WorldWideScience

Sample records for bubble distribution acoustic

  1. Acoustic waves in polydispersed bubbly liquids

    International Nuclear Information System (INIS)

    Gubaidullin, D A; Gubaidullina, D D; Fedorov, Yu V

    2014-01-01

    The propagation of acoustic waves in polydispersed mixtures of liquid with two sorts of gas bubbles each of which has its own bubble size distribution function is studied. The system of the differential equations of the perturbed motion of a mixture is presented, the dispersion relation is obtained. Equilibrium speed of sound, low-frequency and high-frequency asymptotes of the attenuation coefficient are found. Comparison of the developed theory with known experimental data is presented

  2. Acoustic waves in polydispersed bubbly liquids

    Science.gov (United States)

    Gubaidullin, D. A.; Gubaidullina, D. D.; Fedorov, Yu V.

    2014-11-01

    The propagation of acoustic waves in polydispersed mixtures of liquid with two sorts of gas bubbles each of which has its own bubble size distribution function is studied. The system of the differential equations of the perturbed motion of a mixture is presented, the dispersion relation is obtained. Equilibrium speed of sound, low-frequency and high-frequency asymptotes of the attenuation coefficient are found. Comparison of the developed theory with known experimental data is presented.

  3. Sonochemistry and the acoustic bubble

    CERN Document Server

    Grieser, Franz; Enomoto, Naoya; Harada, Hisashi; Okitsu, Kenji; Yasui, Kyuichi

    2015-01-01

    Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the p

  4. Vapor Bubbles in Flow and Acoustic Fields

    NARCIS (Netherlands)

    Prosperetti, Andrea; Hao, Yue; Sadhal, S.S

    2002-01-01

    A review of several aspects of the interaction of bubbles with acoustic and flow fields is presented. The focus of the paper is on bubbles in hot liquids, in which the bubble contains mostly vapor, with little or no permanent gas. The topics covered include the effect of translation on condensation

  5. Acoustic Cluster Therapy: In Vitro and Ex Vivo Measurement of Activated Bubble Size Distribution and Temporal Dynamics.

    Science.gov (United States)

    Healey, Andrew John; Sontum, Per Christian; Kvåle, Svein; Eriksen, Morten; Bendiksen, Ragnar; Tornes, Audun; Østensen, Jonny

    2016-05-01

    Acoustic cluster technology (ACT) is a two-component, microparticle formulation platform being developed for ultrasound-mediated drug delivery. Sonazoid microbubbles, which have a negative surface charge, are mixed with micron-sized perfluoromethylcyclopentane droplets stabilized with a positively charged surface membrane to form microbubble/microdroplet clusters. On exposure to ultrasound, the oil undergoes a phase change to the gaseous state, generating 20- to 40-μm ACT bubbles. An acoustic transmission technique is used to measure absorption and velocity dispersion of the ACT bubbles. An inversion technique computes bubble size population with temporal resolution of seconds. Bubble populations are measured both in vitro and in vivo after activation within the cardiac chambers of a dog model, with catheter-based flow through an extracorporeal measurement flow chamber. Volume-weighted mean diameter in arterial blood after activation in the left ventricle was 22 μm, with no bubbles >44 μm in diameter. After intravenous administration, 24.4% of the oil is activated in the cardiac chambers. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Bubbles in piezo-acoustic inkjet printing

    NARCIS (Netherlands)

    Lohse, D.; Jeurissen, R.J.M.; de Jong, J.; Versluis, M.; Wijshoff, H.M.A.; van den Berg, M.; Reinten, H.

    2008-01-01

    Ink-jet printing is considered as the hitherto most successful application of microfluidics. A notorious problem in piezo-acoustic ink-jet systems is the formation of air bubbles during operation. They seriously disturb the acoustics and can cause the droplet formation to stop. We could show by a

  7. Synchrotron x-ray imaging of acoustic cavitation bubbles induced by acoustic excitation

    International Nuclear Information System (INIS)

    Jung, Sung Yong; Park, Han Wook; Park, Sung Ho; Lee, Sang Joon

    2017-01-01

    The cavitation induced by acoustic excitation has been widely applied in various biomedical applications because cavitation bubbles can enhance the exchanges of mass and energy. In order to minimize the hazardous effects of the induced cavitation, it is essential to understand the spatial distribution of cavitation bubbles. The spatial distribution of cavitation bubbles visualized by the synchrotron x-ray imaging technique is compared to that obtained with a conventional x-ray tube. Cavitation bubbles with high density in the region close to the tip of the probe are visualized using the synchrotron x-ray imaging technique, however, the spatial distribution of cavitation bubbles in the whole ultrasound field is not detected. In this study, the effects of the ultrasound power of acoustic excitation and working medium on the shape and density of the induced cavitation bubbles are examined. As a result, the synchrotron x-ray imaging technique is useful for visualizing spatial distributions of cavitation bubbles, and it could be used for optimizing the operation conditions of acoustic cavitation. (paper)

  8. Acoustic bubble sorting for ultrasound contrast agent enrichment.

    Science.gov (United States)

    Segers, Tim; Versluis, Michel

    2014-05-21

    An ultrasound contrast agent (UCA) suspension contains encapsulated microbubbles with a wide size distribution, with radii ranging from 1 to 10 μm. Medical transducers typically operate at a single frequency, therefore only a small selection of bubbles will resonate to the driving ultrasound pulse. Thus, the sensitivity can be improved by narrowing down the size distribution. Here, we present a simple lab-on-a-chip method to sort the population of microbubbles on-chip using a traveling ultrasound wave. First, we explore the physical parameter space of acoustic bubble sorting using well-defined bubble sizes formed in a flow-focusing device, then we demonstrate successful acoustic sorting of a commercial UCA. This novel sorting strategy may lead to an overall improvement of the sensitivity of contrast ultrasound by more than 10 dB.

  9. The Minnaert bubble: an acoustic approach

    Energy Technology Data Exchange (ETDEWEB)

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude [Laboratoire Matiere et Systemes Complexes, Universite Paris Diderot and CNRS UMR 7057, 10 rue Alice Domont et Leonie Duquet, 75013 Paris (France); Leroy, Valentin [Laboratoire Ondes et Acoustique, Universite Paris 7 and CNRS UMR 7587, ESPCI, 10 rue Vauquelin, 75005 Paris (France)], E-mail: martin.devaud@univ-paris-diderot.fr

    2008-11-15

    We propose an ab initio introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian variables. In unbounded water, the air-water system has a continuum of eigenmodes, some of them correspond to regular Fabry-Perot resonances. A singular resonance, the lowest one, is shown to coincide with that of Minnaert. In bounded water, the eigenmodes spectrum is discrete, with a finite fundamental frequency. A spectacular quasi-locking of the latter occurs if it happens to exceed the Minnaert frequency, which provides an unforeseen one-bubble alternative version of the famous 'hot chocolate effect'. In the (low) frequency domain in which sound propagation inside the bubble reduces to a simple 'breathing' (i.e. inflation/deflation), the light air bubble can be 'dressed' by the outer water pressure forces, and is turned into the heavy Minnaert bubble. Thanks to this unexpected renormalization process, we demonstrate that the Minnaert bubble definitely behaves like a true harmonic oscillator of the spring-bob type, but with a damping term and a forcing term in apparent disagreement with those commonly admitted in the literature. Finally, we underline the double role played by the water. In order to tell the water motion associated with water compressibility (i.e. the sound) from the simple incompressible accompaniment of the bubble breathing, we introduce a new picture analogous to the electromagnetic radiative picture in Coulomb gauge, which naturally leads us to split the water displacement in an instantaneous and a retarded part. The Minnaert renormalized mass of the dressed bubble is then automatically recovered.

  10. Numerical simulation of single bubble dynamics under acoustic travelling waves.

    Science.gov (United States)

    Ma, Xiaojian; Huang, Biao; Li, Yikai; Chang, Qing; Qiu, Sicong; Su, Zheng; Fu, Xiaoying; Wang, Guoyu

    2018-04-01

    The objective of this paper is to apply CLSVOF method to investigate the single bubble dynamics in acoustic travelling waves. The Naiver-Stokes equation considering the acoustic radiation force is proposed and validated to capture the bubble behaviors. And the CLSVOF method, which can capture the continuous geometric properties and satisfies mass conservation, is applied in present work. Firstly, the regime map, depending on the dimensionless acoustic pressure amplitude and acoustic wave number, is constructed to present different bubble behaviors. Then, the time evolution of the bubble oscillation is investigated and analyzed. Finally, the effect of the direction and the damping coefficient of acoustic wave propagation on the bubble behavior are also considered. The numerical results show that the bubble presents distinct oscillation types in acoustic travelling waves, namely, volume oscillation, shape oscillation, and splitting oscillation. For the splitting oscillation, the formation of jet, splitting of bubble, and the rebound of sub-bubbles may lead to substantial increase in pressure fluctuations on the boundary. For the shape oscillation, the nodes and antinodes of the acoustic pressure wave contribute to the formation of the "cross shape" of the bubble. It should be noted that the direction of the bubble translation and bubble jet are always towards the direction of wave propagation. In addition, the damping coefficient causes bubble in shape oscillation to be of asymmetry in shape and inequality in size, and delays the splitting process. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Acoustic emission events from sodium vapour bubble collapsing: a stochastic model

    Energy Technology Data Exchange (ETDEWEB)

    Colombino, A; Dentico, G; Pacilio, N; Papalia, B; Taglienti, S; Tosi, V; Vigo, A [Comitato Nazionale per l' Energia Nucleare, Casaccia (Italy). Centro di Studi Nucleari; Galli, C [Rome Univ. (Italy). Ist. di Matematica

    1981-01-01

    The forward Kolomogorov equation method has been applied to a zero-dimensional model which describes the time distribution of acoustic emissions from sodium vapour bubble collapsing. Processes taken into account as components for outlining the upstated phenomenon are: energy generation, energy dissipation, bubble creation, acoustic emission and energy release from bubble collapsing. Processes involve affect or are induced by a population of particles (bubbles, acoustic pulses) and pseudoparticles (energetic units). A formulation is obtained for the expected values of some stochastic indicators, i.e., factorial moments and cumulants, autocorrelation functions, waiting time distribution between contiguous events, of the time series consisting of acoustic emission pulses as detected by a suitable sensor. Preliminary, but promising, validation of the model and a sound prelude to effective boiling regime diagnosing is obtained by processing data from the out-of-pile CFNa loop in Grenoble, France. Data are collected from a piezoelectric accelerometer located nearby the circuit.

  12. Characterization of Bubble Size Distributions within a Bubble Column

    OpenAIRE

    Shahrouz Mohagheghian; Brian R. Elbing

    2018-01-01

    The current study experimentally examines bubble size distribution (BSD) within a bubble column and the associated characteristic length scales. Air was injected into a column of water via a single injection tube. The column diameter (63–102 mm), injection tube diameter (0.8–1.6 mm) and superficial gas velocity (1.4–55 mm/s) were varied. Large samples (up to 54,000 bubbles) of bubble sizes measured via 2D imaging were used to produce probability density functions (PDFs). The PDFs were used to...

  13. Acoustic trapping in bubble-bounded micro-cavities

    Science.gov (United States)

    O'Mahoney, P.; McDougall, C.; Glynne-Jones, P.; MacDonald, M. P.

    2016-12-01

    We present a method for controllably producing longitudinal acoustic trapping sites inside microfluidic channels. Air bubbles are injected into a micro-capillary to create bubble-bounded `micro-cavities'. A cavity mode is formed that shows controlled longitudinal acoustic trapping between the two air/water interfaces along with the levitation to the centre of the channel that one would expect from a lower order lateral mode. 7 μm and 10 μm microspheres are trapped at the discrete acoustic trapping sites in these micro-cavities.We show this for several lengths of micro-cavity.

  14. Bubble Size Distribution in a Vibrating Bubble Column

    Science.gov (United States)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  15. Theoretical and Experimental Investigation of Particle Trapping via Acoustic Bubbles

    Science.gov (United States)

    Chen, Yun; Fang, Zecong; Merritt, Brett; Saadat-Moghaddam, Darius; Strack, Dillon; Xu, Jie; Lee, Sungyon

    2014-11-01

    One important application of lab-on-a-chip devices is the trapping and sorting of micro-objects, with acoustic bubbles emerging as an effective, non-contact method. Acoustically actuated bubbles are known to exert a secondary radiation force on micro-particles and trap them, when this radiation force exceeds the drag force that acts to keep the particles in motion. In this study, we theoretically evaluate the magnitudes of these two forces for varying actuation frequencies and voltages. In particular, the secondary radiation force is calculated directly from bubble oscillation shapes that have been experimentally measured for varying acoustic parameters. Finally, based on the force estimates, we predict the threshold voltage and frequency for trapping and compare them to the experimental results.

  16. An acoustical bubble counter for superheated drop detectors

    International Nuclear Information System (INIS)

    Taylor, C.; Montvila, D.; Flynn, D.; Brennan, C.; D'Errico, F.

    2006-01-01

    A new bubble counter has been developed based on the well-established approach of detecting vaporization events acoustically in superheated drop detectors (SDDs). This counter is called the Framework Scientific ABC 1260, and it represents a major improvement over prior versions of this technology. By utilizing advanced acoustic pattern recognition software, the bubble formation event can be differentiated from ambient background noise, as well as from other acoustic signatures. Additional structural design enhancements include a relocation of the electronic components to the bottom of the device; thus allowing for greater stability, easier access to vial SDDs without exposure to system electronics. Upgrades in the electronics permit an increase in the speed of bubble detection by almost 50%, compared with earlier versions of the counters. By positioning the vial on top of the device, temperature and sound insulation can be accommodated for extreme environments. Lead shells can also be utilized for an enhanced response to high-energy neutrons. (authors)

  17. An acoustical bubble counter for superheated drop detectors.

    Science.gov (United States)

    Taylor, Chris; Montvila, Darius; Flynn, David; Brennan, Christopher; d'Errico, Francesco

    2006-01-01

    A new bubble counter has been developed based on the well-established approach of detecting vaporization events acoustically in superheated drop detectors (SDDs). This counter is called the Framework Scientific ABC 1260, and it represents a major improvement over prior versions of this technology. By utilizing advanced acoustic pattern recognition software, the bubble formation event can be differentiated from ambient background noise, as well as from other acoustic signatures. Additional structural design enhancements include a relocation of the electronic components to the bottom of the device; thus allowing for greater stability, easier access to vial SDDs without exposure to system electronics. Upgrades in the electronics permit an increase in the speed of bubble detection by almost 50%, compared with earlier versions of the counters. By positioning the vial on top of the device, temperature and sound insulation can be accommodated for extreme environments. Lead shells can also be utilized for an enhanced response to high-energy neutrons.

  18. Observations of the Dynamics and Acoustics of Travelling Bubble Cavitation

    Science.gov (United States)

    1990-06-25

    Bubbles 6.1 Introduction The detailed relationship between the collapse mechanism of hydrodynamic cavitation bubbles and the resulting noise generation is...Contribution to 11th International Towing Tank Conference. Il’ichev, V. I. 1968. Statistical Model of the Onset of Hydrodynamic Cavitation Noise. Soviet...On the Theory of Hydrodynamic Cavitation Noise. Soviet Physics-Acoustics, Vol. 15, pp. 494-498. Marboe, M. L., Billet, M. L. and Thompson, D. E. 1986

  19. Acoustic characteristics of bubble bursting at the surface of a high-viscosity liquid

    International Nuclear Information System (INIS)

    Liu Xiao-Bo; Zhang Jian-Run; Li Pu

    2012-01-01

    An acoustic pressure model of bubble bursting is proposed. An experiment studying the acoustic characteristics of the bursting bubble at the surface of a high-viscosity liquid is reported. It is found that the sudden bursting of a bubble at the high-viscosity liquid surface generates N-shape wave at first, then it transforms into a jet wave. The fundamental frequency of the acoustic signal caused by the bursting bubble decreases linearly as the bubble size increases. The results of the investigation can be used to understand the acoustic characteristics of bubble bursting. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Characterization of Bubble Size Distributions within a Bubble Column

    Directory of Open Access Journals (Sweden)

    Shahrouz Mohagheghian

    2018-02-01

    Full Text Available The current study experimentally examines bubble size distribution (BSD within a bubble column and the associated characteristic length scales. Air was injected into a column of water via a single injection tube. The column diameter (63–102 mm, injection tube diameter (0.8–1.6 mm and superficial gas velocity (1.4–55 mm/s were varied. Large samples (up to 54,000 bubbles of bubble sizes measured via 2D imaging were used to produce probability density functions (PDFs. The PDFs were used to identify an alternative length scale termed the most frequent bubble size (dmf and defined as the peak in the PDF. This length scale as well as the traditional Sauter mean diameter were used to assess the sensitivity of the BSD to gas injection rate, injector tube diameter, injection tube angle and column diameter. The dmf was relatively insensitive to most variation, which indicates these bubbles are produced by the turbulent wakes. In addition, the current work examines higher order statistics (standard deviation, skewness and kurtosis and notes that there is evidence in support of using these statistics to quantify the influence of specific parameters on the flow-field as well as a potential indicator of regime transitions.

  1. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors.

    Science.gov (United States)

    Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-06-10

    Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L).

  2. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors

    Directory of Open Access Journals (Sweden)

    Ivan Felis

    2016-06-01

    Full Text Available Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L.

  3. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    International Nuclear Information System (INIS)

    Kwon, J O; Yang, J S; Lee, S J; Rhee, K; Chung, S K

    2011-01-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  4. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    Science.gov (United States)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  5. Influences of non-uniform pressure field outside bubbles on the propagation of acoustic waves in dilute bubbly liquids.

    Science.gov (United States)

    Zhang, Yuning; Du, Xiaoze

    2015-09-01

    Predictions of the propagation of the acoustic waves in bubbly liquids is of great importance for bubble dynamics and related applications (e.g. sonochemistry, sonochemical reactor design, biomedical engineering). In the present paper, an approach for modeling the propagation of the acoustic waves in dilute bubbly liquids is proposed through considering the non-uniform pressure field outside the bubbles. This approach is validated through comparing with available experimental data in the literature. Comparing with the previous models, our approach mainly improves the predictions of the attenuation of acoustic waves in the regions with large kR0 (k is the wave number and R0 is the equilibrium bubble radius). Stability of the oscillating bubbles under acoustic excitation are also quantitatively discussed based on the analytical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Measurement of pressure on a surface using bubble acoustic resonances

    International Nuclear Information System (INIS)

    Aldham, Ben; Manasseh, Richard; Liffman, Kurt; Šutalo, Ilija D; Illesinghe, Suhith; Ooi, Andrew

    2010-01-01

    The frequency response of gas bubbles as a function of liquid ambient pressure was measured and compared with theory. A bubble size with equivalent spherical radius of 2.29 mm was used over a frequency range of 1000–1500 Hz. The ultimate aim is to develop an acoustic sensor that can measure static pressure and is sensitive to variations as small as a few kPa. The classical bubble resonance frequency is known to vary with ambient pressure. Experiments were conducted with a driven bubble in a pressurizable tank with a signal processing system designed to extract the resonant peak. Since the background response of the containing tank is significant, particularly near tank-modal resonances, it must be carefully removed from the bubble response signal. A dual-hydrophone method was developed to allow rapid and reliable real-time measurements. The expected pressure dependence was found. In order to obtain a reasonable match with theory, the classical theory was modified by the introduction of a 'mirror bubble' to account for the influence of a nearby surface. (technical design note)

  7. Bubble dynamics under acoustic excitation with multiple frequencies

    International Nuclear Information System (INIS)

    Zhang, Y N; Zhang, Y N; Li, S C

    2015-01-01

    Because of its magnificent mechanical and chemical effects, acoustic cavitation plays an important role in a broad range of biomedical, chemical and mechanical engineering problems. Particularly, irradiation of the multiple frequency acoustic wave could enhance the effects of cavitation. The advantages of employment of multi-frequency ultrasonic field include decreasing the cavitation thresholds, promoting cavitation nuclei generation, increasing the mass transfer and improving energy efficiency. Therefore, multi-frequency ultrasonic systems are employed in a variety of applications, e.g., to enhance the intensity of sonoluminenscence, to increase efficiency of sonochemical reaction, to improve the accuracy of ultrasound imaging and the efficiency of tissue ablation. Compared to single-frequency systems, a lot of new features of bubble dynamics exist in multi-frequency systems, such as special properties of oscillating bubbles, unique resonances in the bubble response curves, and unusual chaotic behaviours. In present paper, the underlying mechanisms of the cavitation effects under multi-frequency acoustical excitation are also briefly introduced

  8. The bubble distribution in glass refining channels

    Czech Academy of Sciences Publication Activity Database

    Němec, Lubomír; Cincibusová, P.

    2005-01-01

    Roč. 49, č. 4 (2005), s. 269-277 ISSN 0862-5468 Institutional research plan: CEZ:AV0Z40320502 Keywords : glass fining * bubble distribution s models * horizontal channel Subject RIV: CA - Inorganic Chemistry Impact factor: 0.463, year: 2005

  9. Acoustic bubble sorting for ultrasound contrast agent enrichment

    NARCIS (Netherlands)

    Segers, T.J.; Versluis, Michel

    2014-01-01

    An ultrasound contrast agent (UCA) suspension contains encapsulated microbubbles with a wide size distribution, with radii ranging from 1 to 10 μm. Medical transducers typically operate at a single frequency, therefore only a small selection of bubbles will resonate to the driving ultrasound pulse.

  10. Reflection and Transmission of Acoustic Waves through the Layer of Multifractional Bubbly Liquid

    Directory of Open Access Journals (Sweden)

    Gubaidullin Damir Anvarovich

    2018-01-01

    Full Text Available The mathematical model that determines reflection and transmission of acoustic wave through a medium containing multifractioanl bubbly liquid is presented. For the water-water with bubbles-water model the wave reflection and transmission coefficients are calculated. The influence of the bubble layer thickness on the investigated coefficients is shown. The theory compared with the experiment. It is shown that the theoretical results describe and explain well the available experimental data. It is revealed that the special dispersion and dissipative properties of the layer of bubbly liquid can significantly influence on the reflection and transmission of acoustic waves in multilayer medium

  11. Acoustic levitation of soap bubbles in air: Beyond the half-wavelength limit of sound

    Science.gov (United States)

    Zang, Duyang; Lin, Kejun; Li, Lin; Chen, Zhen; Li, Xiaoguang; Geng, Xingguo

    2017-03-01

    We report on the behavior of levitated soap bubbles in a single-axis acoustic field. For a single bubble, its surface in the polar regions is under compression, but in the equatorial region, it is under suction. Levitation becomes unstable when the height of the bubble approaches half the wavelength of the sound wave because horizontal fluctuations lead to a negative recovery force and a negative levitation force. Vertically stacked double bubbles notably can be stable under levitation if their total vertical length is ˜5λ/6, significantly beyond λ/2 in consequence of the formation of a toroidal high-pressure region around the waist of the two bubbles. Our results provide a deeper insight into the stability of acoustic levitation and the coupling between bubbles and sound field.

  12. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel.

    Science.gov (United States)

    Doinikov, Alexander A; Combriat, Thomas; Thibault, Pierre; Marmottant, Philippe

    2016-09-01

    A theoretical model is developed for acoustic streaming generated by a cylindrical bubble confined in a fluid channel between two planar elastic walls. The bubble is assumed to undergo volume and translational oscillations. The volume oscillation is caused by an imposed acoustic pressure field and generates the bulk scattered wave in the fluid gap and Lamb-type surface waves propagating along the fluid-wall interfaces. The translational oscillation is induced by the velocity field of an external sound source such as another bubble or an oscillatory fluid flow. The acoustic streaming is assumed to result from the interaction of the volume and the translational modes of the bubble oscillations. The general solutions for the linear equations of fluid motion and the equations of acoustic streaming are calculated with no restrictions on the ratio between the viscous penetration depth and the bubble size. Approximate solutions for the limit of low viscosity are provided as well. Simulations of streamline patterns show that the geometry of the streaming resembles flows generated by a source dipole, while the vortex orientation is governed by the driving frequency, bubble size, and the distance of the bubble from the source of translational excitation. Experimental verification of the developed theory is performed using data for streaming generated by bubble pairs.

  13. Acoustic bubble enhanced pinched flow fractionation for microparticle separation

    International Nuclear Information System (INIS)

    Zhou, Ran; Wang, Cheng

    2015-01-01

    Pinched flow fractionation is a simple method for separating micron-sized particles by size, but has certain intrinsic limitations, e.g. requirement of a pinched segment similar to particle size and limited separation distance. In this paper, we developed an acoustic bubble enhanced pinched flow fractionation (PFF) method for microparticle separation. The proposed technique utilized microbubble streaming flows to overcome the limitations of conventional PFF. Our device has demonstrated separation of different sized microparticles (diameters 10 and 2 μm) with a larger pinched segment (60 μm) and at different buffer/particle solution flow rate ratios (5–25). The separation distances between particles are larger (as much as twice as large) than those achieved with conventional PFF. In addition, the separation position and distance can be adjusted by changing the driving voltage. The robust performance is due to the unique features of the flow field inside the pinched segment. We investigated several factors, including flow rate ratio, total flow rate and driving voltage, that affect the separation performance. (paper)

  14. Acoustic imaging of vapor bubbles through optically non-transparent media

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1983-10-01

    A preliminary investigation of the feasibility of acoustic imaging of vapor bubbles through optically nontransparent media is described. Measurements are reported showing the echo signals produced by air filled glass spheres of various sizes positioned in an aqueous medium as well as signals produced by actual vapor bubbles within a water filled steel pipe. In addition, the influence of the metallic wall thickness and material on the amplitude of the echo signals is investigated. Finally several examples are given of the imaging of spherical bubbles within metallic pipes using a simulated array of acoustic transducers mounted circumferentially around the pipe. The measurement procedures and a description of the measuring system are also given

  15. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main non-platform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modeling

  16. Acoustic waveform of continuous bubbling in a non-Newtonian fluid.

    Science.gov (United States)

    Vidal, Valérie; Ichihara, Mie; Ripepe, Maurizio; Kurita, Kei

    2009-12-01

    We study experimentally the acoustic signal associated with a continuous bubble bursting at the free surface of a non-Newtonian fluid. Due to the fluid rheological properties, the bubble shape is elongated, and, when bursting at the free surface, acts as a resonator. For a given fluid concentration, at constant flow rate, repetitive bubble bursting occurs at the surface. We report a modulation pattern of the acoustic waveform through time. Moreover, we point out the existence of a precursor acoustic signal, recorded on the microphone array, previous to each bursting. The time delay between this precursor and the bursting signal is well correlated with the bursting signal frequency content. Their joint modulation through time is driven by the fluid rheology, which strongly depends on the presence of small satellite bubbles trapped in the fluid due to the yield stress.

  17. Correction of bubble size distributions from transmission electron microscopy observations

    International Nuclear Information System (INIS)

    Kirkegaard, P.; Eldrup, M.; Horsewell, A.; Skov Pedersen, J.

    1996-01-01

    Observations by transmission electron microscopy of a high density of gas bubbles in a metal matrix yield a distorted size distribution due to bubble overlap and bubble escape from the surface. A model is described that reconstructs 3-dimensional bubble size distributions from 2-dimensional projections on taking these effects into account. Mathematically, the reconstruction is an ill-posed inverse problem, which is solved by regularization technique. Extensive Monte Carlo simulations support the validity of our model. (au) 1 tab., 32 ills., 32 refs

  18. Bubble size distribution analysis and control in high frequency ultrasonic cleaning processes

    International Nuclear Information System (INIS)

    Hauptmann, M; Struyf, H; Mertens, P; Heyns, M; Gendt, S De; Brems, S; Glorieux, C

    2012-01-01

    In the semiconductor industry, the ongoing down-scaling of nanoelectronic elements has lead to an increasing complexity of their fabrication. Hence, the individual fabrication processes become increasingly difficult to handle. To minimize cross-contamination, intermediate surface cleaning and preparation steps are inevitable parts of the semiconductor process chain. Here, one major challenge is the removal of residual nano-particulate contamination resulting from abrasive processes such as polishing and etching. In the past, physical cleaning techniques such as megasonic cleaning have been proposed as suitable solutions. However, the soaring fragility of the smallest structures is constraining the forces of the involved physical removal mechanisms. In the case of 'megasonic' cleaning –cleaning with ultrasound in the MHz-domain – the main cleaning action arises from strongly oscillating microbubbles which emerge from the periodically changing tensile strain in the cleaning liquid during sonication. These bubbles grow, oscillate and collapse due to a complex interplay of rectified diffusion, bubble coalescence, non-linear pulsation and the onset of shape instabilities. Hence, the resulting bubble size distribution does not remain static but alternates continuously. Only microbubbles in this distribution that show a high oscillatory response are responsible for the cleaning action. Therefore, the cleaning process efficiency can be improved by keeping the majority of bubbles around their resonance size. In this paper, we propose a method to control and characterize the bubble size distribution by means of 'pulsed' sonication and measurements of acoustic cavitation spectra, respectively. We show that the so-obtained bubble size distributions can be related to theoretical predictions of the oscillatory responses of and the onset of shape instabilities for the respective bubbles. We also propose a mechanism to explain the enhancement of both acoustic and cleaning

  19. Acoustical signature of the collapse of a cavitation bubble

    International Nuclear Information System (INIS)

    Chahine, G.L.

    1978-10-01

    The influence of the proximity of a wall on the noise emitted when an isolated cavitation bubble collapses is studied qualitatively by correlation between the noise emitted and the dynamics of the bubble, by amplitude analysis and by time analysis [fr

  20. Active acoustic leak detection for LMFBR steam generator. Sound attenuation due to bubbles

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi; Sakuma, Toshio

    1995-01-01

    In the steam generators (SG) of LMFBR, it is necessary to detect the leakage of water from tubes of heat exchangers as soon as it occurs. The active acoustic detection method has drawn general interest owing to its short response time and reduction of the influence of background noise. In this paper, the application of the active acoustic detection method for SG is proposed, and sound attenuation by bubbles is investigated experimentally. Furthermore, using the SG sector model, sound field characteristics and sound attenuation characteristics due to injection of bubbles are studied. It is clarified that the sound attenuation depends upon bubble size as well as void fraction, that the distance attenuation of sound in the SG model containing heat transfer tubes is 6dB for each two-fold increase of distance, and that emitted sound attenuates immediately upon injection of bubbles. (author)

  1. Nano-scale bubble thermonuclear fusion in acoustically cavitated deuterated liquid

    International Nuclear Information System (INIS)

    Robert I Nigmatulin; Richard T Lahey Jr; Rusi Taleyarkhan

    2005-01-01

    Full text of publication follows: It has been experimentally shown (Taleyarkhan, West, Cho, Lahey, Nigmatulin, Block, 2002, 2004) that neutron emission and tritium formation may occur in deuterated acetone (D-acetone C 3 DO 6 ) under acoustic cavitation conditions. Intensity of the fast neutron (2.45 MeV) emission and tritium nucleus production is ∼ 4 x 10 5 s -1 . This suggests ultrahigh compression of matter produced inside bubbles during their collapse. In the paper a systematic theoretical analysis of the vapor bubble growth and subsequent implosion in intense acoustic fields in D-acetone is presented. The goal is to describe and explain the experimental observations of thermonuclear fusion for collapsing cavitation bubble in D-acetone. The dynamics of bubbles formed during maximum rarefaction in the liquid is numerically studied on the basis of the developed models of a single bubble and bubble clusters. It is supposed that during their growth the bubbles coagulate and form a few bigger bubbles, which then collapse under the action of additional pressure pulses produced in the liquid through the intensification of acoustic waves within the cluster. A shock wave is shown to be formed inside the bubble during the latter's rapid contraction. Focusing of this shock wave in the bubble center initiates dissociation and ionization, violent increases in density (10 4 kg m 3 ), pressure (10 10 -10 11 bar) and temperature (2 x 10 8 K), high enough to produce nuclear fusion reactions. The bubble looks like micro-hydrogen bomb. The diameter of the neutron emission zone is about 100 nm. The highest neutron emission is recorded at about 10-20 nm from the bubble center. It is found out that the intensity of bubble implosion and the number of neutron emitted increase with variations in nucleation phase, positive half-wave amplitude, liquid temperature and also with the involvement of coagulation mechanisms within the cluster during the bubble simultaneous growth. The number

  2. Tunneling effects in resonant acoustic scattering of an air bubble in unbounded water

    Directory of Open Access Journals (Sweden)

    ANDRÉ G. SIMÃO

    2016-06-01

    Full Text Available Abstract The problem of acoustic scattering of a gaseous spherical bubble immersed within unbounded liquid surrounding is considered in this work. The theory of partial wave expansion related to this problem is revisited. A physical model based on the analogy between acoustic scattering and potential scattering in quantum mechanics is proposed to describe and interpret the acoustical natural oscillation modes of the bubble, namely, the resonances. In this context, a physical model is devised in order to describe the air water interface and the implications of the high density contrast on the various regimes of the scattering resonances. The main results are presented in terms of resonance lifetime periods and quality factors. The explicit numerical calculations are undertaken through an asymptotic analysis considering typical bubble dimensions and underwater sound wavelengths. It is shown that the resonance periods are scaled according to the Minnaert’s period, which is the short lived resonance mode, called breathing mode of the bubble. As expected, resonances with longer lifetimes lead to impressive cavity quality Q-factor ranging from 1010 to 105. The present theoretical findings lead to a better understanding of the energy storage mechanism in a bubbly medium.

  3. Determination of the Accommodation Coefficient Using Vapor/gas Bubble Dynamics in an Acoustic Field

    Science.gov (United States)

    Gumerov, Nail A.; Hsiao, Chao-Tsung; Goumilevski, Alexei G.; Allen, Jeff (Technical Monitor)

    2001-01-01

    Nonequilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum. The rate at which such a phase transformation occurs depends on the "condensation" or "accommodation" coefficient, Beta, which is a property of the interface. Existing measurement techniques for Beta are complex and expensive. The development of a relatively inexpensive and reliable technique for measurement of Beta for a wide range of substances and temperatures is of great practical importance. The dynamics of a bubble in an acoustic field strongly depends on the value of Beta. It is known that near the saturation temperature, small vapor bubbles grow under the action of an acoustic field due to "rectified heat transfer." This finding can be used as the basis for an effective measurement technique of Beta. We developed a theory of vapor bubble behavior in an isotropic acoustic wave and in a plane standing acoustic wave. A numerical code was developed which enables simulation of a variety of experimental situations and accurately takes into account slowly evolving temperature. A parametric study showed that the measurement of Beta can be made over a broad range of frequencies and bubble sizes. We found several interesting regimes and conditions which can be efficiently used for measurements of Beta. Measurements of Beta can be performed in both reduced and normal gravity environments.

  4. Bubbles

    DEFF Research Database (Denmark)

    Dholakia, Nikhilesh; Turcan, Romeo V.

    2013-01-01

    A goal of our ongoing research stream is to develop a multidisciplinary metatheory of bubbles. In this viewpoint paper we put forward a typology of bubbles by comparing four types of assets – entertainment, commodities, financial securities (stocks), and housing properties – where bubbles could...... and do form occasionally. Cutting across and comparing such varied asset types provides some rich insights into the nature of bubbles – and offers an inductive way to arrive at the typology of bubbles....

  5. Determination of particle size distributions from acoustic wave propagation measurements

    International Nuclear Information System (INIS)

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-01-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. 51, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. copyright 1999 American Institute of Physics

  6. Modelling of acoustic pressure waves in bubbly liquids with application to sonochemical reactors

    OpenAIRE

    Dogan, Hakan

    2013-01-01

    This thesis investigates the acoustic wave propagation in bubbly liquids as part of the SONO project supported by the FP7 European Commission programme, which is aimed at developing a pilot sonochemical plant in order to produce antibacterial medical textile fabrics by coating of the textile with ZnO or CuO nanoparticles. The findings of this research are anticipated to aid the design procedures and also to provide better understanding of the micro scale physical and chemical events. Propagat...

  7. Determination of size distribution of bubbles in a bubbly column two phase flows by ultrasound and neural networks

    International Nuclear Information System (INIS)

    Baroni, Douglas B.; Lamy, Carlos A.; Bittencourt, Marcelo S.Q.; Pereira, Claudio M.N.A.; Cunha Filho, Jurandyr S.; Motta, Mauricio S.

    2011-01-01

    The development of advanced nuclear reactor conceptions depends largely on the amount of available data to the designer. Non invasive ultrasonic techniques can contribute to the evaluation of gas-liquid two-phase regimes in the nuclear thermo-hydraulic circuits. A key-point for success of those techniques is the interpretation of the ultrasonic signal. In this work, a methodology based in artificial neural networks (ANN) is proposed to predict size distribution of bubbles in a bubbly flow. To accomplish that, an air feed system control was used to obtain specific bubbly flows in an experimental system utilizing a Plexiglas vertical bubbly column. Four different size distribution of bubbles were generated. The bubbles were photographed and measured. To evaluate the different size distribution of bubbles it was used the ultrasonic reflected echo on the opposite wall of the column. Then, an ANN has been developed for predicting size distribution of bubbles by using the frequency spectra of the ultrasonic signal as input. A trained artificial neural network using ultrasonic signal in the frequency domain can evaluate with a good precision the size distribution of bubbles generated in this system. (author)

  8. Determination of size distribution of bubbles in a bubbly column two phase flows by ultrasound and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, Douglas B.; Lamy, Carlos A.; Bittencourt, Marcelo S.Q.; Pereira, Claudio M.N.A., E-mail: douglasbaroni@ien.gov.b, E-mail: lamy@ien.gov.b, E-mail: bittenc@ien.gov.b, E-mail: cmnap@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Cunha Filho, Jurandyr S. [Escola Tecnica Estadual Visconde de Maua (ETEVM/RJ), Rio de Janeiro, RJ (Brazil); Motta, Mauricio S., E-mail: mmotta@cefet-rj.b [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The development of advanced nuclear reactor conceptions depends largely on the amount of available data to the designer. Non invasive ultrasonic techniques can contribute to the evaluation of gas-liquid two-phase regimes in the nuclear thermo-hydraulic circuits. A key-point for success of those techniques is the interpretation of the ultrasonic signal. In this work, a methodology based in artificial neural networks (ANN) is proposed to predict size distribution of bubbles in a bubbly flow. To accomplish that, an air feed system control was used to obtain specific bubbly flows in an experimental system utilizing a Plexiglas vertical bubbly column. Four different size distribution of bubbles were generated. The bubbles were photographed and measured. To evaluate the different size distribution of bubbles it was used the ultrasonic reflected echo on the opposite wall of the column. Then, an ANN has been developed for predicting size distribution of bubbles by using the frequency spectra of the ultrasonic signal as input. A trained artificial neural network using ultrasonic signal in the frequency domain can evaluate with a good precision the size distribution of bubbles generated in this system. (author)

  9. Simultaneous observation of cavitation bubbles generated in biological tissue by high-speed optical and acoustic imaging methods

    Science.gov (United States)

    Suzuki, Kai; Iwasaki, Ryosuke; Takagi, Ryo; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    Acoustic cavitation bubbles are useful for enhancing the heating effect in high-intensity focused ultrasound (HIFU) treatment. Many studies were conducted to investigate the behavior of such bubbles in tissue-mimicking materials, such as a transparent gel phantom; however, the detailed behavior in tissue was still unclear owing to the difficulty in optical observation. In this study, a new biological phantom was developed to observe cavitation bubbles generated in an optically shallow area of tissue. Two imaging methods, high-speed photography using light scattering and high-speed ultrasonic imaging, were used for detecting the behavior of the bubbles simultaneously. The results agreed well with each other for the area of bubble formation and the temporal change in the region of bubbles, suggesting that both methods are useful for visualizing the bubbles.

  10. Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.

    Science.gov (United States)

    Xi, Xiaoyu; Cegla, Frederic; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander

    2014-04-01

    The interaction of acoustically driven bubbles with a wall is important in many applications of ultrasound and cavitation, as the close boundary can severely alter the bubble dynamics. In this paper, the non-spherical surface oscillations of bubbles near a surface in a weak acoustic standing wave field are investigated experimentally and numerically. The translation, the volume, and surface mode oscillations of bubbles near a flat glass surface were observed by a high speed camera in a standing wave cell at 46.8 kHz. The model approach is based on a modified Keller-Miksis equation coupled to surface mode amplitude equations in the first order, and to the translation equations. Modifications are introduced due to the adjacent wall. It was found that a bubble's oscillation mode can change in the presence of the wall, as compared to the bubble in the bulk liquid. In particular, the wall shifts the instability pressure thresholds to smaller driving frequencies for fixed bubble equilibrium radii, or to smaller equilibrium radii for fixed excitation frequency. This can destabilize otherwise spherical bubbles, or stabilize bubbles undergoing surface oscillations in the bulk. The bubble dynamics observed in experiment demonstrated the same trend as the theoretical results.

  11. Effects of mixing methods on phase distribution in vertical bubble flow

    International Nuclear Information System (INIS)

    Monji, Hideaki; Matsui, Goichi; Sugiyama, Takayuki.

    1992-01-01

    The mechanism of the phase distribution formation in a bubble flow is one of the most important problems in the control of two-phase flow systems. The effect of mixing methods on the phase distribution was experimentally investigated by using upward nitrogen gas-water bubble flow under the condition of fixed flow rates. The experimental results show that the diameter of the gas injection hole influences the phase distribution through the bubble size. The location of the injection hole and the direction of injection do not influence the phase distribution of fully developed bubble flow. The transitive equivalent bubble size from the coring bubble flow to the sliding bubble flow corresponds to the bubble shape transition. The analytical results show that the phase distribution may be predictable if the phase profile is judged from the bubble size. (author)

  12. Validation of simulations of an underwater acoustic communication channel characterized by wind-generated surface waves and bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainlie, M.A.; Gerdes, F.; Schäfke, A.; Özkan Sertlekc, H.

    2013-01-01

    This paper shows that it is possible to simulate realistic shallow-water acoustic communication channels using available acoustic propagation models. Key factor is the incorporation of realistic time-dependent sea surface conditions, including both waves and bubbles due to wind.

  13. Interfacial Dynamics of Condensing Vapor Bubbles in an Ultrasonic Acoustic Field

    Science.gov (United States)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2016-11-01

    Enhancement of vapor condensation in quiescent subcooled liquid using ultrasonic actuation is investigated experimentally. The vapor bubbles are formed by direct injection from a pressurized steam reservoir through nozzles of varying characteristic diameters, and are advected within an acoustic field of programmable intensity. While kHz-range acoustic actuation typically couples to capillary instability of the vapor-liquid interface, ultrasonic (MHz-range) actuation leads to the formation of a liquid spout that penetrates into the vapor bubble and significantly increases its surface area and therefore condensation rate. Focusing of the ultrasonic beam along the spout leads to ejection of small-scale droplets from that are propelled towards the vapor liquid interface and result in localized acceleration of the condensation. High-speed video of Schlieren images is used to investigate the effects of the ultrasonic actuation on the thermal boundary layer on the liquid side of the vapor-liquid interface and its effect on the condensation rate, and the liquid motion during condensation is investigated using high-magnification PIV measurements. High-speed image processing is used to assess the effect of the actuation on the dynamics and temporal variation in characteristic scale (and condensation rate) of the vapor bubbles.

  14. Size distributions of micro-bubbles generated by a pressurized dissolution method

    Science.gov (United States)

    Taya, C.; Maeda, Y.; Hosokawa, S.; Tomiyama, A.; Ito, Y.

    2012-03-01

    Size of micro-bubbles is widely distributed in the range of one to several hundreds micrometers and depends on generation methods, flow conditions and elapsed times after the bubble generation. Although a size distribution of micro-bubbles should be taken into account to improve accuracy in numerical simulations of flows with micro-bubbles, a variety of the size distribution makes it difficult to introduce the size distribution in the simulations. On the other hand, several models such as the Rosin-Rammler equation and the Nukiyama-Tanazawa equation have been proposed to represent the size distribution of particles or droplets. Applicability of these models to the size distribution of micro-bubbles has not been examined yet. In this study, we therefore measure size distribution of micro-bubbles generated by a pressurized dissolution method by using a phase Doppler anemometry (PDA), and investigate the applicability of the available models to the size distributions of micro-bubbles. Experimental apparatus consists of a pressurized tank in which air is dissolved in liquid under high pressure condition, a decompression nozzle in which micro-bubbles are generated due to pressure reduction, a rectangular duct and an upper tank. Experiments are conducted for several liquid volumetric fluxes in the decompression nozzle. Measurements are carried out at the downstream region of the decompression nozzle and in the upper tank. The experimental results indicate that (1) the Nukiyama-Tanasawa equation well represents the size distribution of micro-bubbles generated by the pressurized dissolution method, whereas the Rosin-Rammler equation fails in the representation, (2) the bubble size distribution of micro-bubbles can be evaluated by using the Nukiyama-Tanasawa equation without individual bubble diameters, when mean bubble diameter and skewness of the bubble distribution are given, and (3) an evaluation method of visibility based on the bubble size distribution and bubble

  15. Distributed acoustic sensing with Michelson interferometer demodulation

    Science.gov (United States)

    Liu, Xiaohui; Wang, Chen; Shang, Ying; Wang, Chang; Zhao, Wenan; Peng, Gangding; Wang, Hongzhong

    2017-09-01

    The distributed acoustic sensing (DAS) has been extensively studied and widely used. A distributed acoustic sensing system based on the unbalanced Michelson interferometer with phase generated carrier (PGC) demodulation was designed and tested. The system could directly obtain the phase, amplitude, frequency response, and location information of sound wave at the same time and measurement at all points along the sensing fiber simultaneously. Experiments showed that the system successfully measured the acoustic signals with a phase-pressure sensitivity about-148 dB (re rad/μPa) and frequency response ripple less than 1.5 dB. The further field experiment showed that the system could measure signals at all points along the sensing fiber simultaneously.

  16. Modeling of the evolution of bubble size distribution of gas-liquid flow inside a large vertical pipe. Influence of bubble coalescence and breakup models

    International Nuclear Information System (INIS)

    Liao, Yixiang; Lucas, Dirk

    2011-01-01

    The range of gas-liquid flow applications in today's technology is immensely wide. Important examples can be found in chemical reactors, boiling and condensation equipments as well as nuclear reactors. In gas-liquid flows, the bubble size distribution plays an important role in the phase structure and interfacial exchange behaviors. It is therefore necessary to take into account the dynamic change of the bubble size distribution to get good predictions in CFD. An efficient 1D Multi-Bubble-Size-Class Test Solver was introduced in Lucas et al. (2001) for the simulation of the development of the flow structure along a vertical pipe. The model considers a large number of bubble classes. It solves the radial profiles of liquid and gas velocities, bubble-size class resolved gas fraction profiles as well as turbulence parameters on basis of the bubble size distribution present at the given axial position. The evolution of the flow along the height is assumed to be solely caused by the progress of bubble coalescence and break-up resulting in a bubble size distribution changing in the axial direction. In this model, the bubble coalescence and breakup models are very important for reasonable predictions of the bubble size distribution. Many bubble coalescence and breakup models have been proposed in the literature. However, some obvious discrepancies exist in the models; for example, the daughter bubble size distributions are greatly different from different bubble breakup models, as reviewed in our previous publication (Liao and Lucas, 2009a; 2010). Therefore, it is necessary to compare and evaluate typical bubble coalescence and breakup models that have been commonly used in the literature. Thus, this work is aimed to make a comparison of several typical bubble coalescence and breakup models and to discuss in detail the ability of the Test Solver to predict the evolution of bubble size distribution. (orig.)

  17. Effect of liquid subcooling on acoustic characteristics during the condensation process of vapor bubbles in a subcooled pool

    International Nuclear Information System (INIS)

    Tang, Jiguo; Yan, Changqi; Sun, Licheng; Li, Ya; Wang, Kaiyuan

    2015-01-01

    Highlights: • Deviations of signals increase first and then decrease with increase in subcooling. • Two typical waveforms are observed and correspond to bubble split-up and collapse. • Dominant frequency in low frequency region is found for all condensation regimes. • Peaks in high frequency region were only found in capillary wave regime. • Bubble collapse frequency is close to frequency of first peak in amplitude spectra. - Abstract: Sound characteristics of direct contact condensation of vapor bubbles in a subcooled pool were investigated experimentally with a hydrophone and a high-speed video camera. Three different condensation modes were observed, which were referred to as shape oscillation regime, transition regime and capillary wave regime in the paper. Time domain analysis indicated that the acoustic signals were boosted in their maximum amplitude with increase in subcooling, while their standard and average absolute deviations shifted to decrease after reaching a peak value. In addition, two different waveforms were found, possible sources of which were split-up and collapse of bubbles, respectively. From the amplitude spectra obtained by FFT, the first dominant frequency was found at frequency of 150–300 Hz for all condensation regimes, whereas some peaks in high frequency region were observed only for the capillary wave regime. The first dominant frequency was the result of the periodic variation in the vapor bubble volume, and the peaks in high frequency region were due to the high-frequency oscillation of water in pressure caused by sudden bubble collapse. The frequency of first peak was considered to be resulted from the periodic bubble collapse or split-up and thus was close to the bubble collapse frequency obtained from snapshots of bubble condensation. Moreover, according to results of short-time Fourier transform (STFT), the time intervals in which a certain process of bubble condensing occurred could be well known.

  18. An electrochemical and high-speed imaging study of micropore decontamination by acoustic bubble entrapment.

    Science.gov (United States)

    Offin, Douglas G; Birkin, Peter R; Leighton, Timothy G

    2014-03-14

    Electrochemical and high-speed imaging techniques are used to study the abilities of ultrasonically-activated bubbles to clean out micropores. Cylindrical pores with dimensions (diameter × depth) of 500 μm × 400 μm (aspect ratio 0.8), 125 μm × 350 μm (aspect ratio 2.8) and 50 μm × 200 μm (aspect ratio 4.0) are fabricated in glass substrates. Each pore is contaminated by filling it with an electrochemically inactive blocking organic material (thickened methyl salicylate) before the substrate is placed in a solution containing an electroactive species (Fe(CN)6(3-)). An electrode is fabricated at the base of each pore and the Faradaic current is used to monitor the decontamination as a function of time. For the largest pore, decontamination driven by ultrasound (generated by a horn type transducer) and bulk fluid flow are compared. It is shown that ultrasound is much more effective than flow alone, and that bulk fluid flow at the rates used cannot decontaminate the pore completely, but that ultrasound can. In the case of the 125 μm pore, high-speed imaging is used to elucidate the cleaning mechanisms involved in ultrasonic decontamination and reveals that acoustic bubble entrapment is a key feature. The smallest pore is used to explore the limits of decontamination and it is found that ultrasound is still effective at this size under the conditions employed.

  19. Acoustic detection of the collapse of a sodium vapor bubble in an infinite sea of sodium

    International Nuclear Information System (INIS)

    Carey, W.M.

    1975-12-01

    A discussion of the problem of sodium vapor bubble collapse is presented. The physics of vapor collapse is presented in light of the work by Peppler et al. Theoretical estimates of the sound source level based on the work by Rayleigh and Judd are compared to an approximate pressure-volume work approach and recent experimental observations. Reactor ambient noise and transmission loss considerations are presented in regard to their impact on this detection problem. A methodology is proposed which considers the importance of the sound source level, ambient noise, transmission loss and a detection threshold and provides a means by which the feasibility of sodium vapor bubble collapse detection in an operating LMFBR may be assessed. The interrelationships between the detection threshold and the probability of detection and false alarm are discussed and applied to a standard acoustic square law detection system. This analysis clearly illustrates that the feasibility of such a detection system is strongly dependent on the knowledge of sound source levels, ambient noise levels and the transmission loss between the source and receiver. Furthermore, requirements of a high degree of probability of detection and a low probability of false alarm were found to require a high signal to noise ratio for a single sensor system but that the probability of false alarm requirement could be relaxed for systems multiple independent sensors. Finally, the need for additional experimental and theoretical information is presented in terms of sound source levels, ambient noise and a means for determining transmission loss

  20. Effect study of multi-bubbles on stress distribution of fuel particle

    International Nuclear Information System (INIS)

    Zhao Yi; Wang Xiaomin; Long Chongsheng

    2015-01-01

    The finite element model was proposed to simulate the process of the UO_2 dispersion fuel particle sustaining the internal pressure of multi-bubbles, and the stress distribution of fuel particle with intra-bubbles was calculated. The results show that when the bubbles line equidistantly along x axis, the max normal stress along y axis increases with the number of bubbles, meanwhile, the increment of the normal stress gradually decreases. There is a limit that the effect of bubble's number imposes on the max normal stress in the fuel particle. When multi-column of bubbles exist, the max normal stress along x axis in the fuel particle increases, and the max normal stress along y axis decreases with the increase of the number of bubble column. The stress concentration in the fuel particle decreases with the spacing radius ratio increasing. (authors)

  1. The gas bubbles distribution in 600 MeV protons irradiated aluminium

    International Nuclear Information System (INIS)

    Gavillet, D.; Martin, J.L.; Victoria, M.; Green, W.

    1984-01-01

    In order to simulate the damage produced by 14 MeV fusion neutrons, thin foils of high purity Al have been irradiated by a proton beam of 580 MeV (120μA). After irradiation at temperatures higher than 0.5 Tm transmission electron microscope observations of gas bubbles distribution were performed. At 200 0 C a uniform distribution of bubbles has been observed inside the grain. The average distance between bubbles and their density have been determined. The gas pressure inside the bubbles has been estimated [fr

  2. Distributed acoustic sensing for pipeline monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hill, David; McEwen-King, Magnus [OptaSense, QinetiQ Ltd., London (United Kingdom)

    2009-07-01

    Optical fibre is deployed widely across the oil and gas industry. As well as being deployed regularly to provide high bandwidth telecommunications and infrastructure for SCADA it is increasingly being used to sense pressure, temperature and strain along buried pipelines, on subsea pipelines and downhole. In this paper we present results from the latest sensing capability using standard optical fibre to detect acoustic signals along the entire length of a pipeline. In Distributed Acoustic Sensing (DAS) an optical fibre is used for both sensing and telemetry. In this paper we present results from the OptaSense{sup TM} system which has been used to detect third party intervention (TPI) along buried pipelines. In a typical deployment the system is connected to an existing standard single-mode fibre, up to 50km in length, and was used to independently listen to the acoustic / seismic activity at every 10 meter interval. We will show that through the use of advanced array processing of the independent, simultaneously sampled channels it is possible to detect and locate activity within the vicinity of the pipeline and through sophisticated acoustic signal processing to obtain the acoustic signature to classify the type of activity. By combining spare fibre capacity in existing buried fibre optic cables; processing and display techniques commonly found in sonar; and state-of-the-art in fibre-optic distributed acoustic sensing, we will describe the new monitoring capabilities that are available to the pipeline operator. Without the expense of retrofitting sensors to the pipeline, this technology can provide a high performance, rapidly deployable and cost effective method of providing gapless and persistent monitoring of a pipeline. We will show how this approach can be used to detect, classify and locate activity such as; third party interference (including activity indicative of illegal hot tapping); real time tracking of pigs; and leak detection. We will also show how an

  3. Experimental study on characteristics of interfacial parameter distribution for upward bubbly flow in inclined tube

    International Nuclear Information System (INIS)

    Xing Dianchuan; Yan Changqi; Sun Licheng; Liu Jingyu

    2013-01-01

    Experimental study on characteristics of interfacial parameter distribution for air-water bubbly flow in an inclined circular tube was performed by using the double sensor probe method. Parameters including radial distributions of local void fraction, bubble passing frequency, interfacial area concentration and bubble equivalent diameter were measured using the probe. The inner diameter of test section is 50 mm, and the liquid superficial velocity is 0.144 m/s, with the gas superficial velocity ranging from 0 to 0.054 m/is. The results show that bubbles obviously move toward the upper wall and congregate. The local interfacial area concentration, bubble passing frequency and void fraction have similar radial distribution profiles. Different from the vertical condition, for a cross-sectional area of the test section, the peak value near the upper side increases, while decreases or even disappears near the underside. The local parameter increases as the radial positions change from lower to upper location, and the increased slope becomes larger as the inclination angles increase. The equivalent bubble diameter doesn't vary with radial position, superficial gas velocity and inclination angle, and bubble aggregation and breaking up nearly doesn't occur. The mechanism of effects of inclination on local parameter distribution for bubbly flow is explained by analyzing the transverse force governing the bubble motion. (authors)

  4. Size distribution of air bubbles entering the brain during cardiac surgery.

    Directory of Open Access Journals (Sweden)

    Emma M L Chung

    Full Text Available Thousands of air bubbles enter the cerebral circulation during cardiac surgery, but whether high numbers of bubbles explain post-operative cognitive decline is currently controversial. This study estimates the size distribution of air bubbles and volume of air entering the cerebral arteries intra-operatively based on analysis of transcranial Doppler ultrasound data.Transcranial Doppler ultrasound recordings from ten patients undergoing heart surgery were analysed for the presence of embolic signals. The backscattered intensity of each embolic signal was modelled based on ultrasound scattering theory to provide an estimate of bubble diameter. The impact of showers of bubbles on cerebral blood-flow was then investigated using patient-specific Monte-Carlo simulations to model the accumulation and clearance of bubbles within a model vasculature.Analysis of Doppler ultrasound recordings revealed a minimum of 371 and maximum of 6476 bubbles entering the middle cerebral artery territories during surgery. This was estimated to correspond to a total volume of air ranging between 0.003 and 0.12 mL. Based on analysis of a total of 18667 embolic signals, the median diameter of bubbles entering the cerebral arteries was 33 μm (IQR: 18 to 69 μm. Although bubble diameters ranged from ~5 μm to 3.5 mm, the majority (85% were less than 100 μm. Numerous small bubbles detected during cardiopulmonary bypass were estimated by Monte-Carlo simulation to be benign. However, during weaning from bypass, showers containing large macro-bubbles were observed, which were estimated to transiently affect up to 2.2% of arterioles.Detailed analysis of Doppler ultrasound data can be used to provide an estimate of bubble diameter, total volume of air, and the likely impact of embolic showers on cerebral blood flow. Although bubbles are alarmingly numerous during surgery, our simulations suggest that the majority of bubbles are too small to be harmful.

  5. Gas distribution effects on waste properties: Viscosities of bubbly slurries

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Shah, R.R.; Davis, R.L.

    1994-09-01

    The retention and episodic release of flammable gases are critical safety concerns for double-shell tanks that contain waste slurries. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The presence of gas bubbles is expected to affect the rheology of the sludge, but essentially no literature data are available to assess the effect of bubbles. Accordingly, the objectives of this study are to develop models for the effect of gas bubbles on the viscosity of a particulate slurry, develop an experimental method (capillary rheometer), collect data on the viscosity of a bubbly slurry, and develop a theoretical basis for interpreting the experimental data from the capillary rheometer

  6. Influence of reactions heats on variation of radius, temperature, pressure and chemical species amounts within a single acoustic cavitation bubble.

    Science.gov (United States)

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-03-01

    The scientific interest toward the study of acoustic bubble is mainly explained by its practical benefit in providing a reactional media favorable to the rapid evolution of chemical mechanism. The evolution of this mechanism is related to the simultaneous and dependent variation of the volume, temperature and pressure within the bubble, retrieved by the resolution of a differential equations system, including among others the thermal balance. This last one is subject to different assumptions, some authors deem simply that the temperature varies adiabatically during the collapsing phase, without considering the reactions heat of the studied mechanism. This paper aims to evaluate the pertinence of neglecting reactions heats in the thermal balance, by analyzing their effect on the variation of radius, temperature, pressure and chemical species amounts. The results show that the introduction of reactions heats conducts to a decrease of the temperature, an increase of the pressure and a reduction of the bubble volume. As a consequence, this leads to a drop of the quantities of free radicals produced by the chemical mechanism evolving within the bubble. This paper also proved that the impact of the consideration of reactions heats is dependent of the frequency and the acoustic amplitude of the ultrasonic wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Bubble Clouds and their Transport within the Surf Zone as Measured with a Distributed Array of Upward-Looking Sonars

    National Research Council Canada - National Science Library

    Dahl, Peter

    2000-01-01

    ... in the surf zone and the effects of these bubbles on acoustic propagation. This paper discusses data gathered by the Applied Physics Laboratory, University of Washington, using a set of four upward-looking sonars (frequency 240 kHz...

  8. Active acoustical impedance using distributed electrodynamical transducers.

    Science.gov (United States)

    Collet, M; David, P; Berthillier, M

    2009-02-01

    New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. SMART structures combining large arrays of elementary motion pixels coated with macroscopic components are thus being studied so that fundamental properties such as shape, stiffness, and even reflectivity of light and sound could be dynamically adjusted. This paper investigates the acoustic impedance capabilities of a set of distributed transducers connected with a suitable controlling strategy. Research in this domain aims at designing integrated active interfaces with a desired acoustical impedance for reaching an appropriate global acoustical behavior. This generic problem is intrinsically connected with the control of multiphysical systems based on partial differential equations (PDEs) and with the notion of multiscaled physics when a dense array of electromechanical systems (or MEMS) is considered. By using specific techniques based on PDE control theory, a simple boundary control equation capable of annihilating the wave reflections has been built. The obtained strategy is also discretized as a low order time-space operator for experimental implementation by using a dense network of interlaced microphones and loudspeakers. The resulting quasicollocated architecture guarantees robustness and stability margins. This paper aims at showing how a well controlled semidistributed active skin can substantially modify the sound transmissibility or reflectivity of the corresponding homogeneous passive interface. In Sec. IV, numerical and experimental results demonstrate the capabilities of such a method for controlling sound propagation in ducts. Finally, in Sec. V, an energy-based comparison with a classical open-loop strategy underlines the system's efficiency.

  9. Effect of an entrained air bubble on the acoustics of an ink channel

    NARCIS (Netherlands)

    Jeurissen, R.J.M.; Jong, de J.; Reinten, H.; Berg, van den M.; Wijshoff, H.M.A.; Versluis, M.; Lohse, D.

    2008-01-01

    Piezo-driven inkjet systems are very sensitive to air entrapment. The entrapped air bubbles grow by rectified diffusion in the ink channel and finally result in nozzle failure. Experimental results on the dynamics of fully grown air bubbles are presented. It is found that the bubble counteracts the

  10. Effect of PCMI restraint on bubble size distribution in the rim structure of UO2 fuel

    International Nuclear Information System (INIS)

    Oh, Je-Yong; Koo, Yang-Hyun; Cheon, Jin-Sik; Lee, Byung-Ho; Sohn, Dong-Seong

    2005-01-01

    Generally, the bubble size in the rim structure of UO 2 is not dependent on the fuel burnup and the bubble pressure is higher than that in the equilibrium condition. However it was also observed that if the fuel pellet is not restrained, the size of the bubbles in the rim structure could be larger than that in the restraint condition. Although the wide variety of rim bubble sizes and porosities possibly result from an external restrain effect, the quantitative method to analyze the effect of PCMI restraint on bubble distribution in the rim is not available at the moment. In this paper, a method is developed which can be used to analyze the effect of PCMI restraint on the bubble distribution in the rim structure of UO 2 fuel based on the data in the literatures. The total number of Xe atoms in the rim bubbles per unit rim volume could be derived by a summation of the number of Xe atoms of each rim bubble in a unit rim volume. The number of Xe atoms of each rim bubble could be calculated by the Van der Waals equation of state and the pressure expressed by p=σ+C/r, where C is an unknown constant to be determined as a function of the temperature and the burnup. On the other hand, the total number of Xe atoms in the rim bubbles per unit rim volume can also be calculated by Xe depression data. If the fuel pellet is not restrained, the uniform hydrostatic stress, σ is zero. Hence if the data of the fuel disk without a restraint is used, a constant C can be obtained at 823K and a local burnup of 90 GWd/t. Although the local burnup of PCMI restraint case is slightly different from that without PCMI restraint, the value derived above is used for the analysis of PCMI restraint case. The calculated bubble distribution with PCMI restraint was similar to the measured one. Because the effect of PCMI restraint on bubble size increased with the bubble size, the development of a large bubble was suppressed. Hence, the PCMI restraint caused a typical bubble size in the rim and

  11. Contribution of nonlinear acoustic to the characterization of micro-bubbles clouds in liquid sodium. Application to the generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Cavaro, M.

    2010-11-01

    The SFR system chosen (Sodium Fast Reactor: fast neutron reactors cooled by liquid sodium) by France led to a fourth-generation prototype named ASTRID. The development of this kind of reactors presents several challenges, particularly in terms of improving the safety and monitoring operation. This involves, among other things, characterization of the bubbles presence in liquid sodium. The characterization of the bubbles presence is the subject of this thesis. It involves the determination of void fraction (gas volume fraction) and histogram of the radii of bubbles. The bibliographic work done has shown that linear acoustic techniques for the characterization of bubble clouds are inadequate to achieve this. However promising leads have been identified by studying nonlinear acoustic techniques. This last idea has therefore been explored. An experimental water bench for the generation and optical control of micro-bubbles cloud allowed us to validate finely the reconstruction of histograms of radii through a technique of nonlinear mixing of a high frequency with a low frequency. The potential of the mixing of two high frequencies, more interesting for the industrial point of view has also been demonstrated. Finally, the bases of the transposition of an original technique of nonlinear resonance spectroscopy applied to a bubbles cloud were explored through the introduction of acoustic resonators. The results offer many interesting opportunities, both in terms of industrial applications and for more fundamental understanding of non-linear behavior of a bubble excited by multiple frequencies and of bubbles clouds excited at low frequency. (author)

  12. Inhomogeneous distribution of Chlamydomonas in a cylindrical container with a bubble plume

    Science.gov (United States)

    Nonaka, Yuki; Kikuchi, Kenji; Numayama-Tsuruta, Keiko; Kage, Azusa; Ueno, Hironori; Ishikawa, Takuji

    2016-01-01

    ABSTRACT Swimming microalgae show various taxes, such as phototaxis and gravitaxis, which sometimes result in the formation of a cell-rich layer or a patch in a suspension. Despite intensive studies on the effects of shear flow and turbulence on the inhomogeneous distribution of microalgae, the effect of a bubble plume has remained unclear. In this study, we used Chlamydomonas as model microalgae, and investigated the spatial distribution of cells in a cylindrical container with a bubble plume. The results illustrate that cells become inhomogeneously distributed in the suspension due to their motility and photo-responses. A vortical ring distribution was observed below the free surface when the bubble flow rate was sufficiently small. We performed a scaling analysis on the length scale of the vortical ring, which captured the main features of the experimental results. These findings are important in understanding transport phenomena in a microalgae suspension with a bubble plume. PMID:26787679

  13. Advancement of magma fragmentation by inhomogeneous bubble distribution.

    Science.gov (United States)

    Kameda, M; Ichihara, M; Maruyama, S; Kurokawa, N; Aoki, Y; Okumura, S; Uesugi, K

    2017-12-01

    Decompression times reported in previous studies suggest that thoroughly brittle fragmentation is unlikely in actual explosive volcanic eruptions. What occurs in practice is brittle-like fragmentation, which is defined as the solid-like fracture of a material whose bulk rheological properties are close to those of a fluid. Through laboratory experiments and numerical simulation, the link between the inhomogeneous structure of bubbles and the development of cracks that may lead to brittle-like fragmentation was clearly demonstrated here. A rapid decompression test was conducted to simulate the fragmentation of a specimen whose pore morphology was revealed by X-ray microtomography. The dynamic response during decompression was observed by high-speed photography. Large variation was observed in the responses of the specimens even among specimens with equal bulk rheological properties. The stress fields of the specimens under decompression computed by finite element analysis shows that the presence of satellite bubbles beneath a large bubble induced the stress concentration. On the basis of the obtained results, a new mechanism for brittle-like fragmentation is proposed. In the proposed scenario, the second nucleation of bubbles near the fragmentation surface is an essential process for the advancement of fragmentation in an upward magma flow in a volcanic conduit.

  14. Experimental study of formation and dynamics of cavitation bubbles and acoustic flows in NaCl, KCl water solutions

    Science.gov (United States)

    Rybkin, K. A.; Bratukhin, Yu. K.; Lyubimova, T. P.; Fatallov, O.; Filippov, L. O.

    2017-07-01

    The acoustic flows and the phenomena associated with them arising under the action of ultrasound of different power on distilled water and aqueous solutions of a mixture of NaCl and KCl salts of various concentrations are studied experimentally. It is found that in the distilled water, under the action of ultrasound, the appearance of inertial and non-inertial cavitation bubbles takes place, then the formation of stable clusters, the distance between which depends on the power of the ultrasound source is observed. Experiments show that an increase in the mass concentration of salts in water leads to the decrease in the average diameter of the arising inertial cavitation bubbles and to the gradual decrease in their number, up to an almost complete disappearance at nearly 13% of the concentration of the salt mixture in the water.

  15. Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model.

    Science.gov (United States)

    Lebon, G S Bruno; Tzanakis, I; Djambazov, G; Pericleous, K; Eskin, D G

    2017-07-01

    To address difficulties in treating large volumes of liquid metal with ultrasound, a fundamental study of acoustic cavitation in liquid aluminium, expressed in an experimentally validated numerical model, is presented in this paper. To improve the understanding of the cavitation process, a non-linear acoustic model is validated against reference water pressure measurements from acoustic waves produced by an immersed horn. A high-order method is used to discretize the wave equation in both space and time. These discretized equations are coupled to the Rayleigh-Plesset equation using two different time scales to couple the bubble and flow scales, resulting in a stable, fast, and reasonably accurate method for the prediction of acoustic pressures in cavitating liquids. This method is then applied to the context of treatment of liquid aluminium, where it predicts that the most intense cavitation activity is localised below the vibrating horn and estimates the acoustic decay below the sonotrode with reasonable qualitative agreement with experimental data. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. The effects of tonal and broadband acoustic excitation on the transition process within a laminar separation bubble

    Science.gov (United States)

    Yarusevych, Serhiy; Kurelek, John; Kotsonis, Marios

    2017-11-01

    The effects of controlled acoustic excitation on the transition process in a laminar separation bubble formed on the suction side of a NACA 0018 airfoil at a chord Reynolds number of 125,000 and an angle of attack of 4 degrees are studied experimentally. The investigation is carried out using time-resolved, planar, two-component Particle Image Velocimetry. Two types of excitation are considered: (i) tonal excitation at the frequency of the most unstable disturbances in the natural flow, and (ii) broadband excitation consisting bandpass filtered to the natural unstable frequency range, modelling two common types of airfoil self-noise production. For equal energy input levels, the results show that tonal and broadband types of excitation have equivalent effects on the mean flow field. Specifically, both cause the streamwise extent and height of the bubble to decrease. However, further analysis reveals notable differences in the underlying physics. For the tonal case, the transition process is dominated by the growth of disturbances at the excitation frequency that damps the growth of all other disturbances, leading to the formation of strongly coherent vortices in the aft portion of the separation bubble. On the other hand, broadband excitation promotes more moderate growth of all disturbances within the unstable frequency band, producing less coherent shear layer structures that experience earlier breakdown. Thus, the frequency content of acoustic excitation has a strong influence on the transition process in laminar separation bubbles. The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding this work.

  17. Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage

    Directory of Open Access Journals (Sweden)

    Kusyumov A.N.

    2016-01-01

    Full Text Available The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman’s approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.

  18. Wave Breaking, Bubble Production and Acoustic Characteristics of the Surf Zone, SIO Component

    National Research Council Canada - National Science Library

    Deane, Grant

    2001-01-01

    .... The purpose of these measurements was to: (1) statistically characterize the surf zone acoustic channel Doppler and time spreads, and acoustic drop-outs, in terms of the incident wave field and (2...

  19. The depth distribution of bubbles and fracture in He+ and D+ irradiated copper

    International Nuclear Information System (INIS)

    Johnson, P.B.; Mazey, D.J.

    1982-01-01

    Transmission electron microscopy is used to investigate the spatial arrangement and distribution with depth of gas bubbles produced in Cu by irradiation at 320 K to a level approx. equal to 4 x 10 21 30 keV He + m -2 . At the depth of maximum bubble size the bubbles are random and large (up to approx. equal to 10 nm across). At both shallower and greater depths the gas bubbles are smaller (approx. equal to 2 nm diam), much more uniform in size and ordered on an fcc superlattice with a lattice constant of a 1 approx. equal to 7.7 nm which (in contrast to the average bubble size) is independent of depth. It is suggested that blistering results from fracture, at a depth near the mean projected range, between large randomly-ordered bubbles which have evolved from smaller bubbles of uniform size arranged on a superlattice. For the particular case of D + irradiation of Cu at 120 K evidence is found to suggest that the fracture mechanisms involved in blistering and flaking are quite different. (orig.)

  20. Gas fluxing of aluminum: a bubble probe for optimization of bubbles/bubble distribution and minimization of splashing/droplet formation

    International Nuclear Information System (INIS)

    James W. Evans; Auitumn Fjeld

    2006-01-01

    totaling 1.549 million lbs. for only thirteen of the twenty three primary smelters then in operation in the US. The research work described in the body of this report (the doctoral dissertation of Dr. Autumn M. Fjeld) had as its objective the improvement of gas fluxing technology to reduce emissions while still maintaining fluxing unit metal throughput. A second objective was a better understanding of the splashing and droplet emission that occurs during fluxing at high gas throughput rates. In the extreme such droplets can form undesired accretions on the walls and gas exit lines of the fluxing unit. Consequently, the productivity of a fluxing unit is sometimes limited by the need to avoid such spraying of droplets produced as gas bubbles break at the metal surface. The approach used was a combination of experimental work in laboratories at UC Berkeley and at the Alcoa Technical Center. The experimental work was mostly on a bubble probe that could be used to determine the extent of dispersion of gas bubbles in the fluxing unit (a parameter affecting the utilization of the injected chlorine). Additionally a high speed digital movie camera was used to study droplet formation due to gas bubbles bursting at the surface of a low melting point alloy. The experimental work was supported by mathematical modeling. In particular, two FLUENT? base mathematical models were developed to compute the metal flow and distribution of the gas within a fluxing unit. Results from these models were then used in a third model to compute emissions and the progress of impurity removal as a function of parameters such as rotor speed. The project was successful in demonstrating that the bubble probe could detect bubbles in a gas fluxing unit at the Alcoa technical Center outside Pittsburgh, PA. This unit is a commercial sized one and the probe, with its associated electronics, was subjected to the hostile molten aluminum, electrical noise etc. Despite this the probes were, on several occasions

  1. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation.

    Science.gov (United States)

    Sajjadi, Baharak; Raman, Abdul Aziz Abdul; Ibrahim, Shaliza

    2015-05-01

    This paper aims at investigating the influence of ultrasound power amplitude on liquid behaviour in a low-frequency (24 kHz) sono-reactor. Three types of analysis were employed: (i) mechanical analysis of micro-bubbles formation and their activities/characteristics using mathematical modelling. (ii) Numerical analysis of acoustic streaming, fluid flow pattern, volume fraction of micro-bubbles and turbulence using 3D CFD simulation. (iii) Practical analysis of fluid flow pattern and acoustic streaming under ultrasound irradiation using Particle Image Velocimetry (PIV). In mathematical modelling, a lone micro bubble generated under power ultrasound irradiation was mechanistically analysed. Its characteristics were illustrated as a function of bubble radius, internal temperature and pressure (hot spot conditions) and oscillation (pulsation) velocity. The results showed that ultrasound power significantly affected the conditions of hotspots and bubbles oscillation velocity. From the CFD results, it was observed that the total volume of the micro-bubbles increased by about 4.95% with each 100 W-increase in power amplitude. Furthermore, velocity of acoustic streaming increased from 29 to 119 cm/s as power increased, which was in good agreement with the PIV analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Numerical study of acoustically driven bubble cloud dynamics near a rigid wall.

    Science.gov (United States)

    Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L

    2018-01-01

    The dynamics of a bubble cloud excited by a sinusoidal pressure field near a rigid wall is studied using a novel Eulerian/Lagrangian two-phase flow model. The effects of key parameters such as the amplitude and frequency of the excitation pressure, the cloud and bubble sizes, the void fraction, and the initial standoff distance on the bubbles' collective behavior and the resulting pressure loads on the nearby wall are investigated. The study shows that nonlinear bubble cloud dynamics becomes more pronounced and results in higher pressure loading at the wall as the excitation pressure amplitude increases. The strongest collective bubble behavior occurs at a preferred resonance frequency. At this resonance frequency, pressure peaks orders of magnitudes higher than the excitation pressure result from the bubble interaction when the amplitude of the pressure excitation is high. The numerically obtained resonance frequency is significantly different from the reported natural frequency of a spherical cloud derived from linear theory, which assumes small amplitude oscillations in an unbounded medium. At high amplitudes of the excitation, the resonance frequency decreases almost linearly with the ratio of excitation pressure amplitude to ambient pressure until the ratio is larger than one. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Numerical calculation of velocity distribution near a vertical flat plate immersed in bubble flow

    International Nuclear Information System (INIS)

    Matsuura, Akihiro; Nakamura, Hajime; Horihata, Hideyuki; Hiraoka, Setsuro; Aragaki, Tsutomu; Yamada, Ikuho; Isoda, Shinji.

    1992-01-01

    Liquid and gas velocity distributions for bubble flow near a vertical flat plate were calculated numerically by using the SIMPLER method, where the flow was assumed to be laminar, two-dimensional, and at steady state. The two-fluid flow model was used in the numerical analysis. To calculate the drag force on a small bubble, Stokes' law for a rigid sphere is applicable. The dimensionless velocity distributions which were arranged with characteristic boundary layer thickness and maximum liquid velocity were adjusted with a single line and their forms were similar to that for single-phase wall-jet flow. The average wall shear stress derived from the velocity gradient at the plate wall was strongly affected by bubble diameter but not by inlet liquid velocity. The present dimensionless velocity distributions obtained numerically agreed well with previous experimental results, and the proposed numerical algorithm was validated. (author)

  4. Distributed feedback guided surface acoustic wave microresonator

    Science.gov (United States)

    Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.

    1989-08-01

    Surface acoustic wave resonators have been used in a number of applications: high-Q frequency filtering, very accurate frequency sources, etc. A major disadvantage of conventional resonators is their large dimensions, which makes them inadequate for integrated acoustics applications. In order to overcome these size limitations a new type of microresonator was designed, developed, and tested. In this paper, theoretical calculations and measurements on two kinds of such devices (a corrugated waveguide filter and a microresonator structure) are presented and their possible applications are discussed.

  5. Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows

    Science.gov (United States)

    Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro

    2015-11-01

    Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.

  6. Cumulative distribution functions associated with bubble-nucleation processes in cavitation

    KAUST Repository

    Watanabe, Hiroshi

    2010-11-15

    Bubble-nucleation processes of a Lennard-Jones liquid are studied by molecular dynamics simulations. Waiting time, which is the lifetime of a superheated liquid, is determined for several system sizes, and the apparent finite-size effect of the nucleation rate is observed. From the cumulative distribution function of the nucleation events, the bubble-nucleation process is found to be not a simple Poisson process but a Poisson process with an additional relaxation time. The parameters of the exponential distribution associated with the process are determined by taking the relaxation time into account, and the apparent finite-size effect is removed. These results imply that the use of the arithmetic mean of the waiting time until a bubble grows to the critical size leads to an incorrect estimation of the nucleation rate. © 2010 The American Physical Society.

  7. A stochastic differential equations approach for the description of helium bubble size distributions in irradiated metals

    Science.gov (United States)

    Seif, Dariush; Ghoniem, Nasr M.

    2014-12-01

    A rate theory model based on the theory of nonlinear stochastic differential equations (SDEs) is developed to estimate the time-dependent size distribution of helium bubbles in metals under irradiation. Using approaches derived from Itô's calculus, rate equations for the first five moments of the size distribution in helium-vacancy space are derived, accounting for the stochastic nature of the atomic processes involved. In the first iteration of the model, the distribution is represented as a bivariate Gaussian distribution. The spread of the distribution about the mean is obtained by white-noise terms in the second-order moments, driven by fluctuations in the general absorption and emission of point defects by bubbles, and fluctuations stemming from collision cascades. This statistical model for the reconstruction of the distribution by its moments is coupled to a previously developed reduced-set, mean-field, rate theory model. As an illustrative case study, the model is applied to a tungsten plasma facing component under irradiation. Our findings highlight the important role of stochastic atomic fluctuations on the evolution of helium-vacancy cluster size distributions. It is found that when the average bubble size is small (at low dpa levels), the relative spread of the distribution is large and average bubble pressures may be very large. As bubbles begin to grow in size, average bubble pressures decrease, and stochastic fluctuations have a lessened effect. The distribution becomes tighter as it evolves in time, corresponding to a more uniform bubble population. The model is formulated in a general way, capable of including point defect drift due to internal temperature and/or stress gradients. These arise during pulsed irradiation, and also during steady irradiation as a result of externally applied or internally generated non-homogeneous stress fields. Discussion is given into how the model can be extended to include full spatial resolution and how the

  8. A stochastic differential equations approach for the description of helium bubble size distributions in irradiated metals

    International Nuclear Information System (INIS)

    Seif, Dariush; Ghoniem, Nasr M.

    2014-01-01

    A rate theory model based on the theory of nonlinear stochastic differential equations (SDEs) is developed to estimate the time-dependent size distribution of helium bubbles in metals under irradiation. Using approaches derived from Itô’s calculus, rate equations for the first five moments of the size distribution in helium–vacancy space are derived, accounting for the stochastic nature of the atomic processes involved. In the first iteration of the model, the distribution is represented as a bivariate Gaussian distribution. The spread of the distribution about the mean is obtained by white-noise terms in the second-order moments, driven by fluctuations in the general absorption and emission of point defects by bubbles, and fluctuations stemming from collision cascades. This statistical model for the reconstruction of the distribution by its moments is coupled to a previously developed reduced-set, mean-field, rate theory model. As an illustrative case study, the model is applied to a tungsten plasma facing component under irradiation. Our findings highlight the important role of stochastic atomic fluctuations on the evolution of helium–vacancy cluster size distributions. It is found that when the average bubble size is small (at low dpa levels), the relative spread of the distribution is large and average bubble pressures may be very large. As bubbles begin to grow in size, average bubble pressures decrease, and stochastic fluctuations have a lessened effect. The distribution becomes tighter as it evolves in time, corresponding to a more uniform bubble population. The model is formulated in a general way, capable of including point defect drift due to internal temperature and/or stress gradients. These arise during pulsed irradiation, and also during steady irradiation as a result of externally applied or internally generated non-homogeneous stress fields. Discussion is given into how the model can be extended to include full spatial resolution and how the

  9. A stochastic differential equations approach for the description of helium bubble size distributions in irradiated metals

    Energy Technology Data Exchange (ETDEWEB)

    Seif, Dariush, E-mail: dariush.seif@iwm-extern.fraunhofer.de [Fraunhofer Institut für Werkstoffmechanik, Freiburg 79108 (Germany); Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095-1597 (United States); Ghoniem, Nasr M. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095-1597 (United States)

    2014-12-15

    A rate theory model based on the theory of nonlinear stochastic differential equations (SDEs) is developed to estimate the time-dependent size distribution of helium bubbles in metals under irradiation. Using approaches derived from Itô’s calculus, rate equations for the first five moments of the size distribution in helium–vacancy space are derived, accounting for the stochastic nature of the atomic processes involved. In the first iteration of the model, the distribution is represented as a bivariate Gaussian distribution. The spread of the distribution about the mean is obtained by white-noise terms in the second-order moments, driven by fluctuations in the general absorption and emission of point defects by bubbles, and fluctuations stemming from collision cascades. This statistical model for the reconstruction of the distribution by its moments is coupled to a previously developed reduced-set, mean-field, rate theory model. As an illustrative case study, the model is applied to a tungsten plasma facing component under irradiation. Our findings highlight the important role of stochastic atomic fluctuations on the evolution of helium–vacancy cluster size distributions. It is found that when the average bubble size is small (at low dpa levels), the relative spread of the distribution is large and average bubble pressures may be very large. As bubbles begin to grow in size, average bubble pressures decrease, and stochastic fluctuations have a lessened effect. The distribution becomes tighter as it evolves in time, corresponding to a more uniform bubble population. The model is formulated in a general way, capable of including point defect drift due to internal temperature and/or stress gradients. These arise during pulsed irradiation, and also during steady irradiation as a result of externally applied or internally generated non-homogeneous stress fields. Discussion is given into how the model can be extended to include full spatial resolution and how the

  10. Bubble transport in bifurcations

    Science.gov (United States)

    Bull, Joseph; Qamar, Adnan

    2017-11-01

    Motivated by a developmental gas embolotherapy technique for cancer treatment, we examine the transport of bubbles entrained in liquid. In gas embolotherapy, infarction of tumors is induced by selectively formed vascular gas bubbles that originate from acoustic vaporization of vascular droplets. In the case of non-functionalized droplets with the objective of vessel occlusion, the bubbles are transported by flow through vessel bifurcations, where they may split prior to eventually reach vessels small enough that they become lodged. This splitting behavior affects the distribution of bubbles and the efficacy of flow occlusion and the treatment. In these studies, we investigated bubble transport in bifurcations using computational and theoretical modeling. The model reproduces the variety of experimentally observed splitting behaviors. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Maximum shear stresses were found to decrease with increasing Reynolds number. The initial bubble length was found to affect the splitting behavior in the presence of gravitational asymmetry. This work was supported by NIH Grant R01EB006476.

  11. Nonplanar ion acoustic waves with kappa-distributed electrons

    International Nuclear Information System (INIS)

    Sahu, Biswajit

    2011-01-01

    Using the standard reductive perturbation technique, nonlinear cylindrical and spherical Kadomtsev-Petviashvili equations are derived for the propagation of ion acoustic solitary waves in an unmagnetized collisionless plasma with kappa distributed electrons and warm ions. The influence of kappa-distributed electrons and the effects caused by the transverse perturbation on cylindrical and spherical ion acoustic waves (IAWs) are investigated. It is observed that increase in the kappa distributed electrons (i.e., decreasing κ) decreases the amplitude of the solitary electrostatic potential structures. The numerical results are presented to understand the formation of ion acoustic solitary waves with kappa-distributed electrons in nonplanar geometry. The present investigation may have relevance in the study of propagation of IAWs in space and laboratory plasmas.

  12. Cumulative distribution functions associated with bubble-nucleation processes in cavitation

    KAUST Repository

    Watanabe, Hiroshi; Suzuki, Masaru; Ito, Nobuyasu

    2010-01-01

    of the exponential distribution associated with the process are determined by taking the relaxation time into account, and the apparent finite-size effect is removed. These results imply that the use of the arithmetic mean of the waiting time until a bubble grows

  13. Near resonant bubble acoustic cross-section corrections, including examples from oceanography, volcanology, and biomedical ultrasound

    NARCIS (Netherlands)

    Ainslie, M.A.; Leighton, T.G.

    2009-01-01

    The scattering cross-section σs of a gas bubble of equilibrium radius R0 in liquid can be written in the form σs =4π R02 / [(ω12 / ω2 -1)2 + δ2], where ω is the excitation frequency, ω1 is the resonance frequency, and δ is a frequency-dependent dimensionless damping coefficient. A persistent

  14. Measurement of void fraction and bubble size distribution in two-phase flow system

    International Nuclear Information System (INIS)

    Huahun, G.

    1987-01-01

    The importance of study two phase flow parameter and microstructure has appeared increasingly, with the development of two-phase flow discipline. In the paper, the measurement methods of several important microstructure parameter in a two phase flow vertical channel have been studied. Using conductance probe the two phase flow pattern and the average void fraction have been measured previously by the authors. This paper concerns microstructure of the bubble size distribution and local void fraction. The authors studied the methods of measuring bubble velocity, size distribution and local void fraction using double conductance probes and a set of apparatus. Based on our experiments and Yoshihiro work, a formula of calculated local void fraction has been deduced by using the statistical characteristics of bubbles in two phase flow and the relation between calculated bubble size and voltage has been determined. Finally the authors checked by using photograph and fast valve, which is classical but reliable. The results are the same with what has been studied before

  15. Gas Bubble Dynamics under Mechanical Vibrations

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  16. Airport acoustics: Aircraft noise distribution and modelling of some ...

    African Journals Online (AJOL)

    Airport acoustics: Aircraft noise distribution and modelling of some aircraft parameters. MU Onuu, EO Obisung. Abstract. No Abstract. Nigerian Journal of Physics Vol. 17 (Supplement) 2005: pp. 177-186. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  17. Active acoustic leak detection for LMFBR steam generator. Pt. 5. Experiment for detection of bubbles using the SG full sector model

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi

    1997-01-01

    In order to prevent the expansion of tube damages and to maintain structural safety in steam generators (SG) of fast breeder reactors (FBR), it is necessary to detect precisely and immediately the leakage of water from tubes of heat exchangers. Therefore, an active acoustic method, which detects the sound attenuation due to bubbles generated in the sodium-water reactions, it being developed. In this paper, the attenuation characteristics of sound attenuated by bubbles and influence of background noise are investigated experimentally by using an SG full sector model (diameter ratio about 1/1, height ratio about 1/7) simulating the actual SG. As an experimental result, the received sound attenuation for ten seconds was more than 10 dB from air bubble injection when injected bubble of 10 l/s (equivalence water leak rate about 10 g/s). The attenuation of sound are least affected by bubble injection position of heat exchanger tube bunch department. And the time was about 25 seconds till the sound attenuation became 10 dB in case of quantity of air bubble 1 l/s (equivalent water leak rate about 1 g/s). It is clarified that the background noise hardly influenced water leak detection performance as a result of having examined influence of background noise. (author)

  18. Pressure distribution due to steam bubble collapse in a BWR suppression chamber

    International Nuclear Information System (INIS)

    Giencke, E.

    1979-01-01

    For the pressure time history at the walls of a suppression chamber due to a steam bubble collaps at the condenser pipes interests, expecially the influence of the wall elasticity and the position of the condenser pipes. Two problems are to solve: the pressure time history in the steam bubble and at the walls during the collaps and the pressure distribution at the walls. Both problems are coupled with each other, but the influence of the wall elasticity on the pressure time history in the steam bubble is usually small. Thus the two problems may be solved one after each other. For simplifying the analysis the steam bubble surface may be idealized as a sphere during the whole collaps time. Then the resulting pressure time history is be put on the fluid-structure-system. To show the influence of the containment-elasticity it is favourable to investigate both the rigid and the elastic containment. Because the condenser pipes are arranged in a regular scheme, two limit loading cases are to distinguish. Collapses occur simultaneously with the same intensity at all condenser pipes and a strong collaps occurs only at one condenser pipe or a small group of pipes. When including wall elasticity first the modes of the fluid-structure-system are to analyse and then the dynamical responses of the modes. The coupling effects between the pressure time history in the bubble and at the walls are discussed and then how the membrane and bending stiffness of the walls and the buttomstructure influence the pressure distribution, both for steel and concrete structure. Finally simple models for the analysis are derived and the analytical results are compared with experiments. (orig.)

  19. Evaluation of stability and size distribution of sunflower oil-coated micro bubbles for localized drug delivery.

    Science.gov (United States)

    Filho, Walter Duarte de Araujo; Schneider, Fábio Kurt; Morales, Rigoberto E M

    2012-09-20

    Micro bubbles were initially introduced as contrast agents for ultrasound examinations as they are able to modify the signal-to-noise ratio in imaging, thus improving the assessment of clinical information on human tissue. Recent developments have demonstrated the feasibility of using these bubbles as drug carriers in localized delivery. In micro fluidics devices for generation of micro bubbles, the bubbles are formed at interface of liquid gas through a strangulation process. A device that uses these features can produce micro bubbles with small size dispersion in a single step. A T-junction micro fluidic device constructed using 3D prototyping was made for the production of mono dispersed micro bubbles. These micro bubbles use sunflower oil as a lipid layer. Stability studies for micro bubbles with diameters different generated from a liquid phase of the same viscosity were conducted to evaluate whether micro bubbles can be used as drug carriers. The biocompatibility of coating layer, the ability to withstand environmental pressure variations combined with echogenicity, are key factors that they can safely play the role of drug transporters. The normal distribution curve with small dispersion of the diameter of bubbles validates the process of generating micro bubbles with low value of variation coefficient, i.e., 0.381 at 1.90%. The results also showed the feasibility of using sunflower oil as the lipid matrix with stable population of bubbles over 217 minutes for micro bubbles with an average diameter of 313.04 μm and 121 minutes for micro bubbles with an average diameter of 73.74 μm, considering bubbles with air as gaseous phase. The results indicate that the micro fluidic device designed can be used for producing micro bubbles with low variation coefficient using sunflower oil as a coating of micro bubbles. These carriers were stable for periods of time that are long enough for clinical applications even when regular air is used as the gas phase. Improved

  20. Evaluation of stability and size distribution of sunflower oil-coated micro bubbles for localized drug delivery

    Directory of Open Access Journals (Sweden)

    Filho WalterDuartedeAraujo

    2012-09-01

    Full Text Available Abstract Background Micro bubbles were initially introduced as contrast agents for ultrasound examinations as they are able to modify the signal-to-noise ratio in imaging, thus improving the assessment of clinical information on human tissue. Recent developments have demonstrated the feasibility of using these bubbles as drug carriers in localized delivery. In micro fluidics devices for generation of micro bubbles, the bubbles are formed at interface of liquid gas through a strangulation process. A device that uses these features can produce micro bubbles with small size dispersion in a single step. Methods A T-junction micro fluidic device constructed using 3D prototyping was made for the production of mono dispersed micro bubbles. These micro bubbles use sunflower oil as a lipid layer. Stability studies for micro bubbles with diameters different generated from a liquid phase of the same viscosity were conducted to evaluate whether micro bubbles can be used as drug carriers. The biocompatibility of coating layer, the ability to withstand environmental pressure variations combined with echogenicity, are key factors that they can safely play the role of drug transporters. Results The normal distribution curve with small dispersion of the diameter of bubbles validates the process of generating micro bubbles with low value of variation coefficient, i.e., 0.381 at 1.90%. The results also showed the feasibility of using sunflower oil as the lipid matrix with stable population of bubbles over 217 minutes for micro bubbles with an average diameter of 313.04 μm and 121 minutes for micro bubbles with an average diameter of 73.74 μm, considering bubbles with air as gaseous phase. Conclusion The results indicate that the micro fluidic device designed can be used for producing micro bubbles with low variation coefficient using sunflower oil as a coating of micro bubbles. These carriers were stable for periods of time that are long enough for clinical

  1. Acoustic dew point and bubble point detector for gas condensates and reservoir fluids

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, A.; Hu, Y.; Thomas, F. B.; Bennion, D. B.; Jamaluddin, A. K. M. [Hycal Energy Research Labs. Ltd., Calgary, AB (Canada)

    1997-08-01

    Detailed knowledge of bubblepoint and dewpoint pressures at reservoir temperature are crucial for natural gas processing, transportation, metering and utilization. This paper introduces a new acoustic dewpoint and bubblepoint detector that can be applied to a broad range of phase transitions, including very lean gas systems and opaque heavy oils. The system uses two acoustic transducers, one to stimulate and the other to detect normal mode vibrations of reservoir fluids in a small cylindrical resonator. The acoustic spectra are recorded at close intervals throughout the phase envelope, along with temperature, pressure and volume measurements, and the data is processed to obtain the specific condition of phase transition. Results of two systems, a binary mixture and live reservoir fluid, are presented. The detector system is claimed to be capable of operation in an isothermal mode with variable volume, and in a constant volume mode with variable temperatures. Interpretation of results is free of operator subjectivity; they show excellent agreement with results obtained by visual methods and equations of state calculations. 4 refs., 2 tabs., 4 figs.

  2. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: example of a high-order Bessel beam of quasi-standing waves.

    Science.gov (United States)

    Mitri, F G

    2009-04-01

    The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.

  3. Measuring helium bubble diameter distributions in tungsten with grazing incidence small angle x-ray scattering (GISAXS)

    Science.gov (United States)

    Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Riley, D.; Corr, C. S.

    2016-02-01

    Grazing incidence small angle x-ray scattering was performed on tungsten samples exposed to helium plasma in the MAGPIE and Pisces-A linear plasma devices to measure the size distributions of resulting helium nano-bubbles. Nano-bubbles were fitted assuming spheroidal particles and an exponential diameter distribution. These particles had mean diameters between 0.36 and 0.62 nm. Pisces-A exposed samples showed more complex patterns, which may suggest the formation of faceted nano-bubbles or nano-scale surface structures.

  4. Distributed acoustic cues for caller identity in macaque vocalization.

    Science.gov (United States)

    Fukushima, Makoto; Doyle, Alex M; Mullarkey, Matthew P; Mishkin, Mortimer; Averbeck, Bruno B

    2015-12-01

    Individual primates can be identified by the sound of their voice. Macaques have demonstrated an ability to discern conspecific identity from a harmonically structured 'coo' call. Voice recognition presumably requires the integrated perception of multiple acoustic features. However, it is unclear how this is achieved, given considerable variability across utterances. Specifically, the extent to which information about caller identity is distributed across multiple features remains elusive. We examined these issues by recording and analysing a large sample of calls from eight macaques. Single acoustic features, including fundamental frequency, duration and Weiner entropy, were informative but unreliable for the statistical classification of caller identity. A combination of multiple features, however, allowed for highly accurate caller identification. A regularized classifier that learned to identify callers from the modulation power spectrum of calls found that specific regions of spectral-temporal modulation were informative for caller identification. These ranges are related to acoustic features such as the call's fundamental frequency and FM sweep direction. We further found that the low-frequency spectrotemporal modulation component contained an indexical cue of the caller body size. Thus, cues for caller identity are distributed across identifiable spectrotemporal components corresponding to laryngeal and supralaryngeal components of vocalizations, and the integration of those cues can enable highly reliable caller identification. Our results demonstrate a clear acoustic basis by which individual macaque vocalizations can be recognized.

  5. Conversion of Chord Length Data into Bubble Size Distribution: Generation of Chord Length Data and the Methodology Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Hien, Hoang Nhan; Euh, D. J.; Song, C. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yun, B. J. [Pusan National University, Busan (Korea, Republic of)

    2012-05-15

    Bubble size and its distribution play an important role in thermal hydrodynamic processes in multiphase flow systems. By using the conductivity or optical probe techniques, the size and distribution of bubbles can only be inferred indirectly from a measured chord length data (CLD). Some methods are proposed to convert a CLD into the bubble size distribution (BSD), and they can be classified into parametric, semi-parametric and non-parametric. Most of methods are derived from the following relation of the conditional probability functions that are established under the geometric constraints: P(y) = {infinity}{integral}0 P(R) P(y|R) dR where P(R) is PDF of bubbles of all sizes R pierced by a probe, and P(y|R) is PDF of chord length y corresponding to bubbles of a specified size R. These methods are limited to flows of bubbles having symmetric shapes, i.e. spherical, ellipsoidal, or capspherical. Although the methods were developed from a common relation, there are no physical bases as well as the lack of experimental data to validate them. In this work, the CLD is generated for comparing different conversion methods. The range of bubble size is determined by the Hinze's theory. The CLDs are applied to numerical backward transforms (NBT), analytical backward transform (ABT), and analytical semi-parametric method using Parzen window estimator (ParzenES) to obtain the BSD. A comparison for the obtained results is performed

  6. Conversion of Chord Length Data into Bubble Size Distribution: Generation of Chord Length Data and the Methodology Comparison

    International Nuclear Information System (INIS)

    Hien, Hoang Nhan; Euh, D. J.; Song, C. H.; Yun, B. J.

    2012-01-01

    Bubble size and its distribution play an important role in thermal hydrodynamic processes in multiphase flow systems. By using the conductivity or optical probe techniques, the size and distribution of bubbles can only be inferred indirectly from a measured chord length data (CLD). Some methods are proposed to convert a CLD into the bubble size distribution (BSD), and they can be classified into parametric, semi-parametric and non-parametric. Most of methods are derived from the following relation of the conditional probability functions that are established under the geometric constraints: P(y) = ∞∫0 P(R) P(y|R) dR where P(R) is PDF of bubbles of all sizes R pierced by a probe, and P(y|R) is PDF of chord length y corresponding to bubbles of a specified size R. These methods are limited to flows of bubbles having symmetric shapes, i.e. spherical, ellipsoidal, or capspherical. Although the methods were developed from a common relation, there are no physical bases as well as the lack of experimental data to validate them. In this work, the CLD is generated for comparing different conversion methods. The range of bubble size is determined by the Hinze's theory. The CLDs are applied to numerical backward transforms (NBT), analytical backward transform (ABT), and analytical semi-parametric method using Parzen window estimator (ParzenES) to obtain the BSD. A comparison for the obtained results is performed

  7. Model studies of bubble size distribution and sound propagation at microleaks in sodium-heated steam generators

    International Nuclear Information System (INIS)

    Uhlmann, G.

    1979-01-01

    The reaction zone of a small water leak in a sodium-heated steam generator (microleak) has been simulated by jet gassing or argon in water. The bubble diameter distribution in the bubble flow has been measured using a photoelectric method. The bubble size distribution obtained can be approached by an exponential distribution. For this case, phase velocity and sound damping have been calculated in the two-phase mixture. In the case of small ratios of sound frequency to the expected value of bubble resonance frequency, the frequency-independent sound velocity of the homogeneous mixture is obtained as a function of the gas volume fraction. In the case of very high frequencies, the sound velocity of the pure liquid is obtained for any gas volume fractions. In the whole range investigated damping is strongly dependent on the frequency. (author)

  8. Investigation of liquid phase axial dispersion in Taylor bubble flow by radiotracer residence time distribution analysis

    Directory of Open Access Journals (Sweden)

    Jin J.H.

    2013-05-01

    Full Text Available A gas-liquid Taylor bubble flow occurs in small diameter channels in which gas bubbles are separated by slugs of pure liquid. This type of flow regime is well suited for solid catalyzed gas-liquid reactors in which the reaction efficiency is a strong function of axial dispersion in the regions of pure liquid. This paper presents an experimental study of liquid phase axial dispersion in a Taylor bubble flow developed in a horizontal tube using high speed photography and radiotracer residence time distribution (RTD analysis. A parametric dependence of axial dispersion on average volume fraction of gas phase was also investigated by varying the relative volumetric flow rates of the two phases. 137mBa produced from a 137Cs/137mBa radionuclide generator was used as radiotracer and measurements were made using the NaI(Tl scintillation detectors. Validation of 137mBa in the form of barium chloride as aqueous phase radiotracer was also carried out. Axial Dispersion Model (ADM was used to simulate the hydrodynamics of the system and the results of the experiment are presented. It was observed that the system is characterized by very high values of Peclet Number (Pe∼102 which reveals an approaching plug type flow. The experimental and model estimated values of mean residence times were observed in agreement with each other.

  9. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rest, J. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)], E-mail: jrest@anl.gov; Hofman, G.L.; Kim, Yeon Soo [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2009-04-15

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than {approx}7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  10. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    Science.gov (United States)

    Rest, J.; Hofman, G. L.; Kim, Yeon Soo

    2009-04-01

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  11. Distributed temperature and distributed acoustic sensing for remote and harsh environments

    Science.gov (United States)

    Mondanos, Michael; Parker, Tom; Milne, Craig H.; Yeo, Jackson; Coleman, Thomas; Farhadiroushan, Mahmoud

    2015-05-01

    Advances in opto-electronics and associated signal processing have enabled the development of Distributed Acoustic and Temperature Sensors. Unlike systems relying on discrete optical sensors a distributed system does not rely upon manufactured sensors but utilises passive custom optical fibre cables resistant to harsh environments, including high temperature applications (600°C). The principle of distributed sensing is well known from the distributed temperature sensor (DTS) which uses the interaction of the source light with thermal vibrations (Raman scattering) to determine the temperature at all points along the fibre. Distributed Acoustic Sensing (DAS) uses a novel digital optical detection technique to precisely capture the true full acoustic field (amplitude, frequency and phase) over a wide dynamic range at every point simultaneously. A number of signal processing techniques have been developed to process a large array of acoustic signals to quantify the coherent temporal and spatial characteristics of the acoustic waves. Predominantly these systems have been developed for the oil and gas industry to assist reservoir engineers in optimising the well lifetime. Nowadays these systems find a wide variety of applications as integrity monitoring tools in process vessels, storage tanks and piping systems offering the operator tools to schedule maintenance programs and maximize service life.

  12. Single bubble sonoluminescence

    NARCIS (Netherlands)

    Brenner, Michael P.; Hilgenfeldt, Sascha; Lohse, Detlef

    2002-01-01

    Single-bubble sonoluminescence occurs when an acoustically trapped and periodically driven gas bubble collapses so strongly that the energy focusing at collapse leads to light emission. Detailed experiments have demonstrated the unique properties of this system: the spectrum of the emitted light

  13. Acoustic cavitation bubbles in the kidney induced by focused shock waves in extracorporeal shock wave lithotripsy (ESWL)

    Science.gov (United States)

    Kuwahara, M.; Ioritani, N.; Kambe, K.; Taguchi, K.; Saito, T.; Igarashi, M.; Shirai, S.; Orikasa, S.; Takayama, K.

    1990-07-01

    On an ultrasonic imaging system a hyperechoic region was observed in a focal area of fucused shock waves in the dog kidney. This study was performed to learn whether cavitation bubbles are responsible for this hyperechoic region. The ultrasonic images in water of varying temperatures were not markedly different. In the flowing stream of distilled water, the stream was demonstrated as a hyperechoic region only with a mixture of air bubbles. Streams of 5%-50% glucose solutions were also demonstrated as a hyperechoic region. However, such concentration changes in living tissue, as well as thermal changes, are hardly thought to be induced. The holographic interferometry showed that the cavitation bubbles remained for more than 500 msec. in the focal area in water. This finding indicate that the bubble can remain for longer period than previously supposed. These results support the contentions that cavitation bubbles are responsible for the hyperechoic region in the kidney in situ.

  14. Modelling of the Bubble Size Distribution in an Aerated Stirred Tank: Theoretical and Numerical Comparison of Different Breakup Models

    Directory of Open Access Journals (Sweden)

    Kálal Zbyněk

    2014-09-01

    Full Text Available The main topic of this study is the mathematical modelling of bubble size distributions in an aerated stirred tank using the population balance method. The air-water system consisted of a fully baffled vessel with a diameter of 0.29 m, which was equipped with a six-bladed Rushton turbine. The secondary phase was introduced through a ring sparger situated under the impeller. Calculations were performed with the CFD software CFX 14.5. The turbulent quantities were predicted using the standard k-ε turbulence model. Coalescence and breakup of bubbles were modelled using the MUSIG method with 24 bubble size groups. For the bubble size distribution modelling, the breakup model by Luo and Svendsen (1996 typically has been used in the past. However, this breakup model was thoroughly reviewed and its practical applicability was questioned. Therefore, three different breakup models by Martínez-Bazán et al. (1999a, b, Lehr et al. (2002 and Alopaeus et al. (2002 were implemented in the CFD solver and applied to the system. The resulting Sauter mean diameters and local bubble size distributions were compared with experimental data.

  15. Phase distribution phenomena in upward cocurrent bubbly flows. A critical review of the experimental and theoretical works

    International Nuclear Information System (INIS)

    Grossetete, C.

    1992-09-01

    The most important and challenging problems in two-phase bubbly flow today are related to the physical understanding and the modeling of multidimensional phenomena such as the distribution of phases in space. We present here a critical review of the available experimental and theoretical studies in gas-liquid adiabatic and non-reactive upward bubbly flows which have been carried out to define and improve the physical models needed to close the three-dimensional two-fluid model equations. It appears that: so far, the axial development of two-phase upward bubbly flows has not been handled thoroughly. Little is known about the way the pressure gradient as well as the gas-liquid mixing conditions affect the distribution of phases, the problems related to the closing of the two-fluid model equations are far from being solved. The physical models proposed seem often to be too much complex considering how little we know about the mechanisms involved, there are still very few multidimensional numerical models whose results have been compared with experimental data on bubbly flows. The boundary conditions introduced in the codes as well as the sensitivity of the results to the parameters of the codes are never precisely stated. To bridge some of those gaps, we propose to perform an experimental and numerical study of the axial development of two-phase air-water upward bubbly flows in vertical pipes

  16. Distributed acoustic fibre optic sensors for condition monitoring of pipelines

    Science.gov (United States)

    Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina

    2016-05-01

    Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.

  17. Can airborne ultrasound monitor bubble size in chocolate?

    International Nuclear Information System (INIS)

    Watson, N; Hazlehurst, T; Povey, M; Vieira, J; Sundara, R; Sandoz, J-P

    2014-01-01

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product

  18. Can airborne ultrasound monitor bubble size in chocolate?

    Science.gov (United States)

    Watson, N.; Hazlehurst, T.; Povey, M.; Vieira, J.; Sundara, R.; Sandoz, J.-P.

    2014-04-01

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product.

  19. Modeling Bubble Flow and Current Density Distribution in an Alkaline Electrolysis Cell

    Directory of Open Access Journals (Sweden)

    Ravichandra S. Jupudi

    2009-12-01

    Full Text Available The effect of bubbles on the current density distribution over the electrodes of an alkaline electrolyzer cell is studied using a two-dimensional computational fluid dynamics model. Model includes Eulerian-Eulerian two-phase flow methodology to model the multiphase flow of Hydrogen and Oxygen with water and the behavior of each phase is accounted for using first principle. Hydrogen/Oxygen evolution, flow field and current density distribution are incorporated in the model to account for the complicated physics involved in the process. Fluent 6.2 is used to solve two-phase flow and electrochemistry is incorporated using UDF (User Defined Function feature of Fluent. Model is validated with mesh refinement study and by comparison with experimental measurements. Model is found to replicate the effect of cell voltage and inter-electrode gap (distance between the electrodes on current density accurately. Further, model is found to capture the existence of optimum cell height. The validated model is expected to be a very useful tool in the design and optimization of alkaline electrolyzer cells.

  20. Time-series measurements of bubble plume variability and water column methane distribution above Southern Hydrate Ridge, Oregon

    Science.gov (United States)

    Philip, Brendan T.; Denny, Alden R.; Solomon, Evan A.; Kelley, Deborah S.

    2016-03-01

    An estimated 500-2500 gigatons of methane carbon is sequestered in gas hydrate at continental margins and some of these deposits are associated with overlying methane seeps. To constrain the impact that seeps have on methane concentrations in overlying ocean waters and to characterize the bubble plumes that transport methane vertically into the ocean, water samples and time-series acoustic images were collected above Southern Hydrate Ridge (SHR), a well-studied hydrate-bearing seep site ˜90 km west of Newport, Oregon. These data were coregistered with robotic vehicle observations to determine the origin of the seeps, the plume rise heights above the seafloor, and the temporal variability in bubble emissions. Results show that the locations of seep activity and bubble release remained unchanged over the 3 year time-series investigation, however, the magnitude of gas release was highly variable on hourly time scales. Bubble plumes were detected to depths of 320-620 m below sea level (mbsl), in several cases exceeding the upper limit of hydrate stability by ˜190 m. For the first time, sustained gas release was imaged at the Pinnacle site and in-between the Pinnacle and the Summit area of venting, indicating that the subseafloor transport of fluid and gas is not restricted to the Summit at SHR, requiring a revision of fluid-flow models. Dissolved methane concentrations above background levels from 100 to 300 mbsl are consistent with long-term seep gas transport into the upper water column, which may lead to the build-up of seep-derived carbon in regional subsurface waters and to increases in associated biological activity.

  1. Towards Noise Tomography and Passive Monitoring Using Distributed Acoustic Sensing

    Science.gov (United States)

    Paitz, P.; Fichtner, A.

    2017-12-01

    Distributed Acoustic Sensing (DAS) has the potential to revolutionize the field of seismic data acquisition. Thanks to their cost-effectiveness, fiber-optic cables may have the capability of complementing conventional geophones and seismometers by filling a niche of applications utilizing large amounts of data. Therefore, DAS may serve as an additional tool to investigate the internal structure of the Earth and its changes over time; on scales ranging from hydrocarbon or geothermal reservoirs to the entire globe. An additional potential may be in the existence of large fibre networks deployed already for telecommunication purposes. These networks that already exist today could serve as distributed seismic antennas. We investigate theoretically how ambient noise tomography may be used with DAS data. For this we extend the theory of seismic interferometry to the measurement of strain. With numerical, 2D finite-difference examples we investigate the impact of source and receiver effects. We study the effect of heterogeneous source distributions and the cable orientation by assessing similarities and differences to the Green's function. We also compare the obtained interferometric waveforms from strain interferometry to displacement interferometric wave fields obtained with existing methods. Intermediate results show that the obtained interferometric waveforms can be connected to the Green's Functions and provide consistent information about the propagation medium. These simulations will be extended to reservoir scale subsurface structures. Future work will include the application of the theory to real-data examples. The presented research depicts the early stage of a combination of theoretical investigations, numerical simulations and real-world data applications. We will therefore evaluate the potentials and shortcomings of DAS in reservoir monitoring and seismology at the current state, with a long-term vision of global seismic tomography utilizing DAS data from

  2. Assessment of effective thermal conductivity in U–Mo metallic fuels with distributed gas bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang; Casella, Andrew M.; Lavender, Curt A.; Senor, David J.; Burkes, Douglas E.

    2015-07-15

    This work presents a numerical method to assess the relative impact of various microstructural features including grain sizes, nanometer scale intragranular gas bubbles, and larger intergranular gas bubbles in irradiated U–Mo metallic fuels on the effective thermal conductivity. A phase-field model was employed to construct a three-dimensional polycrystalline U–Mo fuel alloy with a given crystal morphology and gas bubble microstructures. An effective thermal conductivity “concept” was taken to capture the effect of polycrystalline structures and gas bubble microstructures with significant size differences on the thermal conductivity. The thermal conductivity of inhomogeneous materials was calculated by solving the heat transport equation. The obtained results are in reasonably good agreement with experimental measurements made on irradiated U–Mo fuel samples containing similar microstructural features. The developed method can be used to predict the thermal conductivity degradation in operating nuclear fuels if the evolution of microstructures is known during operation of the fuel.

  3. Distributions of crystals and gas bubbles in reservoir ice during growth period

    Directory of Open Access Journals (Sweden)

    Zhi-jun Li

    2011-06-01

    Full Text Available In order to understand the dominant factors of the physical properties of ice in ice thermodynamics and mechanics, in-situ observations of ice growth and decay processes were carried out. Two samplings were conducted in the fast and steady ice growth stages. Ice pieces were used to observe ice crystals and gas bubbles in ice, and to measure the ice density. Vertical profiles of the type and size of ice crystals, shape and size of gas bubbles, and gas bubble content, as well as the ice density, were obtained. The results show that the upper layer of the ice pieces is granular ice and the lower layer is columnar ice; the average crystal size increases with the ice depth and remains steady in the fast and steady ice growth stages; the shape of gas bubbles in the upper layer of ice pieces is spherical with higher total content, and the shape in the middle and lower layers is cylinder with lower total content; the gas bubble size and content vary with the ice growth stage; and the ice density decreases with the increase of the gas bubble content.

  4. Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea

    Science.gov (United States)

    Leifer, Ira; Chernykh, Denis; Shakhova, Natalia; Semiletov, Igor

    2017-06-01

    Sonar surveys provide an effective mechanism for mapping seabed methane flux emissions, with Arctic submerged permafrost seepage having great potential to significantly affect climate. We created in situ engineered bubble plumes from 40 m depth with fluxes spanning 0.019 to 1.1 L s-1 to derive the in situ calibration curve (Q(σ)). These nonlinear curves related flux (Q) to sonar return (σ) for a multibeam echosounder (MBES) and a single-beam echosounder (SBES) for a range of depths. The analysis demonstrated significant multiple bubble acoustic scattering - precluding the use of a theoretical approach to derive Q(σ) from the product of the bubble σ(r) and the bubble size distribution where r is bubble radius. The bubble plume σ occurrence probability distribution function (Ψ(σ)) with respect to Q found Ψ(σ) for weak σ well described by a power law that likely correlated with small-bubble dispersion and was strongly depth dependent. Ψ(σ) for strong σ was largely depth independent, consistent with bubble plume behavior where large bubbles in a plume remain in a focused core. Ψ(σ) was bimodal for all but the weakest plumes. Q(σ) was applied to sonar observations of natural arctic Laptev Sea seepage after accounting for volumetric change with numerical bubble plume simulations. Simulations addressed different depths and gases between calibration and seep plumes. Total mass fluxes (Qm) were 5.56, 42.73, and 4.88 mmol s-1 for MBES data with good to reasonable agreement (4-37 %) between the SBES and MBES systems. The seepage flux occurrence probability distribution function (Ψ(Q)) was bimodal, with weak Ψ(Q) in each seep area well described by a power law, suggesting primarily minor bubble plumes. The seepage-mapped spatial patterns suggested subsurface geologic control attributing methane fluxes to the current state of subsea permafrost.

  5. Application of analyzer based X-ray imaging technique for detection of ultrasound induced cavitation bubbles from a physical therapy unit.

    Science.gov (United States)

    Izadifar, Zahra; Belev, George; Babyn, Paul; Chapman, Dean

    2015-10-19

    The observation of ultrasound generated cavitation bubbles deep in tissue is very difficult. The development of an imaging method capable of investigating cavitation bubbles in tissue would improve the efficiency and application of ultrasound in the clinic. Among the previous imaging modalities capable of detecting cavitation bubbles in vivo, the acoustic detection technique has the positive aspect of in vivo application. However the size of the initial cavitation bubble and the amplitude of the ultrasound that produced the cavitation bubbles, affect the timing and amplitude of the cavitation bubbles' emissions. The spatial distribution of cavitation bubbles, driven by 0.8835 MHz therapeutic ultrasound system at output power of 14 Watt, was studied in water using a synchrotron X-ray imaging technique, Analyzer Based Imaging (ABI). The cavitation bubble distribution was investigated by repeated application of the ultrasound and imaging the water tank. The spatial frequency of the cavitation bubble pattern was evaluated by Fourier analysis. Acoustic cavitation was imaged at four different locations through the acoustic beam in water at a fixed power level. The pattern of cavitation bubbles in water was detected by synchrotron X-ray ABI. The spatial distribution of cavitation bubbles driven by the therapeutic ultrasound system was observed using ABI X-ray imaging technique. It was observed that the cavitation bubbles appeared in a periodic pattern. The calculated distance between intervals revealed that the distance of frequent cavitation lines (intervals) is one-half of the acoustic wave length consistent with standing waves. This set of experiments demonstrates the utility of synchrotron ABI for visualizing cavitation bubbles formed in water by clinical ultrasound systems working at high frequency and output powers as low as a therapeutic system.

  6. A model for acoustic vaporization dynamics of a bubble/droplet system encapsulated within a hyperelastic shell.

    Science.gov (United States)

    Lacour, Thomas; Guédra, Matthieu; Valier-Brasier, Tony; Coulouvrat, François

    2018-01-01

    Nanodroplets have great, promising medical applications such as contrast imaging, embolotherapy, or targeted drug delivery. Their functions can be mechanically activated by means of focused ultrasound inducing a phase change of the inner liquid known as the acoustic droplet vaporization (ADV) process. In this context, a four-phases (vapor + liquid + shell + surrounding environment) model of ADV is proposed. Attention is especially devoted to the mechanical properties of the encapsulating shell, incorporating the well-known strain-softening behavior of Mooney-Rivlin material adapted to very large deformations of soft, nearly incompressible materials. Various responses to ultrasound excitation are illustrated, depending on linear and nonlinear mechanical shell properties and acoustical excitation parameters. Different classes of ADV outcomes are exhibited, and a relevant threshold ensuring complete vaporization of the inner liquid layer is defined. The dependence of this threshold with acoustical, geometrical, and mechanical parameters is also provided.

  7. YIP Expansion: Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication

    Science.gov (United States)

    2015-09-30

    Marine Mammal Detectability, Distribution, and Acoustic Communication Jennifer L. Miksis-Olds Applied Research Laboratory The Pennsylvania State...relatively stereotyped calls, commonly considered types of automatic detection include spectrogram correlation and matched filtering. Spectrogram

  8. Challenges in Locating Microseismic Events Using Distributed Acoustic Sensors

    Science.gov (United States)

    Williams, A.; Kendall, J. M.; Clarke, A.; Verdon, J.

    2017-12-01

    Microseismic monitoring is an important method of assessing the behaviour of subsurface fluid processes, and is commonly acquired using geophone arrays in boreholes or on the surface. A new alternative technology has been recently developed - fibre-optic Distributed Acoustic Sensing (DAS) - using strain along a fibre-optic cable as a measure of seismic signals. DAS can offer high density arrays and full-well coverage from the surface to bottom, with less overall disruption to operations, so there are many exciting possible applications in monitoring both petroleum and other subsurface industries. However, there are challenges in locating microseismic events recorded using current DAS systems, which only record seismic data in one-component and consequently omit the azimuthal information provided by a three-component geophone. To test the impact of these limitations we used finite difference modelling to generate one-component synthetic DAS datasets and investigated the impact of picking solely P-wave or both P- and S-wave arrivals and the impact of different array geometries. These are then compared to equivalent 3-component synthetic geophone datasets. In simple velocity models, P-wave arrivals along linear arrays cannot be used to constrain locations using DAS, without further a priori information. We then tested the impact of straight cables vs. L-shaped arrays and found improved locations when the cable is deviated, especially when both P- and S-wave picks are included. There is a trade-off between the added coverage of DAS cables versus sparser 3C geophone arrays where particle motion helps constrains locations, which cannot be assessed without forward modelling.

  9. A Moving Optical Fibre Technique for Structure Analysis of Heterogenous Products: Application to the Determination of the Bubble-Size Distribution in Liquid Foams

    OpenAIRE

    Bisperink, C. G. J.; Akkerman, J. C.; Prins, A.; Ronteltap, A. D.

    1992-01-01

    The bubble-size distribution in liquid foams measured as a function of time can be used to distinguish between the physical processes that determine the breakdown of foams. A new method based on an optical fibre technique was developed to measure various foam characteristics e.g. the rate of drainage, the rate of foam collapse, the change in gas fraction, interbubble gas diffusion (disproportionation) and the evolution of the bubble - size distribution during the ageing of the foam. The metho...

  10. Size distribution of oceanic air bubbles entrained in sea-water by wave-breaking

    Science.gov (United States)

    Resch, F.; Avellan, F.

    1982-01-01

    The size of oceanic air bubbles produced by whitecaps and wave-breaking is determined. The production of liquid aerosols at the sea surface is predicted. These liquid aerosols are at the origin of most of the particulate materials exchanged between the ocean and the atmosphere. A prototype was designed and built using an optical technique based on the principle of light scattering at an angle of ninety degrees from the incident light beam. The output voltage is a direct function of the bubble diameter. Calibration of the probe was carried out within a range of 300 microns to 1.2 mm. Bubbles produced by wave-breaking in a large air-sea interaction simulating facility. Experimental results are given in the form of size spectrum.

  11. Distributions of TEC Fluctuations and Losses of Lock Associated with Equatorial Plasma Bubbles

    Science.gov (United States)

    Nakata, H.; Kikuchi, H.; Tsugawa, T.; Otsuka, Y.; Takano, T.; Shimakura, S.; Shiokawa, K.; Ogawa, T.

    2009-12-01

    Equatorial plasma bubbles (EPBs) are local depletions of the electron density in the ionosphere. Due to field-aligned irregularities (FAIs) with various spatial scales, EPBs affect wide-band radio waves and cause scintillations in GPS navigation system. Strong scintillation can cause a GPS receiver to lose lock on GPS signals because of rapid variations of signal amplitude and phase, and limit the availability of carrier phase measurements. Since the scintillation is caused by Fresnel diffraction, the spatial scale of FAIs that causes the scintillation of GPS signals is about 2-300 m. Therefore, loss of phase lock (LOL) on GPS signals is a reference of hundred-meter-scale FAIs. As EPBs are also associated with fluctuations of the total electron content (TEC), the enhancement of Rate of TEC change index (ROTI) occurs around EPBs. Assuming that the altitude of the ionosphere is about 400 km, the velocity of the pierce point of the GPS radio wave at the ionospheric altitude is approximately 70 m/s around the zenith. Thus, ROTI averaged during 5 minutes is a reference of ten-kilometer-scale fluctuations. In this study, we analyzed LOL and 5-min. ROTI associated with EPBs to examine the spatial and temporal scales of electron density disturbances associated with EPBs. We selected 11 EPBs from 630-nm airglow images obtained by all-sky imager at Sata, Japan, in 2001. LOL and ROTI are obtained from GPS data from GPS Earth Observation Network (GEONET) of Japan, which consists of more than 1000 GPS receivers. As a result, it is shown that both LOL and the enhancement of ROTI are observed in 8 events out of 11 events. The distributions of LOL are approximately consistent with the areas in which the ionospheric electron density is depleted. The enhancements of ROTI are observed in the vicinities of EPBs. The enhancement of ROTI expands especially in the west side of EPBs. After the EPBs pass through, therefore, LOLs are vanished but the enhancements of ROTI last a while. This

  12. Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers

    Science.gov (United States)

    Leighton, Timothy G.

    2004-11-01

    Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.

  13. Acoustic Estimates of Distribution and Biomass of Different Acoustic Scattering Types Between the New England Shelf Break and Slope Waters

    KAUST Repository

    McLaren, Alexander

    2011-11-01

    Due to their great ecological significance, mesopelagic fishes are attracting a wider audience on account of the large biomass they represent. Data from the National Marine Fisheries Service (NMFS) provided the opportunity to explore an unknown region of the North-West Atlantic, adjacent to one of the most productive fisheries in the world. Acoustic data collected during the cruise required the identification of acoustically distinct scattering types to make inferences on the migrations, distributions and biomass of mesopelagic scattering layers. Six scattering types were identified by the proposed method in our data and traces their migrations and distributions in the top 200m of the water column. This method was able to detect and trace the movements of three scattering types to 1000m depth, two of which can be further subdivided. This process of identification enabled the development of three physically-derived target-strength models adapted to traceable acoustic scattering types for the analysis of biomass and length distribution to 1000m depth. The abundance and distribution of acoustic targets varied closely in relation to varying physical environments associated with a warm core ring in the New England continental Shelf break region. The continental shelf break produces biomass density estimates that are twice as high as the warm core ring and the surrounding continental slope waters are an order of magnitude lower than either estimate. Biomass associated with distinct layers is assessed and any benefits brought about by upwelling at the edge of the warm core ring are shown not to result in higher abundance of deepwater species. Finally, asymmetric diurnal migrations in shelf break waters contrasts markedly with the symmetry of migrating layers within the warm ring, both in structure and density estimates, supporting a theory of predatorial and nutritional constraints to migrating pelagic species.

  14. The Bubble Box: Towards an Automated Visual Sensor for 3D Analysis and Characterization of Marine Gas Release Sites

    Directory of Open Access Journals (Sweden)

    Anne Jordt

    2015-12-01

    Full Text Available Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information.

  15. Temperature dynamics of liquid outside a spherical bubble

    International Nuclear Information System (INIS)

    Sharipov, Vasily

    2011-01-01

    Radial Fourier equation describing temperature distribution outside a spherical bubble is considered. This equation appears from the energy conservation law written for a single bubble. Analytical approximation to the solution of this equation was built for radius and temperature of the surface of the bubble as arbitrary functions of time. In zero-order approximation it is assumed that variation amplitude of bubble radius is much smaller than its value. Together with first-order correction the so obtained solution is in good agreement with numerical results. Reported analytical approximation reduces computation efforts more than 10 times with comparison to the conventional numerical scheme. Finally presented semi-analytical approximation provides a possibility to describe acoustic effects and cavitations being incorporated into the multiphase flow code. (author)

  16. Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances

    Science.gov (United States)

    Balakumar, P.

    2013-01-01

    Boundary-layer receptivity and stability of Mach 6 flows over smooth and rough seven-degree half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances is considered. The effects of three-dimensional isolated roughness on the receptivity and stability are also simulated. The results for the smooth cone show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast acoustic waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. Distributed roughness elements located near the nose region decreased the receptivity of the second mode generated by the slow acoustic wave by a small amount. Roughness elements distributed across the continuous spectrum increased the receptivity of the second mode generated by the slow and fast acoustic waves and the vorticity wave. The largest increase occurred for the vorticity wave. Roughness elements distributed across the synchronization point did not change the receptivity of the second modes generated by the acoustic waves. The receptivity of the second mode generated by the vorticity wave increased in this case, but the increase is lower than that occurred with the roughness elements located across the continuous spectrum. The simulations with an isolated roughness element showed that the second mode waves generated by the acoustic disturbances are not influenced by the small roughness element. Due to the interaction, a three-dimensional wave is generated. However, the amplitude is orders of magnitude smaller than the two-dimensional wave.

  17. Depth distribution of bubbles in 4He+-ion irradiated nickel and the mechanism of blister formation

    International Nuclear Information System (INIS)

    Fenske, G.; Das, S.K.; Kaminsky, M.; Miley, G.H.

    1978-01-01

    While the radiation blistering phenomenon has been widely studied, the mechanism of blister formation is still not well understood. The present studies on depth distribution of helium bubbles in nickel were carried out in order to obtain a better understanding of the radiation blistering process. Particularly, the aim was to understand the experimental observation that the blister skin thickness for many metals irradiated with He + ions of energies lower than 20-keV is a factor of two or more larger than the calculated projected range. (Auth.)

  18. Bubble levitation and translation under single-bubble sonoluminescence conditions.

    Science.gov (United States)

    Matula, Thomas J

    2003-08-01

    Bubble levitation in an acoustic standing wave is re-examined for conditions relevant to single-bubble sonoluminescence. Unlike a previous examination [Matula et al., J. Acoust. Soc. Am. 102, 1522-1527 (1997)], the stable parameter space [Pa,R0] is accounted for in this realization. Forces such as the added mass force and drag are included, and the results are compared with a simple force balance that equates the Bjerknes force to the buoyancy force. Under normal sonoluminescence conditions, the comparison is quite favorable. A more complete accounting of the forces shows that a stably levitated bubble does undergo periodic translational motion. The asymmetries associated with translational motion are hypothesized to generate instabilities in the spherical shape of the bubble. A reduction in gravity results in reduced translational motion. It is hypothesized that such conditions may lead to increased light output from sonoluminescing bubbles.

  19. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    Science.gov (United States)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  20. Prediction of Cavitation Depth in an Al-Cu Alloy Melt with Bubble Characteristics Based on Synchrotron X-ray Radiography

    Science.gov (United States)

    Huang, Haijun; Shu, Da; Fu, Yanan; Zhu, Guoliang; Wang, Donghong; Dong, Anping; Sun, Baode

    2018-04-01

    The size of cavitation region is a key parameter to estimate the metallurgical effect of ultrasonic melt treatment (UST) on preferential structure refinement. We present a simple numerical model to predict the characteristic length of the cavitation region, termed cavitation depth, in a metal melt. The model is based on wave propagation with acoustic attenuation caused by cavitation bubbles which are dependent on bubble characteristics and ultrasonic intensity. In situ synchrotron X-ray imaging of cavitation bubbles has been made to quantitatively measure the size of cavitation region and volume fraction and size distribution of cavitation bubbles in an Al-Cu melt. The results show that cavitation bubbles maintain a log-normal size distribution, and the volume fraction of cavitation bubbles obeys a tanh function with the applied ultrasonic intensity. Using the experimental values of bubble characteristics as input, the predicted cavitation depth agrees well with observations except for a slight deviation at higher acoustic intensities. Further analysis shows that the increase of bubble volume and bubble size both leads to higher attenuation by cavitation bubbles, and hence, smaller cavitation depth. The current model offers a guideline to implement UST, especially for structural refinement.

  1. Decoding Group Vocalizations: The Acoustic Energy Distribution of Chorus Howls Is Useful to Determine Wolf Reproduction.

    Directory of Open Access Journals (Sweden)

    Vicente Palacios

    Full Text Available Population monitoring is crucial for wildlife management and conservation. In the last few decades, wildlife researchers have increasingly applied bioacoustics tools to obtain information on several essential ecological parameters, such as distribution and abundance. One such application involves wolves (Canis lupus. These canids respond to simulated howls by emitting group vocalizations known as chorus howls. These responses to simulated howls reveal the presence of wolf litters during the breeding period and are therefore often used to determine the status of wolf populations. However, the acoustic structure of chorus howls is complex and discriminating the presence of pups in a chorus is sometimes difficult, even for experienced observers. In this study, we evaluate the usefulness of analyses of the acoustic energy distribution in chorus howls to identify the presence of pups in a chorus. We analysed 110 Iberian wolf chorus howls with known pack composition and found that the acoustic energy distribution is concentrated at higher frequencies when there are pups vocalizing. We built predictive models using acoustic energy distribution features to determine the presence of pups in a chorus, concluding that the acoustic energy distribution in chorus howls can be used to determine the presence of wolf pups in a pack. The method we outline here is objective, accurate, easily implemented, and independent of the observer's experience. These advantages are especially relevant in the case of broad scale surveys or when many observers are involved. Furthermore, the analysis of the acoustic energy distribution can be implemented for monitoring other social canids that emit chorus howls such as jackals or coyotes, provides an easy way to obtain information on ecological parameters such as reproductive success, and could be useful to study other group vocalizations.

  2. Decoding Group Vocalizations: The Acoustic Energy Distribution of Chorus Howls Is Useful to Determine Wolf Reproduction

    Science.gov (United States)

    López-Bao, José Vicente; Llaneza, Luis; Fernández, Carlos; Font, Enrique

    2016-01-01

    Population monitoring is crucial for wildlife management and conservation. In the last few decades, wildlife researchers have increasingly applied bioacoustics tools to obtain information on several essential ecological parameters, such as distribution and abundance. One such application involves wolves (Canis lupus). These canids respond to simulated howls by emitting group vocalizations known as chorus howls. These responses to simulated howls reveal the presence of wolf litters during the breeding period and are therefore often used to determine the status of wolf populations. However, the acoustic structure of chorus howls is complex and discriminating the presence of pups in a chorus is sometimes difficult, even for experienced observers. In this study, we evaluate the usefulness of analyses of the acoustic energy distribution in chorus howls to identify the presence of pups in a chorus. We analysed 110 Iberian wolf chorus howls with known pack composition and found that the acoustic energy distribution is concentrated at higher frequencies when there are pups vocalizing. We built predictive models using acoustic energy distribution features to determine the presence of pups in a chorus, concluding that the acoustic energy distribution in chorus howls can be used to determine the presence of wolf pups in a pack. The method we outline here is objective, accurate, easily implemented, and independent of the observer's experience. These advantages are especially relevant in the case of broad scale surveys or when many observers are involved. Furthermore, the analysis of the acoustic energy distribution can be implemented for monitoring other social canids that emit chorus howls such as jackals or coyotes, provides an easy way to obtain information on ecological parameters such as reproductive success, and could be useful to study other group vocalizations. PMID:27144887

  3. Science Bubbles

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Pedersen, David Budtz

    2013-01-01

    Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when...... bubbles appear in science, truth and reliability are the first victims. This paper explores how fashions in research funding and research management may turn science into something like a bubble economy....

  4. Passive acoustic measurement of bedload grain size distribution using self-generated noise

    Directory of Open Access Journals (Sweden)

    T. Petrut

    2018-01-01

    Full Text Available Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.

  5. Passive acoustic measurement of bedload grain size distribution using self-generated noise

    Science.gov (United States)

    Petrut, Teodor; Geay, Thomas; Gervaise, Cédric; Belleudy, Philippe; Zanker, Sebastien

    2018-01-01

    Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.

  6. Slowing down bubbles with sound

    Science.gov (United States)

    Poulain, Cedric; Dangla, Remie; Guinard, Marion

    2009-11-01

    We present experimental evidence that a bubble moving in a fluid in which a well-chosen acoustic noise is superimposed can be significantly slowed down even for moderate acoustic pressure. Through mean velocity measurements, we show that a condition for this effect to occur is for the acoustic noise spectrum to match or overlap the bubble's fundamental resonant mode. We render the bubble's oscillations and translational movements using high speed video. We show that radial oscillations (Rayleigh-Plesset type) have no effect on the mean velocity, while above a critical pressure, a parametric type instability (Faraday waves) is triggered and gives rise to nonlinear surface oscillations. We evidence that these surface waves are subharmonic and responsible for the bubble's drag increase. When the acoustic intensity is increased, Faraday modes interact and the strongly nonlinear oscillations behave randomly, leading to a random behavior of the bubble's trajectory and consequently to a higher slow down. Our observations may suggest new strategies for bubbly flow control, or two-phase microfluidic devices. It might also be applicable to other elastic objects, such as globules, cells or vesicles, for medical applications such as elasticity-based sorting.

  7. Relaxation of Distributed Data Aggregation for Underwater Acoustic Sensor Networks

    Science.gov (United States)

    2014-03-31

    2 3.1 Gossip algorithms for distributed averaging . . . . . . . . . . . . . . . . . 3 3.2 Distributed particle filtering...algorithm that had direct access to all of the measurements. We use gossip algorithms (discussed in Section 3.1) to diffuse information across the...2 3.1 Gossip algorithms for distributed averaging We begin by discussing gossip algorithms, which we use to synchronize and spread infor- mation

  8. Characteristics of bubble plumes, bubble-plume bubbles and waves from wind-steepened wave breaking

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G. de

    2007-01-01

    Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened

  9. Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles

    NARCIS (Netherlands)

    Leifer, I.; Leeuw, G. de

    2006-01-01

    Measurements of bubble plumes from paddle-amplified, wind stress breaking waves were made in a large wind-wave channel during the LUMINY experiment in fresh (but not clean) water. Bubble plumes exhibited considerable variability with respect to dynamics, bubble size distribution, and physical

  10. Dust-acoustic solitons in quantum plasma with kappa-distributed ions

    Indian Academy of Sciences (India)

    Abstract. Arbitrary amplitude dust-acoustic (DA) solitary waves in an unmagnetized and col- lisionless quantum dusty plasma comprising cold dust particles, kappa (κ)-distributed ions and degenerate electrons are investigated. The influence of suprathermality and quantum effects on the linear dispersion relation of DA ...

  11. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    International Nuclear Information System (INIS)

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-01-01

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  12. Sticky bubbles

    NARCIS (Netherlands)

    Antoniuk, O.; Bos, van der A.; Driessen, T.W.; Es, van B.; Jeurissen, R.J.M.; Michler, D.; Reinten, H.; Schenker, M.; Snoeijer, J.H.; Srivastava, S.; Toschi, F.; Wijshoff, H.M.A.

    2011-01-01

    We discuss the physical forces that are required to remove an air bubble immersed in a liquid from a corner. This is relevant for inkjet printing technology, as the presence of air bubbles in the channels of a printhead perturbs the jetting of droplets. A simple strategy to remove the bubble is to

  13. Experimental implementation of acoustic impedance control by a 2D network of distributed smart cells

    International Nuclear Information System (INIS)

    David, P; Collet, M; Cote, J-M

    2010-01-01

    New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. Smart structures combining large arrays of elementary motion pixels are thus being studied so that fundamental properties could be dynamically adjusted. This paper investigates the acoustical capabilities of a network of distributed transducers connected with a suitable controlling strategy. The research aims at designing an integrated active interface for sound attenuation by using suitable changes of acoustical impedance. The control strategy is based on partial differential equations (PDE) and the multiscaled physics of electromechanical elements. Specific techniques based on PDE control theory have provided a simple boundary control equation able to annihilate the reflections of acoustic waves. To experimentally implement the method, the control strategy is discretized as a first order time–space operator. The obtained quasi-collocated architecture, composed of a large number of sensors and actuators, provides high robustness and stability. The experimental results demonstrate how a well controlled active skin can substantially modify sound reflectivity of the acoustical interface and reduce the propagation of acoustic waves

  14. Experimental implementation of acoustic impedance control by a 2D network of distributed smart cells

    Science.gov (United States)

    David, P.; Collet, M.; Cote, J.-M.

    2010-03-01

    New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. Smart structures combining large arrays of elementary motion pixels are thus being studied so that fundamental properties could be dynamically adjusted. This paper investigates the acoustical capabilities of a network of distributed transducers connected with a suitable controlling strategy. The research aims at designing an integrated active interface for sound attenuation by using suitable changes of acoustical impedance. The control strategy is based on partial differential equations (PDE) and the multiscaled physics of electromechanical elements. Specific techniques based on PDE control theory have provided a simple boundary control equation able to annihilate the reflections of acoustic waves. To experimentally implement the method, the control strategy is discretized as a first order time-space operator. The obtained quasi-collocated architecture, composed of a large number of sensors and actuators, provides high robustness and stability. The experimental results demonstrate how a well controlled active skin can substantially modify sound reflectivity of the acoustical interface and reduce the propagation of acoustic waves.

  15. Direct numerical simulation of bubbles with adaptive mesh refinement with distributed algorithms

    International Nuclear Information System (INIS)

    Talpaert, Arthur

    2017-01-01

    This PhD work presents the implementation of the simulation of two-phase flows in conditions of water-cooled nuclear reactors, at the scale of individual bubbles. To achieve that, we study several models for Thermal-Hydraulic flows and we focus on a technique for the capture of the thin interface between liquid and vapour phases. We thus review some possible techniques for adaptive Mesh Refinement (AMR) and provide algorithmic and computational tools adapted to patch-based AMR, which aim is to locally improve the precision in regions of interest. More precisely, we introduce a patch-covering algorithm designed with balanced parallel computing in mind. This approach lets us finely capture changes located at the interface, as we show for advection test cases as well as for models with hyperbolic-elliptic coupling. The computations we present also include the simulation of the incompressible Navier-Stokes system, which models the shape changes of the interface between two non-miscible fluids. (author) [fr

  16. Bubble-size distributions produced by wall injection of air into flowing freshwater, saltwater and surfactant solutions

    Science.gov (United States)

    Winkel, Eric S.; Ceccio, Steven L.; Dowling, David R.; Perlin, Marc

    2004-12-01

    As air is injected into a flowing liquid, the resultant bubble characteristics depend on the properties of the injector, near-wall flow, and flowing liquid. Previous research has shown that near-wall bubbles can significantly reduce skin-friction drag. Air was injected into the turbulent boundary layer on a test section wall of a water tunnel containing various concentrations of salt and surfactant (Triton-X-100, Union Carbide). Photographic records show that the mean bubble diameter decreased monotonically with increasing salt and surfactant concentrations. Here, 33 ppt saltwater bubbles had one quarter, and 20 ppm Triton-X-100 bubbles had one half of the mean diameter of freshwater bubbles.

  17. Ion acoustic solitons in a plasma with two-temperature kappa-distributed electrons

    International Nuclear Information System (INIS)

    Baluku, T. K.; Hellberg, M. A.

    2012-01-01

    Existence domains and characteristics of ion acoustic solitons are studied in a two-temperature electron plasma with both electron components being kappa-distributed, as found in Saturn's magnetosphere. As is the case for double-Boltzmann electrons, solitons of both polarities can exist over restricted ranges of fractional hot electron density ratio for this plasma model. Low κ values, which indicate increased suprathermal particles in the tail of the distribution, yield a smaller domain in the parameter space of hot density fraction and normalized soliton velocity (f, M), over which both soliton polarities are supported for a given plasma composition (the coexistence region). For some density ratios that support coexistence, solitons occur even at the lowest (critical) Mach number (i.e., at the acoustic speed), as found recently for a number of other plasma models. Like Maxwellians, low-κ distributions also support positive potential double layers over a narrow range of low fractional cool electron density (<10%).

  18. Bubbles in a freshwater lake.

    Science.gov (United States)

    Thorpe, S A; Stubbs, A R

    1979-05-31

    WHEN the wind is strong enough to produce whitecaps on Loch Ness, patchy 'clouds' of acoustic reflectors are detected well below the surface, the depth to which they penetrate increasing with wind speed (Fig. 1). No seasonal variation in the occurrence of the reflectors has been detected. A biological explanation is therefore discounted and we suggest here that they are bubbles caused by waves breaking and forming whitecaps in deep water. Similar bubble clouds may occur in other lakes and in the sea.

  19. Bubble dynamics in drinks

    Directory of Open Access Journals (Sweden)

    Broučková Zuzana

    2014-03-01

    Full Text Available This study introduces two physical effects known from beverages: the effect of sinking bubbles and the hot chocolate sound effect. The paper presents two simple „kitchen” experiments. The first and second effects are indicated by means of a flow visualization and microphone measurement, respectively. To quantify the second (acoustic effect, sound records are analyzed using time-frequency signal processing, and the obtained power spectra and spectrograms are discussed.

  20. Bubble dynamics in drinks

    Science.gov (United States)

    Broučková, Zuzana; Trávníček, Zdeněk; Šafařík, Pavel

    2014-03-01

    This study introduces two physical effects known from beverages: the effect of sinking bubbles and the hot chocolate sound effect. The paper presents two simple "kitchen" experiments. The first and second effects are indicated by means of a flow visualization and microphone measurement, respectively. To quantify the second (acoustic) effect, sound records are analyzed using time-frequency signal processing, and the obtained power spectra and spectrograms are discussed.

  1. Freezing Bubbles

    Science.gov (United States)

    Kingett, Christian; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan

    2017-11-01

    The two-stage freezing process of a liquid droplet on a substrate is well known; however, how bubbles freeze has not yet been studied. We first deposited bubbles on a silicon substrate that was chilled at temperatures ranging from -10 °C to -40 °C, while the air was at room temperature. We observed that the freeze front moved very slowly up the bubble, and in some cases, even came to a complete halt at a critical height. This slow freezing front propagation can be explained by the low thermal conductivity of the thin soap film, and can be observed more clearly when the bubble size or the surface temperature is increased. This delayed freezing allows the frozen portion of the bubble to cool the air within the bubble while the top part is still liquid, which induces a vapor pressure mismatch that either collapses the top or causes the top to pop. In cases where the freeze front reaches the top of the bubble, a portion of the top may melt and slowly refreeze; this can happen more than just once for a single bubble. We also investigated freezing bubbles inside of a freezer where the air was held at -20 °C. In this case, the bubbles freeze quickly and the ice grows radially from nucleation sites instead of perpendicular to the surface, which provides a clear contrast with the conduction limited room temperature bubbles.

  2. Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts.

    Science.gov (United States)

    Xu, W W; Tzanakis, I; Srirangam, P; Mirihanage, W U; Eskin, D G; Bodey, A J; Lee, P D

    2016-07-01

    Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al-10 wt%Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm(2) and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t)=αt(β), and α=0.0021 &β=0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effect of dust size distribution on ion-acoustic solitons in dusty plasmas with different dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dong-Ning; Yang, Yang; Yan, Qiang [Northwest Normal University, College of Physics and Electronic Engineering (China); Wang, Xiao-Yun [Lanzhou Jiao Tong University, Department of Mathematics and Physics (China); Duan, Wen-Shan, E-mail: duanws@126.com [Northwest Normal University, College of Physics and Electronic Engineering (China)

    2017-02-15

    Theoretical studies are carried out for ion acoustic solitons in multicomponent nonuniform plasma considering the dust size distribution. The Korteweg−de Vries equation for ion acoustic solitons is given by using the reductive perturbation technique. Two special dust size distributions are considered. The dependences of the width and amplitude of solitons on dust size parameters are shown. It is found that the properties of a solitary wave depend on the shape of the size distribution function of dust grains.

  4. A comparison of decentralized, distributed, and centralized vibro-acoustic control.

    Science.gov (United States)

    Frampton, Kenneth D; Baumann, Oliver N; Gardonio, Paolo

    2010-11-01

    Direct velocity feedback control of structures is well known to increase structural damping and thus reduce vibration. In multi-channel systems the way in which the velocity signals are used to inform the actuators ranges from decentralized control, through distributed or clustered control to fully centralized control. The objective of distributed controllers is to exploit the anticipated performance advantage of the centralized control while maintaining the scalability, ease of implementation, and robustness of decentralized control. However, and in seeming contradiction, some investigations have concluded that decentralized control performs as well as distributed and centralized control, while other results have indicated that distributed control has significant performance advantages over decentralized control. The purpose of this work is to explain this seeming contradiction in results, to explore the effectiveness of decentralized, distributed, and centralized vibro-acoustic control, and to expand the concept of distributed control to include the distribution of the optimization process and the cost function employed.

  5. Asymmetric transmission of acoustic waves in a layer thickness distribution gradient structure using metamaterials

    Directory of Open Access Journals (Sweden)

    Jung-San Chen

    2016-09-01

    Full Text Available This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.

  6. Manipulating bubbles with secondary Bjerknes forces

    Energy Technology Data Exchange (ETDEWEB)

    Lanoy, Maxime [Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, 1 rue Jussieu, 75005 Paris (France); Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), 10 rue Alice Domon et Léonie Duquet, 75013 Paris (France); Derec, Caroline; Leroy, Valentin [Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), 10 rue Alice Domon et Léonie Duquet, 75013 Paris (France); Tourin, Arnaud [Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, 1 rue Jussieu, 75005 Paris (France)

    2015-11-23

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices.

  7. Manipulating bubbles with secondary Bjerknes forces

    International Nuclear Information System (INIS)

    Lanoy, Maxime; Derec, Caroline; Leroy, Valentin; Tourin, Arnaud

    2015-01-01

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices

  8. Four-peak longitudinal distribution of the equatorial plasma bubbles observed in the topside ionosphere: Possible troposphere tide influence

    Science.gov (United States)

    Sidorova, L. N.; Filippov, S. V.

    2018-03-01

    In this paper we consider an idea of the troposphere tide influence on the character of the longitudinal variations in the distribution of the equatorial plasma bubbles (EPBs) observed in the topside ionosphere. For this purpose, the obtained EPB longitudinal patterns were compared with the thermosphere and ionosphere characteristics having the prominent "wave-like" longitudinal structures with wave number 4, which are uniquely associated with the influence of the troposphere DE3 tides. The characteristics of the equatorial mass density anomaly (EMA), equatorial ionization anomaly (EIA), zonal wind and pre-reversal E × B drift enhancement (PRE) were used for comparison. The equinox seasons during high solar activity were under consideration. It was obtained that the longitudinal patterns of the EMA and zonal wind show the surprising similarity with the EPB distributions (R ≅ 0.8, R ≅ 0.72). On the other hand, the resemblance with the ionosphere characteristics (EIA, PRE) is rather faint (R ≅ 0.37, R ≅ 0.12). It was shown that the thermosphere zonal winds are the most possible transfer mediator of the troposphere DE3 tide influence. The most successful moment for the transfer of the troposphere DE3 tide energy takes place in the beginning of the EPB production, namely, during the seed perturbation development.

  9. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    and their diameter. The variation in melting temperature has little influence on the overall bubble volume. However, the size distribution of the bubbles varies with the melting temperature. When the melt is slowly cooled, the bubble volume increases, implying decreased solubility of the gaseous species. Mass...... spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on the sources of bubble...

  10. Microbubble acoustic signatures: bubble deflation

    NARCIS (Netherlands)

    ten Brinke, G.A.; Slump, Cornelis H.

    2006-01-01

    Ultrasound Contrast Agents (UCAs) are used in medical imaging to enhance the visibility of structures, especially blood vessels and the liver. An example application of UCAs is the detection and classification of tumors. The most common UCA consist of microbubbles, which have pronounced non-linear

  11. Bubble systems

    CERN Document Server

    Avdeev, Alexander A

    2016-01-01

    This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boil...

  12. Aspherical bubble dynamics and oscillation times

    Energy Technology Data Exchange (ETDEWEB)

    Godwin, R.P.; Chapyak, E.J. [Los Alamos National Lab., NM (United States); Noack, J.; Vogel, A. [Medizinisches Laserzentrum Luebeck (Germany)

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  13. Scanning electron-acoustic imaging of residual stress distributions in aluminum metal and ZrSiO4 multiphase ceramics

    International Nuclear Information System (INIS)

    Zhang, B.Y.; Jiang, F.M.; Shi, Y.; Yin, Q.R.; Qian, M.L.

    1997-01-01

    The scanning electron-acoustic imaging technique has been used in the characterization of the residual stress field distributions existing in the subsurface in aluminum disks and 20 vol% SiC ( w)/ZrSiO 4 multiphase ceramics left by Vicker close-quote s indentation. The experimental results reveal that the distribution areas are the plastic-elastic interchange zones. The electron-acoustic signal generation mechanism in the samples are discussed. copyright 1997 American Institute of Physics

  14. Spatial distribution of macroalgae along the shores of Kongsfjorden (West Spitsbergen using acoustic imaging

    Directory of Open Access Journals (Sweden)

    Kruss Aleksandra

    2017-06-01

    Full Text Available The identification of macroalgal beds is a crucial component for the description of fjord ecosystems. Direct, biological sampling is still the most popular investigation technique but acoustic methods are becoming increasingly recognized as a very efficient tool for the assessment of benthic communities. In 2007 we carried out the first acoustic survey of the littoral areas in Kongsfjorden. A 2.68 km2 area comprised within a 12.40 km2 euphotic zone was mapped along the fjord’s coast using single- and multi-beam echosounders. The singlebeam echosounder (SBES proved to be a very efficient and reliable tool for macroalgae detection in Arctic conditions. The multibeam echosounder (MBES was very useful in extending the SBES survey range, even though it’s ability in discriminating benthic communities was limited. The final result of our investigation is a map of the macroalgae distribution around the fjord, showing 39% macroalgae coverage (1.09 km2 of investigated area between isobaths -0.70 m and -30 m. Zonation analysis showed that most of the studied macroalgae areas occur up to 15 m depth (93%. These results were confirmed by biological sampling and observation in key areas. The potential of acoustic imaging of macrophytes, and a proposed methodology for the processing of acoustic data, are presented in this paper along with preliminary studies on the acoustic reflectivity of macroalgae, also highlighting differences among species. These results can be applied to future monitoring of the evolution of kelp beds in different areas of the Arctic, and in the rest of the world.

  15. Acoustic Surface Cavitation

    NARCIS (Netherlands)

    Zijlstra, A.G.

    2011-01-01

    Merely the presence of compressible entities, known as bubbles, greatly enriches the physical phenomena encountered when introducing ultrasound in a liquid. Mediated by the response of these bubbles, the otherwise diffuse and relatively low energy density of the acoustic field can induce strong,

  16. Distributed acoustic sensing technique and its field trial in SAGD well

    Science.gov (United States)

    Han, Li; He, Xiangge; Pan, Yong; Liu, Fei; Yi, Duo; Hu, Chengjun; Zhang, Min; Gu, Lijuan

    2017-10-01

    Steam assisted gravity drainage (SAGD) is a very promising way for the development of heavy oil, extra heavy oil and tight oil reservoirs. Proper monitoring of the SAGD operations is essential to avoid operational issues and improve efficiency. Among all the monitoring techniques, micro-seismic monitoring and related interpretation method can give useful information about the steam chamber development and has been extensively studied. Distributed acoustic sensor (DAS) based on Rayleigh backscattering is a newly developed technique that can measure acoustic signal at all points along the sensing fiber. In this paper, we demonstrate a DAS system based on dual-pulse heterodyne demodulation technique and did field trial in SAGD well located in Xinjiang Oilfield, China. The field trail results validated the performance of the DAS system and indicated its applicability in steam-chamber monitoring and hydraulic monitoring.

  17. Bubbles & Squat

    DEFF Research Database (Denmark)

    Højbjerre Larsen, Signe

    , a new concept called ‘Bubbles & Squat’, where fitness training is combined with Champagne and a live DJ. One of the invitations for this event describes how “we spice up your friday training with live DJ and lots of refreshing bubbles, to make sure that you are ready for the weekend (...).” Before New...

  18. Sensitivity analysis of an impedance void distribution in annular and bubbly flow: A theoretical study

    International Nuclear Information System (INIS)

    Lemonnier, H.; Nakach, R.; Favreau, C.; Selmer-Olsen, S.

    1989-01-01

    Impedance void meters are frequently used to measure area-averaged void fraction in pipes. This is primarily due to two reasons: first, this method is non-intrusive since the measurement can be done from electrodes flush mounted in the walls, and second, the signal processing equipment is simple. Impedance probes may be calibrated by using a pressure drop measurement or quick closing valves system and low attention is generally paid to void distribution effects. It can be proved that in annular flow, the departure from radial symmetry has a strong influence on the measured mean film thickness. This can be easily demonstrated by solving the Laplace equation for the electrical potential by simple analytical methods. When some spatial symmetry conditions are encountered, it is possible to calculate directly the conductance of the two-phase medium without calculating completely the potential. A solution of this problem by using the separation of variable technique is also presented. There, the main difficulty is due to the mixity of the boundary conditions: the boundary condition is both Neumann and Dirichlet type on the same coordinate curve. This formulation leads to a non-separable problem which is solved by truncating an infinite algebraic set of linear equations. (orig.)

  19. Bubble fusion: Preliminary estimates

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    The collapse of a gas-filled bubble in disequilibrium (i.e., internal pressure much-lt external pressure) can occur with a significant focusing of energy onto the entrapped gas in the form of pressure-volume work and/or acoustical shocks; the resulting heating can be sufficient to cause ionization and the emission of atomic radiations. The suggestion that extreme conditions necessary for thermonuclear fusion to occur may be possible has been examined parametrically in terms of the ratio of initial bubble pressure relative to that required for equilibrium. In this sense, the disequilibrium bubble is viewed as a three-dimensional ''sling shot'' that is ''loaded'' to an extent allowed by the maximum level of disequilibrium that can stably be achieved. Values of this disequilibrium ratio in the range 10 -5 --10 -6 are predicted by an idealized bubble-dynamics model as necessary to achieve conditions where nuclear fusion of deuterium-tritium might be observed. Harmonic and aharmonic pressurizations/decompressions are examined as means to achieve the required levels of disequilibrium required to create fusion conditions. A number of phenomena not included in the analysis reported herein could enhance or reduce the small levels of nuclear fusions predicted

  20. Growth process of helium bubbles in aluminium

    International Nuclear Information System (INIS)

    Shiraishi, Haruki; Sakairi, Hideo; Yagi, Eiichi; Karasawa, Takashi; Hashiguti, R.R.

    1975-01-01

    The growth process of helium bubbles in α-particle bombarded pure aluminum during isothermal anneal ranging 200 to 645 0 C and 1 to 100 hr was observed by a transmission electron microscope and the possible growth mechanisms are discussed. The effects of helium concentration and cold work were investigated. The helium bubbles are detectable only at the anneal above 550 0 C in both annealed and cold worked samples. The cold work does not cause any extra coarsening trend of bubbles. The observed types of bubble distribution in the grain interior are divided into two categories, irrespective of helium concentration and cold work; (1) the fine and uniform bubble distribution, in which case the average size is limited to about 200 A or less in diameter even at the anneal just below the melting point, and (2) the coarsened and non-uniform bubble distribution ranging 500 to 4000 A in diameter. The intermediate size bubbles are scarcely found in any cases. In the above fine bubble distribution, the increase of helium concentration by a factor of two increases the density by the same factor of two, but does not change the mean size of bubbles. Corresponding to the above two characteristic bubble distributions, it is concluded that two different mechanisms are operative in this experiment; (1) the growth of bubbles by the Brownian motion, in which the growth rate of bubbles is decreased to almost zero by bubble faceting and this results in the bubble size constancy during the prolonged annealing, and (2) the growth of bubbles by the grain boundary sweep-out mechanism, by which the abrupt coarsening of bubbles is caused. The lack of existence of the intermediate size bubbles is explained in this way. (auth.)

  1. Study of stream flow effects on bubble motion

    International Nuclear Information System (INIS)

    Sami, S.S.

    1983-01-01

    The formation of air bubbles at constant-pressure by submerged orifices was investigated in both quiescent and moving streams inside a vertical tube. Parameters affecting the bubble rise velocity, such as bubble generating frequency and diameter, were studied and analyzed for bubbles rising in a chain and homogeneous mixture. A special technique for measuring bubble motion parameters has been developed, tested, and employed throughout the experimental investigation. The method is based on a water-air impedance variation. Results obtained in stagnant liquid show that increasing the bubble diameter serves to increase bubble rise velocity, while an opposite trend has been observed for stream liquid where the bubble diameter increase reduces the bubble rise velocity. The increase of bubble generation frequency generally increases the bubble rise velocity. Experimental data covered with bubble radial distribution showed symmetrical profiles of bubble velocity and frequency, and the radial distribution of the velocity profiles sometimes has two maxima and one minimum depending on the liquid velocity. Finally, in stagnant liquid, a normalized correlation has been developed to predict the terminal rise velocity in terms of bubble generating frequency, bubble diameter, single bubble rise velocity, and conduit dimensions. Another correlation is presented for forced bubbly flow, where the bubble rise velocity is expressed as a function of bubble generating frequency, bubble diameter, and water superficial velocity

  2. Multipoint dynamically reconfigure adaptive distributed fiber optic acoustic emission sensor (FAESense) system for condition based maintenance

    Science.gov (United States)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar

    2010-09-01

    This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.

  3. In-situ optical and acoustical measurements of the buoyant cyanobacterium p. Rubescens: spatial and temporal distribution patterns.

    Directory of Open Access Journals (Sweden)

    Hilmar Hofmann

    Full Text Available Optical (fluorescence and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP and a Seapoint Chlorophyll Fluorometer (SCF. In-situ measurements of the acoustic backscatter strength (ABS were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV. The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes and spatial (decimeters resolution or covering large temporal (seasonal and spatial (basin scale scales.

  4. Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions

    International Nuclear Information System (INIS)

    Gong Jingyu; Du Jiulin; Liu Zhipeng

    2012-01-01

    The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.

  5. Ion acoustic solitons in a plasma with two-temperature kappa-distributed electrons

    Energy Technology Data Exchange (ETDEWEB)

    Baluku, T. K.; Hellberg, M. A. [School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa)

    2012-01-15

    Existence domains and characteristics of ion acoustic solitons are studied in a two-temperature electron plasma with both electron components being kappa-distributed, as found in Saturn's magnetosphere. As is the case for double-Boltzmann electrons, solitons of both polarities can exist over restricted ranges of fractional hot electron density ratio for this plasma model. Low {kappa} values, which indicate increased suprathermal particles in the tail of the distribution, yield a smaller domain in the parameter space of hot density fraction and normalized soliton velocity (f, M), over which both soliton polarities are supported for a given plasma composition (the coexistence region). For some density ratios that support coexistence, solitons occur even at the lowest (critical) Mach number (i.e., at the acoustic speed), as found recently for a number of other plasma models. Like Maxwellians, low-{kappa} distributions also support positive potential double layers over a narrow range of low fractional cool electron density (<10%).

  6. Design and Analyses of High Aspect Ratio Nozzles for Distributed Propulsion Acoustic Measurements

    Science.gov (United States)

    Dippold, Vance F., III

    2016-01-01

    A series of three convergent round-to-rectangular high-aspect ratio nozzles were designed for acoustics measurements. The nozzles have exit area aspect ratios of 8:1, 12:1, and 16:1. With septa inserts, these nozzles will mimic an array of distributed propulsion system nozzles, as found on hybrid wing-body aircraft concepts. Analyses were performed for the three nozzle designs and showed that the flow through the nozzles was free of separated flow and shocks. The exit flow was mostly uniform with the exception of a pair of vortices at each span-wise end of the nozzle.

  7. Dust ion-acoustic shock waves in magnetized pair-ion plasma with kappa distributed electrons

    Science.gov (United States)

    Kaur, B.; Singh, M.; Saini, N. S.

    2018-01-01

    We have performed a theoretical and numerical analysis of the three dimensional dynamics of nonlinear dust ion-acoustic shock waves (DIASWs) in a magnetized plasma, consisting of positive and negative ion fluids, kappa distributed electrons, immobile dust particulates along with positive and negative ion kinematic viscosity. By employing the reductive perturbation technique, we have derived the nonlinear Zakharov-Kuznetsov-Burgers (ZKB) equation, in which the nonlinear forces are balanced by dissipative forces (associated with kinematic viscosity). It is observed that the characteristics of DIASWs are significantly affected by superthermality of electrons, magnetic field strength, direction cosines, dust concentration, positive to negative ions mass ratio and viscosity of positive and negative ions.

  8. Distributed Remote Vector Gaussian Source Coding for Wireless Acoustic Sensor Networks

    DEFF Research Database (Denmark)

    Zahedi, Adel; Østergaard, Jan; Jensen, Søren Holdt

    2014-01-01

    In this paper, we consider the problem of remote vector Gaussian source coding for a wireless acoustic sensor network. Each node receives messages from multiple nodes in the network and decodes these messages using its own measurement of the sound field as side information. The node’s measurement...... and the estimates of the source resulting from decoding the received messages are then jointly encoded and transmitted to a neighboring node in the network. We show that for this distributed source coding scenario, one can encode a so-called conditional sufficient statistic of the sources instead of jointly...

  9. Nonlinear Ion-Acoustic Waves in a Plasma Consisting of Warm Ions and Isothermal Distributed Electrons

    International Nuclear Information System (INIS)

    Abourabia, A.M.; Hassan, K.M.; Shahein, R.A.

    2008-01-01

    The formation of (1+1) dimensional ion-acoustic waves (IAWs) in an unmagnetized collisionless plasma consisting of warm ions and isothermal distributed electrons is investigated. The electrodynamics system of equations are solved analytically in terms of a new variable ξκ χ -φ τ, where k=k(ω) is a complex function, at a fixed position. The analytical calculations gives that the critical value σ = τ/τ ∼ 0.25 distinguishes between the linear and nonlinear characters of IAW within the nanosecond time scale. The flow velocity, pressure, number density, electric potential, electric field, mobility and the total energy in the system are estimated and illustrated

  10. Bubble coalescence in breathing DNA

    DEFF Research Database (Denmark)

    Novotný, Tomas; Pedersen, Jonas Nyvold; Ambjörnsson, Tobias

    2007-01-01

    We investigate the coalescence of two DNA bubbles initially located at weak segments and separated by a more stable barrier region in a designed construct of double-stranded DNA. The characteristic time for bubble coalescence and the corresponding distribution are derived, as well as the distribu...... vicious walkers in opposite potentials....

  11. Preliminary Results on the Effects of Distributed Aluminum Combustion Upon Acoustic Growth Rates in a Rijke Burner

    OpenAIRE

    Newbold, Brian R.

    1998-01-01

    Distributed particle combustion in solid propellant rocket motors may be a significant cause of acoustic combustion instability. A Rijke burner has been developed as a tool to investigate the phenomenon. Previous improvements and characterization of the upright burner lead to the addition of a particle injection flame. The injector flame increases the burner's acoustic driving by about 10% which is proportional to the injector's additional 2 g/min of gas. Frequency remained fairly constant fo...

  12. Computational Fluid Dynamics-Population Balance Model Simulation of Effects of Cell Design and Operating Parameters on Gas-Liquid Two-Phase Flows and Bubble Distribution Characteristics in Aluminum Electrolysis Cells

    Science.gov (United States)

    Zhan, Shuiqing; Wang, Junfeng; Wang, Zhentao; Yang, Jianhong

    2018-02-01

    The effects of different cell design and operating parameters on the gas-liquid two-phase flows and bubble distribution characteristics under the anode bottom regions in aluminum electrolysis cells were analyzed using a three-dimensional computational fluid dynamics-population balance model. These parameters include inter-anode channel width, anode-cathode distance (ACD), anode width and length, current density, and electrolyte depth. The simulations results show that the inter-anode channel width has no significant effect on the gas volume fraction, electrolyte velocity, and bubble size. With increasing ACD, the above values decrease and more uniform bubbles can be obtained. Different effects of the anode width and length can be concluded in different cell regions. With increasing current density, the gas volume fraction and electrolyte velocity increase, but the bubble size keeps nearly the same. Increasing electrolyte depth decreased the gas volume fraction and bubble size in particular areas and the electrolyte velocity increased.

  13. Bubbling away

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-10-15

    Bubble chambers may have almost vanished from the front line of physics research, but the vivid memory of their intricate and sometimes beautiful patterns of particle tracks lives on, and has greatly influenced the computer graphics of track reconstruction in today's big experiments. 'Seeing' an interaction makes it more understandable. Bubble chambers, with their big collaborations of physicists from many widely scattered research institutes, started another ball rolling. The groups formed are even now only surpassed in size by the big collaborations working on today's major detectors at colliding beam machines. From 14-16 July, about 130 physicists gathered at CERN to commemorate the 40th anniversary of the invention of the bubble chamber by Donald Glaser. The meeting, organized by Derek C. Colley from Birmingham, gave a comprehensive overview of bubble chamber contributions to physics, their challenging technology, and the usefulness of bubble chamber photographs in education, both for physics and the public at large. After opening remarks by CERN Director Carlo Rubbia, Donald Glaser began with a brief review of the work which led to his invention - there was much more to it than idly watching beer bubbles rise up the wall of the glass - before turning to his present line of research, biophysics, also very visually oriented.

  14. Bubbling away

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Bubble chambers may have almost vanished from the front line of physics research, but the vivid memory of their intricate and sometimes beautiful patterns of particle tracks lives on, and has greatly influenced the computer graphics of track reconstruction in today's big experiments. 'Seeing' an interaction makes it more understandable. Bubble chambers, with their big collaborations of physicists from many widely scattered research institutes, started another ball rolling. The groups formed are even now only surpassed in size by the big collaborations working on today's major detectors at colliding beam machines. From 14-16 July, about 130 physicists gathered at CERN to commemorate the 40th anniversary of the invention of the bubble chamber by Donald Glaser. The meeting, organized by Derek C. Colley from Birmingham, gave a comprehensive overview of bubble chamber contributions to physics, their challenging technology, and the usefulness of bubble chamber photographs in education, both for physics and the public at large. After opening remarks by CERN Director Carlo Rubbia, Donald Glaser began with a brief review of the work which led to his invention - there was much more to it than idly watching beer bubbles rise up the wall of the glass - before turning to his present line of research, biophysics, also very visually oriented

  15. The distribution of air bubble size in the pneumo-mechanical flotation machine . Rozkład wielkości pęcherzyków powietrza w pneumo-mechanicznej maszynie flotacyjnej

    Science.gov (United States)

    Brożek, Marian; Młynarczykowska, Anna

    2012-12-01

    The flotation rate constant is the value characterizing the kinetics of cyclic flotation. In the statistical theory of flotation its value is the function of probabilities of collision, adhesion and detachment of particle from the air bubble. The particle - air bubble collision plays a key role since there must be a prior collision before the particle - air bubble adhesion happens. The probability of such an event to occur is proportional to the ratio of the particle diameter to the bubble diameter. When the particle size is given, it is possible to control the value of collision probability by means of the size of air bubble. Consequently, it is significant to find the effect of physical and physicochemical factors upon the diameter of air bubbles in the form of a mathematical dependence. In the pneumo-mechanical flotation machine the air bubbles are generated by the blades of the rotor. The dispergation rate is affected by, among others, rotational speed of the rotor, the air flow rate and the liquid surface tension, depending on the type and concentration of applied flotation reagents. In the proposed paper the authors will present the distribution of air bubble diameters on the grounds of the above factors, according to the laws of thermodynamics. The correctness of the derived dependences will be verified empirically.

  16. Effects of vortex-like and non-thermal ion distributions on non-linear dust-acoustic waves

    International Nuclear Information System (INIS)

    Mamun, A.A.; Cairns, R.A.; Shukla, P.K.

    1996-01-01

    The effects of vortex-like and non-thermal ion distributions are incorporated in the study of nonlinear dust-acoustic waves in an unmagnetized dusty plasma. It is found that owing to the departure from the Boltzmann ion distribution to a vortex-like phase space distribution, the dynamics of small but finite amplitude dust-acoustic waves is governed by a modified Kortweg endash de Vries equation. The latter admits a stationary dust-acoustic solitary wave solution, which has larger amplitude, smaller width, and higher propagation velocity than that involving adiabatic ions. On the other hand, consideration of a non-thermal ion distribution provides the possibility of coexistence of large amplitude rarefactive as well as compressive dust-acoustic solitary waves, whereas these structures appear independently when the wave amplitudes become infinitely small. The present investigation should help us to understand the salient features of the non-linear dust-acoustic waves that have been observed in a recent numerical simulation study. copyright 1996 American Institute of Physics

  17. The Behavior of Micro Bubbles and Bubble Cluster in Ultrasound Field

    Science.gov (United States)

    Yoshizawa, Shin; Matsumoto, Yoichiro

    2001-11-01

    Ultrasound is widely applied in the clinical field today, such as ultrasound imaging, Extracorporeal Shock Wave Lithotripsy (ESWL) and so on. It is essential to take a real understanding of the dynamics of micro bubbles and bubble cluster in these applications. Thus we numerically simulate them in ultrasound field in this paper. In the numerical simulation, we consider the thermal behavior inside the bubble and the pressure wave phenomena in the bubble cluster in detail, namely, the evaporation and condensation of liquid at the bubble wall, heat transfer through the bubble wall, diffusion of non-condensable gas inside the bubble and the compressibility of liquid. Initial cluster radius is to 0.5[mm], bubble radius is 1.7[mm], void fraction is 0.1[ambient pressure is 101.3[kPa], temperature is 293[K] and the amplitude of ultrasound is 50[kPa]. We simulate bubble cluster in ultrasound field at various frequencies and we obtain the following conclusions. 1) The maximum pressure inside bubble cluster reaches 5[MPa] and this is much higher than that of a bubble. 2) Bubble cluster behaves like a rigid body acoustically when the frequency of ultrasound is much higher than its natural frequency.

  18. Interaction of a bubble and a bubble cluster in an ultrasonic field

    International Nuclear Information System (INIS)

    Wang Cheng-Hui; Cheng Jian-Chun

    2013-01-01

    Using an appropriate approximation, we have formulated the interacting equation of multi-bubble motion for a system of a single bubble and a spherical bubble cluster. The behavior of the bubbles is observed in coupled and uncoupled states. The oscillation of bubbles inside the cluster is in a coupled state. The numerical simulation demonstrates that the secondary Bjerknes force can be influenced by the number density, initial radius, distance, driving frequency, and amplitude of ultrasound. However, if a bubble approaches a bubble cluster of the same initial radii, coupled oscillation would be induced and a repulsive force is evoked, which may be the reason why the bubble cluster can exist steadily. With the increment of the number density of the bubble cluster, a secondary Bjerknes force acting on the bubbles inside the cluster decreases due to the strong suppression of the coupled bubbles. It is shown that there may be an optimal number density for a bubble cluster which can generate an optimal cavitation effect in liquid for a stable driving ultrasound. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Pressure waves in a supersaturated bubbly magma

    Science.gov (United States)

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  20. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan; Samtaney, Ravi; Bull, Joseph L.

    2013-01-01

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  1. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan

    2013-01-10

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  2. In vitro and in vivo evaluation of poly(L-lactide-co glycolide)( PLGA) micro bubbles as a contrast agent

    International Nuclear Information System (INIS)

    Cui, W.; Bei, J.; Wang, S.; Zhao, Y.; Zhi, G.

    2005-01-01

    To achieve reliable and reproducible myocardial opacification after intravenous administration of echocardiographic contrast agents, this study was performed to fabricate a kind of poly(L-lactide-co-glycolide) (PLGA) micro bubbles-based contrast agent with a modified double emulsion method which incorporates and later sublimes po rogen, leaving voids capable of being filled with gas in their places. The morphology and size distribution of the micro bubbles were investigated. The porous inner structure formed in the micro bubble contrast agents were further proved by con focal laser scanning microscope (CLSM). All the results satisfied the requirements of ideal contrast agents. Acoustic measurement set-up detected the excellent scatter ability of the PLGA (70/30) micro bubbles. It demonstrated this kind of polymer-shell contrast agents could achieve efficient left ventricular opacification and the improved delineation of left ventricular endocardial borders. Especially the safe and successful myocardial opacification in close-chest dogs were observed

  3. Nuttier bubbles

    International Nuclear Information System (INIS)

    Astefanesei, Dumitru; Mann, Robert B.; Stelea, Cristian

    2006-01-01

    We construct new explicit solutions of general relativity from double analytic continuations of Taub-NUT spacetimes. This generalizes previous studies of 4-dimensional nutty bubbles. One 5-dimensional locally asymptotically AdS solution in particular has a special conformal boundary structure of AdS 3 x S 1 . We compute its boundary stress tensor and relate it to the properties of the dual field theory. Interestingly enough, we also find consistent 6-dimensional bubble solutions that have only one timelike direction. The existence of such spacetimes with non-trivial topology is closely related to the existence of the Taub-NUT(-AdS) solutions with more than one NUT charge. Finally, we begin an investigation of generating new solutions from Taub-NUT spacetimes and nuttier bubbles. Using the so-called Hopf duality, we provide new explicit time-dependent backgrounds in six dimensions

  4. Acoustic scattering by arbitrary distributions of disjoint, homogeneous cylinders or spheres.

    Science.gov (United States)

    Hesford, Andrew J; Astheimer, Jeffrey P; Waag, Robert C

    2010-05-01

    A T-matrix formulation is presented to compute acoustic scattering from arbitrary, disjoint distributions of cylinders or spheres, each with arbitrary, uniform acoustic properties. The generalized approach exploits the similarities in these scattering problems to present a single system of equations that is easily specialized to cylindrical or spherical scatterers. By employing field expansions based on orthogonal harmonic functions, continuity of pressure and normal particle velocity are directly enforced at each scatterer using diagonal, analytic expressions to eliminate the need for integral equations. The effect of a cylinder or sphere that encloses all other scatterers is simulated with an outer iterative procedure that decouples the inner-object solution from the effect of the enclosing object to improve computational efficiency when interactions among the interior objects are significant. Numerical results establish the validity and efficiency of the outer iteration procedure for nested objects. Two- and three-dimensional methods that employ this outer iteration are used to measure and characterize the accuracy of two-dimensional approximations to three-dimensional scattering of elevation-focused beams.

  5. Grain size distributions and their effects on auto-acoustic compaction

    Science.gov (United States)

    Taylor, S.; Brodsky, E. E.

    2013-12-01

    A variety of geophysical and geomorphological processes depend on the response of granular mixtures to shear stress. For example, if shear sliding in a fault zone causes gouge to compact or dilate, this has implications on our understanding of earthquake nucleation and propagation. The behavior of granular flows has previously been found to be strongly dependent on shear rate. At relatively slow shear velocities, a granular flow will support stresses elastically through force chains in what is recognized as the 'quasi-static' regime. At relatively high shear velocities, it will support stresses by transferring momentum in higher velocity grain collisions in the 'grain-inertial' regime, which results in dilation of the flow. Recent experiments conducted using a commercial torsional rheometer found that at intermediate shear velocities, force chain collapse in angular sand samples produced sound waves capable of vibrating the shear zone enough to cause compaction. To expand on the characterization of this newly identified rheological regime, the 'auto-acoustic' regime, we used the same experimental set up to observe how volumetric and acoustic response to shear stress changes with grain size mean and range. Stepped velocity ramp experiments were conducted first on five separate grain size bins, and then on various mixtures of these grain sizes. As expected, larger grain sizes entered the mass-dependent grain-inertial regime at lower shear velocities than smaller grain sizes. Interestingly, smaller grain sizes exhibited more pronounced compaction at slower velocities resulting from the auto-acoustic regime, and the largest grain sizes showed no compaction, implying a grain size threshold for auto-acoustic compaction. In mixtures of different grain size bins, the response of the flow to intermediate shear velocities was consistent with the response of the smallest grain size bin included in the mixture, while the response of the flow to high shear velocities was most

  6. A Correction of Random Incidence Absorption Coefficients for the Angular Distribution of Acoustic Energy under Measurement Conditions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2009-01-01

    Most acoustic measurements are based on an assumption of ideal conditions. One such ideal condition is a diffuse and reverberant field. In practice, a perfectly diffuse sound field cannot be achieved in a reverberation chamber. Uneven incident energy density under measurement conditions can cause...... discrepancies between the measured value and the theoretical random incidence absorption coefficient. Therefore the angular distribution of the incident acoustic energy onto an absorber sample should be taken into account. The angular distribution of the incident energy density was simulated using the beam...... tracing method for various room shapes and source positions. The averaged angular distribution is found to be similar to a Gaussian distribution. As a result, an angle-weighted absorption coefficient was proposed by considering the angular energy distribution to improve the agreement between...

  7. Acoustic receptivity and transition modeling of Tollmien-Schlichting disturbances induced by distributed surface roughness

    Science.gov (United States)

    Raposo, Henrique; Mughal, Shahid; Ashworth, Richard

    2018-04-01

    Acoustic receptivity to Tollmien-Schlichting waves in the presence of surface roughness is investigated for a flat plate boundary layer using the time-harmonic incompressible linearized Navier-Stokes equations. It is shown to be an accurate and efficient means of predicting receptivity amplitudes and, therefore, to be more suitable for parametric investigations than other approaches with direct-numerical-simulation-like accuracy. Comparison with the literature provides strong evidence of the correctness of the approach, including the ability to quantify non-parallel flow effects. These effects are found to be small for the efficiency function over a wide range of frequencies and local Reynolds numbers. In the presence of a two-dimensional wavy-wall, non-parallel flow effects are quite significant, producing both wavenumber detuning and an increase in maximum amplitude. However, a smaller influence is observed when considering an oblique Tollmien-Schlichting wave. This is explained by considering the non-parallel effects on receptivity and on linear growth which may, under certain conditions, cancel each other out. Ultimately, we undertake a Monte Carlo type uncertainty quantification analysis with two-dimensional distributed random roughness. Its power spectral density (PSD) is assumed to follow a power law with an associated uncertainty following a probabilistic Gaussian distribution. The effects of the acoustic frequency over the mean amplitude of the generated two-dimensional Tollmien-Schlichting waves are studied. A strong dependence on the mean PSD shape is observed and discussed according to the basic resonance mechanisms leading to receptivity. The growth of Tollmien-Schlichting waves is predicted with non-linear parabolized stability equations computations to assess the effects of stochasticity in transition location.

  8. Leverage bubble

    Science.gov (United States)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  9. Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel

    Science.gov (United States)

    Oguri, Ryota; Ando, Keita

    2018-05-01

    An optical visualization technique is developed to study cavitation bubble nucleation that results from interaction between a laser-induced shock and a preexisting gas bubble in a 10 wt. % gelatin gel; images of the nucleated cavitation bubbles are captured and the cavitation inception pressure is determined based on Euler flow simulation. A spherical gas cavity is generated by focusing an infrared laser pulse into a gas-supersaturated gel and the size of the laser-generated bubble in mechanical equilibrium is tuned via mass transfer of the dissolved gas into the bubble. A spherical shock is then generated, through rapid expansion of plasma induced by the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gel under tension that results from acoustic impedance mismatching at the bubble interface interacting with the shock. We measure the probability of cavitation inception from a series of the repeated experiments, by varying the bubble radius and the standoff distance. The threshold pressure is defined at the cavitation inception probability equal to one half and is calculated, through comparisons to Euler flow simulation, at -24.4 MPa. This threshold value is similar to that from shock-bubble interaction experiments using water, meaning that viscoelasticity of the 10 wt. % gelatin gel has a limited impact on bubble nucleation dynamics.

  10. Hamiltonian description of bubble dynamics

    International Nuclear Information System (INIS)

    Maksimov, A. O.

    2008-01-01

    The dynamics of a nonspherical bubble in a liquid is described within the Hamiltonian formalism. Primary attention is focused on the introduction of the canonical variables into the computational algorithm. The expansion of the Dirichlet-Neumann operator in powers of the displacement of a bubble wall from an equilibrium position is obtained in the explicit form. The first three terms (more specifically, the second-, third-, and fourth-order terms) in the expansion of the Hamiltonian in powers of the canonical variables are determined. These terms describe the spectrum and interaction of three essentially different modes, i.e., monopole oscillations (pulsations), dipole oscillations (translational motions), and surface oscillations. The cubic nonlinearity is analyzed for the problem associated with the generation of Faraday ripples on the wall of a bubble in an acoustic field. The possibility of decay processes occurring in the course of interaction of surface oscillations for the first fifteen (experimentally observed) modes is investigated.

  11. Development of an optical microscopy system for automated bubble cloud analysis.

    Science.gov (United States)

    Wesley, Daniel J; Brittle, Stuart A; Toolan, Daniel T W

    2016-08-01

    Recently, the number of uses of bubbles has begun to increase dramatically, with medicine, biofuel production, and wastewater treatment just some of the industries taking advantage of bubble properties, such as high mass transfer. As a result, more and more focus is being placed on the understanding and control of bubble formation processes and there are currently numerous techniques utilized to facilitate this understanding. Acoustic bubble sizing (ABS) and laser scattering techniques are able to provide information regarding bubble size and size distribution with minimal data processing, a major advantage over current optical-based direct imaging approaches. This paper demonstrates how direct bubble-imaging methods can be improved upon to yield high levels of automation and thus data comparable to ABS and laser scattering. We also discuss the added benefits of the direct imaging approaches and how it is possible to obtain considerable additional information above and beyond that which ABS and laser scattering can supply. This work could easily be exploited by both industrial-scale operations and small-scale laboratory studies, as this straightforward and cost-effective approach is highly transferrable and intuitive to use.

  12. Some observations of the pressure distribution in a tube bank for conditions of self generated acoustic resonance

    International Nuclear Information System (INIS)

    Fitzpatrick, J.A.; Donaldson, I.S.; McKnight, W.

    1979-01-01

    The results for mean and fluctuating pressure distributions around tubes in an in-line tube bank are presented for both non-resonant and self-excited acoustic standing wave resonant flow regimes. It is readily deduced that the nature of the flow in the bank is dramatically altered with the onset of acoustic resonance. The velocity gradients which appear across the bank with the onset of resonance would suggest regions of flow recirculation in the bank although no evidence of this was found. The spectra of fluctuating pressure on the duct roof in the bank and on tubes deep in the bank exhibited coherent peaks only during resonance. (author)

  13. Towards the Wetness Characterization of Soil Subsurface Using Fibre Optic Distributed Acoustic Sensing

    Science.gov (United States)

    Ciocca, F.; Bodet, L.; Simon, N.; Karaulanov, R.; Clarke, A.; Abesser, C.; Krause, S.; Chalari, A.; Mondanos, M.

    2017-12-01

    Active seismic methods combined with detectors deployed at the soil surface, such as vertical collinear geophones, have revealed great potential for hydrogeophysical characterization of the soil vadose zone. In particular, recent findings have highlighted a clear dependence of both P-waves arrival times and surface-wave dispersion on the local degree of soil saturation, visible at laboratory as well as at field scale. In this study, we investigate the sensitivity of a fibre optic Distributed Acoustic Sensor (DAS) to different soil saturation. In vertical seismic applications, DAS have proven to offer equal and often better performance compared to the geophones, with the advantage that a fibre optic cable, whose length can reach 40 km, replaces the array of geophones as sensing element. We present the response to active seismic tests of 20 m of fibre optic cable buried in a poorly permeable bare soil. Tests were conducted in different moments of the year, with saturation monitored by means of independent dielectric probes. Body-wave travel times as well as surface-wave dispersion are compared. Finally, we discuss the possibility to determine a site-specific relation between the Poisson ratio and the soil saturation. This research has been performed in the framework of the British National Environmental Research Council (NERC) funded Distributed intelligent Heat Pulse System (DiHPS) project and of the Marie Curie H2020 Research and Innovation Staff Exchange (RISE) consortium Hi-Freq.

  14. Models and observations of foam coverage and bubble content in the surf zone

    Science.gov (United States)

    Kirby, J. T.; Shi, F.; Holman, R. A.

    2010-12-01

    Optical and acoustical observations and communications are hampered in the nearshore by the presence of bubbles and foam generated by breaking waves. Bubble clouds in the water column provide a highly variable (both spatially and temporally) obstacle to direct acoustic and optical paths. Persistent foam riding on the water surface creates a primary occlusion of optical penetration into the water column. In an effort to better understand and predict the level of bubble and foam content in the surfzone, we have been pursuing the development of a detailed phase resolved model of fluid and gaseous components of the water column, using a Navier-Stokes/VOF formulation extended to include a multiphase description of polydisperse bubble populations. This sort of modeling provides a detailed description of large scale turbulent structures and associated bubble transport mechanisms under breaking wave crests. The modeling technique is too computationally intensive, however, to provide a wider-scale description of large surfzone regions. In order to approach the larger scale problem, we are developing a model for spatial and temporal distribution of foam and bubbles within the framework of a Boussinesq model. The basic numerical framework for the code is described by Shi et al (2010, this conference). Bubble effects are incorporated both in the mass and momentum balances for weakly dispersive, fully nonlinear waves, with spatial and temporal bubble distributions parameterized based on the VOF modeling and measurements and tied to the computed rate of dissipation of energy during breaking. A model of a foam layer on the water surface is specified using a shallow water formulation. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The foam layer motion in the plane of the water surface arises due to a balance of drag forces due to wind and water

  15. Shock formation within sonoluminescence bubbles

    International Nuclear Information System (INIS)

    Vuong, V.Q.; Szeri, A.J.; Young, D.A.

    1999-01-01

    A strong case has been made by several authors that sharp, spherically symmetric shocks converging on the center of a spherical bubble driven by a strong acoustic field give rise to rapid compression and heating that produces the brief flash of light known as sonoluminescence. The formation of such shocks is considered. It is found that, although at the main collapse the bubble wall does indeed launch an inwardly-traveling compression wave, and although the subsequent reflection of the wave at the bubble center produces a very rapid temperature peak, the wave is prevented from steepening into a sharp shock by an adverse gradient in the sound speed caused by heat transfer. It is shown that the mathematical characteristics of the flow can be prevented from accumulating into a shock front by this adverse sound speed gradient. A range of results is presented for a variety of bubble ambient radii and sound field amplitudes suggested by experiments. The time scale of the peak temperature in the bubble is set by the dynamics of the compression wave: this is typically in the range 100 - 300 ps (FWHM) in concert with recent measurements of the sonoluminescence pulse width. copyright 1999 American Institute of Physics

  16. Acoustic phenomena during boiling

    International Nuclear Information System (INIS)

    Dorofeev, B.M.

    1985-01-01

    Applied and theoretical significance of investigation into acoustic phenomena on boiling is discussed. Effect of spatial and time conditions on pressure vapour bubble has been elucidated. Collective effects were considered: acoustic interaction of bubbles, noise formation ion developed boiling, resonance and hydrodynamic autooscillations. Different methods for predicting heat transfer crisis using changes of accompanying noise characteristics were analysed. Principle peculiarities of generation mechanism of thermoacoustic autooscillations were analysed as well: formation of standing waves; change of two-phase medium contraction in a channel; relation of alternating pressure with boiling process as well as with instantaneous and local temperatures of heat transfer surface and liquid in a boundary layer

  17. Statistical study of the correlation in the galaxy distribution - application to the baryonic acoustic oscillations

    International Nuclear Information System (INIS)

    Labatie, Antoine

    2012-01-01

    Baryon Acoustic Oscillations (BAOs) correspond to the acoustic phenomenon in the baryon-photon plasma before recombination. BAOs imprint a particular scale, corresponding to the sound horizon, that can be observed in large-scale structures of the Universe. Using this standard ruler property, BAOs can be used to probe the distance-redshift relation in galaxy catalogues, thus providing a very promising tool to study dark energy properties. BAOs can be studied from the second order statistics (the correlation function or the power spectrum) in the distribution of galaxies. In this thesis we restrict to the case of the correlation function. BAOs appear in the correlation function as a small localized bump at the scale of the sound horizon in co-moving coordinates. There are two major applications of BAO study: BAO detection and cosmological parameter constraints using the standard ruler property. The detection of BAOs at the expected scale enables to confirm the current cosmological model. As for cosmological parameter constraints, enabling the study of dark energy, it is a major goal of modern cosmology. In this thesis we tackle different statistical problems concerning the correlation function analysis in the galaxy distribution, with a focus on the study of BAOs. In the first part, we make both a theoretical and practical study of the bias due to the integral constraints in correlation function estimators. We show that this bias is very small for current galaxy surveys. In the second part we study the BAO detection. We show the limitations of the classical detection method and propose a new method, which is more rigorous. In particular our method enables to take into account the model-dependence of the covariance matrix of the estimators. In the third part, we focus again on the model-dependence of the covariance matrix, but this time for parameter constraints. We estimate a model-dependent covariance matrix and compare our constraints with constraints obtained by

  18. The effect of particle shape and size distribution on the acoustical properties of mixtures of hemp particles.

    Science.gov (United States)

    Glé, Philippe; Gourdon, Emmanuel; Arnaud, Laurent; Horoshenkov, Kirill-V; Khan, Amir

    2013-12-01

    Hemp concrete is an attractive alternative to traditional materials used in building construction. It has a very low environmental impact, and it is characterized by high thermal insulation. Hemp aggregate particles are parallelepiped in shape and can be organized in a plurality of ways to create a considerable proportion of open pores with a complex connectivity pattern, the acoustical properties of which have never been examined systematically. Therefore this paper is focused on the fundamental understanding of the relations between the particle shape and size distribution, pore size distribution, and the acoustical properties of the resultant porous material mixture. The sound absorption and the transmission loss of various hemp aggregates is characterized using laboratory experiments and three theoretical models. These models are used to relate the particle size distribution to the pore size distribution. It is shown that the shape of particles and particle size control the pore size distribution and tortuosity in shiv. These properties in turn relate directly to the observed acoustical behavior.

  19. Bubbles in inkjet printheads: analytical and numerical models

    NARCIS (Netherlands)

    Jeurissen, R.J.M.

    2009-01-01

    The phenomenon of nozzle failure of an inkjet printhead due to entrainment of air bubbles was studies using analytical and numerical models. The studied inkjet printheads consist of many channels in which an acoustic field is generated to eject a droplet. When an air bubble is entrained, it disrupts

  20. Bubbles in inkjet printheads : analytical and numerical models

    NARCIS (Netherlands)

    Jeurissen, R.J.M.

    2009-01-01

    The phenomenon of nozzle failure of an inkjet printhead due to entrainment of air bubbles was studies using analytical and numerical models. The studied inkjet printheads consist of many channels in which an acoustic field is generated to eject a droplet. When an air bubble is entrained, it disrupts

  1. In-Line Acoustic Device Inspection of Leakage in Water Distribution Pipes Based on Wavelet and Neural Network

    Directory of Open Access Journals (Sweden)

    Dileep Kumar

    2017-01-01

    Full Text Available Traditionally permanent acoustic sensors leak detection techniques have been proven to be very effective in water distribution pipes. However, these methods need long distance deployment and proper position of sensors and cannot be implemented on underground pipelines. An inline-inspection acoustic device is developed which consists of acoustic sensors. The device will travel by the flow of water through the pipes which record all noise events and detect small leaks. However, it records all the noise events regarding background noises, but the time domain noisy acoustic signal cannot manifest complete features such as the leak flow rate which does not distinguish the leak signal and environmental disturbance. This paper presents an algorithm structure with the modularity of wavelet and neural network, which combines the capability of wavelet transform analyzing leakage signals and classification capability of artificial neural networks. This study validates that the time domain is not evident to the complete features regarding noisy leak signals and significance of selection of mother wavelet to extract the noise event features in water distribution pipes. The simulation consequences have shown that an appropriate mother wavelet has been selected and localized to extract the features of the signal with leak noise and background noise, and by neural network implementation, the method improves the classification performance of extracted features.

  2. Bubbles with shock waves and ultrasound: a review.

    Science.gov (United States)

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-10-06

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.

  3. Cylindrical and spherical solitary waves in an electron-acoustic plasma with vortex electron distribution

    Science.gov (United States)

    Demiray, Hilmi; El-Zahar, Essam R.

    2018-04-01

    We consider the nonlinear propagation of electron-acoustic waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical (spherical) coordinates by employing the reductive perturbation technique. The modified cylindrical (spherical) KdV equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, this evolution equation cannot be reduced to the conventional KdV equation. A new family of closed form analytical approximate solution to the evolution equation and a comparison with numerical solution are presented and the results are depicted in some 2D and 3D figures. The results reveal that both solutions are in good agreement and the method can be used to obtain a new progressive wave solution for such evolution equations. Moreover, the resulting closed form analytical solution allows us to carry out a parametric study to investigate the effect of the physical parameters on the solution behavior of the modified cylindrical (spherical) KdV equation.

  4. Acoustic Emission Source Location Using a Distributed Feedback Fiber Laser Rosette

    Directory of Open Access Journals (Sweden)

    Fang Li

    2013-10-01

    Full Text Available This paper proposes an approach for acoustic emission (AE source localization in a large marble stone using distributed feedback (DFB fiber lasers. The aim of this study is to detect damage in structures such as those found in civil applications. The directional sensitivity of DFB fiber laser is investigated by calculating location coefficient using a method of digital signal analysis. In this, autocorrelation is used to extract the location coefficient from the periodic AE signal and wavelet packet energy is calculated to get the location coefficient of a burst AE source. Normalization is processed to eliminate the influence of distance and intensity of AE source. Then a new location algorithm based on the location coefficient is presented and tested to determine the location of AE source using a Delta (Δ DFB fiber laser rosette configuration. The advantage of the proposed algorithm over the traditional methods based on fiber Bragg Grating (FBG include the capability of: having higher strain resolution for AE detection and taking into account two different types of AE source for location.

  5. Compressing Sensing Based Source Localization for Controlled Acoustic Signals Using Distributed Microphone Arrays

    Directory of Open Access Journals (Sweden)

    Wei Ke

    2017-01-01

    Full Text Available In order to enhance the accuracy of sound source localization in noisy and reverberant environments, this paper proposes an adaptive sound source localization method based on distributed microphone arrays. Since sound sources lie at a few points in the discrete spatial domain, our method can exploit this inherent sparsity to convert the localization problem into a sparse recovery problem based on the compressive sensing (CS theory. In this method, a two-step discrete cosine transform- (DCT- based feature extraction approach is utilized to cover both short-time and long-time properties of acoustic signals and reduce the dimensions of the sparse model. In addition, an online dictionary learning (DL method is used to adjust the dictionary for matching the changes of audio signals, and then the sparse solution could better represent location estimations. Moreover, we propose an improved block-sparse reconstruction algorithm using approximate l0 norm minimization to enhance reconstruction performance for sparse signals in low signal-noise ratio (SNR conditions. The effectiveness of the proposed scheme is demonstrated by simulation results and experimental results where substantial improvement for localization performance can be obtained in the noisy and reverberant conditions.

  6. High Definition Seismic and Microseismic Data Acquisition Using Distributed and Engineered Fiber Optic Acoustic Sensors

    Science.gov (United States)

    Parker, T.; Farhadiroushan, M.; Clarke, A.; Miller, D.; Gillies, A.; Shatalin, S.; Naldrett, G.; Milne, C.

    2017-12-01

    The benefits of Distributed Acoustic Sensors (DAS) have been demonstrated in number of seismic applications. Over the past few years Silixa have successfully used DAS to record microseismic events during hydraulic fracturing and re-fracking operations. Detection has been successful in a number of configurations, where the fibre has been in a horizontal treatment well, horizontal well adjacent to the treatment, or vertical observation well. We will discuss the sensitivity of the measurement, range of measurement, ability to localise the events and characteristics of the microseismic event. In addition to discussing the theory we will present case studies showing the detection and localisation and how these compare to conventional microseismic detection techniques.We also discuss the benefit of the low frequency response of DAS for measuring the strain field induced along the sensing fibre cable during the treatment and while monitoring the adjacent wells. In addition a step change in performance can be offered by the new engineered Carina fibre optic sensing system developed by Silixa. The Carina sensing system is being tested and it has been demonstrated that an improvement in signal-to-noise performance by a factor of hundred (100x) can be achieved. The initial results demonstrate the potential for acquiring high definition seismic data in the most challenging environments beyond the capabilities of current geophones.

  7. Geodesic acoustic mode driven by energetic particles with bump-on-tail distribution

    Science.gov (United States)

    Ren, Haijun; Wang, Hao

    2018-04-01

    Energetic-particle-driven geodesic acoustic mode (EGAM) is analytically investigated by adopting the bump-on-tail distribution for energetic particles (EPs), which is created by the fact that the charge exchange time (τcx ) is sufficiently shorter than the slowing down time (τsl ). The dispersion relation is derived in the use of gyro-kinetic equations. Due to the finite ratio of the critical energy and the initial energy of EPs, defined as τc , the dispersion relation is numerically evaluated and the effect of finite τc is examined. Following relative simulation and experimental work, we specifically considered two cases: τsl/τcx = 3.4 and τsl/τcx = 20.4 . The pitch angle is shown to significantly enhance the growth rate and meanwhile, the real frequency is dramatically decreased with increasing pitch angle. The excitation of high-frequency EGAM is found, and this is consistent with both the experiment and the simulation. The number density effect of energetic particles, represented by \

  8. Bubble bath soap poisoning

    Science.gov (United States)

    ... medlineplus.gov/ency/article/002762.htm Bubble bath soap poisoning To use the sharing features on this page, please enable JavaScript. Bubble bath soap poisoning occurs when someone swallows bubble bath soap. ...

  9. Localizing Fracture Hydromechanical Response using Fiber Optic Distributed Acoustic Sensing in a Fractured Bedock Aquifer

    Science.gov (United States)

    Ciervo, C.; Becker, M.; Cole, M. C.; Coleman, T.; Mondanos, M.

    2017-12-01

    Measuring fracture mechanical behavior in response to changes in fluid pressure is critical for understanding flow through petroleum reservoirs, predicting hydrothermal responses in geothermal fields, and monitoring geologic carbon sequestration injection. Distributed acoustic sensing (DAS) is new, but commercially available fiber optic technology that offers a novel approach to characterize fractured bedrock systems. DAS was originally designed to measure the amplitude, frequency, and phase of an acoustic wave, and is therefore capable of detecting strains at exceedingly small scales. Though normally used to measure frequencies in the Hz to kHz range, we adapted DAS to measure fracture displacements in response to periodic hydraulic pulses in the mHz frequency range. A field experiment was conducted in a fractured bedrock aquifer to test the ability of DAS to measure fracture mechanical response to oscillatory well tests. Fiber optic cable was deployed in a well, and coupled to the borehole wall using a flexible impermeable liner designed with an air coupled transducer to measure fluid pressure at the target fracture zone. Two types of cable were tested, a loose tube and tight buffered, to determine the effects of cable construction. Both strain and pressure were measured across the known fracture zone hydraulically connected to a well 30 m away. The companion well was subjected to alternating pumping and injection with periods between 2 and 18 minutes. Raw DAS data were collected as strain rate measured every 0.25 m along the fiber with a gauge length of 10 m, at a sampling rate of 1 kHz. Strain rate was converted to strain by integrating with respect to time. DAS measured periodic strains of less than 1 nm/m in response to periodic injection and pumping at the companion well. Strain was observed by DAS only at the depth of the hydraulically connected fracture zone. Thus, the magnitude and response of the strain could be both localized with depth and measured

  10. Interactions of Inertial Cavitation Bubbles with Stratum Corneum Lipid Bilayers during Low-Frequency Sonophoresis

    OpenAIRE

    Tezel, Ahmet; Mitragotri, Samir

    2003-01-01

    Interactions of acoustic cavitation bubbles with biological tissues play an important role in biomedical applications of ultrasound. Acoustic cavitation plays a particularly important role in enhancing transdermal transport of macromolecules, thereby offering a noninvasive mode of drug delivery (sonophoresis). Ultrasound-enhanced transdermal transport is mediated by inertial cavitation, where collapses of cavitation bubbles microscopically disrupt the lipid bilayers of the stratum corneum. In...

  11. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus.

    Science.gov (United States)

    Skoglund, Nils; Grimm, Alejandro; Ohman, Marcus; Boström, Dan

    2014-02-20

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K 2 CO 3 ) and alkaline-earth metal (CaCO 3 ) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%-95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca 9 (K,Mg,Fe)(PO 4 ) 7 , for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO 2 ) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi 2 O 6 ) was formed. Most of the alkaline-earth metals

  12. Bat Acoustic Survey Report for ORNL: Bat Species Distribution on the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, Kitty [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giffen, Neil R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Haines, Angelina [XCEL Engineering Inc., Oak Ridge, TN (United States); Guge, B. J. [Tennessee Technological Univ., Cookeville, TN (United States); Evans, James W. [Tennessee Wildlife Resources Agency (TWRA), Nashville, TN (United States)

    2015-10-01

    This report summarizes results of a three-year acoustic survey of bat species on the US Department of Energy (DOE) Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The survey was implemented through the Oak Ridge National Laboratory (ORNL) Natural Resources Management Program and included researchers from the ORNL Environmental Sciences Division and ORNL Facilities and Operations Directorate, Tennessee Wildlife Resources Agency’s ORR wildlife manager, a student from Tennessee Technological University, and a technician contracted through Excel Corp. One hundred and twenty-six sites were surveyed reservation-wide using Wildlife Acoustics SM2+ Acoustic Bat Detectors.

  13. Dark Fiber and Distributed Acoustic Sensing: Applications to Monitoring Seismicity and Near-Surface Properties

    Science.gov (United States)

    Ajo Franklin, J. B.; Lindsey, N.; Dou, S.; Freifeld, B. M.; Daley, T. M.; Tracy, C.; Monga, I.

    2017-12-01

    "Dark Fiber" refers to the large number of fiber-optic lines installed for telecommunication purposes but not currently utilized. With the advent of distributed acoustic sensing (DAS), these unused fibers have the potential to become a seismic sensing network with unparalleled spatial extent and density with applications to monitoring both natural seismicity as well as near-surface soil properties. While the utility of DAS for seismic monitoring has now been conclusively shown on built-for-purpose networks, dark fiber deployments have been challenged by the heterogeneity of fiber installation procedures in telecommunication as well as access limitations. However, the potential of telecom networks to augment existing broadband monitoring stations provides a strong incentive to explore their utilization. We present preliminary results demonstrating the application of DAS to seismic monitoring on a 20 km run of "dark" telecommunications fiber between West Sacramento, CA and Woodland CA, part of the Dark Fiber Testbed maintained by the DOE's ESnet user facility. We show a small catalog of local and regional earthquakes detected by the array and evaluate fiber coupling by using variations in recorded frequency content. Considering the low density of broadband stations across much of the Sacramento Basin, such DAS recordings could provide a crucial data source to constrain small-magnitude local events. We also demonstrate the application of ambient noise interferometry using DAS-recorded waveforms to estimate soil properties under selected sections of the dark fiber transect; the success of this test suggests that the network could be utilized for environmental monitoring at the basin scale. The combination of these two examples demonstrates the exciting potential for combining DAS with ubiquitous dark fiber to greatly extend the reach of existing seismic monitoring networks.

  14. Effects of dust size distribution on dust negative ion acoustic solitary waves in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Ma, Yi-Rong; Qi, Xin; Sun, Jian-An; Duan, Wen-Shan; Yang, Lei

    2013-01-01

    Dust negative ion acoustic solitary waves in a magnetized multi-ion dusty plasma containing hot isothermal electron, ions (light positive ions and heavy negative ions) and extremely massive charge fluctuating dust grains are investigated by employing the reductive perturbation method. How the dust size distribution affect the height and the thickness of the nonlinear solitary wave are given. It is noted that the characteristic of the solitary waves are different with the different dust size distribution. The magnitude of the external magnetic field also affects the solitary wave form

  15. Evolution of acoustically vaporized microdroplets in gas embolotherapy

    KAUST Repository

    Qamar, Adnan; Wong, ZhengZheng; Fowlkes, Brian Brian; Bull, Joseph L.

    2012-01-01

    Acoustic vaporization dynamics of a superheated dodecafluoropentane (DDFP) microdroplet inside a microtube and the resulting bubble evolution is investigated in the present work. This work is motivated by a developmental gas embolotherapy technique that is intended to treat cancers by infarcting tumors using gas bubbles. A combined theoretical and computational approach is utilized and compared with the experiments to understand the evolution process and to estimate the resulting stress distribution associated with vaporization event. The transient bubble growth is first studied by ultra-high speed imaging and then theoretical and computational modeling is used to predict the entire bubble evolution process. The evolution process consists of three regimes: an initial linear rapid spherical growth followed by a linear compressed oval shaped growth and finally a slow asymptotic nonlinear spherical bubble growth. Although the droplets are small compared to the tube diameter, the bubble evolution is influenced by the tube wall. The final bubble radius is found to scale linearly with the initial droplet radius and is approximately five times the initial droplet radius. A short pressure pulse with amplitude almost twice as that of ambient conditions is observed. The width of this pressure pulse increases with increasing droplet size whereas the amplitude is weakly dependent. Although the rise in shear stress along the tube wall is found to be under peak physiological limits, the shear stress amplitude is found to be more prominently influenced by the initial droplet size. The role of viscous dissipation along the tube wall and ambient bulk fluid pressure is found to be significant in bubble evolution dynamics. © 2012 American Society of Mechanical Engineers.

  16. Jet formation in shock-heavy gas bubble interaction

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Zhai; Ting Si; Li-Yong Zou; Xi-Sheng Luo

    2013-01-01

    The influences of the acoustic impedance and shock strength on the jet formation in shock-heavy gas bubble interaction are numerically studied in this work.The process of a shock interacting with a krypton or a SF6 bubble is studied by the numerical method VAS2D.As a validation,the experiments of a SF6 bubble accelerated by a planar shock were performed.The results indicate that,due to the mismatch of acoustic impedance,the way of jet formation in heavy gas bubble with different species is diversified under the same initial condition.With respect to the same bubble,the manner of jet formation is also distinctly different under different shock strengths.The disparities of the acoustic impedance result in different effects of shock focusing in the bubble,and different behaviors of shock wave inside and outside the bubble.The analyses of the wave pattern and the pressure variation indicate that the jet formation is closely associated with the pressure perturbation.Moreover,the analysis of the vorticity deposition,and comparisons of circulation and baroclinic torque show that the baroclinic vorticity also contributes to the jet formation.It is concluded that the pressure perturbation and baroclinic vorticity deposition are the two dominant factors for the jet formation in shock-heavy gas bubble interaction.

  17. Bubble nonlinear dynamics and stimulated scattering process

    Science.gov (United States)

    Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu

    2016-02-01

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).

  18. Rational equity bubbles

    OpenAIRE

    Zhou, Ge

    2012-01-01

    This paper discusses the existence of a bubble in the pricing of an asset that pays positive dividends. I show that rational bubbles can exist in a growing economy. The existence of bubbles depends on the relative magnitudes of risk aversion to consumption and to wealth. Furthermore, I examine how an exogenous shock in technology might trigger bubbles.

  19. Planar and nonplanar electron-acoustic solitary waves in a plasma with a q-nonextensive electron velocity distribution

    International Nuclear Information System (INIS)

    Han, Jiu-Ning; Luo, Jun-Hua; Sun, Gui-Hua; Liu, Zhen-Lai; Ge, Su-Hong; Wang, Xin-Xing; Li, Jun-Xiu

    2014-01-01

    The nonlinear dynamics of nonplanar (cylindrical and spherical) electron-acoustic solitary wave structures in an unmagnetized, collisionless plasma composed of stationary ions, cold fluid electrons and hot q-nonextensive distributed electrons are theoretically studied. We discuss the effects of the nonplanar geometry, nonextensivity of hot electrons and ‘hot’ to ‘cold’ electron number density ratio on the time evolution characters of cylindrical and spherical solitary waves. Moreover, the effects of plasma parameters on the nonlinear structure induced by the interaction between two planar solitary waves are also investigated. It is found that these plasma parameters have significant influences on the properties of the above-mentioned nonlinear structures. Our theoretical study may be useful to understand the nonlinear features of electron-acoustic wave structures in astrophysical plasma systems. (paper)

  20. Impact of bubble wakes on a developing bubble flow in a vertical pipe

    International Nuclear Information System (INIS)

    Tomiyama, A.; Makino, Y.; Miyoshi, K.; Tamai, H.; Serizawa, A.; Zun, I.

    1998-01-01

    Three-dimensional two-way bubble tracking simulation of single large air bubbles rising through a stagnant water filled in a vertical pipe was conducted to investigate the structures of bubble wakes. Spatial distributions of time-averaged liquid velocity field, turbulent intensity and Reynolds stress caused by bubble wakes were deduced from the calculated local instantaneous liquid velocities. It was confirmed that wake structures are completely different from the ones estimated by a conventional wake model. Then, we developed a simple wake model based on the predicted time-averaged wake velocity fields, and implemented it into a 3D one-way bubble tracking method to examine the impact of bubble wake structures on time-spatial evolution of a developing air-water bubble flow in a vertical pipe. As a results, we confirmed that the developed wake model can give better prediction for flow pattern evolution than a conventional wake model

  1. Fama on Bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    2016-01-01

    While Eugene Fama has repeatedly expressed his discontent with the notion of an “irrational bubble,” he has never publicly expressed his opinion on “rational bubbles.” On empirical grounds Fama rejects bubbles by referring to the lack of reliable evidence that price declines are predictable....... However, this argument cannot be used to rule out rational bubbles because such bubbles do not necessarily imply return predictability, and return predictability of the kind documented by Fama does not rule out rational bubbles. On data samples that include the 1990s, there is evidence of an explosive...... component in stock market valuation ratios, consistent with a rational bubble....

  2. Interferometric measurement of film thickness during bubble blowing

    Science.gov (United States)

    Wang, Z.; Mandracchia, B.; Ferraro, V.; Tammaro, D.; Di Maio, E.; Maffettone, P. L.; Ferraro, P.

    2017-06-01

    In this paper, we propose digital holography in transmission configuration as an effective method to measure the time-dependent thickness of polymeric films during bubble blowing. We designed a complete set of experiments to measure bubble thickness, including the evaluation of the refractive index of the polymer solution. We report the measurement of thickness distribution along the film during the bubble formation process until the bubble`s rupture. Based on those data, the variation range and variation trend of bubble film thickness are clearly measured during the process of expansion to fracture is indicated.

  3. Direct laboratory observation of fluid distribution and its influence on acoustic properties of patchy saturated rocks

    Science.gov (United States)

    Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.

    2009-04-01

    Porous rocks in hydrocarbon reservoirs are often saturated with a mixture of two or more fluids. Interpretation of exploration seismograms requires understanding of the relationship between distribution of the fluids patches and acoustic properties of rocks. The sizes of patches as well as their distribution affect significantly the seismic response. If the size of the fluid patch is smaller than the diffusion wavelength then pressure equilibration is achieved and the bulk modulus of the rock saturated with a mixture is defined by the Gassmann equations (Gassmann, 1951) with the saturation-weighted average of the fluid bulk modulus given by Wood's law (Wood, 1955, Mavko et al., 1998). If the fluid patch size is much larger than the diffusion wavelength then there is no pressure communication between different patches. In this case, fluid-flow effects can be neglected and the overall rock may be considered equivalent to an elastic composite material consisting of homogeneous parts whose properties are given by Gassmann theory with Hill's equation for the bulk modulus (Hill, 1963, Mavko et al., 1998). At intermediate values of fluid saturation the velocity-saturation relationship is significantly affected by the fluid patch distribution. In order to get an improved understanding of factors influencing the patch distribution and the resulting seismic wave response we performed simultaneous measurements of P-wave velocities and rock sample CT imaging. The CT imaging allows us to map the fluid distribution inside rock sample during saturation (water imbibition). We compare the experimental results with theoretical predictions. In this paper we will present results of simultaneous measurements of longitudinal wave velocities and imaging mapping of fluid distribution inside rock sample during sample saturation. We will report results of two kinds of experiments: "dynamic" and "quasi static" saturation. In both experiments Casino Cores Otway Basin sandstone, Australia core

  4. Anti-Bubbles

    Science.gov (United States)

    Tufaile, Alberto; Sartorelli, José Carlos

    2003-08-01

    An anti-bubble is a striking kind of bubble in liquid that seemingly does not comply the buoyancy, and after few minutes it disappears suddenly inside the liquid. Different from a simple air bubble that rises directly to the liquid surface, an anti-bubble wanders around in the fluid due to its slightly lesser density than the surrounding liquid. In spite of this odd behavior, an anti-bubble can be understood as the opposite of a conventional soap bubble in air, which is a shell of liquid surrounding air, and an anti-bubble is a shell of air surrounding a drop of the liquid inside the liquid. Two-phase flow has been a subject of interest due to its relevance to process equipment for contacting gases and liquids applied in industry. A chain of bubbles rising in a liquid formed from a nozzle is a two-phase flow, and there are certain conditions in which spherical air shells, called anti-bubbles, are produced. The purpose of this work is mainly to note the existence of anti-bubbling regime as a sequel of a bubbling system. We initially have presented the experimental apparatus. After this we have described the evolution of the bubbling regimes, and emulated the effect of bubbling coalescence with simple maps. Then is shown the inverted dripping as a consequence of the bubble coalescence, and finally the conditions for anti-bubble formation.

  5. Phase I Project: Fiber Optic Distributed Acoustic Sensing for Periodic Hydraulic Tests

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Matthew

    2017-12-31

    The extraction of heat from hot rock requires circulation of fluid through fracture networks. Because the geometry and connectivity of these fractures determines the efficiency of fluid circulation, many tools are used to characterize fractures before and after development of the reservoir. Under this project, a new tool was developed that allows hydraulic connectivity between geothermal boreholes to be identified. Nanostrain in rock fractures is measured using fiber optic distributed acoustic sensing (DAS). This strain is measured in one borehole in response to periodic pressure pulses induced in another borehole. The strain in the fractures represents hydraulic connectivity between wells. DAS is typically used at frequencies of Hz to kHz, but strain at mHz frequencies were measured for this project. The tool was demonstrated in the laboratory and in the field. In the laboratory, strain in fiber optic cables was measured in response to compression due to oscillating fluid pressure. DAS recorded strains as small as 10 picometer/m in response to 1 cm of water level change. At a fractured crystalline rock field site, strain was measured in boreholes. Fiber-optic cable was mechanically coupled borehole walls using pressured flexible liners. In one borehole 30 m from the oscillating pumping source, pressure and strain were measured simultaneously. The DAS system measured fracture displacement at frequencies of less than 1 mHz (18 min periods) and amplitudes of less than 1 nm, in response to fluid pressure changes of less 20 Pa (2 mm of water). The attenuation and phase shift of the monitored strain signal is indicative of the permeability and storage (compliance) of the fracture network that connects the two wells. The strain response as a function of oscillation frequency is characteristic of the hydraulic structure of the formation. This is the first application of DAS to the measurement of low frequency strain in boreholes. It has enormous potential for monitoring

  6. ACOUSTIC TECHNIQUES FOR THE MAPPING OF THE DISTRIBUTION OF CONTAMINATED SEDIMENTS

    Science.gov (United States)

    An overview of the last 30 years of analytical research into the acoustic properties of harbor marine sediments has allowed the extension of the original work of Hamilton (1970) into a production system for classifying the density and bulk physical properties of standard marine s...

  7. Adhesion of solid particles to gas bubbles. Part 2: Experimental

    NARCIS (Netherlands)

    Omota, Florin; Dimian, Alexandre C.; Bliek, A.

    2006-01-01

    In slurry bubble columns, the adhesion of solid catalyst particles to bubbles may significantly affect the G–L mass transfer and bubble size distribution. This feature may be exploited in design by modifying the hydrophilic or hydrophobic nature of the particles used. Previously we have proposed a

  8. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    International Nuclear Information System (INIS)

    Mahdi, M.; Ebrahimi, R.; Shams, M.

    2011-01-01

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack. -- Highlights: → Heat transfer and ionization energy losses were analyzed in the cavitation bubble. → Radiation of hydrodynamic bubble was approximately equal to the black body. → Radiation heat transfer did not affect the bubble dynamic. → Conduction decreased the bubble pressure and increased the bubble temperature. → Ionization decreased the temperature and increased the pressure in the bubble.

  9. Sci-Thur AM: YIS – 02: Imaging dose distributions through the detection of radiation-induced acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Hickling, Susannah; Lei, Hao; Hobson, Maritza; Leger, Pierre; Wang, Xueding; El Naqa, Issam [University of Michigan, McGill University, McGill University , University of Michigan, University of Michigan/McGill University (United States)

    2016-08-15

    Purpose: X-ray acoustic computed tomography (XACT) is an emerging technique that images the dose deposited within an object following linac irradiation by detecting acoustic waves induced via the photoacoustic effect. This work shows that XACT images can be formed in soft-tissue equivalent material and that dosimetric information can be extracted from such images. Methods: Acoustic waves induced in a water tank following irradiation by a 10 MV flattening filter free photon beam were detected with an immersion ultrasound transducer at 60 angles surrounding the radiation field. A back-projection algorithm was used to reconstruct an XACT image from the detected transducer signals. Profiles extracted from XACT images were compared to profiles measured with ion chambers as per the current clinical protocol. Results: XACT images were successfully formed of simple 4 cm × 4 cm and 6 cm × 3 cm fields, as well as of more complicated multi-leaf collimator defined fields. For the 6 cm × 3 cm field, 74% and 87% of the XACT profile points in the 6 cm and 3 cm dimensions, respectively, passed a 7% / 4 mm gamma test when compared to ion chamber measurements. In a complicated puzzle piece shaped field, 86% of the pixels in an extracted profile passed a 7% / 4 mm gamma test. Conclusions: XACT is capable of imaging the dose distribution delivered by a variety of field sizes and shapes in water, and is a viable technique for both water tank and in vivo dosimetry.

  10. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands

    KAUST Repository

    Ariza, A.

    2016-01-21

    Diel vertical migration (DVM) facilitates biogeochemical exchanges between shallow waters and the deep ocean. An effective way of monitoring the migrant biota is by acoustic observations although the interpretation of the scattering layers poses challenges. Here we combine results from acoustic observations at 18 and 38 kHz with limited net sampling in order to unveil the origin of acoustic phenomena around the Canary Islands, subtropical northeast Atlantic Ocean. Trawling data revealed a high diversity of fishes, decapods and cephalopods (152 species), although few dominant species likely were responsible for most of the sound scattering in the region. We identified four different acoustic scattering layers in the mesopelagic realm: (1) at 400–500 m depth, a swimbladder resonance phenomenon at 18 kHz produced by gas-bearing migrant fish such as Vinciguerria spp. and Lobianchia dofleini, (2) at 500–600 m depth, a dense 38 kHz layer resulting primarily from the gas-bearing and non-migrant fish Cyclothone braueri, and to a lesser extent, from fluid-like migrant fauna also inhabiting these depths, (3) between 600 and 800 m depth, a weak signal at both 18 and 38 kHz ascribed either to migrant fish or decapods, and (4) below 800 m depth, a weak non-migrant layer at 18 kHz which was not sampled. All the dielly migrating layers reached the epipelagic zone at night, with the shorter-range migrations moving at 4.6 ± 2.6 cm s − 1 and the long-range ones at 11.5 ± 3.8 cm s − 1. This work reduces uncertainties interpreting standard frequencies in mesopelagic studies, while enhances the potential of acoustics for future research and monitoring of the deep pelagic fauna in the Canary Islands.

  11. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands

    KAUST Repository

    Ariza, A.; Landeira, J.M.; Escá nez, A.; Wienerroither, R.; Aguilar de Soto, N.; Rø stad, Anders; Kaartvedt, S.; Herná ndez-Leó n, S.

    2016-01-01

    Diel vertical migration (DVM) facilitates biogeochemical exchanges between shallow waters and the deep ocean. An effective way of monitoring the migrant biota is by acoustic observations although the interpretation of the scattering layers poses challenges. Here we combine results from acoustic observations at 18 and 38 kHz with limited net sampling in order to unveil the origin of acoustic phenomena around the Canary Islands, subtropical northeast Atlantic Ocean. Trawling data revealed a high diversity of fishes, decapods and cephalopods (152 species), although few dominant species likely were responsible for most of the sound scattering in the region. We identified four different acoustic scattering layers in the mesopelagic realm: (1) at 400–500 m depth, a swimbladder resonance phenomenon at 18 kHz produced by gas-bearing migrant fish such as Vinciguerria spp. and Lobianchia dofleini, (2) at 500–600 m depth, a dense 38 kHz layer resulting primarily from the gas-bearing and non-migrant fish Cyclothone braueri, and to a lesser extent, from fluid-like migrant fauna also inhabiting these depths, (3) between 600 and 800 m depth, a weak signal at both 18 and 38 kHz ascribed either to migrant fish or decapods, and (4) below 800 m depth, a weak non-migrant layer at 18 kHz which was not sampled. All the dielly migrating layers reached the epipelagic zone at night, with the shorter-range migrations moving at 4.6 ± 2.6 cm s − 1 and the long-range ones at 11.5 ± 3.8 cm s − 1. This work reduces uncertainties interpreting standard frequencies in mesopelagic studies, while enhances the potential of acoustics for future research and monitoring of the deep pelagic fauna in the Canary Islands.

  12. Heard Island and McDonald Islands Acoustic Plumes: Split-beam Echo sounder and Deep Tow Camera Observations of Gas Seeps on the Central Kerguelen Plateau

    Science.gov (United States)

    Watson, S. J.; Spain, E. A.; Coffin, M. F.; Whittaker, J. M.; Fox, J. M.; Bowie, A. R.

    2016-12-01

    Heard and McDonald islands (HIMI) are two active volcanic edifices on the Central Kerguelen Plateau. Scientists aboard the Heard Earth-Ocean-Biosphere Interactions voyage in early 2016 explored how this volcanic activity manifests itself near HIMI. Using Simrad EK60 split-beam echo sounder and deep tow camera data from RV Investigator, we recorded the distribution of seafloor emissions, providing the first direct evidence of seabed discharge around HIMI, mapping >244 acoustic plume signals. Northeast of Heard, three distinct plume clusters are associated with bubbles (towed camera) and the largest directly overlies a sub-seafloor opaque zone (sub-bottom profiler) with >140 zones observed within 6.5 km. Large temperature anomalies did not characterize any of the acoustic plumes where temperature data were recorded. We therefore suggest that these plumes are cold methane seeps. Acoustic properties - mean volume backscattering and target strength - and morphology - height, width, depth to surface - of plumes around McDonald resembled those northeast of Heard, also suggesting gas bubbles. We observed no bubbles on extremely limited towed camera data around McDonald; however, visibility was poor. The acoustic response of the plumes at different frequencies (120 kHz vs. 18 kHz), a technique used to classify water column scatterers, differed between HIMI, suggestiing dissimilar target size (bubble radii) distributions. Environmental context and temporal characteristics of the plumes differed between HIMI. Heard plumes were concentrated on flat, sediment rich plains, whereas around McDonald plumes emanated from sea knolls and mounds with hard volcanic seafloor. The Heard plumes were consistent temporally, while the McDonald plumes varied temporally possibly related to tides or subsurface processes. Our data and analyses suggest that HIMI acoustic plumes were likely caused by gas bubbles; however, the bubbles may originate from two or more distinct processes.

  13. Modelling of boiling bubbly flows using a polydisperse approach

    International Nuclear Information System (INIS)

    Zaepffel, D.

    2011-01-01

    The objective of this work was to improve the modelling of boiling bubbly flows.We focused on the modelling of the polydisperse aspect of a bubble population, i.e. the fact that bubbles have different sizes and different velocities. The multi-size aspect of a bubble population can originate from various mechanisms. For the bubbly flows we are interested in, bubble coalescence, bubble break-up, phase change kinematics and/or gas compressibility inside the bubbles can be mentioned. Since, bubble velocity depends on bubble size, the bubble size spectrum also leads to a bubble velocity spectrum. An averaged model especially dedicated to dispersed flows is introduced in this thesis. Closure of averaged interphase transfer terms are written in a polydisperse framework, i.e. using a distribution function of the bubble sizes and velocities. A quadratic law and a cubic law are here proposed for the modelling of the size distribution function, whose evolution in space and time is then obtained with the use of the moment method. Our averaged model has been implemented in the NEPTUNE-CFD computation code in order to simulate the DEBORA experiment. The ability of our model to deal with sub-cooled boiling flows has therefore been evaluated. (author) [fr

  14. Determination of the distribution of shallow-water seagrass and drift algae communities with acoustic seafloor discrimination.

    Science.gov (United States)

    Riegl, B; Moyer, R P; Morris, L; Virnstein, R; Dodge, R E

    2005-05-01

    The spatial distribution of seagrass and algae communities can be difficult to determine in large, shallow lagoon systems where high turbidity prevents the use of optical methods like aerial photography or satellite imagery. Further complications can arise when algae are not permanently attached to the substratum and drift with tides and currents. A study using acoustic seafloor discrimination was conducted in the Indian River Lagoon (Florida, USA) to determine the extent of drift algae and seagrass. Acoustic surveys using the QTC View V system based on 50 and 200 kHz transducers were conducted near Sebastian Inlet. Results indicate that areas of seagrass can be identified, and are mixed with a high abundance of drift algae. Nearest-neighbor extrapolation was used to fill in spaces between survey lines and thus obtain spatially cohesive maps. These maps were then ground-truthed using data from towed video and compared using confusion matrices, The maps showed a high level of agreement (60%) with the actual distribution of algae, however some confusion existed between bare sand and algae as well as seagrass.

  15. Fama on bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    Eugene Fama has repeatedly expressed his discontent with the notion of an irrational bubble. However, he has never publicly expressed his opinion on rational bubbles. This is peculiar since such bubbles build naturally from the rational efficient markets paradigm that Fama strongly adheres to...

  16. Air bubble migration is a random event post embryo transfer.

    Science.gov (United States)

    Confino, E; Zhang, J; Risquez, F

    2007-06-01

    Air bubble location following embryo transfer (ET) is the presumable placement spot of embryos. The purpose of this study was to document endometrial air bubble position and migration following embryo transfer. Multicenter prospective case study. Eighty-eight embryo transfers were performed under abdominal ultrasound guidance in two countries by two authors. A single or double air bubble was loaded with the embryos using a soft, coaxial, end opened catheters. The embryos were slowly injected 10-20 mm from the fundus. Air bubble position was recorded immediately, 30 minutes later and when the patient stood up. Bubble marker location analysis revealed a random distribution without visible gravity effect when the patients stood up. The bubble markers demonstrated splitting, moving in all directions and dispersion. Air bubbles move and split frequently post ET with the patient in the horizontal position, suggestive of active uterine contractions. Bubble migration analysis supports a rather random movement of the bubbles and possibly the embryos. Standing up changed somewhat bubble configuration and distribution in the uterine cavity. Gravity related bubble motion was uncommon, suggesting that horizontal rest post ET may not be necessary. This report challenges the common belief that a very accurate ultrasound guided embryo placement is mandatory. The very random bubble movement observed in this two-center study suggests that a large "window" of embryo placement maybe present.

  17. Beer tapping: dynamics of bubbles after impact

    Science.gov (United States)

    Mantič-Lugo, V.; Cayron, A.; Brun, P.-T.; Gallaire, F.

    2015-12-01

    Beer tapping is a well known prank where a bottle of beer is impacted from the top by a solid object, usually another bottle, leading to a sudden foam overflow. A description of the shock-driven bubble dynamics leading to foaming is presented based on an experimental and numerical study evoking the following physical picture. First, the solid impact produces a sudden downwards acceleration of the bottle creating a strong depression in the liquid bulk. The existing bubbles undergo a strong expansion and a sudden contraction ending in their collapse and fragmentation into a large amount of small bubbles. Second, the bubble clouds present a large surface area to volume ratio, enhancing the CO2 diffusion from the supersaturated liquid, hence growing rapidly and depleting the CO2. The clouds of bubbles migrate upwards in the form of plumes pulling the surrounding liquid with them and eventually resulting in the foam overflow. The sudden pressure drop that triggers the bubble dynamics with a collapse and oscillations is modelled by the Rayleigh-Plesset equation. The bubble dynamics from impact to collapse occurs over a time (tb ≃ 800 μs) much larger than the acoustic time scale of the liquid bulk (tac = 2H/c ≃ 80 μs), for the experimental container of height H = 6 cm and a speed of sound around c ≃ 1500 m/s. This scale separation, together with the comparison of numerical and experimental results, suggests that the pressure drop is controlled by two parameters: the acceleration of the container and the distance from the bubble to the free surface.

  18. Canada Basin Acoustic Propagation Experiment (CANAPE)

    Science.gov (United States)

    2015-09-30

    acoustic communications, acoustic navigation, or acoustic remote sensing of the ocean interior . RELATED PROJECTS The 2015 CANAPE pilot study was a...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Canada Basin Acoustic Propagation Experiment (CANAPE...ocean structure. Changes in sea ice and the water column affect both acoustic propagation and ambient noise. This implies that what was learned

  19. Blistering and bubble formation

    International Nuclear Information System (INIS)

    Roth, J.

    1976-01-01

    Blister formation in metals has been observed during bombardment with inert-gas ions in the energy range between 1 and 2000 keV at doses of about 10 17 to 10 19 cm -2 . The changes in surface topography and the erosion yields were mainly studied in the scanning electron microscope (SEM). Additionally the release of the implanted gas during blister formation was observed. Recently measurements on single crystals were performed determining simultaneously the implantation profile, the total amount of trapped ions, the depth distribution of the induced lattice damage and the thickness of the covers of the blisters. In several stages of the formation process of blisters the implanted layer was observed in the transmission electron microscope (TEM) showing the formation of gas bubbles. Using the results of all these measurements in this review an attempt is made to develop a model of blister formation combining the effects of hydrostatic pressure in the gas bubbles and lateral stress due to volume swelling. (author)

  20. Effect of dissolved air content on single bubble sonoluminescence

    OpenAIRE

    Arakeri, Vijay H

    1993-01-01

    It has been recently demonstrated that a single gas bubble in a liquid medium can be driven hard enough by an acoustic pressure field to make it emit light which is visible to the naked eye in a dark room. This phenomenon termed as single bubble sonoluminescence has shown some extraordinary physical properties. In the present investigation the author has shown that dissolved air content has a significant influence on this phenomenon.

  1. Measurement of micro Bubbles generated by a pressurized dissolution method

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, S; Tanaka, K; Tomiyama, A [Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Maeda, Y; Yamaguchi, S; Ito, Y, E-mail: hosokawa@mech.kobe-u.ac.j [Panasonic Electric Works Co., Ltd., 1048 Kadoma, Osaka 571-8686 (Japan)

    2009-02-01

    Diameters of micro-bubbles are apt to range from about one mm to several-hundred mm, and therefore, it is difficult to measure a correct diameter distribution using a single measurement method. In this study, diameters of bubbles generated by a pressurized dissolution method are measured by using phase Doppler anemometry (PDA) and an image processing method, which is based on the Sobel filter and Hough transform. The diameter distribution and the Sauter mean diameter of micro bubbles are evaluated based on the diameters measured by both methods. Experiments are conducted for several mass flow rates of dissolved gas and of air bubbles entrained in the upstream of the decompression nozzle to examine effects of the entrained bubbles on bubble diameter. As a result, the following conclusions are obtained: (1) Diameter distribution of micro bubbles can be accurately measured for a wide range of diameter by using PDA and the image processing method. (2) The mean diameter of micro-bubbles generated by gasification of dissolved gas is smaller than that generated by breakup of air bubbles entrained in the upstream of the decompression nozzle. (3) The mean bubble diameter increases with the entrainment of air bubbles in the upstream of the decompression nozzle at a constant mass flow rate of dissolved gas.

  2. Measurement of micro Bubbles generated by a pressurized dissolution method

    International Nuclear Information System (INIS)

    Hosokawa, S; Tanaka, K; Tomiyama, A; Maeda, Y; Yamaguchi, S; Ito, Y

    2009-01-01

    Diameters of micro-bubbles are apt to range from about one mm to several-hundred mm, and therefore, it is difficult to measure a correct diameter distribution using a single measurement method. In this study, diameters of bubbles generated by a pressurized dissolution method are measured by using phase Doppler anemometry (PDA) and an image processing method, which is based on the Sobel filter and Hough transform. The diameter distribution and the Sauter mean diameter of micro bubbles are evaluated based on the diameters measured by both methods. Experiments are conducted for several mass flow rates of dissolved gas and of air bubbles entrained in the upstream of the decompression nozzle to examine effects of the entrained bubbles on bubble diameter. As a result, the following conclusions are obtained: (1) Diameter distribution of micro bubbles can be accurately measured for a wide range of diameter by using PDA and the image processing method. (2) The mean diameter of micro-bubbles generated by gasification of dissolved gas is smaller than that generated by breakup of air bubbles entrained in the upstream of the decompression nozzle. (3) The mean bubble diameter increases with the entrainment of air bubbles in the upstream of the decompression nozzle at a constant mass flow rate of dissolved gas.

  3. An intelligent sensor array distributed system for vibration analysis and acoustic noise characterization of a linear switched reluctance actuator.

    Science.gov (United States)

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  4. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    Directory of Open Access Journals (Sweden)

    Maria Calado

    2012-06-01

    Full Text Available This paper proposes a distributed system for analysis and monitoring (DSAM of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs. The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  5. Characteristic study of head-on collision of dust-ion acoustic solitons of opposite polarity with kappa distributed electrons

    Science.gov (United States)

    Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa

    2016-09-01

    The head on collision between two dust ion acoustic (DIA) solitary waves, propagating in opposite directions, is studied in an unmagnetized plasma constituting adiabatic ions, static dust charged (positively/negatively) grains, and non-inertial kappa distributed electrons. In the linear limit, the dispersion relation of the dust ion acoustic (DIA) solitary wave is obtained using the Fourier analysis. For studying characteristic head-on collision of DIA solitons, the extended Poincaré-Lighthill-Kuo method is employed to obtain Korteweg-de Vries (KdV) equations with quadratic nonlinearities and investigated the phase shifts in their trajectories after the interaction. It is revealed that only compressive solitary waves can exist for the positive dust charged concentrations while for negative dust charge concentrations both the compressive and rarefactive solitons can propagate in such dusty plasma. It is found that for specific sets of plasma parameters, the coefficient of nonlinearity disappears in the KdV equation for the negative dust charged grains. Therefore, the modified Korteweg-de Vries (mKdV) equations with cubic nonlinearity coefficient, and their corresponding phase shift and trajectories, are also derived for negative dust charged grains plasma at critical composition. The effects of different plasma parameters such as superthermality, concentration of positively/negatively static dust charged grains, and ion to electron temperature ratio on the colliding soliton profiles and their corresponding phase shifts are parametrically examined.

  6. Sonoluminescence and acoustic cavitation

    Science.gov (United States)

    Choi, Pak-Kon

    2017-07-01

    Sonoluminescence (SL) is light emission under high-temperature and high-pressure conditions of a cavitating bubble under intense ultrasound in liquid. In this review, the fundamentals of the interactions between the sound field and the bubble, and between bubbles are explained. Experimental results on high-speed shadowgraphy of bubble dynamics and multibubble SL are shown, demonstrating that the SL intensity is closely related to the bubble dynamics. SL studies of alkali-metal atom (Na and K) emission are summarized. The spectral measurements in solutions with different noble-gas dissolutions and in surfactant solutions, and the results of spatiotemporal separation of SL distribution strongly suggested that the site of alkali-metal atom emission is the gas phase inside bubbles. The spectral studies indicated that alkali-metal atom lines are composed of two kinds of lines: a component that is broadened and shifted from the original D lines arises from van der Waals molecules formed between alkali-metal atoms and noble-gas atoms under extreme conditions at bubble collapse. The other spectral component exhibiting no broadening and no shift was suggested to originate from higher temperature bubbles than those producing the broadened component.

  7. Lifetime of Bubble Rafts: Cooperativity and Avalanches

    Science.gov (United States)

    Ritacco, Hernán; Kiefer, Flavien; Langevin, Dominique

    2007-06-01

    We have studied the collapse of pseudo-bi-dimensional foams. These foams are made of uniformly sized soap bubbles packed in an hexagonal lattice sitting at the top of a liquid surface. The collapse process follows the sequence: (1) rupture of a first bubble, driven by thermal fluctuations and (2) a cascade of bursting bubbles. We present a simple numerical model which captures the main characteristics of the dynamics of foam collapse. We show that in a certain range of viscosities of the foaming solutions, the size distribution of the avalanches follows power laws as in self-organized criticality processes.

  8. Propagation of Electron Acoustic Soliton, Periodic and Shock Waves in Dissipative Plasma with a q-Nonextensive Electron Velocity Distribution

    Science.gov (United States)

    El-Hanbaly, A. M.; El-Shewy, E. K.; Elgarayhi, A.; Kassem, A. I.

    2015-11-01

    The nonlinear properties of small amplitude electron-acoustic (EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma with nonextensive distribution for hot electrons have been investigated. A reductive perturbation method used to obtain the Kadomstev-Petviashvili-Burgers equation. Bifurcation analysis has been discussed for non-dissipative system in the absence of Burgers term and reveals different classes of the traveling wave solutions. The obtained solutions are related to periodic and soliton waves and their behavior are shown graphically. In the presence of the Burgers term, the EXP-function method is used to solve the Kadomstev-Petviashvili-Burgers equation and the obtained solution is related to shock wave. The obtained results may be helpful in better conception of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.

  9. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    Science.gov (United States)

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Pressure and tension waves from bubble collapse near a solid boundary: A numerical approach.

    Science.gov (United States)

    Lechner, Christiane; Koch, Max; Lauterborn, Werner; Mettin, Robert

    2017-12-01

    The acoustic waves being generated during the motion of a bubble in water near a solid boundary are calculated numerically. The open source package OpenFOAM is used for solving the Navier-Stokes equation and extended to include nonlinear acoustic wave effects via the Tait equation for water. A bubble model with a small amount of gas is chosen, the gas obeying an adiabatic law. A bubble starting from a small size with high internal pressure near a flat, solid boundary is studied. The sequence of events from bubble growth via axial microjet formation, jet impact, annular nanojet formation, torus-bubble collapse, and bubble rebound to second collapse is described. The different pressure and tension waves with their propagation properties are demonstrated.

  11. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  12. Development of three-dimensional individual bubble-velocity measurement method by bubble tracking

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu; Nishi, Yoshihisa

    2012-01-01

    A gas-liquid two-phase flow in a large diameter pipe exhibits a three-dimensional flow structure. Wire-Mesh Sensor (WMS) consists of a pair of parallel wire layers located at the cross section of a pipe. Both the parallel wires cross at 90o with a small gap and each intersection acts as an electrode. The WMS allows the measurement of the instantaneous two-dimensional void-fraction distribution over the cross-section of a pipe, based on the difference between the local instantaneous conductivity of the two-phase flow. Furthermore, the WMS can acquire a phasic-velocity on the basis of the time lag of void signals between two sets of WMS. Previously, the acquired phasic velocity was one-dimensional with time-averaged distributions. The authors propose a method to estimate the three-dimensional bubble-velocity individually WMS data. The bubble velocity is determined by the tracing method. In this tracing method, each bubble is separated from WMS signal, volume and center coordinates of the bubble is acquired. Two bubbles with near volume at two WMS are considered as the same bubble and bubble velocity is estimated from the displacement of the center coordinates of the two bubbles. The validity of this method is verified by a swirl flow. The proposed method can successfully visualize a swirl flow structure and the results of this method agree with the results of cross-correlation analysis. (author)

  13. Test ventilation with smoke, bubbles, and balloons

    International Nuclear Information System (INIS)

    Pickering, P.L.; Cucchiara, A.L.; McAtee, J.L.; Gonzales, M.

    1987-01-01

    The behavior of smoke, bubbles, and helium-filled balloons was videotaped to demonstrate the mixing of air in the plutonium chemistry laboratories, a plutonium facility. The air-distribution patterns, as indicated by each method, were compared. Helium-filled balloons proved more useful than bubbles or smoke in the visualization of airflow patterns. The replay of various segments of the videotape proved useful in evaluating the different techniques and in identifying airflow trends responsible for air mixing. 6 refs

  14. A derivation of the stable cavitation threshold accounting for bubble-bubble interactions.

    Science.gov (United States)

    Guédra, Matthieu; Cornu, Corentin; Inserra, Claude

    2017-09-01

    The subharmonic emission of sound coming from the nonlinear response of a bubble population is the most used indicator for stable cavitation. When driven at twice their resonance frequency, bubbles can exhibit subharmonic spherical oscillations if the acoustic pressure amplitude exceeds a threshold value. Although various theoretical derivations exist for the subharmonic emission by free or coated bubbles, they all rest on the single bubble model. In this paper, we propose an analytical expression of the subharmonic threshold for interacting bubbles in a homogeneous, monodisperse cloud. This theory predicts a shift of the subharmonic resonance frequency and a decrease of the corresponding pressure threshold due to the interactions. For a given sonication frequency, these results show that an optimal value of the interaction strength (i.e. the number density of bubbles) can be found for which the subharmonic threshold is minimum, which is consistent with recently published experiments conducted on ultrasound contrast agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Modelling the distribution of hard seabed using calibrated multibeam acoustic backscatter data in a tropical, macrotidal embayment: Darwin Harbour, Australia

    Science.gov (United States)

    Siwabessy, P. Justy W.; Tran, Maggie; Picard, Kim; Brooke, Brendan P.; Huang, Zhi; Smit, Neil; Williams, David K.; Nicholas, William A.; Nichol, Scott L.; Atkinson, Ian

    2018-06-01

    Spatial information on the distribution of seabed substrate types in high use coastal areas is essential to support their effective management and environmental monitoring. For Darwin Harbour, a rapidly developing port in northern Australia, the distribution of hard substrate is poorly documented but known to influence the location and composition of important benthic biological communities (corals, sponges). In this study, we use angular backscatter response curves to model the distribution of hard seabed in the subtidal areas of Darwin Harbour. The angular backscatter response curve data were extracted from multibeam sonar data and analysed against backscatter intensity for sites observed from seabed video to be representative of "hard" seabed. Data from these sites were consolidated into an "average curve", which became a reference curve that was in turn compared to all other angular backscatter response curves using the Kolmogorov-Smirnov goodness-of-fit. The output was used to generate interpolated spatial predictions of the probability of hard seabed ( p-hard) and derived hard seabed parameters for the mapped area of Darwin Harbour. The results agree well with the ground truth data with an overall classification accuracy of 75% and an area under curve measure of 0.79, and with modelled bed shear stress for the Harbour. Limitations of this technique are discussed with attention to discrepancies between the video and acoustic results, such as in areas where sediment forms a veneer over hard substrate.

  16. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, M. [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Ebrahimi, R. [Faculty of Aerospace Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shams, M., E-mail: shams@kntu.ac.ir [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Pardis St., Molla-Sadra Ave, Vanak. Sq., P.O. Box: 19395-1999, Tehran (Iran, Islamic Republic of)

    2011-06-13

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack. -- Highlights: → Heat transfer and ionization energy losses were analyzed in the cavitation bubble. → Radiation of hydrodynamic bubble was approximately equal to the black body. → Radiation heat transfer did not affect the bubble dynamic. → Conduction decreased the bubble pressure and increased the bubble temperature. → Ionization decreased the temperature and increased the pressure in the bubble.

  17. Chaotic bubbling and nonstagnant foams.

    Science.gov (United States)

    Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard

    2007-06-01

    We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.

  18. Fluid dynamics of bubbly flows

    International Nuclear Information System (INIS)

    Ziegenhein, Thomas

    2016-01-01

    transient simulations can reproduce many experimental setups without fitting any model. Nevertheless, shortcomings are identified that need to be further investigated to improve the baseline model. For a validation of models, experiments that describe as far as possible all relevant phenomena of bubbly flows are needed. Since such data are rare in the literature, CFD-grade experiments in an airlift reactor were conducted in the present work. Concepts to measure the bubble size distribution and liquid velocities are developed for this purpose. In particular, the liquid velocity measurements are difficult; a sampling bias that was not yet described in the literature is identified. To overcome this error, a hold processor is developed. The closure models are usually formulated based on single bubble experiments in simplified conditions. In particular, the lift force was not yet measured in low Morton number systems under turbulent conditions. A new experimental method is developed in the present work to determine the lift force coefficient in such flow conditions without the aid of moving parts so that the lift force can be measured in any chemical system easily.

  19. Fluid dynamics of bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Ziegenhein, Thomas

    2016-07-08

    transient simulations can reproduce many experimental setups without fitting any model. Nevertheless, shortcomings are identified that need to be further investigated to improve the baseline model. For a validation of models, experiments that describe as far as possible all relevant phenomena of bubbly flows are needed. Since such data are rare in the literature, CFD-grade experiments in an airlift reactor were conducted in the present work. Concepts to measure the bubble size distribution and liquid velocities are developed for this purpose. In particular, the liquid velocity measurements are difficult; a sampling bias that was not yet described in the literature is identified. To overcome this error, a hold processor is developed. The closure models are usually formulated based on single bubble experiments in simplified conditions. In particular, the lift force was not yet measured in low Morton number systems under turbulent conditions. A new experimental method is developed in the present work to determine the lift force coefficient in such flow conditions without the aid of moving parts so that the lift force can be measured in any chemical system easily.

  20. Sonoluminescence and bubble fusion

    OpenAIRE

    Arakeri, Vijay H

    2003-01-01

    Sonoluminescence (SL), the phenomenon of light emission from nonlinear motion of a gas bubble, involves an extreme degree of energy focusing. The conditions within the bubble during the last stages of the nearly catastrophic implosion are thought to parallel the efforts aimed at developing inertial confinement fusion. A limited review on the topic of SL and its possible connection to bubble nuclear fusion is presented here. The emphasis is on looking for a link between the various forms o...

  1. Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles

    NARCIS (Netherlands)

    Rivas, David Fernandez; Verhaagen, Bram; Seddon, James R. T.; Zijlstra, Aaldert G.; Jiang, Lei-Meng; van der Sluis, Luc W. M.; Versluis, Michel; Lohse, Detlef; Gardeniers, Han J. G. E.

    We present an ultrasonic device with the ability to locally remove deposited layers from a glass slide in a controlled and rapid manner. The cleaning takes place as the result of cavitating bubbles near the deposited layers and not due to acoustic streaming. The bubbles are ejected from air-filled

  2. Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles

    NARCIS (Netherlands)

    Fernandez Rivas, David; Verhaagen, B.; Seddon, James Richard Thorley; Zijlstra, A.G.; Jiang, L.M.; van der Sluis, L.W.M.; Versluis, Michel; Lohse, Detlef; Gardeniers, Johannes G.E.

    2012-01-01

    We present an ultrasonic device with the ability to locally remove deposited layers from a glass slide in a controlled and rapid manner. The cleaning takes place as the result of cavitating bubbles near the deposited layers and not due to acoustic streaming. The bubbles are ejected from air-filled

  3. Cap Bubble Drift Velocity in a Confined Test Section

    International Nuclear Information System (INIS)

    Xiaodong Sun; Seungjin Kim; Mamoru Ishii; Lincoln, Frank W.; Beus, Stephen G.

    2002-01-01

    In the two-group interfacial area transport equation, bubbles are categorized into two groups, i.e., spherical/distorted bubbles as group 1 and cap/slug/churn-turbulent bubbles as group 2. The bubble rise velocities for both groups of bubbles may be estimated by the drift flux model by applying different distribution parameters and drift velocities for both groups. However, the drift velocity for group 2 bubbles is not always applicable (when the wall effect becomes important) as in the current test loop of interest where the flow channel is confined by two parallel flat walls, with a dimension of 200-mm in width and 10-mm in gap. The previous experiments indicated that no stable slug flow existed in this test section, which was designed to permit visualization of the flow patterns and bubble characteristics without the distortion associated with curved surfaces. In fact, distorted cap bubbly and churn-turbulent flow was observed. Therefore, it is essential to developed a correlation for cap bubble drift velocity in this confined flow channel. Since the rise velocity of a cap bubble depends on its size, a high-speed movie camera is used to capture images of cap bubbles to obtain the bubble size information. Meanwhile, the rise velocity of cap and elongated bubbles (called cap bubbles hereafter) is investigated by examining the captured images frame by frame. As a result, the conventional correlation of drift velocity for slug bubbles is modified and acceptable agreements between the measurements and correlation estimation are achieved

  4. INTRASPECIFIC VARIATION IN ACOUSTIC TRAITS AND BODY SIZE, AND NEW DISTRIBUTIONAL RECORDS FOR PSEUDOPALUDICOLA GIARETTAI CARVALHO, 2012 (ANURA, LEPTODACTYLIDAE, LEIUPERINAE: IMPLICATIONS FOR ITS CONGENERIC DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    THIAGO RIBEIRO DE CARVALHO

    2015-01-01

    Full Text Available In this paper, we provide an updated diagnosis for Pseudopaludicola giarettai based on the morphometric and acoustic variation observed with the assessment of new populations, plus an expansion of its distribution range. Our results support that all acoustic variation observed might be attributed to intraspecific variation. The variation in body size and dorsal stripe patterns observed for Pseudopaludicola giarettai reinforces that the distinctive whistling advertisement call pattern is the most reliable evidence line to diagnose it from its congeners, whereas morphological (robust body, glandular dorsum and morphometric (body size features vary considerably within and among populations so that they should no longer be employed as diagnostic features of Pseudopaludicola giarettai.

  5. Electron acoustic waves and parametric instabilities in a 4-component relativistic quantum plasma with Thomas-Fermi distributed electrons

    Science.gov (United States)

    Ikramullah, Ahmad, Rashid; Sharif, Saqib; Khattak, Fida Younus

    2018-01-01

    The interaction of Circularly Polarized Electro-Magnetic (CPEM) waves with a 4-component relativistic quantum plasma is studied. The plasma constituents are: relativistic-degenerate electrons and positrons, dynamic degenerate ions, and Thomas-Fermi distributed electrons in the background. We have employed the Klein-Gordon equations for the electrons as well as for the positrons, while the ions are represented by the Schrödinger equation. The Maxwell and Poisson equations are used for electromagnetic waves. Three modes are observed: one of the modes is associated with the electron acoustic wave, a second mode at frequencies greater than the electron acoustic wave mode could be associated with the positrons, and the third one at the lowest frequencies could be associated with the ions. Furthermore, Stimulated Raman Scattering (SRS), Modulational, and Stimulated Brillouin Scattering (SBS) instabilities are studied. It is observed that the growth rates of both the SRS and SBS instabilities decrease with increase in the quantum parameter of the plasma. It is also observed that the scattering spectra in both the SRS and SBS get restricted to very small wavenumber regions. It is shown that for low amplitude CPEM wave interaction with the quantum plasma, the positron concentration has no effect on the SRS and SBS spectra. In the case of large amplitude CPEM wave interaction, however, one observes spectral changes with varying positron concentrations. An increase in the positron concentration also enhances the scattering instability growth rates. Moreover, the growth rate first increases and then decreases with increasing intensity of the CPEM wave, indicating an optimum value of the CPEM wave intensity for the growth of these scattering instabilities. The modulational instability also shows dependence on the quantum parameter as well as on the positron concentration.

  6. Effects of dust size distribution on dust acoustic waves in magnetized two-ion-temperature dusty plasmas

    International Nuclear Information System (INIS)

    Liu Zongming; Duan Wenshan; He Guangjun

    2008-01-01

    A Zakharov-Kuznetsov (ZK) equation, a modified ZK (mZK) equation, and a coupled ZK (cZK) equation for small but finite amplitude dust acoustic waves in a magnetized two-ion-temperature dusty plasma with dust size distribution have been investigated in this paper. The variations of the linear dispersion relation and group velocity, nonlinear solitary wave amplitude, and width with an arbitrary dust size distribution function are studied numerically. We conclude that they all increase as the total number density of dust grains increases, and they are greater for unusual dusty plasma (the number density of larger dust grains is greater than that of smaller dust grains) than that of usual dusty plasma (the number density of smaller dust grains is greater than that of larger dust grains). It is noted that the frequency of the linear wave increases as the wave number along the magnetic direction increases. Furthermore, the width of the nonlinear waves increases but its amplitude decreases as the wave number along the magnetic direction increases

  7. Prospects for bubble fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, R.I. [Tyumen Institute of Mechanics of Multiphase Systems (TIMMS), Marx (Russian Federation); Lahey, R.T. Jr. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  8. Formation and evolution of bubbly screens in confined oscillating bubbly liquids

    Science.gov (United States)

    Shklyaev, Sergey; Straube, Arthur V.

    2010-01-01

    We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.

  9. Current Flow in the Bubble and Stripe Phases

    Science.gov (United States)

    Friess, B.; Umansky, V.; von Klitzing, K.; Smet, J. H.

    2018-03-01

    The spontaneous ordering of spins and charges in geometric patterns is currently under scrutiny in a number of different material systems. A topic of particular interest is the interaction of such ordered phases with itinerant electrons driven by an externally imposed current. It not only provides important information on the charge ordering itself but potentially also allows manipulating the shape and symmetry of the underlying pattern if current flow is strong enough. Unfortunately, conventional transport methods probing the macroscopic resistance suffer from the fact that the voltage drop along the sample edges provides only indirect information on the bulk properties because a complex current distribution is elicited by the inhomogeneous ground state. Here, we promote the use of surface acoustic waves to study these broken-symmetry phases and specifically address the bubble and stripe phases emerging in high-quality two-dimensional electron systems in GaAs /AlGaAs heterostructures as prototypical examples. When driving a unidirectional current, we find a surprising discrepancy between the sound propagation probing the bulk of the sample and the voltage drop along the sample edges. Our results prove that the current-induced modifications observed in resistive transport measurements are in fact a local phenomenon only, leaving the majority of the sample unaltered. More generally, our findings shed new light on the extent to which these ordered electron phases are impacted by an external current and underline the intrinsic advantages of acoustic measurements for the study of such inhomogeneous phases.

  10. Soap Bubbles and Crystals

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 6. Soap Bubbles and Crystals. Jean E Taylor. General Article Volume 11 Issue 6 June 2006 pp 26-30. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/011/06/0026-0030. Keywords. Soap bubble ...

  11. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    van der Veen, Roeland

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study

  12. Flow visualization using bubbles

    International Nuclear Information System (INIS)

    Henry, J.P.

    1974-01-01

    Soap bubbles were used for visualizing flows. The tests effected allowed some characteristics of flows around models in blow tunnels to be precised at mean velocities V 0 5 . The velocity of a bubble is measured by chronophotography, the bulk envelope of the trajectories is also registered [fr

  13. HCDA bubble experiment, (2)

    International Nuclear Information System (INIS)

    Sakata, Kaoru; Mashiko, Hiroyuki; Oka, Yoshiaki; An, Shigehiro; Isozaki, Tadashi.

    1981-06-01

    An experiment simulating the behavior of the very large steam bubbles generated at the time of an accident of core collapse was carried out with a warm water tank, and the applicability of the theory of very small bubble disappearance known at present was examined. The bubbles generated in HCDA (hypothetical core disruptive accident) are expected to be very large, containing sodium, fuel, FP gas and so on, and play important role in the mechanism of emitting radioactive substances in the safety analysis of LMFBRs. In this experiment, the degree of subcool of the warm water pool, the initial radii of steam bubbles and the blowoff pressure of steam were taken as the parameters. The radius of the steam bubbles generated in the experiment was about 6.5 cm, and the state of disappearance was different above and below the degree of unsaturation of 10 deg C. Comparing the disappearance curve obtained by the experiment with the theory of disappearance of small bubbles, the experimental values were between inertia-controlled disappearance and heat transfer-controlled disappearance, and this result was able to be explained generally with the model taking the pressure change within steam bubbles into account. The rise of bubbles was also observed. (Kako, I.)

  14. Bubbles in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Lin, Jun

    2015-01-01

    Strain-induced deformations in graphene are predicted to give rise to large pseudomagnetic fields. We examine theoretically the case of gas-inflated bubbles to determine whether signatures of such fields are present in the local density of states. Sharp-edged bubbles are found to induce Friedel...

  15. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  16. Contrast echocardiography: history, micro bubble characteristics and instrumental techniques

    International Nuclear Information System (INIS)

    Cubides, Carlos; Restrepo, Gustavo; Aristizabal, Dagnovar; Munera, Ana

    2006-01-01

    This article describes the history of contrast echocardiography, the physical characteristics of the contrast agent's micro bubbles, the main instrumental tools (mechanical index, focus and focusing, frame rate), and the echocardiography techniques (second harmonic imaging, fusion harmonic, power pulse inversion imaging, triggered imaging, intermittent harmonic power Doppler, color power angio and acoustic densitometry), actually available for clinical use

  17. Rectified heat transfer into translating and pulsating vapor bubbles

    NARCIS (Netherlands)

    Hao, Y.; Prosperetti, Andrea

    2002-01-01

    It is well known that, when a stationary vapor bubble is subject to a sufficiently intense acoustic field, it will grow by rectified heat transfer even in a subcooled liquid. The object of this paper is to study how translation, and the ensuing convective effects, influence this process. It is shown

  18. Dynamics and noise emission of laser induced cavitation bubbles in a vortical flow field

    Science.gov (United States)

    Oweis, Ghanem F.; Choi, Jaehyug; Ceccio, Steven L.

    2004-03-01

    The sound produced by the collapse of discrete cavitation bubbles was examined. Laser-generated cavitation bubbles were produced in both a quiescent and a vortical flow. The sound produced by the collapse of the cavitation bubbles was recorded, and its spectral content was determined. It was found that the risetime of the sound pulse produced by the collapse of single, spherical cavitation bubbles in quiescent fluid exceeded that of the slew rate of the hydrophone, which is consistent with previously published results. It was found that, as collapsing bubbles were deformed by the vortical flow, the acoustic impulse of the bubbles was reduced. Collapsing nonspherical bubbles often created a sound pulse with a risetime that exceeded that of the hydrophone slew rate, although the acoustic impulse created by the bubbles was influenced largely by the degree to which the bubbles became nonspherical before collapse. The noise produced by the slow growth of cavitation bubbles in the vortex core was not detectable. These results have implications for the interpretation of hydrodynamic cavitation noise produced by vortex cavitation.

  19. Interfacial Bubble Deformations

    Science.gov (United States)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  20. Determination of the distribution of shallow-water seagrass and drift algae communities with acoustic seafloor discrimination

    Directory of Open Access Journals (Sweden)

    B Riegl

    2005-05-01

    Full Text Available The spatial distribution of seagrass and algae communities can be difficult to determine in large,shallow lagoon systems where high turbidity prevents the use of optical methods like aerial photography or satellite imagery.Further complications can arise when algae are not permanently attached to the substratum and drift with tides and currents.A study using acoustic seafloor discrimination was conducted in the Indian River Lagoon (Florida,USAto determine the extent of drift algae and seagrass.Acoustic surveys using the QTC View V system based on 50 and 200 kHz transducers were conducted near Sebastian Inlet.Results indicate that areas of seagrass can be identified,and are mixed with a high abundance of drift algae.Nearest-neighbor extrapolation was used to fill in spaces between survey lines and thus obtain spatially cohesive maps.These maps were then ground-truthed using data from towed video and compared using confusion matrices.The maps showed a high level of agreement (60%with the actual distribution of algae,however some confusion existed between bare sand and algae as well as seagrass.La distribución espacial de comunidades de pastos marinos y algas puede ser difícil de determinar en sistema lagunares grandes y someros donde la alta turbidez no permite el uso de métodos ópticos,como fotografías aéreas e imágenes satelitales. Complicaciones adicionales pueden surgir cuando las algas no están adheridas permanentemente al sustrato y derivan con las mareas y corrientes.Se realizó un estudio utilizando discriminación acústica del fondo marino en el Indian River Lagoon (Florida,EUA para determinar la cantidad de algas y pastos que derivan. Se realizaron sondeos acústicos en el Sebastian Inlet con el sistema QTC View V y transductores de 50 y 200 kHz.Las áreas de pastos marinos pudieron ser identificadas,y están mezcladas con una gran cantidad de algas a la deriva.Se rellenó los espacios sin datos con extrapolaciones basadas en la

  1. Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation

    Science.gov (United States)

    Mahabadi, Nariman; Zheng, Xianglei; Yun, Tae Sup; van Paassen, Leon; Jang, Jaewon

    2018-02-01

    Gas bubbles can be naturally generated or intentionally introduced in sediments. Gas bubble migration and trapping affect the rate of gas emission into the atmosphere or modify the sediment properties such as hydraulic and mechanical properties. In this study, the migration and trapping of gas bubbles are simulated using the pore-network model extracted from the 3D X-ray image of in situ sediment. Two types of bubble size distribution (mono-sized and distributed-sized cases) are used in the simulation. The spatial and statistical bubble size distribution, residual gas saturation, and hydraulic conductivity reduction due to the bubble trapping are investigated. The results show that the bubble size distribution becomes wider during the gas bubble migration due to bubble coalescence for both mono-sized and distributed-sized cases. And the trapped bubble fraction and the residual gas saturation increase as the bubble size increases. The hydraulic conductivity is reduced as a result of the gas bubble trapping. The reduction in hydraulic conductivity is apparently observed as bubble size and the number of nucleation points increase.

  2. Oscillating microbubbles for selective particle sorting in acoustic microfluidic devices

    Science.gov (United States)

    Rogers, Priscilla; Xu, Lin; Neild, Adrian

    2012-05-01

    In this study, acoustic waves were used to excite a microbubble for selective particle trapping and sorting. Excitation of the bubble at its volume resonance, as necessary to drive strong fluid microstreaming, resulted in the particles being either selectively attracted to the bubble or continuing to follow the local microstreamlines. The operating principle exploited two acoustic phenomena acting on the particle suspension: the drag force arising from the acoustic microstreaming and the secondary Bjerknes force, i.e. the attractive radiation force produced between an oscillating bubble and a non-buoyant particle. It was also found that standing wave fields within the fluid chamber could be used to globally align bubbles and particles for local particle sorting by the bubble.

  3. Integration of DAS (distributed acoustic sensing) vertical seismic profile and geostatistically modeled lithology data to characterize an enhanced geothermal system.

    Science.gov (United States)

    Cronin, S. P.; Trainor Guitton, W.; Team, P.; Pare, A.; Jreij, S.; Powers, H.

    2017-12-01

    In March 2016, a 4-week field data acquisition took place at Brady's Natural Lab (BNL), an enhanced geothermal system (EGS) in Fallan, NV. During these 4 weeks, a vibe truck executed 6,633 sweeps, recorded by nodal seismometers, horizontal distributed acoustic sensing (DAS) cable, and 400 meters of vertical DAS cable. DAS provides lower signal to noise ratio than traditional geophones but better spatial resolution. The analysis of DAS VSP included Fourier transform, and filtering to remove all up-going energy. Thus, allowing for accurate first arrival picking. We present an example of the Gradual Deformation Method (GDM) using DAS VSP and lithological data to produce a distribution of valid velocity models of BNL. GDM generates continuous perturbations of prior model realizations seeking the best match to the data (i.e. minimize the misfit). Prior model realizations honoring the lithological data were created using sequential Gaussian simulation, a commonly used noniterative geostatistical method. Unlike least-squares-based methods of inversion, GDM readily incorporates a priori information, such as a variogram calculated from well-based lithology information. Additionally, by producing a distribution of models, as opposed to one optimal model, GDM allows for uncertainty quantification. This project aims at assessing the integrated technologies ability to monitor changes in the water table (possibly to one meter resolution) by exploiting the dependence of seismic wave velocities on water saturation of the subsurface. This project, which was funded in part by the National Science Foundation, is a part of the PoroTomo project, funded by a grant from the U.S. Department of Energy.

  4. Distributed Fiber-Optic Sensor for Detection and Localization of Acoustic Vibrations

    Directory of Open Access Journals (Sweden)

    Sifta Radim

    2015-03-01

    Full Text Available A sensing system utilizing a standard optical fiber as a distributed sensor for the detection and localization of mechanical vibrations is presented. Vibrations can be caused by various external factors, like moving people, cars, trains, and other objects producing mechanical vibrations that are sensed by a fiber. In our laboratory we have designed a sensing system based on the Φ-OTDR (phase sensitive Optical Time Domain Reflectometry using an extremely narrow laser and EDFAs.

  5. Quantifying quagga mussel veliger abundance and distribution in Copper Basin Reservoir (California) using acoustic backscatter.

    Science.gov (United States)

    Anderson, Michael A; Taylor, William D

    2011-11-01

    Quagga mussels (Dreissena bugensis) have been linked to oligotrophication of lakes, alteration of aquatic food webs, and fouling of infrastructure associated with water supply and power generation, causing potentially billions of dollars in direct and indirect damages. Understanding their abundance and distribution is key in slowing their advance, assessing their potential impacts, and evaluating effectiveness of control strategies. Volume backscatter strength (Sv) measurements at 201- and 430-kHz were compared with quagga mussel veliger and zooplankton abundances determined from samples collected using a Wisconsin closing net from the Copper Basin Reservoir on the Colorado River Aqueduct. The plankton within the lower portion of the water column (>18 m depth) was strongly dominated by D-shaped quagga mussel veligers, comprising up to 95-99% of the community, and allowed direct empirical measurement of their mean backscattering cross-section. The upper 0-18 m of the water column contained a smaller relative proportion of veligers based upon net sampling. The difference in mean volume backscatter strength at these two frequencies was found to decrease with decreasing zooplankton abundance (r(2) = 0.94), allowing for correction of Sv due to the contribution of zooplankton and the determination of veliger abundance in the reservoir. Hydroacoustic measurements revealed veligers were often present at high abundances (up to 100-200 ind L(-1)) in a thin 1-2 m layer at the thermocline, with considerable patchiness in their distribution observed along a 700 m transect on the reservoir. Under suitable conditions, hydroacoustic measurements can rapidly provide detailed information on the abundance and distribution of quagga mussel veligers over large areas with high horizontal and vertical resolution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Modeling bubble dynamics and radical kinetics in ultrasound induced microalgal cell disruption.

    Science.gov (United States)

    Wang, Meng; Yuan, Wenqiao

    2016-01-01

    Microalgal cell disruption induced by acoustic cavitation was simulated through solving the bubble dynamics in an acoustical field and their radial kinetics (chemical kinetics of radical species) occurring in the bubble during its oscillation, as well as calculating the bubble wall pressure at the collapse point. Modeling results indicated that increasing ultrasonic intensity led to a substantial increase in the number of bubbles formed during acoustic cavitation, however, the pressure generated when the bubbles collapsed decreased. Therefore, cumulative collapse pressure (CCP) of bubbles was used to quantify acoustic disruption of a freshwater alga, Scenedesmus dimorphus, and a marine alga, Nannochloropsis oculata and compare with experimental results. The strong correlations between CCP and the intracellular lipid fluorescence density, chlorophyll-a fluorescence density, and cell particle/debris concentration were found, which suggests that the developed models could accurately predict acoustic cell disruption, and can be utilized in the scale up and optimization of the process. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Theory calculation of combination of 'embryo' bubble growing-up visible bubble in bubble chamber

    International Nuclear Information System (INIS)

    Ye Zipiao; Sheng Xiangdong; Dai Changjiang

    2004-01-01

    By aid of island combination theory of 'embryo' bubble, it is resolved well the question which 'embryo' bubble grows up a visible bubble in the bubble chamber. Through theory calculation it is shown that radius of the big' embryo' bubble combinated not only relates with work matter such as surface tension coefficient, saturation vapour pressure and boiling point of liquid, but also does absorbing quantity of heat and the numbers of 'embryo' bubbles combination. It is explained reasonably that the radius of bubbles in bubble chamber is different for the same energies of neutrons and proton. The track of neutron in bubble chamber is long and thin, and the track of proton in bubble chamber is wide and short. It is also explained reasonably that the bubble radius of the incident particles with more charges which there are the same energies will be wider than that of the incident particles with less charges in the track. (author)

  8. Bubbles and breaking waves

    Science.gov (United States)

    Thorpe, S. A.

    1980-01-01

    The physical processes which control the transfer of gases between the atmosphere and oceans or lakes are poorly understood. Clouds of micro-bubbles have been detected below the surface of Loch Ness when the wind is strong enough to cause the waves to break. The rate of transfer of gas into solution from these bubbles is estimated to be significant if repeated on a global scale. We present here further evidence that the bubbles are caused by breaking waves, and discuss the relationship between the mean frequency of wave breaking at a fixed point and the average distance between breaking waves, as might be estimated from an aerial photograph.

  9. Rotating bubble membrane radiator

    Science.gov (United States)

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  10. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    Science.gov (United States)

    Mahdi, M.; Ebrahimi, R.; Shams, M.

    2011-06-01

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack.

  11. Experimental Study on Mechanical and Acoustic Emission Characteristics of Rock-Like Material Under Non-uniformly Distributed Loads

    Science.gov (United States)

    Wang, Xiao; Wen, Zhijie; Jiang, Yujing; Huang, Hao

    2018-03-01

    The mechanical and acoustic emission characteristics of rock-like materials under non-uniform loads were investigated by means of a self-developed mining-induced stress testing system and acoustic emission monitoring system. In the experiments, the specimens were divided into three regions and different initial vertical stresses and stress loading rates were used to simulate different mining conditions. The mechanical and acoustic emission characteristics between regions were compared, and the effects of different initial vertical stresses and different stress loading rates were analysed. The results showed that the mechanical properties and acoustic emission characteristics of rock-like materials can be notably localized. When the initial vertical stress and stress loading rate are fixed, the peak strength of region B is approximately two times that of region A, and the maximum acoustic emission hit value of region A is approximately 1-2 times that of region B. The effects of the initial vertical stress and stress loading rate on the peck strain, maximum hit value, and occurrence time of the maximum hit are similar in that when either of the former increase, the latter all decrease. However, peck strength will increase with the increase in loading rate and decrease with the increase in initial vertical stress. The acoustic emission hits can be used to analyse the damage in rock material, but the number of acoustic emission hits cannot be used alone to determine the degree of rock damage directly.

  12. Fission of Multielectron Bubbles in Liquid Helium Under Electric Fields

    Science.gov (United States)

    Vadakkumbatt, V.; Ghosh, A.

    2017-06-01

    Multielectron bubbles (MEBs) are cavities in liquid helium which contain a layer of electrons trapped within few nanometres from their inner surfaces. These bubbles are promising candidates to probe a system of interacting electrons in curved geometries, but have been subjected to limited experimental investigation. Here, we report on the observation of fission of MEBs under strong electric fields, which arises due to fast rearrangement of electrons inside the bubbles, leading to their deformation and eventually instability. We measured the electrons to be distributed unequally between the daughter bubbles which could be used to control the charge density inside MEBs.

  13. Raman Spectral Band Oscillations in Large Graphene Bubbles

    Science.gov (United States)

    Huang, Yuan; Wang, Xiao; Zhang, Xu; Chen, Xianjue; Li, Baowen; Wang, Bin; Huang, Ming; Zhu, Chongyang; Zhang, Xuewei; Bacsa, Wolfgang S.; Ding, Feng; Ruoff, Rodney S.

    2018-05-01

    Raman spectra of large graphene bubbles showed size-dependent oscillations in spectral intensity and frequency, which originate from optical standing waves formed in the vicinity of the graphene surface. At a high laser power, local heating can lead to oscillations in the Raman frequency and also create a temperature gradient in the bubble. Based on Raman data, the temperature distribution within the graphene bubble was calculated, and it is shown that the heating effect of the laser is reduced when moving from the center of a bubble to its edge. By studying graphene bubbles, both the thermal conductivity and chemical reactivity of graphene were assessed. When exposed to hydrogen plasma, areas with bubbles are found to be more reactive than flat graphene.

  14. Bubble behaviour and mean diameter in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Zeitoun, O.; Shoukri, M. [McMaster Univ., Hamilton, Ontario (Canada)

    1995-09-01

    Bubble behaviour and mean bubble diameter in subcooled upward flow boiling in a vertical annular channel were investigated under low pressure and mass flux conditions. A high speed video system was used to visualize the subcooled flow boiling phenomenon. The high speed photographic results indicated that, contrary to the common understanding, bubbles tend to detach from the heating surface upstream of the net vapour generation point. Digital image processing technique was used to measure the mean bubble diameter along the subcooled flow boiling region. Data on the axial area-averaged void fraction distributions were also obtained using a single beam gamma densitometer. Effects of the liquid subcooling, applied heat flux and mass flux on the mean bubble size were investigated. A correlation for the mean bubble diameter as a function of the local subcooling, heat flux and mass flux was obtained.

  15. Bubble behavior in a vertical Taylor-Couette flow

    International Nuclear Information System (INIS)

    Murai, Y; Oiwa, H; Takeda, Y

    2005-01-01

    Bubble distributions organized in a vertical Taylor-Couette flow are experimentally investigated. Modification of shear stress due to bubbles is measured with a torque sensor installed on the rotating inner cylinder. The wall shear stress decreases as bubbles are injected in all the tested range of Re from 600 to 4500. The drag reduction ratio per void fraction measured in the present experiment, which indicates net gain of the drag reduction, has been evaluated. The gain was more than unity for Re 4000. The maximum gain achieved was around 10 at Re = 600, at which point the bubbles dispersed widely on the inner cylinder surface and effectively restrict momentum exchange of fluid between the two walls. The expansion of Taylor vortices in the vertical direction by the presence of bubbles was confirmed by flow visualization including particle tracking velocimetry. Such bubble behaviours interacting with Taylor vortices are discussed in detail in this paper

  16. Application of analyzer based X-ray imaging technique for detection of ultrasound induced cavitation bubbles from a physical therapy unit

    OpenAIRE

    Izadifar, Zahra; Belev, George; Babyn, Paul; Chapman, Dean

    2015-01-01

    Background The observation of ultrasound generated cavitation bubbles deep in tissue is very difficult. The development of an imaging method capable of investigating cavitation bubbles in tissue would improve the efficiency and application of ultrasound in the clinic. Among the previous imaging modalities capable of detecting cavitation bubbles in vivo, the acoustic detection technique has the positive aspect of in vivo application. However the size of the initial cavitation bubble and the am...

  17. Microscopic bubble behaviour in suppression pool during wetwell venting

    Science.gov (United States)

    Zablackaite, G.; Nagasaka, H.; Kikura, H.

    2017-10-01

    During a severe accident PCV failure should be avoided and fission products inside PCV should be confined as much as possible. In order to minimize FPs release, Wetwell venting is conducted by releasing steam-non-condensable gas mixture carrying FPs from the Drywell to Suppression Pool. Steam is condensed by subcooled water in the pool, and most of FPs are retained into water. The removal of FP in the water pool is referred to as “Pool Scrubbing effect”. Hydrodynamic parameters of bubbles have impact on pool scrubbing effect. However, there is only few data available to evaluate quantitatively the bubble behaviour under depressurization and/or thermal stratification conditions. Series of experiments were conducted to evaluate the influence of temperature distribution, non-condensable gas content and pressure in the Wetwell on bubble behaviour. Bubbles were visualized using High Speed Camera and adopting shadowgraphy technique. Applying Particle Tracking Velocimetry, bubble velocity and size distribution were obtained from recorded images. Experimental results show that with increasing suppression pool temperature, bubbles reaching the pool surface decreased in size and traveling velocity became slower. In pressurized wetwell, bubble behaviour was similar to that in the heated up suppression pool case, although bubble parameters were similar to the low temperature case. Higher air content induced water surface movement and bubbles were smaller due to break up.

  18. Two-fluid model LES of a bubble column

    International Nuclear Information System (INIS)

    Brahma N Reddy Vanga; Martin A Lopez de Bertodano; Eckhard Krepper; Alexandr Zaruba; Horst-Michael Prasser

    2005-01-01

    The hydrodynamics of a rectangular bubble column operating in the dispersed bubbly regime has been numerically investigated using a two-fluid model Large Eddy Simulation (LES). Experimental data were obtained to validate the model. LES computational fluid dynamic calculations of the transient flow for the bubble column were performed to account for the turbulence in the liquid phase. The computational mesh is of the same scale as the bubble size. The sub grid-scale Reynolds stresses were calculated with the Smagorinsky model. Furthermore, the effect of the bubbles on the turbulence in the continuous phase was modeled using Sato's eddy viscosity model for bubble-induced turbulence. Mean quantities were computed by averaging over a time period that was longer than the dynamic time scales of the turbulence, in particular the void fraction and the average velocity of the bubbles. A systematic analysis of the effect of the interfacial momentum transfer terms on these quantities has been conducted. The bubble column was locally aerated using a sparger located in the center of the bottom plate. The experimental studies involve wire-mesh tomography measurements for void fraction and bubble size distributions and digital image processing of high speed camera images for estimation of bubble velocities, size distributions and flow patterns. Experiments were performed for various aspect ratios (height of water column to width ratio) and superficial gas velocities. It was found that the non-drag bubble forces play a very prominent role in the predicting the correct flow pattern and void fraction distributions. In the calculations, the lift force and the wall force were considered. A 'wall peak' in the time averaged void fraction distribution has been experimentally observed and this cannot be predicted without including these non-drag forces in the numerical calculations. In this paper, experimental data are compared with the results of the numerical simulations. (authors)

  19. A three field two fluid CFD model for the bubbly-cap bubble regime

    International Nuclear Information System (INIS)

    Martin Lopez de Bertodano; Xiaodong Sun; Mamoru Ishii; Asim Ulke

    2005-01-01

    Full text of publication follows: The lateral phase distribution of a two phase duct flow in the cap bubble regime is analyzed with a three dimensional three field two-fluid CFD model based on the turbulent k-ε model for bubbly flows developed by Lopez de Bertodano et. al. [2]. The turbulent diffusion of the bubbles is the dominant phase distribution mechanism. A new analytic result is presented to support the development of the model for the bubble induced turbulent diffusion force. New experimental data obtained with a state-of-the-art four sensor miniature conductivity probe are used to validate the two-fluid model. The focus of this work is modeling the transport of the dispersed phase. Previous work (e.g., Lopez de Bertodano et. al.) was focused on the interfacial forces of drag, lift and virtual mass. However, the dispersion of the bubbles by the turbulent eddies of the continuous phase must be considered too. The rigorous formulation of a model for the turbulent dispersion of the bubbles results in a turbulent diffusion force which is obtained from a probability distribution function average (i.e., Boltzmann averaging) of the dispersed phase momentum equation. This force was recently applied to a turbulent bubbly jet with small bubbles (i.e., 1 mm diameter) without adjusting any coefficient. However, the application of this force to industrial conditions (i.e., larger bubbles) requires specific two-phase flow experimental data to calibrate the model due to the uncertainties of the flow around large bubbles. In particular the void distribution and the interfacial area concentration are measured in a mixture of big and small bubbles. The state-of-the-art miniaturized four-sensor conductivity probe developed by Kim et al. [3] is used to obtain the interfacial area concentration in complex two-phase flow situations. This probe can discriminate between small and large bubbles so it offers an opportunity to perform further developments of the multidimensional two

  20. Bubble Collision in Curved Spacetime

    International Nuclear Information System (INIS)

    Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han

    2014-01-01

    We study vacuum bubble collisions in curved spacetime, in which vacuum bubbles were nucleated in the initial metastable vacuum state by quantum tunneling. The bubbles materialize randomly at different times and then start to grow. It is known that the percolation by true vacuum bubbles is not possible due to the exponential expansion of the space among the bubbles. In this paper, we consider two bubbles of the same size with a preferred axis and assume that two bubbles form very near each other to collide. The two bubbles have the same field value. When the bubbles collide, the collided region oscillates back-and-forth and then the collided region eventually decays and disappears. We discuss radiation and gravitational wave resulting from the collision of two bubbles

  1. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Fumiya; Ando, Keita, E-mail: kando@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, Yokohama 223-8522 (Japan)

    2015-11-15

    Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh–Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh–Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

  2. Numerical study on the influence of entrapped air bubbles on the time-dependent pore pressure distribution in soils due to external changes in water level

    Directory of Open Access Journals (Sweden)

    Ausweger Georg M.

    2016-01-01

    Full Text Available In practical geotechnical engineering soils below the groundwater table are usually regarded as a two-phase medium, consisting of solids and water. The pore water is assumed to be incompressible. However, under certain conditions soils below the groundwater table may exhibit a liquid phase consisting of water and air. The air occurs in form of entrapped air bubbles and dissolved air. Such conditions are named quasi-saturated and the assumption of incompressibility is no longer justified. In addition the entrapped air bubbles influence the hydraulic conductivity of soils. These effects are usually neglected in standard problems of geotechnical engineering. However, sometimes it is required to include the pore fluid compressibility when modelling the hydraulic behaviour of soils in order to be able to explain certain phenomena observed in the field. This is for example true for fast fluctuating water levels in reservoirs. In order to study these phenomena, numerical investigations on the influence of the pore fluid compressibility on the pore water pressure changes in a soil layer beneath a reservoir with fast fluctuating water levels were performed. Preliminary results of this study are presented and it could be shown that numerical analysis and field data are in good agreement.

  3. Chemistry in Soap Bubbles.

    Science.gov (United States)

    Lee, Albert W. M.; Wong, A.; Lee, H. W.; Lee, H. Y.; Zhou, Ning-Huai

    2002-01-01

    Describes a laboratory experiment in which common chemical gases are trapped inside soap bubbles. Examines the physical and chemical properties of the gases such as relative density and combustion. (Author/MM)

  4. Nucleation in bubble chambers

    International Nuclear Information System (INIS)

    Harigel, G.G.

    1988-01-01

    Various sources and mechanisms for bubble formation in superheated liquids are discussed. Bubble chambers can be filled with a great variety of liquids, such as e.g. the cryogenic liquids hydrogen, deuterium, neon, neon/hydrogen mixtures, argon, nitrogen, argon/nitrogen mixtures, or the warm liquids propane and various Freon like Freon-13B1. The superheated state is normally achieved by a rapid movement of an expansion piston or membrane, but can also be produced by standing ultrasonic waves, shock waves, or putting liquids under tension. Bubble formation can be initiated by ionizing particles, by intense (laser) light, or on rough surfaces. The creation of embryonic bubbles is not completely understood, but the macroscopic growth and condensation can be calculated, allowing to estimate the dynamic heat load [fr

  5. Bubble chamber: antiproton annihilation

    CERN Multimedia

    1971-01-01

    These images show real particle tracks from the annihilation of an antiproton in the 80 cm Saclay liquid hydrogen bubble chamber. A negative kaon and a neutral kaon are produced in this process, as well as a positive pion. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  6. Magnetic-bubble devices

    International Nuclear Information System (INIS)

    Fairholme, R.J.

    1978-01-01

    Magnetic bubbles were first described only ten years ago when research workers were discussing orthoferrites containing μm diameter bubbles. However, problems of material fabrication limit crystals to a few mm across which severely curtailed device development. Since then materials have changed and rare-earth-iron garnet films can be grown up 3 inches in diameter with bubble diameters down to sizes below 1 μm. The first commercial products have device capacities in the range 64 000 to 100 000 bits with bubble diameters between 4 and 6 μm. Chip capacities of 1 Mbit are presently under development in the laboratory, as are new techniques to use submicrometre bubbles. The operation and fabrication of a bubble device is described using the serial loop devices currently being manufactured at Plessey as models. Chip organization is one important variable which directly affects the access time. A range of access times and capacities is available which offers a wide range of market opportunities, ranging from consumer products to fixed head disc replacements. some of the application areas are described. (author)

  7. Cavitation inception by the backscattering of pressure waves from a bubble interface

    Energy Technology Data Exchange (ETDEWEB)

    Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp; Tanaka, Moe [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531 (Japan)

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  8. Architectural acoustics

    National Research Council Canada - National Science Library

    Long, Marshall

    2014-01-01

    .... Beginning with a brief history, it reviews the fundamentals of acoustics, human perception and reaction to sound, acoustic noise measurements, noise metrics, and environmental noise characterization...

  9. Acoustic emission

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1976-01-01

    The volume contains six papers which together provide an overall review of the inspection technique known as acoustic emission or stress wave emission. The titles are: a welder's introduction to acoustic emission technology; use of acoustic emission for detection of defects as they arise during fabrication; examples of laboratory application and assessment of acoustic emission in the United Kingdom; (Part I: acoustic emission behaviour of low alloy steels; Part II: fatigue crack assessment from proof testing and continuous monitoring); inspection of selected areas of engineering structures by acoustic emission; Japanese experience in laboratory and practical applications of acoustic emission to welded structures; and ASME acoustic emission code status. (U.K.)

  10. Controlled vesicle deformation and lysis by single oscillating bubbles

    Science.gov (United States)

    Marmottant, Philippe; Hilgenfeldt, Sascha

    2003-05-01

    The ability of collapsing (cavitating) bubbles to focus and concentrate energy, forces and stresses is at the root of phenomena such as cavitation damage, sonochemistry or sonoluminescence. In a biomedical context, ultrasound-driven microbubbles have been used to enhance contrast in ultrasonic images. The observation of bubble-enhanced sonoporation-acoustically induced rupture of membranes-has also opened up intriguing possibilities for the therapeutic application of sonoporation as an alternative to cell-wall permeation techniques such as electroporation and particle guns. However, these pioneering experiments have not been able to pinpoint the mechanism by which the violently collapsing bubble opens pores or larger holes in membranes. Here we present an experiment in which gentle (linear) bubble oscillations are sufficient to achieve rupture of lipid membranes. In this regime, the bubble dynamics and the ensuing sonoporation can be accurately controlled. The use of microbubbles as focusing agents makes acoustics on the micrometre scale (microacoustics) a viable tool, with possible applications in cell manipulation and cell-wall permeation as well as in microfluidic devices.

  11. Study of droplet entrainment from bubbling surface in a bubble column

    International Nuclear Information System (INIS)

    Ramirez de Santiago, M.

    1991-05-01

    In a bubble column droplets are ejected from the free surface by bubble bursting or splashing. Depending on their size, the droplets are partly carried away by the streaming gas or fall back to the bubbling surface by gravity force. Experiments have been carried out to determine the void fraction in the column by means of an optical probe. In the interfacial zone the bubble bursting process was captured with a high-speed video camera. Simultaneous measurements were made of size and velocity of droplets at several distances from the bubbling surface with a Phase-Doppler Anemometry. The bubble column can be divided into three regions: A lower zone with a flat profile of the local void fraction, a central zone where the flow regime is steady and an upper zone where the local void fraction grows rapidly. A two-parameter log-normal distribution function was proposed in order to describe the polydisperse distribution of droplet-size. Results were obtained concerning the entrainment, concentration, volume fraction and interfacial area of droplets. Finally, it was found that the turbulence intensity affects the droplet terminal velocity for droplets smaller than the Kolmogorov microscale [fr

  12. Numerical investigation of interaction between rising bubbles in a viscous liquid

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ik Roh [Korea Institute of Marine Science and Technology Promotion, Seoul (Korea, Republic of); Shin Seung Won [Hongik University, Seoul (Korea, Republic of)

    2016-07-15

    The rising behavior of bubbles undergoing bubble-bubble interaction in a viscous liquid is studied using a two-dimensional direct numerical simulation. Level contour reconstruction method (LCRM), one of the connectivity-free front tracking methods, is applied to describe a moving interface accurately under highly deformable conditions. This work focuses on the effects of bubble size on the interaction of two bubbles rising side-by-side in a stagnant liquid. Several characteristics of bubble-bubble interaction are analyzed quantitatively as supported by energy analysis. The results showed clear differences between small and large bubbles with respect to their interaction behavior in terms of lateral movement, vortex intensity, suppression of surface deformation, and viscous dissipation rate. Distributions of vorticity and viscous dissipation rate near the bubble interfaces also differed depending on the size of the bubbles. Strong vortices from large bubbles triggered oscillation in bubble-bubble interaction and played a dominant role in the interaction process as the size of bubbles increases.

  13. Nonlinear Dynamics of a Bubble Contrast Agent Oscillating near an Elastic Wall

    Science.gov (United States)

    Garashchuk, Ivan R.; Sinelshchikov, Dmitry I.; Kudryashov, Nikolay A.

    2018-05-01

    Contrast agent microbubbles, which are encapsulated gas bubbles, are widely used to enhance ultrasound imaging. There are also several new promising applications of the contrast agents such as targeted drug delivery and noninvasive therapy. Here we study three models of the microbubble dynamics: a nonencapsulated bubble oscillating close to an elastic wall, a simple coated bubble and a coated bubble near an elastic wall.We demonstrate that complex dynamics can occur in these models. We are particularly interested in the multistability phenomenon of bubble dynamics. We show that coexisting attractors appear in all of these models, but for higher acoustic pressures for the models of an encapsulated bubble.We demonstrate how several tools can be used to localize the coexisting attractors. We provide some considerations why the multistability can be undesirable for applications.

  14. Spectra of single-bubble sonoluminescence in water and glycerin-water mixtures

    International Nuclear Information System (INIS)

    Gaitan, D.F.; Atchley, A.A.; Lewia, S.D.; Carlson, J.T.; Maruyama, X.K.; Moran, M.; Sweider, D.

    1996-01-01

    A single gas bubble, acoustically levitated in a standing-wave field and oscillating under the action of that field, can emit pulses of blue-white light with duration less than 50 ps. Measurements of the spectrum of this picosecond sonoluminescence with a scanning monochrometer are reported for air bubbles levitated in water and in glycerin-water mixtures. While the spectrum has been reported previously by others for air bubbles in water, the spectrum for air bubbles in water-glycerin mixtures has not. Expected emission lines from glycerin were conspicuously absent, suggesting a different mechanism for light production in single-bubble sonoluminescence. Other conclusions are the spectrum for air bubbles in water is consistent with that previously reported, the radiated energy decreases as the glycerin concentration increases, and the peak of the spectrum appears to shift to longer wavelengths for the water-glycerin mixtures. copyright 1996 The American Physical Society

  15. A unique circular path of moving single bubble sonoluminescence in water

    International Nuclear Information System (INIS)

    Sadighi-Bonabi, Rasoul; Mirheydari, Mona; Ebrahimi, Homa; Rezaee, Nastaran; Nikzad, Lida

    2011-01-01

    Based on a quasi-adiabatic model, the parameters of the bubble interior for a moving single bubble sonoluminescence (m-SBSL) in water are calculated. By using a complete form of the hydrodynamic force, a unique circular path for the m-SBSL in water is obtained. The effect of the ambient pressure variation on the bubble trajectory is also investigated. It is concluded that as the ambient pressure increases, the bubble moves along a circular path with a larger radius and all bubble parameters, such as gas pressure, interior temperature and light intensity, increase. A comparison is made between the parameters of the moving bubble in water and those in N-methylformamide. With fluid viscosity increasing, the circular path changes into an elliptic form and the light intensity increases. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Measurement of the impuslive force generated by colapsing bubble close to a solid boundary

    Directory of Open Access Journals (Sweden)

    Zima Patrik

    2012-04-01

    Full Text Available The article presents experimental results of the acoustical and optical study of cavitation bubble collapse close to a solid boundary in water. The bubble was generated by discharge of low-voltage capacitor into a couple of wires closing a simple circuit. Different distances from the solid wall and different maximum bubble radii were studied. The bubble radius was studied using time-resolved photography and by PVDF film sensor glued on the solid boundary. The illumination was provided by high-power led diode. Synchronization of the system was provided by pulse generator connected to an oscilloscope. The impact power of the bubble to the wall was estimated from the time-resolved photography of the bubble and from the PVDF film sensor signal. The PVDF film sensor calibration was performed by a pendulum test to estimate the impact force.

  17. Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean.

    Science.gov (United States)

    Ma, Lanxin; Wang, Fuqiang; Wang, Chengan; Wang, Chengchao; Tan, Jianyu

    2015-09-21

    The presence of bubbles can significantly change the radiative properties of seawater and these changes will affect remote sensing and underwater target detection. In this work, the spectral reflectance and bidirectional reflectance characteristics of the bubble layer in the upper ocean are investigated using the Monte Carlo method. The Hall-Novarini (HN) bubble population model, which considers the effect of wind speed and depth on the bubble size distribution, is used. The scattering coefficients and the scattering phase functions of bubbles in seawater are calculated using Mie theory, and the inherent optical properties of seawater for wavelengths between 300 nm and 800 nm are related to chlorophyll concentration (Chl). The effects of bubble coating, Chl, and bubble number density on the spectral reflectance of the bubble layer are studied. The bidirectional reflectance distribution function (BRDF) of the bubble layer for both normal and oblique incidence is also investigated. The results show that bubble populations in clear waters under high wind speed conditions significantly influence the reflection characteristics of the bubble layer. Furthermore, the contribution of bubble populations to the reflection characteristics is mainly due to the strong backscattering of bubbles that are coated with an organic film.

  18. Influence of movement regime of stick-slip process on the size distribution of accompanying acoustic emission characteristics

    Science.gov (United States)

    Matcharashvili, Teimuraz; Chelidze, Tamaz; Zhukova, Natalia; Mepharidze, Ekaterine; Sborshchikov, Alexander

    2010-05-01

    Many scientific works on dynamics of earthquake generation are devoted to qualitative and quantitative reproduction of behavior of seismic faults. Number of theoretical, numerical or physical models are already designed for this purpose. Main assumption of these works is that the correct model must be capable to reproduce power law type relation for event sizes with magnitudes greater than or equal to a some threshold value, similar to Gutenberg-Richter (GR) law for the size distribution of earthquakes. To model behavior of a seismic faults in laboratory conditions spring-block experimental systems are often used. They enable to generate stick-slip movement, intermittent behavior occurring when two solids in contact slide relative to each other driven at a constant velocity. Wide interest to such spring-block models is caused by the fact that stick-slip is recognized as a basic process underlying earthquakes generation along pre-existing faults. It is worth to mention, that in stick slip experiments reproduction of power law, in slip events size distribution, with b values close or equal to the one found for natural seismicity is possible. Stick-slip process observed in these experimental models is accompanied by a transient elastic waves propagation generated during the rapid release of stress energy in spring-block system. Oscillations of stress energy can be detected as a characteristic acoustic emission (AE). Accompanying stick slip AE is the subject of intense investigation, but many aspects of this process are still unclear. In the present research we aimed to investigate dynamics of stick slip AE in order to find whether its distributional properties obey power law. Experiments have been carried out on spring-block system consisting of fixed and sliding plates of roughly finished basalt samples. The sliding block was driven with a constant velocity. Experiments have been carried out for five different stiffness of pulling spring. Thus five different regimes

  19. Experimental study of bubbly flow using image processing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yucheng, E-mail: ycfu@vt.edu; Liu, Yang, E-mail: liu130@vt.edu

    2016-12-15

    This paper presents an experimental study of bubbly flows at relatively high void fractions using an advanced image processing method. Bubble overlapping is a common problem in such flows and the past studies often treat the overlapping bubbles as a whole, which introduces considerable measurement uncertainties. In this study, a hybrid method combining intersection point detection and watershed segmentation is used to separate the overlapping bubbles. In order to reconstruct bubbles from separated segments, a systematic procedure is developed which can preserve more features captured in the raw image compared to the simple ellipse fitting method. The distributions of void fraction, interfacial area concentration, number density and velocity are obtained from the extracted bubble information. High-speed images of air-water bubbly flows are acquired and processed for eight test runs conducted in a 30 mm × 10 mm rectangular channel. The developed image processing scheme can effectively separate overlapping bubbles and the results compare well with the measurements by the gas flow meter and double-sensor conductivity probe. The development of flows in transverse and mainstream directions are analyzed and compared with the prediction made by the one-dimensional interfacial area transport equation (IATE) and the bubble number density transport equation.

  20. Time-scales for quenching single-bubble sonoluminescence in the presence of alcohols

    Science.gov (United States)

    Guan, Jingfeng; Matula, Thomas

    2002-11-01

    A small amount of alcohol added to water dramatically decreases the light intensity from single-bubble sonoluminescence [Weninger et al., J. Phys. Chem. 99, 14195-14197 (1995)]. From an excess accumulation at the bubble surface [Ashokkumar et al., J. Phys. Chem. 104, 8462-8465 (2000)], the molecules evaporate into the bubble interior, reducing the effective adiabatic exponent of the gas, and decreasing the bubble temperature and light output [Toegel et al., Phys. Rev. Lett. 84, 2509-2512 (2000)]. There is a debate as to the rate at which alcohol is injected into the bubble interior. One camp favors the notion that molecules must be repetitively injected over many acoustic cycles. Another camp favors the notion that most quenching occurs during a single collapse. An experiment has been conducted in order to resolve the debate. Quenching rates were measured by recording the instantaneous bubble response and corresponding light emission during a sudden increase in pressure. It was found that complete quenching in the presence of methanol requires over 8000 acoustic cycles, while quenching with butanol occurs in about 20 acoustic cycles. These observations are consistent with the view that quenching requires the repetitive injection of alcohol molecules over repetitive acoustic cycles.

  1. Quantifying Methane Flux from a Prominent Seafloor Crater with Water Column Imagery Filtering and Bubble Quantification Techniques

    Science.gov (United States)

    Mitchell, G. A.; Gharib, J. J.; Doolittle, D. F.

    2015-12-01

    Methane gas flux from the seafloor to atmosphere is an important variable for global carbon cycle and climate models, yet is poorly constrained. Methodologies used to estimate seafloor gas flux commonly employ a combination of acoustic and optical techniques. These techniques often use hull-mounted multibeam echosounders (MBES) to quickly ensonify large volumes of the water column for acoustic backscatter anomalies indicative of gas bubble plumes. Detection of these water column anomalies with a MBES provides information on the lateral distribution of the plumes, the midwater dimensions of the plumes, and their positions on the seafloor. Seafloor plume locations are targeted for visual investigations using a remotely operated vehicle (ROV) to determine bubble emission rates, venting behaviors, bubble sizes, and ascent velocities. Once these variables are measured in-situ, an extrapolation of gas flux is made over the survey area using the number of remotely-mapped flares. This methodology was applied to a geophysical survey conducted in 2013 over a large seafloor crater that developed in response to an oil well blowout in 1983 offshore Papua New Guinea. The site was investigated by multibeam and sidescan mapping, sub-bottom profiling, 2-D high-resolution multi-channel seismic reflection, and ROV video and coring operations. Numerous water column plumes were detected in the data suggesting vigorously active vents within and near the seafloor crater (Figure 1). This study uses dual-frequency MBES datasets (Reson 7125, 200/400 kHz) and ROV video imagery of the active hydrocarbon seeps to estimate total gas flux from the crater. Plumes of bubbles were extracted from the water column data using threshold filtering techniques. Analysis of video images of the seep emission sites within the crater provided estimates on bubble size, expulsion frequency, and ascent velocity. The average gas flux characteristics made from ROV video observations is extrapolated over the number

  2. Molecular dynamics simulations of bubble nucleation in dark matter detectors.

    Science.gov (United States)

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.

  3. On the maximum drawdown during speculative bubbles

    Science.gov (United States)

    Rotundo, Giulia; Navarra, Mauro

    2007-08-01

    A taxonomy of large financial crashes proposed in the literature locates the burst of speculative bubbles due to endogenous causes in the framework of extreme stock market crashes, defined as falls of market prices that are outlier with respect to the bulk of drawdown price movement distribution. This paper goes on deeper in the analysis providing a further characterization of the rising part of such selected bubbles through the examination of drawdown and maximum drawdown movement of indices prices. The analysis of drawdown duration is also performed and it is the core of the risk measure estimated here.

  4. Colliding with a crunching bubble

    Energy Technology Data Exchange (ETDEWEB)

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  5. Experiment and numerical simulation of bubbly two-phase flow across horizontal and inclined rod bundles

    International Nuclear Information System (INIS)

    Serizawa, A.; Huda, K.; Yamada, Y.; Kataoka, I.

    1997-01-01

    Experimental and numerical analyses were carried out on vertically upward air-water bubbly two-phase flow behavior in both horizontal and inclined rod bundles with either in-line or staggered array. The inclination angle of the rod bundle varied from 0 to 60 with respect to the horizontal. The measured phase distribution indicated non-uniform characteristics, particularly in the direction of the rod axis when the rods were inclined. The mechanisms for this non-uniform phase distribution is supposed to be due to: (1) Bubble segregation phenomenon which depends on the bubble size and shape: (2) bubble entrainment by the large scale secondary flow induced by the pressure gradient in the horizontal direction which crosses the rod bundle; (3) effects of bubble entrapment by vortices generated in the wake behind the rods which travel upward along the rod axis; and (4) effect of bubble entrainment by local flows sliding up along the front surface of the rods. The liquid velocity and turbulence distributions were also measured and discussed. In these speculations, the mechanisms for bubble bouncing at the curved rod surface and turbulence production induced by a bubble were discussed, based on visual observations. Finally, the bubble behaviors in vertically upward bubbly two-phase flow across horizontal rod bundle were analyzed based on a particle tracking method (one-way coupling). The predicted bubble trajectories clearly indicated the bubble entrapment by vortices in the wake region. (orig.)

  6. Acoustic methods for cavitation mapping in biomedical applications

    Science.gov (United States)

    Wan, M.; Xu, S.; Ding, T.; Hu, H.; Liu, R.; Bai, C.; Lu, S.

    2015-12-01

    In recent years, cavitation is increasingly utilized in a wide range of applications in biomedical field. Monitoring the spatial-temporal evolution of cavitation bubbles is of great significance for efficiency and safety in biomedical applications. In this paper, several acoustic methods for cavitation mapping proposed or modified on the basis of existing work will be presented. The proposed novel ultrasound line-by-line/plane-by-plane method can depict cavitation bubbles distribution with high spatial and temporal resolution and may be developed as a potential standard 2D/3D cavitation field mapping method. The modified ultrafast active cavitation mapping based upon plane wave transmission and reception as well as bubble wavelet and pulse inversion technique can apparently enhance the cavitation to tissue ratio in tissue and further assist in monitoring the cavitation mediated therapy with good spatial and temporal resolution. The methods presented in this paper will be a foundation to promote the research and development of cavitation imaging in non-transparent medium.

  7. Optical nucleation of bubble clouds in a high pressure spherical resonator.

    Science.gov (United States)

    Anderson, Phillip; Sampathkumar, A; Murray, Todd W; Gaitan, D Felipe; Glynn Holt, R

    2011-11-01

    An experimental setup for nucleating clouds of bubbles in a high-pressure spherical resonator is described. Using nanosecond laser pulses and multiple phase gratings, bubble clouds are optically nucleated in an acoustic field. Dynamics of the clouds are captured using a high-speed CCD camera. The images reveal cloud nucleation, growth, and collapse and the resulting emission of radially expanding shockwaves. These shockwaves are reflected at the interior surface of the resonator and then reconverge to the center of the resonator. As the shocks reconverge upon the center of the resonator, they renucleate and grow the bubble cloud. This process is repeated over many acoustic cycles and with each successive shock reconvergence, the bubble cloud becomes more organized and centralized so that subsequent collapses give rise to stronger, better defined shockwaves. After many acoustic cycles individual bubbles cannot be distinguished and the cloud is then referred to as a cluster. Sustainability of the process is ultimately limited by the detuning of the acoustic field inside the resonator. The nucleation parameter space is studied in terms of laser firing phase, laser energy, and acoustic power used.

  8. Effect of ultrasound on dynamics characteristic of the cavitation bubble in grinding fluids during honing process.

    Science.gov (United States)

    Guo, Ce; Zhu, Xijing

    2018-03-01

    The effect of ultrasound on generating and controlling the cavitation bubble of the grinding fluid during ultrasonic vibration honing was investigated. The grinding fluid on the surface of the honing stone was measured by utilizing the digital microscope VHX-600ESO. Based on analyzing the cavitation mechanism of the grinding fluid, the bubble dynamics model under conventional honing (CH) and ultrasonic vibration honing (UVH) was established respectively. Difference of dynamic behaviors of the bubble between the cases in UVH and CH was compared respectively, and the effects of acoustic amplitude and ultrasonic frequency on the bubble dynamics were simulated numerically using the Runge-Kutta fourth order method with variable step size adaptive control. Finally, the cavitation intensity of grinding fluids under ultrasound was measured quantitatively using acoustimeter. The results showed that the grinding fluid subjected to ultrasound can generate many bubbles and further forms numerous groups of araneose cavitation bubbles on the surface of the honing stone. The oscillation of the bubble under UVH is more intense than the case under CH, and the maximum velocity of the bubble wall under UVH is higher two magnitudes than the case under CH. For lower acoustic amplitude, the dynamic behaviors of the bubble under UVH are similar to that case under CH. As increasing acoustic amplitude, the cavitation intensity of the bubble is growing increased. Honing pressure has an inhabitation effect on cavitation effect of the grinding fluid. The perfect performance of cavitation of the grinding fluid can be obtained when the device of UVH is in the resonance. However, the cavitation intensity of the grinding fluid can be growing weakened with increasing ultrasonic frequency, when the device of UVH is in the off-resonance. The experimental results agree with the theoretical and numerical analysis, which provides a method for exploring applications of the cavitation effect in

  9. LET dependence of bubbles evaporation pulses in superheated emulsion detectors

    Energy Technology Data Exchange (ETDEWEB)

    Di Fulvio, Angela; Huang, Jean; Staib, Lawrence [Yale University, Department of Diagnostic Radiology, TAC N140, New Haven, CT 06520-8043 (United States); D’Errico, Francesco [Yale University, Department of Diagnostic Radiology, TAC N140, New Haven, CT 06520-8043 (United States); Scuola di Ingegneria, Universitá di Pisa, Largo Lucio Lazzarino 1, Pisa (Italy)

    2015-06-01

    Superheated emulsion detectors are suspensions of metastable liquid droplets in a compliant inert medium. Upon interaction with ionizing radiation, the droplets evaporate, generating visible bubbles. Bubble expansion associated with the boiling of the droplets is accompanied by pressure pulses in both the sonic and ultrasonic frequency range. In this work, we analyzed the signal generated by bubble evaporation in the frequency and time domain. We used octafluoropropane (R-218) based emulsions, sensitive to both photons and neutrons. The frequency content of the detected pulses appears to extend well into the hundreds of kHz, beyond the range used in commercial devices to count bubbles as they are formed (typically 1–10 kHz). Kilohertz components characterize the early part of the waveforms, potentially containing information about the energetics of the explosive bubble initial growth phase. The power spectral density of the acoustic signal produced by neutron-induced evaporation shows a characteristic frequency pattern in the 200–400 kHz range, which is not observed when bubbles evaporate upon gamma ray-induced irradiation. For practical applications, detection of ultrasonic pulses associated with the boiling of the superheated drops can be exploited as a fast readout method, negligibly affected by mechanical ambient noise.

  10. Physical cleaning by bubbly streaming flow in an ultrasound field

    Science.gov (United States)

    Yamashita, Tatsuya; Ando, Keita

    2017-11-01

    Low-intensity ultrasonic cleaning with gas-supersaturated water is a promising method of physical cleaning without erosion; we are able to trigger cavitation bubble nucleation by weak ultrasound under gas supersaturation and thus clean material surfaces by mild bubble dynamics. Here, we perform particle image velocimetry (PIV) measurement of liquid flow and cavitation bubble translation in an ultrasonic cleaning bath driven at 28 kHz and then relate it to cleaning tests using glass slides at which silica particles are attached. The ultrasound pressure amplitude at the cleaning spot is set at 1.4 atm. We select the supersaturation level of dissolved oxygen (DO) as a parameter and control it by oxygen microbubble aeration. It follows from the PIV measurement that the liquid flow is enhanced by the cavitation bubble translation driven by acoustic radiation force; this trend becomes clearer when the bubbles appear more densely as the DO supersaturation increases. In the cleaning tests, the cleaned areas appear as straight streaks. This suggests that physical cleaning is achieved mainly by cavitation bubbles that translate in ultrasound fields.

  11. Modeling quiescent phase transport of air bubbles induced by breaking waves

    Science.gov (United States)

    Shi, Fengyan; Kirby, James T.; Ma, Gangfeng

    Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear

  12. Ground motion response to an ML 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays

    Science.gov (United States)

    Wang, Herbert F.; Zeng, Xiangfang; Miller, Douglas E.; Fratta, Dante; Feigl, Kurt L.; Thurber, Clifford H.; Mellors, Robert J.

    2018-06-01

    The PoroTomo research team deployed two arrays of seismic sensors in a natural laboratory at Brady Hot Springs, Nevada in March 2016. The 1500 m (length) × 500 m (width) × 400 m (depth) volume of the laboratory overlies a geothermal reservoir. The distributed acoustic sensing (DAS) array consisted of about 8400 m of fiber-optic cable in a shallow trench and 360 m in a well. The conventional seismometer array consisted of 238 shallowly buried three-component geophones. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 100 m in length and geophones were spaced at approximately 60 m intervals. Both DAS and conventional geophones recorded continuously over 15 d during which a moderate-sized earthquake with a local magnitude of 4.3 was recorded on 2016 March 21. Its epicentre was approximately 150 km south-southeast of the laboratory. Several DAS line segments with co-located geophone stations were used to compare signal-to-noise ratios (SNRs) in both time and frequency domains and to test relationships between DAS and geophone data. The ratios were typically within a factor of five of each other with DAS SNR often greater for P-wave but smaller for S-wave relative to geophone SNR. The SNRs measured for an earthquake can be better than for active sources because the earthquake signal contains more low-frequency energy and the noise level is also lower at those lower frequencies. Amplitudes of the sum of several DAS strain-rate waveforms matched the finite difference of two geophone waveforms reasonably well, as did the amplitudes of DAS strain waveforms with particle-velocity waveforms recorded by geophones. Similar agreement was found between DAS and geophone observations and synthetic strain seismograms. The combination of good SNR in the seismic frequency band, high-spatial density, large N and highly accurate time control among individual sensors suggests that DAS arrays have potential to assume a role in earthquake

  13. Ultra-Fine Bubble Distributions in a Plant Factory Observed by Transmission Electron Microscope with a Freeze-Fracture Replica Technique

    Directory of Open Access Journals (Sweden)

    Tsutomu Uchida

    2018-03-01

    Full Text Available Water containing ultra-fine bubbles (UFB may promote plant growth. But, as UFBs are too small to distinguish from other impurities in a nutrient solution, it is not known if UFBs survive transport from the water source to the rhizosphere. Here we use the freeze-fracture replica method and a transmission electron microscope (TEM to observe UFBs in the nutrient solutions used in a crop-growing system known as a plant factory. In this factory, TEM images taken from various points in the supply line indicate that the concentration of UFBs in the nutrient solution is conserved, starting from their addition to the nutrient solution in the buffer tank, through the peat-moss layer, all the way to the rhizosphere. Measurements also show that a thin film formed on the surface of UFBs in the nutrient solution, with greater film thickness at the rhizosphere. This film is considered to be made from the accumulation of impurities coming from solute and the peat-moss layer.

  14. Surface-bubble-modulated liquid chromatography: a new approach for manipulation of chromatographic retention and investigation of solute distribution at water/hydrophobic interfaces.

    Science.gov (United States)

    Nakamura, Keisuke; Nakamura, Hiroki; Saito, Shingo; Shibukawa, Masami

    2015-01-20

    In this paper, we present a new chromatographic method termed surface-bubble-modulated liquid chromatography (SBMLC), that has a hybrid separation medium incorporated with surface nanobubbles. Nanobubbles or nanoscale gas phases can be fixed at the interface between water and a hydrophobic material by delivering water into a dry column packed with a nanoporous material. The incorporation of a gas phase at the hydrophobic surface leads to the formation of the hybrid separation system consisting of the gas phase, hydrophobic moieties, and the water/hydrophobic interface or the interfacial water. One can change the volume of the gas phase by pressure applied to the column, which in turn alters the area of water/hydrophobic interface or the volume of the interfacial water, while the amount of the hydrophobic moiety remains constant. Therefore, this strategy provides a novel technique not only for manipulating the separation selectivity by pressure but also for elucidating the mechanism of accumulation or retention of solute compounds in aqueous solutions by a hydrophobic material. We evaluate the contributions of the interfacial water at the surface of an octadecyl bonded silica and the bonded layer itself to the retention of various solute compounds in aqueous solutions on the column packed with the material by SBMLC. The results show that the interfacial water formed at the hydrophobic surface has a key role in retention even though its volume is rather small. The manipulation of the separation selectivity of SBMLC for some organic compounds by pressure is demonstrated.

  15. Shallow-Water Mud Acoustics

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Shallow-Water Mud Acoustics William L. Siegmann...models and methods that explain observed material and acoustic properties of different physical types of shallow-ocean mud sediments. Other goals...are to assess prior data relating to the acoustic properties of mud and to provide guidance in the development and interpretation of experiments. A

  16. First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering

    Science.gov (United States)

    Baxter, D.; Chen, C. J.; Crisler, M.; Cwiok, T.; Dahl, C. E.; Grimsted, A.; Gupta, J.; Jin, M.; Puig, R.; Temples, D.; Zhang, J.

    2017-06-01

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a Cf 252 neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19 ±6 keV (1 σ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3 ×10-7 bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF3 I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils, while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.

  17. Bubble clustering in a glass of stout beer

    Science.gov (United States)

    Iwatsubo, Fumiya; Watamura, Tomoaki; Sugiyama, Kazuyasu

    2017-11-01

    To clarify why the texture in stout beer poured into a pint glass descends, we investigated local time development of the void fraction and velocity of bubbles. The propagation of the number density distribution, i.e. the texture, appearing near the inclined wall is observed. We visualized individual advective bubbles near the inclined wall by microscope and measured the local void fraction using brightness of images while the velocity of bubbles by means of Particle Tracking Velocimetry. As the result of measurements, we found the local void fraction and the bubbles advection velocity increase and decrease repeatedly with a time delay. We conclude the texture pattern is composed of fluid blobs which contain less bubbles; extruding and suction flows respectively toward and from the interior of the container form respectively in front and back of the blobs.

  18. Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis.

    Science.gov (United States)

    Tezel, Ahmet; Mitragotri, Samir

    2003-12-01

    Interactions of acoustic cavitation bubbles with biological tissues play an important role in biomedical applications of ultrasound. Acoustic cavitation plays a particularly important role in enhancing transdermal transport of macromolecules, thereby offering a noninvasive mode of drug delivery (sonophoresis). Ultrasound-enhanced transdermal transport is mediated by inertial cavitation, where collapses of cavitation bubbles microscopically disrupt the lipid bilayers of the stratum corneum. In this study, we describe a theoretical analysis of the interactions of cavitation bubbles with the stratum corneum lipid bilayers. Three modes of bubble-stratum corneum interactions including shock wave emission, microjet penetration into the stratum corneum, and impact of microjet on the stratum corneum are considered. By relating the mechanical effects of these events on the stratum corneum structure, the relationship between the number of cavitation events and collapse pressures with experimentally measured increase in skin permeability was established. Theoretical predictions were compared to experimentally measured parameters of cavitation events.

  19. Nonlinear Korteweg-de Vries-Burger equation for ion-acoustic shock waves in the presence of kappa distributed electrons and positrons

    International Nuclear Information System (INIS)

    Shah, Asif; Saeed, R

    2011-01-01

    The ion-acoustic shock waves are studied in electron-positron-ion plasma. The plasma system is composed of three components, specifically relativistic adiabatic ions, kappa distributed electrons and positrons. The Korteweg-de Vries-Burger equation is derived, solved analytically. The effects of plasma parameters on the shock strength and steepness are investigated. The numerical results are presented graphically for illustration. The results may have importance in non-thermal and relativistic plasmas of pulsar magnetosphere (Arons 2009 Astrophys. Space Sci. Library 357 373; Blasi and Amato arXiv:1007.4745V1 [astro-Ph.HE]).

  20. Bifurcations of nonlinear ion acoustic travelling waves in the frame of a Zakharov-Kuznetsov equation in magnetized plasma with a kappa distributed electron

    International Nuclear Information System (INIS)

    Kumar Samanta, Utpal; Saha, Asit; Chatterjee, Prasanta

    2013-01-01

    Bifurcations of nonlinear propagation of ion acoustic waves (IAWs) in a magnetized plasma whose constituents are cold ions and kappa distributed electron are investigated using a two component plasma model. The standard reductive perturbation technique is used to derive the Zakharov-Kuznetsov (ZK) equation for IAWs. By using the bifurcation theory of planar dynamical systems to this ZK equation, the existence of solitary wave solutions and periodic travelling wave solutions is established. All exact explicit solutions of these travelling waves are determined. The results may have relevance in dense space plasmas

  1. Dark Matter Search Results from the PICO-2L C3F8 Bubble Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C.; Ardid, M.; Asner, David M.; Baxter, D.; Behnke, E.; Bhattacharjee, P. S.; Borsodi, H.; Bou-Cabo, M.; Brice, S. J.; Broemmelsiek, D.; Clark, K.; Collar, J. I.; Cooper, P. S.; Crisler, M.; Dahl, C. E.; Daley, S.; Das, Madhusmita; Debris, F.; Dhungana, N.; Farine, J.; Felis, I.; Filgas, R.; Fines-Neuschild, M.; Girard, Francoise; Giroux, G.; Hai, M.; Hall, Jeter C.; Harris, O.; Jackson, C. M.; Jin, M.; Krauss, C. B.; Lafreniere, M.; Laurin, M.; Lawson, I.; Levine, I.; Lippincott, W. H.; Mann, E.; Martin, J. P.; Maurya, D.; Mitra, Pitam; Neilson, R.; Noble, A. J.; Plante, A.; Podviianiuk, R. B.; Priya, S.; Robinson, A. E.; Ruschman, M.; Scallon, O.; Seth, S.; Sonnenschein, Andrew; Starinski, N.; Stekl, I.; Vazquez-Jauregui, E.; Wells, J.; Wichoski, U.; Zacek, V.; Zhang, J.

    2015-06-12

    New data are reported from the operation of a 2-liter C3F8 bubble chamber in the 2100 meter deep SNOLAB underground laboratory, with a total exposure of 211.5 kg-days at four different recoil energy thresholds ranging from 3.2 keV to 8.1 keV. These data show that C3F8 provides excellent electron recoil and alpha rejection capabilities at very low thresholds, including the rst observation of a dependence of acoustic signal on alpha energy. Twelve single nuclear recoil event candidates were observed during the run. The candidate events exhibit timing characteristics that are not consistent with the hypothesis of a uniform time distribution, and no evidence for a dark matter signal is claimed. These data provide the most sensitive direct detection constraints on WIMP-proton spin-dependent scattering to date, with signicant sensitivity at low WIMP masses for spin-independent WIMP-nucleon scattering.

  2. Critical scattering by bubbles

    International Nuclear Information System (INIS)

    Fiedler-Ferrari, N.; Nussenzveig, H.M.

    1986-11-01

    We apply the complex angular momentum theory to the problem of the critical scattering of light by spherical cavities in the high frequency limit (permittivity greater than the external media) (e.g, air bubble in water) (M.W.O.) [pt

  3. Heavy liquid bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    The CERN Heavy liquid bubble chamber being installed in the north experimental hall at the PS. On the left, the 1180 litre body; in the centre the magnet, which can produce a field of 26 800 gauss; on the right the expansion mechanism.

  4. MISSING: BUBBLE CHAMBER LENS

    CERN Multimedia

    2001-01-01

    Would the person who borrowed the large bubble chamber lens from the Microcosm workshops on the ISR please return it. This is a much used piece from our object archives. If anybody has any information about the whereabouts of this object, please contact Emma.Sanders@cern.ch Thank you

  5. BEBC bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    Looking up into the interior of BEBC bubble chamber from the expansion cylinder. At the top of the chamber two fish-eye lenses are installed and three other fish-eye ports are blanked off. In the centre is a heat exchanger.

  6. Convection in a volcanic conduit recorded by bubbles

    Science.gov (United States)

    Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Gonnermann, Helge M.; Swanson, Donald; Houghton, Bruce F.; Orr, Tim R.; Patrick, Matthew R.

    2013-01-01

    Microtextures of juvenile pyroclasts from Kīlauea’s (Hawai‘i) early A.D. 2008 explosive activity record the velocity and depth of convection within the basaltic magma-filled conduit. We use X-ray microtomography (μXRT) to document the spatial distribution of bubbles. We find small bubbles (radii from 5 μm to 70 μm) in a halo surrounding larger millimeter-size bubbles. This suggests that dissolved water was enriched around the larger bubbles—the opposite of what is expected if bubbles grow as water diffuses into the bubble. Such volatile enrichment implies that the volatiles within the large bubbles were redissolving into the melt as they descended into the conduit by the downward motion of convecting magma within the lava lake. The thickness of the small bubble halo is ∼100–150 μm, consistent with water diffusing into the melt on time scales on the order of 103 s. Eruptions, triggered by rockfall, rapidly exposed this magma to lower pressures, and the haloes of melt with re-dissolved water became sufficiently supersaturated to cause nucleation of the population of smaller bubbles. The required supersaturation pressures are consistent with a depth of a few hundred meters and convection velocities of the order of 0.1 m s−1, similar to the circulation velocity observed on the surface of the Halema‘uma‘u lava lake.

  7. Bubble dynamics and bubble-induced turbulence of a single-bubble chain

    Science.gov (United States)

    Lee, Joohyoung; Park, Hyungmin

    2016-11-01

    In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.

  8. Bubble properties of heterogeneous bubbly flow in a square bubble column

    NARCIS (Netherlands)

    Bai, Wei; Deen, Niels G.; Kuipers, J.A.M.

    2010-01-01

    The present work focuses on the measurements of bubble properties in heterogeneous bubbly flows in a square bubble column. A four-point optical fibre probe was used for this purpose. The accuracy and intrusive effect of the optical probe was investigated first. The results show that the optical

  9. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  10. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  11. Random generation of bubble sizes on the heated wall during subcooled boiling

    International Nuclear Information System (INIS)

    Koncar, B.; Mavko, B.

    2003-01-01

    In subcooled flow boiling, a locally averaged bubble diameter significantly varies in the transverse direction to the flow. From the experimental data of Bartel, a bent crosssectional profile of local bubble diameter with the maximum value shifted away from the heated wall may be observed. In the present paper, the increasing part of the profile (near the heated wall) is explained by a random generation of bubble sizes on the heated wall. The hypothesis was supported by a statistical analysis of different CFD simulations, varying by the size of the generated bubble (normal distribution) and the number of generated bubbles per unit surface. Local averaging of calculated void fraction distributions over different bubble classes was performed. The increasing curve of the locally averaged bubble diameter in the near-wall region was successfully predicted. (author)

  12. Controlled Acoustic Bass System (CABS) A Method to Achieve Uniform Sound Field Distribution at Low Frequencies in Rectangular Rooms

    DEFF Research Database (Denmark)

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    2008-01-01

    The sound field produced by loudspeakers at low frequencies in small- and medium-size rectangular listening rooms is highly nonuniform due to the multiple reflections and diffractions of sound on the walls and different objects in the room. A new method, called controlled acoustic bass system (CA......-frequency range. CABS has been simulated and measured in two different standard listening rooms with satisfactory results....

  13. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  14. Use of an ultrasonic reflectance technique to examine bubble size changes in dough

    Science.gov (United States)

    Strybulevych, A.; Leroy, V.; Shum, A. L.; Koksel, H. F.; Scanlon, M. G.; Page, J. H.

    2012-12-01

    Bread quality largely depends on the manner in which bubbles are created and manipulated in the dough during processing. We have developed an ultrasonic reflectance technique to monitor bubbles in dough, even at high volume fractions, where near the bubble resonances it is difficult to make measurements using transmission techniques. A broadband transducer centred at 3.5 MHz in a normal incidence wave reflection set-up is used to measure longitudinal velocity and attenuation from acoustic impedance measurements. The technique is illustrated by examining changes in bubbles in dough due to two very different physical effects. In dough made without yeast, a peak in attenuation due to bubble resonance is observed at approximately 2 MHz. This peak diminishes rapidly and shifts to lower frequencies, indicative of Ostwald ripening of bubbles within the dough. The second effect involves the growth of bubble sizes due to gas generated by yeast during fermentation. This process is experimentally challenging to investigate with ultrasound because of very high attenuation. The reflectance technique allows the changes of the velocity and attenuation during fermentation to be measured as a function of frequency and time, indicating bubble growth effects that can be monitored even at high volume fractions of bubbles.

  15. Use of an ultrasonic reflectance technique to examine bubble size changes in dough

    International Nuclear Information System (INIS)

    Strybulevych, A; Leroy, V; Page, J H; Shum, A L; Koksel, H F; Scanlon, M G

    2012-01-01

    Bread quality largely depends on the manner in which bubbles are created and manipulated in the dough during processing. We have developed an ultrasonic reflectance technique to monitor bubbles in dough, even at high volume fractions, where near the bubble resonances it is difficult to make measurements using transmission techniques. A broadband transducer centred at 3.5 MHz in a normal incidence wave reflection set-up is used to measure longitudinal velocity and attenuation from acoustic impedance measurements. The technique is illustrated by examining changes in bubbles in dough due to two very different physical effects. In dough made without yeast, a peak in attenuation due to bubble resonance is observed at approximately 2 MHz. This peak diminishes rapidly and shifts to lower frequencies, indicative of Ostwald ripening of bubbles within the dough. The second effect involves the growth of bubble sizes due to gas generated by yeast during fermentation. This process is experimentally challenging to investigate with ultrasound because of very high attenuation. The reflectance technique allows the changes of the velocity and attenuation during fermentation to be measured as a function of frequency and time, indicating bubble growth effects that can be monitored even at high volume fractions of bubbles.

  16. Acoustic Neuroma

    Science.gov (United States)

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  17. Interaction between shock wave and single inertial bubbles near an elastic boundary.

    Science.gov (United States)

    Sankin, G N; Zhong, P

    2006-10-01

    The interaction of laser-generated single inertial bubbles (collapse time = 121 mus) near a silicon rubber membrane with a shock wave (55 MPa in peak pressure and 1.7 mus in compressive pulse duration) is investigated. The interaction leads to directional, forced asymmetric collapse of the bubble with microjet formation toward the surface. Maximum jet penetration into the membrane is produced during the bubble collapse phase with optimal shock wave arrival time and stand-off distance. Such interaction may provide a unique acoustic means for in vivo microinjection, applicable to targeted delivery of macromolecules and gene vectors to biological tissues.

  18. Dynamics of gas bubble growth in oil-refrigerant mixtures under isothermal decompression

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Joao Paulo; Barbosa Junior, Jader R.; Prata, Alvaro T. [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Mechanical Engineering], Emails: jpdias@polo.ufsc.br, jrb@polo.ufsc.br, prata@polo.ufsc.br

    2010-07-01

    This paper proposes a numerical model to predict the growth of gaseous refrigerant bubbles in oil-refrigerant mixtures with high contents of oil subjected to isothermal decompression. The model considers an Elementary Cell (EC) in which a spherical bubble is surrounded by a concentric and spherical liquid layer containing a limited amount of dissolved liquid refrigerant. The pressure reduction in the EC generates a concentration gradient at the bubble interface and the refrigerant is transported to the bubble by molecular diffusion. After a sufficiently long period of time, the concentration gradient in the liquid layer and the bubble internal pressure reach equilibrium and the bubble stops growing, having attained its stable radius. The equations of momentum and chemical species conservation for the liquid layer, and the mass balance at the bubble interface are solved via a coupled finite difference procedure to determine the bubble internal pressure, the refrigerant radial concentration distribution and the bubble growth rate. Numerical results obtained for a mixture of ISO VG10 ester oil and refrigerant HFC-134a showed that bubble growth dynamics depends on model parameters like the initial bubble radius, initial refrigerant concentration in the liquid layer, decompression rate and EC temperature. Despite its simplicity, the model showed to be a potential tool to predict bubble growth and foaming which may result from important phenomena occurring inside refrigeration compressors such as lubrication of sliding parts and refrigerant degassing from the oil stored in oil sump during compressor start-up. (author)

  19. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  20. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  1. Experimental Investigation of Large-Scale Bubbly Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Zboray, R.; Simiano, M.; De Cachard, F

    2004-03-01

    Carefully planned and instrumented experiments under well-defined boundary conditions have been carried out on large-scale, isothermal, bubbly plumes. The data obtained is meant to validate newly developed, high-resolution numerical tools for 3D transient, two-phase flow modelling. Several measurement techniques have been utilised to collect data from the experiments: particle image velocimetry, optical probes, electromagnetic probes, and visualisation. Bubble and liquid velocity fields, void-fraction distributions, bubble size and interfacial-area-concentration distributions have all been measured in the plume region, as well as recirculation velocities in the surrounding pool. The results obtained from the different measurement techniques have been compared. In general, the two-phase flow data obtained from the different techniques are found to be consistent, and of high enough quality for validating numerical simulation tools for 3D bubbly flows. (author)

  2. Experimental Investigation of Large-Scale Bubbly Plumes

    International Nuclear Information System (INIS)

    Zboray, R.; Simiano, M.; De Cachard, F.

    2004-01-01

    Carefully planned and instrumented experiments under well-defined boundary conditions have been carried out on large-scale, isothermal, bubbly plumes. The data obtained is meant to validate newly developed, high-resolution numerical tools for 3D transient, two-phase flow modelling. Several measurement techniques have been utilised to collect data from the experiments: particle image velocimetry, optical probes, electromagnetic probes, and visualisation. Bubble and liquid velocity fields, void-fraction distributions, bubble size and interfacial-area-concentration distributions have all been measured in the plume region, as well as recirculation velocities in the surrounding pool. The results obtained from the different measurement techniques have been compared. In general, the two-phase flow data obtained from the different techniques are found to be consistent, and of high enough quality for validating numerical simulation tools for 3D bubbly flows. (author)

  3. Bubble nucleation dynamics in 3He/4He mixture by holographic interferometry

    International Nuclear Information System (INIS)

    Morikawa, M; Abe, H; Nomura, R; Okuda, Y

    2009-01-01

    We were able to nucleate a gas bubble in the diluted phase of 3 He- 4 He mixture by a 1 ms width strong sound pulse. The nucleated bubble became large and detached from the bottom transducer and was pushed out to the bulk liquid by the acoustic wave pulse. The bubble then repeatedly expanded and contracted a few times and finally disappeared. The overall motion of the bubble was traced by a high speed camera with a time resolution of 1 ms. We are attempting to investigate the small density fluctuation around the bubble by incorporating holographic interferometry technology. The measurement was done at T=0.35 K for the phase separated mixture at saturated vapor pressure. An acoustic wave transducer was located at the bottom of the cell, so the bubble was nucleated in the dilute phase of the mixture. We resolved the density fluctuation as small as Δρ/ρ = 2 x 10 -6 in the dilute phase with the sample width of 25 mm, which could not be obtained by other methods. It was found that there appeared a less dense region of -Δρ/ρ ∼ 1.46 x 10 -3 just above the bubble. The bubble appeared just after the pulse was turned off, but this less dense region appeared prior to the emergence of the bulk bubble. It should be an important information about the bubble nucleation mechanism. This very high sensitivity of holographic interferometry with respect to the density fluctuation could be widely used in quantum liquid.

  4. Modeling the dynamics of single-bubble sonoluminescence

    International Nuclear Information System (INIS)

    Vignoli, Lucas L; De Barros, Ana L F; Thomé, Roberto C A; Nogueira, A L M A; Paschoal, Ricardo C; Rodrigues, Hilário

    2013-01-01

    Sonoluminescence (SL) is the phenomenon in which acoustic energy is (partially) transformed into light. It may occur by means of one bubble or many bubbles of gas inside a liquid medium, giving rise to the terms single-bubble and multi-bubble sonoluminescence (SBSL and MBSL). In recent years some models have been proposed to explain this phenomenon, but there is still no complete theory for the light-emission mechanism (especially in the case of SBSL). In this paper, we do not address this more complicated specific issue, but only present a simple model describing the dynamical behavior of the sonoluminescent bubble in the SBSL case. Using simple numerical techniques within the Matlab software package, we discuss solutions that consider various possibilities for some of the parameters involved: liquid compressibility, surface tension, viscosity and type of gas. The model may be used for an introductory study of SL on undergraduate or graduate physics courses, and as a clarifying example of a physical system exhibiting large nonlinearity. (paper)

  5. Argonne Bubble Experiment Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations. The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.

  6. Influence of Bubble-Bubble interactions on the macroscale circulation patterns in a bubbling gas-solid fluidized bed

    NARCIS (Netherlands)

    Laverman, J.A.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    The macro-scale circulation patterns in the emulsion phase of a gas-solid fluidized bed in the bubbling regime have been studied with a 3D Discrete Bubble Model. It has been shown that bubble-bubble interactions strongly influence the extent of the solids circulation and the bubble size

  7. Wire-Mesh Tomography Measurements of Void Fraction in Rectangular Bubble Columns

    International Nuclear Information System (INIS)

    Reddy Vanga, B.N.; Lopez de Bertodano, M.A.; Zaruba, A.; Prasser, H.M.; Krepper, E.

    2004-01-01

    Bubble Columns are widely used in the process industry and their scale-up from laboratory scale units to industrial units have been a subject of extensive study. The void fraction distribution in the bubble column is affected by the column size, superficial velocity of the dispersed phase, height of the liquid column, size of the gas bubbles, flow regime, sparger design and geometry of the bubble column. The void fraction distribution in turn affects the interfacial momentum transfer in the bubble column. The void fraction distribution in a rectangular bubble column 10 cm wide and 2 cm deep has been measured using Wire-Mesh Tomography. Experiments were performed in an air-water system with the column operating in the dispersed bubbly flow regime. The experiments also serve the purpose of studying the performance of wire-mesh sensors in batch flows. A 'wall peak' has been observed in the measured void fraction profiles, for the higher gas flow rates. This 'wall peak' seems to be unique, as this distribution has not been previously reported in bubble column literature. Low gas flow rates yielded the conventional 'center peak' void profile. The effect of column height and superficial gas velocity on the void distribution has been investigated. Wire-mesh Tomography also facilitates the measurement of bubble size distribution in the column. This paper presents the measurement principle and the experimental results for a wide range of superficial gas velocities. (authors)

  8. Influence of surface conditions in nucleate boiling--the concept of bubble flux density

    International Nuclear Information System (INIS)

    Shoukri, M.; Judd, R.L.

    1978-01-01

    A study of the influence of surface conditions in nucleate pool boiling is presented. The surface conditions are represented by the number and distribution of the active nucleation sites as well as the size and size distribution of the cavities that constitute the nucleation sites. The heat transfer rate during nucleate boiling is shown to be influenced by the surface condition through its effect on the number and distribution of the active nucleation sites as well as the frequency of bubble departure from each of these different size cavities. The concept of bubble flux density, which is a function of both the active site density and frequency of bubble departure, is introduced. A method of evaluating the bubble flux density is proposed and a uniform correlation between the boiling heat flux and the bubble flux density is found to exist for a particular solid-liquid combination irrespective of the surface finish within the region of isolated bubbles

  9. Hydrodynamics of circulating and bubbling fluidized beds

    International Nuclear Information System (INIS)

    Gidaspow, D.P.; Tsuo, Y.P.; Ding, J.

    1991-01-01

    This paper reports that a review of modeling of the hydrodynamics of fluidization of bubbling beds showed that inviscid two-fluid models were able to predict a great deal of the behavior of bubbling beds because the dominant mechanism of energy dissipation is the drag between the particles and the fluid. The formation, the growth and the bursting of bubbles were predicted. Predicted wall-to-bed heat transfer coefficients and velocity profiles of jets agreed with measurements. Time average porosity distributions agreed with measurements done using gamma-ray densitometers without the use of any adjustable parameters. However, inviscid models could not correctly predict rates of erosion around tubes immersed into fluidized beds. To correctly model such behavior, granular stresses involving solids viscosity were added into the computer model. This viscosity arises due to random collision of particles. Several models fro this viscosity were investigated and the results compared to measurements of solids distributions in two-dimensional beds and to particle velocities reported in the literature. While in the case of bubbling beds the solids viscosity plays the role of a correction, modeling of a circulating fluidized bed (CFB) without a viscosity is not possible. Recent experimental data obtained at IIT and at IGT show that in CFB the solids viscous dissipation is responsible for as much as half of the pressure drop. From such measurement, solids viscosities were computed. These were used in the two fluid hydrodynamic model, to predict radial solids distributions and solids velocities which matched the experimental distributions. Most important, the model predicted cluster formation and transient internal circulation which is responsible for the favorable characteristics of CFBs, such as good wall-to-bed heat transfer. Video tape movies of computations compared favorably with high speed movies of the experiments

  10. Acoustic performance of low pressure axial fan rotors with different blade chord length and radial load distribution

    Science.gov (United States)

    Carolus, Thomas

    The paper examines the acoustic and aerodynamic performance of low-pressure axial fan rotors with a hub/tip ratio of 0.45. Six rotors were designed for the same working point by means of the well-known airfoil theory. The condition of an equilibrium between the static pressure gradient and the centrifugal forces is maintained. All rotors have unequally spaced blades to diminish tonal noise. The rotors are tested in a short cylindrical housing without guide vanes. All rotors show very similar flux-pressure difference characteristics. The peak efficiency and the noise performance is considerably influenced by the chosen blade design. The aerodynamically and acoustically optimal rotor is the one with the reduced load at the hub and increased load in the tip region under satisfied equilibrium conditions. It runs at the highest aerodynamic efficiency, and its noise spectrum is fairly smooth. The overall sound pressure level of this rotor is up to 8 dB (A) lower compared to the other rotors under consideration.

  11. EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R; Michael Restivo, M

    2008-06-26

    The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.

  12. On the Clouds of Bubbles Formed by Breaking Wind-Waves in Deep Water, and their Role in Air -- Sea Gas Transfer

    Science.gov (United States)

    Thorpe, S. A.

    1982-02-01

    Clouds of small bubbles generated by wind waves breaking and producing whitecaps in deep water have been observed below the surface by using an inverted echo sounder. The bubbles are diffused down to several metres below the surface by turbulence against their natural tendency to rise. Measurements have been made at two sites, one in fresh water at Loch Ness and the other in the sea near Oban, northwest Scotland. Sonagraph records show bubble clouds of two distinct types, `columnar clouds' which appear in unstable or convective conditions when the air temperature is less than the surface water temperature, and `billow clouds' which appear in stable conditions when the air temperature exceeds that of the water. Clouds penetrate deeper as the wind speed increases, and deeper in convective conditions than in stable conditions at the same wind speed. The response to a change in wind speed occurs in a period of only a few minutes. Measurements of the acoustic scattering cross section per unit volume, Mv, of the bubbles have been made at several depths. The distributions of Mv at constant depth are close to logarithmic normal. The time-averaged value of Mv, {M}v, decreases exponentially with depth over scales of 40-85 cm (winds up to 12 m s-1),, the scale increasing as the wind increases. Values of {M}v at the same depth and at the same wind speed are greater in the sea than in the fresh-water loch, even at smaller fetches. Estimates have been made of the least mean vertical speed at which bubbles must be advected for them to reach the observed depths. Several centimetres per second are needed, the speeds increasing with wind. Results depend on the conditions at the surfaces of the bubbles, that is whether they are covered by a surface active-film. The presence of oxygen (or gases other than nitrogen) in the gas composing the bubbles appears not to be important in determining their general behaviour. The presence of turbulence in the water also appears unlikely to affect

  13. Method of generating energy by acoustically induced cavitation fusion and reactor therefor

    International Nuclear Information System (INIS)

    Flynn, H.G.

    1982-01-01

    Two different cavitation fusion reactors (cfr's) are disclosed. Each comprises a chamber containing a liquid (host) metal such as lithium or an alloy thereof. Acoustical horns in the chamber walls operate to vary the ambient pressure in the liquid metal, creating therein small bubbles which are caused to grow to maximum sizes and then collapse violently in two steps. In the first stage the bubble contents remain at the temperature of the host liquid, but in the second stage the increasing speed of collapse causes an adiabatic compression of the bubble contents, and of the thin shell of liquid surrounding the bubble. Application of a positive pressure on the bubble accelerates this adiabatic stage, and causes the bubble to contract to smaller radius, thus increasing maximum temperatures and pressures reached within the bubble. At or near its minimum radius the bubble generates a very intense shock wave, creating high pressures and temperatures in the host liquid. These extremely high pressures and temperatures occur both within the bubbles and in the host liquid, and cause hydrogen isotopes in the bubbles and liquid to undergo thermonuclear reactions. In one type of cfr the thermonuclear reaction is generated by cavitation within the liquid metal itself, and in the other type the reaction takes place primarily within the bubbles. The fusion reactions generate energy that is absorbed as heat by the liquid metal, and this heat is removed from the liquid by conduction through the acoustical horns to an external heat exchanger, without any pumping of the liquid metal

  14. Rational Asset Pricing Bubbles Revisited

    OpenAIRE

    Jan Werner

    2012-01-01

    Price bubble arises when the price of an asset exceeds the asset's fundamental value, that is, the present value of future dividend payments. The important result of Santos and Woodford (1997) says that price bubbles cannot exist in equilibrium in the standard dynamic asset pricing model with rational agents as long as assets are in strictly positive supply and the present value of total future resources is finite. This paper explores the possibility of asset price bubbles when either one of ...

  15. Artificial neural network for bubbles pattern recognition on the images

    International Nuclear Information System (INIS)

    Poletaev, I E; Pervunin, K S; Tokarev, M P

    2016-01-01

    Two-phase bubble flows have been used in many technological and energy processes as processing oil, chemical and nuclear reactors. This explains large interest to experimental and numerical studies of such flows last several decades. Exploiting of optical diagnostics for analysis of the bubble flows allows researchers obtaining of instantaneous velocity fields and gaseous phase distribution with the high spatial resolution non-intrusively. Behavior of light rays exhibits an intricate manner when they cross interphase boundaries of gaseous bubbles hence the identification of the bubbles images is a complicated problem. This work presents a method of bubbles images identification based on a modern technology of deep learning called convolutional neural networks (CNN). Neural networks are able to determine overlapping, blurred, and non-spherical bubble images. They can increase accuracy of the bubble image recognition, reduce the number of outliers, lower data processing time, and significantly decrease the number of settings for the identification in comparison with standard recognition methods developed before. In addition, usage of GPUs speeds up the learning process of CNN owning to the modern adaptive subgradient optimization techniques. (paper)

  16. Intraluminal bubble dynamics induced by lithotripsy shock wave

    Science.gov (United States)

    Song, Jie; Bai, Jiaming; Zhou, Yufeng

    2016-12-01

    Extracorporeal shock wave lithotripsy (ESWL) has been the first option in the treatment of calculi in the upper urinary tract since its introduction. ESWL-induced renal injury is also found after treatment and is assumed to associate with intraluminal bubble dynamics. To further understand the interaction of bubble expansion and collapse with the vessel wall, the finite element method (FEM) was used to simulate intraluminal bubble dynamics and calculate the distribution of stress in the vessel wall and surrounding soft tissue during cavitation. The effects of peak pressure, vessel size, and stiffness of soft tissue were investigated. Significant dilation on the vessel wall occurs after contacting with rapid and large bubble expansion, and then vessel deformation propagates in the axial direction. During bubble collapse, large shear stress is found to be applied to the vessel wall at a clinical lithotripter setting (i.e. 40 MPa peak pressure), which may be the mechanism of ESWL-induced vessel rupture. The decrease of vessel size and viscosity of soft tissue would enhance vessel deformation and, consequently, increase the generated shear stress and normal stresses. Meanwhile, a significantly asymmetric bubble boundary is also found due to faster axial bubble expansion and shrinkage than in radial direction, and deformation of the vessel wall may result in the formation of microjets in the axial direction. Therefore, this numerical work would illustrate the mechanism of ESWL-induced tissue injury in order to develop appropriate counteractive strategies for reduced adverse effects.

  17. Experimental investigations and modelling on the transition from bubble to slug flow in vertical pipes

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.M.

    2003-01-01

    To qualify CFD codes for two-phase flows, they have to be equipped with constitutive laws describing the interaction between the gaseous and the liquid phases. In the case of bubble flow this particularly concerns the forces acting on the bubbles and bubble coalescence and break-up. To obtain detailed experimental data, an electrode wire-mesh sensor was used, which enables the measurement of the phase distribution with a very high resolution in space and in time. Air-water flow at ambient conditions in a vertical pipe (51.2 mm inner diameter) is investigated to have well defined boundary conditions. Local bubble size distributions are calculated from the data. The measurements were done in different distances from the gas injection device. As a result the development of bubble size distributions as well as the development of the radial gas fraction profiles can be studied. It was found, that the bubble size distribution as well as local effects determine the transition from bubble flow to slug flow. The data are used for the development of a model, which predicts the development of the bubble size distribution and the transition from bubble flow to slug flow in case of stationary flow in a vertical pipe. (orig.)

  18. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  19. Helium bubble bursting in tungsten

    International Nuclear Information System (INIS)

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-01-01

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz

  20. Optical measurement of acoustic radiation pressure of the near-field acoustic levitation through transparent object

    OpenAIRE

    Nakamura, Satoshi; Furusawa, Toshiaki; Sasao, Yasuhiro; Katsura, Kogure; Naoki, Kondo

    2013-01-01

    It is known that macroscopic objects can be levitated for few to several hundred micrometers by near-field acoustic field and this phenomenon is called near-field acoustic levitation (NFAL). Although there are various experiments conducted to measure integrated acoustic pressure on the object surface, up to now there was no direct method to measure pressure distribution. In this study we measured the acoustic radiation pressure of the near-field acoustic levitation via pressure-sensitive paint.

  1. Acoustic cloaking and transformation acoustics

    International Nuclear Information System (INIS)

    Chen Huanyang; Chan, C T

    2010-01-01

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  2. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kazumichi [Division of Mechanical and Space Engineering, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Kodama, Tetsuya [Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Takahira, Hiroyuki, E-mail: kobakazu@eng.hokudai.ac.jp [Department of Mechanical Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan)

    2011-10-07

    In the case of extracorporeal shock wave lithotripsy (ESWL), a shock wave-bubble interaction inevitably occurs near the focusing point of stones, resulting in stone fragmentation and subsequent tissue damage. Because shock wave-bubble interactions are high-speed phenomena occurring in tissue consisting of various media with different acoustic impedance values, numerical analysis is an effective method for elucidating the mechanism of these interactions. However, the mechanism has not been examined in detail because, at present, numerical simulations capable of incorporating the acoustic impedance of various tissues do not exist. Here, we show that the improved ghost fluid method (IGFM) can treat shock wave-bubble interactions in various media. Nonspherical bubble collapse near a rigid or soft tissue boundary (stone, liver, gelatin and fat) was analyzed. The reflection wave of an incident shock wave at a tissue boundary was the primary cause for the acceleration or deceleration of bubble collapse. The impulse that was obtained from the temporal evolution of pressure created by the bubble collapse increased the downward velocity of the boundary and caused subsequent boundary deformation. Results of this study showed that the IGFM is a useful method for analyzing the shock wave-bubble interaction near various tissues with different acoustic impedance.

  3. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method

    International Nuclear Information System (INIS)

    Kobayashi, Kazumichi; Kodama, Tetsuya; Takahira, Hiroyuki

    2011-01-01

    In the case of extracorporeal shock wave lithotripsy (ESWL), a shock wave-bubble interaction inevitably occurs near the focusing point of stones, resulting in stone fragmentation and subsequent tissue damage. Because shock wave-bubble interactions are high-speed phenomena occurring in tissue consisting of various media with different acoustic impedance values, numerical analysis is an effective method for elucidating the mechanism of these interactions. However, the mechanism has not been examined in detail because, at present, numerical simulations capable of incorporating the acoustic impedance of various tissues do not exist. Here, we show that the improved ghost fluid method (IGFM) can treat shock wave-bubble interactions in various media. Nonspherical bubble collapse near a rigid or soft tissue boundary (stone, liver, gelatin and fat) was analyzed. The reflection wave of an incident shock wave at a tissue boundary was the primary cause for the acceleration or deceleration of bubble collapse. The impulse that was obtained from the temporal evolution of pressure created by the bubble collapse increased the downward velocity of the boundary and caused subsequent boundary deformation. Results of this study showed that the IGFM is a useful method for analyzing the shock wave-bubble interaction near various tissues with different acoustic impedance.

  4. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method

    Science.gov (United States)

    Kobayashi, Kazumichi; Kodama, Tetsuya; Takahira, Hiroyuki

    2011-10-01

    In the case of extracorporeal shock wave lithotripsy (ESWL), a shock wave-bubble interaction inevitably occurs near the focusing point of stones, resulting in stone fragmentation and subsequent tissue damage. Because shock wave-bubble interactions are high-speed phenomena occurring in tissue consisting of various media with different acoustic impedance values, numerical analysis is an effective method for elucidating the mechanism of these interactions. However, the mechanism has not been examined in detail because, at present, numerical simulations capable of incorporating the acoustic impedance of various tissues do not exist. Here, we show that the improved ghost fluid method (IGFM) can treat shock wave-bubble interactions in various media. Nonspherical bubble collapse near a rigid or soft tissue boundary (stone, liver, gelatin and fat) was analyzed. The reflection wave of an incident shock wave at a tissue boundary was the primary cause for the acceleration or deceleration of bubble collapse. The impulse that was obtained from the temporal evolution of pressure created by the bubble collapse increased the downward velocity of the boundary and caused subsequent boundary deformation. Results of this study showed that the IGFM is a useful method for analyzing the shock wave-bubble interaction near various tissues with different acoustic impedance.

  5. Simulating Bubble Plumes from Breaking Waves with a Forced-Air Venturi

    Science.gov (United States)

    Long, M. S.; Keene, W. C.; Maben, J. R.; Chang, R. Y. W.; Duplessis, P.; Kieber, D. J.; Beaupre, S. R.; Frossard, A. A.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.

    2017-12-01

    It has been hypothesized that the size distribution of bubbles in subsurface seawater is a major factor that modulates the corresponding size distribution of primary marine aerosol (PMA) generated when those bubbles burst at the air-water interface. A primary physical control of the bubble size distribution produced by wave breaking is the associated turbulence that disintegrates larger bubbles into smaller ones. This leads to two characteristic features of bubble size distributions: (1) the Hinze scale which reflects a bubble size above which disintegration is possible based on turbulence intensity and (2) the slopes of log-linear regressions of the size distribution on either side of the Hinze scale that indicate the state of plume evolution or age. A Venturi with tunable seawater and forced air flow rates was designed and deployed in an artificial PMA generator to produce bubble plumes representative of breaking waves. This approach provides direct control of turbulence intensity and, thus, the resulting bubble size distribution characterizable by observations of the Hinze scale and the simulated plume age over a range of known air detrainment rates. Evaluation of performance in different seawater types over the western North Atlantic demonstrated that the Venturi produced bubble plumes with parameter values that bracket the range of those observed in laboratory and field experiments. Specifically, the seawater flow rate modulated the value of the Hinze scale while the forced-air flow rate modulated the plume age parameters. Results indicate that the size distribution of sub-surface bubbles within the generator did not significantly modulate the corresponding number size distribution of PMA produced via bubble bursting.

  6. Variable charge dust acoustic solitary waves in a dusty plasma with a q-nonextensive electron velocity distribution

    International Nuclear Information System (INIS)

    Amour, Rabia; Tribeche, Mouloud

    2010-01-01

    A first theoretical work is presented to study variable charge dust acoustic solitons within the theoretical framework of the Tsallis statistical mechanics. Our results reveal that the spatial patterns of the variable charge solitary wave are significantly modified by electron nonextensive effects. In particular, it may be noted that for -1 d becomes more negative and the dust grains localization (accumulation) less pronounced. The electrons are locally expelled and pushed out of the region of the soliton's localization. This electron depletion becomes less effective as the electrons evolve far away from their thermal equilibrium. The case q>1 provides qualitatively opposite results: electron nonextensivity makes the solitary structure more spiky. Our results should help in providing a good fit between theoretical and experimental results.

  7. Bubble Coalescence: Effect of Bubble Approach Velocity and Liquid Viscosity

    Czech Academy of Sciences Publication Activity Database

    Orvalho, Sandra; Růžička, Marek; Olivieri, G.; Marzocchella, A.

    2015-01-01

    Roč. 134, SEP 29 (2015), s. 205-216 ISSN 0009-2509 R&D Projects: GA MŠk(CZ) LD13018 Institutional support: RVO:67985858 Keywords : bubble coalescence * bubble approach velocity * liquid viscosity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.750, year: 2015

  8. Understanding the bubbles

    DEFF Research Database (Denmark)

    Turcan, Romeo V.

    that are identified to exist between the Internet and housing market bubbles: uncertainty and sentiments. The iteration between uncertainty and sentiments leads to the emergence of the third commonality: residue. The residue is the difference between the actors’ overall sentiment about exaggerated future prospects...... all boils down to the role pricing plays vis-à-vis the emergence of a new venture and its perceived value. Being in the midst of the global economic crisis provides us with a unique opportunity to refine the proposed model, especially by understanding its temporal and contextual boundaries....

  9. The role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling artifact

    Science.gov (United States)

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Kreider, Wayne; Breshock, Michael; Williams, James C., Jr.; Bailey, Michael R.

    2018-01-01

    The color Doppler ultrasound twinkling artifact, which highlights kidney stones with rapidly changing color, has the potential to improve stone detection; however, its inconsistent appearance has limited its clinical utility. Recently, it was proposed stable crevice bubbles on the kidney stone surface cause twinkling; however, the hypothesis is not fully accepted because the bubbles have not been directly observed. In this paper, the micron or submicron-sized bubbles predicted by the crevice bubble hypothesis are enlarged in kidney stones of five primary compositions by exposure to acoustic rarefaction pulses or hypobaric static pressures in order to simultaneously capture their appearance by high-speed photography and ultrasound imaging. On filming stones that twinkle, consecutive rarefaction pulses from a lithotripter caused some bubbles to reproducibly grow from specific locations on the stone surface, suggesting the presence of pre-existing crevice bubbles. Hyperbaric and hypobaric static pressures were found to modify the twinkling artifact; however, the simple expectation that hyperbaric exposures reduce and hypobaric pressures increase twinkling by shrinking and enlarging bubbles, respectively, largely held for rough-surfaced stones but was inadequate for smoother stones. Twinkling was found to increase or decrease in response to elevated static pressure on smooth stones, perhaps because of the compression of internal voids. These results support the crevice bubble hypothesis of twinkling and suggest the kidney stone crevices that give rise to the twinkling phenomenon may be internal as well as external.

  10. The role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling artifact.

    Science.gov (United States)

    Simon, Julianna C; Sapozhnikov, Oleg A; Kreider, Wayne; Breshock, Michael; Williams, James C; Bailey, Michael R

    2018-01-09

    The color Doppler ultrasound twinkling artifact, which highlights kidney stones with rapidly changing color, has the potential to improve stone detection; however, its inconsistent appearance has limited its clinical utility. Recently, it was proposed stable crevice bubbles on the kidney stone surface cause twinkling; however, the hypothesis is not fully accepted because the bubbles have not been directly observed. In this paper, the micron or submicron-sized bubbles predicted by the crevice bubble hypothesis are enlarged in kidney stones of five primary compositions by exposure to acoustic rarefaction pulses or hypobaric static pressures in order to simultaneously capture their appearance by high-speed photography and ultrasound imaging. On filming stones that twinkle, consecutive rarefaction pulses from a lithotripter caused some bubbles to reproducibly grow from specific locations on the stone surface, suggesting the presence of pre-existing crevice bubbles. Hyperbaric and hypobaric static pressures were found to modify the twinkling artifact; however, the simple expectation that hyperbaric exposures reduce and hypobaric pressures increase twinkling by shrinking and enlarging bubbles, respectively, largely held for rough-surfaced stones but was inadequate for smoother stones. Twinkling was found to increase or decrease in response to elevated static pressure on smooth stones, perhaps because of the compression of internal voids. These results support the crevice bubble hypothesis of twinkling and suggest the kidney stone crevices that give rise to the twinkling phenomenon may be internal as well as external.

  11. Characterization of irradiation damage distribution near TiO2/SrTiO3 interfaces using coherent acoustic phonon interferometry

    International Nuclear Information System (INIS)

    Yarotski, Dmitry; Yan Li; Jia Quanxi; Taylor, Antoinette J.; Fu Engang; Wang Yongqiang; Uberuaga, Blas P.

    2012-01-01

    We apply ultrafast coherent acoustic phonon interferometry to characterize the distribution of the radiation damage near the TiO 2 /SrTiO 3 interfaces. We show that the optical and mechanical properties of anatase TiO 2 remain unaffected by the radiation dosages in the 0.1÷5 dpa (displacements per atom) range, while the degraded optical response indicates a significant defect accumulation in the interfacial region of SrTiO 3 at 0.1 dpa and subsequent amorphization at 3 dpa. Comparison between the theoretical simulations and the experimental results reveals an almost threefold reduction of the sound velocity in the irradiated SrTiO 3 layer with peak damage levels of 3 and 5 dpa.

  12. Visualization of airflow growing soap bubbles

    Science.gov (United States)

    Al Rahbi, Hamood; Bock, Matthew; Ryu, Sangjin

    2016-11-01

    Visualizing airflow inside growing soap bubbles can answer questions regarding the fluid dynamics of soap bubble blowing, which is a model system for flows with a gas-liquid-gas interface. Also, understanding the soap bubble blowing process is practical because it can contribute to controlling industrial processes similar to soap bubble blowing. In this study, we visualized airflow which grows soap bubbles using the smoke wire technique to understand how airflow blows soap bubbles. The soap bubble blower setup was built to mimic the human blowing process of soap bubbles, which consists of a blower, a nozzle and a bubble ring. The smoke wire was placed between the nozzle and the bubble ring, and smoke-visualized airflow was captured using a high speed camera. Our visualization shows how air jet flows into the growing soap bubble on the ring and how the airflow interacts with the soap film of growing bubble.

  13. Topological Acoustics

    Science.gov (United States)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  14. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  15. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  16. Bubble formation in Zr alloys under heavy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, L. Jr.; Motta, A.T. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Nuclear Engineering; Birtcher, R.C. [Argonne National Lab., IL (United States). Materials Science Div.

    1995-12-01

    Kr ions were used in the HVEM/Tandem facility at ANL to irradiate several Zr alloys, including Zircaloy-2 and -4, at 300-800 C to doses up to 2{times}10{sup 16}ion.cm{sup -2}. Both in-situ irradiation of thin foils as well as irradiation of bulk samples with an ion implanter were used in this study. For the thin foil irradiations, a distribution of small bubbles in the range of 30-100 {angstrom} was found at all temperatures with the exception of the Cr-rich Valloy where 130 {angstrom} bubbles were found. Irradiation of bulk samples at 700-800 C produced large faceted bubbles up to 300 {angstrom} after irradiation to 2{times}10{sup 16}ion.cm{sup -2}. Results are examined in context of existing models for bubble formation and growth in other metals.

  17. New mechanism for bubble nucleation: Classical transitions

    International Nuclear Information System (INIS)

    Easther, Richard; Giblin, John T. Jr; Hui Lam; Lim, Eugene A.

    2009-01-01

    Given a scalar field with metastable minima, bubbles nucleate quantum mechanically. When bubbles collide, energy stored in the bubble walls is converted into kinetic energy of the field. This kinetic energy can facilitate the classical nucleation of new bubbles in minima that lie below those of the 'parent' bubbles. This process is efficient and classical, and changes the dynamics and statistics of bubble formation in models with multiple vacua, relative to that derived from quantum tunneling.

  18. Micro-bubble morphologies following drop impacts onto a pool surface

    KAUST Repository

    Thoroddsen, Sigurdur T; Thoraval, M.-J.; Takehara, K.; Etoh, T.G.

    2012-01-01

    When a drop impacts at low velocity onto a pool surface, a hemispheric air layer cushions and can delay direct contact. Herein we use ultra-high-speed video to study the rupture of this layer, to explain the resulting variety of observed distribution of bubbles. The size and distribution of micro-bubbles is determined by the number and location of the primary punctures. Isolated holes lead to the formation of bubble necklaces when the edges of two growing holes meet, whereas bubble nets are produced by regular shedding of micro-bubbles from a sawtooth edge instability. For the most viscous liquids the air film contracts more rapidly than the capillary-viscous velocity through repeated spontaneous ruptures of the edge. From the speed of hole opening and the total volume of micro-bubbles we conclude that the air sheet ruptures when its thickness approaches ?100.

  19. Micro-bubble morphologies following drop impacts onto a pool surface

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2012-10-01

    When a drop impacts at low velocity onto a pool surface, a hemispheric air layer cushions and can delay direct contact. Herein we use ultra-high-speed video to study the rupture of this layer, to explain the resulting variety of observed distribution of bubbles. The size and distribution of micro-bubbles is determined by the number and location of the primary punctures. Isolated holes lead to the formation of bubble necklaces when the edges of two growing holes meet, whereas bubble nets are produced by regular shedding of micro-bubbles from a sawtooth edge instability. For the most viscous liquids the air film contracts more rapidly than the capillary-viscous velocity through repeated spontaneous ruptures of the edge. From the speed of hole opening and the total volume of micro-bubbles we conclude that the air sheet ruptures when its thickness approaches ?100.

  20. Tunable coupled surface acoustic cavities

    Science.gov (United States)

    de Lima, M. M.; Santos, P. V.; Kosevich, Yu. A.; Cantarero, A.

    2012-06-01

    We demonstrate the electric tuning of the acoustic field in acoustic microcavities (MCs) defined by a periodic arrangement of metal stripes within a surface acoustic delay line on LiNbO3 substrate. Interferometric measurements show the enhancement of the acoustic field distribution within a single MC, the presence of a "bonding" and "anti-bonding" modes for two strongly coupled MCs, as well as the positive dispersion of the "mini-bands" formed by five coupled MCs. The frequency and amplitude of the resonances can be controlled by the potential applied to the metal stripes.

  1. Ion-acoustic plasma turbulence

    International Nuclear Information System (INIS)

    Bychenkov, V.Y.; Silin, V.P.

    1982-01-01

    A theory is developed of the nonlinear state that is established in a plasma as a result of development of ion-acoustic instability. Account is taken simultaneously of the linear induced scattering of the waves by the ions and of the quasilinear relaxation of the electrons by the ion-acoustic pulsations. The distribution of the ion-acoustic turbulence in frequency and in angle is obtained. An Ohm's law is established and expressions are obtained for the electronic heat flux and for the relaxation time of the electron temperature in a turbulent plasma. Anomalously large absorption and scattering of the electromagnetic waves by the ion-acoustic pulsations is predicted

  2. Sonoluminescing Air Bubbles Rectify Argon

    NARCIS (Netherlands)

    Lohse, Detlef; Brenner, Michael P.; Dupont, Todd F.; Hilgenfeldt, Sascha; Johnston, Blaine

    1997-01-01

    The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the percentage of inert gas within the bubble. We propose a theory for this dependence, based on a combination of principles from sonochemistry and hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent

  3. A prediction for bubbling geometries

    OpenAIRE

    Okuda, Takuya

    2007-01-01

    We study the supersymmetric circular Wilson loops in N=4 Yang-Mills theory. Their vacuum expectation values are computed in the parameter region that admits smooth bubbling geometry duals. The results are a prediction for the supergravity action evaluated on the bubbling geometries for Wilson loops.

  4. Preparation of bubble damage detectors

    International Nuclear Information System (INIS)

    Tu Caiqing; Guo Shilun; Wang Yulan; Hao Xiuhong; Chen Changmao; Su Jingling

    1997-01-01

    Bubble damage detectors have been prepared by using polyacrylamide as detector solid and freon as detector liquid. Tests show that the prepared detectors are sensitive to fast neutrons and have proportionality between bubble number and neutron fluence within a certain range of neutron fluence. Therefore, it can be used as a fast neutron detector and a dosimeter

  5. The little holographic bubble chambers

    International Nuclear Information System (INIS)

    Herve, A.

    1983-01-01

    The lifetime study of the charmed particles has readvanced the idea to use holography for the little fast-cycle bubble chambers. A pilot experiment has been realised in 1982 with a little bubble chamber filled up with freon-115. 40000 holograms have been recorded [fr

  6. Bubble chamber: colour enhanced tracks

    CERN Multimedia

    1998-01-01

    This artistically-enhanced image of real particle tracks was produced in the Big European Bubble Chamber (BEBC). Liquid hydrogen is used to create bubbles along the paths of the particles as a piston expands the medium. A magnetic field is produced in the detector causing the particles to travel in spirals, allowing charge and momentum to be measured.

  7. Design of acoustic devices by topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard

    2003-01-01

    The goal of this study is to design and optimize structures and devices that are subjected to acoustic waves. Examples are acoustic lenses, sound walls, waveguides and loud speakers. We formulate the design problem as a topology optimization problem, i.e. distribute material in a design domain...... such that the acoustic response is optimized....

  8. Smoothing the redshift distributions of random samples for the baryon acoustic oscillations: applications to the SDSS-III BOSS DR12 and QPM mock samples

    Science.gov (United States)

    Wang, Shao-Jiang; Guo, Qi; Cai, Rong-Gen

    2017-12-01

    We investigate the impact of different redshift distributions of random samples on the baryon acoustic oscillations (BAO) measurements of D_V(z)r_d^fid/r_d from the two-point correlation functions of galaxies in the Data Release 12 of the Baryon Oscillation Spectroscopic Survey (BOSS). Big surveys, such as BOSS, usually assign redshifts to the random samples by randomly drawing values from the measured redshift distributions of the data, which would necessarily introduce fiducial signals of fluctuations into the random samples, weakening the signals of BAO, if the cosmic variance cannot be ignored. We propose a smooth function of redshift distribution that fits the data well to populate the random galaxy samples. The resulting cosmological parameters match the input parameters of the mock catalogue very well. The significance of BAO signals has been improved by 0.33σ for a low-redshift sample and by 0.03σ for a constant-stellar-mass sample, though the absolute values do not change significantly. Given the precision of the measurements of current cosmological parameters, it would be appreciated for the future improvements on the measurements of galaxy clustering.

  9. Advanced Mathematical Modeling of Sonar-Induced Bubble Growth and Coalescence in Humans and Marine Mammals

    Science.gov (United States)

    2008-09-01

    under high amplitude acoustic excitation, and which explicitly accounts for mass flux across the bubble wall. The thermometric conductivity Xg of the...where Kgo is the thermal conductivity at the reference temperature Tg0. Introducing the reference thermometric conductivity for a gas with reference

  10. Numerical investigations of single bubble oscillations generated by a dual frequency excitation

    International Nuclear Information System (INIS)

    Guédra, Matthieu; Inserra, Claude; Gilles, Bruno; Béra, Jean-Christophe

    2015-01-01

    The oscillations of a single bubble excited with a dual frequency acoustic field are numerically investigated. Computations are made for an air bubble in water exposed to an acoustic field with a linearly varying amplitude. The bubble response to an excitation containing two frequencies f 1 = 500 kHz and f 2 = 400 kHz at the same amplitude is compared to the monofrequency case where only f 1 is present. Time-frequency representations show a sharp transition in the bifrequency case, for which the low frequency component f 2 becomes resonant while the high frequency component f 1 is strongly attenuated. The temporal evolution of the power spectra reveals that the resonance of the low frequency component is correlated with the time varying mean radius of the bubble. It is also observed that the total power of the bubble response in the bifrequency case can reach almost twice the power obtained in the monofrequency case, which indicates a strong enhancement of the cavitating behavior of the bubble for this specific frequency combination. (paper)

  11. Characterizing the collapse of a cavitation bubble cloud in a focused ultrasound field

    Science.gov (United States)

    Maeda, Kazuki; Colonius, Tim

    2017-11-01

    We study the coherent collapse of clouds of cavitation bubbles generated by the passage of a pulse of ultrasound. In order to characterize such collapse, we conduct a parametric study on the dynamics of a spherical bubble cloud with a radius of r = O(1) mm interacting with traveling ultrasound waves with an amplitude of pa = O(102 -106) Pa and a wavelength of λ = O(1 - 10) mm in water. Bubbles with a radius of O(10) um are treated as spherical, radially oscillating cavities dispersed in continuous liquid phase. The volume of Lagrangian point bubbles is mapped with a regularization kernel as void fraction onto Cartesian grids that defines the Eulerian liquid phase. The flow field is solved using a WENO-based compressible flow solver. We identified that coherent collapse occurs when λ >> r , regardless of the value of pa, while it only occurs for sufficiently high pa when λ r . For the long wavelength case, the results agree with the theory on linearized dynamics of d'Agostino and Brennen (1989). We extend the theory to short wave length case. Finally, we analyze the far-field acoustics scattered by individual bubbles and correlate them with the cloud collapse, for applications to acoustic imaging of bubble cloud dynamics. Funding supported by NIH P01-DK043881.

  12. Simulation of the ultrasound-induced growth and collapse of a near-wall bubble

    Science.gov (United States)

    Boyd, Bradley; Becker, Sid

    2017-11-01

    In this study, we consider the acoustically driven growth and collapse of a cavitation bubble in a fluid medium exposed to an ultrasound field. The bubble dynamics are modelled using a compressible, inviscid, multiphase model. The numerical scheme consists of a conservative interface capturing scheme which uses the fifth-order WENO reconstruction with a maximum-principle-satisfying and positivity-preserving limiter, and the HLLC approximate Riemann flux. To model the ultrasound input, a moving boundary oscillates through a fixed grid of finite-volume cells. The growth phase of the simulation shows the rapid non-spherical growth of the near-wall bubble. Once the bubble reaches its maximum size and the collapse phase begins, the simulation shows the formation of a jet which penetrates the bubble towards the wall at the later stages of the collapse. For a bubble with an initial radius of 50 μ m and an ultrasound pressure amplitude of 200 kPa, the pressure experienced by the wall increased rapidly nearing the end of the collapse, reaching a peak pressure of 13 MPa. This model is an important development in the field as it represents the physics of acoustic cavitation in more detail than before. This work was supported by the Royal Society of New Zealand's Marsden Fund.

  13. Sinking bubbles in stout beers

    Science.gov (United States)

    Lee, W. T.; Kaar, S.; O'Brien, S. B. G.

    2018-04-01

    A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations. Here, we show that the phenomenon of sinking bubbles can be predicted using a simple analytic model. To make the model analytically tractable, we work in the limit of small bubbles and consider a simplified geometry. The model confirms both the existence of sinking bubbles and the previously proposed mechanism.

  14. Acoustic imaging in a water filled metallic pipe

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1984-04-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe

  15. Acoustic imaging in a water filled metallic pipe

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Leskovar, B.; Turko, B.T.

    1985-01-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe

  16. Dark matter limits froma 15 kg windowless bubble chamber

    Energy Technology Data Exchange (ETDEWEB)

    Szydagis, Matthew Mark [Univ. of Chicago, IL (United States)

    2011-03-01

    The COUPP collaboration has successfully used bubble chambers, a technology previously applied only to high-energy physics experiments, as direct dark matter detectors. It has produced the world's most stringent spin-dependent WIMP limits, and increasingly competitive spin-independent limits. These limits were achieved by capitalizing on an intrinsic rejection of the gamma background that all other direct detection experiments must address through high-density shielding and empirically-determined data cuts. The history of COUPP, including its earliest prototypes and latest results, is briefly discussed in this thesis. The feasibility of a new, windowless bubble chamber concept simpler and more inexpensive in design is discussed here as well. The dark matter limits achieved with a 15 kg windowless chamber, larger than any previous COUPP chamber (2 kg, 4 kg), are presented. Evidence of the greater radiopurity of synthetic quartz compared to natural is presented using the data from this 15 kg device, the first chamber to be made from synthetic quartz. The effective reconstruction of the three-dimensional positions of bubbles in a highly distorted optical field, with ninety-degree bottom lighting similar to cloud chamber lighting, is demonstrated. Another innovation described in this thesis is the use of the sound produced by bubbles recorded by an array of piezoelectric sensors as the primary means of bubble detection. In other COUPP chambers, cameras have been used as the primary trigger. Previous work on bubble acoustic signature differentiation using piezos is built upon in order to further demonstrate the ability to discriminate between alpha- and neutron-induced events.

  17. Dark matter limits from a 15 kg windowless bubble chamber

    International Nuclear Information System (INIS)

    Szydagis, Matthew Mark

    2010-01-01

    The COUPP collaboration has successfully used bubble chambers, a technology previously applied only to high-energy physics experiments, as direct dark matter detectors. It has produced the world's most stringent spin-dependent WIMP limits, and increasingly competitive spin-independent limits. These limits were achieved by capitalizing on an intrinsic rejection of the gamma background that all other direct detection experiments must address through high-density shielding and empirically-determined data cuts. The history of COUPP, including its earliest prototypes and latest results, is briefly discussed in this thesis. The feasibility of a new, windowless bubble chamber concept simpler and more inexpensive in design is discussed here as well. The dark matter limits achieved with a 15 kg windowless chamber, larger than any previous COUPP chamber (2 kg, 4 kg), are presented. Evidence of the greater radiopurity of synthetic quartz compared to natural is presented using the data from this 15 kg device, the first chamber to be made from synthetic quartz. The effective reconstruction of the three-dimensional positions of bubbles in a highly distorted optical field, with ninety-degree bottom lighting similar to cloud chamber lighting, is demonstrated. Another innovation described in this thesis is the use of the sound produced by bubbles recorded by an array of piezoelectric sensors as the primary means of bubble detection. In other COUPP chambers, cameras have been used as the primary trigger. Previous work on bubble acoustic signature differentiation using piezos is built upon in order to further demonstrate the ability to discriminate between alpha- and neutron-induced events.

  18. Towards the Characterization of the Bubble Presence in Liquid Sodium of Sodium Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Cavaro, M.; Jeannot, J.P.; Payan, C.

    2013-06-01

    In a Sodium cooled Fast Reactors (SFR), different phenomena such as gas entrainment or nucleation can lead to gaseous micro-bubbles presence in the liquid sodium of the primary vessel. Although this free gas presence has no direct impact on the core neutronics, the French Atomic Energy and Alternative Energies Commission (CEA) currently works on its characterization to, among others, check the absence of risk of large gas pocket formation and to assess the induced modifications of the sodium acoustic properties. The main objective is to evaluate the void fraction values (volume fraction of free gas) and the radii histogram of the bubbles present in liquid sodium. Acoustics and electromagnetic techniques are currently developed at CEA: - The low-frequency speed of sound measurement, which allows us to link - thanks to Wood's model - the measured speed of sound to the actual void fraction. - The nonlinear mixing of two frequencies, based on the nonlinear resonance behavior of a bubble. This technique allows knowing the radius histogram associated to a bubble cloud. Two different mixing techniques are presented in this paper: the mixing of two high frequencies and the mixing of a high and a low frequency. - The Eddy-current flowmeter (ECFM), the output signal of which is perturbed by free gas presence and in consequence allows detecting bubbles. For each technique, initial results are presented. Some of them are really promising. So far, acoustic experiments have been led with an air-water experimental set-up. Micro-bubbles clouds are generated with a dissolved air flotation device and monitored by an optical device which provides reference measurements. Generated bubbles have radii range from few micrometers to several tens of micrometers. Present and future air/water experiments are presented. Furthermore, a development plan of in-sodium tests is presented in terms of a device set-up, instrumentation, modeling tools and experiments. (authors)

  19. Effect of Micro-Bubbles in Water on Beam Patterns of Parametric Array

    Science.gov (United States)

    Hashiba, Kunio; Masuzawa, Hiroshi

    2003-05-01

    The improvement in efficiency of a parametric array by nonlinear oscillation of micro-bubbles in water is studied in this paper. The micro-bubble oscillation can increase the nonlinear coefficient of the acoustic medium. The amplitude of the difference-frequency wave along the longitudinal axis and its beam patterns in the field including the layer with micro-bubbles were analyzed using a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. As a result, the largest improvement in efficiency was obtained and a narrow parametric beam was formed by forming a layer with micro-bubbles in front of a parametric sound radiator as thick as about the shock formation distance. If the layer becomes significantly thicker than the distance, the beam of the difference-frequency wave in the far-field will become broader. If the layer is significantly thinner than the distance, the intensity level of the wave in the far-field will be too low.

  20. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang, E-mail: shenyang.hu@pnnl.gov; Burkes, Douglas E.; Lavender, Curt A.; Senor, David J.; Setyawan, Wahyu; Xu, Zhijie

    2016-10-15

    Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the formation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was developed. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn’t cause the gas bubble alignment, and fast 1-D migration of interstitials along 〈110〉 directions in the body-centered cubic U matrix causes the gas bubble alignment along 〈110〉 directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.

  1. A description of stress driven bubble growth of helium implanted tungsten

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Takahashi, Akiyuki; Nagasawa, Koji; Ghoniem, Nasr

    2009-01-01

    Low energy (<100 keV) helium implantation of tungsten has been shown to result in the formation of unusual surface morphologies over a large temperature range (700-2100 deg. C). Simulation of these macroscopic phenomena requires a multiscale approach to modeling helium transport in both space and time. We present here a multiscale helium transport model by coupling spatially-resolved kinetic rate theory (KRT) with kinetic Monte Carlo (KMC) simulation to model helium bubble nucleation and growth. The KRT-based HEROS Code establishes defect concentrations as well as stable helium bubble nuclei as a function of implantation parameters and position from the implanted surface and the KMC-based Mc-HEROS Code models the growth of helium bubbles due to migration and coalescence. Temperature- and stress-gradients can act as driving forces, resulting in biased bubble migration. The Mc-HEROS Code was modified to simulate the impact of stress gradients on bubble migration and coalescence. In this work, we report on bubble growth and gas release of helium implanted tungsten W/O stress gradients. First, surface pore densities and size distributions are compared with available experimental results for stress-free helium implantation conditions. Next, the impact of stress gradients on helium bubble evolution is simulated. The influence of stress fields on bubble and surface pore evolution are compared with stress-free simulations. It is shown that near surface stress gradients accelerate helium bubbles towards the free surface, but do not increasing average bubble diameters significantly.

  2. Light Scattering by Ice Crystals Containing Air Bubbles

    Science.gov (United States)

    Zhang, J.; Panetta, R. L.; Yang, P.; Bi, L.

    2014-12-01

    The radiative effects of ice clouds are often difficult to estimate accurately, but are very important for interpretation of observations and for climate modeling. Our understanding of these effects is primarily based on scattering calculations, but due to the variability in ice habit it is computationally difficult to determine the required scattering and absorption properties, and the difficulties are only compounded by the need to include consideration of air and carbon inclusions of the sort frequently observed in collected samples. Much of the previous work on effects of inclusions in ice particles on scattering properties has been conducted with variants of geometric optics methods. We report on simulations of scattering by ice crystals with enclosed air bubbles using the pseudo-spectral time domain method (PSTD) and improved geometric optics method (IGOM). A Bouncing Ball Model (BBM) is proposed as a parametrization of air bubbles, and the results are compared with Monte Carlo radiative transfer calculations. Consistent with earlier studies, we find that air inclusions lead to a smoothing of variations in the phase function, weakening of halos, and a reduction of backscattering. We extend these studies by examining the effects of the particular arrangement of a fixed number of bubbles, as well as the effects of splitting a given number of bubbles into a greater number of smaller bubbles with the same total volume fraction. The result shows that the phase function will not change much for stochastic distributed air bubbles. It also shows that local maxima of phase functions are smoothed out for backward directions, when we break bubbles into small ones, single big bubble scatter favors more forward scattering than multi small internal scatters.

  3. Interface tracking computations of bubble dynamics in nucleate flow boiling

    International Nuclear Information System (INIS)

    Giustini, G.

    2015-01-01

    The boiling process is of utter importance for the design and operation of water-cooled nuclear reactors. Despite continuous effort over the past decades, a fully mechanistic model of boiling in the presence of a solid surface has not yet been achieved. Uncertainties exist at fundamental level, since the microscopic phenomena governing nucleate boiling are still not understood, and as regards 'component scale' modelling, which relies heavily on empirical representations of wall boiling. Accurate models of these phenomena at sub-milli-metric scale are capable of elucidating the various processes and to produce quantitative data needed for up-scaling. Within this context, Direct Numerical Simulation (DNS) represents a powerful tool for CFD analysis of boiling flows. In this contribution, DNS coupled with an Interface Tracking method (Y. Sato, B. Niceno, Journal of Computational Physics, Volume 249, 15 September 2013, Pages 127-161) are used to analyse the hydrodynamics and heat transfer associated with heat diffusion controlled bubble growth at a solid substrate during nucleate flow boiling. The growth of successive bubbles from a single nucleation site is simulated with a computational model that includes heat conduction in the solid substrate and evaporation from the liquid film (micro-layer) present beneath the bubble. Bubble evolution is investigated and the additional (with respect to single phase convection) heat transfer mechanisms due to the ebullition cycle are quantified. The simulations show that latent heat exchange due to evaporation in the micro-layer and sensible heat exchange during the waiting time after bubble departure are the main heat transfer mechanisms. It is found that the presence of an imposed flow normal to the bubble rising path determines a complex velocity and temperature distribution near the nucleation site. This conditions can result in bubble sliding, and influence bubble shape, departure diameter and departure frequency

  4. Effect of bubble interface parameters on predicted of bubble departure diameter in a narrow channel

    International Nuclear Information System (INIS)

    Xu Jianjun; Xie Tianzhou; Zhou Wenbin; Chen Bingde; Huang Yanping

    2014-01-01

    The predicted model on the bubble departure diameter in a narrow channel is built by analysis of forces acting on the bubble, and effects of bubble interface parameters such as the bubble inclination angle, upstream contact angle, downstream contact angle and bubble contact diameter on predicted bubble departure diameters in a narrow channel are analysed by comparing with the visual experimental data. Based on the above results, the bubble interface parameters as the input parameters used to obtain the bubble departure diameter in a narrow channel are assured, and the bubble departure diameters in a narrow channel are predicted by solving the force equation. The predicted bubble departure diameters are verified by the 58 bubble departure diameters obtained from the vertical and inclined visual experiment, and the predicted results agree with the experimental results. The different forces acting on the bubble are obtained and the effect of thermal parameters in this experiment on bubble departure diameters is analysed. (authors)

  5. New evidence on the first financial bubble

    NARCIS (Netherlands)

    Frehen, R.G.P.; Goetzmann, W.; Rouwenhorst, K.G.

    2013-01-01

    The Mississippi Bubble, South Sea Bubble and the Dutch Windhandel of 1720 together represent the world's first global financial bubble. We hand-collect cross-sectional price data and investor account data from 1720 to test theories about market bubbles. Our tests suggest that innovation was a key

  6. Escaping the maze: micro-swimmers using acoustic forces to navigate

    Science.gov (United States)

    Louf, Jean-Francois; Dollet, Benjamin; Stephan, Olivier; Marmottant, Philippe

    2017-11-01

    The goal of this study is to make 3D micro-swimmers containing a bubble that can be stimulated with acoustic waves emitted by a transducer, and whose direction is accurately controlled. By using 3D micro-fabrication techniques, we designed 40x40 μm swimmers with a trapped air bubble. We then applied acoustic vibration to the bubble, which generates a strong steady flow (1-100 mm/s) behind it, an effect referred as acoustic streaming. However, independently from the orientation of the bubble and thus from the flow, the motion of the swimmer is found to be towards the transducer. This suggests that primary Bjerknes forces, i.e. acoustic radiation forces, are involved. Subsequently, using different transducers located at different points, we could be able to navigate the swimmer in a chosen direction. The next step of our study is to use a stationary wave and Bjerknes forces to bring encapsulated objects in a pressure node. Without bubbles, the effect of acoustic streaming on big objects of more than a micrometer is not sufficient to generate motion. However, with the presence of bubbles, our swimmers should be able to move. ERC BUBBLEBOOST.

  7. Comparison of Distributed Acoustic Sensing (DAS) from Fiber-Optic Cable to Three Component Geophones in an Underground Mine

    Science.gov (United States)

    Speece, M. A.; Nesladek, N. J.; Kammerer, C.; Maclaughlin, M.; Wang, H. F.; Lord, N. E.

    2017-12-01

    We conducted experiments in the Underground Education Mining Center on the Montana Tech campus, Butte, Montana, to make a direct comparison between Digital Acoustic Sensing (DAS) and three-component geophones in a mining setting. The sources used for this project where a vertical sledgehammer, oriented shear sledgehammer, and blasting caps set off in both unstemmed and stemmed drillholes. Three-component Geospace 20DM geophones were compared with three different types of fiber-optic cable: (1) Brugg strain, (2) Brugg temperature, and (3) Optical Cable Corporation strain. We attached geophones to the underground mine walls and on the ground surface above the mine. We attached fiber-optic cables to the mine walls and placed fiber-optic cable in boreholes drilled through an underground pillar. In addition, we placed fiber-optic cables in a shallow trench at the surface of the mine. We converted the DAS recordings from strain rate to strain prior to comparison with the geophone data. The setup of the DAS system for this project led to a previously unknown triggering problem that compromised the early samples of the DAS traces often including the first-break times on the DAS records. Geophones clearly recorded the explosives; however, the large amount of energy and its close distance from the fiber-optic cables seemed to compromise the entire fiber loop. The underground hammer sources produced a rough match between the DAS records and the geophone records. However, the sources on the surface of the mine, specifically the sources oriented inline with the fiber-optic cables, produced a close match between the fiber-optic traces and the geophone traces. All three types of fiber-optic cable that were in the mine produced similar results, and one type did not clearly outperform the others. Instead, the coupling of the cable to rock appears to be the most important factor determining DAS data quality. Moreover, we observed the importance of coupling in the boreholes, where

  8. Interface tracking simulations of bubbly flows in PWR relevant geometries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jun, E-mail: jfang3@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Rasquin, Michel, E-mail: michel.rasquin@colorado.edu [Aerospace Engineering Department, University of Colorado, Boulder, CO 80309 (United States); Bolotnov, Igor A., E-mail: igor_bolotnov@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2017-02-15

    Highlights: • Simulations were performed for turbulent bubbly flows in PWR subchannel geometry. • Liquid turbulence is fully resolved by direct numerical simulation approach. • Bubble behavior is captured using level-set interface tracking method. • Time-averaged single- and two-phase turbulent flow statistical quantities are obtained. - Abstract: The advances in high performance computing (HPC) have allowed direct numerical simulation (DNS) approach coupled with interface tracking methods (ITM) to perform high fidelity simulations of turbulent bubbly flows in various complex geometries. In this work, we have chosen the geometry of the pressurized water reactor (PWR) core subchannel to perform a set of interface tracking simulations (ITS) with fully resolved liquid turbulence. The presented research utilizes a massively parallel finite-element based code, PHASTA, for the subchannel geometry simulations of bubbly flow turbulence. The main objective for this research is to demonstrate the ITS capabilities in gaining new insight into bubble/turbulence interactions and assisting the development of improved closure laws for multiphase computational fluid dynamics (M-CFD). Both single- and two-phase turbulent flows were studied within a single PWR subchannel. The analysis of numerical results includes the mean gas and liquid velocity profiles, void fraction distribution and turbulent kinetic energy profiles. Two sets of flow rates and bubble sizes were used in the simulations. The chosen flow rates corresponded to the Reynolds numbers of 29,079 and 80,775 based on channel hydraulic diameter (D{sub h}) and mean velocity. The finite element unstructured grids utilized for these simulations include 53.8 million and 1.11 billion elements, respectively. This has allowed to fully resolve all the turbulence scales and the deformable interfaces of individual bubbles. For the two-phase flow simulations, a 1% bubble volume fraction was used which resulted in 17 bubbles in

  9. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.

    Science.gov (United States)

    Kanagawa, Tetsuya

    2015-05-01

    This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.

  10. Osmotic Acoustic Source

    Science.gov (United States)

    2017-09-25

    Technology Transfer at (401) 832-1511. DISTRIBUTION STATEMENT Approved for Public Release Distribution is unlimited Attorney Docket No...in the enclosure through osmosis. Valves open at a specified time after the liquid injection to free flood between the enclosure and the...the timing of the salt jets and the free-flooding valves enables a repeatable Attorney Docket No. 300070 4 of 14 acoustic pulse at low

  11. Acoustic Droplet Vaporization in Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Chung-Yin Lin

    2013-01-01

    Full Text Available This paper reviews the literature regarding the use of acoustic droplet vaporization (ADV in clinical applications of imaging, embolic therapy, and therapeutic delivery. ADV is a physical process in which the pressure waves of ultrasound induce a phase transition that causes superheated liquid nanodroplets to form gas bubbles. The bubbles provide ultrasonic imaging contrast and other functions. ADV of perfluoropentane was used extensively in imaging for preclinical trials in the 1990s, but its use declined rapidly with the advent of other imaging agents. In the last decade, ADV was proposed and explored for embolic occlusion therapy, drug delivery, aberration correction, and high intensity focused ultrasound (HIFU sensitization. Vessel occlusion via ADV has been explored in rodents and dogs and may be approaching clinical use. ADV for drug delivery is still in preclinical stages with initial applications to treat tumors in mice. Other techniques are still in preclinical studies but have potential for clinical use in specialty applications. Overall, ADV has a bright future in clinical application because the small size of nanodroplets greatly reduces the rate of clearance compared to larger contrast agent bubbles and yet provides the advantages of ultrasonographic contrast, acoustic cavitation, and nontoxicity of conventional perfluorocarbon contrast agent bubbles.

  12. Microstreaming from Sessile Semicylindrical Bubbles

    Science.gov (United States)

    Hilgenfeldt, Sascha; Rallabandi, Bhargav; Guo, Lin; Wang, Cheng

    2014-03-01

    Powerful steady streaming flows result from the ultrasonic driving of microbubbles, in particular when these bubbles have semicylindrical cross section and are positioned in contact with a microfluidic channel wall. We have used this streaming in experiment to develop novel methods for trapping and sorting of microparticles by size, as well as for micromixing. Theoretically, we arrive at an analytical description of the streaming flow field through an asymptotic computation that, for the first time, reconciles the boundary layers around the bubble and along the substrate wall, and also takes into account the oscillation modes of the bubble. This approach gives insight into changes in the streaming pattern with bubble size and driving frequency, including a reversal of the flow direction at high frequencies with potentially useful applications. Present address: Mechanical and Aerospace Engineering, Missouri S &T.

  13. Electroweak bubble wall speed limit

    Energy Technology Data Exchange (ETDEWEB)

    Bödeker, Dietrich [Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld (Germany); Moore, Guy D., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: guymoore@ikp.physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany)

    2017-05-01

    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can 'run away,' that is, achieve extreme ultrarelativistic velocities γ ∼ 10{sup 14}. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ∼ 1/α. Though the bubble walls can move at almost the speed of light, they carry an infinitesimal share of the plasma's energy.

  14. Holography in small bubble chambers

    International Nuclear Information System (INIS)

    Lecoq, P.

    1984-01-01

    This chapter reports on an experiment to determine the total charm cross section at different incident momenta using the small, heavy liquid bubble chamber HOBC. Holography in liquid hydrogen is also tested using the holographic lexan bubble chamber HOLEBC with the aim of preparing a future holographic experiment in hydrogen. The high intensity tests show that more than 100 incident tracks per hologram do not cause a dramatic effect on the picture quality. Hydrogen is more favorable than freon as the bubble growth is much slower in hydrogen. An advantage of holography is to have the maximum resolution in the full volume of the bubble chamber, which allows a gain in sensitivity by a factor of 10 compared to classical optics as 100 tracks per hologram look reasonable. Holograms are not more difficult to analyze than classical optics high-resolution pictures. The results show that holography is a very powerful technique which can be used in very high resolution particle physics experiments

  15. Interactions between bubble formation and heating surface in nucleate boiling

    International Nuclear Information System (INIS)

    Luke, Andrea

    2009-01-01

    The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size. (author)

  16. Interactions between bubble formation and heating surface in nucleate boiling

    Energy Technology Data Exchange (ETDEWEB)

    Luke, Andrea [Leibniz University, Hannover (Denmark). Inst. of Thermodynamics], e-mail: ift@ift.uni-hannover.de

    2009-07-01

    The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size. (author)

  17. A distributed computer system for digitising machines

    International Nuclear Information System (INIS)

    Bairstow, R.; Barlow, J.; Waters, M.; Watson, J.

    1977-07-01

    This paper describes a Distributed Computing System, based on micro computers, for the monitoring and control of digitising tables used by the Rutherford Laboratory Bubble Chamber Research Group in the measurement of bubble chamber photographs. (author)

  18. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  19. Acoustics Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  20. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  1. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  2. Interfacial wave dynamics of a drop with an embedded bubble.

    Science.gov (United States)

    Bhattacharya, S

    2016-02-01

    This article describes how an embedded bubble changes the surface wave of a suspended liquid drop, and how such modifications, if recorded experimentally, can be used to detect voids in typically opaque interior of the fluid. The analysis uses a matrix formalism to predict the frequencies for natural oscillation and the deformation for acoustically induced forced vibration. The theory shows that the embedded cavity causes major shifts in the frequency and amplitude values as well as twofold increase in number of natural modes, indicating multifacetted utility of the results in process diagnostics, material characterizations, and combustion technology.

  3. Bubble bursting at an interface

    Science.gov (United States)

    Kulkarni, Varun; Sajjad, Kumayl; Anand, Sushant; Fezzaa, Kamel

    2017-11-01

    Bubble bursting is crucial to understanding the life span of bubbles at an interface and more importantly the nature of interaction between the bulk liquid and the outside environment from the point of view of chemical and biological material transport. The dynamics of the bubble as it rises from inside the liquid bulk to its disappearance on the interface after bursting is an intriguing process, many aspects of which are still being explored. In our study, we make detailed high speed imaging measurements to examine carefully the hole initiation and growth in bursting bubbles that unearth some interesting features of the process. Previous analyses available in literature are revisited based on our novel experimental visualizations. Using a combination of experiments and theory we investigate the role of various forces during the rupturing process. This work aims to further our current knowledge of bubble dynamics at an interface with an aim of predicting better the bubble evolution from its growth to its eventual integration with the liquid bulk.

  4. Bubble Chamber Research Group Microcomputer Unit

    International Nuclear Information System (INIS)

    Bairstow, R.; Barlow, J.; Mace, P.R.; Seller, P.; Waters, M.; Watson, J.G.

    1982-05-01

    A distributed data acquisition system has been developed by the Bubble Chamber Research Group at the Rutherford Appleton laboratory for use with their film measuring machines. The system is based upon a set of microcomputers linked together with a VAX 11/780 computer, in a local area computer network. This network is of the star type and uses a packet switching technique. Each film measuring machine is equipped with a microcomputer which controls the function of the table, buffers data and enhances the interface between operators and machines. This paper provides a detailed description of each microcomputer and can be used as a reference manual for these computers. (author)

  5. RMF+BCS approach for bubble structures

    International Nuclear Information System (INIS)

    Saxena, G.; Singh, D.; Kaushik, M.

    2013-01-01

    'Bubble structure' i.e. depletion in central density has been discussed recently in superheavy and hyper heavy nuclei. In the nucleus, s-orbitals (l=0) have radial distributions peaked in the interior of the nucleus due to zero centrifugal barrier. Their wave function extend further into the surface depending on the number of nodes. Whereas orbitals with non-zero angular momenta are suppressed in the nuclear interior and do not contribute to the central density. Therefore, any vacancy of s-orbitals is expected to produce a depletion of the central density

  6. Measuring online social bubbles

    Directory of Open Access Journals (Sweden)

    Dimitar Nikolov

    2015-12-01

    Full Text Available Social media have become a prevalent channel to access information, spread ideas, and influence opinions. However, it has been suggested that social and algorithmic filtering may cause exposure to less diverse points of view. Here we quantitatively measure this kind of social bias at the collective level by mining a massive datasets of web clicks. Our analysis shows that collectively, people access information from a significantly narrower spectrum of sources through social media and email, compared to a search baseline. The significance of this finding for individual exposure is revealed by investigating the relationship between the diversity of information sources experienced by users at both the collective and individual levels in two datasets where individual users can be analyzed—Twitter posts and search logs. There is a strong correlation between collective and individual diversity, supporting the notion that when we use social media we find ourselves inside “social bubbles.” Our results could lead to a deeper understanding of how technology biases our exposure to new information.

  7. Beyond the gas bubble

    International Nuclear Information System (INIS)

    Hilt, R.H.

    1990-01-01

    The deliverability issue currently being discussed within the natural gas industry involves both near-term and long-term questions. In the near-term, over the next two or three years, it is probable that the natural gas industry will need to mobilize for much greater levels of investment than have been the experience over the past few years. In the longer-term, it is expected that new opportunities for gas will arise as the nation seeks to meet increasing energy requirements within new environmental constraints. Methane for emissions control, CNG vehicles, expanded gas-fired electricity generation, and increased efficiency of traditional energy services are just a few examples. The issues in the longer-term center on the ability of the gas industry to meet increasing supply requirements reliably and at cost-competitive prices for these markets. This paper begins by reviewing the historical situation of gas deliverability that is the capability of the gas producing and transportation portions of the industry. The delivery system's ability to handle shifts in the centers of consumption and production is discussed, with an emphasis on regional problems of gas deliverability and potential bottlenecks. On the production side, the paper reviews the capability and the required investment necessary to handle an orderly transition to a stable supply and demand balance once the elusive bubble had finally disappeared

  8. Modeling of radial gas fraction profiles for bubble flow in vertical pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.; Krepper, E.; Prasser, H.-M. [Forschungszentrum Rossendorf e.V., Institute of Safety Research, Dresden (Germany)

    2001-07-01

    The paper presents a method for the prediction of radial gas fraction profiles from a given bubble size distribution. The method is based on the assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. Assuming a large number of bubble size classes radial distributions are calculated separately for all bubble classes. The sum of these distributions is the radial profile of the gas fraction. The results of the model are compared with experimental data for a number of gas and liquid volume flow rates. The experiments were performed at a vertical test loop (inner diameter 50 mm) in FZ-Rossendorf using a wire mesh sensor. The sensor enables the determination of void distributions in the cross section of the loop. A special evaluation procedure supplies bubble size distributions as well as local distributions of bubbles within a predefined interval of bubble sizes. There is a good agreement between experimental and calculated data. In particular the change from wall peaking to core peaking is well predicted. (authors)

  9. Modeling of radial gas fraction profiles for bubble flow in vertical pipes

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.-M.

    2001-01-01

    The paper presents a method for the prediction of radial gas fraction profiles from a given bubble size distribution. The method is based on the assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. Assuming a large number of bubble size classes radial distributions are calculated separately for all bubble classes. The sum of these distributions is the radial profile of the gas fraction. The results of the model are compared with experimental data for a number of gas and liquid volume flow rates. The experiments were performed at a vertical test loop (inner diameter 50 mm) in FZ-Rossendorf using a wire mesh sensor. The sensor enables the determination of void distributions in the cross section of the loop. A special evaluation procedure supplies bubble size distributions as well as local distributions of bubbles within a predefined interval of bubble sizes. There is a good agreement between experimental and calculated data. In particular the change from wall peaking to core peaking is well predicted. (authors)

  10. Linear Stability Analysis of an Acoustically Vaporized Droplet

    Science.gov (United States)

    Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi

    2015-11-01

    Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.

  11. Acoustic modeling of shell-encapsulated gas bubbles

    NARCIS (Netherlands)

    P.J.A. Frinking (Peter); N. de Jong (Nico)

    1998-01-01

    textabstractExisting theoretical models do not adequately describe the scatter and attenuation properties of the ultrasound contrast agents Quantison(TM) and Myomap(TM). An adapted version of the Rayleigh-Plesset equation, in which the shell is described by a viscoelastic solid, is proposed and

  12. Acoustic scattering from a contrast agent microbubble near an elastic wall of finite thickness

    International Nuclear Information System (INIS)

    Doinikov, Alexander A; Aired, Leila; Bouakaz, Ayache

    2011-01-01

    Interest in the problem under consideration in this study is motivated by targeted ultrasound imaging where one has to deal with microbubble contrast agents pulsating near blood vessel walls. A modified Rayleigh–Plesset equation is derived that describes the oscillation of a contrast agent microbubble near an elastic wall of finite thickness. It is assumed that the medium behind the wall is a fluid but it is shown that the equation obtained is easily transformable to the case that the medium behind the wall is an elastic solid. In contrast to the model of a rigid wall, which predicts decreasing natural frequency of a bubble near the wall, the elastic wall model reveals that the bubble natural frequency can both decrease and increase, and in cases of interest for medical applications, the bubble natural frequency usually increases. It is found that the influence of an elastic wall on the acoustic response of a bubble is determined by the ratio between a cumulative parameter, which integrally characterizes the mechanical properties of the wall and has the dimension of density, and the density of the liquid surrounding the bubble. It is shown that the acoustic influence of the arterial wall on the bubble is weak and apparently cannot be used to recognize the moment when the bubble approaches the wall. However, in experiments where the behavior of bubbles near various plastic walls is observed, changes in the bubble response, such as increasing natural frequency and decreasing oscillation amplitude, are detectable.

  13. Acoustic surveys for juvenile anchovy in the Bay of Biscay: Abundance estimate as an indicator of the next year's recruitment and spatial distribution patterns

    KAUST Repository

    Boyra, Guillermo; Martí nez, U.; Cotano, Unai; Begoñ a Santos, Maria; Irigoien, Xabier; Uriarte, André s

    2013-01-01

    A series of acoustic surveys (JUVENA) began in 2003 targeting juvenile anchovy (Engraulis encrasicolus) in the Bay of Biscay. A specific methodology was designed for mapping and estimating juvenile abundance annually, four months after the spawning season. After eight years of the survey, a consistent picture of the spatial pattern of the juvenile anchovy has emerged. Juveniles show a vertical and horizontal distribution pattern that depends on size. The younger individuals are found isolated from other species in waters closer to the surface, mainly off the shelf within the mid-southern region of the bay. The largest juveniles are usually found deeper and closer to the shore in the company of adult anchovy and other pelagic species. In these eight years, the survey has covered a wide range of juvenile abundances, and the estimates show a significant positive relationship between the juvenile biomasses and the one-year-old recruits of the following year. This demonstrates that the JUVENA index provides an early indication of the strength of next year's recruitment to the fishery and can therefore be used to improve the management advice for the fishery of this short-lived species. © 2013 International Council for the Exploration of the Sea.

  14. Acoustic surveys for juvenile anchovy in the Bay of Biscay: Abundance estimate as an indicator of the next year's recruitment and spatial distribution patterns

    KAUST Repository

    Boyra, Guillermo

    2013-08-16

    A series of acoustic surveys (JUVENA) began in 2003 targeting juvenile anchovy (Engraulis encrasicolus) in the Bay of Biscay. A specific methodology was designed for mapping and estimating juvenile abundance annually, four months after the spawning season. After eight years of the survey, a consistent picture of the spatial pattern of the juvenile anchovy has emerged. Juveniles show a vertical and horizontal distribution pattern that depends on size. The younger individuals are found isolated from other species in waters closer to the surface, mainly off the shelf within the mid-southern region of the bay. The largest juveniles are usually found deeper and closer to the shore in the company of adult anchovy and other pelagic species. In these eight years, the survey has covered a wide range of juvenile abundances, and the estimates show a significant positive relationship between the juvenile biomasses and the one-year-old recruits of the following year. This demonstrates that the JUVENA index provides an early indication of the strength of next year\\'s recruitment to the fishery and can therefore be used to improve the management advice for the fishery of this short-lived species. © 2013 International Council for the Exploration of the Sea.

  15. FEASTING BLACK HOLE BLOWS BUBBLES

    Science.gov (United States)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  16. Aerosol behaviour in an acoustic field

    International Nuclear Information System (INIS)

    Malherbe, C.

    1985-01-01

    The average size of an aerosol submitted to acoustic waves is increased. This results from coagulation of the finest particles on the largest ones. The mechanisms responsible for acoustic agglomeration are mentioned. An experimental apparatus was developed in order to control the evolution of aerosol distribution in an acoustic field. Important deposition on the walls of the agglomeration chamber was observed as a consequence of the acoustically induced turbulent flow. Finally, a dimensionless relationship was established between deposition rates and particle diameters as a function of experimental parameters (aeraulic and acoustic conditions, etc...) [fr

  17. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    Science.gov (United States)

    Schneider von Deimling, J.; Papenberg, C.

    2012-03-01

    Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV) to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.

  18. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    Directory of Open Access Journals (Sweden)

    J. Schneider von Deimling

    2012-03-01

    Full Text Available Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.

  19. A global survey of the distribution of free gas in marine sediments

    Science.gov (United States)

    Fleischer, Peter; Orsi, Tim; Richardson, Michael

    2003-10-01

    Following the work of Aubrey Anderson in the Gulf of Mexico, we have attempted to quantify the global distribution of free gas in shallow marine sediments, and have identified and indexed over one hundred documented cases in the scientific and engineering literature. Our survey confirms previous assumptions, primarily that gas bubbles are ubiquitous in the organic-rich muds of coastal waters and shallow adjacent seas. Acoustic turbidity as recorded during seismo-acoustic surveys is the most frequently cited evidence used to infer the presence of seafloor gas. Biogenic methane predominates within these shallow subbottom deposits. The survey also reveals significant imbalances in the geographic distribution of studies, which might be addressed in the future by accessing proprietary data or local studies with limited distribution. Because of their global prevalence, growing interest in gassy marine sediments is understandable as their presence has profound scientific, engineering and environmental implications.

  20. Distributed Acoustic Sensing (DAS) Array near a Highway for Traffic Monitoring and Near-Surface Shear-Wave Velocity Profiles

    Science.gov (United States)

    Wang, H. F.; Fratta, D.; Lancelle, C.; Ak, E. Ms; Lord, N. E.

    2017-12-01

    Monitoring traffic is important for many technical reasons. It allows for better design of future roads and assessment of the state of current roads. The number, size, weight, and speed of vehicles control deterioration rate. Also, real-time information supplies data to intelligent information systems to help control traffic. Recently there have been studies looking at monitoring traffic seismically as vibrations from traffic are not sensitive to weather and poor visibility. Furthermore, traffic noise can be used to image S-wave velocity distribution in the near surface by capturing and interpreting Rayleigh and Love waves (Nakata, 2016; Zeng et al. 2016). The capability of DAS for high spatial sampling (1 m), temporal sampling (up to 10 kHz), and distributed nature (tens of kilometers) allows for a closer look at the traffic as it passes and how the speed of the vehicle may change over the length of the array. The potential and difficulties of using DAS for these objectives were studied using two DAS arrays. One at Garner Valley in Southern California (a 700-meter array adjacent to CA Highway 74) and another in Brady Hot Springs, Nevada (an 8700-meter array adjacent to Interstate 80). These studies experimentally evaluated the use of DAS data for monitoring traffic and assessing the use of traffic vibration as non-localized sources for seismic imaging. DAS arrays should also be resilient to issues with lighting conditions that are problematic for video monitoring and it may be sensitive to the weight of a vehicle. This study along a major interstate provides a basis for examining DAS' potential and limitations as a key component of intelligent highway systems.

  1. Disruption of an Aligned Dendritic Network by Bubbles During Re-Melting in a Microgravity Environment

    Science.gov (United States)

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.

    2012-01-01

    The quiescent Microgravity environment can be quite dynamic. Thermocapillary flow about "large" static bubbles on the order of 1mm in diameter was easily observed by following smaller tracer bubbles. The bubble induced flow was seen to disrupt a large dendritic array, effectively distributing free branches about the solid-liquid interface. "Small" dynamic bubbles were observed to travel at fast velocities through the mushy zone with the implication of bringing/detaching/redistributing dendrite arm fragments at the solid-liquid interface. Large and small bubbles effectively re-orient/re-distribute dendrite branches/arms/fragments at the solid liquid interface. Subsequent initiation of controlled directional solidification results in growth of dendrites having random orientations which significantly compromises the desired science.

  2. A Survey of Scattering, Attenuation, and Size Spectra Studies of Bubble Layers and Plumes Beneath the Air-Sea Interface.

    Science.gov (United States)

    1991-08-30

    soluble iron in the ocean [201] - a factor which may have global ecological implications since these creatures may account for a significant removal...submerged plateau) and seamount -dense environments. In these contexts the existing measurements in lakes and shallow water need follow-up work in...Studies of Bubble Layers and Plumes Beneath the Air-Sea Interface EDWARD POWELL Acoustic Svstems Branch Acoustics Division August 30, 1991 Si~ T 91-10188

  3. On Collisionless Damping of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Petersen, P.I.

    1973-01-01

    Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....

  4. Bubble nucleation in an explosive micro-bubble actuator

    International Nuclear Information System (INIS)

    Van den Broek, D M; Elwenspoek, M

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse. In this paper we take a closer look at the bubble nucleation. The moment of bubble nucleation was determined by both stroboscopic imaging and resistance thermometry. Two nucleation regimes could be distinguished. Several different heater designs were investigated under heat fluxes of hundreds of W mm −2 . A close correspondence between current density in the heater and point of nucleation was found. This results in design rules for effective heaters

  5. Acoustic biosensors.

    Science.gov (United States)

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Axial and Radial Gas Holdup in Bubble Column Reactor

    International Nuclear Information System (INIS)

    Wagh, Sameer M.; Ansari, Mohashin E Alan; Kene, Pragati T.

    2014-01-01

    Bubble column reactors are considered the reactor of choice for numerous applications including oxidation, hydrogenation, waste water treatment, and Fischer-Tropsch (FT) synthesis. They are widely used in a variety of industrial applications for carrying out gas-liquid and gas-liquid-solid reactions. In this paper, the computational fluid dynamics (CFD) model is used for predicting the gas holdup and its distribution along radial and axial direction are presented. Gas holdup increases linearly with increase in gas velocity. Gas bubbles tends to concentrate more towards the center of the column and follows a wavy path

  7. Spherical Solutions of an Underwater Explosion Bubble

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw

    1998-01-01

    Full Text Available The evolution of the 1D explosion bubble flow field out to the first bubble minimum is examined in detail using four different models. The most detailed is based on the Euler equations and accounts for the internal bubble fluid motion, while the simplest links a potential water solution to a stationary, Isentropic bubble model. Comparison of the different models with experimental data provides insight into the influence of compressibility and internal bubble dynamics on the behavior of the explosion bubble.

  8. Bifurcation scenarios for bubbling transition.

    Science.gov (United States)

    Zimin, Aleksey V; Hunt, Brian R; Ott, Edward

    2003-01-01

    Dynamical systems with chaos on an invariant submanifold can exhibit a type of behavior called bubbling, whereby a small random or fixed perturbation to the system induces intermittent bursting. The bifurcation to bubbling occurs when a periodic orbit embedded in the chaotic attractor in the invariant manifold becomes unstable to perturbations transverse to the invariant manifold. Generically the periodic orbit can become transversely unstable through a pitchfork, transcritical, period-doubling, or Hopf bifurcation. In this paper a unified treatment of the four types of bubbling bifurcation is presented. Conditions are obtained determining whether the transition to bubbling is soft or hard; that is, whether the maximum burst amplitude varies continuously or discontinuously with variation of the parameter through its critical value. For soft bubbling transitions, the scaling of the maximum burst amplitude with the parameter is derived. For both hard and soft transitions the scaling of the average interburst time with the bifurcation parameter is deduced. Both random (noise) and fixed (mismatch) perturbations are considered. Results of numerical experiments testing our theoretical predictions are presented.

  9. In-situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts

    Science.gov (United States)

    Masotta, M.; Ni, H.; Keppler, H.

    2013-12-01

    Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in-situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1100 to 1240 °C and 1 bar, obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate (GR) ranges from 3.4*10-6 to 5.2*10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density (NB) at nucleation ranges from 1.8*108 to 7.9*107 cm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble-size distribution (BSD) through time, the BSD's of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSD's may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and

  10. Trapping and exclusion zones in complex streaming patterns around a large assembly of microfluidic bubbles under ultrasound

    Science.gov (United States)

    Combriat, Thomas; Mekki-Berrada, Flore; Thibault, Pierre; Marmottant, Philippe

    2018-01-01

    Pulsating bubbles have proved to be a versatile tool for trapping and sorting particles. In this article, we investigate the different streaming patterns that can be obtained with a group of bubbles in a confined geometry under ultrasound. In the presence of an external flow strong enough to oppose the streaming velocities but not drag the trapped bubbles, we observe either the appearance of exclusion zones near the bubbles or asymmetric streaming patterns that we interpret as the superposition of a two-dimensional (2D) streaming function and of a potential flow. When studying a lattice of several bubbles, we show that the streaming pattern can be accurately predicted by superimposing the contributions of every pair of bubbles present in the lattice, thus allowing one to predict the sizes and the shapes of exclusion zones created by a group of bubbles under acoustic excitation. We suggest that such systems could be used to enhance mixing at a small scale or to catch and release chemical species initially trapped in vortices created around bubble pairs.

  11. Coupled dynamics of translation and collapse of acoustically driven microbubbles.

    Science.gov (United States)

    Reddy, Anil J; Szeri, Andrew J

    2002-10-01

    Pressure gradients drive the motion of microbubbles relative to liquids in which they are suspended. Examples include the hydrostatic pressure due to a gravitational field, and the pressure gradients in a sound field, useful for acoustic levitation. In this paper, the equations describing the coupled dynamics of radial oscillation and translation of a microbubble are given. The formulation is based on a recently derived expression for the hydrodynamic force on a bubble of changing size in an incompressible liquid [J. Magnaudet and D. Legendre, Phys. Fluids 10, 550-556 (1998)]. The complex interaction between radial and translation dynamics is best understood by examination of the added momentum associated with the liquid motion caused by the moving bubble. Translation is maximized when the bubble collapses violently. The new theory for coupled collapse and translation dynamics is compared to past experiments and to previous theories for decoupled translation dynamics. Special attention is paid to bubbles of relevance in biomedical applications.

  12. Preliminary results on bubble detector as personal neutron dosemeter

    International Nuclear Information System (INIS)

    Ponraju, D.; Krishnan, H.; Viswanathan, S.; Indira, R.

    2011-01-01

    The bubble detector is demonstrated as one of the best suitable neutron detectors for neutron dose rate measurements in the presence of high-intense gamma fields. Immobilisation of a volatile liquid in a superheated state and achieving uniform distribution of tiny superheated droplets were a practical challenge. A compact and reusable bubble detector with high neutron sensitivity has been developed at the Indira Gandhi Centre for Atomic Research by immobilising the superheated droplets in a suitable polymer matrix. Two types of bubble detectors have been successfully developed, one by incorporating isobutane for measuring fast neutron and another by incorporating Freon-12 for both fast and thermal neutron. The performance of the detector has been tested using 5 Ci Am-Be neutron source and the results are described. (authors)

  13. Stratification of bubbly horizontal flows: modeling and experimental validation

    International Nuclear Information System (INIS)

    Bottin, M.

    2010-01-01

    Hot films and optical probes enabled the acquisition of measurements in bubbly flows at 5, 20 and 40 diameters from the inlet of the vein on the METERO facility which test section is a horizontal circular pipe of 100 mm inner diameter. The distribution of the different phases, the existence of coalescence and sedimentation mechanisms, the influence of the liquid and gas flow rates, the radial and axial evolutions are analyzed thanks to fast camera videos and numerous and varied experimental results (void fraction, bubbles sizes, interfacial area, mean and fluctuating velocities and turbulent kinetic energy of the liquid phase). Some models, based on the idea that the flow reaches an equilibrium state sufficiently far from the inlet of the pipe, were developed to simulate mean interfacial area and turbulent kinetic energy transports in bubbly flows. (author)

  14. Corner-transport-upwind lattice Boltzmann model for bubble cavitation

    Science.gov (United States)

    Sofonea, V.; Biciuşcǎ, T.; Busuioc, S.; Ambruş, Victor E.; Gonnella, G.; Lamura, A.

    2018-02-01

    Aiming to study the bubble cavitation problem in quiescent and sheared liquids, a third-order isothermal lattice Boltzmann model that describes a two-dimensional (2D) fluid obeying the van der Waals equation of state, is introduced. The evolution equations for the distribution functions in this off-lattice model with 16 velocities are solved using the corner-transport-upwind (CTU) numerical scheme on large square lattices (up to 6144 ×6144 nodes). The numerical viscosity and the regularization of the model are discussed for first- and second-order CTU schemes finding that the latter choice allows to obtain a very accurate phase diagram of a nonideal fluid. In a quiescent liquid, the present model allows us to recover the solution of the 2D Rayleigh-Plesset equation for a growing vapor bubble. In a sheared liquid, we investigated the evolution of the total bubble area, the bubble deformation, and the bubble tilt angle, for various values of the shear rate. A linear relation between the dimensionless deformation coefficient D and the capillary number Ca is found at small Ca but with a different factor than in equilibrium liquids. A nonlinear regime is observed for Ca≳0.2 .

  15. Acoustic cavitation in 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide based ionic liquid.

    Science.gov (United States)

    Merouani, Slimane; Hamdaoui, Oualid; Haddad, Boumediene

    2018-03-01

    In this work, a comparison between the temperatures/pressures within acoustic cavitation bubble in an imidazolium-based room-temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide ([BMIM][NTf 2 ]), and in water has been made for a wide range of cavitation parameters including frequency (140-1000kHz), acoustic intensity (0.5-1Wcm -2 ), liquid temperature (20-50°C) and external static pressure (0.7-1.5atm). The used cavitation model takes into account the liquid compressibility as well as the surface tension and the viscosity of the medium. It was found that the bubble temperatures and pressures were always much higher in the ionic liquid compared to those predicted in water. The valuable effect of [BMIM][NTf 2 ] on the bubble temperature was more pronounced at higher acoustic intensity and liquid temperature and lower frequency and external static pressure. However, confrontation between the predicted and the experimental estimated temperatures in ionic liquids showed an opposite trend as the temperatures measured in some pure ionic liquids are of the same order as those observed in water. The injection of liquid droplets into cavitation bubbles, the pyrolysis of ionic liquids at the bubble-solution interface as well as the lower number of collapsing bubbles in the ionic liquid may be the responsible for the lower measured bubble temperatures in ionic liquids, as compared with water. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Bursting Bubbles and Bilayers

    Directory of Open Access Journals (Sweden)

    Steven P. Wrenn, Stephen M. Dicker, Eleanor F. Small, Nily R. Dan, Michał Mleczko, Georg Schmitz, Peter A. Lewin

    2012-01-01

    Full Text Available This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition - in particular, poly (ethylene glyclol (PEG - is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the “brush” regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented

  17. STRAIN LOCALIZATION PECULIARITIES AND DISTRIBUTION OF ACOUSTIC EMISSION SOURCES IN ROCK SAMPLES TESTED BY UNIAXIAL COMPRESSION AND EXPOSED TO ELECTRIC PULSES

    Directory of Open Access Journals (Sweden)

    V. A. Mubassarova

    2014-01-01

    Full Text Available Results of uniaxial compression tests of rock samples in electromagnetic fields are presented. The experiments were performed in the Laboratory of Basic Physics of Strength, Institute of Continuous Media Mechanics, Ural Branch of RAS (ICMM. Deformation of samples was studied, and acoustic emission (AE signals were recorded. During the tests, loads varied by stages. Specimens of granite from the Kainda deposit in Kyrgyzstan (similar to samples tested at the Research Station of RAS, hereafter RS RAS were subject to electric pulses at specified levels of compression load. The electric pulses supply was galvanic; two graphite electrodes were fixed at opposite sides of each specimen. The multichannel Amsy-5 Vallen System was used to record AE signals in the six-channel mode, which provided for determination of spatial locations of AE sources. Strain of the specimens was studied with application of original methods of strain computation based on analyses of optical images of deformed specimen surfaces in LaVISION Strain Master System.Acoustic emission experiment data were interpreted on the basis of analyses of the AE activity in time, i.e. the number of AE events per second, and analyses of signals’ energy and AE sources’ locations, i.e. defects.The experiment was conducted at ICMM with the use of the set of equipment with advanced diagnostic capabilities (as compared to earlier experiments described in [Zakupin et al., 2006a, 2006b; Bogomolov et al., 2004]. It can provide new information on properties of acoustic emission and deformation responses of loaded rock specimens to external electric pulses.The research task also included verification of reproducibility of the effect (AE activity when fracturing rates responded to electrical pulses, which was revealed earlier in studies conducted at RS RAS. In terms of the principle of randomization, such verification is methodologically significant as new effects, i.e. physical laws, can be considered

  18. Manipulating Liquids With Acoustic Radiation Pressure Phased Arrays

    Science.gov (United States)

    Oeftering, Richard C.

    1999-01-01

    High-intensity ultrasound waves can produce the effects of "Acoustic Radiation Pressure" (ARP) and "acoustic streaming." These effects can be used to propel liquid flows and to apply forces that can be used to move or manipulate floating objects or liquid surfaces. NASA's interest in ARP includes the remote-control agitation of liquids and the manipulation of bubbles and drops in liquid experiments and propellant systems. A high level of flexibility is attained by using a high-power acoustic phased array to generate, steer, and focus a beam of acoustic waves. This is called an Acoustic Radiation Pressure Phased Array, or ARPPA. In this approach, many acoustic transducer elements emit wavelets that converge into a single beam of sound waves. Electronically coordinating the timing, or "phase shift," of the acoustic waves makes it possible to form a beam with a predefined direction and focus. Therefore, a user can direct the ARP force at almost any desired point within a liquid volume. ARPPA lets experimenters manipulate objects anywhere in a test volume. This flexibility allow it to be used for multiple purposes, such as to agitate liquids, deploy and manipulate drops or bubbles, and even suppress sloshing in spacecraft propellant tanks.

  19. Acoustic emission

    International Nuclear Information System (INIS)

    Straus, A.; Lopez Pumarega, M.I.; Di Gaetano, J.O.; D'Atellis, C.E.; Ruzzante, J.E.

    1990-01-01

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  20. Building Acoustics

    Science.gov (United States)

    Cowan, James

    This chapter summarizes and explains key concepts of building acoustics. These issues include the behavior of sound waves in rooms, the most commonly used rating systems for sound and sound control in buildings, the most common noise sources found in buildings, practical noise control methods for these sources, and the specific topic of office acoustics. Common noise issues for multi-dwelling units can be derived from most of the sections of this chapter. Books can be and have been written on each of these topics, so the purpose of this chapter is to summarize this information and provide appropriate resources for further exploration of each topic.