in the time domain via the use and adaptation of the SNOW-BL code. The attenuation and nonlinear effects are assumed to be due to the bubbles exclusively. The nonhomogeneity of the bubble distribution is introduced by the presence of bubble layers (or clouds) which can act as acoustic screens, and alters the behaviour of the ultrasonic waves. The effect of the spatial distribution of bubbles on the nonlinearity of the acoustic field is analyzed. Depending on the bubble density, dimension, shape, and position of the layers, its effects on the acoustic field change. Effects such as shielding and resonance of the bubbly layers are especially studied. The numerical experiments are carried out in two configurations: linear and nonlinear, i.e. for low and high excitation pressure amplitude, respectively, and the features of the phenomenon are compared. The parameters of the medium are chosen such as to reproduce air bubbly water involved in the stable cavitation process.

  2. Effect of bubble's arrangement on the viscous torque in bubbly Taylor-Couette flow (United States)

    Fokoua, G. Ndongo; Gabillet, C.; Aubert, A.; Colin, C.


    An experimental investigation of the interactions between bubbles, coherent motion, and viscous drag in a Taylor-Couette flow with the outer cylinder at rest is presented. The cylinder radii ratio η is 0.91. Bubbles are injected inside the gap through a needle at the bottom of the apparatus. Different bubbles sizes are investigated (ratio between the bubble diameter and the gap width ranges from 0.05 to 0.125) for very small void fraction (α ≤ 0.23%). Different flow regimes are studied corresponding to Reynolds number Re based on the gap width and velocity of the inner cylinder, ranging from 6 × 102 to 2 × 104. Regarding these Re values, Taylor vortices are persistent leading to an axial periodicity of the flow. A detailed characterization of the vortices is performed for the single-phase flow. The experiment also develops bubbles tracking in a meridian plane and viscous torque of the inner cylinder measurements. The findings of this study show evidence of the link between bubbles localisation, Taylor vortices, and viscous torque modifications. We also highlight two regimes of viscous torque modification and various types of bubbles arrangements, depending on their size and on the Reynolds number. Bubbles can have a sliding and wavering motion near the inner cylinder and be either captured by the Taylor vortices or by the outflow areas near the inner cylinder. For small buoyancy effect, bubbles are trapped, leading to an increase of the viscous torque. When buoyancy induced bubbles motion is increased by comparison to the coherent motion of the liquid, a decrease in the viscous torque is rather observed. The type of bubble arrangement is parameterized by the two dimensionless parameters C and H introduced by Climent et al. ["Preferential accumulation of bubbles in Couette-Taylor flow patterns," Phys. Fluids 19, 083301 (2007)]. Phase diagrams summarizing the various types of bubbles arrangements, viscous torque modifications, and axial wavelength evolution are

  3. About Military Sexual Trauma

    Medline Plus

    Full Text Available ... Queue __count__/__total__ Find out why Close About Military Sexual Trauma Veterans Health Administration Loading... Unsubscribe from Veterans Health Administration? Cancel Unsubscribe ...

  4. Abdominal Trauma Revisited. (United States)

    Feliciano, David V


    Although abdominal trauma has been described since antiquity, formal laparotomies for trauma were not performed until the 1800s. Even with the introduction of general anesthesia in the United States during the years 1842 to 1846, laparotomies for abdominal trauma were not performed during the Civil War. The first laparotomy for an abdominal gunshot wound in the United States was finally performed in New York City in 1884. An aggressive operative approach to all forms of abdominal trauma till the establishment of formal trauma centers (where data were analyzed) resulted in extraordinarily high rates of nontherapeutic laparotomies from the 1880s to the 1960s. More selective operative approaches to patients with abdominal stab wounds (1960s), blunt trauma (1970s), and gunshot wounds (1990s) were then developed. Current adjuncts to the diagnosis of abdominal trauma when serial physical examinations are unreliable include the following: 1) diagnostic peritoneal tap/lavage, 2) surgeon-performed ultrasound examination; 3) contrast-enhanced CT of the abdomen and pelvis; and 4) diagnostic laparoscopy. Operative techniques for injuries to the liver, spleen, duodenum, and pancreas have been refined considerably since World War II. These need to be emphasized repeatedly in an era when fewer patients undergo laparotomy for abdominal trauma. Finally, abdominal trauma damage control is a valuable operative approach in patients with physiologic exhaustion and multiple injuries.

  5. About Military Sexual Trauma

    Medline Plus

    Full Text Available ... why Close About Military Sexual Trauma Veterans Health Administration Loading... Unsubscribe from Veterans Health Administration? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 18K Loading... ...

  6. About Military Sexual Trauma

    Medline Plus

    Full Text Available ... out why Close About Military Sexual Trauma Veterans Health Administration Loading... Unsubscribe from Veterans Health Administration? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 17K ...

  7. About Military Sexual Trauma

    Medline Plus

    Full Text Available ... out why Close About Military Sexual Trauma Veterans Health Administration Loading... Unsubscribe from Veterans Health Administration? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 16K ...

  8. About Military Sexual Trauma

    Medline Plus

    Full Text Available ... why Close About Military Sexual Trauma Veterans Health Administration Loading... Unsubscribe from Veterans Health Administration? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 17K Loading... ...

  9. About Military Sexual Trauma

    Medline Plus

    Full Text Available ... out why Close About Military Sexual Trauma Veterans Health Administration Loading... Unsubscribe from Veterans Health Administration? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 18K ...

  10. Detonation wave phenomena in bubbled liquid (United States)

    Gülhan, A.; Beylich, A. E.


    Shock wave propagation was investigated in two phase media consisting of diluted glycerin (85%) and reactive gas bubbles. To understand these complex phenomena, we first performed a numerical analysis and experimental studies of single bubbles containing a reactive gas-mixture. For the two-phase mixtures, a needle matrix bubble-generator enabled us to produce a homogeneous bubble distribution with a size dispersion less than 5%. The void fraction β0 was varied over one order of magnitude, β0=0.2-2%. It was found that there exists a critical value of shock strength above which bubble explosion starts. Once a bubble explodes, it stimulates the adjacent bubbles to explode due to emission of a blast wave; this process is followed by a series of similar events. A steady detonationlike wave propagates as a precurser with a constant velocity which is much higher than that of the first wave. To study the structure of the detonation wave the measured pressured profiles were averaged by superimposing 50 shots.

  11. The rheology of gravity driven bubbly liquids (United States)

    Martinez-Mercado, Julian; Zenit, Roberto


    Experiments on a vertical channel were performed to to study the behavior of a monodispersed bubble suspension. Using water and water-glycerin mixtures, we were able to obtain measurements for a range of Reynolds and Weber numbers. To generate a uniform stream of bubbles an array of identical capillaries was used. To avoid the coalescence effects, a small amount of salt was added to the interstitial fluid, which did not affect the fluid properties significantly. Measurements of the bubble phase velocity were obtained using a dual impedance probe and through high speed digital video processing. We also obtained measurements of the bubble size and shape as a function of the gas volume fraction for the different flow regimes. We found that, for all cases, the bubble velocity decreases as mean gas volume fraction increases. The flow agitation, characterized with the bubble velocity variance, increases with bubble concentration. The flow becomes unstable for lower gas concentrations as the viscosity of the interstitial fluid increases.

  12. Shock waves from nonspherical cavitation bubbles (United States)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Tinguely, Marc; Dorsaz, Nicolas; Farhat, Mohamed


    We present detailed observations of the shock waves emitted at the collapse of single cavitation bubbles using simultaneous time-resolved shadowgraphy and hydrophone pressure measurements. The geometry of the bubbles is systematically varied from spherical to very nonspherical by decreasing their distance to a free or rigid surface or by modulating the gravity-induced pressure gradient aboard parabolic flights. The nonspherical collapse produces multiple shocks that are clearly associated with different processes, such as the jet impact and the individual collapses of the distinct bubble segments. For bubbles collapsing near a free surface, the energy and timing of each shock are measured separately as a function of the anisotropy parameter ζ , which represents the dimensionless equivalent of the Kelvin impulse. For a given source of bubble deformation (free surface, rigid surface, or gravity), the normalized shock energy depends only on ζ , irrespective of the bubble radius R0 and driving pressure Δ p . Based on this finding, we develop a predictive framework for the peak pressure and energy of shock waves from nonspherical bubble collapses. Combining statistical analysis of the experimental data with theoretical derivations, we find that the shock peak pressures can be estimated as jet impact-induced hammer pressures, expressed as ph=0.45 (ρc2Δ p ) 1 /2ζ-1 at ζ >10-3 . The same approach is found to explain the shock energy decreasing as a function of ζ-2 /3.

  13. Performance Tests for Bubble Blockage Device

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kwang Soon; Wi, Kyung Jin; Park, Rae Joon; Wan, Han Seong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    Postulated severe core damage accidents have a high threat risk for the safety of human health and jeopardize the environment. Versatile measures have been suggested and applied to mitigate severe accidents in nuclear power plants. To improve the thermal margin for the severe accident measures in high-power reactors, engineered corium cooling systems involving boiling-induced two-phase natural circulation have been proposed for decay heat removal. A boiling-induced natural circulation flow is generated in a coolant path between a hot vessel wall and cold coolant reservoir. In general, it is possible for some bubbles to be entrained in the natural circulation loop. If some bubbles entrain in the liquid phase flow passage, flow instability may occur, that is, the natural circulation mass flow rate may be oscillated. A new device to block the entraining bubbles is proposed and verified using air-water test loop. To avoid bubbles entrained in the natural circulation flow loop, a new device was proposed and verified using an air-water test loop. The air injection and liquid circulation loop was prepared, and the tests for the bubble blockage devices were performed by varying the geometry and shape of the devices. The performance of the bubble blockage device was more effective as the area ratio of the inlet to the down-comer increased, and the device height decreased. If the device has a rim to generate a vortex zone, the bubbles will be most effectively blocked.

  14. Bubbles in live-stranded dolphins. (United States)

    Dennison, S; Moore, M J; Fahlman, A; Moore, K; Sharp, S; Harry, C T; Hoppe, J; Niemeyer, M; Lentell, B; Wells, R S


    Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber-muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness.

  15. Inert gas bubbles in bcc Fe

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Xiao, E-mail:; Smith, Roger, E-mail:; Kenny, S.D., E-mail:


    The properties of inert gas bubbles in bcc Fe is examined using a combination of static energy minimisation, molecular dynamics and barrier searching methods with empirical potentials. Static energy minimisation techniques indicate that for small Ar and Xe bubbles, the preferred gas to vacancy ratio at 0 K is about 1:1 for Ar and varies between 0.5:1 and 0.9:1 for Xe. In contrast to interstitial He atoms and small He interstitial clusters, which are highly mobile in the lattice, Ar and Xe atoms prefer to occupy substitutional sites and any interstitials present in the lattice soon displace Fe atoms and become substitutional. If a pre-existing bubble is present then there is a capture radius around a bubble which extends up to the 6th neighbour position. Collision cascades can also enlarge an existing bubble by the capture of vacancies. Ar and Xe can diffuse through the lattice through vacancy driven mechanisms but with relatively high energy barriers of 1.8 and 2.0 eV respectively. This indicates that Ar and Xe bubbles are much harder to form than bubbles of He and that such gases produced in a nuclear reaction would more likely be dispersed at substitutional sites without the help of increased temperature or radiation-driven mechanisms.

  16. Pressure waves in a supersaturated bubbly magma (United States)

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.


    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  17. Trauma Team Activation: Not Just for Trauma Patients


    Phoenix Vuong; Jason Sample; Mary Ellen Zimmermann; Pierre Saldinger


    Specialized trauma teams have been shown to improve outcomes in critically injured patients. At our institution, an the American College of Surgeons Committee on trauma level I Trauma center, the trauma team activation (TTA) criteria includes both physiologic and anatomic criteria, but any attending physician can activate the trauma team at their discretion outside criteria. As a result, the trauma team has been activated for noninjured patients meeting physiologic criteria secondary to nontr...

  18. Invasive cervical resorption following trauma. (United States)

    Heithersay, G S


    application of a 90% aqueous solution of trichloracetic acid, curettage, endodontic therapy where necessary and restoration with a glass ionomer cement has been evaluated on 94 patients with a total of 101 teeth with a minimum follow-up period of three years. Results indicate a satisfactory treatment outcome can be anticipated in Class 1, 2 and 3 cases. In Class 4 resorption no treatment or alternative therapy is recommended. Diagnosis of lesions at an early stage of development is highly desirable and therefore the patients who have a potential for the development of this condition by virtue of a history such as trauma should be monitored radiographically at intervals throughout life.

  19. Numerical investigation of bubble nonlinear dynamics characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jie, E-mail:; Yang, Desen; Shi, Shengguo; Hu, Bo [Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang, Haoyang; Jiang, Wei [College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001 (China)


    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  20. Single DNA denaturation and bubble dynamics

    DEFF Research Database (Denmark)

    Metzler, Ralf; Ambjörnsson, Tobias; Hanke, Andreas


    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration......, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments...

  1. A view inside the Gargamelle bubble chamber

    CERN Multimedia


    Gargamelle was the name given to a big bubble chamber built at the Saclay Laboratory in France during the late 1960s. It was designed principally for the detection at CERN of the elusive particles called neutrinos. A bubble chamber contains a liquid under pressure, which reveals the tracks of electrically charged particles as trails of tiny bubbles when the pressure is reduced. Neutrinos have no charge, and so leave no tracks, but the aim with Gargamelle was "see neutrinos" by making visible any charged particles set in motion by the interaction of neutrinos in the liquid

  2. Experimental investigation of shock wave - bubble interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohsen


    In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An

  3. Arrested Bubble Rise in a Narrow Tube (United States)

    Lamstaes, Catherine; Eggers, Jens


    If a long air bubble is placed inside a vertical tube closed at the top it can rise by displacing the fluid above it. However, Bretherton found that if the tube radius, R, is smaller than a critical value Rc=0.918 ℓ _c, where ℓ _c=√{γ /ρ g} is the capillary length, there is no solution corresponding to steady rise. Experimentally, the bubble rise appears to have stopped altogether. Here we explain this observation by studying the unsteady bubble motion for Rmotion.

  4. The bubbling galactic plane: fertilization or sterilization? (United States)

    Testi, Leonardo; Cunningham, Maria; Zavagno, Annie; Deharveng, Lise; Leurini, Silvia; Molinari, Sergio


    Spitzer surveys have revealed that the galactic plane has a high density of bubbles. Many of these show evidence of being associated with star formation. Followup observations collected so far have failed to conclusively determine the relationship (if any) between the bubbles and the triggering of star formation. We propose to obtain MOPRA molecular line pointed observations towards bubbles detected with APEX in the millimeter continuum and with Herschel in the far infrared/submm to reveal the presence and kinematics of dense gas and to search for evidence of the initial phases of star formation.


    NARCIS (Netherlands)


    Under microgravity conditions in both parabolic and sounding rocket flights, the mass-transfer-induced Marangoni convection around an air bubble was studied. To prevent the bubble from becoming saturated, the bubble was ventilated. It turned out that the flow rate of the air through the bubble

  6. Stability of a bubble expanding and translating through an inviscid ...

    Indian Academy of Sciences (India)

    A bubble expands adiabatically and translates in an incompressible and inviscid liquid. We investigate the number of equilibrium points of the bubble and the nature of stability of the bubble at these points. We find that there is only one equilibrium point and the bubble is stable there.

  7. Approach to universality in axisymmetric bubble pinch-off

    NARCIS (Netherlands)

    Gekle, S.; Snoeijer, Jacobus Hendrikus; Lohse, Detlef; van der Meer, Roger M.


    The pinch-off of an axisymmetric air bubble surrounded by an inviscid fluid is compared in four physical realizations: (i) cavity collapse in the wake of an impacting disk, (ii) gas bubbles injected through a small orifice, (iii) bubble rupture in a straining flow, and (iv) a bubble with an

  8. 21 CFR 870.4205 - Cardiopulmonary bypass bubble detector. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass bubble detector. 870.4205... bypass bubble detector. (a) Identification. A cardiopulmonary bypass bubble detector is a device used to detect bubbles in the arterial return line of the cardiopulmonary bypass circuit. (b) Classification...

  9. Stochastic DSMC method for dense bubbly flows : Methodology

    NARCIS (Netherlands)

    Kamath, S.; Padding, J.T.; Buist, K. A.; Kuipers, J.


    A stochastic Direct Simulation Monte Carlo (DSMC) method has been extended for handling bubble-bubble and bubble-wall collisions. Bubbly flows are generally characterized by highly correlated velocities due to presence of the surrounding liquid. The DSMC method has been improved to account for

  10. Conservation of bubble size distribution during gas reactive absorption in bubble column reactors

    Directory of Open Access Journals (Sweden)

    P. L.C. LAGE


    Full Text Available Conservation of the bubble size distribution function was applied to the reactive absorption of carbon dioxide in a bubble column reactor. The model developed was solved by the method of characteristics and by a Monte Carlo method. Simulations were carried out using simplified models for the liquid phase and for the gas-liquid mass transfer. Predictions of gas holdup and outlet gas composition showed that the concept of a mean bubble diameter is not applicable when the bubble size distribution is reasonably polydispersed. In these cases, the mass mean velocity and the numerical mean velocity of the bubbles are very different. Therefore, quantification of the polydispersion of bubbles was shown to be essential to gas-phase hydrodynamics modeling.


    Directory of Open Access Journals (Sweden)

    Dwi Marhaendro Jati Purnomo


    Full Text Available Sorting is common process in computational world. Its utilization are on many fields from research to industry. There are many sorting algorithm in nowadays. One of the simplest yet powerful is bubble sort. In this study, bubble sort is implemented on FPGA. The implementation was taken on serial and parallel approach. Serial and parallel bubble sort then compared by means of its memory, execution time, and utility which comprises slices and LUTs. The experiments show that serial bubble sort required smaller memory as well as utility compared to parallel bubble sort. Meanwhile, parallel bubble sort performed faster than serial bubble sort

  12. Lattice Boltzmann Simulation of Multiple Bubbles Motion under Gravity

    Directory of Open Access Journals (Sweden)

    Deming Nie


    Full Text Available The motion of multiple bubbles under gravity in two dimensions is numerically studied through the lattice Boltzmann method for the Eotvos number ranging from 1 to 12. Two kinds of initial arrangement are taken into account: vertical and horizontal arrangement. In both cases the effects of Eotvos number on the bubble coalescence and rising velocity are investigated. For the vertical arrangement, it has been found that the coalescence pattern is similar. The first coalescence always takes place between the two uppermost bubbles. And the last coalescence always takes place between the coalesced bubble and the bottommost bubble. For four bubbles in a horizontal arrangement, the outermost bubbles travel into the wake of the middle bubbles in all cases, which allows the bubbles to coalesce. The coalescence pattern is more complex for the case of eight bubbles, which strongly depends on the Eotvos number.

  13. Virtual Trauma Team

    NARCIS (Netherlands)

    Jones, Valerie M.; Bults, Richard G.A.


    The clinical motivation for Virtual Trauma Team is to improve quality of care in trauma care in the vital first "golden hour" where correct intervention can greatly improve likely health outcome. The motivation for Virtual Homecare Team is to improve quality of life and independence for patients by

  14. Prospects after Major Trauma

    NARCIS (Netherlands)

    Holtslag, H.R.


    Introduction. After patients survived major trauma, their prospects, in terms of the consequences for functioning, are uncertain, which may impact severely on patient, family and society. The studies in this thesis describes the long-term outcomes of severe injured patients after major trauma. In

  15. Optimization of the bubble radius in a moving single bubble sonoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Mirheydari, Mona; Sadighi-Bonabi, Rasoul; Rezaee, Nastaran; Ebrahimi, Homa, E-mail: [Department of Physics, Sharif University of Technology, 11365-91, Tehran (Iran, Islamic Republic of)


    A complete study of the hydrodynamic force on a moving single bubble sonoluminescence in N-methylformamide is presented in this work. All forces exerted, trajectory, interior temperature and gas pressure are discussed. The maximum values of the calculated components of the hydrodynamic force for three different radii at the same driving pressure were compared, while the optimum bubble radius was determined. The maximum value of the buoyancy force appears at the start of bubble collapse, earlier than the other forces whose maximum values appear at the moment of bubble collapse. We verified that for radii larger than the optimum radius, the temperature peak value decreases.

  16. Chaotic behavior in bubble formation dynamics (United States)

    Tufaile, A.; Sartorelli, J. C.


    We constructed an experimental apparatus to study the dynamics of the formation of air bubbles in a submerged nozzle in a water/glycerin solution inside a cylindrical tube. The delay time between successive bubbles was measured with a laser-photodiode system. It was observed bifurcations, chaotic behavior, and sudden changes in a periodic regime as a function of the decreasing air pressure in a reservoir. We also observed dynamical effects by applying a sound wave tuned to the fundamental frequency of the air column above the solution. As a function of the sound wave amplitude, we obtained a limit cycle, a flip bifurcation, chaotic behavior, and the synchronization of the bubbling with sound wave frequency. We related some of the different dynamical behaviors to coalescent effects and bubble sizes.

  17. Large bubble entrainment in drop impact (United States)

    Thoraval, Marie-Jean; Li, Yangfan; Thoroddsen, Sigurdur T.


    A drop impacting on a pool of the same liquid can entrap air bubbles in many different ways. A peculiar entrapment was observed by Pumphrey and Elmore (1990) and remained unexplained until now. For a small range of parameters, the cavity produced by the impacting drop spreads radially in a dish-shape and then closes to entrap a bubble larger than the drop. We demonstrate that the large bubble is caused by a vortex ring produced in the liquid during the impact of the drop. We combine experiments and numerical simulations to show that the vortex ring pulls on the interface on the side of the cavity to stretch it radially, explaining the shape of the cavity. Only prolate drops are able to generate large bubbles. This is due to the self-destruction of the vortex earlier during the impact for flatter drops.

  18. On the shape of giant soap bubbles. (United States)

    Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H; Quéré, David; Clanet, Christophe


    We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures.

  19. The Soap-Bubble-Geometry Contest. (United States)

    Morgan, Frank; Melnick, Edward R.; Nicholson, Ramona


    Presents an activity on soap-bubble geometry using a guessing contest, explanations, and demonstrations that allow students to mesh observation and mathematical reasoning to discover that mathematics is much more than just number crunching. (ASK)

  20. TE Scattering From Bubbles In RAM

    National Research Council Canada - National Science Library

    Cochran, John


    ... (00) to 450 and at a frequency range from 2-18 GHz, TE polarization. The results from the absolute RCS measurement of the various sized RAM bubbles are discussed in terms of a frequency dependent increase in RCS...

  1. Test and evaluation of bubble memories (United States)

    Bahm, E.


    A description is presented of a test program which has shown that well-constructed bubble memories can operate reliably over long periods of time and at low error rates. Even the relatively high error rate of one memory during burn-in can be considered acceptable if compared with tape recorder standards. No wear-out mechanism or aging could be detected. Bubble memories are now considered suitable for long-duration space missions and certainly are suitable for many military and commercial applications. It must be recognized, however, that bubble memories are complex devices and not yet fully understood. While the particular memory tested may never find practical applications, it nevertheless has provided insight into performance characteristics considered typical of bubble memories.

  2. [Thoracic Trauma - Prehospital Treatment]. (United States)

    Hansen, Michael; Hachenberg, Thomas


    Penetrating thoracic injuries are rare in Germany and common in urban regions. 10 percent of the patients in Emergency Departments suffer from blunt thoracic trauma. Mechanism of trauma can predict the severity of the injuries. Very fast life-threatening injuries with hemodynamic problems like tension pneumothorax or cardiac tamponade have to be diagnosed. Prehospital emergency physicians need skills in ultrasound for diagnosis and in invasive therapy like chest tube or pericardium drainage tube. The application of an algorithm in exploration of a thoracic trauma seems to be useful. The selection of trauma center depends on the severity of the trauma, if necessary with the availability of extracorporeal circulation. Georg Thieme Verlag KG Stuttgart · New York.

  3. Haemostatic resuscitation in trauma

    DEFF Research Database (Denmark)

    Stensballe, Jakob; Ostrowski, Sisse Rye; Johansson, Par I.


    PURPOSE OF REVIEW: To discuss the recent developments in and evolvement of next generation haemostatic resuscitation in bleeding trauma. RECENT FINDINGS: Mortality from major trauma is a worldwide problem, and massive haemorrhage remains a major cause of potentially preventable deaths. Development...... of coagulopathy further increases trauma mortality emphasizing that coagulopathy is a key target in the phase of bleeding. The pathophysiology of coagulopathy in trauma reflects at least three distinct mechanisms that may be present isolated or coexist: acute traumatic coagulopathy, coagulopathy associated...... with the lethal triad, and consumptive coagulopathy. The concepts of 'damage control surgery' and 'damage control resuscitation' have been developed to ensure early control of bleeding and coagulopathy to improve outcome in bleeding trauma. Haemostatic resuscitation aims at controlling coagulopathy and consists...

  4. Dental Trauma Guide

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Lauridsen, Eva Fejerskov; Christensen, Søren Steno Ahrensburg


    Diagnose and treatment of traumatic dental injuries is very complex due to the multiple trauma entities represented by 6 lunation types and 9 fracture types affecting both the primary and the permanent dentition. When it is further considered that fracture and lunation injuries are often combined......, the result is, that more than 100 trauma scenario exist when the two dentitions are combined. Each of these trauma scenarios have a specific treatment demand and prospect for healing. With such a complexity in diagnose and treatment it is obvious that even experienced practitioners may have problems may have...... problems in selecting proper treatment for some of these trauma types. To remedy this situation, an internet based knowledge base consisting of 4000 dental trauma cases with long term follow up is now available to the public and professionals, on the internet using the address www...

  5. Trauma-induced coagulopathy. (United States)

    Katrancha, Elizabeth D; Gonzalez, Luis S


    Coagulopathy is the inability of blood to coagulate normally; in trauma patients, it is a multifactorial and complex process. Seriously injured trauma patients experience coagulopathies during the acute injury phase. Risk factors for trauma-induced coagulopathy include hypothermia, metabolic acidosis, hypoperfusion, hemodilution, and fluid replacement. In addition to the coagulopathy induced by trauma, many patients may also be taking medications that interfere with hemostasis. Therefore, medication-induced coagulopathy also is a concern. Traditional laboratory-based methods of assessing coagulation are being supported or even replaced by point-of-care tests. The evidence-based management of trauma-induced coagulopathy should address hypothermia, fluid resuscitation, blood components administration, and, if needed, medications to reverse identified coagulation disorders. ©2014 American Association of Critical-Care Nurses.

  6. Electron acceleration in the bubble regime

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Oliver


    The bubble regime of laser-wakefield acceleration has been studied over the recent years as an important alternative to classical accelerators. Several models and theories have been published, in particular a theory which provides scaling laws for acceleration parameters such as energy gain and acceleration length. This thesis deals with numerical simulations within the bubble regime, their comparison to these scaling laws and data obtained from experiments, as well as some specific phenomenona. With a comparison of the scaling laws with numerical results a parameter scan was able to show a large parameter space in which simulation and theory agree. An investigation of the limits of this parameter space revealed boundaries to other regimes, especially at very high (a{sub 0} > 100) and very low laser amplitudes (a{sub 0} < 4). Comparing simulation data with data from experiments concerning laser pulse development and electron energies, it was found that experimental results can be adequately reproduced using the Virtual-Laser-Plasma-Laboratory code. In collaboration with the Institut fuer Optik und Quantenelektronik at the Friedrich-Schiller University Jena synchrotron radiation emitted from the inside of the bubble was investigated. A simulation of the movement of the electrons inside the bubble together with time dependent histograms of the emitted radiation helped to prove that the majority of radiation created during a bubble acceleration originates from the inside of the bubble. This radiation can be used to diagnose the amplitude of oscillation of the trapped electrons. During a further study it was proven that the polarisation of synchrotron radiation from a bubble contains information about the exact oscillation direction. This oscillation was successfully controlled by using either a laser pulse with a tilted pulse front or an asymmetric laser pulse. First results of ongoing studies concerning injecting electrons into an existing bubble and a scheme called

  7. GPS Observations of Plasma Bubbles and Scintillations over Equatorial Africa (United States)

    Carrano, C. S.; Valladares, C. E.; Semala, G. K.; Bridgwood, C. T.; Adeniyi, J.; Amaeshi, L. L.; Damtie, B.; D'Ujanga Mutonyi, F.; Ndeda, J. D.; Baki, P.; Obrou, O. K.; Okere, B.; Tsidu, G. M.


    Sponsored in part by the International Heliophysical Year (IHY) program, Boston College, Air Force Research Laboratory (AFRL), and several universities in Africa have collaborated to deploy a network of GPS receivers throughout equatorial Africa, a region which has been largely devoid of ground-based ionospheric monitoring instruments. High date-rate GPS receivers capable of measuring Total Electron Content (TEC) and GPS scintillations were installed at Abidjan, Ivory Coast (5.3°N, 4.0°W, dip 3.5°S); Addis Ababa (9.0°N, 38.8°E, dip 0.1°N ); Bahir Dar, Ethiopia (26.1°N, 50.6°E, dip 20.1°N); Cape Verde (16.6°S, 22.9°W, dip 4.9°N); Ilorin, Nigeria (8.4°S, 4.7°E, dip 1.9°S); Kampala, Uganda (0.3°S, 32.6°E, dip 9.2°S); Lagos, Nigeria (6.5°N, 3.4°E, dip 3.1°S); Nairobi, Kenya (1.3°S, 36.8°W, dip 10.7°S); Nsukka, Nigeria (6.8°S, 7.4°W, dip 3.0°S); and Zanzibar, Tanzania (6.2°S, 39.2°E, dip 15.9°S). In this paper we report on the longitudinal, local time and seasonal occurrence of plasma bubbles and L band scintillations over equatorial Africa in 2009 and 2010, as a first step toward establishing the climatology of ionospheric irregularities over Africa. The scintillation intensity is obtained by measuring the standard deviation of normalized GPS signal power. The plasma bubbles are detected using an automated technique, whereby the GPS TEC is detrended to remove the diurnal variation and excursions exceeding a particular threshold are extracted for further analysis. A harmonic analysis (FFT) of these extracted events is performed to exclude wavelike features indicative of gravity waves or traveling ionospheric disturbances, and the remaining events are identified as plasma bubbles. Our findings suggest that the occurrence of plasma bubbles and L band scintillations over Africa are well correlated, but that some discrepancies in their morphologies are evident. While plasma bubbles and scintillations are generally observed during equinoctial

  8. Nasal injury and comfort with jet versus bubble continuous positive airway pressure delivery systems in preterm infants with respiratory distress. (United States)

    Khan, Jafar; Sundaram, Venkataseshan; Murki, Srinivas; Bhatti, Anuj; Saini, Shiv Sajan; Kumar, Praveen


    Nasal injuries with use of nasal continuous positive airway pressure (CPAP) range from blanching of nasal tip to septal necrosis and septal drop. This analysis was done in preterm neonates of Bubble device for delivery of CPAP, both through nasal prongs of different structure, make and fixation methods. Nasal injury was assessed using a validated nasal injury score. Out of 170 neonates enrolled, 103 (61%) had nasal injuries; moderate and severe injuries were observed in 18 (11%) and 8 (5%) infants, respectively. Septum was the most common site injured. The incidence and severity of nasal injury were significantly lesser in Jet group compared to Bubble group [RR 0.6 (95% C.I. 0.5-0.8); p Bubble group. However, Jet group neonates had significantly more common prong displacements. Bubble CPAP device with its nasal interface had higher and more serious incidence of nasal injuries in comparison to Jet CPAP device. What is known: • Nasal injuries are becoming increasingly common with use of nasal CPAP low gestational age, low birth weight, longer use of CPAP and longer NICU stay are risk factors for such injuries • Validated nasal injury scores have been created for assessment of nasal trauma in neonates What is new: • Bubble device with its interface had higher and more serious incidence of nasal injuries in comparison to Jet device • Even though pain assessed by N-PASS was less with Jet device, prong displacements were more frequent with its system.

  9. Numerical simulation of single bubble boiling behavior

    Directory of Open Access Journals (Sweden)

    Junjie Liu


    Full Text Available The phenomena of a single bubble boiling process are studied with numerical modeling. The mass, momentum, energy and level set equations are solved using COMSOL multi-physics software. The bubble boiling dynamics, the transient pressure field, velocity field and temperature field in time are analyzed, and reasonable results are obtained. The numeral model is validated by the empirical equation of Fritz and could be used for various applications.

  10. Test ventilation with smoke, bubbles, and balloons

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, P.L.; Cucchiara, A.L.; McAtee, J.L.; Gonzales, M.


    The behavior of smoke, bubbles, and helium-filled balloons was videotaped to demonstrate the mixing of air in the plutonium chemistry laboratories, a plutonium facility. The air-distribution patterns, as indicated by each method, were compared. Helium-filled balloons proved more useful than bubbles or smoke in the visualization of airflow patterns. The replay of various segments of the videotape proved useful in evaluating the different techniques and in identifying airflow trends responsible for air mixing. 6 refs.

  11. Probing the Mechanical Strength of an Armored Bubble and Its Implication to Particle-Stabilized Foams

    Directory of Open Access Journals (Sweden)

    Nicolas Taccoen


    Full Text Available Bubbles are dynamic objects that grow and rise or shrink and disappear, often on the scale of seconds. This conflicts with their uses in foams where they serve to modify the properties of the material in which they are embedded. Coating the bubble surface with solid particles has been demonstrated to strongly enhance the foam stability, although the mechanisms for such stabilization remain mysterious. In this paper, we reduce the problem of foam stability to the study of the behavior of a single spherical bubble coated with a monolayer of solid particles. The behavior of this armored bubble is monitored while the ambient pressure around it is varied, in order to simulate the dissolution stress resulting from the surrounding foam. We find that above a critical stress, localized dislocations appear on the armor and lead to a global loss of the mechanical stability. Once these dislocations appear, the armor is unable to prevent the dissolution of the gas into the surrounding liquid, which translates into a continued reduction of the bubble volume, even for a fixed overpressure. The observed route to the armor failure therefore begins from localized dislocations that lead to large-scale deformations of the shell until the bubble completely dissolves. The critical value of the ambient pressure that leads to the failure depends on the bubble radius, with a scaling of ΔP_{collapse}∝R^{-1}, but does not depend on the particle diameter. These results disagree with the generally used elastic models to describe particle-covered interfaces. Instead, the experimental measurements are accounted for by an original theoretical description that equilibrates the energy gained from the gas dissolution with the capillary energy cost of displacing the individual particles. The model recovers the short-wavelength instability, the scaling of the collapse pressure with bubble radius, and the insensitivity to particle diameter. Finally, we use this new microscopic

  12. Probing the Mechanical Strength of an Armored Bubble and Its Implication to Particle-Stabilized Foams (United States)

    Taccoen, Nicolas; Lequeux, François; Gunes, Deniz Z.; Baroud, Charles N.


    Bubbles are dynamic objects that grow and rise or shrink and disappear, often on the scale of seconds. This conflicts with their uses in foams where they serve to modify the properties of the material in which they are embedded. Coating the bubble surface with solid particles has been demonstrated to strongly enhance the foam stability, although the mechanisms for such stabilization remain mysterious. In this paper, we reduce the problem of foam stability to the study of the behavior of a single spherical bubble coated with a monolayer of solid particles. The behavior of this armored bubble is monitored while the ambient pressure around it is varied, in order to simulate the dissolution stress resulting from the surrounding foam. We find that above a critical stress, localized dislocations appear on the armor and lead to a global loss of the mechanical stability. Once these dislocations appear, the armor is unable to prevent the dissolution of the gas into the surrounding liquid, which translates into a continued reduction of the bubble volume, even for a fixed overpressure. The observed route to the armor failure therefore begins from localized dislocations that lead to large-scale deformations of the shell until the bubble completely dissolves. The critical value of the ambient pressure that leads to the failure depends on the bubble radius, with a scaling of Δ Pcollapse∝R-1 , but does not depend on the particle diameter. These results disagree with the generally used elastic models to describe particle-covered interfaces. Instead, the experimental measurements are accounted for by an original theoretical description that equilibrates the energy gained from the gas dissolution with the capillary energy cost of displacing the individual particles. The model recovers the short-wavelength instability, the scaling of the collapse pressure with bubble radius, and the insensitivity to particle diameter. Finally, we use this new microscopic understanding to predict

  13. Fluid dynamics of bubbles in liquid

    Directory of Open Access Journals (Sweden)



    Full Text Available Results gathered from the literature on the dynamics of bubbles in liquid are correlated by means of a formulation traditionally employed to describe the dynamics of isometric solid particles. It is assumed that the shape of the bubble depends, by means of the Eotvos number, on its diameter and on the gas-liquid surface tension. The analysis reported herein includes the dynamics of the isolated bubble along with wall and concentration effects. However, the effects of gas circulation in the bubble, which result in terminal velocities higher than those of a rigid sphere, are not being considered. A limited number of experimental points are obtained employing a modified version of the Mariotte flask which permits the precise measure of bubble volume. A classic bubble column is also employed in order to measure gas holdup in the continuous phase. Experiments were carried out employing air, with distilled water, potable water, water with variable amounts of surfactant and glycerin as the liquid phase.

  14. Gas Bubble Dynamics under Mechanical Vibrations (United States)

    Mohagheghian, Shahrouz; Elbing, Brian


    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  15. Fearless versus fearful speculative financial bubbles (United States)

    Andersen, J. V.; Sornette, D.


    Using a recently introduced rational expectation model of bubbles, based on the interplay between stochasticity and positive feedbacks of prices on returns and volatility, we develop a new methodology to test how this model classifies nine time series that have been previously considered as bubbles ending in crashes. The model predicts the existence of two anomalous behaviors occurring simultaneously: (i) super-exponential price growth and (ii) volatility growth, that we refer to as the “fearful singular bubble” regime. Out of the nine time series, we find that five pass our tests and can be characterized as “fearful singular bubbles”. The four other cases are the information technology Nasdaq bubble and three bubbles of the Hang Seng index ending in crashes in 1987, 1994 and 1997. According to our analysis, these four bubbles have developed with essentially no significant increase of their volatility. This paper thus proposes that speculative bubbles ending in crashes form two groups hitherto unrecognized, namely those accompanied by increasing volatility (reflecting increasing risk perception) and those without change of volatility (reflecting an absence of risk perception).

  16. Bubble ring play of bottlenose dolphins (Tursiops truncatus): implications for cognition. (United States)

    McCowan, B; Marino, L; Vance, E; Walke, L; Reiss, D


    Research on the cognitive capacities of dolphins and other cetaceans (whales and porpoises) has importance for the study of comparative cognition, particularly with other large-brained social mammals, such as primates. One of the areas in which cetaceans can be compared with primates is that of object manipulation and physical causality, for which there is an abundant body of literature in primates. The authors supplemented qualitative observations with statistical methods to examine playful bouts of underwater bubble ring production and manipulation in 4 juvenile male captive bottlenose dolphins (Tursiops truncatus). The results are consistent with the hypothesis that dolphins monitor the quality of their bubble rings and anticipate their actions during bubble ring play.

  17. The Scientometric Bubble Considered Harmful. (United States)

    Génova, Gonzalo; Astudillo, Hernán; Fraga, Anabel


    This article deals with a modern disease of academic science that consists of an enormous increase in the number of scientific publications without a corresponding advance of knowledge. Findings are sliced as thin as salami and submitted to different journals to produce more papers. If we consider academic papers as a kind of scientific 'currency' that is backed by gold bullion in the central bank of 'true' science, then we are witnessing an article-inflation phenomenon, a scientometric bubble that is most harmful for science and promotes an unethical and antiscientific culture among researchers. The main problem behind the scenes is that the impact factor is used as a proxy for quality. Therefore, not only for convenience, but also based on ethical principles of scientific research, we adhere to the San Francisco Declaration on Research Assessment when it emphasizes "the need to eliminate the use of journal-based metrics in funding, appointment and promotion considerations; and the need to assess research on its own merits rather on the journal in which the research is published". Our message is mainly addressed to the funding agencies and universities that award tenures or grants and manage research programmes, especially in developing countries. The message is also addressed to well-established scientists who have the power to change things when they participate in committees for grants and jobs.

  18. Blood platelet count and bubble formation after a dive to 30 msw for 30 min. (United States)

    Pontier, Jean-Michel; Jimenez, Chantal; Blatteau, Jean-Eric


    Previous human studies reported that platelet count (PC) is decreased following decompression. Platelet aggregation and adherence to the bubble surface has been demonstrated in severe decompression sickness (DCS). The present study was designed to clarify the relationship between post-dive changes in blood PC and the level of bubble formation in divers. There were 40 healthy experienced divers who were assigned to 1 experimental group (N = 30) with an open-sea air dive to 30 msw for 30 min in field conditions and 1 control group (N = 10) without hyperbaric exposure. Bubble grades were monitored with a pulsed Doppler according to the Spencer scale and Kissman integrated severity score (KISS). Blood samples for red blood cell counts (RBC), hematocrit (Hct), and PC were taken 1 h before and after exposure in two groups. None of the divers developed any signs of DCS. In two groups, the results showed significant increase in RBC count and Hct related with hemoconcentration and no change in PC. Divers with a high KISS score (39 +/- 5.8; mean +/- SD) presented a significantly more pronounced percent fall in PC than divers with a lower KISS score. We found a significant correlation between the percent fall in PC after a dive and the bubble KISS score. The present study highlighted a relationship between the post-dive decrease in PC and the magnitude of bubble level after decompression. Our primary result is that the post-dive decrease in PC could be a predictor of decompression severity after diving.

  19. Bubbles and semi-bubbles as a new kind of superheavy nuclei

    CERN Document Server

    Dechargé, J; Girod, M; Dietrich, K G


    Applying the HFB theory with the effective interaction D1S of Gogny, two kinds of 'hyperheavy nuclei' were discovered: true 'bubbles' with practically vanishing nuclear density in the central region of the nucleus, and 'semi-bubbles' ('unsaturated nuclei') with a reduced but finite density near the nuclear center. Semi-bubbles are found to be stable with regard to the emission of a neutron or a proton for nucleon numbers A and charge numbers Z in the ranges 292 < or approx. 750 and 120 < or approx. 240, and true bubbles for 750 < or approx. 920 and 240 < or approx. 280, respectively. For a limited number of nuclear species, a third type of hyperheavy nuclei with a finite, strongly reduced, halo-like central density ('internal halo nuclei') is found. Coexistence of bubble and semi-bubble solutions for given nucleon and charge numbers is frequently obtained, the semi-bubbles being the ground states for A < or approx. 240, and the true bubbles for the heavier nuclear species. The dominant disinteg...

  20. The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor-Couette flow

    NARCIS (Netherlands)

    van Gils, Dennis Paulus Maria; Narezo Guzman, Daniela; Sun, Chao; Lohse, Detlef


    Bubbly turbulent Taylor–Couette (TC) flow is globally and locally studied at Reynolds numbers of Re=5×105 to 2×106 with a stationary outer cylinder and a mean bubble diameter around 1 mm. We measure the drag reduction (DR) based on the global dimensional torque as a function of the global gas volume

  1. Trauma Induced Coagulopathy

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Johansson, Per; Meyer, Martin Abild Stengaard


    It remains debated whether traumatic brain injury (TBI) induces a different coagulopathy compared to non-TBI. This study investigated traditional coagulation tests, biomarkers of coagulopathy and endothelial damage in trauma patients with and without TBI. Blood from 80 adult trauma patients were...... sampled (median of 68 min (IQR 48-88) post-injury) upon admission to our trauma centre. Plasma/serum were retrospectively analysed for biomarkers reflecting sympathoadrenal activation (adrenaline, noradrenaline), coagulation activation/inhibition and fibrinolysis (protein C, activated protein C, tissue...

  2. Urological injuries following trauma

    Energy Technology Data Exchange (ETDEWEB)

    Bent, C. [Department of Diagnostic Imaging, Barts and The London NHS Trust, London (United Kingdom)], E-mail:; Iyngkaran, T.; Power, N.; Matson, M. [Department of Diagnostic Imaging, Barts and The London NHS Trust, London (United Kingdom); Hajdinjak, T.; Buchholz, N. [Department of Urology, Barts and The London NHS Trust, London (United Kingdom); Fotheringham, T. [Department of Diagnostic Imaging, Barts and The London NHS Trust, London (United Kingdom)


    Blunt renal trauma is the third most common injury in abdominal trauma following splenic and hepatic injuries, respectively. In the majority, such injuries are associated with other abdominal organ injuries. As urological injuries are not usually life-threatening, and clinical signs and symptoms are non-specific, diagnosis is often delayed. We present a practical approach to the diagnosis and management of these injuries based on our experience in a busy inner city trauma hospital with a review of the current evidence-based practice. Diagnostic imaging signs are illustrated.

  3. [Trauma-induced coagulopathy]. (United States)

    Hanke, A A; Rahe-Meyer, N


    The main cause of death in the patient group less than 45 years is trauma. Beside severe traumatic brain injury, bleeding remains a leading cause of death in this group. For a causal therapy, it is necessary to understand the pathophysiology of trauma-induced coagulopathy (TIC). Beside the well-known lethal triad of trauma (hypothermia, acidosis, and coagulopathy), dilution and hypoperfusion with activation of the protein C pathway play a crucial role. TIC is a complex independent syndrome which may be present without initial hypercoagulopathy. A rapid and differentiated diagnosis and goal-directed therapy is crucial for causal therapy.

  4. Dynamics and switching processes for magnetic bubbles in nanoelements (United States)

    Moutafis, C.; Komineas, S.; Bland, J. A. C.


    We study numerically the dynamics of a magnetic bubble in a disk-shaped magnetic element which is probed by a pulse of a magnetic field gradient. Magnetic bubbles are nontrivial magnetic configurations which are characterized by a topological (skyrmion) number N and they have been observed in mesoscopic magnetic elements with strong perpendicular anisotropy. For weak fields we find a skew deflection of the axially symmetric N=1 bubble and a subsequent periodic motion around the center of the dot. This gyrotropic motion of the magnetic bubble is shown here for the first time. Stronger fields induce switching of the N=1 bubble to a bubble which contains a pair of Bloch lines and has N=0 . The N=0 bubble can be switched back to a N=1 bubble by applying again an external field gradient. Detailed features of the unusual bubble dynamics are described by employing the skyrmion number and the moments of the associated topological density.

  5. Convective mass transfer around a dissolving bubble (United States)

    Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric


    Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.

  6. Scaling laws and dynamics of bubble coalescence (United States)

    Anthony, Christopher R.; Kamat, Pritish M.; Thete, Sumeet S.; Munro, James P.; Lister, John R.; Harris, Michael T.; Basaran, Osman A.


    The coalescence of bubbles and drops plays a central role in nature and industry. During coalescence, two bubbles or drops touch and merge into one as the neck connecting them grows from microscopic to macroscopic scales. The hydrodynamic singularity that arises when two bubbles or drops have just touched and the flows that ensue have been studied thoroughly when two drops coalesce in a dynamically passive outer fluid. In this paper, the coalescence of two identical and initially spherical bubbles, which are idealized as voids that are surrounded by an incompressible Newtonian liquid, is analyzed by numerical simulation. This problem has recently been studied (a) experimentally using high-speed imaging and (b) by asymptotic analysis in which the dynamics is analyzed by determining the growth of a hole in the thin liquid sheet separating the two bubbles. In the latter, advantage is taken of the fact that the flow in the thin sheet of nonconstant thickness is governed by a set of one-dimensional, radial extensional flow equations. While these studies agree on the power law scaling of the variation of the minimum neck radius with time, they disagree with respect to the numerical value of the prefactors in the scaling laws. In order to reconcile these differences and also provide insights into the dynamics that are difficult to probe by either of the aforementioned approaches, simulations are used to access both earlier times than has been possible in the experiments and also later times when asymptotic analysis is no longer applicable. Early times and extremely small length scales are attained in the new simulations through the use of a truncated domain approach. Furthermore, it is shown by direct numerical simulations in which the flow within the bubbles is also determined along with the flow exterior to them that idealizing the bubbles as passive voids has virtually no effect on the scaling laws relating minimum neck radius and time.

  7. Financial Bubbles, Real Estate Bubbles, Derivative Bubbles, and the Financial and Economic Crisis (United States)

    Sornette, Didier; Woodard, Ryan

    The financial crisis of 2008, which started with an initially well-defined epicenter focused on mortgage backed securities (MBS), has been cascading into a global economic recession, whose increasing severity and uncertain duration has led and is continuing to lead to massive losses and damage for billions of people. Heavy central bank interventions and government spending programs have been launched worldwide and especially in the USA and Europe, with the hope to unfreeze credit and bolster consumption. Here, we present evidence and articulate a general framework that allows one to diagnose the fundamental cause of the unfolding financial and economic crisis: the accumulation of several bubbles and their interplay and mutual reinforcement have led to an illusion of a "perpetual money machine" allowing financial institutions to extract wealth from an unsustainable artificial process. Taking stock of this diagnostic, we conclude that many of the interventions to address the so-called liquidity crisis and to encourage more consumption are ill-advised and even dangerous, given that precautionary reserves were not accumulated in the "good times" but that huge liabilities were. The most "interesting" present times constitute unique opportunities but also great challenges, for which we offer a few recommendations.

  8. Pediatric Ocular Trauma (United States)

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Pediatric Ocular Trauma What causes eye injuries ? Injuries to the ... only the eyelid but the structures that drain tears from the eye. Lacerations of the eyelid or ...

  9. Suspension Trauma / Orthostatic Intolerance (United States)

    ... Emphasis Programs Directives Severe Violators TOPICS By Sector Construction Health Care Agriculture Maritime Oil and Gas Federal ... such fatalities often are referred to as "harnessinduced pathology" or "suspension trauma." Signs & symptoms that may be ...

  10. Trauma and Coagulation

    Directory of Open Access Journals (Sweden)

    Murat Yılmaz


    Full Text Available Bleeding and coagulation disorders related to trauma are pathological processes which are frequently seen and increase mortality. For the purpose, trauma patients should be protected from hypoperfusion, hypothermia, acidosis and hemodilution which may aggravate the increase in physiological responses to trauma as anticoagulation and fibrinolysis. Performing damage control surgery and resuscitation and transfusion of adequate blood and blood products in terms of amount and content as stated in protocols may increase the rate of survival. Medical treatments augmenting fibrin formation (fibrinogen, desmopressin, factor VIIa or preventing fibrin degradation (tranexamic acid have been proposed in selected cases but the efficacy of these agents in trauma patients are not proven. (Journal of the Turkish Society Intensive Care 2011; 9:71-6

  11. About Military Sexual Trauma

    Medline Plus

    Full Text Available ... Search Loading... Close Yeah, keep it Undo Close This video is unavailable. Watch Queue Queue Watch Queue Queue Remove ... Queue Queue __count__/__total__ Find out why Close About Military Sexual Trauma Veterans Health Administration Loading... Unsubscribe ...

  12. Platelet aggregation following trauma

    DEFF Research Database (Denmark)

    Windeløv, Nis A; Sørensen, Anne M; Perner, Anders


    We aimed to elucidate platelet function in trauma patients, as it is pivotal for hemostasis yet remains scarcely investigated in this population. We conducted a prospective observational study of platelet aggregation capacity in 213 adult trauma patients on admission to an emergency department (ED......). Inclusion criteria were trauma team activation and arterial cannula insertion on arrival. Blood samples were analyzed by multiple electrode aggregometry initiated by thrombin receptor agonist peptide 6 (TRAP) or collagen using a Multiplate device. Blood was sampled median 65 min after injury; median injury...... severity score (ISS) was 17; 14 (7%) patients received 10 or more units of red blood cells in the ED (massive transfusion); 24 (11%) patients died within 28 days of trauma: 17 due to cerebral injuries, four due to exsanguination, and three from other causes. No significant association was found between...

  13. Acute coagulopathy of trauma

    DEFF Research Database (Denmark)

    Johansson, P I; Ostrowski, S R


    Acute coagulopathy of trauma predicts a poor clinical outcome. Tissue trauma activates the sympathoadrenal system resulting in high circulating levels of catecholamines that influence hemostasis dose-dependently through immediate effects on the two major compartments of hemostasis, i.......e., the circulating blood and the vascular endothelium. There appears to be a dose-dependency with regards to injury severity and the hemostatic response to trauma evaluated in whole blood by viscoelastic assays like thrombelastography (TEG), changing from normal to hypercoagulable, to hypocoagulable and finally......, is an evolutionary developed response that counterbalances the injury and catecholamine induced endothelial activation and damage. Given this, the rise in circulating catecholamines in trauma patients may favor a switch from hyper- to hypocoagulability in the blood to keep the progressively more procoagulant...

  14. Common Reactions After Trauma (United States)

    ... Guide Purpose and Scope Find Assessment Measures Instrument Authority List Research and Biology Research on PTSD Biology ... Mental Health Mental Health Home Suicide Prevention Substance Abuse Military Sexual Trauma PTSD Research (MIRECC) Military Exposures ...

  15. Obesity in pediatric trauma. (United States)

    Witt, Cordelie E; Arbabi, Saman; Nathens, Avery B; Vavilala, Monica S; Rivara, Frederick P


    The implications of childhood obesity on pediatric trauma outcomes are not clearly established. Anthropomorphic data were recently added to the National Trauma Data Bank (NTDB) Research Datasets, enabling a large, multicenter evaluation of the effect of obesity on pediatric trauma patients. Children ages 2 to 19years who required hospitalization for traumatic injury were identified in the 2013-2014 NTDB Research Datasets. Age and gender-specific body mass indices (BMI) were calculated. Outcomes included injury patterns, operative procedures, complications, and hospital utilization parameters. Data from 149,817 pediatric patients were analyzed; higher BMI percentiles were associated with significantly more extremity injuries, and fewer injuries to the head, abdomen, thorax and spine (p values trauma, increased BMI percentile is associated with increased risk of death and potentially preventable complications. These findings suggest that obese children may require different management than nonobese counterparts to prevent complications. Level III; prognosis study. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Coagulation complications following trauma. (United States)

    Martini, Wenjun Z


    Traumatic injury is one of the leading causes of death, with uncontrolled hemorrhage from coagulation dysfunction as one of the main potentially preventable causes of the mortality. Hypothermia, acidosis, and resuscitative hemodilution have been considered as the significant contributors to coagulation manifestations following trauma, known as the lethal triad. Over the past decade, clinical observations showed that coagulopathy may be present as early as hospital admission in some severely injured trauma patients. The hemostatic dysfunction is associated with higher blood transfusion requirements, longer hospital stay, and higher mortality. The recognition of this early coagulopathy has initiated tremendous interest and effort in the trauma community to expand our understanding of the underlying pathophysiology and improve clinical treatments. This review discusses the current knowledge of coagulation complications following trauma.

  17. Research of bubble flow characteristics in microfluidic chip (United States)

    Qiu, Chao; Cheng, Han; Chen, Shuxian


    Bubble is the heart of the microfluidic chip, which takes a significant role in drug release, biological detection and so on. In this case, bubble flow characteristics in microfluidic chip are the key to realize its function. In this paper, bubble flow characteristics in the microfluidic chip have been studied with high speed photography system by controlling the wettability and the heat flux of the microelectrode surface. The result shows that bubble flows faster on the electrode with hydrophobic surface. In addition, loading current to the electrode with hydrophilic surface could also speed up the movement of bubble, and the flow rate of bubble increases with the increasing heat flux of the electrode.

  18. Blunt chest trauma. (United States)

    Stewart, Daphne J


    Blunt chest trauma is associated with a wide range of injuries, many of which are life threatening. This article is a case study demonstrating a variety of traumatic chest injuries, including pathophysiology, diagnosis, and treatment. Literature on the diagnosis and treatment was reviewed, including both theoretical and research literature, from a variety of disciplines. The role of the advance practice nurse in trauma is also discussed as it relates to assessment, diagnosis, and treatment of patients with traumatic chest injuries.

  19. London Trauma Conference 2015


    Avery, Pascale; Salm, Leopold; Bird, Flora; Hutchinson, Anja; Jarman, Heather; Nilsson, Maria Bergman; Konig, Tom; Tai, Nigel; Fevang, Espen; Hognestad, B?rge; Abrahamsen, H?kon B.; Cheetham, Olivia V.; Thomas, Matthew J. C.; Rooney, Kieron D.; Murray, Josephine


    Table of contents I1: Trauma, Pre-hospital and Cardiac Arrest Care 2015 Pascale Avery, Leopold Salm, Flora Bird A1: Retrospective evaluation of HEMS ?Direct to CT? protocol Anja Hutchinson, Ashley Matthies, Anthony Hudson, Heather Jarman A2 Rush hour ? Crush hour: temporal relationship of cyclist vs. HGV trauma admissions. A single site observational study Maria Bergman Nilsson, Tom Konig, Nigel Tai A3 Semiprone position endotracheal intubation during continuous cardiopulmonary resuscitation ...

  20. Thrombelastography Early Amplitudes in bleeding and coagulopathic trauma patients

    DEFF Research Database (Denmark)

    Laursen, Thomas H; Meyer, Martin A S; Meyer, Anna Sina P


    variables in a large multicenter cohort of moderately to severely injured trauma patients admitted at three North European level 1 Trauma Centers. METHODS: Prospective observational study of 404 trauma patients with clinical suspicion of severe injury from London, UK, Copenhagen, Denmark and Oslo, Norway...... amplitude. CONCLUSIONS: We found strong associations between TEG early amplitudes A5/A10 and maximum amplitude in rapid TEG, kaolin TEG and TEG Functional Fibrinogen across trauma patients with coagulopathy and massive transfusion requirements. Introducing the use of early amplitudes can reduce time...... to diagnosis of coagulopathy and may be used in TEG-monitoring of trauma patient. Further randomized controlled trials evaluating the role of TEG in guiding hemostatic resuscitation are warranted. LEVEL OF EVIDENCE: Prognostic and diagnostic study, level III....

  1. Thrombelastography and tromboelastometry in assessing coagulopathy in trauma

    DEFF Research Database (Denmark)

    Johansson, Pär I; Stissing, Trine; Bochsen, Louise


    Death due to trauma is the leading cause of lost life years worldwide, with haemorrhage being responsible for 30-40% of trauma mortality and accounting for almost 50% of the deaths the initial 24 h. On admission, 25-35% of trauma patients present with coagulopathy, which is associated...... with a several-fold increase in morbidity and mortality. The recent introduction of haemostatic control resuscitation along with emerging understanding of acute post-traumatic coagulability, are important means to improve therapy and outcome in exsanguinating trauma patients. This change in therapy has...... (APTT), are inappropriate for monitoring coagulopathy and guide therapy in trauma. The necessity to analyze whole blood to accurately identify relevant coagulopathies, has led to a revival of the interest in viscoelastic haemostatic assays (VHA) such as Thromboelastography (TEG) and Rotation...

  2. Trauma in pregnancy: assessment, management, and prevention. (United States)

    Murphy, Neil J; Quinlan, Jeffrey D


    Trauma complicates one in 12 pregnancies, and is the leading nonobstetric cause of death among pregnant women. The most common traumatic injuries are motor vehicle crashes, assaults, falls, and intimate partner violence. Nine out of 10 traumatic injuries during pregnancy are classified as minor, yet 60% to 70% of fetal losses after trauma are a result of minor injuries. In minor trauma, four to 24 hours of tocodynamometric monitoring is recommended. Ultrasonography has low sensitivity, but high specificity, for placental abruption. The Kleihauer-Betke test should be performed after major trauma to determine the degree of fetomaternal hemorrhage, regardless of Rh status. To improve the effectiveness of cardiopulmonary resuscitation, clinicians should perform left lateral uterine displacement by tilting the whole maternal body 25 to 30 degrees. Unique aspects of advanced cardiac life support include early intubation, removal of all uterine and fetal monitors, and performance of perimortem cesarean delivery. Proper seat belt use reduces the risk of maternal and fetal injuries in motor vehicle crashes. The lap belt should be placed as low as possible under the protuberant portion of the abdomen and the shoulder belt positioned off to the side of the uterus, between the breasts and over the midportion of the clavicle. All women of childbearing age should be routinely screened for intimate partner violence.

  3. The stability of large oscillating bubbles (United States)

    Blake, John; Pearson, Antony


    In a most remarkable paper, in October 1942, Penney & Price developed a theory for the stability of large oscillating bubbles; in their case they were interested in underwater explosions. Much of our current understanding on the stability of oscillating bubbles can be traced to the theoretical and experimental insight shown in this paper. While interest in this particular area continues with regard ship survivability to underwater explosions, other newer areas include the oscillatory behaviour of of seismic airgun generated bubbles. Apart from large volume oscillations with a characteristic period, the other dominant parameter is associated with buoyancy. An appropriate parameter is chosen that provides a measure of the distance of migration of a bubble over one period. An analytical and computational analysis of this class of problem reveals that this pressure gradient driven instability, normally observed in the form of a high speed liquid jet threading the bubble, is the most dominant surface instability, a characteristic feature borne out in most experimental and practical applications due to the presence of an incipient pressure gradient associated with hydrostatics, dynamics or boundaries

  4. Argonne Bubble Experiment Thermal Model Development III

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vessel geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.

  5. Drop impact entrapment of bubble rings

    KAUST Repository

    Thoraval, M.-J.


    We use ultra-high-speed video imaging to look at the initial contact of a drop impacting on a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, article 264506). These dynamics mainly occur within 50 -s after the first contact, requiring imaging at 1 million f.p.s. For a water drop impacting on a thin layer of water, the entrapment of isolated bubbles starts through azimuthal instability, which forms at low impact velocities, in the neck connecting the drop and pool. For Reynolds number Re above -12 000, up to 10 partial bubble rings have been observed at the base of the ejecta, starting when the contact is -20% of the drop size. More regular bubble rings are observed for a pool of ethanol or methanol. The video imaging shows rotation around some of these air cylinders, which can temporarily delay their breakup into micro-bubbles. The different refractive index in the pool liquid reveals the destabilization of the vortices and the formation of streamwise vortices and intricate vortex tangles. Fine-scale axisymmetry is thereby destroyed. We show also that the shape of the drop has a strong influence on these dynamics. 2013 Cambridge University Press.

  6. The Quest for the Most Spherical Bubble

    CERN Document Server

    Obreschkow, Danail; Dorsaz, Nicolas; Kobel, Philippe; de Bosset, Aurele; Farhat, Mohamed


    We describe a recently realized experiment producing the most spherical cavitation bubbles today. The bubbles grow inside a liquid from a point-plasma generated by a nanosecond laser pulse. Unlike in previous studies, the laser is focussed by a parabolic mirror, resulting in a plasma of unprecedented symmetry. The ensuing bubbles are sufficiently spherical that the hydrostatic pressure gradient caused by gravity becomes the dominant source of asymmetry in the collapse and rebound of the cavitation bubbles. To avoid this natural source of asymmetry, the whole experiment is therefore performed in microgravity conditions (ESA, 53rd and 56th parabolic flight campaign). Cavitation bubbles were observed in microgravity (~0g), where their collapse and rebound remain spherical, and in normal gravity (1g) to hyper-gravity (1.8g), where a gravity-driven jet appears. Here, we describe the experimental setup and technical results, and overview the science data. A selection of high-quality shadowgraphy movies and time-res...

  7. Bubble growth in a narrow horizontal space

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, Benoit; Goulet, Remi [CETHIL, UMR5008, CNRS, INSA-Lyon, Universite Lyon1 (France); Passos, Julio Cesar [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. LABSOLAR


    The purpose of this work is to develop an axis-symmetric two-phase flow model describing the growth of a single bubble squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and the kinetic limit of vaporisation are studied. The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible except at the early stages of the bubble growth. (author)

  8. Hypothermia in trauma. (United States)

    Moffatt, Samuel Edwin


    Hypovolaemic shock that results through traumatically inflicted haemorrhage can have disastrous consequences for the victim. Initially the body can compensate for lost circulating volume, but as haemorrhage continues compensatory mechanisms fail and the patient's condition worsens significantly. Hypovolaemia results in the lethal triad, a combination of hypothermia, acidosis and coagulopathy, three factors that are interlinked and serve to worsen each other. The lethal triad is a form of vicious cycle, which unless broken will result in death. This report will focus on the role of hypothermia (a third of the lethal triad) in trauma, examining literature to assess how prehospital temperature control can impact on the trauma patient. Spontaneous hypothermia following trauma has severely deleterious consequences for the trauma victim; however, both active warming of patients and clinically induced hypothermia can produce particularly positive results and improve patient outcome. Possible coagulopathic side effects of clinically induced hypothermia may be corrected with topical haemostatic agents, with the benefits of an extended golden hour given by clinically induced hypothermia far outweighing these risks. Active warming of patients, to prevent spontaneous trauma induced hypothermia, is currently the only viable method currently available to improve patient outcome. This method is easy to implement requiring simple protocols and contributes significantly to interrupting the lethal triad. However, the future of trauma care appears to lie with clinically induced therapeutic hypothermia. This new treatment provides optimism that in the future the number of deaths resulting from catastrophic haemorrhaging may be significantly lessened.

  9. Transesophageal echocardiography in the evaluation of the trauma patient: A trauma resuscitation transesophageal echocardiography exam. (United States)

    Leichtle, Stefan W; Singleton, Andrew; Singh, Mandeep; Griffee, Matthew J; Tobin, Joshua M


    The point-of-care ultrasound exam has become an essential tool for hemodynamic monitoring and resuscitation in the trauma bay as well as the intensive care unit. Transthoracic ultrasound provides a dynamic assessment of cardiac function, volume status, and fluid responsiveness that offers potential advantage over traditional methods of hemodynamic monitoring. More recently, a focused transthoracic echocardiography exam was described to improve immediate resuscitation of severely injured patients in the trauma bay. Transesophageal echocardiography (TEE) for trauma could expand upon the role of focused echocardiography. TEE offers improved visualization of cardiac anatomy and physiology, improved diagnostic accuracy, and real-time assessment of intraoperative resuscitation progress, particularly in the operating room. This review discusses the fundamental principles of echocardiography as well as different ultrasound modes with their respective strengths and limitations. It reviews the current literature on the use of TEE in trauma, and suggests views for a trauma resuscitation transesophageal echocardiography exam (TREE), including sample images and videos. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Trauma team activation: Not just for trauma patients

    Directory of Open Access Journals (Sweden)

    Phoenix Vuong


    Full Text Available Specialized trauma teams have been shown to improve outcomes in critically injured patients. At our institution, an the American College of Surgeons Committee on trauma level I Trauma center, the trauma team activation (TTA criteria includes both physiologic and anatomic criteria, but any attending physician can activate the trauma team at their discretion outside criteria. As a result, the trauma team has been activated for noninjured patients meeting physiologic criteria secondary to nontraumatic hemorrhage. We present two cases in which the trauma team was activated for noninjured patients in hemorrhagic shock. The utilization of the TTA protocol and subsequent management by the trauma team are reviewed as we believe these were critical factors in the successful recovery of both patients. Beyond the primary improved survival outcomes of severely injured patients, trauma center designation has a “halo effect” that encompasses patients with nontraumatic hemorrhage.

  11. High energy neutrinos from the Fermi bubbles. (United States)

    Lunardini, Cecilia; Razzaque, Soebur


    Recently the Fermi-LAT data have revealed two gamma-ray emitting bubble-shaped structures at the Galactic center. If the observed gamma rays have hadronic origin (collisions of accelerated protons), the bubbles must emit high energy neutrinos as well. This new, Galactic, neutrino flux should trace the gamma-ray emission in spectrum and spatial extent. Its highest energy part, above 20-50 TeV, is observable at a kilometer-scale detector in the northern hemisphere, such as the planned KM3NeT, while interesting constraints on it could be obtained by the IceCube Neutrino Observatory at the South Pole. The detection or exclusion of neutrinos from the Fermi bubbles will discriminate between hadronic and leptonic models, thus bringing unique information on the still mysterious origin of these objects and on the time scale of their formation.

  12. Root Causes of the Housing Bubble (United States)

    Kaizoji, Taisei

    In this chapter we investigate root causes of the recent US housing bubble which has been caused a serious downturn in US economic growth since autumn of 2008. We propose a simple model of housing markets in order to indicate the possible determinants of recent housing prices. Utilizing the model, we verify a number of hypotheses which have been proposed in the recent literature on the housing bubbles. We suggest that the main causes of the housing bubble from 2000 to 2006 are (1) non-elastic housing supply in the metropolitan areas, and (2) declines in the mortgage loan rate and the housing premium by the massive mortgage credit expansion. We also suggest that these factors were strongly influenced by policies that governments and the Federal Reserve Board performed.

  13. Toward a Metatheory of Economic Bubbles

    DEFF Research Database (Denmark)

    Dholakia, Nikhilesh; Turcan, Romeo V.

    Dholakia and Turcan present their interdisciplinary metatheory of bubbles with short case studies of minor and major bubbles. They comprehensively identify and exemplify constructs of the theory, set its temporal and contextual boundaries, and examine the underlying economic, psychological......, and social dynamics assumptions, explaining how these elements are related. By doing so, they provide a partial window into the precarious nature of contemporary finance-driven capitalism and suggest some possible ways of overcoming the wrenching ups and downs of the prevalent system. The case studies...... and original research in Toward a Metatheory of Economic Bubbles have far-reaching implications for the study and practice of entrepreneurship and marketing, public and corporate finance, and public policies towards innovation, economy, and finance. It contributes to the defining issues for economic sociology...

  14. Rational speculative bubbles: A critical view

    Directory of Open Access Journals (Sweden)

    Radonjić Ognjen


    Full Text Available According to the theory of rational bubbles, the bubble is present whenever asset prices progressively diverge from their fundamental value, which occurs because agents expect that asset prices will continue to grow exponentially (self-fulfilling prophecies far in the future and consistently, which promises the realization of ever larger capital gains. In our opinion, the basic shortcoming of this theory refers to the assumption that all market agents are perfectly informed and rational and, accordingly, form homogeneous expectations. The model does not explain decision-making processes or expectation formation, nor does it detect potential psychological and institutional factors that might significantly influence decision making processes and market participants’ reactions to news. Since assumptions of the model critically determine its validity, we conclude that comprehensiveness of the rational bubble model is, to put it mildly, limited.

  15. Bubbles, shocks and elementary technical trading strategies (United States)

    Fry, John


    In this paper we provide a unifying framework for a set of seemingly disparate models for bubbles, shocks and elementary technical trading strategies in financial markets. Markets operate by balancing intrinsic levels of risk and return. This seemingly simple observation is commonly over-looked by academics and practitioners alike. Our model shares its origins in statistical physics with others. However, under our approach, changes in market regime can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. This structure leads to an improved physical and econometric model. We develop models for bubbles, shocks and elementary technical trading strategies. The list of empirical applications is both interesting and topical and includes real-estate bubbles and the on-going Eurozone crisis. We close by comparing the results of our model with purely qualitative findings from the finance literature.

  16. Topological vacuum bubbles by anyon braiding. (United States)

    Han, Cheolhee; Park, Jinhong; Gefen, Yuval; Sim, H-S


    According to a basic rule of fermionic and bosonic many-body physics, known as the linked cluster theorem, physical observables are not affected by vacuum bubbles, which represent virtual particles created from vacuum and self-annihilating without interacting with real particles. Here we show that this conventional knowledge must be revised for anyons, quasiparticles that obey fractional exchange statistics intermediate between fermions and bosons. We find that a certain class of vacuum bubbles of Abelian anyons does affect physical observables. They represent virtually excited anyons that wind around real anyonic excitations. These topological bubbles result in a temperature-dependent phase shift of Fabry-Perot interference patterns in the fractional quantum Hall regime accessible in current experiments, thus providing a tool for direct and unambiguous observation of elusive fractional statistics.

  17. Fundamental study of FC-72 pool boiling surface temperature fluctuations and bubble behavior (United States)

    Griffin, Alison R.

    A heater designed to monitor surface temperature fluctuations during pool boiling experiments while the bubbles were simultaneously being observed has been fabricated and tested. The heat source was a transparent indium tin oxide (ITO) layer commercially deposited on a fused quartz substrate. Four copper-nickel thin film thermocouples (TFTCs) on the heater surface measured the surface temperature, while a thin layer of sapphire or fused silica provided electrical insulation between the TFTCs and the ITO. The TFTCs were micro-fabricated using the liftoff process to deposit the nickel and copper metal films. The TFTC elements were 50 mum wide and overlapped to form a 25 mum by 25 mum junction. TFTC voltages were recorded by a DAQ at a sampling rate of 50 kHz. A high-speed CCD camera recorded bubble images from below the heater at 2000 frames/second. A trigger sent to the camera by the DAQ synchronized the bubble images and the surface temperature data. As the bubbles and their contact rings grew over the TFTC junction, correlations between bubble behavior and surface temperature changes were demonstrated. On the heaters with fused silica insulation layers, 1--2°C temperature drops on the order of 1 ms occurred as the contact ring moved over the TFTC junction during bubble growth and as the contact ring moved back over the TFTC junction during bubble departure. These temperature drops during bubble growth and departure were due to microlayer evaporation and liquid rewetting the heated surface, respectively. Microlayer evaporation was not distinguished as the primary method of heat removal from the surface. Heaters with sapphire insulation layers did not display the measurable temperature drops observed with the fused silica heaters. The large thermal diffusivity of the sapphire compared to the fused silica was determined as the reason for the absence of these temperature drops. These findings were confirmed by a comparison of temperature drops in a 2-D simulation of

  18. Moving with bubbles: a review of the interactions between bubbles and the microorganisms that surround them. (United States)

    Walls, Peter L L; Bird, James C; Bourouiba, Lydia


    Bubbles are ubiquitous in biological environments, emerging during the complex dynamics of waves breaking in the open oceans or being intentionally formed in bioreactors. From formation, through motion, until death, bubbles play a critical role in the oxygenation and mixing of natural and artificial ecosystems. However, their life is also greatly influenced by the environments in which they emerge. This interaction between bubbles and microorganisms is a subtle affair in which surface tension plays a critical role. Indeed, it shapes the role of bubbles in mixing or oxygenating microorganisms, but also determines how microorganisms affect every stage of the bubble's life. In this review, we guide the reader through the life of a bubble from birth to death, with particular attention to the microorganism-bubble interaction as viewed through the lens of fluid dynamics. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email:

  19. Application of ozone micro-nano-bubbles to groundwater remediation. (United States)

    Hu, Liming; Xia, Zhiran


    Ozone is widely used for water treatment because of its strong oxidation ability. However, the efficiency of ozone in groundwater remediation is limited because of its relatively low solubility and rapid decomposition in the aqueous phase. Methods for increasing the stability of ozone within the subsurface are drawing increasing attention. Micro-nano-bubbles (MNBs), with diameters ranging from tens of nanometres to tens of micrometres, present rapid mass transfer rates, persist for a relatively long time in water, and transport with groundwater flow, which significantly improve gas concentration and provide a continuous gas supply. Therefore, MNBs show a considerable potential for application in groundwater remediation. In this study, the characteristics of ozone MNBs were examined, including their size distribution, bubble quantity, and zeta potential. The mass transfer rate of ozone MNBs was experimentally investigated. Ozone MNBs were then used to treat organics-contaminated water, and they showed remarkable cleanup efficiency. Column tests were also conducted to study the efficiency of ozone MNBs for organics-contaminated groundwater remediation. Based on the laboratory tests, field monitoring was conducted on a trichloroethylene (TCE)-contaminated site. The results showed that ozone MNBs can greatly improve remediation efficiency and represent an innovative technology for in situ remediation of organics-contaminated groundwater. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. "Bubble-on-demand" generator with precise adsorption time control. (United States)

    Zawala, J; Niecikowska, A


    The paper presents the principles of our new single bubble generator, which allows a precise control of bubble formation in pure liquids and surfactant solutions, i.e., their detachment frequency and the adsorption time at their motionless surface. We show that the bubbles with equilibrium size can be produced at the capillaries of various orifice diameters (0.022-0.128 mm) on demand and with outstanding reproducibility. Moreover, it is shown that a fully automatized and programmable bubble trap, synchronized with bubble detachment frequency, can be used to (i) control the radius of the released bubble and (ii) precisely adjust the initial adsorption coverage over the surface of detaching bubble, and hence to study the influence of adsorption coverage degree on kinetics of dynamic adsorption layer formation at the rising bubble surface.

  1. Simulations of Bubble Motion in an Oscillating Liquid (United States)

    Kraynik, A. M.; Romero, L. A.; Torczynski, J. R.


    Finite-element simulations are used to investigate the motion of a gas bubble in a liquid undergoing vertical vibration. The effect of bubble compressibility is studied by comparing "compressible" bubbles that obey the ideal gas law with "incompressible" bubbles that are taken to have constant volume. Compressible bubbles exhibit a net downward motion away from the free surface that does not exist for incompressible bubbles. Net (rectified) velocities are extracted from the simulations and compared with theoretical predictions. The dependence of the rectified velocity on ambient gas pressure, bubble diameter, and bubble depth are in agreement with the theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. "Bubble-on-demand" generator with precise adsorption time control (United States)

    Zawala, J.; Niecikowska, A.


    The paper presents the principles of our new single bubble generator, which allows a precise control of bubble formation in pure liquids and surfactant solutions, i.e., their detachment frequency and the adsorption time at their motionless surface. We show that the bubbles with equilibrium size can be produced at the capillaries of various orifice diameters (0.022-0.128 mm) on demand and with outstanding reproducibility. Moreover, it is shown that a fully automatized and programmable bubble trap, synchronized with bubble detachment frequency, can be used to (i) control the radius of the released bubble and (ii) precisely adjust the initial adsorption coverage over the surface of detaching bubble, and hence to study the influence of adsorption coverage degree on kinetics of dynamic adsorption layer formation at the rising bubble surface.

  3. Cavitation Bubble Dynamics in Ammoniacal Fluids Transferred by Centrifugal Pumps

    Directory of Open Access Journals (Sweden)

    Jorge Reyes-Cruz


    Full Text Available An experiment with water and ammoniacal liquor at 27% and 34% concentrations of ammonia was carried out in order to determine the pressure dynamics during the formation of bubbles and their movement when causing cavitations in centrifugal pumps. The dynamics of bubbles was calculated numerically by applying the Rayleigh-Plesset equation using the bubble radius and the bubble build-up time. It is concluded that the pressure to form the bubbles at 22 ºC is 10,135.103 Pa for water and 45,468.103 Pa for the ammoniacal liquor at a concentration of 34 %. The radius of the bubbles found in ammoniacal liquor is in the range of 30 to 120 times the original bubble radius while the bubbles formed in water are only in the range of 15 times the original radius value.

  4. Bubble Dynamics in a Two-Phase Medium

    CERN Document Server

    Jayaprakash, Arvind; Chahine, Georges


    The spherical dynamics of a bubble in a compressible liquid has been studied extensively since the early work of Gilmore. Numerical codes to study the behavior, including when large non-spherical deformations are involved, have since been developed and have been shown to be accurate. The situation is however different and common knowledge less advanced when the compressibility of the medium surrounding the bubble is provided mainly by the presence of a bubbly mixture. In one of the present works being carried out at DYNAFLOW, INC., the dynamics of a primary relatively large bubble in a water mixture including very fine bubbles is being investigated experimentally and the results are being provided to several parallel on-going analytical and numerical approaches. The main/primary bubble is produced by an underwater spark discharge from two concentric electrodes placed in the bubbly medium, which is generated using electrolysis. A grid of thin perpendicular wires is used to generate bubble distributions of vary...

  5. A note on effects of rational bubble on portfolios (United States)

    Wang, Chan; Nie, Pu-yan


    In general, demand increases in wealth and decreases in price in microeconomics. We thereby propose a completely different perspective. By establishing expected utility function of investors, this article introduces one rational bubble asset and one bubble free asset in portfolios and focuses on the effects of bubble on investment portfolios from wealth and price perspectives. All conclusions are obtained by theoretical analysis with microeconomics theory. We argue that inferior goods and Giffen behavior can occur for the bubble free asset in microeconomic fields. The results can help investors to recognize bubble assets and bubble free assets more scientifically. Both bubble and bubble free assets can be inferior goods under some conditions, so we cannot to say which asset better than the other one absolutely.

  6. Surface magnetostatic oscillations in elliptical bubble domains (United States)

    Popov, M. A.; Zavislyak, I. V.


    A theory of surface magnetostatic oscillations in magnetic bubble domains with an elliptical cross section is presented. The dependences of the eigenfrequencies of resonant modes on the applied magnetic field are analyzed for a barium hexaferrite sample with allowance made for the change in the domain size due to a variation in the bias magnetic field. The range of frequency tuning in response to a magnetic field ranging from the elliptical instability field to the collapse field is estimated. It is demonstrated that elliptical bubble domains can be used as microminiature resonators operating in the millimeter range.

  7. Partial coalescence from bubbles to drops

    KAUST Repository

    Zhang, F. H.


    The coalescence of drops is a fundamental process in the coarsening of emulsions. However, counter-intuitively, this coalescence process can produce a satellite, approximately half the size of the original drop, which is detrimental to the overall coarsening. This also occurs during the coalescence of bubbles, while the resulting satellite is much smaller, approximately 10 %. To understand this difference, we have conducted a set of coalescence experiments using xenon bubbles inside a pressure chamber, where we can continuously raise the pressure from 1 up to 85 atm and thereby vary the density ratio between the inner and outer fluid, from 0.005 up to unity. Using high-speed video imaging, we observe a continuous increase in satellite size as the inner density is varied from the bubble to emulsion-droplet conditions, with the most rapid changes occurring as the bubble density grows up to 15 % of that of the surrounding liquid. We propose a model that successfully relates the satellite size to the capillary wave mode responsible for its pinch-off and the overall deformations from the drainage. The wavelength of the primary wave changes during its travel to the apex, with the instantaneous speed adjusting to the local wavelength. By estimating the travel time of this wave mode on the bubble surface, we also show that the model is consistent with the experiments. This wavenumber is determined by both the global drainage as well as the interface shapes during the rapid coalescence in the neck connecting the two drops or bubbles. The rate of drainage is shown to scale with the density of the inner fluid. Empirically, we find that the pinch-off occurs when 60 % of the bubble fluid has drained from it. Numerical simulations using the volume-of-fluid method with dynamic adaptive grid refinement can reproduce these dynamics, as well as show the associated vortical structure and stirring of the coalescing fluid masses. Enhanced stirring is observed for cases with second

  8. Impact of money supply on stock bubbles

    Directory of Open Access Journals (Sweden)

    Martin Širůček


    Full Text Available This article focuses on the effect and implications of changes in money supply in the US on stock bubble rise on the US capital market, which is represented by the Dow Jones Industrial Average index. This market was chosen according to the market capitalization. The attention of the paper is drawn to issues – if according to the results of empirical analysis, the money supply is a significant factor which causes the bubbles and if during the time the significance and impact of this macroeconomic factor on stock index increase.

  9. On the maximum drawdown during speculative bubbles (United States)

    Rotundo, Giulia; Navarra, Mauro


    A taxonomy of large financial crashes proposed in the literature locates the burst of speculative bubbles due to endogenous causes in the framework of extreme stock market crashes, defined as falls of market prices that are outlier with respect to the bulk of drawdown price movement distribution. This paper goes on deeper in the analysis providing a further characterization of the rising part of such selected bubbles through the examination of drawdown and maximum drawdown movement of indices prices. The analysis of drawdown duration is also performed and it is the core of the risk measure estimated here.

  10. Stochastic modelling for financial bubbles and policy

    Directory of Open Access Journals (Sweden)

    John Fry


    Full Text Available In this paper, we draw upon the close relationship between statistical physics and mathematical finance to develop a suite of models for financial bubbles and crashes. By modifying previous approaches, we are able to derive novel analytical formulae for evaluation problems and for the expected timing of future change points. In particular, we help to explain why previous approaches have systematically overstated the timing of changes in market regime. The list of potential empirical applications is deep and wide ranging, and includes contemporary housing bubbles, the Eurozone crisis and the Crash of 2008.

  11. Complete heart block and asystole following blunt cardiac trauma

    Directory of Open Access Journals (Sweden)

    Mohamed Morsy


    Full Text Available Cardiac contusion is a well-recognized complication of blunt chest trauma. Various conduction system disorders have been reported in association with this condition, the most common being right bundle branch block. Complete heart block (CHB is seen rarely. Most cases of CHB are transient. We present the case of an 80-year-old woman who developed CHB and asystole following blunt cardiac trauma. Malignant cardiac arrhythmias such as CHB can be associated with blunt cardiac trauma. In most cases, CHB is transient resolving in days to weeks. In rare cases, however, CHB leads to asystole. Close monitoring and prompt intervention is thus required.

  12. Does Helicopter Emergency Care Service Improve Blunt Trauma Mortality (United States)


    NUMBERS Does Helicopter Emergency Care Service Improve Blunt Trauma Mortality 6. AUTHOR(S) Kenneth Duane Oefinger, Major 7. PERFORMING ORGANIZATION NAME...8217 = ’:" ’ _’ -. " 9 DOES HELICOPTER EMERGENCY CARE SE,’RV-E . IMPROVE BLUNT TRAUMA MORTALITY BY Major Kenneth Duane Oefina, USAF NC 4991 38 ,-ages Masters of...helicopter should be dispatched. This would allow for the monitoring of effective utilization of the hospital service. DOES HELICOPTER EMERGENCY CARE SERVICE

  13. Blood platelet-derived microparticles release and bubble formation after an open-sea air dive. (United States)

    Pontier, Jean-Michel; Gempp, Emmanuel; Ignatescu, Mihaela


    Bubble-induced platelet aggregation offers an index for evaluating decompression severity in humans and in a rat model of decompression sickness. Endothelial cells, blood platelets, or leukocytes shed microparticles (MP) upon activation and during cell apoptosis. The aim was to study blood platelet MP (PMP) release and bubble formation after a scuba-air dive in field conditions. Healthy, experienced divers were assigned to 1 experimental group (n = 10) with an open-sea air dive to 30 msw for 30 min and 1 control group (n = 5) during head-out water immersion for the same period. Bubble grades were monitored with a pulsed doppler according to Kissman Integrated Severity Score (KISS). Blood samples for platelet count (PC) and PMP (annexin V and CD41) were taken 1 h before and after exposure in both groups. The result showed a decrease in post-dive PC compared with pre-dive values in experimental group with no significant change in the control group. We observed a significant increase in PMP values after the dive while no change was revealed in the control group. There was a significant positive correlation between the PMP values after the dive and the KISS bubble score. The present study highlighted a relationship between the post-dive decrease in PC, platelet MP release, and bubble formation. Release of platelet MPs could reflect bubble-induced platelet aggregation and could play a key role in alteration of the coagulation. Further studies must investigate endothelial and leukocyte MP release in the same field conditions.

  14. Intraalveolar bubbles and bubble films: III. Vulnerability and preservation in the laboratory. (United States)

    Scarpelli, E M; Mautone, A J; Chinoy, M R; Defouw, D O; Clutario, B C


    Having confirmed (Scarpelli et al. 1996. Anat. Rec. 244:344-357 and 246:245-270) the discovery of intraalveolar bubbles and films as the normal anatomical infrastructure of aerated alveoli at all ages, we now address three questions. Why have these structures been so elusive? Visible in fresh lungs from the in vivo state, can they be preserved by known laboratory methods? Can they be preserved intact for study in tissue sections? Lungs of adult rabbits and pups were examined in thorax directly from the in vivo state to confirm normal bubbles both at functional residual capacity and at maximal volume; other lungs were permitted to deflate naturally to minimal volume. The fate of bubbles in situ (either intact, transected, or diced lung tissue) and of isolated bubbles was assessed (1) during conventional histopreparative processing, (2) during inflation-deflation after degassing, (3) after drying in air, (4) during and after quick freezing in liquid N2, and (5) after preservation in fixed and stained tissue sections prepared by a new double-impregnation procedure in which glutaraldehyde-fixed tissue was preembedded in agar, dehydrated and clarified chemically, embedded in paraffin, sectioned, and stained. Control studies included both blocking of bubble formation by rinsing the air spaces with Tween 20 prior to double impregnation and preparation of normal tissue without preembedding in agar. (1) Each of the following procedures in conventional processing dislocated and disrupted bubbles and films: osmium tetroxide and glutaraldehyde:formaldehyde:tannic acid mixture fixation; chemical dehydration (70-100% ethanol) and clarification (xylene and acetone); and embedding in paraffin or epoxy resin. Transection and dicing of the tissue aggravated the untoward effects. In contrast, bubbles and films remained stable in either glutaraldehyde or formaldehyde, which, however, did not protect against the other agents. (2) Degassing destroyed all bubbles as expected; however

  15. Microstructure, morphology and lifetime of armored bubbles exposed to surfactants


    Subramaniam, Anand Bala; Mejean, Cecile; Abkarian, Manouk; Stone, Howard A.


    We report the behavior of particle-stabilized bubbles (armored bubbles) when exposed to various classes and concentrations of surfactants. The bubbles are non-spherical due to the jamming of the particles on the interface and are stable to dissolution prior to the addition of surfactant. We find that the dissolving bubbles exhibit distinct morphological, microstructural, and lifetime changes, which correlate with the concentration of surfactant employed. For low concentrations of surfactant a...

  16. Measurement of Entrained Air Bubbles and Vortices in Breaking Waves


    大塚, 淳一; 渡部, 靖憲; Junichi, Otsuka; Yasunori, Watanabe; 北海道大学大学院工学研究科; School of Engineering, Hokkaido University


    Breaking waves produce numbers of vortices through a jet splashing process and also entrain many air bubbles, forming complicated air-water two-phase turbulent flow field in a surf zone. In this research, a simultaneous velocity measurement technique of water and bubble flows in breaking waves is developed for characterizing water-bubble interactions within vortices in a surf zone. The bubbles and neutral buoyant tracers are separately recorded by two different digital video cameras on the ba...



    Bala Arshanapalli; William Nelson


    Housing prices in the US rose rapidly from 2000-2007Q3. Based on this evidence, the financial and general press concluded the US experienced a housing bubble. The efficient market theory denies the possibility of a bubble. This paper applies the statistical technique of cointegration to substantiate the presence of a housing bubble. The paper finds the statistical evidence consistent with the presence of a housing bubble in the period 2000-2007Q3 and not the underlying economic conditions.

  18. Diversity in clinical management and protocols for the treatment of major bleeding trauma patients across European level I Trauma Centres

    DEFF Research Database (Denmark)

    Schäfer, Nadine; Driessen, Arne; Fröhlich, Matthias


    level I trauma centres with academic interest and research in the field of coagulopathy an online survey was conducted addressing local management practice for bleeding trauma patients including algorithms for detection, management and monitoring coagulation disorders and immediate interventions. Each...... packages but with viscoelastic tests running in parallel to quickly allow a shift towards a viscoelastic test-guided therapy. CONCLUSION: Diversity in the management of bleeding trauma patients such as pre-hospital blood administration and routinely performed viscoelastic tests exists even among level I...

  19. Epidemiology of severe trauma. (United States)

    Alberdi, F; García, I; Atutxa, L; Zabarte, M


    Major injury is the sixth leading cause of death worldwide. Among those under 35 years of age, it is the leading cause of death and disability. Traffic accidents alone are the main cause, fundamentally in low- and middle-income countries. Patients over 65 years of age are an increasingly affected group. For similar levels of injury, these patients have twice the mortality rate of young individuals, due to the existence of important comorbidities and associated treatments, and are more likely to die of medical complications late during hospital admission. No worldwide, standardized definitions exist for documenting, reporting and comparing data on severely injured trauma patients. The most common trauma scores are the Abbreviated Injury Scale (AIS), the Injury Severity Score (ISS) and the Trauma and Injury severity Score (TRISS). Documenting the burden of injury also requires evaluation of the impact of post-trauma impairments, disabilities and handicaps. Trauma epidemiology helps define health service and research priorities, contributes to identify disadvantaged groups, and also facilitates the elaboration of comparable measures for outcome predictions. Copyright © 2014 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  20. Male genital trauma

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, G.H.; Gilbert, D.A.


    We have attempted to discuss genital trauma in relatively broad terms. In most cases, patients present with relatively minimal trauma. However, because of the complexity of the structures involved, minimal trauma can lead to significant disability later on. The process of erection requires correct functioning of the arterial, neurologic, and venous systems coupled with intact erectile bodies. The penis is composed of structures that are compliant and distensible to the limits of their compliance. These structures therefore tumesce in equal proportion to each other, allowing for straight erection. Relatively minimal trauma can upset this balance of elasticity, leading to disabling chordee. Likewise, relatively minimal injuries to the vascular erectile structures can lead to significantly disabling spongiofibrosis. The urethra is a conduit of paramount importance. Whereas the development of stricture is generally related to the nature of the trauma, the extent of stricture and of attendant complications is clearly a function of the immediate management. Overzealous debridement can greatly complicate subsequent reconstruction. A delicate balance between aggressive initial management and maximal preservation of viable structures must be achieved. 38 references.

  1. Optical verification and in-vitro characterization of two commercially available acoustic bubble counters for cardiopulmonary bypass systems. (United States)

    Segers, Tim; Stehouwer, Marco C; de Somer, Filip M J J; de Mol, Bastian A; Versluis, Michel


    Gaseous microemboli (GME) introduced during cardiac surgery are considered as a potential source of morbidity, which has driven the development of the first bubble counters. Two new generation bubble counters, introduced in the early 2000s, claim correct sizing and counting of GME. This in-vitro study aims to validate the accuracy of two bubble counters using monodisperse bubbles in a highly controlled setting at low GME concentrations. Monodisperse GME with a radius of 43 µm were produced in a microfluidic chip. Directly after their formation, they were injected one-by-one into the BCC200 and the EDAC sensors. GME size and count, measured with the bubble counters, were optically verified using high-speed imaging. During best-case scenarios or low GME concentrations of GME with a size of 43 µm in radius in an in-vitro setup, the BCC200 overestimates GME size by a factor of 2 to 3 while the EDAC underestimates the average GME size by at least a factor of two. The BCC200 overestimates the GME concentration by approximately 20% while the EDAC overestimates the concentration by nearly one order of magnitude. Nevertheless, the calculated total GME volume is only over-predicted by a factor 2 since the EDAC underestimates the actual GME size. For the BCC200, the total GME volume was over-predicted by 25 times due to the over-estimation of GME size. The measured errors in the absolute sizing/counting of GME do not imply that all results obtained using the bubble counters are insignificant or invalid. A relative change in bubble size or bubble concentration can accurately be measured. However, care must be taken in the interpretation of the results and their absolute values. Moreover, the devices cannot be used interchangeably when reporting GME activity. Nevertheless, both devices can be used to study the relative air removal characteristics of CPB components or for the quantitative monitoring of GME production during CPB interventions.

  2. Air bubble migration is a random event post embryo transfer. (United States)

    Confino, E; Zhang, J; Risquez, F


    Air bubble location following embryo transfer (ET) is the presumable placement spot of embryos. The purpose of this study was to document endometrial air bubble position and migration following embryo transfer. Multicenter prospective case study. Eighty-eight embryo transfers were performed under abdominal ultrasound guidance in two countries by two authors. A single or double air bubble was loaded with the embryos using a soft, coaxial, end opened catheters. The embryos were slowly injected 10-20 mm from the fundus. Air bubble position was recorded immediately, 30 minutes later and when the patient stood up. Bubble marker location analysis revealed a random distribution without visible gravity effect when the patients stood up. The bubble markers demonstrated splitting, moving in all directions and dispersion. Air bubbles move and split frequently post ET with the patient in the horizontal position, suggestive of active uterine contractions. Bubble migration analysis supports a rather random movement of the bubbles and possibly the embryos. Standing up changed somewhat bubble configuration and distribution in the uterine cavity. Gravity related bubble motion was uncommon, suggesting that horizontal rest post ET may not be necessary. This report challenges the common belief that a very accurate ultrasound guided embryo placement is mandatory. The very random bubble movement observed in this two-center study suggests that a large "window" of embryo placement maybe present.

  3. Optical measurement of bubbles: System design and application

    NARCIS (Netherlands)

    Leifer, I.; Leeuw,; Cohen, L.H.


    Affordable high quality charge-coupled device (CCD) video cameras and image processing software are powerful tools for bubble measurements. Because of the wide variation between bubble populations, different bubble measurement systems (BMSs) are required depending upon the application. Two BMSs are

  4. Rhetoric, Risk, and Markets: The Dot-Com Bubble (United States)

    Goodnight, G. Thomas; Green, Sandy Edward, Jr.


    Post-conventional economic theories are assembled to inquire into the contingent, mimetic, symbolic, and material spirals unfolding the dot-com bubble, 1992-2002. The new technologies bubble is reconstructed as a rhetorical movement across the practices of the hybrid market-industry risk culture of communications. The legacies of the bubble task…

  5. Modeling of flow in microchannel with bubbles layer on surface

    Directory of Open Access Journals (Sweden)

    Gluzdov Dmitriy


    Full Text Available Results of 2D numerical solution of liquid flow in microchannel with bubbles layers on surface are presented. Bubbles layers are modeled by setting of bubble size and Navier slip condition. Calculations have been done using OpenFoam PISO method. The results of modeling compared with analytical solution.

  6. Bubble size reduction in a fluidized bed by electric fields

    NARCIS (Netherlands)

    Kleijn van Willigen, F.; Van Turnhout, J.; Van Ommen, J.R.; Van den Bleek, C.


    The reduction of the size of bubbles can improve both selectivity and conversion in gas-solid fluidized beds. Results are reported of the reduction of bubble size by the application of electric fields to uncharged, polarizable particles in fluidized beds. It is shown how average bubble diameters can

  7. Nanoemulsions obtained via bubble bursting at a compound interface

    NARCIS (Netherlands)

    Feng, J.; Roche, M.; Vigolo, D.; Arnaudov, L.N.; Stoyanov, S.D.; Gurkov, T.D.; Tsutsumanova, G.G.; Stone, H.A.


    Bursting of bubbles at an air/liquid interface is a familiar occurrence relevant to foam stability, cell cultures in bioreactors and ocean–atmosphere mass transfer. In the latter case, bubble-bursting leads to the dispersal of sea-water aerosols in the surrounding air. Here we show that bubbles

  8. Bubbles as a means for the deaeration of water bodies

    NARCIS (Netherlands)

    Zhang, Yuhang; Zhou, Gedi; Prosperetti, Andrea


    Occasional dissolved-air supersaturation - such as may occur, for instance, downstream of dams - is harmful to fish because it causes gas bubble disease. A counterintuitive but effective means of reducing dissolved air content is the injection of bubbles in the supersaturated water. The bubbles

  9. Shape oscillation of bubbles in the acoustic field


    Matsumoto, Keishi; Ueno, Ichiro


    The authors introduce dynamics of multiple air bubbles exposed to ultrasonic wave while ascending in water in the present fluid dynamics video. The authors pay attention to the shape oscillation and the transition from the volume to the shape oscillations of the bubble. Correlation between the bubble size and the mechanism of the excitation of the shape oscillation is introduced.

  10. Variability Of Plasma Bubble In The Equatorial Ionosphere At Midnight

    African Journals Online (AJOL)

    There are various types of ionospheric irregularities. Among these is the plasma bubble occurrence. They are most prominent at night time in the equatorial ionosphere. Many of the bubbles drift with approximately the velocity of the background plasma, but it is possible to infer that most bubbles have moved upward at some ...

  11. Maximal air bubble entrainment at liquid-drop impact

    NARCIS (Netherlands)

    Bouwhuis, W.; van der Veen, Roeland; Tran, Tuan; Keij, D.L.; Winkels, K.G.; Peters, I.R.; van der Meer, Roger M.; Sun, Chao; Snoeijer, Jacobus Hendrikus; Lohse, Detlef


    At impact of a liquid drop on a solid surface, an air bubble can be entrapped. Here, we show that two competing effects minimize the (relative) size of this entrained air bubble: for large drop impact velocity and large droplets, the inertia of the liquid flattens the entrained bubble, whereas for

  12. Drag an lift forces on bubbles in a rotating flow

    NARCIS (Netherlands)

    van Nierop, Ernst A.; Luther, S.; Bluemink, J.J.; Magnaudet, Jacques; Prosperetti, Andrea; Lohse, Detlef


    The motion of small air bubbles in a horizontal solid-body rotating flow is investigated experimentally. Bubbles with a typical radius of 1mm are released in a liquid-filled horizontally rotating cylinder. We measure the transient motion of the bubbles in solid-body rotation and their final

  13. Calibrating optical bubble size by the displaced-mass method.

    NARCIS (Netherlands)

    Leifer, I.; Leeuw, G. de; Kunz, G.; Cohen, L.H.


    Bubble sizing by optical means is very common, but requires calibration by non-optical means. This is particularly important since apparent bubble size increases with decreasing threshold intensity. A calibration experiment was conducted comparing the displaced water mass from captured bubbles with

  14. Multi-Dimensional Analysis of the Forced Bubble Dynamics Associated with Bubble Fusion Phenomena. Final Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Lahey, Jr., Richard T. [Rensselaer Polytechnic Inst., Troy, NY (United States). Center for Multiphase Research and Dept. of Mechanical, Aeronautical and Nuclear Engineering; Jansen, Kenneth E. [Rensselaer Polytechnic Inst., Troy, NY (United States). Center for Multiphase Research and Dept. of Mechanical, Aeronautical and Nuclear Engineering; Nagrath, Sunitha [Rensselaer Polytechnic Inst., Troy, NY (United States). Center for Multiphase Research and Dept. of Mechanical, Aeronautical and Nuclear Engineering


    A new adaptive grid, 3-D FEM hydrodynamic shock (ie, HYDRO )code called PHASTA-2C has been developed and used to investigate bubble implosion phenomena leading to ultra-high temperatures and pressures. In particular, it was shown that nearly spherical bubble compressions occur during bubble implosions and the predicted conditions associated with a recent ORNL Bubble Fusion experiment [Taleyarkhan et al, Science, March, 2002] are consistent with the occurrence of D/D fusion.

  15. Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound. (United States)

    Yasui, Kyuichi; Lee, Judy; Tuziuti, Toru; Towata, Atsuya; Kozuka, Teruyuki; Iida, Yasuo


    Influence of the bubble-bubble interaction on the pulsation of encapsulated microbubbles has been studied by numerical simulations under the condition of the experiment reported by Chang et al. [IEEE Trans. Ultrason Ferroelectr. Freq. Control 48, 161 (2001)]. It has been shown that the natural (resonance) frequency of a microbubble decreases considerably as the microbubble concentration increases to relatively high concentrations. At some concentration, the natural frequency may coincide with the driving frequency. Microbubble pulsation becomes milder as the microbubble concentration increases except at around the resonance condition due to the stronger bubble-bubble interaction. This may be one of the reasons why the threshold of acoustic pressure for destruction of an encapsulated microbubble increases as the microbubble concentration increases. A theoretical model for destruction has been proposed.

  16. Trauma-Focused CBT for Youth who Experience Ongoing Traumas


    Cohen, Judith A.; Mannarino, Anthony P.; Murray, Laura A.


    Many youth experience ongoing trauma exposure, such as domestic or community violence. Clinicians often ask whether evidence-based treatments containing exposure components to reduce learned fear responses to historical trauma are appropriate for these youth. Essentially the question is, if youth are desensitized to their trauma experiences, will this in some way impair their responding to current or ongoing trauma? The paper addresses practical strategies for implementing one evidence-based ...

  17. Is Education Facing a "Tech Bubble"? (United States)

    Davis, Michelle R.


    Educational technology companies and entrepreneurs may face the risk of a "tech bubble," similar to the massive boom-and-bust that rocked the technology market in the late 1990s, according to market analysts and a recently released paper. A relatively new focus on K-12 educational technology as an investment vehicle, a surge of investors looking…

  18. Ultrasound contrast agents : dynamics of coated bubbles

    NARCIS (Netherlands)

    Overvelde, M.L.J.


    Contrast-enhanced ultrasound imaging relies on the nonlinear scattering of microbubbles suspended in an ultrasound contrast agent. The bubble dynamics is described by a Rayleigh-Plesset-type equation, and the success of harmonic imaging using contrast agents has always been attributed to the

  19. Bubble growth on an impulsively powered microheater

    NARCIS (Netherlands)

    Yin, Z.; Prosperetti, Andrea; Kim, J.


    The dynamics of single vapor bubbles in FC-72 generated by a transient heat pulse applied to a square 260 × 260 μm2 microheater are investigated for different heat fluxes between 3 and 44 MW/m2. It is found that in all cases the growth consists of two steps, a first relatively violent one, followed

  20. Inert gas accumulation in sonoluminescing bubbles

    NARCIS (Netherlands)

    Lohse, Detlef; Hilgenfeldt, Sascha


    In this paper we elaborate on the idea [Lohse et al., Phys. Rev. Lett. 78, 1359-1362 (1997)] that (single) sonoluminescing air bubbles rectify argon. The reason for the rectification is that nitrogen and oxygen dissociate and their reaction products dissolve in water. We give further experimental

  1. Radiolytic and thermolytic bubble gas hydrogen composition

    Energy Technology Data Exchange (ETDEWEB)

    Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    This report describes the development of a mathematical model for the estimation of the hydrogen composition of gas bubbles trapped in radioactive waste. The model described herein uses a material balance approach to accurately incorporate the rates of hydrogen generation by a number of physical phenomena and scale the aforementioned rates in a manner that allows calculation of the final hydrogen composition.

  2. Argonne Bubble Experiment Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations. The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.

  3. Non-Abelian bubbles in microstate geometries (United States)

    Ramírez, Pedro F.


    We find the first smooth bubbling microstate geometries with non-Abelian fields. The solutions constitute an extension of the BPS three-charge smooth microstates. These consist in general families of regular supersymmetric solutions with non-trivial topology, i.e. bubbles, of {N}=d , d = 5 Super-Einstein-Yang-Mills theory, having the asymptotic charges of a black hole or black ring but with no horizon. The non-Abelian fields make their presence at the very heart of the microstate structure: the physical size of the bubbles is affected by the non-Abelian topological charge they carry, which combines with the Abelian flux threading the bubbles to hold them up. Interestingly the non-Abelian fields carry a set of adjustable continuous parameters that do not alter the asymptotics of the solutions but modify the local geometry. This feature can be used to obtain a classically infinite number of microstate solutions with the asymptotics of a single black hole or black ring.

  4. Big Bubbles in Boiling Liquids: Students' Views (United States)

    Costu, Bayram


    The aim of this study was to elicit students' conceptions about big bubbles in boiling liquids (water, ethanol and aqueous CuSO[subscript 4] solution). The study is based on twenty-four students at different ages and grades. The clinical interviews technique was conducted to solicit students' conceptions and the interviews were analyzed to…

  5. Four-bubble clusters and Menelaus' theorem (United States)

    Fischer, Fred


    We discuss a relatively easy way to construct a stable cluster of four soap bubbles using the radii of four selected spherical films out of a total of ten. To this end, we extend Menelaus' theorem, a geometrical relation between a triangle and a straight line in the plane, to three and higher dimensions.

  6. Soap-bubble Optimization of Gaits (United States)

    Ramasamy, Suresh; Hatton, Ross

    We present a geometric gait optimizer that applies Lie bracket theory to identify optimal cost-of-transport (displacement divided by effort) gaits. This optimizer builds on our previous work, where we have shown that for drag-dominated systems, the efficiency of a gait corresponds to a ratio between ``metric-weighted perimeter length of the cycle and the area integral of the Lie bracket it encloses. In this work, we encode this geometric insight into a variational gait optimizer. For a system with two shape variables, the dynamics of this optimizer are similar to the dynamics of a soap bubble, with the Lie bracket providing internal pressure which causes the boundary of the bubble to expand, the metric-weighted path length providing surface tension constraining the growth of the soap bubble, and a pace-balancing term corresponding to the concentration gradient that evenly distributes soap across the surface of the bubble. In systems with three shape variables, the dynamics are more akin to a windsock, capturing maximum flux through a loop. The variational form of the optimizer allows us to extend it to higher dimensional shape spaces beyond these physical analogies.

  7. Condensation of vapor bubble in subcooled pool (United States)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.


    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  8. BUBBLE - an urban boundary layer meteorology project

    DEFF Research Database (Denmark)

    Rotach, M.W.; Vogt, R.; Bernhofer, C.


    The Basel urban Boundary Layer Experiment (BUBBLE) was a year-long experimental effort to investigate in detail the boundary layer structure in the City of Basel, Switzerland. At several sites over different surface types (urban, sub-urban and rural reference) towers up to at least twice the main...

  9. Non-Abelian bubbles in microstate geometries

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, Pedro F. [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera, 13-15, C.University Cantoblanco, E-28049 Madrid (Spain); Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS,Orme des Merisiers bâtiment 774, F-91191 Gif-sur-Yvette (France)


    We find the first smooth bubbling microstate geometries with non-Abelian fields. The solutions constitute an extension of the BPS three-charge smooth microstates. These consist in general families of regular supersymmetric solutions with non-trivial topology, i.e. bubbles, of N=1, d=5 Super-Einstein-Yang-Mills theory, having the asymptotic charges of a black hole or black ring but with no horizon. The non-Abelian fields make their presence at the very heart of the microstate structure: the physical size of the bubbles is affected by the non-Abelian topological charge they carry, which combines with the Abelian flux threading the bubbles to hold them up. Interestingly the non-Abelian fields carry a set of adjustable continuous parameters that do not alter the asymptotics of the solutions but modify the local geometry. This feature can be used to obtain a classically infinite number of microstate solutions with the asymptotics of a single black hole or black ring.

  10. Heat transport in bubbling turbulent convection. (United States)

    Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea


    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.

  11. Variations of bubble cavitation and temperature elevation during acculysis (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson


    High-intensity focused ultrasound (HIFU) is effective in both thermal ablations and soft-tissue fragmentation. Mechanical and thermal effects depend on the operating parameters and vary with the progress of therapy. Different types of lesions could be produced with the pulse duration of 5-30 ms, much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, bubble cavitation and temperature elevation in the focal region were measured by passive cavitation detection (PCD) and thermocouples, respectively. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Overall, it is suggested that appropriate synergy and monitoring of mechanical and thermal effects would broaden the HIFU application and enhance its efficiency as well as safety.

  12. Trauma-Focused CBT for Youth Who Experience Ongoing Traumas (United States)

    Cohen, Judith A.; Mannarino, Anthony P.; Murray, Laura K.


    Many youth experience ongoing trauma exposure, such as domestic or community violence. Clinicians often ask whether evidence-based treatments containing exposure components to reduce learned fear responses to historical trauma are appropriate for these youth. Essentially the question is, if youth are desensitized to their trauma experiences, will…

  13. A method for indication and improving the position stability of the bubble in single-bubble cavitation experiments (United States)

    Plocek, Jaroslav


    A newly developed method for indication of the bubble state in classical single-bubble cavitation experiments is introduced. The method is based on processing the signal from a sensor, positioned on the flask from outside. The technical means of the method are further explored to improve the position stability of the bubble.

  14. Modeling of mass transfer and chemical reactions in a bubble column reactor using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.


    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas-liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  15. Detailed modeling of hydrodynamics mass transfer and chemical reactions in a bubble column using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.


    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas¿liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  16. Trauma cardiaco cerrado


    Alvarado, Camilo; Vargas, Fernando; Guzmán, Fernando; Zárate, Alejandro; Correa, José L.; Ramírez, Alejandro; Quintero, Diana M.; Ramírez, Erika M.


    El trauma cardiaco constituye una de las primeras causas de mortalidad en la población general. Requiere alto índice de sospecha en trauma cerrado severo, mecanismo de desaceleración y en presencia de signos indirectos como: equimosis, huella del volante o del cinturón en el tórax anterior. Las lesiones incluyen: conmoción cardiaca, ruptura cardiaca, lesión cardiaca indirecta como la trombosis coronaria aguda, lesión aórtica, lesión del pericardio y herniación cardiaca. Entre las manifestacio...

  17. Sonography of scrotal trauma

    Directory of Open Access Journals (Sweden)

    Meka Srinivasa Rao


    Full Text Available The purpose of this article is to depict the spectrum of scrotal injuries in blunt trauma. Scrotal injuries are not very common and are mostly due to blunt trauma from direct injury, sports injuries or motor vehicle accidents. To minimize complications and ensure testicular salvage, rapid and accurate diagnosis is necessary. High-resolution USG is the investigation of choice, as it is readily available, accurate and has been seen to improve outcomes. An understanding of and familiarity with the sonographic appearance of scrotal injuries on the part of the radiologist/sonographer is therefore of key importance.

  18. Operation Brain Trauma Therapy (United States)


    Operation Brain Trauma Therapy. J Trauma 71(1 Suppl):S15-24, 2011. 2. Diaz-Arrastia R, Kochanek PM, Bergold P, Kenney K, Marx C, Grimes JB, Loh Y...severe traumatic brain injury. J. Neurotrauma 29, 1096–1104. 66. Diaz-Arrastia, R., Kochanek, P.M., Bergold, P., Kenney K, Marx CE, Grimes CJ, Loh LT...Proc. Nat. Acad. Sci. U.S.A. 96, 15268–15273. 4. Mendoza-Torreblanca, J.G., Vanoye- Carlo , A., Phillips-Farfan, B.V., Carmona-Aparicio, L., and

  19. Coagulopathy of Trauma. (United States)

    Cohen, Mitchell J; Christie, S Ariane


    Coagulopathy is common after injury and develops independently from iatrogenic, hypothermic, and dilutional causes. Despite considerable research on the topic over the past decade, trauma-induced coagulopathy (TIC) continues to portend poor outcomes, including decreased survival. We review the current evidence regarding the diagnosis and mechanisms underlying trauma induced coagulopathy and summarize the debates regarding optimal management strategy including product resuscitation, potential pharmacologic adjuncts, and targeted approaches to hemostasis. Throughout, we will identify areas of continued investigation and controversy in the understanding and management of TIC. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A derivation of the stable cavitation threshold accounting for bubble-bubble interactions. (United States)

    Guédra, Matthieu; Cornu, Corentin; Inserra, Claude


    The subharmonic emission of sound coming from the nonlinear response of a bubble population is the most used indicator for stable cavitation. When driven at twice their resonance frequency, bubbles can exhibit subharmonic spherical oscillations if the acoustic pressure amplitude exceeds a threshold value. Although various theoretical derivations exist for the subharmonic emission by free or coated bubbles, they all rest on the single bubble model. In this paper, we propose an analytical expression of the subharmonic threshold for interacting bubbles in a homogeneous, monodisperse cloud. This theory predicts a shift of the subharmonic resonance frequency and a decrease of the corresponding pressure threshold due to the interactions. For a given sonication frequency, these results show that an optimal value of the interaction strength (i.e. the number density of bubbles) can be found for which the subharmonic threshold is minimum, which is consistent with recently published experiments conducted on ultrasound contrast agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Cavitation Bubble Nucleation by Energetic Particles

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.


    In the early sixties, experimental measurements using a bubble chamber confirmed quantitatively the thermal spike theory of bubble nucleation by energetic particles: the energy of the slow, heavy alpha decay recoils used in those experiments matched the calculated bubble nucleation energy to within a few percent. It was a triumph, but was soon to be followed by a puzzle. Within a couple of years, experiments on similar liquids, but well below their normal boiling points, placed under tensile stress showed that the calculated bubble nucleation energy was an order of magnitude less than the recoil energy. Why should the theory work so well in the one case and so badly in the other? How did the liquid, or the recoil particle, "know" the difference between the two experiments? Another mathematical model of the same physical process, introduced in 1967, showed qualitatively why different analyses would be needed for liquids with high and low vapor pressures under positive or negative pressures. But, the quantitative agreement between the calculated nucleation energy and the recoil energy was still poor--the former being smaller by a factor of two to three. In this report, the 1967 analysis is extended and refined: the qualitative understanding of the difference between positive and negative pressure nucleation, "boiling" and "cavitation" respectively, is retained, and agreement between the negative pressure calculated to be needed for nucleation and the energy calculated to be available is much improved. A plot of the calculated negative pressure needed to induce bubble formation against the measured value now has a slope of 1.0, although there is still considerable scatter in the individual points.

  2. Relationship between Liquidity and Price Bubble in Tehran's Asset Market

    Directory of Open Access Journals (Sweden)

    J. Khodaparast SHIRAZI


    Full Text Available In this paper, according to Austrian school, the existence of bubbles in asset market of Tehran from 1998 to 2009 is attributed to the unexpected fluctuations of liquidity. To find out the process of bubble, the state space form and Kalman filter are used and bubble is brought out as unobserved variable of price series. In order to determine the long run relationship between liquidity and price bubble the VAR method proposed by Johanson and Jelisus is used. The result confirms that variation of liquidity has a significant effect on the creating of bubble in long run.

  3. Path instabilities of air bubbles rising in clean water

    CERN Document Server

    Wu, M; Wu, Mingming; Gharib, Moteza


    Experiments are conducted to study the path and shape of single air bubbles (diameter range 0.10- 0.20cm) rising freely in clean water. The experimental results demonstrate that the bubble shape has a bistable state, i. e. the bubble chooses to be in spherical or ellipsoidal shape depending on its generation mechanism. The path of a spherical/ellipsoidal bubble is found to change from a straight path to a zigzag/spiral path via a supercritical/subcritical bifurcation when the Reynolds number of the bubble exceeds a threshold.

  4. Champagne experiences various rhythmical bubbling regimes in a flute. (United States)

    Liger-Belair, Gérard; Tufaile, Alberto; Jeandet, Philippe; Sartorelli, José-Carlos


    Bubble trains are seen rising gracefully from a few points on the glass wall (called nucleation sites) whenever champagne is poured into a glass. As time passes during the gas-discharging process, the careful observation of some given bubble columns reveals that the interbubble distance may change suddenly, thus revealing different rhythmical bubbling regimes. Here, it is reported that the transitions between the different bubbling regimes of some nucleation sites during gas discharging is a process which may be ruled by a strong interaction between tiny gas pockets trapped inside the nucleation site and/or also by an interaction between the tiny bubbles just blown from the nucleation site.

  5. A note on the dynamics of two aligned bubbles perpendicular to and above a thin membrane

    Energy Technology Data Exchange (ETDEWEB)

    Aghdam, A Hajizadeh [Department of Mechanical Engineering, Arak University of Technology, Arak 3818141167 (Iran, Islamic Republic of); Khoo, B C, E-mail: [Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)


    The interaction of two perpendicular bubbles of a similar size (upper bubble and lower bubble) and the thin elastic membrane beneath them is studied experimentally. The dynamical behavior of the lower bubble (Bubble1), which is placed between the membrane and upper bubble (Bubble2), is rather complex. Observed phenomena such as the splitting of Bubble1 into the ‘mushroom shape’ and ‘masher shape’, the bubble-collapse induced jetting toward Bubble2 and even the coalescence effect are found and systematically categorized by the stated dimensionless parameters. (paper)

  6. Predawn plasma bubble cluster observed in Southeast Asia (United States)

    Watthanasangmechai, Kornyanat; Yamamoto, Mamoru; Saito, Akinori; Tsunoda, Roland; Yokoyama, Tatsuhiro; Supnithi, Pornchai; Ishii, Mamoru; Yatini, Clara


    Predawn plasma bubble was detected as deep plasma depletion by GNU Radio Beacon Receiver (GRBR) network and in situ measurement onboard Defense Meteorological Satellite Program F15 (DMSPF15) satellite and was confirmed by sparse GPS network in Southeast Asia. In addition to the deep depletion, the GPS network revealed the coexisting submesoscale irregularities. A deep depletion is regarded as a primary bubble. Submesoscale irregularities are regarded as secondary bubbles. Primary bubble and secondary bubbles appeared together as a cluster with zonal wavelength of 50 km. An altitude of secondary bubbles happened to be lower than that of the primary bubble in the same cluster. The observed pattern of plasma bubble cluster is consistent with the simulation result of the recent high-resolution bubble (HIRB) model. This event is only a single event out of 76 satellite passes at nighttime during 3-25 March 2012 that significantly shows plasma depletion at plasma bubble wall. The inside structure of the primary bubble was clearly revealed from the in situ density data of DMSPF15 satellite and the ground-based GRBR total electron content.

  7. Daughter bubble cascades produced by folding of ruptured thin films. (United States)

    Bird, James C; de Ruiter, Riëlle; Courbin, Laurent; Stone, Howard A


    Thin liquid films, such as soap bubbles, have been studied extensively for over a century because they are easily formed and mediate a wide range of transport processes in physics, chemistry and engineering. When a bubble on a liquid-gas or solid-gas interface (referred to herein as an interfacial bubble) ruptures, the general expectation is that the bubble vanishes. More precisely, the ruptured thin film is expected to retract rapidly until it becomes part of the interface, an event that typically occurs within milliseconds. The assumption that ruptured bubbles vanish is central to theories on foam evolution and relevant to health and climate because bubble rupture is a source for aerosol droplets. Here we show that for a large range of fluid parameters, interfacial bubbles can create numerous small bubbles when they rupture, rather than vanishing. We demonstrate, both experimentally and numerically, that the curved film of the ruptured bubble can fold and entrap air as it retracts. The resulting toroidal geometry of the trapped air is unstable, leading to the creation of a ring of smaller bubbles. The higher pressure associated with the higher curvature of the smaller bubbles increases the absorption of gas into the liquid, and increases the efficiency of rupture-induced aerosol dispersal.

  8. Emergency Department Management of Trauma

    DEFF Research Database (Denmark)

    MacKenzie, Colin; Lippert, Freddy


    Initial assessment and management of severely injured patients may occur in a specialized area of an emergency department or in a specialized area of a trauma center. The time from injury until definitive management is of essence for survival of life-threatening trauma. The initial care delivered...... injured patients after these patients reach a hospital emergency department or a trauma center....

  9. Numerical simulation of superheated vapor bubble rising in stagnant liquid (United States)

    Samkhaniani, N.; Ansari, M. R.


    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  10. Modelling of Air Bubble Rising in Water and Polymeric Solution (United States)

    Hassan, N. M. S.; Khan, M. M. K.; Rasul, M. G.; Subaschandar, N.


    This study investigates a Computational Fluid Dynamics (CFD) model for a single air bubble rising in water and xanthan gum solution. The bubble rise characteristics through the stagnant water and 0.05% xanthan gum solution in a vertical cylindrical column is modelled using the CFD code Fluent. Single air bubble rise dispersed into the continuous liquid phase has been considered and modelled for two different bubble sizes. Bubble velocity and vorticity magnitudes were captured through a surface-tracking technique i.e. Volume of Fluid (VOF) method by solving a single set of momentum equations and tracking the volume fraction of each fluid throughout the domain. The simulated results of the bubble flow contours at two different heights of the cylindrical column were validated by the experimental results and literature data. The model developed is capable of predicting the entire flow characteristics of different sizes of bubble inside the liquid column.

  11. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan


    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  12. The elasticity of soap bubbles containing wormlike micelles. (United States)

    Sabadini, Edvaldo; Ungarato, Rafael F S; Miranda, Paulo B


    Slow-motion imaging of the rupture of soap bubbles generally shows the edges of liquid films retracting at a constant speed (known as the Taylor-Culick velocity). Here we investigate soap bubbles formed from simple solutions of a cationic surfactant (cetyltrimethylammonium bromide - CTAB) and sodium salicylate. The interaction of salicylate ions with CTAB leads to the formation of wormlike micelles (WLM), which yield a viscoelastic behavior to the liquid film of the bubble. We demonstrate that these elastic bubbles collapse at a velocity up to 30 times higher than the Taylor-Culick limit, which has never been surpassed. This is because during the bubble inflation, the entangled WLM chains stretch, storing elastic energy. This extra energy is then released during the rupture of the bubble, yielding an additional driving force for film retraction (besides surface tension). This new mechanism for the bursting of elastic bubbles may have important implications to the breakup of viscoelastic sprays in industrial applications.

  13. Numerical simulation of high Reynolds number bubble motion

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, J.B. [Clarkson Univ., Potsdam, NY (United States)


    This paper presents the results of numerical simulations of bubble motion. All the results are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the motion created by the bubble, which is axisymmetric. The main focus of the paper is on bubbles that are of order 1 mm in diameter in water. Of particular interest is the effect of surfactant molecules on bubble motion. Results for the {open_quotes}insoluble surfactant{close_quotes} model will be presented. These results extend research by other investigators to finite Reynolds numbers. The results indicate that, by assuming complete coverage of the bubble surface, one obtains good agreement with experimental observations of bubble motion in tap water. The effect of surfactant concentration on the separation angle is discussed.

  14. Dynamics of magnetic bubbles in acoustic and magnetic fields. (United States)

    Zhao, Xue; Quinto-Su, Pedro A; Ohl, Claus-Dieter


    We report on shelled bubbles that can be manipulated with magnetic fields. The magnetic shell consists of self-assembled magnetic nanoparticles. The magnetic susceptibility of the bubbles is proportional to the surface area, chi_{b}=(9+/-3x10;{-6} m)r;{2} where r is the radius. Magnetic bubbles are compressible in moderate acoustic fields. A bubble with a radius of 121 mum oscillates in resonance in a sound field of 27 kHz with a peak-to-peak radial amplitude of 1.7 mum. The bubble oscillations induce a microstreaming flow with a toroidal vortex at the upper pole of the bubble. Further findings are the longevity of the magnetic bubbles and the ease of manipulation with standard magnets.

  15. Gênero e trauma Gender and trauma

    Directory of Open Access Journals (Sweden)

    Gláucio Ary Dillon Soares


    Full Text Available As conseqüências sociais e psicológicas da violência urbana sobre os parentes e amigos de pessoas vitimadas por mortes violentas (homicídio, suicídio ou acidentes são analisadas à luz das diferenças de gênero. A literatura especializada nesta área propõe que mulheres e homens vivenciam experiências traumáticas de forma peculiar. Porém, os traumas típicos são diferentes em cada gênero, deixando em aberto a questão sobre quanto das diferenças entre as respostas se devem a gênero e quanto se devem ao tipo de trauma. Testamos a hipótese de que as mulheres são mais suscetíveis à desordem de estresse pós-trauma (DEPT numa situação traumática comum, usando dados qualitativos e quantitativos. Comparamos os sintomas do trauma e as percepções sobre o significado da perda de seus entes queridos. A amostra, de 425 mulheres (62% e 265 homens (38%, foi retirada de uma lista de parentes de pessoas que sofreram morte violenta na cidade do Rio de Janeiro. Incluímos trinta relatos de parentes e amigos próximos das vítimas diretas. Os resultados revelaram que 54% das mulheres e 41% dos homens tiveram o cotidiano alterado depois da morte de um parente/amigo. Há diferenças estatisticamente significativas nos problemas de saúde e na diversão. Essa área foi a mais afetada, atingindo metade dos entrevistados. Uma variável intimamente correlacionada com os sintomas da DEPT é o contato com o corpo: controlando a extensão do contato (fez o reconhecimento do corpo; viu, mas não reconheceu e nem viu nem reconheceu. Em cada uma dessas categorias, as mulheres foram mais afetadas do que os homens. O artigo conclui que as mulheres sentem mais as perdas do que os homens, mas que parte das diferenças não são internas aos gêneros, mas externas a eles, dependendo das interações e dos contatos pessoais.The social and psychological consequences endured by friends and relatives of people victimized by violent death (homicide, suicide or

  16. Scintigraphy In skeletal trauma

    African Journals Online (AJOL)


    Aug 5, 1989 ... Five case reports demonstrate the value of bone scintigraphy in trauma. The bone scans clearly demonstrated fractures of the hip and pelvis that were not radiologically evident or the presence of which was doubtful, and also identified a number of unsuspected fractures in a patient with multiple injuries.

  17. Trauma and Symbolic Violence

    DEFF Research Database (Denmark)

    Pedersen, Bodil Maria


    Our understanding of 'reactions to trauma' is dominated by concepts like Post-Traumatic Stress Disorder. The use of such concepts has been criticised but simultaneously integrated in folk-psychology. Connecting emotional and cognitive processes as well as acts - such as in gendered practices - to...

  18. Trauma and Symbolic Violence

    DEFF Research Database (Denmark)

    Pedersen, Bodil Maria


    Our understanding of 'reactions to trauma' is dominated by concepts like Post-Traumatic Stress Disorder. The use of such concepts has been criticised but simultaneously integrated in folk-psychology. Connecting emotional and cognitive processes as well as acts - such as in gendered practices...

  19. Trauma - the malignant epidemic

    African Journals Online (AJOL)

    life are lost annually from trauma than malignant disease, heart disease, and AIDS combined, and by the ... diffused and rapidly spreading condition affecting many people in anyone region at the same time and tending ... upon inadequate and overcrowded methods of transportation. TABLE I. INTERPERSONAL VIOLENCE ...

  20. Early Childhood Trauma (United States)

    National Child Traumatic Stress Network, 2010


    Early childhood trauma generally refers to the traumatic experiences that occur to children aged 0-6. Because infants' and young children's reactions may be different from older children's, and because they may not be able to verbalize their reactions to threatening or dangerous events, many people assume that young age protects children from the…

  1. Tumour, Torsion or Trauma?

    African Journals Online (AJOL)

    finally revealed testicular torsion. Remarkably, the testis was viable and the finding of a hematoma of the epididymis suggested a history of trauma which was not forthcoming from the patient. The acute scrotum demands expeditious attention and the clinician must aim to reach a definitive diagnosis in the shortest time ...

  2. Operation Brain Trauma Therapy (United States)


    OBTT.85 However, blunting of hyperglycemia that is seen in CNS insults could play some role in the observed benefit. 18 Beam Balance Days Post...62. Abrahamson EE, Ikonomovic MD, Dixon CE, DeKosky ST. Simvastatin therapy prevents brain trauma- induced increases in β-amyloid peptide levels

  3. Traumatismos oculares Ocular traumas

    Directory of Open Access Journals (Sweden)

    Gelen Welch Ruiz


    Full Text Available Se realizó un estudio descriptivo de tipo retrospectivo longitudinal cuyo universo estuvo constituido por 72 ojos de 72 pacientes con traumatismos oculares mecánicos que fueron hospitalizados en el Hospital Militar Central “Dr. Carlos J. Finlay” desde enero de 1999 hasta enero de 2005. Para el análisis estadístico de la información se utilizó el programa automatizado SPSS versión 11.5 en el cual también se conformó la base de datos y se realizaron los cálculos de acuerdo con el tipo de variable analizada. Se utilizaron medidas de resumen, tendencia central y asociación estadística con un nivel de significación de p A retrospective longitudinal and descriptive study was carried out in 72 eyes from 72 patients with mechanical occular traumas, who had been hospitalized in “Dr. Carlos J. Finlay” Military Hospital from December 1999 to January 2005. For the statistical data analysis, an automated program (SPSS 11.5 version was used to create the database and estimations were made according to the variable types. Summary measures, central tendency measures and statistical association with significance level equal to p < 0.05 were employed. Males prevailed (95.8%, the average age was 30.26 years with a minimum rate of 17 years and maximum rate of 82 years. The most frequent mechanisms of trauma were aggressions (23. 6% and injures from secondary projectiles (13.9%. The anterior segment traumas were more frequent (61, 1% than posterior segment traumas (6.94%. Both segments of the eyeball were affected in 39, 1% of eyes which evinced the worst visual acuity. The most common associated injures were hyphema (54, 2% and vitreous hemorrhage (16.6%. Closed trauma (contusions were more common and most of the eyes had better final visual acuity (45, 2% with vision range of 0.6-1.0 and 26.2% with vision range of 0.59-0.1. On the other hand, eyes affected by open trauma (simple wound, contusion-wound, wound with intraocular foreign body and

  4. Lithotripter shock wave interaction with a bubble near various biomaterials (United States)

    Ohl, S. W.; Klaseboer, E.; Szeri, A. J.; Khoo, B. C.


    Following previous work on the dynamics of an oscillating bubble near a bio-material (Ohl et al 2009 Phys. Med. Biol. 54 6313-36) and the interaction of a bubble with a shockwave (Klaseboer et al 2007 J. Fluid Mech. 593 33-56), the present work concerns the interaction of a gas bubble with a traveling shock wave (such as from a lithotripter) in the vicinity of bio-materials such as fat, skin, muscle, cornea, cartilage, and bone. The bubble is situated in water (to represent a water-like biofluid). The bubble collapses are not spherically symmetric, but tend to feature a high speed jet. A few simulations are performed and compared with available experimental observations from Sankin and Zhong (2006 Phys. Rev. E 74 046304). The collapses of cavitation bubbles (created by laser in the experiment) near an elastic membrane when hit by a lithotripter shock wave are correctly captured by the simulation. This is followed by a more systematic study of the effects involved concerning shockwave bubble biomaterial interactions. If a subsequent rarefaction wave hits the collapsed bubble, it will re-expand to a very large size straining the bio-materials nearby before collapsing once again. It is noted that, for hard bio-material like bone, reflection of the shock wave at the bone—water interface can affect the bubble dynamics. Also the initial size of the bubble has a significant effect. Large bubbles (˜1 mm) will split into smaller bubbles, while small bubbles collapse with a high speed jet in the travel direction of the shock wave. The numerical model offers a computationally efficient way of understanding the complex phenomena involving the interplay of a bubble, a shock wave, and a nearby bio-material.

  5. Bubble Proliferation in Shock Wave Lithotripsy Occurs during Inertial Collapse (United States)

    Pishchalnikov, Yuri A.; McAteer, James A.; Pishchalnikova, Irina V.; Williams, James C.; Bailey, Michael R.; Sapozhnikov, Oleg A.


    In shock wave lithotripsy (SWL), firing shock pulses at slow pulse repetition frequency (0.5 Hz) is more effective at breaking kidney stones than firing shock waves (SWs) at fast rate (2 Hz). Since at fast rate the number of cavitation bubbles increases, it appears that bubble proliferation reduces the efficiency of SWL. The goal of this work was to determine the basis for bubble proliferation when SWs are delivered at fast rate. Bubbles were studied using a high-speed camera (Imacon 200). Experiments were conducted in a test tank filled with nondegassed tap water at room temperature. Acoustic pulses were generated with an electromagnetic lithotripter (DoLi-50). In the focus of the lithotripter the pulses consisted of a ˜60 MPa positive-pressure spike followed by up to -8 MPa negative-pressure tail, all with a total duration of about 7 μs. Nonlinear propagation steepened the shock front of the pulses to become sufficiently thin (˜0.03 μm) to impose differential pressure across even microscopic bubbles. High-speed camera movies showed that the SWs forced preexisting microbubbles to collapse, jet, and break up into daughter bubbles, which then grew rapidly under the negative-pressure phase of the pulse, but later coalesced to re-form a single bubble. Subsequent bubble growth was followed by inertial collapse and, usually, rebound. Most, if not all, cavitation bubbles emitted micro-jets during their first inertial collapse and re-growth. After jetting, these rebounding bubbles could regain a spherical shape before undergoing a second inertial collapse. However, either upon this second inertial collapse, or sometimes upon the first inertial collapse, the rebounding bubble emerged from the collapse as a cloud of smaller bubbles rather than a single bubble. These daughter bubbles could continue to rebound and collapse for a few cycles, but did not coalesce. These observations show that the positive-pressure phase of SWs fragments preexisting bubbles but this initial

  6. Maternofetal Trauma in Craniosynostosis. (United States)

    Swanson, Jordan; Oppenheimer, Adam; Al-Mufarrej, Faisal; Pet, Mitchell; Arakawa, Chris; Cunningham, Michael; Gruss, Joseph; Hopper, Richard; Birgfeld, Craig


    Premature cranial suture fusion may prevent neonatal skull malleability during birth, increasing the risk of unplanned cesarean delivery and neonatal birth trauma caused by cephalopelvic disproportion. We sought to determine the incidence of perinatal maternofetal complications in cases of craniosynostosis. Records of children presenting with nonsyndromic craniosynostosis to a tertiary pediatric hospital from 1996 to 2012 were reviewed retrospectively with focus on birth history and birth-related complications. Six hundred eighteen births were reviewed. Rates of cesarean delivery among mothers of children with craniosynostosis [n = 201 (32.5 percent)] exceeded the overall regional rate of 24.5 percent (OR, 1.50; p < 0.0001). Unplanned cesarean delivery occurred in 19.7 percent of births, and were most associated with nulliparous mothers, breech fetal presentations, and lambdoid or multisuture synostosis patterns. Eleven neonates (1.8 percent) exhibited cranial birth trauma, including cephalohematoma and subgaleal hematoma. Neonates with sagittal or multisuture synostosis patterns were more likely to suffer birth trauma and had a higher mean head circumference than those who did not (81st versus 66th percentile, p < 0.05). In the setting of craniosynostosis, birth trauma is increased-for mothers in the form of increased cesarean delivery risk, and for fetuses in the form of subgaleal and subperiosteal perinatal bleeding. Difficult maternal labor may be mediated especially by multisuture or lambdoid synostosis, whereas fetal birth trauma may be mediated to a greater extent by large head size. Prenatal diagnosis of craniosynostosis could influence decision-making in the management of labor. Risk, IV.

  7. Penetrating ureteral trauma

    Directory of Open Access Journals (Sweden)

    Gustavo P. Fraga


    Full Text Available OBJECTIVE: The purpose of this series is to report our experience in managing ureteral trauma, focusing on the importance of early diagnosis, correct treatment, and the impact of associated injuries on the management and morbid-mortality. MATERIALS AND METHODS: From January 1994 to December 2002, 1487 laparotomies for abdominal trauma were performed and 20 patients with ureteral lesions were identified, all of them secondary to penetrating injury. Medical charts were analyzed as well as information about trauma mechanisms, diagnostic routine, treatment and outcome. RESULTS: All patients were men. Mean age was 27 years. The mechanisms of injury were gunshot wounds in 18 cases (90% and stab wounds in two (10%. All penetrating abdominal injuries had primary indication of laparotomy, and neither excretory urography nor computed tomography were used in any case before surgery. The diagnosis of ureteric injury was made intra-operatively in 17 cases (85%. Two ureteral injuries (10% were initially missed. All patients had associated injuries. The treatment was dictated by the location, extension and time necessary to identify the injury. The overall incidence of complications was 55%. The presence of shock on admission, delayed diagnosis, Abdominal Trauma Index > 25, Injury Severity Score > 25 and colon injuries were associated to a high complication rate, however, there was no statistically significant difference. There were no mortalities in this group. CONCLUSIONS: A high index of suspicion is required for diagnosis of ureteral injuries. A thorough exploration of all retroperitoneal hematoma after penetrating trauma should be an accurate method of diagnosis; even though it failed in 10% of our cases.

  8. Imaging in spinal trauma

    Energy Technology Data Exchange (ETDEWEB)

    Goethem, J.W.M. van [Universitair Ziekenhuis Antwerpen, University of Antwerp, Belgium, Department of Radiology, Edegem (Belgium); Algemeen Ziekenhuis Maria Middelares, Department of Radiology, Sint-Niklaas (Belgium); Maes, Menno; Oezsarlak, Oezkan; Hauwe, Luc van den; Parizel, Paul M. [Universitair Ziekenhuis Antwerpen, University of Antwerp, Belgium, Department of Radiology, Edegem (Belgium)


    Because it may cause paralysis, injury to the spine is one of the most feared traumas, and spinal cord injury is a major cause of disability. In the USA approximately 10,000 traumatic cervical spine fractures and 4000 traumatic thoracolumbar fractures are diagnosed each year. Although the number of individuals sustaining paralysis is far less than those with moderate or severe brain injury, the socioeconomic costs are significant. Since most of the spinal trauma patients survive their injuries, almost one out of 1000 inhabitants in the USA are currently being cared for partial or complete paralysis. Little controversy exists regarding the need for accurate and emergent imaging assessment of the traumatized spine in order to evaluate spinal stability and integrity of neural elements. Because clinicians fear missing occult spine injuries, they obtain radiographs for nearly all patients who present with blunt trauma. We are influenced on one side by fear of litigation and the possible devastating medical, psychologic and financial consequences of cervical spine injury, and on the other side by pressure to reduce health care costs. A set of clinical and/or anamnestic criteria, however, can be very useful in identifying patients who have an extremely low probability of injury and who consequently have no need for imaging studies. Multidetector (or multislice) computed tomography (MDCT) is the preferred primary imaging modality in blunt spinal trauma patients who do need imaging. Not only is CT more accurate in diagnosing spinal injury, it also reduces imaging time and patient manipulation. Evidence-based research has established that MDCT improves patient outcome and saves money in comparison to plain film. This review discusses the use, advantages and disadvantages of the different imaging techniques used in spinal trauma patients and the criteria used in selecting patients who do not need imaging. Finally an overview of different types of spinal injuries is given


    Directory of Open Access Journals (Sweden)

    Dova Subba


    Full Text Available AIM To estimate the incidence of Liver Trauma injuries and grade their severity of injury. To assess the factors responsible for morbidity and mortality after Liver Trauma. To study the postoperative complications and the management of Liver Trauma. MATERIALS AND METHODS The present prospective study was conducted on 100 patients who were admitted to Department of General Surgery for treatment who were managed operatively or non-operatively for abdominal trauma and having liver injury forms the material of the study. This study was conducted over a span of 24 months from June 2013 to November 2015. RESULTS Maximum number of patients are in the age group of 21-30 years (46%. 85% patients (85/100 are males and 15% of patients (15/100 are females. Lapse time of injury and admission varied from 25 minutes to 66 hours and 30 minutes. 75 % of the patients (75/100 presented within 24 hours after injury. Death rate of patients who reached hospital after 24 hours of injury was higher than the patients who reached hospital within 24 hours of injury. 28% of patients (28/100 had associated bony injuries, out of which 5% of patients (5/100 expired due to primary haemorrhage of fractured femur. More than one segment was injured in many patients. Segment V is involved commonly making 55% (55/100 of patients. Next common segment involved is segment VII, making 39% (39/100. CONCLUSION Mechanism of injury is the important factor which is responsible for morbidity in liver injury. Nonoperative management proved to be safe and effective and often has been used to treat patients with liver trauma.

  10. Trauma-Induced Coagulopathy. (United States)

    Simmons, Jeffrey W; Pittet, Jean-Francois; Pierce, Bert


    Trauma is the leading cause of death among people under the age of 44. Hemorrhage is a major contributor to deaths related to trauma in the first 48 h. Accordingly, the management of these patients is a time-sensitive and critical affair that anesthesiologists responsible for surgical resuscitation will face. Coagulopathy associated with trauma exists in one-third of all severely injured patients upon presentation to the hospital. Trauma patients presenting with coagulopathy have significantly higher mortality. This trauma-induced coagulopathy (TIC) must be managed adroitly in the resuscitation of these patients. Recent advancements in our understanding of TIC have led to new protocols and therapy guidelines. Anesthesiologists must be aware of these to effectively manage this form of shock. TIC driven by a combination of endogenous biological processes, as well as iatrogenic causes, can ultimately lead to the lethal triad of hypothermia, acidemia, and coagulopathy. Providers should understand how to promptly diagnose TIC and be aware of the early indicators of massive transfusion. The use of common laboratory studies and patient vital signs serve as our current guide, but the importance of each is still under debate. Thromboelastography is a tool used often in the diagnosis of TIC and can be used to guide blood product transfusion. Certain pharmaceutical strategies and non-transfusion strategies also exist, which aid in the management of hemorrhagic shock. Damage control surgery, rewarming, tranexamic acid, and 1:1:1 transfusion protocols are promising methods used to treat the critically wounded. Though protocols have been developed, controversies still exist on the optimal resuscitation strategy.

  11. Paediatric trauma care

    Directory of Open Access Journals (Sweden)

    Sebastian van As A


    Full Text Available Background: Childhood trauma has become a major cause of mortality and morbidity, disability and socio-economic burden and it is expected by the World Health Organization (WHO that by 2020 it will be the number 1 disease globally. The WHO and UNICEF have published their third World Report on Child Injury Prevention in December 2008. Materials and Methods: A systematic review was performed on the history and magnitude of paediatric trauma worldwide. Additionally exciting developments and new trends were assessed and summarized. Results: Paediatric trauma is a growing field of clinical expertise. New developments include total body digital imaging of children presenting with polytrauma; targeted management of head injuries; conservative management of abdominal injuries in children and diagnostic laparoscopy, including the laparoscopic management of complications following the conservative management of solid organ injuries. Conclusion: Paediatric trauma has long been neglected by the medical profession. In order to deal with it appropriately, it makes sense to adopt the public health approach, requiring that we view child injuries similarly to any other disease or health problem. The greatest gain in our clinical practice with dealing with child injuries will result from a strong focus on primary (preventing the injury, secondary (dealing with the injury in the most efficient manner as well as tertiary prevention (making sure that children treated for trauma will be appropriately reintegrated within our society. By actively promoting child safety we will not only achieve a most welcome reduction in medical cost and disability, but also the ever-so-much desired decline of avoidable childhood misery and suffering.

  12. Measurements of fast neutrons by bubble detectors

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, F.; Martinez, H. [Laboratorio de Espectroscopia, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62251, Cuernavaca Morelos (Mexico); Leal, B. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F. (Mexico); Rangel, J. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F (Mexico); Reyes, P. G. [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario 100, Col. Centro, 50000, Toluca Estado de Mexico (Mexico)


    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / {mu}Sv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ {mu}Sv, 0093 b/{mu}Sv, 0.14 b/{mu}Sv, 0.17 b/{mu}Sv, 0051 b/{mu}Sv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90 Degree-Sign this was done for a certain number of shots. In both cases, the standard response is reported (Dose in {mu}Sv) for each of the six detectors representing an energy range, this response is given by the expression R{sub i}= B{sub i} / S{sub i} where B{sub i} is the number of bubbles formed in each and the detector sensitivity (S{sub i}) is given for each detector in (b / {mu}Sv). Also, reported for both cases, the detected neutron flux (n cm{sup -2}), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 {mu}Sv fields mixed neutron and gamma, and pulsed generated fusion

  13. Coagulation management in trauma-associated coagulopathy: allogenic blood products versus coagulation factor concentrates in trauma care. (United States)

    Klages, Matthias; Zacharowski, Kai; Weber, Christian Friedrich


    Coagulation management by transfusion of allogenic blood products and coagulation factors are competing concepts in current trauma care. Rapid and adequate therapy of trauma-associated coagulopathy is crucial to survival of severely injured patients. Standard coagulation tests such as prothrombin time and activated partial thromboplastin time are commonly used, but these tests are inappropriate for monitoring and guiding therapy in trauma patients. Coagulation factor-based treatment showed promising results, but randomized trials have not yet been performed. In addition, viscoelastic tests are needed to guide therapy, although there is in fact limited evidence for these in tests in trauma care. Regarding transfusion therapy with allogenic blood products, plasma transfusion has been associated with improved survival in trauma patients following massive transfusion. In contrast, patients not requiring massive transfusion seem to be at risk for suffering complications with increasing volumes of plasma transfused. The collective of trauma patients is heterogeneous. Despite the lack of evidence, there are strong arguments for individualized patient treatment with coagulation factors for some indications and to abstain from the use of fresh frozen plasma. In patients with severe trauma and major bleeding, plasma, platelets, and red blood cells should be considered to be administered at a ratio of 1 : 1 : 1.


    Energy Technology Data Exchange (ETDEWEB)

    Watson, C. [Manchester University, Department of Physics, 604 E. College Ave., North Manchester, IN 46962 (United States); Devine, Kathryn [College of Idaho, Department of Physics, 2112 Cleveland Blvd, Caldwell, ID 83605 (United States); Quintanar, N. [Texas A and M University, Department of Nuclear Engineering, 401 Joe Routt Blvd, College Station, TX 77843 (United States); Candelaria, T., E-mail:, E-mail:, E-mail:, E-mail: [New Mexico Institute of Mining and Technology, Department of Physics, 801 Leroy Place, Socorro, NM 87801 (United States)


    We survey 44 young stellar objects located near the edges of mid-IR-identified bubbles in CS (1–0) using the Green Bank Telescope. We detect emission in 18 sources, indicating young protostars that are good candidates for being triggered by the expansion of the bubble. We calculate CS column densities and abundances. Three sources show evidence of infall through non-Gaussian line-shapes. Two of these sources are associated with dark clouds and are promising candidates for further exploration of potential triggered star formation. We obtained on-the-fly maps in CS (1–0) of three sources, showing evidence of significant interactions between the sources and the surrounding environment.

  15. Rapid-Cycling Bubble-Chamber, details

    CERN Multimedia

    CERN PhotoLab


    Parts of the hydraulic expansion system of the Rapid-Cycling Bubble-Chamber (RCBC). RCBC was the largest of 3 rapid-cycling bubble-chambers (the others were LEBC and HOLEBC), used as target- and vertex-detectors within the European Hybrid Spectrometer (EHS) in the SPS North Area (EHN1). RCBC contained 250 l of liquid hydrogen and was located inside a 3 T superconducting magnet. It was designed for 30 expansions/s (100 times faster than BEBC), the system shown here allowed 50 expansions/s. RCBC operated from 1981 to 1983 for experiments NA21, NA22 and NA23 at a rate of 15 expansions/s, clocking up a total of over 4 million. In the rear, at left, is bearded Lucien Veillet; Augustin Didona is at the right. See also 8001009. The installation of the piston assembly in the RCBC chamber body is shown in the Annual Report 1980, p.65.

  16. Hydrodynamic models for slurry bubble column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D. [IIT Center, Chicago, IL (United States)


    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  17. The Recent Financial Bubble: an Overview

    Directory of Open Access Journals (Sweden)

    Thalassinos E.


    Full Text Available The main aim of this paper is to analyse the recent financial crisis and to make recommendations how to handle it in the best possible way. Financial bubbles, since the great depression, have been analysed and some recommendations have been made taking into account the internationalization of the world economy which behaves like a domino. The recent financial crisis in the sub-prime mortgage market creates new problems in the world market with unforeseen continuances. Deflation has been referred to as a possible continuance after a financial bubble because often but not always deflation follows. Deflation often results in financial and economic crises. Financial and economic crises affect the architecture of the monetary system, while a change in the system may affect the role of the dollar, the euro and the yen.

  18. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao


    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  19. Transfusion medicine in trauma patients: an update. (United States)

    Murthi, Sarah B; Stansbury, Lynn G; Dutton, Richard P; Edelman, Bennett B; Scalea, Thomas M; Hess, John R


    In 2008, we reviewed the practical interface between transfusion medicine and the surgery and critical care of severely injured patients. Reviewed topics ranged from epidemiology of trauma to patterns of resuscitation to the problems of transfusion reactions. In the interim, trauma specialists have adopted damage control resuscitation and become much more knowledgeable and thoughtful about the use of blood products. This new understanding and the resulting changes in clinical practice have raised new concerns. In this update, we focus on which patients need damage control resuscitation, current views on the optimal form of damage control resuscitation with blood products, the roles of newer blood products, and appropriate transfusion triggers in the postinjury setting. We will also review the role of new technology in patient assessment, therapy and monitoring.

  20. Bubble propagation on a rail: a concept for sorting bubbles by size. (United States)

    Franco-Gómez, Andrés; Thompson, Alice B; Hazel, Andrew L; Juel, Anne


    We demonstrate experimentally that the introduction of a rail, a small height constriction, within the cross-section of a rectangular channel could be used as a robust passive sorting device in two-phase fluid flows. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes can propagate (stably) over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a complementary theoretical analysis based on a depth-averaged theory, which is in qualitative agreement with the experiments. The theoretical study reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions.

  1. Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid. (United States)

    Thiemann, Andrea; Holsteyns, Frank; Cairós, Carlos; Mettin, Robert


    The detailed link of liquid phase sonochemical reactions and bubble dynamics is still not sufficiently known. To further clarify this issue, we image sonoluminescence and bubble oscillations, translations, and shapes in an acoustic cavitation setup at 23kHz in sulfuric acid with dissolved sodium sulfate and xenon gas saturation. The colour of sonoluminescence varies in a way that emissions from excited non-volatile sodium atoms are prominently observed far from the acoustic horn emitter ("red region"), while such emissions are nearly absent close to the horn tip ("blue region"). High-speed images reveal the dynamics of distinct bubble populations that can partly be linked to the different emission regions. In particular, we see smaller strongly collapsing spherical bubbles within the blue region, while larger bubbles with a liquid jet during collapse dominate the red region. The jetting is induced by the fast bubble translation, which is a consequence of acoustic (Bjerknes) forces in the ultrasonic field. Numerical simulations with a spherical single bubble model reproduce quantitatively the volume oscillations and fast translation of the sodium emitting bubbles. Additionally, their intermittent stopping is explained by multistability in a hysteretic parameter range. The findings confirm the assumption that bubble deformations are responsible for pronounced sodium sonoluminescence. Notably the observed translation induced jetting appears to serve as efficient mixing mechanism of liquid into the heated gas phase of collapsing bubbles, thus potentially promoting liquid phase sonochemistry in general. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A bubble detection system for propellant filling pipeline. (United States)

    Wen, Wen; Zong, Guanghua; Bi, Shusheng


    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  3. The influence of bubbles on the perception carbonation bite.

    Directory of Open Access Journals (Sweden)

    Paul M Wise

    Full Text Available Although many people naively assume that the bite of carbonation is due to tactile stimulation of the oral cavity by bubbles, it has become increasingly clear that carbonation bite comes mainly from formation of carbonic acid in the oral mucosa. In Experiment 1, we asked whether bubbles were in fact required to perceive carbonation bite. Subjects rated oral pungency from several concentrations of carbonated water both at normal atmospheric pressure (at which bubbles could form and at 2.0 atmospheres pressure (at which bubbles did not form. Ratings of carbonation bite under the two pressure conditions were essentially identical, indicating that bubbles are not required for pungency. In Experiment 2, we created controlled streams of air bubbles around the tongue in mildly pungent CO2 solutions to determine how tactile stimulation from bubbles affects carbonation bite. Since innocuous sensations like light touch and cooling often suppress pain, we predicted that bubbles might reduce rated bite. Contrary to prediction, air bubbles flowing around the tongue significantly enhanced rated bite, without inducing perceived bite in blank (un-carbonated solutions. Accordingly, though bubbles are clearly not required for carbonation bite, they may well modulate perceived bite. More generally, the results show that innocuous tactile stimulation can enhance chemogenic pain. Possible physiological mechanisms are discussed.

  4. Period Doubling in Bubbling from a Submerged Nozzle (United States)

    Dennis, Jordan; Grace, Laura; Lehman, Susan

    The timing of bubbles rising from a nozzle submerged in a viscous solution was measured to examine the period-doubling route to chaos in this system. A narrow nozzle was submerged in a mixture of water and glycerin, and nitrogen was supplied to the nozzle at a varying flow rate. The bubbles were detected using a laser and photodiode system; when the bubbles rise through the laser beam, they scatter the light so that the signal at the photodiode decreases. The period between bubbles as well as the duration of each bubble (a function of bubble size and bubble velocity) was determined, and examined as the nitrogen flow rate increased, for solutions with five different concentrations of glycerin. Bubbles were also recorded visually using a high-speed camera. Within the flow rates tested, we observed a bifurcation of the period to period-2 behavior for all solutions tested, and a further bifurcation to period-4 for all solutions except pure glycerin. The solution viscosity affected both the onset of the bifurcation and the precise bubble behavior during the bifurcation. Unusually, a short period/long period pair of bubbles recurring at a regular interval was sometimes observed in the low flow regime which is typically period-1, an observation which requires further investigation. Research supported by NSF DMR 1560093.

  5. Luminescence from cavitation bubbles deformed in uniform pressure gradients (United States)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed


    Presented here are observations that demonstrate how the deformation of millimetric cavitation bubbles by a uniform pressure gradient quenches single-collapse luminescence. Our innovative measurement system captures a broad luminescence spectrum (wavelength range, 300-900 nm) from the individual collapses of laser-induced bubbles in water. By varying the bubble size, driving pressure, and perceived gravity level aboard parabolic flights, we probed the limit from aspherical to highly spherical bubble collapses. Luminescence was detected for bubbles of maximum radii within the previously uncovered range, R0=1.5 -6 mm, for laser-induced bubbles. The relative luminescence energy was found to rapidly decrease as a function of the bubble asymmetry quantified by the anisotropy parameter ζ , which is the dimensionless equivalent of the Kelvin impulse. As established previously, ζ also dictates the characteristic parameters of bubble-driven microjets. The threshold of ζ beyond which no luminescence is observed in our experiment closely coincides with the threshold where the microjets visibly pierce the bubble and drive a vapor jet during the rebound. The individual fitted blackbody temperatures range between Tlum=7000 and Tlum=11 500 K but do not show any clear trend as a function of ζ . Time-resolved measurements using a high-speed photodetector disclose multiple luminescence events at each bubble collapse. The averaged full width at half-maximum of the pulse is found to scale with R0 and to range between 10 and 20 ns.

  6. Soap-bubble Optimization of Gaits


    Ramasamy, Suresh; Hatton, Ross L.


    In this paper, we present a geometric variational algorithm for optimizing the gaits of kinematic locomoting systems. The dynamics of this algorithm are analogous to the physics of a soap bubble, with the system's Lie bracket supplying an "inflation pressure" that is balanced by a "surface tension" term derived from a Riemannian metric on the system's shape space. We demonstrate this optimizer on a variety of system geometries (including Purcell's swimmer) and for optimization criteria that i...

  7. The Bern Infinitesimal Bubble Chamber (BIBC)

    CERN Multimedia

    CERN PhotoLab


    The chamber body was machined from a block of aluminium. The visible volume was cylindrical with 65 mm diameter and 35 mm depth. It was filled with propane or freon. It was meant as vertex detector in the search of short-lived particles. It was also used with in-line holography resulting in 8 µm bubble size and 9 cm depth of the field. See E. Ramseyer, B. Hahn and E. Hugentobler, Nucl. Instrum. Methods 201 (1982) 335.

  8. Measuring Bubble Expectations and Investor Confidence


    Robert J. Shiller


    This paper presents evidence on attitude changes among investors in the US stock market. Two basic attitudes are explored: bubble expectations and investor confidence. Semiannual time-series indicators of these attitudes are presented for US stock market institutional investors based on questionnaire survey results 1989 1998, from surveys that I have derived in collaboration with Fumiko Kon-Ya and Yoshiro Tsutsui. Five different time-series indicators of whether there is among investors an ex...

  9. On the shape of giant soap bubbles

    NARCIS (Netherlands)

    Cohen, C.; Darbois Texier, B.; Reyssat, E.; Snoeijer, Jacobus Hendrikus; Quere, D.; Clanet, Christophe


    We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size ℓ=a2/e0ℓ=a2/e0, where e0e0 is the mean thickness of the soap film and a=γb/ρg−√a=γb/ρg is the capillary length ( γbγb stands for vapor–liquid surface tension, and ρρ stands for the liquid

  10. Influence of surfactant on gas bubble stability. (United States)

    Hanwright, Jennifer; Zhou, James; Evans, Geoffrey M; Galvin, Kevin P


    Gas-bubble stability is achieved either by a reduction in the Laplace pressure or by a reduction in the permeability of the gas-liquid interface. Although insoluble surfactants have been shown definitively in many studies to lower the permeability of the gas-liquid interface and hence increase the resistance to interfacial mass transfer, remarkably little work has been done on the effects of soluble surfactants. An experimental system was developed to measure the effect of the soluble surfactant dodecyl trimethylammonium bromide on the desorption and absorption of carbon dioxide gas through a quiescent planar interface. The desorption experiments conformed to the model of non-steady-state molecular diffusion. The absorption experiments, however, produced an unexpected mass transfer mechanism, with surface renewal, probably because of instability in the density gradient formed by the carbon dioxide. In general, the soluble surfactant produced no measurable reduction in the rate of interfacial mass transfer for desorption or absorption. This finding is consistent with the conclusion of Caskey and Barlage that soluble surfactants produce a significantly lower resistance to interfacial mass transfer than do insoluble surfactants. The dynamic adsorption and desorption of the surfactant molecules at the gas-liquid interface creates short-term vacancies, which presumably permit the unrestricted transfer of the gas molecules through the interface. This surfactant exchange does not occur for insoluble surfactants. Gas bubbles formed in the presence of a high concentration of soluble surfactant were observed to dissolve completely, while those formed in the presence of the insoluble surfactant stearic acid did not dissolve easily, and persisted for very long periods. The interfacial concentration of stearic acid rises during bubble dissolution, as it is insoluble, and must eventually achieve full monolayer coverage and a state of compression, lowering the permeability of the

  11. The Gargamelle heavy liquid bubble chamber

    CERN Multimedia

    CERN PhotoLab


    This image shows the Gargamelle heavy liquid bubble chamber. It was used to detect particles in experiments at the PS between 1970 and 1976 before being moved to the SPS. In 1973, while working on the PS, it detected the first neutral current, an interaction vital to the electroweak theory. In 1978 a large fissure appeared in the body of the chamber and Gargamelle was stopped in 1979.

  12. Explosive Bubble Modelling by Noncausal Process


    Christian Gouriéroux; Jean-Michel Zakoian


    The linear mixed causal and noncausal autoregressive processes provide often a better fit to economic and financial time series than the standard causal linear autoregressive processes. By considering the example of the noncausal Cauchy autoregressive process, we show that it might be explained by the special associated nonlinear causal dynamics. Indeed, this causal dynamics can include unit root, bubble phenomena, or asymmetric cycles often observed on financial markets. The noncausal Cauchy...

  13. Stochastic modelling for financial bubbles and policy


    Fry, John


    In this paper, we draw upon the close relationship between statistical physics and mathematical finance to develop a suite of models for financial bubbles and crashes. By modifying previous approaches, we are able to derive novel analytical formulae for evaluation problems and for the expected timing of future change points. In particular, we help to explain why previous approaches have systematically overstated the timing of changes in market regime. The list of potential empirical applicati...

  14. Liquid-bubble Interaction under Surf Zone Breaking Waves (United States)

    Derakhti, M.; Kirby, J. T., Jr.


    Liquid-bubble interaction, especially in complex two-phase bubbly flow under breaking waves, is still poorly understood. Derakhti and Kirby (2014a,b) have recently studied bubble entrainment and turbulence modulation by dispersed bubbles under isolated unsteady breaking waves along with extensive model verifications and convergence tests. In this presentation, we continue this examination with attention turned to the simulation of periodic surf zone breaking waves. In addition, the relative importance of preferential accumulation of dispersed bubbles in coherent vortex cores is investigated. Heavier-than-liquid particles, i.e. sediment, tend to accumulate in regions of high strain rate and avoid regions of intense vorticity. In contrast, lighter-than-liquid particles such as bubbles tend to congregate in vortical regions. We perform a three dimensional (3D) large-eddy simulation (LES) using a Navier-Stokes solver extended to incorporate entrained bubble populations, using an Eulerian-Eulerian formulation for the polydisperse bubble phase. The volume of fluid (VOF) method is used for free surface tracking. The model accounts for momentum exchange between dispersed bubbles and liquid phase as well as bubble-induced dissipation. We investigate the formation and evolution of breaking-induced turbulent coherent structures (BTCS) under both plunging and spilling periodic breaking waves as well as BTCS's role on the intermittent 3D distributions of bubble void fraction in the surf zone. We particularly examine the correlation between bubble void fractions and Q-criterion values to quantify this interaction. Also, the vertical transport of dispersed bubbles by downburst type coherent structures in the transition region is compared to that by obliquely descending eddies. All the results are summarized at different zones from outer to inner surf zone.

  15. Demonstrating the Importance of Bubbles and Viscosity on Volcanic Eruptions (United States)

    Namiki, A.


    The behavior of bubbles (exsolved volatile from magma) and viscosity of magma are important parameters that influence volcanic eruptions. Exsolved volatiles increase the volume of magma and reduce its density so that magma has sufficient volume and buoyancy force to erupt. Volatiles exsolve through nucleation and growth by diffusion and bubbles can expand as pressure is reduced. The time scale of diffusion depends on the viscosity of surrounding magma, and the expansion time scale of a bubble is also depends on the viscosity of magma. These control the time scale for volume change. If bubbles segregate from magma and collapse, the magma might not able to expand sufficiently to erupt violently. Whether a bubble can segregate from the liquid part of magma is also depends on viscosity of magma. In this poster, I introduce a straightforward demonstration to show the importance of bubbles and viscosity of magma on volcanic eruptions. To make bubbles, I use baking soda (NaHCO3) and citric acid. Reaction between them generates carbon dioxide (CO2) to make bubbles. I make citric acid solution gel by using agar at the bottom of a transparent glass and pour baking soda disolved corn syrup on top of the agar. This situation is a model of basally heated magma chamber. When water disolved magma (baking soda disolved corn syrup) receives sufficient heat (citric acid) bubbles are generated. I can change viscosity of corn syrup by varying the concentration of water. This demonstration shows how viscosity controls the time scale of volume change of bubbly magma and the distribution of bubbles in the fluid. In addition it helps to understand the important physical processes in volcanic eruption: bubble nucleation, diffusion grows, expansion, and bubble driving convection. I will perform a live demonstration at the site of the poster.

  16. Thrombelastography and tromboelastometry in assessing coagulopathy in trauma (United States)


    Death due to trauma is the leading cause of lost life years worldwide, with haemorrhage being responsible for 30-40% of trauma mortality and accounting for almost 50% of the deaths the initial 24 h. On admission, 25-35% of trauma patients present with coagulopathy, which is associated with a several-fold increase in morbidity and mortality. The recent introduction of haemostatic control resuscitation along with emerging understanding of acute post-traumatic coagulability, are important means to improve therapy and outcome in exsanguinating trauma patients. This change in therapy has emphasized the urgent need for adequate haemostatic assays to monitor traumatic coagulopathy and guide therapy. Based on the cell-based model of haemostasis, there is emerging consensus that plasma-based routine coagulation tests (RCoT), like prothrombin time (PT) and activated partial thromboplastin time (APTT), are inappropriate for monitoring coagulopathy and guide therapy in trauma. The necessity to analyze whole blood to accurately identify relevant coagulopathies, has led to a revival of the interest in viscoelastic haemostatic assays (VHA) such as Thromboelastography (TEG®) and Rotation Thromboelastometry (ROTEM®). Clinical studies including about 5000 surgical and/or trauma patients have reported on the benefit of using the VHA as compared to plasma-based assays, to identify coagulopathy and guide therapy. This article reviews the basic principles of VHA, the correlation between the VHA whole blood clot formation in accordance with the cell-based model of haemostasis, the current use of VHA-guided therapy in trauma and massive transfusion (haemostatic control resuscitation), limitations of VHA and future perspectives of this assay in trauma. PMID:19775458

  17. Bayesian Analysis of Bubbles in Asset Prices

    Directory of Open Access Journals (Sweden)

    Andras Fulop


    Full Text Available We develop a new model where the dynamic structure of the asset price, after the fundamental value is removed, is subject to two different regimes. One regime reflects the normal period where the asset price divided by the dividend is assumed to follow a mean-reverting process around a stochastic long run mean. The second regime reflects the bubble period with explosive behavior. Stochastic switches between two regimes and non-constant probabilities of exit from the bubble regime are both allowed. A Bayesian learning approach is employed to jointly estimate the latent states and the model parameters in real time. An important feature of our Bayesian method is that we are able to deal with parameter uncertainty and at the same time, to learn about the states and the parameters sequentially, allowing for real time model analysis. This feature is particularly useful for market surveillance. Analysis using simulated data reveals that our method has good power properties for detecting bubbles. Empirical analysis using price-dividend ratios of S&P500 highlights the advantages of our method.

  18. BEBC, the Big European Bubble Chamber

    CERN Multimedia

    CERN PhotoLab


    The vessel of the Big European Bubble Chamber, BEBC, was installed at the beginning of the 1970s. The large stainless-steel vessel, measuring 3.7 metres in diameter and 4 metres in height, was filled with 35 cubic metres of liquid (hydrogen, deuterium or a neon-hydrogen mixture), whose sensitivity was regulated by means of a huge piston weighing 2 tonnes. During each expansion, the trajectories of the charged particles were marked by a trail of bubbles, where liquid reached boiling point as they passed through it. The first images were recorded in 1973 when BEBC, equipped with the largest superconducting magnet in service at the time, first received beam from the PS. In 1977, the bubble chamber was exposed to neutrino and hadron beams at higher energies of up to 450 GeV after the SPS came into operation. By the end of its active life in 1984, BEBC had delivered a total of 6.3 million photographs to 22 experiments devoted to neutrino or hadron physics. Around 600 scientists from some fifty laboratories through...

  19. Wrinkling in the deflation of elastic bubbles

    KAUST Repository

    Aumaitre, Elodie


    The protein hydrophobin HFBII self-assembles into very elastic films at the surface of water; these films wrinkle readily upon compression. We demonstrate and study this wrinkling instability in the context of non-planar interfaces by forming HFBII layers at the surface of bubbles whose interfaces are then compressed by deflation of the bubble. By varying the initial concentration of the hydrophobin solutions, we are able to show that buckling occurs at a critical packing fraction of protein molecules on the surface. Independent experiments show that at this packing fraction the interface has a finite positive surface tension, and not zero surface tension as is usually assumed at buckling. We attribute this non-zero wrinkling tension to the finite elasticity of these interfaces. We develop a simple geometrical model for the evolution of the wrinkle length with further deflation and show that wrinkles grow rapidly near the needle (used for deflation) towards the mid-plane of the bubble. This geometrical model yields predictions for the length of wrinkles in good agreement with experiments independently of the rheological properties of the adsorbed layer. © 2013 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  20. Bubbles of nothing and supersymmetric compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Pillado, Jose J. [IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Shlaer, Benjamin [Department of Physics, University of Auckland,Private Bag 92019, Auckland (New Zealand); Institute of Cosmology, Department of Physics and Astronomy,Tufts University, Medford, MA 02155 (United States); Sousa, Kepa [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Urrestilla, Jon [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain)


    We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such “topologically unobstructed” cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to M{sub 3}×S{sub 1} presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this decay. This demonstrates the dynamical origin of the decay suppression, as opposed to the more familiar argument based on the spin structure. We conjecture that this is a generic mechanism that enforces stability of any topologically unobstructed supersymmetric compactification.

  1. The effects of gaseous bubble composition and gap distance on the characteristics of nanosecond discharges in distilled water (United States)

    Hamdan, Ahmad; Cha, Min Suk


    Electric discharge in liquids with bubbles can reduce the energy consumption, which increases treatment efficiency. We present an experimental study of nanosecond discharges in distilled water bubbled with the monoatomic gas argon and with the polyatomic gases methane, carbon dioxide, and propane. We monitor the time evolution of the voltage and current waveforms, and calculate the injected charges to characterize the discharge. We establish a relationship between the injected charges and the shape of the plasma by time-resolved imaging to find that increasing the size of the gap reduces the injected charges. Moreover, we determine the plasma characteristics, including electron density, excitation temperatures (for atoms and ions), and rotational temperature of the OH and C2 radicals found in the plasma. Our space- and time-averaged measurements allow us to propose a spatial distribution of the plasma that is helpful for understanding the plasma dynamics necessary to develop and optimize applications based on nanosecond discharges in bubbled liquids.

  2. Needle Thoracotomy in Trauma. (United States)

    Rottenstreich, Misgav; Fay, Shmuel; Gendler, Sami; Klein, Yoram; Arkovitz, Marc; Rottenstreich, Amihai


    Tension pneumothorax is one of the leading causes of preventable death in trauma patients. Needle thoracotomy (NT) is the currently accepted first-line intervention but has not been well validated. In this review, we have critically discussed the evidence for NT procedure, re-examined the recommendations by the Advanced Trauma Life Support organization and investigated the safest and most effective way of NT. The current evidence to support the use of NT is limited. However, when used, it should be applied in the 2nd intercostal space at midclavicular line using a catheter length of at least 4.5 cm. Alternative measures should be studied for better prehospital management of tension pneumothorax. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  3. Maxillofacial trauma scoring systems. (United States)

    Sahni, Vaibhav


    The changing complexity of maxillofacial fractures in recent years has created a situation where classical systems of classification of maxillofacial injuries fall short of defining trauma particularly that observed with high-velocity collisions where more than one region of the maxillofacial skeleton is affected. Trauma scoring systems designed specifically for the maxillofacial region are aimed to provide a more accurate assessment of the injury, its prognosis, the possible treatment outcomes, economics, length of hospital stay, and triage. The evolution and logic of such systems along with their merits and demerits are discussed. The author also proposes a new system to aid users in quickly and methodically choosing the system best suited to their needs without having to study a plethora of literature available in order to isolate their choice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Videolaparoscopia no trauma abdominal

    Directory of Open Access Journals (Sweden)

    Átila Varela Velho

    Full Text Available A videolaparoscopia (VL vem contribuindo de forma crescente, para diagnóstico e terapêutica de várias afecções cirúrgicas abdominais, introduzindo profundas mudanças na cirurgia contemporânea. Esse avanço incorporou-se também às urgências traumáticas, fazendo parte da avaliação diagnóstica e, às vezes, da terapêutica do trauma abdominal. Os autores apresentam uma revisão concisa da literatura sobre a VL no trauma, atualizando o tema e discutindo os aspectos mais relevantes das indicações, limitações e complicações do método.

  5. Trauma Systems. An Era of Development


    Lansink, K.W.W.


    The introduction of an inclusive trauma system in the Netherlands during last decade of the past century, has led to an improvement in Dutch trauma care. Eleven trauma regions were formed nationwide each surrounding a level I trauma center. All hospitals in a trauma region were assigned levels I, II or III, and are working together in a trauma network. Also part of the introduction of the inclusive trauma system was the regionalization of individual ambulance care and the introduction of mobi...

  6. Thromboembolic Complications Following Trauma (United States)


    intracranial hemorrhage following hypertension and ischemia due to hypoperfusion during shock. Cerebrovas- cular injury is only one mechanism, and a...fracture, neurologic exam not explained by grain imaging, Horner’s syndrome , LeFort I or II fractures, skull-base fractures involving the foramen lacerum, or...into the study, and it again fails to represent the total trauma popu- lation. For example, skull fractures, intracranial injuries, and extremity


    Directory of Open Access Journals (Sweden)

    Vanaja Ratnakumari Billa


    Full Text Available BACKGROUND In the recent times there has been increased incidence of abdominal trauma cases due to several causes. Quick and prompt intervention is needed to decrease the mortality of the patients. So we conducted a study to assess the cause and the management of abdominal trauma cases in our institution. The aim of this study was to know the incidence of blunt and penetrating injuries and their causes, age and sex incidence, importance of various investigations, mode of treatment offered and post-operative complications. To study the cause of death and evolve better management. MATERIALS AND METHODS The present study comprises of patients admitted to and operated in various surgical units in the Department of Surgery at Government General Hospital, attached to Guntur Medical College Guntur, from August 2014 to October 2016. RESULTS Increase incidence seen in age group 20-29 years (30%. Male predominance 77.5%. Mechanism of injury–road traffic accidents 65%. Isolated organ injury–colon and rectum 40%. Other associated injuries–chest injuries with rib fractures 7.5%. Complications–wound infection 17.5%. Duration of hospital stay 8–14 days. Bowel injury management–closure of perforation 84.6%. Resection anastomosis 15.38%. CONCLUSION Thorough clinical examination, diagnostic paracentesis, plain X-ray erect abdomen and ultrasound proved to be very helpful in the diagnosis of intra-abdominal injuries. Spleen is the commonest organ involved in blunt trauma and colon is the commonly injured organ in penetrating abdominal trauma, many patients have associated extremity and axial skeleton injuries. With advances in diagnosis and intensive care technologies, most patients of solid visceral injuries with hemodynamic stability can be managed conservatively. Surgical site infection is the most common complication following surgery. The mortality is high; reason might be patient reaching the hospital late, high incidence of postoperative septic

  8. The dynamics of underwater bubbles near deformable boundaries (United States)

    Milligan, Charles Dean

    Bubble hydrodynamic simulations including re-entrant jet impact and penetration are performed using domain partitioning methods along with traditional boundary element techniques. By combining the new multi-subdomain scheme with the boundary conditions for jet impact and penetration presented by Zhang, Duncan and Chahine (1), continuous simulations of the jet impact and penetration process are achieved. The strategy is verified through comparisons with theoretical and numerical potential flow problems, and proves to be more stable than existing jet impact and penetration models (1). The fluid model is used to study bubble-bubble interactions and bubble-structure interaction phenomena. The fluid model is coupled to a nonlinear finite element code through fully nonlinear coupling equations. For the first time, stable fluid-structure interaction calculations with jet impact are performed. The method is used to simulate the interaction between a small explosion bubble and aluminum plates of different thicknesses. The results are compared with experimental results (2, 3), and the predicted bubble motions prior to and during jet penetration are in agreement with the measurements. In the experiments, secondary cavities form on the surface of the thinnest plate. The secondary cavitation is not rigorously modeled in the numerical scheme but reasonable agreement between predicted and measured plate strain was achieved. The simulations help identify the role of secondary cavitation in the interaction process. The multi-subdomain fluid model is also used to simulate the interaction between two explosion bubbles generated with a time delay between the two explosive detonations. The approach is verified through direct comparisons with experimental results (4, 5). The numerical model shows that when the time delay between the two detonations is small, the inertia of the fluid around each bubble is comparable, so the bubbles act as images of each other. For larger time delays

  9. Investigation on Effect of Gravity Level on Bubble Distribution and Liquid Turbulence Modification for Horizontal Channel Bubbly Flow (United States)

    Pang, M. J.; Wei, J. J.; Yu, B.


    Bubbly flows in the horizontal channel or pipe are often seen in industrial engineering fields, so it is very necessary to fully understand hydrodynamics of horizontal bubbly flows so as to improve industrial efficiency and to design an efficient bubbly system. In this paper, in order to fully understand mechanisms of phase distribution and liquid-phase turbulence modulation in the horizontal channel bubbly flow, the influence of gravity level on both of them were investigated in detail with the developed Euler-Lagrange two-way coupling method. For the present investigation, the buoyance on bubbles in both sides of the channel always points to the corresponding wall in order to study the liquid-phase turbulence modulation by bubbles under the symmetric physical condition. The present investigation shows that the gravity level has the important influence on the wall-normal distribution of bubbles and the liquid-phase turbulence modulation; the higher the gravity level is, the more bubbles can overcome the wall-normal resistance to accumulate near the wall, and the more obvious the liquid-phase turbulence modulation is. It is also discovered that interphase forces on the bubbles are various along the wall-normal direction, which leads to the fact that the bubble located in different wall-normal places has a different wall-normal velocity.

  10. Imaging of laryngeal trauma

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Minerva, E-mail: [Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14 (Switzerland); Leuchter, Igor, E-mail: [Department of Otorhinolaryngology and Cervico-facial Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14 (Switzerland); Platon, Alexandra, E-mail: [Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14 (Switzerland); Becker, Christoph D., E-mail: [Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14 (Switzerland); Dulguerov, Pavel, E-mail: [Department of Otorhinolaryngology and Cervico-facial Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14 (Switzerland); Varoquaux, Arthur, E-mail: [Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14 (Switzerland)


    External laryngeal trauma is a rare but potentially life-threatening situation in the acutely injured patient. Trauma mechanism and magnitude, maximum focus of the applied force, and patient related factors, such as age and ossification of the laryngeal cartilages influence the spectrum of observed injuries. Their correct diagnosis and prompt management are paramount in order to avoid patient death or long-term impairment of breathing, swallowing and speaking. The current review provides a comprehensive approach to the radiologic interpretation of imaging studies performed in patients with suspected laryngeal injury. It describes the key anatomic structures that are relevant in laryngeal trauma and discusses the clinical role of multidetector computed tomography (MDCT) and magnetic resonance imaging (MRI) in the acute emergency situation. The added value of two-dimensional multiplanar reconstructions (2D MPR), three-dimensional volume rendering (3D VR) and virtual endoscopy (VE) for the non-invasive evaluation of laryngeal injuries and for treatment planning is discussed. The clinical presentation, biomechanics of injury, diagnostic pitfalls and pearls, common and uncommon findings are reviewed with emphasis of fracture patterns, involvement of laryngeal joints, intra- and extralaryngeal soft tissue injuries, and complications seen in the acute emergency situation. The radiologic appearance of common and less common long-term sequelae, as well as treatment options are equally addressed.

  11. Imaging of laryngeal trauma. (United States)

    Becker, Minerva; Leuchter, Igor; Platon, Alexandra; Becker, Christoph D; Dulguerov, Pavel; Varoquaux, Arthur


    External laryngeal trauma is a rare but potentially life-threatening situation in the acutely injured patient. Trauma mechanism and magnitude, maximum focus of the applied force, and patient related factors, such as age and ossification of the laryngeal cartilages influence the spectrum of observed injuries. Their correct diagnosis and prompt management are paramount in order to avoid patient death or long-term impairment of breathing, swallowing and speaking. The current review provides a comprehensive approach to the radiologic interpretation of imaging studies performed in patients with suspected laryngeal injury. It describes the key anatomic structures that are relevant in laryngeal trauma and discusses the clinical role of multidetector computed tomography (MDCT) and magnetic resonance imaging (MRI) in the acute emergency situation. The added value of two-dimensional multiplanar reconstructions (2D MPR), three-dimensional volume rendering (3D VR) and virtual endoscopy (VE) for the non-invasive evaluation of laryngeal injuries and for treatment planning is discussed. The clinical presentation, biomechanics of injury, diagnostic pitfalls and pearls, common and uncommon findings are reviewed with emphasis of fracture patterns, involvement of laryngeal joints, intra- and extralaryngeal soft tissue injuries, and complications seen in the acute emergency situation. The radiologic appearance of common and less common long-term sequelae, as well as treatment options are equally addressed. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  12. Analysis of the real estate market in Las Vegas: Bubble, seasonal patterns, and prediction of the CSW indices (United States)

    Zhou, Wei-Xing; Sornette, Didier


    We analyze 27 house price indices of Las Vegas from June 1983 to March 2005, corresponding to 27 different zip codes. These analyses confirm the existence of a real estate bubble, defined as a price acceleration faster than exponential, which is found, however, to be confined to a rather limited time interval in the recent past from approximately 2003 to mid-2004 and has progressively transformed into a more normal growth rate comparable to pre-bubble levels in 2005. There has been no bubble till 2002 except for a medium-sized surge in 1990. In addition, we have identified a strong yearly periodicity which provides a good potential for fine-tuned prediction from month to month. A monthly monitoring using a model that we have developed could confirm, by testing the intra-year structure, if indeed the market has returned to “normal” or if more turbulence is expected ahead. We predict the evolution of the indices one year ahead, which is validated with new data up to September 2006. The present analysis demonstrates the existence of very significant variations at the local scale, in the sense that the bubble in Las Vegas seems to have preceded the more global USA bubble and has ended approximately two years earlier (mid-2004 for Las Vegas compared with mid-2006 for the whole of the USA).

  13. A novel closed system bubble column photobioreactor for detailed characterisation of micro and macroalgal growth

    DEFF Research Database (Denmark)

    Holdt, Susan Løvstad; Christensen, L.; Iversen, J. J.L.

    Growth of the marine microalgae Tetraselmis striata Butcher and macroalgae Chondrus crispus Stackhouse was investigated in batch cultures in a closed system bubble column photobioreactor. A laboratory cultivation system was constructed that allowed on-line monitoring of temperature, pH and dissol......Growth of the marine microalgae Tetraselmis striata Butcher and macroalgae Chondrus crispus Stackhouse was investigated in batch cultures in a closed system bubble column photobioreactor. A laboratory cultivation system was constructed that allowed on-line monitoring of temperature, p...... produced oxygen was catalytically removed from the closed system by addition of hydrogen over a palladium catalyst to avoid photorespiration and to quantify oxygen production. In addition, the bubble column photobioreactor was well suited for cultivation of algae due to fast gas to liquid mass transfer (k......La) and fast mixing provided by split and dual sparging. Specific growth rates (SGRs) were measured using both off-line and on-line measurements. The latter was possible, because linear correlation was observed between carbon dioxide addition and optical density, which proves that carbon dioxide addition may...

  14. A Study of Drag Force in Isothermal Bubbly Flow

    Directory of Open Access Journals (Sweden)

    C. Li


    Full Text Available Driven by the extensive demands of simulating highly concentrated gas bubbly flows in many engineering fields, numerical studies have been performed to investigate the neighbouring effect of a swarm of bubbles on the interfacial drag forces. In this study, a novel drag coefficient correlation (Simonnet et al., 2007 in terms of local void fraction coupled with the population balance model based on average bubble number density (ABND has been implemented and compared with Ishii-Zuber densely distributed fluid particles drag model. The predicted local radial distributions of three primitive variables: gas void fraction, Sauter mean bubble diameter, and gas velocity, are validated against the experimental data of Hibiki et al. (2001. In general, satisfactory agreements between predicted and measured results are achieved by both drag force models. With additional consideration for closely packed bubbles, the latest coefficient model by Simonnet et al. (2007 shows considerably better performance in capturing the reduction of drag forces incurred by neighbouring bubbles.

  15. An apparatus to measure electrical charge of bubble swarms. (United States)

    Uddin, S; Jin, L; Mirnezami, M; Finch, J A


    An apparatus has been developed to characterize bubble charge by measuring the swarm potential of gas bubbles. The technique allows in-process measurement of all system variables associated with bubble surface electrical charge: swarm potential, solution conductivity, gas holdup, pH and bubble size distribution. The method was validated by comparing with literature iso-electric point (iep) values. Bubble swarm potential was measured as a function of concentration and pH for a series of non-ionic surfactant frothers, ionic surfactant collectors and multivalent metal ions. Results showed good agreement with established theory and prior experimental findings. The setup is a step towards measurement of charge on flotation size range of bubble swarms. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Bubble nucleation from micro-crevices in a shear flow (United States)

    Groß, T. F.; Bauer, J.; Ludwig, G.; Fernandez Rivas, D.; Pelz, P. F.


    The formation of gas bubbles at gas cavities located in walls bounding the flow occurs in many technical applications, but is usually hard to observe. Even though, the presence of a fluid flow undoubtedly affects the formation of bubbles, there are very few studies that take this fact into account. In the present paper new experimental results on bubble formation (diffusion-driven nucleation) from surface nuclei in a shear flow are presented. The observed gas-filled cavities are micrometre-sized blind holes etched in silicon substrates. We measure the frequency of bubble generation (nucleation rate), the size of the detaching bubbles and analyse the growth of the surface nuclei. The experimental findings support an extended understanding of bubble formation as a self-excited cyclic process and can serve as validation data for analytical and numerical models.

  17. Bubble migration in a rotating, liquid-filled sphere (United States)

    Annamalai, P.; Subramanian, R. S.; Cole, R.


    Results and analysis of ground-based experiments performed to aid in designing experiments on the behavior of bubbles in a rotating liquid body on board the Shuttle in free fall are presented. Spherical shells filled with silicone oil containing a small gas bubble were spun and filmed by high speed motion picture photography. The rotation of the shell and the trajectory of the bubble motion were recorded and the film was exposed to a motion analyzer connected to a keypunch. The analyzer measured Cartesian coordinates as well as angle, frame number, and rotation rate. Optical correction equations were employed to determine the apparent bubble trajectory relative to an inertial frame of reference. An analytical model for the bubble motion was defined, yielding predictions of velocity and position at different times. Rotation of the fluid container is concluded to aid in centering the bubbles.

  18. The Morphology of Equatorial Plasma Bubbles – a review

    Directory of Open Access Journals (Sweden)

    Hyosub Kil


    Full Text Available Plasma bubbles that occur in the equatorial F-region make up one of the most distinguishing phenomena in the ionosphere. Bubbles represent plasma depletions with respect to the background ionosphere, and are the major source of electron density irregularities in the equatorial F-region. Such bubbles are seen as plasma depletion holes (in situ satellite observations, vertical plumes (radar observations, and emission-depletion bands elongated in the north-south direction (optical observations. However, no technique can observe the whole three-dimensional structure of a bubble. Various aspects of bubbles identified using different techniques indicate that a bubble has a “shell” structure. This paper reviews the development of the concepts of “bubble” and “shell” in this context.

  19. The equilibrium shape of bubbles on curved interfaces (United States)

    Bird, James; Poe, Daniel; Walls, Peter


    The equilibrium shape for a bubble resting at a free surface depends on a balance of hydrostatic and capillary forces, with the smallest bubbles approximating a sphere and a hemisphere for the largest. This shape has been shown to be important to several processes ranging from gas transfer across the thin film cap to the production of jet droplets. Past works calculating the equilibrium shape assume that the interface is flat. However, there are instances where the curvature of the boundary may be comparable to the bubble itself. For example, a bubble bursting on the surface of a rain droplet. Here we relax the assumption of a flat interface and extend the classic bubble shape calculations to account for a curved interface boundary. An understanding of the extent of this deformation and the precise equilibrium bubble shape is important to applications in fields ranging from air-sea exchange to combustion dynamics. We acknowledge financial support from NSF Grant No. 1351466.

  20. Bubbles Outside the Plume During the LUMINY Wind-Wave Experiment

    NARCIS (Netherlands)

    Leeuw, G. de; Leifer, I.


    Since many bubble-mediated processes are size dependent, it is often necessary to characterize the bubble distribution over the full size spectrum. For example, in regards to bubble-mediated gas transfer, small bubbles are important for insoluble gases like helium, while large bubbles are important