WorldWideScience

Sample records for bubble distribution acoustic

  1. Sonochemistry and the acoustic bubble

    CERN Document Server

    Grieser, Franz; Enomoto, Naoya; Harada, Hisashi; Okitsu, Kenji; Yasui, Kyuichi

    2015-01-01

    Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the p

  2. The Minnaert bubble: an acoustic approach

    International Nuclear Information System (INIS)

    We propose an ab initio introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian variables. In unbounded water, the air-water system has a continuum of eigenmodes, some of them correspond to regular Fabry-Perot resonances. A singular resonance, the lowest one, is shown to coincide with that of Minnaert. In bounded water, the eigenmodes spectrum is discrete, with a finite fundamental frequency. A spectacular quasi-locking of the latter occurs if it happens to exceed the Minnaert frequency, which provides an unforeseen one-bubble alternative version of the famous 'hot chocolate effect'. In the (low) frequency domain in which sound propagation inside the bubble reduces to a simple 'breathing' (i.e. inflation/deflation), the light air bubble can be 'dressed' by the outer water pressure forces, and is turned into the heavy Minnaert bubble. Thanks to this unexpected renormalization process, we demonstrate that the Minnaert bubble definitely behaves like a true harmonic oscillator of the spring-bob type, but with a damping term and a forcing term in apparent disagreement with those commonly admitted in the literature. Finally, we underline the double role played by the water. In order to tell the water motion associated with water compressibility (i.e. the sound) from the simple incompressible accompaniment of the bubble breathing, we introduce a new picture analogous to the electromagnetic radiative picture in Coulomb gauge, which naturally leads us to split the water displacement in an instantaneous and a retarded part. The Minnaert renormalized mass of the dressed bubble is then automatically recovered

  3. Spiraling bubbles: How acoustic and hydrodynamic forces compete

    NARCIS (Netherlands)

    Rensen, Judith; Bosman, Dennis; Magnaudet, Jacques; Ohl, Claus-Dieter; Prosperetti, Andrea; Togel, Rudiger; Versluis, Michel; Lohse, Detlef

    2001-01-01

    Experiments to study the effect of acoustic forces on individual bubbles in shear flows have been carried out. In the system that we have used, the competition between acoustic and fluid dynamical forces results in a spiraling bubble trajectory. This dynamics is modeled by expressing the balance bet

  4. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors

    OpenAIRE

    Ivan Felis; Juan Antonio Martínez-Mora; Miguel Ardid

    2016-01-01

    Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. ...

  5. Orbital motions of bubbles in an acoustic field

    Science.gov (United States)

    Shirota, Minori; Yamashita, Ko; Inamura, Takao

    2012-09-01

    This experimental study aims to clarify the mechanism of orbital motion of two oscillating bubbles in an acoustic field. Trajectory of the orbital motion on the wall of a spherical levitator was observed using a high-speed video camera. Because of a good repeatability in volume oscillation of bubbles, we were also able to observe the radial motion driven at 24 kHz by stroboscopic like imaging technique. The orbital motions of bubbles raging from 0.13 to 0.18 mm were examined with different forcing amplitude and in different viscous oils. As a result, we found that pairs of bubbles revolve along an elliptic orbit around the center of mass of the bubbles. We also found that the two bubbles perform anti-phase radial oscillation. Although this radial oscillation should result in a repulsive secondary Bjerknes force, the bubbles kept a constant separate distance of about 1 mm, which indicates the existence of centripetal primary Bjerknes force.

  6. Precise measurement technique for the stable acoustic cavitation bubble

    Institute of Scientific and Technical Information of China (English)

    HUANG Wei; CHEN Weizhong; LIU Yanan; GAO Xianxian; JIANG Lian; XU Junfeng; ZHU Yifei

    2005-01-01

    Based on the periodic oscillation of the stable acoustic cavitation bubble, we present a precise measurement technique for the bubble evolution. This technique comprises the lighting engineering of pulsing laser beam whose phase can be digitally shifted, and the long distance microphotographics. We used a laser, an acousto-optic modulator, a pulse generator, and a long distance microscope. The evolution of a levitated bubble can be directly shown by a series of bubble's images at different phases. Numerical simulation in the framework of the Rayleigh-Plesset bubble dynamics well supported the experimental result, and the ambient radius of the bubble, an important parameter related to the mass of the gas inside the bubble, was obtained at the same time.

  7. Optimal Acoustic Attenuation of Weakly Compressible Media Permeated with Air Bubbles

    Institute of Scientific and Technical Information of China (English)

    LIANG Bin; CHENG Jian-Chun

    2007-01-01

    Based on fuzzy logic (FL) and genetic algorithm (GA), we present an optimization method to obtain the optimal acoustic attenuation of a longitudinal acoustic wave propagating in a weakly compressible medium permeated with air bubbles. In the optimization, the parameters of the size distribution of bubbles in the medium are optimized for providing uniformly high acoustic attenuation in the frequency band of interest. Compared with other traditional optimization methods, the unique advantage of the present method is that it can locate the global optimum quickly and effectively in need of knowing the mathematical model precisely. As illustrated by a numerical simulation, the method is effective and essential in enhancing the acoustic attenuation of such a medium in an optimal manner. The bubbly medium with optimized structural parameters can effectively attenuate longitudinal waves at intermediate frequencies with an acoustic attenuation approximating a constant value of 10(dB/cm). Such bubbly media with optimal acoustic attenuations may be applied to design acoustic absorbent by controlling broader attenuation band and higher efficiency.

  8. Evidence for liquid phase reactions during single bubble acoustic cavitation.

    Science.gov (United States)

    Troia, A; Madonna Ripa, D; Lago, S; Spagnolo, R

    2004-07-01

    We extended the recent experiment by Lepoint et al. [Sonochemistry and Sonoluminescence, NATO ASI Series, Series C 524, Kluwer Academic Publishers, Dordrecht/Boston/London, 1999, p. 285], involving a so-called single bubble sonochemistry process, to a three-phase system. We have found experimental evidence that a single cavitating bubble can activate the oxidation of I- ions after the injection of a CCl4 liquid drop in the bubble trapping apparatus. The solvent drop (CCl4 is almost water insoluble) is pushed towards the bubble position and forms a thin film on the bubble surface. When the acoustic pressure drive is increased above 100 kPa, the three-phase system gives rise to a dark filament, indicating the complexation reaction between starch (added to the water phase) and I2. I2 species is the product of surface reactions involving bubble-induced decomposition of CCl4. Further increase of the acoustic drive causes the thin CCl4 film to separate from the bubble and stops I2 production. The study of the chemical activity of this three-phase system could give new advances on dynamics of the bubble collapse. PMID:15157862

  9. The penetration of acoustic cavitation bubbles into micrometer-scale cavities.

    Science.gov (United States)

    Vaidya, Haresh Anant; Ertunç, Özgür; Lichtenegger, Thomas; Delgado, Antonio; Skupin, Andreas

    2016-04-01

    The penetration of acoustically induced cavitation bubbles in micrometer-scale cavities is investigated experimentally by means of high-speed photography and acoustic measurements. Micrometer-scale cavities of different dimensions (width=40μm, 80μm, 10mm and depth=50μm) are designed to replicate the cross section of microvias in a PCB. The aim here is to present a method for enhancing mass transfer due to the penetration of bubbles in such narrow geometries under the action of ultrasound. The micrometer-scale cavities are placed in a test-cell filled with water and subjected to an ultrasound excitation at 75kHz. A cavitation bubble cluster is generated at the mouth of the cavity which acts as a continuous source of bubbles that penetrate into the cavity. The radial oscillation characteristics and translation of these bubbles are investigated in detail here. It is observed that the bubbles arrange themselves into streamer-like structures inside the cavity. Parameters such as bubble population and size distribution and their correlation with the phase of the incident ultrasound radiation are investigated in detail here. This provides a valuable insight into the dynamics of bubbles in narrow confined spaces. Mass transfer investigations show that fresh liquid can be continuously introduced in the cavities under the action of ultrasound. Our findings may have important consequences in optimizing the filling processes for microvias with high aspect ratios. PMID:26763751

  10. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors.

    Science.gov (United States)

    Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L). PMID:27294937

  11. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    International Nuclear Information System (INIS)

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  12. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    Science.gov (United States)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  13. Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters.

    Science.gov (United States)

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2014-01-01

    In this work, energy analysis of an oscillating isolated spherical bubble in water irradiated by an ultrasonic wave has been theoretically studied for various conditions of acoustic amplitude, ultrasound frequency, static pressure and liquid temperature in order to explain the effects of these key parameters on both sonochemistry and sonoluminescence. The Keller-Miksis equation for the temporal variation of the bubble radius in compressible and viscous medium has been employed as a dynamics model. The numerical calculations showed that the rate of energy accumulation, dE/dt, increased linearly with increasing acoustic amplitude in the range of 1.5-3.0 atm and decreased sharply with increasing frequency in the range 200-1000 kHz. There exists an optimal static pressure at which the power w is highest. This optimum shifts toward a higher value as the acoustic amplitude increases. The energy of the bubble slightly increases with the increase in liquid temperature from 10 to 60 °C. The results of this study should be a helpful means to explain a variety of experimental observations conducted in the field of sonochemistry and sonoluminescence concerning the effects of operational parameters. PMID:23683796

  14. The Experimental Study of Bubble Formation: Acoustics and CCD Camera

    Czech Academy of Sciences Publication Activity Database

    Bunganič, Radovan; Růžička, Marek; Drahoš, Jiří

    - : -, 2005. 7.5.. [Conference on Gas-Liquid and Gas-Liquid-Solid Reactor Engineering /7./. 21.08.2005-24.08.2005, Strasbourg] R&D Projects: GA ČR(CZ) GA104/04/0826; GA ČR(CZ) GA104/05/2566 Grant ostatní: BEMUSAC(XE) G1MA/CT/2002/04019 Institutional research plan: CEZ:AV0Z40720504 Keywords : bubble formation * acoustic emissions * high-speed camera Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  15. 2-D steering and propelling of acoustic bubble-powered microswimmers.

    Science.gov (United States)

    Feng, Jian; Yuan, Junqi; Cho, Sung Kwon

    2016-06-21

    This paper describes bi-directional (linear and rotational) propelling and 2-D steering of acoustic bubble-powered microswimmers that are achieved in a centimeter-scale pool (beyond chip level scale). The core structure of a microswimmer is a microtube with one end open in which a gaseous bubble is trapped. The swimmer is propelled by microstreaming flows that are generated when the trapped bubble is oscillated by an external acoustic wave. The bubble oscillation and thus propelling force are highly dependent on the frequency of the acoustic wave and the bubble length. This dependence is experimentally studied by measuring the resonance behaviors of the testing pool and bubble using a laser Doppler vibrometer (LDV) and by evaluating the generated streaming flows. The key idea in the present 2-D steering is to utilize this dependence. Multiple bubbles with different lengths are mounted on a single microswimmer with a variety of arrangements. By controlling the frequency of the acoustic wave, only frequency-matched bubbles can strongly oscillate and generate strong propulsion. By arranging multiple bubbles of different lengths in parallel but with their openings opposite and switching the frequency of the acoustic wave, bi-directionally linear propelling motions are successfully achieved. The propelling forces are calculated by a CFD analysis using the Ansys Fluent® package. For bi-directional rotations, a similar method but with diagonal arrangement of bubbles on a rectangular swimmer is also applied. The rotation can be easily reversed when the frequency of the acoustic wave is switched. For 2-D steering, short bubbles are aligned perpendicular to long bubbles. It is successfully demonstrated that the microswimmer navigates through a T-junction channel under full control with and without carrying a payload. During the navigation, the frequency is the main control input to select and resonate targeted bubbles. All of these operations are achieved by a single

  16. Acoustic bubble: Controlled and selective micropropulsion and chemical waveform generator

    Science.gov (United States)

    Ahmed, Daniel

    The physics governing swimming at the microscale---where viscous forces dominate over inertial---is distinctly different than that at the macroscale. Devices capable of finely controlled swimming at the microscale could enable bold ideas such as targeted drug delivery, non-invasive microsurgery, and precise materials assembly. Progress has already been made towards such artificial microswimmers using several means of actuation: chemical reactions and applied magnetic, electric or acoustic fields. However, the prevailing goal of selective actuation of a single microswimmer from within a group, the first step towards collaborative, guided action by a group of swimmers, has so far not been achieved. Here I present a new class of microswimmer that accomplishes for the first time selective actuation (Chapter 1). The swimmer design eschews the commonly-held design paradigm that microswimmers must use non-reciprocal motion to achieve propulsion; instead, the swimmer is propelled by oscillatory motion of an air bubble trapped within the swimmer's polymer body. This oscillatory motion is driven by a low-power biocompatible acoustic field to the ambient liquid, with meaningful swimmer propulsion occurring only at resonance frequencies of the bubble. This acoustically-powered microswimmer performs controllable rapid translational and rotational motion even in highly viscous liquid. By using a group of swimmers each with a different bubble size (and thus different resonance frequencies) selective actuation of a single swimmer from among the group can be readily achieved. Cellular response to chemical microenvironments depends on the spatiotemporal characteristics of the stimulus, which is central to many biological processes including gene expression, cell migration, differentiation, apoptosis, and intercellular signaling. To date, studies have been limited to digital (or step) chemical stimulation with little control over the temporal counterparts. Microfluidic approaches

  17. Hydrodynamics, Acoustics and Scaling of Traveling Bubble Cavitation

    OpenAIRE

    Kuhn de Chizelle, Yan P.

    1994-01-01

    Recent observations of the geometries of growing and collapsing bubbles over axisymmetric headforms have revealed the complexity of the "microfluidmechanics" associated with these flows (Hamilton et al., 1982, Briançon Marjollet and Franc, 1990, Ceccio and Brennen, 1991). Among the complex features observed were bubble to bubble interaction, cavitation noise generation and bubble interaction with the boundary layer which leads to the shearing of the underside of the bubble and ...

  18. Enhanced acoustic cavitation following laser-induced bubble formation : long-term memory effect

    OpenAIRE

    Yavaṣ, Oğuz; Leiderer, Paul; Park, Hee K.; Grigoropoulos, Costas P.; Poon, Chie C.; Tam, Andrew C.

    1994-01-01

    The enhancement of acoustic caviation at a liquid-solid interface following laser-induced bubble formation is studied. The experiment results indicate that metastable ultramicroscopic bubbles formed on the solid surface cause a long-term memory effect on acoustic cavitation. By performing a double-pulse experiment using two excimer lasers, the temporal decay of this memory effect is determined for two different liquids on a chromium surface. An explanation of the observed decay mode by a ...

  19. A model of the interaction of bubbles and solid particles under acoustic excitation

    Science.gov (United States)

    Hay, Todd Allen

    The Lagrangian formalism utilized by Ilinskii, Hamilton and Zabolotskaya [J. Acoust. Soc. Am. 121, 786-795 (2007)] to derive equations for the radial and translational motion of interacting bubbles is extended here to obtain a model for the dynamics of interacting bubbles and elastic particles. The bubbles and particles are assumed to be spherical but are otherwise free to pulsate and translate. The model is accurate to fifth order in terms of a nondimensional expansion parameter R/d, where R is a characteristic radius and d is a characteristic distance between neighboring bubbles or particles. The bubbles and particles may be of nonuniform size, the particles elastic or rigid, and external acoustic sources are included to an order consistent with the accuracy of the model. Although the liquid is assumed initially to be incompressible, corrections accounting for finite liquid compressibility are developed to first order in the acoustic Mach number for a cluster of bubbles and particles, and to second order in the acoustic Mach number for a single bubble. For a bubble-particle pair consideration is also given to truncation of the model at fifth order in R/d via automated derivation of the model equations to arbitrary order. Numerical simulation results are presented to demonstrate the effects of key parameters such as particle density and size, liquid compressibility, particle elasticity and model order on the dynamics of single bubbles, pairs of bubbles, bubble-particle pairs and clusters of bubbles and particles under both free response conditions and sinusoidal or shock wave excitation.

  20. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles - Theoretical study.

    Science.gov (United States)

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2013-05-01

    Numerical simulation of chemical reactions inside an isolated spherical bubble of oxygen has been performed for various ambient bubble radii at different frequencies and acoustic amplitudes to study the effects of these two parameters on the range of ambient radius for an active bubble in sonochemical reactions. The employed model combines the dynamic of bubble collapse with the chemical kinetics of single cavitation bubble. Results from this model were compared with some experimental results presented in the literature and good apparent trends between them were observed. The numerical calculations of this study showed that there always exists an optimal ambient bubble radius at which the production of oxidizing species at the end of the bubble collapse attained their upper limit. It was shown that the range of ambient radius for an active bubble increased with increasing acoustic amplitude and decreased with increasing ultrasound frequency. The optimal ambient radius decreased with increasing frequency. Analysis of curves showing optimal ambient radius versus acoustic amplitude for different ultrasonic frequencies indicated that for 200 and 300kHz, the optimal ambient radius increased linearly with increasing acoustic amplitude up to 3atm. However, slight minima of optimal radius were observed for the curves obtained at 500 and 1000kHz. PMID:23187064

  1. A Demonstration of Underwater Bubble Capture by the Fundamental Acoustic Mode in Spherical Geometry

    Directory of Open Access Journals (Sweden)

    Umaporn KONTHARAK

    2008-01-01

    Full Text Available Nowadays, scientific demonstrations have become a crucial part of scientific learning. Acoustic waves are normally demonstrated in air via Kundt’s tube, but a physical demonstration for underwater acoustic waves is still lacking. In this paper, we address one of the aspects by demonstrating a way to acoustically-trap gas bubbles in a spherical, water-filled flask resonating at its first fundamental mode. The theory of acoustic waves in a spherical geometry, particularly the fundamental mode, is reviewed. The full description of the experimental setup is expressed both acoustically and electronically. By using this method, we show that a gas bubble can be stabilized in the middle of a flask at an acoustic frequency of 21.16 kHz, the acoustic fundamental frequency of the flask.

  2. Conservation of bubble size distribution during gas reactive absorption in bubble column reactors

    Directory of Open Access Journals (Sweden)

    P. L.C. LAGE

    1999-12-01

    Full Text Available Conservation of the bubble size distribution function was applied to the reactive absorption of carbon dioxide in a bubble column reactor. The model developed was solved by the method of characteristics and by a Monte Carlo method. Simulations were carried out using simplified models for the liquid phase and for the gas-liquid mass transfer. Predictions of gas holdup and outlet gas composition showed that the concept of a mean bubble diameter is not applicable when the bubble size distribution is reasonably polydispersed. In these cases, the mass mean velocity and the numerical mean velocity of the bubbles are very different. Therefore, quantification of the polydispersion of bubbles was shown to be essential to gas-phase hydrodynamics modeling.

  3. Nonlinear activity of acoustically driven gas bubble near a rigid boundary

    Energy Technology Data Exchange (ETDEWEB)

    Maksimov, Alexey [Pacific Oceanological Institute, Vladivostok 690041 (Russian Federation)

    2015-10-28

    The presence of a boundary can produce considerable changes in the oscillation amplitude of the bubble and its scattered echo. The present study fills a gap in the literature, in that it is concerned theoretically with the bubble activity at relatively small distances from the rigid boundary. It was shown that the bi-spherical coordinates provide separation of variables and are more suitable for analysis of the dynamics of these constrained bubbles. Explicit formulas have been derived which describe the dependence of the bubble emission near a rigid wall on its size and the separation distance between the bubble and the boundary. As applications, time reversal technique for gas leakage detection and radiation forces that are induced by an acoustic wave on a constrained bubble were analyzed.

  4. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles.

    Science.gov (United States)

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2014-01-01

    Formation of highly reactive species such as OH, H, HO2 and H2O2 due to transient collapse of cavitation bubbles is the primary mechanism of sonochemical reaction. The crucial parameters influencing the formation of radicals are the temperature and pressure achieved in the bubble during the strong collapse. Experimental determinations estimated a temperature of about 5000 K and pressure of several hundreds of MPa within the collapsing bubble. In this theoretical investigation, computer simulations of chemical reactions occurring in an O2-bubble oscillating in water irradiated by an ultrasonic wave have been performed for diverse combinations of various parameters such as ultrasound frequency (20-1000 kHz), acoustic amplitude (up to 0.3 MPa), static pressure (0.03-0.3 MPa) and liquid temperature (283-333 K). The aim of this series of computations is to correlate the production of OH radicals to the temperature and pressure achieved in the bubble during the strong collapse. The employed model combines the dynamic of bubble collapse in acoustical field with the chemical kinetics of single bubble. The results of the numerical simulations revealed that the main oxidant created in an O2 bubble is OH radical. The computer simulations clearly showed the existence of an optimum bubble temperature of about 5200±200 K and pressure of about 250±20 MPa. The predicted value of the bubble temperature for the production of OH radicals is in excellent agreement with that furnished by the experiments. The existence of an optimum bubble temperature and pressure in collapsing bubbles results from the competitions between the reactions of production and those of consumption of OH radicals at high temperatures. PMID:23769748

  5. PIV measurement of pressure distributions about single bubbles

    International Nuclear Information System (INIS)

    Measurements of velocity and pressure distributions around a bubble are of fundamental importance to model the forces acting on the bubbles and to verify detailed numerical methods for the prediction of flow in nuclear reactors. The measurements of velocity distributions around a bubble have been conducted to understand the interaction between liquid flow and bubbles. However there are few studies on pressure distributions around a bubble for the lack of measurement method. In this study, we developed a method for evaluating a pressure distribution by making use of velocity data obtained by a particle image velocimetry (PIV) or a particle tracking velocimetry (PTV), and applied it to laminar pipe flows, laminar flows around single particles and single bubbles in a pipe to examine its accuracy and applicability to the flow around single bubbles. As a result, we could confirm that the method can evaluate the pressure distribution in various laminar flow, provided that the velocity data process a good quality and a flow of concern is two-dimensional. The proposed method therefore has a potential to provide the important information for modeling of the bubble motion and verification of CFD methods such as interface tracking and lattice Boltzmann methods. (author)

  6. Acoustic and Visul Study of Bubble Formation Processes in Bubble Columns Staged with Fibrous Catalytic Layers

    Czech Academy of Sciences Publication Activity Database

    Höller, V.; Růžička, Marek; Drahoš, Jiří; Kiwi-Minsker, L.; Renken, A.

    79-80, - (2003), s. 151-157. ISSN 0920-5861 Institutional research plan: CEZ:AV0Z4072921 Keywords : bubble formation * fibrous catalytic layers * staged bubble column Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.627, year: 2003

  7. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    OpenAIRE

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main non-platform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modeling of these dynamic sea-surface effects. It is known that, for frequencies in the range 1-4 kHz, the main effect of bubbles on sea surface reflection loss is due to refraction, which can be modeled wi...

  8. Arnold family in acoustically forced air bubble formation

    International Nuclear Information System (INIS)

    We applied an integrate-and-fire model with sinusoidal baseline and constant threshold to describe air bubble formation periodically forced by a sound wave. The model is a deterministic one-dimensional system that predicts the instant of a bubble detachment as a function of the previous one and it is able to reproduce long time behavior with great similarity. The changes in the dynamics as the air flow rate varies can be predicted by a curve in the parameter space of the so called Arnold family of circle maps.

  9. A model of phase distribution in bubble flow

    International Nuclear Information System (INIS)

    The knowledge of phase distribution in a channel with bubble flow is important for several problems in nuclear reactor technology. It is possible to assume the random bubble motion as a Markov diffusion process caused by turbulent liquid velocity fluctuations. A diffusion coefficient can be evaluated in this case. Diffusion equations and their boundary conditions are given to calculate bubble distribution in some cases of practical interest. The solution is possible for the most problems on numerical way only. Analytical solutions are shown in the case of a small bubble source near the wall, for instance a water to sodium microleak in a sodium-heated steam generator. Results of a two-dimensional calculation are discussed from the point of view of microleak detection. (author)

  10. The Distribution of Bubble Sizes During Reionization

    CERN Document Server

    Lin, Yin; Furlanetto, Steven R; Sutter, P M

    2015-01-01

    A key physical quantity during reionization is the size of HII regions. Previous studies found a characteristic bubble size which increases rapidly during reionization, with apparent agreement between simulations and analytic excursion set theory. Using four different methods, we critically examine this claim. In particular, we introduce the use of the watershed algorithm -- widely used for void finding in galaxy surveys -- which we show to be an unbiased method with the lowest dispersion and best performance on Monte-Carlo realizations of a known bubble size PDF. We find that a friends-of-friends algorithm declares most of the ionized volume to be occupied by a network of volume-filling regions connected by narrow tunnels. For methods tuned to detect those volume-filling regions, previous apparent agreement between simulations and theory is spurious, and due to a failure to correctly account for the window function of measurement schemes. The discrepancy is already obvious from visual inspection. Instead, HI...

  11. Dynamics of soap bubble bursting and its implications to volcano acoustics

    CERN Document Server

    Vidal, Valérie; Divoux, Thibaut; Legrand, Denis; Géminard, Jean-Christophe; Melo, Francisco; 10.1029/2009GL042360

    2010-01-01

    In order to assess the physical mechanisms at stake when giant gas bubbles burst at the top of a magma conduit, laboratory experiments have been performed. An overpressurized gas cavity is initially closed by a thin liquid film, which suddenly bursts. The acoustic signal produced by the bursting is investigated. The key result is that the amplitude and energy of the acoustic signal strongly depend on the film rupture time. As the rupture time is uncontrolled in the experiments and in the field, the measurement of the acoustic excess pressure in the atmosphere, alone, cannot provide any information on the overpressure inside the bubble before explosion. This could explain the low energy partitioning between infrasound, seismic and explosive dynamics often observed on volcanoes.

  12. Bubbles

    DEFF Research Database (Denmark)

    Dholakia, Nikhilesh; Turcan, Romeo V.

    2013-01-01

    A goal of our ongoing research stream is to develop a multidisciplinary metatheory of bubbles. In this viewpoint paper we put forward a typology of bubbles by comparing four types of assets – entertainment, commodities, financial securities (stocks), and housing properties – where bubbles could and...... do form occasionally. Cutting across and comparing such varied asset types provides some rich insights into the nature of bubbles – and offers an inductive way to arrive at the typology of bubbles....

  13. The distribution of bubble sizes during reionization

    Science.gov (United States)

    Lin, Yin; Oh, S. Peng; Furlanetto, Steven R.; Sutter, P. M.

    2016-09-01

    A key physical quantity during reionization is the size of H II regions. Previous studies found a characteristic bubble size which increases rapidly during reionization, with apparent agreement between simulations and analytic excursion set theory. Using four different methods, we critically examine this claim. In particular, we introduce the use of the watershed algorithm - widely used for void finding in galaxy surveys - which we show to be an unbiased method with the lowest dispersion and best performance on Monte Carlo realizations of a known bubble size probability density function (PDF). We find that a friends-of-friends algorithm declares most of the ionized volume to be occupied by a network of volume-filling regions connected by narrow tunnels. For methods tuned to detect the volume-filling regions, previous apparent agreement between simulations and theory is spurious, and due to a failure to correctly account for the window function of measurement schemes. The discrepancy is already obvious from visual inspection. Instead, H II regions in simulations are significantly larger (by factors of 10-1000 in volume) than analytic predictions. The size PDF is narrower, and evolves more slowly with time, than predicted. It becomes more sharply peaked as reionization progresses. These effects are likely caused by bubble mergers, which are inadequately modelled by analytic theory. Our results have important consequences for high-redshift 21 cm observations, the mean free path of ionizing photons, and the visibility of Lyα emitters, and point to a fundamental failure in our understanding of the characteristic scales of the reionization process.

  14. Passive acoustic derived bubble flux and applications to natural gas seepage in the Mackenzie Delta, NWT, Canada and Coal Oil Point, CA

    Science.gov (United States)

    Culling, D.; Leifer, I.; Dallimore, S.; Alcala, K.

    2012-12-01

    Methane is a prominent greenhouse gas that escapes naturally from thermogenic reservoirs as seepage from marine and lacustrine biogenic sources as bubble ebullition. Geologic methane emissions are critically important contributors to the global methane budget however, few quantitative flux measurements are available for shallow waters. This gap in knowledge is critical as in these settings gas can easily transit as bubbles through the water column and directly influence global atmospheric budgets. Video and active acoustic (sonar) measurements of bubble flux have spatial limitations requiring predictable bubble emission location. Passive acoustics are less affected by these limitations, in addition, they can provide data in water too shallow for effective sonar bubble observations. Lab tests were undertaken to quantify the acoustic signature of bubbles formed in non-cohesive sediments. specifically focusing on mechanisms that complicate interpretation of acoustic data. Lab tests then were compared to field data to provide measurement calibration/validation. The principles behind the acoustic analysis method are based on the Minnaert equation, which relates a bubble radius and acoustic frequency. Bubble size and the resultant acoustic frequency from known flows and capillary tube diameters are well documented; however changing sediment pathways adds to the complexity of bubble formation and the resultant bubble acoustic signal. These complex signals were investigated in a lab tank with a thick, cohesive fine-grained sediment bed, through which bubbles produced by a syringe pump migrated to the sediment-water interface. Then, the resultant bubbles were diverted into clear water and measured from high speed, high definition video, while the acoustic signature of bubble formation was recorded concurrently by a hydrophone. Bubble formation is influenced by currents, which shifts the acoustical signal towards a higher frequency with a more complex pattern than the

  15. Determination of size distribution of bubbles in a bubbly column two phase flows by ultrasound and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, Douglas B.; Lamy, Carlos A.; Bittencourt, Marcelo S.Q.; Pereira, Claudio M.N.A., E-mail: douglasbaroni@ien.gov.b, E-mail: lamy@ien.gov.b, E-mail: bittenc@ien.gov.b, E-mail: cmnap@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Cunha Filho, Jurandyr S. [Escola Tecnica Estadual Visconde de Maua (ETEVM/RJ), Rio de Janeiro, RJ (Brazil); Motta, Mauricio S., E-mail: mmotta@cefet-rj.b [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The development of advanced nuclear reactor conceptions depends largely on the amount of available data to the designer. Non invasive ultrasonic techniques can contribute to the evaluation of gas-liquid two-phase regimes in the nuclear thermo-hydraulic circuits. A key-point for success of those techniques is the interpretation of the ultrasonic signal. In this work, a methodology based in artificial neural networks (ANN) is proposed to predict size distribution of bubbles in a bubbly flow. To accomplish that, an air feed system control was used to obtain specific bubbly flows in an experimental system utilizing a Plexiglas vertical bubbly column. Four different size distribution of bubbles were generated. The bubbles were photographed and measured. To evaluate the different size distribution of bubbles it was used the ultrasonic reflected echo on the opposite wall of the column. Then, an ANN has been developed for predicting size distribution of bubbles by using the frequency spectra of the ultrasonic signal as input. A trained artificial neural network using ultrasonic signal in the frequency domain can evaluate with a good precision the size distribution of bubbles generated in this system. (author)

  16. Grain size effects on He bubbles distribution and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Gao, X.; Gao, N. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Z.G., E-mail: zhgwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Cui, M.H.; Wei, K.F.; Yao, C.F.; Sun, J.R.; Li, B.S.; Zhu, Y.B.; Pang, L.L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Y.F. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xie, E.Q. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2015-02-15

    Highlights: • SMAT treated T91 and conventional T91 were implanted by 200 keV He{sup 2+} to 1 × 10{sup 21} He m{sup −2} at room temperature and annealed at 450 °C for 3.5 h. • He bubbles in nanometer-size-grained T91 are smaller in as-implanted case. • The bubbles in the matrix of nanograins were hard to detect and those along the nanograin boundaries coalesced and filled with the grain boundaries after annealing. • Brownian motion and coalescence and Ostwald ripening process might lead to bubbles morphology presented in the nanometer-size-grained T91 after annealing. - Abstract: Grain boundary and grain size effects on He bubble distribution and evolution were investigated by He implantation into nanometer-size-grained T91 obtained by Surface Mechanical Attrition Treatment (SMAT) and the conventional coarse-grained T91. It was found that bubbles in the nanometer-size-grained T91 were smaller than those in the conventional coarse-grained T91 in as-implanted case, and bubbles in the matrix of nanograins were undetectable while those at nanograin boundaries (GBs) coalesced and filled in GBs after heat treatment. These results suggested that the grain size of structural material should be larger than the mean free path of bubble’s Brownian motion and/or denuded zone around GBs in order to prevent bubbles accumulation at GBs, and multiple instead of one type of defects should be introduced into structural materials to effectively reduce the susceptibility of materials to He embrittlement and improve the irradiation tolerance of structural materials.

  17. Distributed acoustic sensing: towards partial discharge monitoring

    Science.gov (United States)

    Rohwetter, Philipp; Eisermann, René; Krebber, Katerina

    2015-09-01

    We report on the successful application of distributed acoustic sensing (DAS) to the detection of partial discharge (PD). A detection limit of about 1 nC discharge magnitude was achieved for PD in a real-scale model of a high voltage termination. Dedicated ultrasonic fibre-optic transducers were interrogated using coherent optical time-domain Rayleigh backscatter reflectometry (C-OTDR). Random quadrature demodulation was employed for retrieving relevant acoustic information from the raw C-OTDR backscatter traces. To our knowledge, our results are a first-time demonstration that quasi-distributed fibre-optic acoustic sensing is a candidate technology for the acoustic partial discharge monitoring of power cable joints and terminations.

  18. Experimental investigation of bubble occurrence and locality distribution of bubble detectors bombarded with high-energy helium ions

    International Nuclear Information System (INIS)

    Large-sized bubble detectors with microscopic droplets of superheated liquids of dichlorodifluoromethane (Freon-12), dichlorotetrafluoroethane (Freon-114), tetrafluoroethane (Freon-134a), and mixture of Freon-12 and Freon-114, respectively, were irradiated with 150 MeV/amu helium ions at the HIMAC accelerator in NIRS, Chiba, Japan. Distributions of bubbles produced by the helium ions have been studied in each type of the detectors. The origin of the bubbles has been investigated. The detection efficiency of each type of the bubble detectors for helium ions with respect to the energy of the ions has been obtained. The phenomenon of bubble occurrence and its possible applications to the determination of He intensity from accelerators, research of track formation mechanism, energy loss straggling and neutron detection in the space and at higher altitude are discussed. - Highlights: ► Four types of 23-cm long bubble detectors (BD) were irradiated to 150 MeV/amu He ions. ► Direct bubble, recoil bubble, scattering bubble are formed, recognized and classified. ► Detection efficiency of BD for He ions is 10−3–10−4 (bubble cm−3)/(He cm−2). ► It is at the same level of efficiency as detecting fast neutrons. ► Space neutron detection by BD must take the effect of cosmic ray He ions into account

  19. Investigation of acoustic attributes of methane man-made bubbles and their further use for distinguishing from the fish

    Czech Academy of Sciences Publication Activity Database

    Frouzová, Jaroslava; Tušer, Michal; Stanovský, Petr

    Heraklion : FORTH Inst. of Applied and Computational Mathematics, 2013 - (Papadakis, J.; Bjørnø, L.), s. 835-840 ISBN 978–618–80725–0–3. [Underwater Acoustics Conference and Exhibition. Corfu (GR), 23.06.2013-28.06.2013] R&D Projects: GA ČR(CZ) GAP504/12/1186 Institutional support: RVO:60077344 ; RVO:67985858 Keywords : bubbles * methane * acoustics * fish Subject RIV: BI - Acoustics

  20. Nonlinear acoustic propagation in bubbly liquids: Multiple scattering, softening and hardening phenomena.

    Science.gov (United States)

    Doc, Jean-Baptiste; Conoir, Jean-Marc; Marchiano, Régis; Fuster, Daniel

    2016-04-01

    The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigated numerically. A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights two resonance frequencies: the Minnaert frequency and a multiple scattering resonance that strongly depends on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening effects that share some similarities with those observed for sandstones or cracked materials. These effects are related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed depending on the characteristic of the incident wave when increasing the excitation amplitude. It is shown that the frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those usually encountered for sandstones or cracked materials. PMID:27106317

  1. Bubble Combustion

    Science.gov (United States)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  2. Sound scattering from rough bubbly ocean surface based on modified sea surface acoustic simulator and consideration of various incident angles and sub-surface bubbles' radii

    Science.gov (United States)

    Bolghasi, Alireza; Ghadimi, Parviz; Chekab, Mohammad A. Feizi

    2016-08-01

    The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz-Kirchhoff-Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall-Novarini model and optimized HKF method. The extended Hall-Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.

  3. Gaseous bubble oscillations in anisotropic non-Newtonian fluids under influence of high-frequency acoustic field

    Science.gov (United States)

    Golykh, R. N.

    2016-06-01

    Progress of technology and medicine dictates the ever-increasing requirements (heat resistance, corrosion resistance, strength properties, impregnating ability, etc.) for non-Newtonian fluids and materials produced on their basis (epoxy resin, coating materials, liquid crystals, etc.). Materials with improved properties obtaining is possible by modification of their physicochemical structure. One of the most promising approaches to the restructuring of non-Newtonian fluids is cavitation generated by high-frequency acoustic vibrations. The efficiency of cavitation in non-Newtonian fluid is determined by dynamics of gaseous bubble. Today, bubble dynamics in isotropic non-Newtonian fluids, in which cavitation bubble shape remains spherical, is most full investigated, because the problem reduces to ordinary differential equation for spherical bubble radius. However, gaseous bubble in anisotropic fluids which are most wide kind of non-Newtonian fluids (due to orientation of macromolecules) deviates from spherical shape due to viscosity dependence on shear rate direction. Therefore, the paper presents the mathematical model of gaseous bubble dynamics in anisotropic non-Newtonian fluids. The model is based on general equations for anisotropic non-Newtonian fluid flow. The equations are solved by asymptotic decomposition of fluid flow parameters. It allowed evaluating bubble size and shape evolution depending on rheological properties of liquid and acoustic field characteristics.

  4. Distributed acoustic sensing for pipeline monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hill, David; McEwen-King, Magnus [OptaSense, QinetiQ Ltd., London (United Kingdom)

    2009-07-01

    Optical fibre is deployed widely across the oil and gas industry. As well as being deployed regularly to provide high bandwidth telecommunications and infrastructure for SCADA it is increasingly being used to sense pressure, temperature and strain along buried pipelines, on subsea pipelines and downhole. In this paper we present results from the latest sensing capability using standard optical fibre to detect acoustic signals along the entire length of a pipeline. In Distributed Acoustic Sensing (DAS) an optical fibre is used for both sensing and telemetry. In this paper we present results from the OptaSense{sup TM} system which has been used to detect third party intervention (TPI) along buried pipelines. In a typical deployment the system is connected to an existing standard single-mode fibre, up to 50km in length, and was used to independently listen to the acoustic / seismic activity at every 10 meter interval. We will show that through the use of advanced array processing of the independent, simultaneously sampled channels it is possible to detect and locate activity within the vicinity of the pipeline and through sophisticated acoustic signal processing to obtain the acoustic signature to classify the type of activity. By combining spare fibre capacity in existing buried fibre optic cables; processing and display techniques commonly found in sonar; and state-of-the-art in fibre-optic distributed acoustic sensing, we will describe the new monitoring capabilities that are available to the pipeline operator. Without the expense of retrofitting sensors to the pipeline, this technology can provide a high performance, rapidly deployable and cost effective method of providing gapless and persistent monitoring of a pipeline. We will show how this approach can be used to detect, classify and locate activity such as; third party interference (including activity indicative of illegal hot tapping); real time tracking of pigs; and leak detection. We will also show how an

  5. Experimental study on characteristics of interfacial parameter distribution for upward bubbly flow in inclined tube

    International Nuclear Information System (INIS)

    Experimental study on characteristics of interfacial parameter distribution for air-water bubbly flow in an inclined circular tube was performed by using the double sensor probe method. Parameters including radial distributions of local void fraction, bubble passing frequency, interfacial area concentration and bubble equivalent diameter were measured using the probe. The inner diameter of test section is 50 mm, and the liquid superficial velocity is 0.144 m/s, with the gas superficial velocity ranging from 0 to 0.054 m/is. The results show that bubbles obviously move toward the upper wall and congregate. The local interfacial area concentration, bubble passing frequency and void fraction have similar radial distribution profiles. Different from the vertical condition, for a cross-sectional area of the test section, the peak value near the upper side increases, while decreases or even disappears near the underside. The local parameter increases as the radial positions change from lower to upper location, and the increased slope becomes larger as the inclination angles increase. The equivalent bubble diameter doesn't vary with radial position, superficial gas velocity and inclination angle, and bubble aggregation and breaking up nearly doesn't occur. The mechanism of effects of inclination on local parameter distribution for bubbly flow is explained by analyzing the transverse force governing the bubble motion. (authors)

  6. On the prediction of the phase distribution of bubbly flow in a horizontal pipe

    OpenAIRE

    Yeoh, G.H.; Cheung, Sherman C. P.; Tu, J. Y.

    2012-01-01

    Horizontal bubbly flow is widely encountered in various industrial systems because of its ability to provide large interfacial areas for heat and mass transfer. Nonetheless, this particular flow orientation has received less attention when compared to vertical bubbly flow. Owing to the strong influence due to buoyancy, the migration of dispersed bubbles towards the top wall of the horizontal pipe generally causes a highly asymmetrical internal phase distributions, which are not experienced in...

  7. Theoretical model of ice nucleation induced by acoustic cavitation. Part 1: Pressure and temperature profiles around a single bubble.

    Science.gov (United States)

    Cogné, C; Labouret, S; Peczalski, R; Louisnard, O; Baillon, F; Espitalier, F

    2016-03-01

    This paper deals with the inertial cavitation of a single gas bubble in a liquid submitted to an ultrasonic wave. The aim was to calculate accurately the pressure and temperature at the bubble wall and in the liquid adjacent to the wall just before and just after the collapse. Two different approaches were proposed for modeling the heat transfer between the ambient liquid and the gas: the simplified approach (A) with liquid acting as perfect heat sink, the rigorous approach (B) with liquid acting as a normal heat conducting medium. The time profiles of the bubble radius, gas temperature, interface temperature and pressure corresponding to the above models were compared and important differences were observed excepted for the bubble size. The exact pressure and temperature distributions in the liquid corresponding to the second model (B) were also presented. These profiles are necessary for the prediction of any physical phenomena occurring around the cavitation bubble, with possible applications to sono-crystallization. PMID:26044460

  8. Size distribution of air bubbles entering the brain during cardiac surgery.

    Directory of Open Access Journals (Sweden)

    Emma M L Chung

    Full Text Available Thousands of air bubbles enter the cerebral circulation during cardiac surgery, but whether high numbers of bubbles explain post-operative cognitive decline is currently controversial. This study estimates the size distribution of air bubbles and volume of air entering the cerebral arteries intra-operatively based on analysis of transcranial Doppler ultrasound data.Transcranial Doppler ultrasound recordings from ten patients undergoing heart surgery were analysed for the presence of embolic signals. The backscattered intensity of each embolic signal was modelled based on ultrasound scattering theory to provide an estimate of bubble diameter. The impact of showers of bubbles on cerebral blood-flow was then investigated using patient-specific Monte-Carlo simulations to model the accumulation and clearance of bubbles within a model vasculature.Analysis of Doppler ultrasound recordings revealed a minimum of 371 and maximum of 6476 bubbles entering the middle cerebral artery territories during surgery. This was estimated to correspond to a total volume of air ranging between 0.003 and 0.12 mL. Based on analysis of a total of 18667 embolic signals, the median diameter of bubbles entering the cerebral arteries was 33 μm (IQR: 18 to 69 μm. Although bubble diameters ranged from ~5 μm to 3.5 mm, the majority (85% were less than 100 μm. Numerous small bubbles detected during cardiopulmonary bypass were estimated by Monte-Carlo simulation to be benign. However, during weaning from bypass, showers containing large macro-bubbles were observed, which were estimated to transiently affect up to 2.2% of arterioles.Detailed analysis of Doppler ultrasound data can be used to provide an estimate of bubble diameter, total volume of air, and the likely impact of embolic showers on cerebral blood flow. Although bubbles are alarmingly numerous during surgery, our simulations suggest that the majority of bubbles are too small to be harmful.

  9. Dynamics of two interacting hydrogen bubbles in liquid aluminum under the influence of a strong acoustic field

    Science.gov (United States)

    Lebon, Gerard S. B.; Pericleous, Koulis; Tzanakis, Iakovos; Eskin, Dmitry G.

    2015-10-01

    Ultrasonic melt processing significantly improves the properties of metallic materials. However, this promising technology has not been successfully transferred to the industry because of difficulties in treating large volumes of melt. To circumvent these difficulties, a fundamental understanding of the efficiency of ultrasonic treatment of liquid metals is required. In this endeavor, the dynamics of two interacting hydrogen bubbles in liquid aluminum are studied to determine the effect of a strong acoustic field on their behavior. It is shown that coalescence readily occurs at low frequencies in the range of 16 to 20 kHz; forcing frequencies at these values are likely to promote degassing. Emitted acoustic pressures from relatively isolated bubbles that resonate with the driving frequency are in the megapascal range and these cavitation shock waves are presumed to promote grain refinement by disrupting the growth of the solidification front.

  10. Gas distribution effects on waste properties: Viscosities of bubbly slurries

    International Nuclear Information System (INIS)

    The retention and episodic release of flammable gases are critical safety concerns for double-shell tanks that contain waste slurries. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The presence of gas bubbles is expected to affect the rheology of the sludge, but essentially no literature data are available to assess the effect of bubbles. Accordingly, the objectives of this study are to develop models for the effect of gas bubbles on the viscosity of a particulate slurry, develop an experimental method (capillary rheometer), collect data on the viscosity of a bubbly slurry, and develop a theoretical basis for interpreting the experimental data from the capillary rheometer

  11. EFFECT OF A PROPELLER AND GAS DIFFUSION ON BUBBLE NUCLEI DISTRIBUTION IN A LIQUID

    Institute of Scientific and Technical Information of China (English)

    HSIAO Chao-Tsung; CHAHINE Georges L.

    2012-01-01

    A multi-bubble dynamics code accounting for gas diffusion in the liquid and through the bubble wall was developed and used to study the modification of a bubble nuclei population dynamics by a propeller.The propeller flow field was obtained using a Reynolds-Averaged Navier-Stokes (RANS) solver and bubble nuclei populations were propagated in this field.The numerical procedure enabled establishment of the possibility of production behind the propeller of relatively large visible bubbles starting from typical ocean nuclei size distributions.The resulting larger bubbles are seen to cluster in the blade wakes and tip vortices.Parametric investigations of the initial nuclei size distribution,the dissolved gas concentration,and the cavitation number were conducted to identify their effects on bubble entrainment and the resultant void fractions and bubble distribution modifications downstream from the propeller.Imposed synthetic turbulence-like fluctuations unto the average RANS flow field were also used to study the effect averaging in the RANS procedure has on the results.

  12. Evolution of bubble size distribution from gas blowout in shallow water

    Science.gov (United States)

    Zhao, Lin; Boufadel, Michel C.; Lee, Kenneth; King, Thomas; Loney, Norman; Geng, Xiaolong

    2016-03-01

    Gas is often emanated from the sea bed during a subsea oil and gas blowout. The size of a gas bubble changes due to gas dissolution in the ambient water and expansion as a result of a decrease in water pressure during the rise. It is important to understand the fate and transport of gas bubbles for the purpose of environmental and safety concerns. In this paper, we used the numerical model, VDROP-J to simulate gas formation in jet/plume upon release, and dissolution and expansion while bubble rising during a relatively shallow subsea gas blowout. The model predictions were an excellent match to the experimental data. Then a gas dissolution and expansion module was included in the VDROP-J model to predict the fate and transport of methane bubbles rising due to a blowout through a 0.10 m vertical orifice. The numerical results indicated that gas bubbles would increase the mixing energy in released jets, especially at small distances and large distances from the orifice. This means that models that predict the bubble size distribution (BSD) should account for this additional mixing energy. It was also found that only bubbles of certain sizes would reach the water surfaces; small bubbles dissolve fast in the water column, while the size of the large bubbles decreases. This resulted in a BSD that was bimodal near the orifice, and then became unimodal.

  13. Contribution of nonlinear acoustic to the characterization of micro-bubbles clouds in liquid sodium. Application to the generation IV nuclear reactors

    International Nuclear Information System (INIS)

    The SFR system chosen (Sodium Fast Reactor: fast neutron reactors cooled by liquid sodium) by France led to a fourth-generation prototype named ASTRID. The development of this kind of reactors presents several challenges, particularly in terms of improving the safety and monitoring operation. This involves, among other things, characterization of the bubbles presence in liquid sodium. The characterization of the bubbles presence is the subject of this thesis. It involves the determination of void fraction (gas volume fraction) and histogram of the radii of bubbles. The bibliographic work done has shown that linear acoustic techniques for the characterization of bubble clouds are inadequate to achieve this. However promising leads have been identified by studying nonlinear acoustic techniques. This last idea has therefore been explored. An experimental water bench for the generation and optical control of micro-bubbles cloud allowed us to validate finely the reconstruction of histograms of radii through a technique of nonlinear mixing of a high frequency with a low frequency. The potential of the mixing of two high frequencies, more interesting for the industrial point of view has also been demonstrated. Finally, the bases of the transposition of an original technique of nonlinear resonance spectroscopy applied to a bubbles cloud were explored through the introduction of acoustic resonators. The results offer many interesting opportunities, both in terms of industrial applications and for more fundamental understanding of non-linear behavior of a bubble excited by multiple frequencies and of bubbles clouds excited at low frequency. (author)

  14. Effect of PCMI restraint on bubble size distribution in the rim structure of UO2 fuel

    International Nuclear Information System (INIS)

    Generally, the bubble size in the rim structure of UO2 is not dependent on the fuel burnup and the bubble pressure is higher than that in the equilibrium condition. However it was also observed that if the fuel pellet is not restrained, the size of the bubbles in the rim structure could be larger than that in the restraint condition. Although the wide variety of rim bubble sizes and porosities possibly result from an external restrain effect, the quantitative method to analyze the effect of PCMI restraint on bubble distribution in the rim is not available at the moment. In this paper, a method is developed which can be used to analyze the effect of PCMI restraint on the bubble distribution in the rim structure of UO2 fuel based on the data in the literatures. The total number of Xe atoms in the rim bubbles per unit rim volume could be derived by a summation of the number of Xe atoms of each rim bubble in a unit rim volume. The number of Xe atoms of each rim bubble could be calculated by the Van der Waals equation of state and the pressure expressed by p=σ+C/r, where C is an unknown constant to be determined as a function of the temperature and the burnup. On the other hand, the total number of Xe atoms in the rim bubbles per unit rim volume can also be calculated by Xe depression data. If the fuel pellet is not restrained, the uniform hydrostatic stress, σ is zero. Hence if the data of the fuel disk without a restraint is used, a constant C can be obtained at 823K and a local burnup of 90 GWd/t. Although the local burnup of PCMI restraint case is slightly different from that without PCMI restraint, the value derived above is used for the analysis of PCMI restraint case. The calculated bubble distribution with PCMI restraint was similar to the measured one. Because the effect of PCMI restraint on bubble size increased with the bubble size, the development of a large bubble was suppressed. Hence, the PCMI restraint caused a typical bubble size in the rim and

  15. Inhomogeneous distribution of Chlamydomonas in a cylindrical container with a bubble plume

    Directory of Open Access Journals (Sweden)

    Yuki Nonaka

    2016-02-01

    Full Text Available Swimming microalgae show various taxes, such as phototaxis and gravitaxis, which sometimes result in the formation of a cell-rich layer or a patch in a suspension. Despite intensive studies on the effects of shear flow and turbulence on the inhomogeneous distribution of microalgae, the effect of a bubble plume has remained unclear. In this study, we used Chlamydomonas as model microalgae, and investigated the spatial distribution of cells in a cylindrical container with a bubble plume. The results illustrate that cells become inhomogeneously distributed in the suspension due to their motility and photo-responses. A vortical ring distribution was observed below the free surface when the bubble flow rate was sufficiently small. We performed a scaling analysis on the length scale of the vortical ring, which captured the main features of the experimental results. These findings are important in understanding transport phenomena in a microalgae suspension with a bubble plume.

  16. Inhomogeneous distribution of Chlamydomonas in a cylindrical container with a bubble plume

    Science.gov (United States)

    Nonaka, Yuki; Kikuchi, Kenji; Numayama-Tsuruta, Keiko; Kage, Azusa; Ueno, Hironori; Ishikawa, Takuji

    2016-01-01

    ABSTRACT Swimming microalgae show various taxes, such as phototaxis and gravitaxis, which sometimes result in the formation of a cell-rich layer or a patch in a suspension. Despite intensive studies on the effects of shear flow and turbulence on the inhomogeneous distribution of microalgae, the effect of a bubble plume has remained unclear. In this study, we used Chlamydomonas as model microalgae, and investigated the spatial distribution of cells in a cylindrical container with a bubble plume. The results illustrate that cells become inhomogeneously distributed in the suspension due to their motility and photo-responses. A vortical ring distribution was observed below the free surface when the bubble flow rate was sufficiently small. We performed a scaling analysis on the length scale of the vortical ring, which captured the main features of the experimental results. These findings are important in understanding transport phenomena in a microalgae suspension with a bubble plume. PMID:26787679

  17. Wavelet analysis of baryon acoustic structures in the galaxy distribution

    OpenAIRE

    Arnalte-Mur, P.; Labatie, A.; Clerc, N.; Martínez, V. J.; Starck, J.-L.; Lachièze-Rey, M.; Saar, E; Paredes, S.

    2012-01-01

    Baryon Acoustic Oscillations (BAO) are a feature imprinted in the density field by acoustic waves travelling in the plasma of the early universe. Their fixed scale can be used as a standard ruler to study the geometry of the universe. BAO have been previously detected using correlation functions and power spectra of the galaxy distribution. In this work, we present a new method for the detection of the real-space structures associated with this feature. These baryon acoustic structures are sp...

  18. Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage

    Directory of Open Access Journals (Sweden)

    Kusyumov A.N.

    2016-01-01

    Full Text Available The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman’s approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.

  19. 静态声空化泡内外的质量交换%Mass exchange on the wall of static acoustic cavitation bubble

    Institute of Scientific and Technical Information of China (English)

    苟杰; 陈伟中

    2012-01-01

    Study shows that unegligible mass exchange does exist on the wall of acoustic cavitation bubble, but present study mainly focuses on violently pulsant acoustic cavitation bubble. We levitate nonviolently pulsant acoustic cavitation bubble (static acoustic cavitation bubble) using Bjerkes force of standing acoustic field, and study the mass exchange characteristic between liquid and gas on the bubble's wall. With the experiments result, we analysis the impact of acoustic pressure, gas species, liquid viscosity, liquid surface tension and liquid volatility on the mass exchange characteristic of static acoustic cavitation bubble. Furthermore, we provide a method to measure the gas-liquid mass transfer characteristic.%研究表明声空化泡内外存在着不可忽略的质量交换,但目前的研究主要针对激烈脉动型的声空化泡.本文利用驻波声场的Bjerkes力稳定悬浮非激烈脉动型声空化泡(静态声空化泡)来研究泡壁处气液间的质量交换特性.结合实验结果,我们分析了驱动声压、气体种类、液体的黏度、表面张力,饱和蒸汽压等因素对静态声空化泡内外质量交换特性的影响.同时,我们设计的实验系统也为气液传质特性测量提供了一种方法.

  20. Effect of charge on the dynamics of an acoustically forced bubble

    International Nuclear Information System (INIS)

    The effect of charge on the dynamics of a gas bubble undergoing forced oscillations in a liquid due to incidence of an ultrasonic wave is theoretically investigated. The limiting values of the possible charge a bubble may physically carry are obtained. The presence of charge influences the regime in which the bubble's radial oscillations fall. The extremal compressive and expansive dimensions of the bubble are also studied as a function of the amplitude of the driving pressure. It is shown that the limiting value of the bubble charge is dictated both by the minimal value reachable of the bubble radius as well as the amplitude of the driving ultrasonic pressure wave. A non-dimensional ratio ζ is defined that is a comparative measure of the extremal values the bubble can expand or contract to, and we find the existence of an unstable regime for ζ as a function of the driving pressure amplitude, Ps. This unstable regime is gradually suppressed with increasing bubble size. The Blake and the upper transient pressure thresholds for the system are then discussed. (paper)

  1. Study on demodulated signal distribution and acoustic pressure phase sensitivity of a self-interfered distributed acoustic sensing system

    Science.gov (United States)

    Shang, Ying; Yang, Yuan-Hong; Wang, Chen; Liu, Xiao-Hui; Wang, Chang; Peng, Gang-Ding

    2016-06-01

    We propose a demodulated signal distribution theory for a self-interfered distributed acoustic sensing system. The distribution region of Rayleigh backscattering including the acoustic sensing signal in the sensing fiber is investigated theoretically under different combinations of both the path difference and pulse width Additionally we determine the optimal solution between the path difference and pulse width to obtain the maximum phase change per unit length. We experimentally test this theory and realize a good acoustic pressure phase sensitivity of  ‑150 dB re rad/(μPa·m) of fiber in the frequency range from 200 Hz to 1 kHz.

  2. Decompression vs. Decomposition: Distribution, Amount, and Gas Composition of Bubbles in Stranded Marine Mammals

    OpenAIRE

    de Quirós, Yara Bernaldo; González-Diaz, Oscar; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Fernández, Antonio

    2012-01-01

    Gas embolic lesions linked to military sonar have been described in stranded cetaceans including beaked whales. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score) and gas composition within different decomposition codes using a standardized methodology. This broad study has allowed us to explore species-specific variability in bubble prevalence, amount, distribution, and comp...

  3. Feasibility of an in situ measurement device for bubble size and distribution

    OpenAIRE

    Junker, Beth; Maciejak, Walter; Darnell, Branson; Lester, Michael; Pollack, Michael

    2007-01-01

    The feasibility of in situ measurement device for bubble size and distribution was explored. A novel in situ probe measurement system, the EnviroCam™, was developed. Where possible, this probe incorporated strengths, and minimized weaknesses of historical and currently available real-time measurement methods for bubbles. The system was based on a digital, high-speed, high resolution, modular camera system, attached to a stainless steel shroud, compatible with standard Ingold ports on fermente...

  4. Acoustic field distribution of sawtooth wave with nonlinear SBE model

    International Nuclear Information System (INIS)

    For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated

  5. Decompression vs. Decomposition: Distribution, Amount, and Gas Composition of Bubbles in Stranded Marine Mammals.

    Science.gov (United States)

    de Quirós, Yara Bernaldo; González-Diaz, Oscar; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Fernández, Antonio

    2012-01-01

    Gas embolic lesions linked to military sonar have been described in stranded cetaceans including beaked whales. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score) and gas composition within different decomposition codes using a standardized methodology. This broad study has allowed us to explore species-specific variability in bubble prevalence, amount, distribution, and composition, as well as masking of bubble content by putrefaction gases. Bubbles detected within the cardiovascular system and other tissues related to both pre- and port-mortem processes are a common finding on necropsy of stranded cetaceans. To minimize masking by putrefaction gases, necropsy, and gas sampling must be performed as soon as possible. Before 24 h post mortem is recommended but preferably within 12 h post mortem. At necropsy, amount of bubbles (gas score) in decomposition code 2 in stranded cetaceans was found to be more important than merely presence vs. absence of bubbles from a pathological point of view. Deep divers presented higher abundance of gas bubbles, mainly composed of 70% nitrogen and 30% CO(2), suggesting a higher predisposition of these species to suffer from decompression-related gas embolism. PMID:22675306

  6. Decompression versus decomposition: distribution, quantity and gas composition of bubbles in stranded marine mammals

    Directory of Open Access Journals (Sweden)

    Yara eBernaldo de Quirós

    2012-06-01

    Full Text Available "Gas Bubble Disease" or Decompression-like Sickness" was described in stranded beaked whales linked to military sonar. Findings of gas bubble presence or associated lesions in marine mammals have been reported more and more often during the last decade. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score and compositiones and within different decomposition codes following a standardized methodology. This broad study has allowed us to explore species-specific variability in the bubble’s prevalence, distribution and composition , as well as masking by putrefaction gases. We found that the presence of bubbles detected within the cardiovascular system and tissues during the necropsy of stranded cetaceans is a common finding related to in vivo and / or postmortem process. To try to avoid masking by putrefaction gases, necropsy and gas sampling must be performed as soon as possible, before 24 hours post mortem is recommended but preferably within 12 hours post mortem. At necropsy, quantity of bubbles (gas score in decomposition code 2 in stranded cetaceans was found to be more important than the merely presence versus absence of bubbles. Deep divers presented higher abundance of gas bubbles mainly composed of 70% nitrogen and 30% CO2, suggesting a higher predisposition of these species to suffer from decompression.

  7. Feasibility of an in situ measurement device for bubble size and distribution.

    Science.gov (United States)

    Junker, Beth; Maciejak, Walter; Darnell, Branson; Lester, Michael; Pollack, Michael

    2007-09-01

    The feasibility of in situ measurement device for bubble size and distribution was explored. A novel in situ probe measurement system, the EnviroCam, was developed. Where possible, this probe incorporated strengths, and minimized weaknesses of historical and currently available real-time measurement methods for bubbles. The system was based on a digital, high-speed, high resolution, modular camera system, attached to a stainless steel shroud, compatible with standard Ingold ports on fermenters. Still frames and/or video were produced, capturing bubbles passing through the notch of the shroud. An LED light source was integral with the shroud. Bubbles were analyzed using customized commercially available image analysis software and standard statistical methods. Using this system, bubble sizes were measured as a function of various operating parameters (e.g., agitation rate, aeration rate) and as a function of media properties (e.g., viscosity, antifoam, cottonseed flour, and microbial/animal cell broths) to demonstrate system performance and its limitations. For selected conditions, mean bubble size changes qualitatively compared favorably with published relationships. Current instrument measurement capabilities were limited primarily to clear solutions that did not contain large numbers of overlapping bubbles. PMID:17566786

  8. Gas fluxing of aluminum: a bubble probe for optimization of bubbles/bubble distribution and minimization of splashing/droplet formation

    International Nuclear Information System (INIS)

    totaling 1.549 million lbs. for only thirteen of the twenty three primary smelters then in operation in the US. The research work described in the body of this report (the doctoral dissertation of Dr. Autumn M. Fjeld) had as its objective the improvement of gas fluxing technology to reduce emissions while still maintaining fluxing unit metal throughput. A second objective was a better understanding of the splashing and droplet emission that occurs during fluxing at high gas throughput rates. In the extreme such droplets can form undesired accretions on the walls and gas exit lines of the fluxing unit. Consequently, the productivity of a fluxing unit is sometimes limited by the need to avoid such spraying of droplets produced as gas bubbles break at the metal surface. The approach used was a combination of experimental work in laboratories at UC Berkeley and at the Alcoa Technical Center. The experimental work was mostly on a bubble probe that could be used to determine the extent of dispersion of gas bubbles in the fluxing unit (a parameter affecting the utilization of the injected chlorine). Additionally a high speed digital movie camera was used to study droplet formation due to gas bubbles bursting at the surface of a low melting point alloy. The experimental work was supported by mathematical modeling. In particular, two FLUENT? base mathematical models were developed to compute the metal flow and distribution of the gas within a fluxing unit. Results from these models were then used in a third model to compute emissions and the progress of impurity removal as a function of parameters such as rotor speed. The project was successful in demonstrating that the bubble probe could detect bubbles in a gas fluxing unit at the Alcoa technical Center outside Pittsburgh, PA. This unit is a commercial sized one and the probe, with its associated electronics, was subjected to the hostile molten aluminum, electrical noise etc. Despite this the probes were, on several occasions

  9. A dynamic pressure view cell for acoustic stimulation of fluids—Micro-bubble generation and fluid movement in porous media

    Science.gov (United States)

    Stewart, Robert A.; Shaw, J. M.

    2015-09-01

    The development and baseline operation of an acoustic view cell for observing fluids, and fluid-fluid and fluid-solid interfaces in porous media over the frequency range of 10-5000 Hz is described. This range includes the industrially relevant frequency range 500-5000 Hz that is not covered by existing devices. Pressure waveforms of arbitrary shape are generated in a 17.46 mm ID by 200 mm and 690.5 mm long glass tubes at flow rates up to 200 ml/min using a syringe pump. Peak-to-peak amplitudes exceeding 80 kPa are readily realized at frequencies from 10 to 5000 Hz in bubble free fluids when actuated with 20 Vpp as exemplified using castor oil. At resonant frequencies, peak-to-peak pressure amplitudes exceeding 500 kPa were obtained (castor oil at 2100 Hz when actuated with 20 Vpp). Impacts of vibration on macroscopic liquid-liquid and liquid-vapour interfaces and interface movement are illustrated. Pressure wave transmission and attenuation in a fluid saturated porous medium, randomly packed 250-330 μm spherical silica beads, is also demonstrated. Attenuation differences and frequency shifts in resonant peaks are used to detect the presence and generation of dispersed micro-bubbles (micro-bubbles comprise subjects of special interest.

  10. Energy distribution during cavitation bubble growth and collapse in water

    Czech Academy of Sciences Publication Activity Database

    Müller, M.; Maršík, František; Garen, W.

    Kyoto: Maruzen Co., Ltd, 2005 - (Nakahara, M.; Matubayasi, N.; Ueno, M.; Yasuoka, K.; Watanabe, K.), s. 226-231 ISBN 4-621-07596-9. [International Conference on the Properties of Water and Steam /14./. Kyoto (JP), 29.08.2004-03.09.2004] R&D Projects: GA AV ČR(CZ) IBS2076003; GA ČR(CZ) GA101/02/0364 Institutional research plan: CEZ:AV0Z20760514 Keywords : cavitation * bubble dynamics * optical measurement Subject RIV: BJ - Thermodynamics

  11. The Milky Way Project and ATLASGAL: The distribution and physical properties of cold clumps near infrared bubbles

    CERN Document Server

    Kendrew, S; Simpson, R; Csengeri, T; Wienen, M; Lintott, C J; Povich, M S; Beaumont, C; Schuller, F

    2016-01-01

    We present a statistical study of the distribution and physical properties of cold dense material in and around the inner Galactic Plane near infrared bubbles as catalogued by the Milky Way Project citizen scientists. Using data from the ATLASGAL 870 um survey, we show that 48 +/- 2% of all cold clumps in the studied survey region (|l| <= 65 degrees, |b| <= 1 degree) are found in close proximity to a bubble, and 25 +/- 2% appear directly projected towards a bubble rim. A two-point correlation analysis confirms the strong correlation of massive cold clumps with expanding bubbles. It shows an overdensity of clumps along bubble rims that grows with increasing bubble size, which shows how interstellar medium material is reordered on large scales by bubble expansion around regions of massive star formation. The highest column density clumps appear resistent to the expansion, remaining overdense towards the bubbles' interior rather than being swept up by the expanding edge. Spectroscopic observations in ammon...

  12. Measurements and Analysis of Oxygen Bubble Distributions in LiCl-KCl Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Ryan W. Bezzant; Supathorn Phongikaroon; Michael F. Simpson

    2013-03-01

    Transparent system experimental studies have been performed to provide measurement and analysis of oxygen bubble distributions and mass transfer coefficients at different sparging rates ranging from 0.05 to 0.20 L/min in LiCl-KCl molten salt at 500 degrees C using a high-speed digital camera and an oxygen sensor. The results reveal that bubble sizes and rise velocities increased with an increase in oxygen sparging rate. The bubbles observed were ellipsoidal in shape, and an equivalent diameter based on the ellipsoid volume was calculated. The average equivalent bubble diameters at 500 degrees C and these oxygen sparging rates range from 2.63 to 4.07 mm. Results show that the bubble equivalent diameters at each respective sparging rate are normally distributed. A Fanning friction factor correlation was produced to predict a bubble’s rise velocity based on its equivalent diameter. The oxygen mass transfer coefficients for four sparging rates were calculated using the oxygenation model. These calculated values were within the order of magnitude of 10-2 cm/sec and followed a decreasing trend corresponding to an increasing bubble size and sparging rate. The diffusivities were calculated based on two different types of mechanisms, one based on physics of the bubbles and the other on systematic properties. The results reveal that diffusivity values calculated from bubble physics are 1.65 to 8.40 x 10-5 cm2/sec, which are within the range suggested by literature for gases in liquids of a similar viscosity.

  13. A dynamic pressure view cell for acoustic stimulation of fluids--Micro-bubble generation and fluid movement in porous media.

    Science.gov (United States)

    Stewart, Robert A; Shaw, J M

    2015-09-01

    The development and baseline operation of an acoustic view cell for observing fluids, and fluid-fluid and fluid-solid interfaces in porous media over the frequency range of 10-5000 Hz is described. This range includes the industrially relevant frequency range 500-5000 Hz that is not covered by existing devices. Pressure waveforms of arbitrary shape are generated in a 17.46 mm ID by 200 mm and 690.5 mm long glass tubes at flow rates up to 200 ml/min using a syringe pump. Peak-to-peak amplitudes exceeding 80 kPa are readily realized at frequencies from 10 to 5000 Hz in bubble free fluids when actuated with 20 Vpp as exemplified using castor oil. At resonant frequencies, peak-to-peak pressure amplitudes exceeding 500 kPa were obtained (castor oil at 2100 Hz when actuated with 20 Vpp). Impacts of vibration on macroscopic liquid-liquid and liquid-vapour interfaces and interface movement are illustrated. Pressure wave transmission and attenuation in a fluid saturated porous medium, randomly packed 250-330 μm spherical silica beads, is also demonstrated. Attenuation differences and frequency shifts in resonant peaks are used to detect the presence and generation of dispersed micro-bubbles (<180 μm diameter), and bubbles within porous media that are not readily visualized. Envisioned applications include assessment of the impacts of vibration on reaction, mass transfer, and flow/flow pattern outcomes. This knowledge will inform laboratory and pilot scale process studies, where nuisance vibrations may affect the interpretation of process outcomes, and large scale or in situ processes in aquifers or hydrocarbon reservoirs where imposed vibration may be deployed to improve aspects of process performance. Future work will include miscible interface observation and quantitative measurements in the bulk and in porous media where the roles of micro-bubbles comprise subjects of special interest. PMID:26429474

  14. Boundary conditions for simulations of oscillating bubbles using the non-linear acoustic approximation

    Science.gov (United States)

    King, J. R. C.; Ziolkowski, A. M.; Ruffert, M.

    2015-03-01

    We have developed a new boundary condition for finite volume simulations of oscillating bubbles. Our method uses an approximation to the motion outside the domain, based on the solution at the domain boundary. We then use this approximation to apply boundary conditions by defining incoming characteristic waves at the domain boundary. Our boundary condition is applicable in regions where the motion is close to spherically symmetric. We have tested our method on a range of one- and two-dimensional test cases. Results show good agreement with previous studies. The method allows simulations of oscillating bubbles for long run times (5 ×105 time steps with a CFL number of 0.8) on highly truncated domains, in which the boundary condition may be applied within 0.1% of the maximum bubble radius. Conservation errors due to the boundary conditions are found to be of the order of 0.1% after 105 time steps. The method significantly reduces the computational cost of fixed grid finite volume simulations of oscillating bubbles. Two-dimensional results demonstrate that highly asymmetric bubble features, such as surface instabilities and the formation of jets, may be captured on a small domain using this boundary condition.

  15. On the prediction of the phase distribution of bubbly flow in a horizontal pipe.

    Science.gov (United States)

    Yeoh, G H; Cheung, Sherman C P; Tu, J Y

    2012-01-01

    Horizontal bubbly flow is widely encountered in various industrial systems because of its ability to provide large interfacial areas for heat and mass transfer. Nonetheless, this particular flow orientation has received less attention when compared to vertical bubbly flow. Owing to the strong influence due to buoyancy, the migration of dispersed bubbles towards the top wall of the horizontal pipe generally causes a highly asymmetrical internal phase distributions, which are not experienced in vertical bubbly flow. In this study, the internal phase distribution of air-water bubbly flow in a long horizontal pipe with an inner diameter of 50.3 mm has been predicted using the population balance model based on direct quadrature method of moments (DQMOM) and multiple-size group (MUSIG) model. The predicted local radial distributions of gas void fraction, liquid velocity and interfacial area concentration have been validated against the experimental data of Kocamustafaogullari and Huang (1994). In general, satisfactory agreements between predicted and measured results were achieved. The numerical results indicated that the gas void fraction and interfacial area concentration have a unique internal structure with a prevailing maximum peak near the top wall of the pipe due to buoyancy effect. PMID:24415823

  16. Distribution characteristics of holdups in a multi-stage bubble column using electrical resistance tomography

    Institute of Scientific and Technical Information of China (English)

    Haibo Jin; Yicheng Lian; Yujian Qin; Suohe Yang; Guangxiang He

    2013-01-01

    Based on the principle of chemical reaction engineering,the addition of perforated plates can improve the performance of conventional bubble column and decrease the backmixing behaviors.The distribution characteristics of gas holdup in a multi-stage bubble column embedded with five types of sieve plates and three types of tongue plates were studied using electrical resistance tomography (ERT).The effects of superficial gas velocity and the geometric design of perforated plates on the gas holdup and its radial distribution above and below the plates of the bubble column were discussed.Experimental results show ERT is suitable as an online monitoring tool to provide useful information on the hydrodynamic parameters of multi-stage bubble columns.With increasing superficial gas velocity,local gas holdup increases,and gas holdup below the plate increases with decrease of free area (%FA),hole diameters or angle of tongue plates.ERT technique facilitates noninvasive and nonintrusive visualization of cross-sectional distribution of gas holdup in a bubble column.

  17. Cumulative distribution functions associated with bubble-nucleation processes in cavitation

    KAUST Repository

    Watanabe, Hiroshi

    2010-11-15

    Bubble-nucleation processes of a Lennard-Jones liquid are studied by molecular dynamics simulations. Waiting time, which is the lifetime of a superheated liquid, is determined for several system sizes, and the apparent finite-size effect of the nucleation rate is observed. From the cumulative distribution function of the nucleation events, the bubble-nucleation process is found to be not a simple Poisson process but a Poisson process with an additional relaxation time. The parameters of the exponential distribution associated with the process are determined by taking the relaxation time into account, and the apparent finite-size effect is removed. These results imply that the use of the arithmetic mean of the waiting time until a bubble grows to the critical size leads to an incorrect estimation of the nucleation rate. © 2010 The American Physical Society.

  18. A stochastic differential equations approach for the description of helium bubble size distributions in irradiated metals

    International Nuclear Information System (INIS)

    A rate theory model based on the theory of nonlinear stochastic differential equations (SDEs) is developed to estimate the time-dependent size distribution of helium bubbles in metals under irradiation. Using approaches derived from Itô’s calculus, rate equations for the first five moments of the size distribution in helium–vacancy space are derived, accounting for the stochastic nature of the atomic processes involved. In the first iteration of the model, the distribution is represented as a bivariate Gaussian distribution. The spread of the distribution about the mean is obtained by white-noise terms in the second-order moments, driven by fluctuations in the general absorption and emission of point defects by bubbles, and fluctuations stemming from collision cascades. This statistical model for the reconstruction of the distribution by its moments is coupled to a previously developed reduced-set, mean-field, rate theory model. As an illustrative case study, the model is applied to a tungsten plasma facing component under irradiation. Our findings highlight the important role of stochastic atomic fluctuations on the evolution of helium–vacancy cluster size distributions. It is found that when the average bubble size is small (at low dpa levels), the relative spread of the distribution is large and average bubble pressures may be very large. As bubbles begin to grow in size, average bubble pressures decrease, and stochastic fluctuations have a lessened effect. The distribution becomes tighter as it evolves in time, corresponding to a more uniform bubble population. The model is formulated in a general way, capable of including point defect drift due to internal temperature and/or stress gradients. These arise during pulsed irradiation, and also during steady irradiation as a result of externally applied or internally generated non-homogeneous stress fields. Discussion is given into how the model can be extended to include full spatial resolution and how the

  19. A stochastic differential equations approach for the description of helium bubble size distributions in irradiated metals

    Energy Technology Data Exchange (ETDEWEB)

    Seif, Dariush, E-mail: dariush.seif@iwm-extern.fraunhofer.de [Fraunhofer Institut für Werkstoffmechanik, Freiburg 79108 (Germany); Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095-1597 (United States); Ghoniem, Nasr M. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095-1597 (United States)

    2014-12-15

    A rate theory model based on the theory of nonlinear stochastic differential equations (SDEs) is developed to estimate the time-dependent size distribution of helium bubbles in metals under irradiation. Using approaches derived from Itô’s calculus, rate equations for the first five moments of the size distribution in helium–vacancy space are derived, accounting for the stochastic nature of the atomic processes involved. In the first iteration of the model, the distribution is represented as a bivariate Gaussian distribution. The spread of the distribution about the mean is obtained by white-noise terms in the second-order moments, driven by fluctuations in the general absorption and emission of point defects by bubbles, and fluctuations stemming from collision cascades. This statistical model for the reconstruction of the distribution by its moments is coupled to a previously developed reduced-set, mean-field, rate theory model. As an illustrative case study, the model is applied to a tungsten plasma facing component under irradiation. Our findings highlight the important role of stochastic atomic fluctuations on the evolution of helium–vacancy cluster size distributions. It is found that when the average bubble size is small (at low dpa levels), the relative spread of the distribution is large and average bubble pressures may be very large. As bubbles begin to grow in size, average bubble pressures decrease, and stochastic fluctuations have a lessened effect. The distribution becomes tighter as it evolves in time, corresponding to a more uniform bubble population. The model is formulated in a general way, capable of including point defect drift due to internal temperature and/or stress gradients. These arise during pulsed irradiation, and also during steady irradiation as a result of externally applied or internally generated non-homogeneous stress fields. Discussion is given into how the model can be extended to include full spatial resolution and how the

  20. Sound source localization using distributed elevated acoustic sensors

    Science.gov (United States)

    Di, Xiao; Wagstaff, Ronald A.; Anderson, John D.; Gilbert, Kenneth E.

    2009-05-01

    Detecting and localizing impulsive acoustic sources in the daytime using distributed elevated acoustic sensors with large baseline separations has distinct advantages over small ground-based arrays. There are generally two reasons for this: first, during the daytime, because of more direct and less encumbered propagation paths, signal levels are generally larger at altitude than near the ground. Second, larger baselines provide improved localization accuracy. Results are reported from a distributed array of acoustic sensors deployed during an experiment near Bourges, France during June of 2008. The distributed array consisted of microphones and GPS receivers attached to the tether lines of three widely separated aerostats. The sound sources were various impulsive devices. Results from the measurements are presented and discussed. Localization errors (GPS accuracy, propagation calculation, and aerostat motion, etc) are discussed. Possible ways to improve the localization accuracy are suggested.

  1. Bubble Size Distribution and Two-Phase Pressure Drop in Thin-Gap Microchannel.

    Czech Academy of Sciences Publication Activity Database

    Křišťál, Jiří; Havlica, Jaromír; Jiřičný, Vladimír

    - : Norhaven Book , 2007 - (Gani, R.; Dam-Johansen, K.), s. 271-272 ISBN 978-87-91435-56-0. [European Congress of Chemical Engineering ECCE-6. Copenhagen (DK), 16.09.2007-20.09.2007] Institutional research plan: CEZ:AV0Z40720504 Keywords : rectangular microchannel * bubble size distribution * pressure drop Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  2. Multi-frequency acoustic discrimination between gas bubble plumes and biological targets in the ocean

    OpenAIRE

    Kubilius, Rokas

    2015-01-01

    Seabed-originating gas bubble seeps have been observed worldwide from a variety of sources (e.g. Hovland and Judd, 1988) and are most frequently composed of methane and carbon dioxide. Some seabed gas leaks, such as “melting” methane hydrates, may intensify in the coming decades and are a subject of concern in the context of warming seas (Kvenvolden et al., 1993; Archer, 2007). The subsea gas extraction industry and proposed carbon dioxide storage in geological structures under th...

  3. The Milky Way Project and ATLASGAL: The Distribution and Physical Properties of Cold Clumps Near Infrared Bubbles

    Science.gov (United States)

    Kendrew, Sarah; Beuther, Henrik; Simpson, Robert; Csengeri, Timea; Wienen, Marion; Lintott, Chris. J.; Povich, Matthew S.; Beaumont, Chris; Schuller, Frédéric

    2016-07-01

    We present a statistical study of the distribution and physical properties of cold, dense material in and around the inner Galactic Plane near-infrared bubbles as cataloged by the Milky Way Project citizen scientists. Using data from the Atacama Pathfinder Experiment (APEX) Telescope Large Area Survey of the Galaxy 870 μm survey, we show that 48 ± 2% of all cold clumps in the studied survey region (| l| ≤slant 65^\\circ , | b| ≤slant 1^\\circ ) are found in close proximity to a bubble, and 25 ± 2% appear directly projected toward a bubble rim. A two-point correlation analysis confirms the strong correlation of massive cold clumps with expanding bubbles. It shows an overdensity of clumps along bubble rims that grows with increasing bubble size, which shows how interstellar medium material is reordered on large scales by bubble expansion around regions of massive star formation. The highest column density clumps appear to be resistent to the expansion, remaining overdense toward the bubbles’ interior rather than being swept up by the expanding edge. Spectroscopic observations in ammonia show that cold dust clumps near bubbles appear to be denser, hotter, and more turbulent than those in the field, offering circumstantial evidence that bubble-associated clumps are more likely to be forming stars. These observed differences in physical conditions persist beyond the region of the bubble rims.

  4. Cavitation and Bubble Formation in Water Distribution Systems

    OpenAIRE

    Novak, Julia Ann

    2005-01-01

    Gaseous cavitation is examined from a practical and theoretical standpoint. Classical cavitation experiments which disregard dissolved gas are not directly relevant to natural water systems and require a redefined cavitation inception number which considers dissolved gases. In a pressurized water distribution system, classical cavitation is only expected to occur at extreme negative pressure caused by water hammer or at certain valves. Classical theory does not describe some practical phen...

  5. Active acoustic leak detection for LMFBR steam generator. Pt. 5. Experiment for detection of bubbles using the SG full sector model

    International Nuclear Information System (INIS)

    In order to prevent the expansion of tube damages and to maintain structural safety in steam generators (SG) of fast breeder reactors (FBR), it is necessary to detect precisely and immediately the leakage of water from tubes of heat exchangers. Therefore, an active acoustic method, which detects the sound attenuation due to bubbles generated in the sodium-water reactions, it being developed. In this paper, the attenuation characteristics of sound attenuated by bubbles and influence of background noise are investigated experimentally by using an SG full sector model (diameter ratio about 1/1, height ratio about 1/7) simulating the actual SG. As an experimental result, the received sound attenuation for ten seconds was more than 10 dB from air bubble injection when injected bubble of 10 l/s (equivalence water leak rate about 10 g/s). The attenuation of sound are least affected by bubble injection position of heat exchanger tube bunch department. And the time was about 25 seconds till the sound attenuation became 10 dB in case of quantity of air bubble 1 l/s (equivalent water leak rate about 1 g/s). It is clarified that the background noise hardly influenced water leak detection performance as a result of having examined influence of background noise. (author)

  6. Distributed acoustic cues for caller identity in macaque vocalization.

    Science.gov (United States)

    Fukushima, Makoto; Doyle, Alex M; Mullarkey, Matthew P; Mishkin, Mortimer; Averbeck, Bruno B

    2015-12-01

    Individual primates can be identified by the sound of their voice. Macaques have demonstrated an ability to discern conspecific identity from a harmonically structured 'coo' call. Voice recognition presumably requires the integrated perception of multiple acoustic features. However, it is unclear how this is achieved, given considerable variability across utterances. Specifically, the extent to which information about caller identity is distributed across multiple features remains elusive. We examined these issues by recording and analysing a large sample of calls from eight macaques. Single acoustic features, including fundamental frequency, duration and Weiner entropy, were informative but unreliable for the statistical classification of caller identity. A combination of multiple features, however, allowed for highly accurate caller identification. A regularized classifier that learned to identify callers from the modulation power spectrum of calls found that specific regions of spectral-temporal modulation were informative for caller identification. These ranges are related to acoustic features such as the call's fundamental frequency and FM sweep direction. We further found that the low-frequency spectrotemporal modulation component contained an indexical cue of the caller body size. Thus, cues for caller identity are distributed across identifiable spectrotemporal components corresponding to laryngeal and supralaryngeal components of vocalizations, and the integration of those cues can enable highly reliable caller identification. Our results demonstrate a clear acoustic basis by which individual macaque vocalizations can be recognized. PMID:27019727

  7. Evaluation of stability and size distribution of sunflower oil-coated micro bubbles for localized drug delivery

    Directory of Open Access Journals (Sweden)

    Filho WalterDuartedeAraujo

    2012-09-01

    Full Text Available Abstract Background Micro bubbles were initially introduced as contrast agents for ultrasound examinations as they are able to modify the signal-to-noise ratio in imaging, thus improving the assessment of clinical information on human tissue. Recent developments have demonstrated the feasibility of using these bubbles as drug carriers in localized delivery. In micro fluidics devices for generation of micro bubbles, the bubbles are formed at interface of liquid gas through a strangulation process. A device that uses these features can produce micro bubbles with small size dispersion in a single step. Methods A T-junction micro fluidic device constructed using 3D prototyping was made for the production of mono dispersed micro bubbles. These micro bubbles use sunflower oil as a lipid layer. Stability studies for micro bubbles with diameters different generated from a liquid phase of the same viscosity were conducted to evaluate whether micro bubbles can be used as drug carriers. The biocompatibility of coating layer, the ability to withstand environmental pressure variations combined with echogenicity, are key factors that they can safely play the role of drug transporters. Results The normal distribution curve with small dispersion of the diameter of bubbles validates the process of generating micro bubbles with low value of variation coefficient, i.e., 0.381 at 1.90%. The results also showed the feasibility of using sunflower oil as the lipid matrix with stable population of bubbles over 217 minutes for micro bubbles with an average diameter of 313.04 μm and 121 minutes for micro bubbles with an average diameter of 73.74 μm, considering bubbles with air as gaseous phase. Conclusion The results indicate that the micro fluidic device designed can be used for producing micro bubbles with low variation coefficient using sunflower oil as a coating of micro bubbles. These carriers were stable for periods of time that are long enough for clinical

  8. Deformation of biological cells in the acoustic field of an oscillating bubble.

    Science.gov (United States)

    Zinin, Pavel V; Allen, John S

    2009-02-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin, Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell's oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell's shell deforms due to a change in the shell area this oscillation depends on the surface area modulus K{A} , (c) the relative change in the area has a maximum at frequency f{K} approximately 1/2pi square root[K{A}(rhoa;{3})] , where a is the cell's radius and rho is its density. It was predicted that deformation of the cell wall at the frequency f{K} is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q1) , the area deformation has a strong peak near a resonance frequency f{K} however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers). PMID:19391781

  9. Electron acoustic solitary waves with kappa-distributed electrons

    Energy Technology Data Exchange (ETDEWEB)

    Devanandhan, S; Singh, S V; Lakhina, G S, E-mail: satyavir@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai (India)

    2011-08-01

    Electron acoustic solitary waves are studied in a three-component, unmagnetized plasma composed of hot electrons, fluid cold electrons and ions having finite temperatures. Hot electrons are assumed to have kappa distribution. The Sagdeev pseudo-potential technique is used to study the arbitrary amplitude electron-acoustic solitary waves. It is found that inclusion of cold electron temperature shrinks the existence regime of the solitons, and soliton electric field amplitude decreases with an increase in cold electron temperature. A decrease in spectral index, {kappa}, i.e. an increase in the superthermal component of hot electrons, leads to a decrease in soliton electric field amplitude as well as the soliton velocity range. The soliton solutions do not exist beyond T{sub c}/T{sub h}>0.13 for {kappa}=3.0 and Mach number M=0.9 for the dayside auroral region parameters.

  10. Consistency in statistical moments as a test for bubble cloud clustering.

    Science.gov (United States)

    Weber, Thomas C; Lyons, Anthony P; Bradley, David L

    2011-11-01

    Frequency dependent measurements of attenuation and/or sound speed through clouds of gas bubbles in liquids are often inverted to find the bubble size distribution and the void fraction of gas. The inversions are often done using an effective medium theory as a forward model under the assumption that the bubble positions are Poisson distributed (i.e., statistically independent). Under circumstances in which single scattering does not adequately describe the pressure field, the assumption of independence in position can yield large errors when clustering is present, leading to errors in the inverted bubble size distribution. It is difficult, however, to determine the existence of clustering in bubble clouds without the use of specialized acoustic or optical imaging equipment. A method is described here in which the existence of bubble clustering can be identified by examining the consistency between the first two statistical moments of multiple frequency acoustic measurements. PMID:22088013

  11. Bubble Manipulation by Self Organization of Bubbles inside Ultrasonic Wave

    Science.gov (United States)

    Yamakoshi, Yoshiki; Koganezawa, Masato

    2005-06-01

    Microbubble manipulation using ultrasonic waves is a promising technology in the fields of future medicine and biotechnology. For example, it is considered that bubble trapping using ultrasonic waves may play an important role in drug or gene delivery systems in order to trap the drugs or genes in the diseased tissue. Usually, when bubbles are designed so that they carry payloads, such as drug or gene, they tend to be harder than free bubbles. These hard bubbles receive a small acoustic radiation force, which is not sufficient for bubble manipulation. In this paper, a novel method of microbubble manipulation using ultrasonic waves is proposed. This method uses seed bubbles in order to manipulate target bubbles. When the seed bubbles are introduced into the ultrasonic wave field, they start to oscillate to produce a bubble aggregation of a certain size. Then the target bubbles are introduced, the target bubbles attach around the seed bubbles producing a bubble mass with bilayers (inner layer: seed bubbles, outer layer: target bubbles). The target bubbles are manipulated as a bilayered bubble mass. Basic experiments are carried out using polyvinyl chloride (PVC) shell bubbles. No target bubbles are trapped when only the target bubbles are introduced. However, they are trapped if the seed bubbles are introduced in advance.

  12. Repair Welding of Irradiated Materials: Modeling of Helium Bubble Distributions for Determining Crack-Free Welding Procedures

    International Nuclear Information System (INIS)

    In this paper, a computational simulation study is presented on the prediction of helium bubble evolution during repair welding of irradiated 304 stainless steel. Realistic spatial and temporal temperature and stress evolution during welding were obtained from simulation of the repair welding operation using the finite element model approach. The helium bubble evolution model by Kawano et al. was adopted as a user subroutine in the finite element model to predict the spatial distribution and temporal evolution of the helium bubble size and density in the heat-affected zone (HAZ) of partial penetration welds. Comparisons with experimental results available in open literature show that the predicted average helium bubble sizes were consistent with those observed experimentally under similar conditions. In addition, the computer simulation revealed strong spatial variation of helium bubble size due to the differences in combined thermal and stress conditions experienced in different locations in the HAZ. The predicted location of the maximum helium bubble agreed well with the observed helium-induced cracking site. The effect of welding heat input and welding speed was also investigated numerically. The modeling approach adopted in this study could be used as a cost-effective tool to quantitatively correlate the welding condition, radiation damage, and the likelihood of cracking, under the influence of welding-induced thermal and stress cycles. The model will also be useful in studying the degradation of properties from helium bubble formation of post-welded structures, even if a successful weld is made. (authors)

  13. Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases.

    Science.gov (United States)

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2015-01-01

    Central events of ultrasonic action are the bubbles of cavitation that can be considered as powered microreactors within which high-energy chemistry occurs. This work presents the results of a comprehensive numerical assessment of frequency and saturating gases effects on single bubble sonochemistry. Computer simulations of chemical reactions occurring inside a bubble oscillating in liquid water irradiated by an ultrasonic wave have been performed for a wide range of ultrasonic frequencies (213-1100kHz) under different saturating gases (O2, air, N2 and H2). For O2 and H2 bubbles, reactions mechanism consisting in 25 reversible chemical reactions were proposed for studying the internal bubble-chemistry whereas 73 reversible reactions were taken into account for air and N2 bubbles. The numerical simulations have indicated that radicals such as OH, H, HO2 and O are created in the bubble during the strong collapse. In all cases, hydroxyl radical (OH) is the main oxidant created in the bubble. The production rate of the oxidants decreases as the driving ultrasonic frequency increases. The production rate of OH radical followed the order O2>air>N2>H2 and the order becomes more remarkable at higher ultrasonic frequencies. The effect of ultrasonic frequency on single bubble sonochemistry was attributed to its significant impact on the cavitation process whereas the effects of gases were attributed to the nature of the chemistry produced in the bubble at the strong collapse. It was concluded that, in addition to the gas solubility, the nature of the internal bubble chemistry is another parameter of a paramount importance that controls the overall sonochemical activity in aqueous solutions. PMID:25112684

  14. Acoustic cavitation bubbles in the kidney induced by focused shock waves in extracorporeal shock wave lithotripsy (ESWL)

    Science.gov (United States)

    Kuwahara, M.; Ioritani, N.; Kambe, K.; Taguchi, K.; Saito, T.; Igarashi, M.; Shirai, S.; Orikasa, S.; Takayama, K.

    1990-07-01

    On an ultrasonic imaging system a hyperechoic region was observed in a focal area of fucused shock waves in the dog kidney. This study was performed to learn whether cavitation bubbles are responsible for this hyperechoic region. The ultrasonic images in water of varying temperatures were not markedly different. In the flowing stream of distilled water, the stream was demonstrated as a hyperechoic region only with a mixture of air bubbles. Streams of 5%-50% glucose solutions were also demonstrated as a hyperechoic region. However, such concentration changes in living tissue, as well as thermal changes, are hardly thought to be induced. The holographic interferometry showed that the cavitation bubbles remained for more than 500 msec. in the focal area in water. This finding indicate that the bubble can remain for longer period than previously supposed. These results support the contentions that cavitation bubbles are responsible for the hyperechoic region in the kidney in situ.

  15. Modelling of the Bubble Size Distribution in an Aerated Stirred Tank: Theoretical and Numerical Comparison of Different Breakup Models

    Directory of Open Access Journals (Sweden)

    Kálal Zbyněk

    2014-09-01

    Full Text Available The main topic of this study is the mathematical modelling of bubble size distributions in an aerated stirred tank using the population balance method. The air-water system consisted of a fully baffled vessel with a diameter of 0.29 m, which was equipped with a six-bladed Rushton turbine. The secondary phase was introduced through a ring sparger situated under the impeller. Calculations were performed with the CFD software CFX 14.5. The turbulent quantities were predicted using the standard k-ε turbulence model. Coalescence and breakup of bubbles were modelled using the MUSIG method with 24 bubble size groups. For the bubble size distribution modelling, the breakup model by Luo and Svendsen (1996 typically has been used in the past. However, this breakup model was thoroughly reviewed and its practical applicability was questioned. Therefore, three different breakup models by Martínez-Bazán et al. (1999a, b, Lehr et al. (2002 and Alopaeus et al. (2002 were implemented in the CFD solver and applied to the system. The resulting Sauter mean diameters and local bubble size distributions were compared with experimental data.

  16. Modeling of bubble size distribution in isothermal gas–liquid flows: Numerical assessment of population balance approaches

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, S.C.P.; Deju, L. [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Victoria 3083 (Australia); Yeoh, G.H. [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, New South Wales 2232 (Australia); School of Mechanical and Manufacturing Engineering, University of New South Wales, New South Wales 2052 (Australia); Tu, J.Y., E-mail: jiyuan.tu@rmit.edu.au [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Victoria 3083 (Australia)

    2013-12-15

    Highlights: • Analyze gas–liquid flow in medium and large pipe under various flow regimes. • Identifying relative merits and capabilities of DQMOM. • Comparison of DQMOM with ABND and homogeneous MUSIG model. • Numerical results validation against gas–liquid flow experiments. - Abstract: Gas–liquid flows are commonly encountered in many industrial flow systems. In many cases, the evolution of bubble size distribution is a crucial factor governing the momentum, heat and mass transfer between phases within the system. Aiming to evaluate the capability of existing models, numerical assessment of three different population balance approaches – direct quadrature method of moments (DQMOM), average bubble number density (ABND) model and homogeneous MUlti-SIze-Group (MUSIG) models – is presented in this paper. Model predictions were validated against experimental measurements from medium and large scale bubble columns where bubble sizes within the system were found to be dominant by coalescence and break-up mechanism, respectively. In result of the bubble size change, transitions of phase distribution from wall peak to core peak profile were also found in both experiments. In general, predictions of the three models were in satisfactory agreement with experiment measurements clearly demonstrating its applicability for large scale practical systems. Encouraging results have also been obtained in capturing the evolution of bubble size distribution. Nevertheless, noticeable errors were also found in predictions of the MUSIG and DQMOM model indicating some potential deficiencies of the model. To evaluate the numerical efficiency of the three models, computational requirements of each model were also compared.

  17. Modeling of bubble size distribution in isothermal gas–liquid flows: Numerical assessment of population balance approaches

    International Nuclear Information System (INIS)

    Highlights: • Analyze gas–liquid flow in medium and large pipe under various flow regimes. • Identifying relative merits and capabilities of DQMOM. • Comparison of DQMOM with ABND and homogeneous MUSIG model. • Numerical results validation against gas–liquid flow experiments. - Abstract: Gas–liquid flows are commonly encountered in many industrial flow systems. In many cases, the evolution of bubble size distribution is a crucial factor governing the momentum, heat and mass transfer between phases within the system. Aiming to evaluate the capability of existing models, numerical assessment of three different population balance approaches – direct quadrature method of moments (DQMOM), average bubble number density (ABND) model and homogeneous MUlti-SIze-Group (MUSIG) models – is presented in this paper. Model predictions were validated against experimental measurements from medium and large scale bubble columns where bubble sizes within the system were found to be dominant by coalescence and break-up mechanism, respectively. In result of the bubble size change, transitions of phase distribution from wall peak to core peak profile were also found in both experiments. In general, predictions of the three models were in satisfactory agreement with experiment measurements clearly demonstrating its applicability for large scale practical systems. Encouraging results have also been obtained in capturing the evolution of bubble size distribution. Nevertheless, noticeable errors were also found in predictions of the MUSIG and DQMOM model indicating some potential deficiencies of the model. To evaluate the numerical efficiency of the three models, computational requirements of each model were also compared

  18. Decompression versus decomposition: distribution, quantity and gas composition of bubbles in stranded marine mammals

    OpenAIRE

    YaraBernaldo de Quirós; ÓscarGonzález-Díaz

    2012-01-01

    "Gas Bubble Disease" or “Decompression-like Sickness" was described in stranded beaked whales linked to military sonar. Findings of gas bubble presence or associated lesions in marine mammals have been reported more and more often during the last decade. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score) and compositiones and within different decomposition code...

  19. Can airborne ultrasound monitor bubble size in chocolate?

    International Nuclear Information System (INIS)

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product

  20. Can airborne ultrasound monitor bubble size in chocolate?

    Science.gov (United States)

    Watson, N.; Hazlehurst, T.; Povey, M.; Vieira, J.; Sundara, R.; Sandoz, J.-P.

    2014-04-01

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product.

  1. Time-series measurements of bubble plume variability and water column methane distribution above Southern Hydrate Ridge, Oregon

    Science.gov (United States)

    Philip, Brendan T.; Denny, Alden R.; Solomon, Evan A.; Kelley, Deborah S.

    2016-03-01

    An estimated 500-2500 gigatons of methane carbon is sequestered in gas hydrate at continental margins and some of these deposits are associated with overlying methane seeps. To constrain the impact that seeps have on methane concentrations in overlying ocean waters and to characterize the bubble plumes that transport methane vertically into the ocean, water samples and time-series acoustic images were collected above Southern Hydrate Ridge (SHR), a well-studied hydrate-bearing seep site ˜90 km west of Newport, Oregon. These data were coregistered with robotic vehicle observations to determine the origin of the seeps, the plume rise heights above the seafloor, and the temporal variability in bubble emissions. Results show that the locations of seep activity and bubble release remained unchanged over the 3 year time-series investigation, however, the magnitude of gas release was highly variable on hourly time scales. Bubble plumes were detected to depths of 320-620 m below sea level (mbsl), in several cases exceeding the upper limit of hydrate stability by ˜190 m. For the first time, sustained gas release was imaged at the Pinnacle site and in-between the Pinnacle and the Summit area of venting, indicating that the subseafloor transport of fluid and gas is not restricted to the Summit at SHR, requiring a revision of fluid-flow models. Dissolved methane concentrations above background levels from 100 to 300 mbsl are consistent with long-term seep gas transport into the upper water column, which may lead to the build-up of seep-derived carbon in regional subsurface waters and to increases in associated biological activity.

  2. Assessment of effective thermal conductivity in U–Mo metallic fuels with distributed gas bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang; Casella, Andrew M.; Lavender, Curt A.; Senor, David J.; Burkes, Douglas E.

    2015-07-15

    This work presents a numerical method to assess the relative impact of various microstructural features including grain sizes, nanometer scale intragranular gas bubbles, and larger intergranular gas bubbles in irradiated U–Mo metallic fuels on the effective thermal conductivity. A phase-field model was employed to construct a three-dimensional polycrystalline U–Mo fuel alloy with a given crystal morphology and gas bubble microstructures. An effective thermal conductivity “concept” was taken to capture the effect of polycrystalline structures and gas bubble microstructures with significant size differences on the thermal conductivity. The thermal conductivity of inhomogeneous materials was calculated by solving the heat transport equation. The obtained results are in reasonably good agreement with experimental measurements made on irradiated U–Mo fuel samples containing similar microstructural features. The developed method can be used to predict the thermal conductivity degradation in operating nuclear fuels if the evolution of microstructures is known during operation of the fuel.

  3. Methane distribution in porewaters of the Eastern Siberian Shelf Sea - chemical, acoustic, and video observations

    Science.gov (United States)

    Bruchert, V.; Sawicka, J. E.; Samarkin, V.; Noormets, R.; Stockmann, G. J.; Bröder, L.; Rattray, J.; Steinbach, J.

    2015-12-01

    We present porewater methane and sulfate concentrations, and the isotope composition of carbon dioxide from 18 sites in areas of reported high methane water column concentrations on the Siberian shelf. Echosounder imaging and video imagery of the benthic environment were used to detect potential bubble emission from the sea bottom and to locate high methane emission areas. In areas where bubble flares were identified by acoustic echsounder imaging, recovered sediment cores provided evidence for slightly elevated porewater methane concentrations 10 cm below the sediment surface relative to sites without flares. Throughout the recovered sediment depth intervals porewater concentrations of methane were more than a factor 300 below the gas saturation limit at sea surface pressure. In addition, surface sediment video recordings provided no evidence for bubble emissions in the investigated methane hotspot areas although at nearby sites bubbles were detected higher in the water column. The conflicting observations of acoustic indications of rising bubbles and the absence of bubbles and methane oversaturation in any of the sediment cores during the whole SWERUS cruise suggest that advective methane seepage is a spatially limited phenomenon that is difficult to capture with routine ship-based core sampling methods in this field area. Recovery of a sediment core from one high-activity site indicated steep gradients in dissolved sulfate and methane in the first 8 cm of sediment pointing to the presence of anaerobic methane oxidation at a site with a high upward flux of methane. Based on the decrease of methane towards the sediment surface and the rates of sulfate reduction-coupled methane oxidation, most of the upward-transported methane was oxidized within the sediment. This conclusion is further supported by the stable isotope composition of dissolved carbon dioxide in porewaters and the precipitation of calcium carbonate minerals only found in sediment at this site

  4. Ion acoustic solitons in a solar wind magnetoplasma with Kappa distributed electrons

    Science.gov (United States)

    Devanandhan, Selvaraj; Singh, Satyavir; Singh Lakhina, Gurbax; Sreeraj, T.

    2016-07-01

    In many space plasma environments, the velocity distribution of particles often deviates from Maxwellian and is well-modelled by a kappa distribution function. We have analyzed the ion acoustic soliton in a magnetized consisting of plasma Protons, Helium ions, an electron beam and superthermal hot electrons following kappa distribution function. Under the assumption of weak nonlinearity, the ion-acoustic solitons are described by the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation. The solution of KdV-ZK equation is used to model the characteristics of the ion acoustic solitary waves in a solar wind magnetoplasma observed at 1 AU. We have found both slow and fast ion acoustic solitons in our study. It is found that the superthermality of hot electrons greatly influence the existence regime of the solitary waves. The numerical results of this study to explain solar wind observations will be discussed in detail.

  5. Acoustic Estimates of Distribution and Biomass of Different Acoustic Scattering Types Between the New England Shelf Break and Slope Waters

    KAUST Repository

    McLaren, Alexander

    2011-11-01

    Due to their great ecological significance, mesopelagic fishes are attracting a wider audience on account of the large biomass they represent. Data from the National Marine Fisheries Service (NMFS) provided the opportunity to explore an unknown region of the North-West Atlantic, adjacent to one of the most productive fisheries in the world. Acoustic data collected during the cruise required the identification of acoustically distinct scattering types to make inferences on the migrations, distributions and biomass of mesopelagic scattering layers. Six scattering types were identified by the proposed method in our data and traces their migrations and distributions in the top 200m of the water column. This method was able to detect and trace the movements of three scattering types to 1000m depth, two of which can be further subdivided. This process of identification enabled the development of three physically-derived target-strength models adapted to traceable acoustic scattering types for the analysis of biomass and length distribution to 1000m depth. The abundance and distribution of acoustic targets varied closely in relation to varying physical environments associated with a warm core ring in the New England continental Shelf break region. The continental shelf break produces biomass density estimates that are twice as high as the warm core ring and the surrounding continental slope waters are an order of magnitude lower than either estimate. Biomass associated with distinct layers is assessed and any benefits brought about by upwelling at the edge of the warm core ring are shown not to result in higher abundance of deepwater species. Finally, asymmetric diurnal migrations in shelf break waters contrasts markedly with the symmetry of migrating layers within the warm ring, both in structure and density estimates, supporting a theory of predatorial and nutritional constraints to migrating pelagic species.

  6. Lightening the load : bubble-attracting proppant boosts distribution throughout fracture networks

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.

    2010-01-15

    The natural gas industry in North America is focused on shale gas plays, many of which require hydraulic fracturing technology to force open channels for the gas to escape. Several tonnes of sand or manufactured proppant pumped downhole are wasted, settling on the bottom of the created fractures close to the wellbore. Companies are therefore seeking ways to drive more of the proppant deeper into the formation. Calgary-based Trican Well Service Ltd. has developed a surfactant that causes a thin layer of micro bubbles to adhere to the grains of natural sand and synthetic proppants. This enables them to be transported within the turbulent flow, resulting in better proppant distribution in the fracture network. The patent-pending proppant transportation modifier known as FlowRider is in the early stage of commercialization. Three wells completed by 2 companies at the end of 2009 have shown positive results, with 1 well obtaining 3 times the production of the offsetting well. Slick-water fracs are also used extensively in the shale gas sector because they are cheaper, require less cleanup and are less damaging to the tight, low-permeability shale formations. Chemical friction reducers added to the water enable higher pressures to be applied at surface, allowing the fluid to be pumped faster into the formation. FlowRider, added in concentrations of about 2 litres to 1,000 litres of water, is a two-component system added simultaneously to the water to make the sand attract air. It allows sand to perform like synthetic ultra lightweight proppants that are made of materials like polymers to increase buoyancy. FlowRider product is far more cost-effective and has similar positive results as ultra-light proppants. Its use would make shale gas fracturing far more efficient. 1 ref., 3 figs.

  7. Sonochemistry and bubble dynamics.

    Science.gov (United States)

    Mettin, Robert; Cairós, Carlos; Troia, Adriano

    2015-07-01

    The details of bubble behaviour in chemically active cavitation are still not sufficiently well understood. Here we report on experimental high-speed observations of acoustically driven single-bubble and few-bubble systems with the aim of clarification of the connection of their dynamics with chemical activity. Our experiment realises the sonochemical isomerization reaction of maleic acid to fumaric acid, mediated by bromine radicals, in a bubble trap set-up. The main result is that the reaction product can only be observed in a parameter regime where a small bubble cluster occurs, while a single trapped bubble stays passive. Evaluations of individual bubble dynamics for both cases are given in form of radius-time data and numerical fits to a bubble model. A conclusion is that a sufficiently strong collapse has to be accompanied by non-spherical bubble dynamics for the reaction to occur, and that the reason appears to be an efficient mixing of liquid and gas phase. This finding corroborates previous observations and literature reports on high liquid phase sonochemical activity under distinct parameter conditions than strong sonoluminescence emissions. PMID:25194210

  8. Study on resonance frequency distribution of high-overtone bulk acoustic resonators

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; WANG Zuoqing; ZHANG Shuyi

    2005-01-01

    Based on the method of characterizing piezo-films by the resonance frequency distributions, the factors influencing the resonance frequency distribution of a High-overtone Bulk Acoustic Resonator (HBAR) consisting of a piezoelectric thin film with twoelectrodes and a substrate are studied. Some HBARs are simulated. The results manifest that changing the acoustic impedance ratio of the substrate to piezo-film the distribution of the space of the parallel resonance frequency and the effective electromechanical coupling factor are changed. When the fundamental mode of the piezo-film is at high frequency, changing the acoustic impedance ratio of the electrode to piezo-film and the thickness of the electrodes make the resonance frequency distribution of HBARs change. These results manifest that the HBARs can be resonant at specified frequencies by means of adjusting the factors affecting the resonance frequency distribution.

  9. Distributions of TEC Fluctuations and Losses of Lock Associated with Equatorial Plasma Bubbles

    Science.gov (United States)

    Nakata, H.; Kikuchi, H.; Tsugawa, T.; Otsuka, Y.; Takano, T.; Shimakura, S.; Shiokawa, K.; Ogawa, T.

    2009-12-01

    Equatorial plasma bubbles (EPBs) are local depletions of the electron density in the ionosphere. Due to field-aligned irregularities (FAIs) with various spatial scales, EPBs affect wide-band radio waves and cause scintillations in GPS navigation system. Strong scintillation can cause a GPS receiver to lose lock on GPS signals because of rapid variations of signal amplitude and phase, and limit the availability of carrier phase measurements. Since the scintillation is caused by Fresnel diffraction, the spatial scale of FAIs that causes the scintillation of GPS signals is about 2-300 m. Therefore, loss of phase lock (LOL) on GPS signals is a reference of hundred-meter-scale FAIs. As EPBs are also associated with fluctuations of the total electron content (TEC), the enhancement of Rate of TEC change index (ROTI) occurs around EPBs. Assuming that the altitude of the ionosphere is about 400 km, the velocity of the pierce point of the GPS radio wave at the ionospheric altitude is approximately 70 m/s around the zenith. Thus, ROTI averaged during 5 minutes is a reference of ten-kilometer-scale fluctuations. In this study, we analyzed LOL and 5-min. ROTI associated with EPBs to examine the spatial and temporal scales of electron density disturbances associated with EPBs. We selected 11 EPBs from 630-nm airglow images obtained by all-sky imager at Sata, Japan, in 2001. LOL and ROTI are obtained from GPS data from GPS Earth Observation Network (GEONET) of Japan, which consists of more than 1000 GPS receivers. As a result, it is shown that both LOL and the enhancement of ROTI are observed in 8 events out of 11 events. The distributions of LOL are approximately consistent with the areas in which the ionospheric electron density is depleted. The enhancements of ROTI are observed in the vicinities of EPBs. The enhancement of ROTI expands especially in the west side of EPBs. After the EPBs pass through, therefore, LOLs are vanished but the enhancements of ROTI last a while. This

  10. Kinetic study of ion acoustic twisted waves with kappa distributed electrons

    Science.gov (United States)

    Arshad, Kashif; Aman-ur-Rehman, Mahmood, Shahzad

    2016-05-01

    The kinetic theory of Landau damping of ion acoustic twisted modes is developed in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons and Maxwellian ions. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the ion acoustic twisted waves in a non-thermal plasma. The strong damping effects of ion acoustic twisted waves at low values of temperature ratio of electrons and ions are also obtained by using exact numerical method and illustrated graphically, where the weak damping wave theory fails to explain the phenomenon properly. The obtained results of Landau damping rates of the twisted ion acoustic wave are discussed at different values of azimuthal wave number and non-thermal parameter kappa for electrons.

  11. Pitch and TDOA-Based Localization of Acoustic Sources with Distributed Arrays

    DEFF Research Database (Denmark)

    Hansen, Martin Weiss; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2015-01-01

    In this paper, a method for acoustic source localization using distributed microphone arrays based on time-differences of arrival (TDOAs) is presented. The TDOAs are used to estimate the location of an acoustic source using a recently proposed method, based on a 4D parameter space defined by the 3D...... location of the source, and the TDOAs. The performance of the proposed method for acoustic source localization is compared to the performance of a method based on generalized cross-correlation with phase transform (GCC-PHAT) using synthetic and speech signals with varying source position. Results show a...

  12. Effect of a polynomial arbitrary dust size distribution on dust acoustic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Ishak-Boushaki, M.; Djellout, D.; Annou, R. [Faculty of Physics, USTHB, P.B. 32 El Alia, Bab-ezzouar, Algiers (Algeria)

    2012-07-15

    The investigation of dust-acoustic solitons when dust grains are size-distributed and ions adiabatically heated is conducted. The influence of an arbitrary dust size-distribution described by a polynomial function on the properties of dust acoustic waves is investigated. An energy-like integral equation involving Sagdeev potential is derived. The solitary solutions are shown to undergo a transformation into cnoidal ones under some physical conditions. The dust size-distribution can significantly affect both lower and upper critical Mach numbers for both solitons and cnoidal solutions.

  13. Acoustics

    Science.gov (United States)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  14. Temperature dynamics of liquid outside a spherical bubble

    International Nuclear Information System (INIS)

    Radial Fourier equation describing temperature distribution outside a spherical bubble is considered. This equation appears from the energy conservation law written for a single bubble. Analytical approximation to the solution of this equation was built for radius and temperature of the surface of the bubble as arbitrary functions of time. In zero-order approximation it is assumed that variation amplitude of bubble radius is much smaller than its value. Together with first-order correction the so obtained solution is in good agreement with numerical results. Reported analytical approximation reduces computation efforts more than 10 times with comparison to the conventional numerical scheme. Finally presented semi-analytical approximation provides a possibility to describe acoustic effects and cavitations being incorporated into the multiphase flow code. (author)

  15. The Bubble Box: Towards an Automated Visual Sensor for 3D Analysis and Characterization of Marine Gas Release Sites

    Directory of Open Access Journals (Sweden)

    Anne Jordt

    2015-12-01

    Full Text Available Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information.

  16. The Bubble Box: Towards an Automated Visual Sensor for 3D Analysis and Characterization of Marine Gas Release Sites.

    Science.gov (United States)

    Jordt, Anne; Zelenka, Claudius; von Deimling, Jens Schneider; Koch, Reinhard; Köser, Kevin

    2015-01-01

    Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane) from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected) as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information. PMID:26690168

  17. Decoding Group Vocalizations: The Acoustic Energy Distribution of Chorus Howls Is Useful to Determine Wolf Reproduction

    Science.gov (United States)

    López-Bao, José Vicente; Llaneza, Luis; Fernández, Carlos; Font, Enrique

    2016-01-01

    Population monitoring is crucial for wildlife management and conservation. In the last few decades, wildlife researchers have increasingly applied bioacoustics tools to obtain information on several essential ecological parameters, such as distribution and abundance. One such application involves wolves (Canis lupus). These canids respond to simulated howls by emitting group vocalizations known as chorus howls. These responses to simulated howls reveal the presence of wolf litters during the breeding period and are therefore often used to determine the status of wolf populations. However, the acoustic structure of chorus howls is complex and discriminating the presence of pups in a chorus is sometimes difficult, even for experienced observers. In this study, we evaluate the usefulness of analyses of the acoustic energy distribution in chorus howls to identify the presence of pups in a chorus. We analysed 110 Iberian wolf chorus howls with known pack composition and found that the acoustic energy distribution is concentrated at higher frequencies when there are pups vocalizing. We built predictive models using acoustic energy distribution features to determine the presence of pups in a chorus, concluding that the acoustic energy distribution in chorus howls can be used to determine the presence of wolf pups in a pack. The method we outline here is objective, accurate, easily implemented, and independent of the observer's experience. These advantages are especially relevant in the case of broad scale surveys or when many observers are involved. Furthermore, the analysis of the acoustic energy distribution can be implemented for monitoring other social canids that emit chorus howls such as jackals or coyotes, provides an easy way to obtain information on ecological parameters such as reproductive success, and could be useful to study other group vocalizations. PMID:27144887

  18. Dust ion acoustic solitary waves in a collisional dusty plasma with dust grains having Gaussian distribution

    International Nuclear Information System (INIS)

    The influence of dust size distribution on the dust ion acoustic solitary waves in a collisional dusty plasma is investigated. It is found that dust size distribution changes the amplitude and width of a solitary wave. A critical wave number is derived for the existence of purely damping mode. A deformed Korteweg-de Vries (dKdV) equation is obtained for the propagation of weakly nonlinear dust ion acoustic solitary waves and the effect of different plasma parameters on the solution of this equation is also presented

  19. Numerical investigation of bubble nonlinear dynamics characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jie, E-mail: shijie@hrbeu.edu.cn; Yang, Desen; Shi, Shengguo; Hu, Bo [Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang, Haoyang; Jiang, Wei [College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001 (China)

    2015-10-28

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  20. Numerical investigation of bubble nonlinear dynamics characteristics

    Science.gov (United States)

    Shi, Jie; Yang, Desen; Zhang, Haoyang; Shi, Shengguo; Jiang, Wei; Hu, Bo

    2015-10-01

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  1. Numerical investigation of bubble nonlinear dynamics characteristics

    International Nuclear Information System (INIS)

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed

  2. The significance of multiple scattering in bubble measurements near the sea surface

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø; Bjørnø, Irina K.

    1996-01-01

    of the theory for isotropic scattering by randomly distributed scatterers. This theory, modified later by others [K. W. Commander and A. Prosperetti, J. Acoust. Soc. Am. 85, 732–746 (1989)] fails in the vicinity of individual bubble resonances and for high concentrations of bubbles in the population. A recent...... improvement of the scattering theory [C. Feuillade, J. Acoust. Soc. Am. 98, 1178–1190 (1995)], predicts a downward frequency shift and a suppression of the attenuation peak. His results emphasize the importance of the still unsolved problem on proximity thresholds for influence of multiple scattering in terms...... of bubble plume qualities. Available, but still unconfirmed, experimental data show the significance of multiple scattering in bubble plumes having void fractions >~0.22%. This paper forms an attempt to illuminate and solve the proximity threshold question, forming the basis for the significance...

  3. Vertical distribution of giant jellyfish, Nemopilema nomurai using acoustics and optics

    Science.gov (United States)

    Kim, Seonghun; Lee, Kyounghoon; Yoon, Won Duk; Lee, Hyungbeen; Hwang, Kangseok

    2016-03-01

    Nemopilema nomurai jellyfish, which are believed to complete their development in the East China Sea, have started migrating into the Yellow Sea in recent years. We obtained biomass estimates of this species in the Yellow Sea using bottom trawl fishing gear and sighting surveys over a 5-year period. These methods are effective for obtaining N. nomurai jellyfish density estimates and information about the community distribution near the bottom or surface of the sea. To verify the vertical distributions of giant jellyfish between, we used hydroacoustic equipment, including an optical stereo camera system attached to a towed sledge and an echo counting method with scientific echosounder system. Acoustic and optical data were collected while the vessel moved at 3 knots, from which the distribution and density of N. nomurai jellyfish were analyzed. Subsequently, the camera system was towed from a 7 m mean depth to sea level, with the detection range of the acoustic system extending from an 8 m depth to the bottom surface. The optical and acoustic methods indicated the presence of vertical distribution of 0.113 (inds/m3) and 0.064 (inds/m3), respectively. However, the vertical distribution indicated that around 93% of individuals occurred at a depth range of 10-40 m; thus, a 2.4-fold greater density was estimated by acoustic echo counting compared to the optical method.

  4. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    Science.gov (United States)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  5. Contactless measurement of phase and concentration distributions in bubble columns using positron emitting radionuclides

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) is a well-established method for studying metabolic processes in humans and in use as a medical diagnostic procedure (metabolism, blood perfusion, metastasis detection). The present project was dedicated to a nonmedical application of this imaging method, namely to the development and use of a PET tomograph for studying the behaviour of foam in bubble columns on the ''SchaumPET'' test stand. This paper deals in particular with the technical realisation of the project and the image acquisition methods used. The capacity of positron emission tomography to detect the accumulation of a surfactant in a foam layer is demonstrated for the example of sodium capronate

  6. Numerical and physical modelling of bubbly flow phenomena

    Science.gov (United States)

    Sangani, A. S.

    1991-01-01

    The objective of this study is to develop theoretical tools -- analytical as well as numerical -- for understanding how the flows of bubbly liquids are affected by its microstructure, i.e., the detailed spatial, size, and velocity distribution of bubbles, and how the microstructure, in turn, is affected by the flow. This report describes the progress made to date on the several problems that are being studied. The first problem is concerned with the molecular-dynamics type simulations of monodispersed bubbly liquids under equilibrium and homogeneous conditions and their application to slightly inhomogeneous flows. The Reynolds number is large and the Weber and Froud numbers are small in these simulations. The second problem is concerned with the simulations of flows of bubbly liquids undergoing small amplitude oscillatory motion. Both the cases of bubbles with rigid (due to impurities) and stress-free interfaces are examined. The results are related to the added mass, Basset, and viscous drag coefficients. The third problem is concerned with the acoustic wave propagation in bubbly liquids at frequencies above natural frequency of the bubbles. The second problem is completed as of this writing. Work on the other two problems is currently in progress. A summary of the work to be carried out during the period 1/91 to 6/92 is given in the last section.

  7. Science Bubbles

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Pedersen, David Budtz

    2013-01-01

    Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when...... bubbles appear in science, truth and reliability are the first victims. This paper explores how fashions in research funding and research management may turn science into something like a bubble economy....

  8. Evaluation of stability and size distribution of sunflower oil-coated micro bubbles for localized drug delivery

    OpenAIRE

    Filho WalterDuartedeAraujo; Schneider Fábio; Morales Rigoberto EM

    2012-01-01

    Abstract Background Micro bubbles were initially introduced as contrast agents for ultrasound examinations as they are able to modify the signal-to-noise ratio in imaging, thus improving the assessment of clinical information on human tissue. Recent developments have demonstrated the feasibility of using these bubbles as drug carriers in localized delivery. In micro fluidics devices for generation of micro bubbles, the bubbles are formed at interface of liquid gas through a strangulation proc...

  9. Using Acoustics to Determine Eelgrass Bed Distribution and to Assess the Seasonal Variation of Ecosystem Service

    Science.gov (United States)

    Sonoki, Shiori; Shao, Huamei; Morita, Yuka; Minami, Kenji; Shoji, Jun; Hori, Masakazu; Miyashita, Kazushi

    2016-01-01

    Eelgrass beds are an important source of primary production in coastal ecosystems. Understanding seasonal variation in the abundance and distribution of eelgrass is important for conservation, and the objectives of this study were to 1) monitor seasonal variation in eelgrass beds using an acoustic monitoring method (Quantitative echo sounder) and 2) broadly quantify the carbon circulation function. We obtained acoustic data of eelgrass beds in coastal areas north and east of Ikunojima Island. Surveys were conducted nine times over the 3-year period from 2011 to 2013 in order to monitor seasonal variation. Acoustic data were obtained and used to estimate the spatial distribution of eelgrass by geostatistical methods. To determine supporting services, we determined carbon sink and carbon fixation by eelgrass beds using data from the National Research Institute of Fisheries and Environment of Inland Sea (2011). The height and distribution of eelgrass beds were at a maximum in May and at a minimum in November of each year. Distribution trends were different between the north and east areas. Supporting services showed the same patterns throughout the year. The area of distribution was considered to be coincident with the life history of eelgrass. Distribution differed by area and changed yearly due to the effects of bottom characteristics and wind direction. Quantifying the supporting services of eelgrass beds was shown to be useful for managing the conservation of coastal ecosystems. PMID:26954673

  10. Distributed feedback fiber laser acoustic emission sensor for concrete structure health monitoring

    Science.gov (United States)

    Hao, Gengjie; Huang, Wenzhu; Zhang, Wentao; Sun, Baochen; Li, Fang

    2014-05-01

    This paper introduces a highly-sensitive fiber optical acoustic emission (AE) sensor and a parameter analysis method aiming at concrete structure health monitoring. Distributed feedback fiber-laser (DFB-FL), which is encapsulated to have a high acoustic sensitivity, is used for sensor unit of the AE sensor. The AE signal of concrete beam in different work stages, based on the four-point bending experiment of the concrete beam, is picked up, and the relationship between the concrete beam work stages and the AE parameter is found. The results indicate that DFB-FLAES can be used as sensitive transducers for recording acoustic events and forecasting the imminent failure of the concrete beam.

  11. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubbles...... species. Mass spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on...

  12. Measurement of Vertical Temperature Distribution Using a Single Pair of Loudspeaker and Microphone with Acoustic Reflection

    Science.gov (United States)

    Saito, Ikumi; Mizutani, Koichi; Wakatsuki, Naoto; Kawabe, Satoshi

    2009-07-01

    It is important to maintain an adequate indoor temperature for comfortable working conditions, improvement of the rate of production of farm goods grown in greenhouses, and for saving energy. Thus, it is necessary to measure the temperature distribution to realize efficient air-conditioning systems. However, we have to use many conventional instruments to measure the temperature distribution. We proposed a measurement system for vertical temperature distribution using a single pair of loudspeaker (SP) and microphone (MIC), and acoustic reflectors. This system consists of SP, MIC, and multiple acoustic reflectors, and it can be used to determine the temperature distribution from the mean temperature of the area bounded by two reflectors. In experiments, the vertical temperature distribution was measured using five sound probes in a large facility every 20 s for 24 h. From the results of this experiment, it was verified that this system can be used to measure the vertical temperature distribution from the mean temperature of each area bounded by two reflectors. This system could be used to measure the change in the temperature distribution over time. We constructed a simple system to measure the vertical temperature distribution.

  13. Calculation of an axial temperature distribution using the reflection coefficient of an acoustic wave.

    Science.gov (United States)

    Červenka, Milan; Bednařík, Michal

    2015-10-01

    This work verifies the idea that in principle it is possible to reconstruct axial temperature distribution of fluid employing reflection or transmission of acoustic waves. It is assumed that the fluid is dissipationless and its density and speed of sound vary along the wave propagation direction because of the fluid temperature distribution. A numerical algorithm is proposed allowing for calculation of the temperature distribution on the basis of known frequency characteristics of reflection coefficient modulus. Functionality of the algorithm is illustrated on a few examples, its properties are discussed. PMID:26520344

  14. Bubble dielectrophoresis

    Science.gov (United States)

    Jones, T. B.; Bliss, G. W.

    1977-01-01

    The theoretical principles related to bubble dielectrophoresis are examined, taking into account the polarization force, aspects of bubble deformation, the electrostatic bubble levitation theorem, and the equation of motion. The measurement of the dielectrophoretic force on static and dynamic bubbles represents a convenient experimental method for the study of the general problem of dielectrophoresis. The experiments reported include static-force measurements, static-levitation experiments, and dynamic-force measurements.

  15. Analysis of bubble plume distributions to evaluate methane hydrate decomposition on the continental slope

    Science.gov (United States)

    Johnson, H. Paul; Miller, Una K.; Salmi, Marie S.; Solomon, Evan A.

    2015-11-01

    Cascadia margin sediments contain a rich reservoir of carbon derived both from terrestrial input and sea surface productivity. A portion of this carbon exists as solid gas hydrate within sediment pore spaces which previous studies have shown to be a methane reservoir of substantial size on both the Vancouver Island and Oregon portions of the Cascadia margin. Multichannel seismic reflection profiles on the Cascadia margin show the widespread presence of Bottom Simulating Reflectors (BSRs) within the sediment column, indicating the gas hydrate reservoir extends from the deformation front at 3000 m depth to the upper limit of gas hydrate stability near 500 m water depth. In this study, we compile an inventory of methane bubble plume sites on the Cascadia margin identified in investigations carried out for a range of interdisciplinary goals that also include sites volunteered by commercial fishermen. High plume density anomalies are associated with both the continental shelf (methane hydrate stability depth (MHSD) that occurs near 500 m in the NE Pacific. The observed anomalies on the Cascadia slope may be due to the warming of seawater at intermediate depths, suggesting that modern climate change has begun to destabilize the climate-sensitive hydrate reservoir within the Cascadia margin sediments. Reanalysis of similar plume images on the North American Atlantic slope suggests a lack of correlation between observed plume depths and the MHSD for much of the latitudinal range.

  16. Spherical Kadomtsev–Petviashviliequation for dust acoustic waves with dust size distribution and two-charges-ions

    Indian Academy of Sciences (India)

    K Annou; S Bahamida; R Annou

    2011-03-01

    The nonlinear dust acoustic waves in dusty plasmas with negative as well as positive ions and the combined effects of bounded spherical geometry and the transverse perturbation and the size distribution of dust grains are studied. Using the perturbation method, a spherical Kadomtsev–Petviashvili (SKP) equation that describes the dust acoustic waves is deduced.

  17. Characterization and modeling of bubbles size distribution in mechanical flotation cells; Caracterizacion y modelacion de las distribuciones de tamano de burbujas en celdas de flotacion con agitacion mecanica

    Energy Technology Data Exchange (ETDEWEB)

    Vallebuona, G.; Casali, A.; Kracht, W.

    2005-07-01

    In this work, bubble size distribution is determined for tests in a batch flotation cells, for different impeller speed and air flowrate. Bubbles are sampled and their sizes are measured using image analysis. Size distributions by surface are expressed as cumulative percent passing as well as percent retained. The distributions show a common shape for all tests and are represented with a unique model, selected due to its goodness of fit. This model corresponds to an equation used in heavy media separation and considers two parameters: x{sub 5}0, the 50% passing size, and 1, an adjustable parameter. The correlation coefficient for all tests averages 0.999 for the cumulative distributions and 0.912 for the retained distributions. (Author) 15 refs.

  18. Distributed Acoustic Sensing Technology in a Magmatic Geothermal Field - First Results From a Survey in Iceland

    Science.gov (United States)

    Reinsch, Thomas; Jousset, Philippe; Henninges, Jan; Blanck, Hanna

    2016-04-01

    Seismic methods are particularly suited for investigating the Earth's subsurface. Compared to surface-measurements , wellbore measurements can be used to acquire more detailed information about rock properties and possible fluid pathways within a geothermal reservoir. For high temperature geothermal wells, however, ambient temperatures are often far above the operating temperature range of conventional geophones. One way to overcome this limitation is the application of fiber optic sensor systems, where only the passive optical fiber is subjected to downhole conditions. Their applicability is thus determined by the operating temperature range of the optical fiber. Choosing appropriate fibers, such sensor systems can be operated at temperatures far above 200°C. Along an optical fiber, the distributed acoustic sensing technology (DAS) can be used to acquire acoustic signals with a high spatial and temporal resolution. Previous experiments have shown that the DAS technology is well suited for active seismic measurements. Within the framework of the EC funded project IMAGE, a fiber optic cable was deployed in a newly drilled geothermal well (RN-34) within the Reykjanes geothermal field, Iceland. Additionally, a >15 km fiber optic cable, already available at the surface, was connected to a DAS read-out unit. Acoustic data was acquired continuously for 9 days. Hammer shots were performed at the wellhead as well as along the surface cable in order to locate individual acoustic traces and calibrate the spatial distribution of the acoustic information. During the monitoring period both signals from on- and offshore explosive sources and natural seismic events could be recorded. We compare the fiber optic data to conventional seismic records from a dense seismic network deployed on the Reykjanes in the course of the IMAGE project. Here, first results from the seismic survey will be presented.

  19. Modulation of electron-acoustic waves in a plasma with kappa distribution

    OpenAIRE

    Demiray, Hilmi

    2016-01-01

    In the present work, employing a one dimensional model of an unmagnetized collisionless plasma consisting of a cold electron fluid, hot electrons obeying κ velocity distribution, and stationary ions, we study the amplitude modulation of an electron-acoustic waves by use of the conventional reductive perturbation method. Employing the field equations of such a plasma, we obtained the nonlinear Schrödinger equation as the evolution equation. Seeking a harmonic wave solution with progressive wav...

  20. Bubble rupture in bubble electrospinning

    Directory of Open Access Journals (Sweden)

    Chen Rouxi

    2015-01-01

    Full Text Available As the distinctive properties and different applications of nanofibers, the demand of nanofibers increased sharply in recently years. Bubble electrospinning is one of the most effective and industrialized methods for nanofiber production. To optimize the set-up of bubble electrospinning and improve its mass production, the dynamic properties of un-charged and charged bubbles are studied experimentally, the growth and rupture process of a bubble are also discussed in this paper.

  1. Effects of non-uniform inlet boundary conditions and lift force on prediction of phase distribution in upward bubbly flows with Fluent-IATE

    International Nuclear Information System (INIS)

    Highlights: → A one-group IATE is implemented into FLUENT to simulate two-phase bubbly flows. → Uniform and non-uniform inlet boundary conditions yield similar predictions. → The predictions show lift force is essential for lateral phase distributions. - Abstract: This study investigates the profile effects of the boundary conditions in two-phase flows, such as the inlet void fraction, interfacial area concentration, and phase velocity, on the predictions of flow behaviors downstream. Simulations are performed for upward air-water bubbly flows in a 48.3-mm inner diameter pipe by employing Fluent's two-fluid model together with an interfacial area transport equation (IATE) model. The IATE was developed in the literature to model the interfacial area concentration by taking into account the bubble coalescence and disintegration, and phase change effects. In this study, two types of inlet boundary conditions are considered, one being a uniform-profile boundary condition in the radial direction with area-averaged experimentally measured values while the other being a non-uniform profile condition based on the actual measured profiles at the inlet. The numerical predictions of downstream profiles of the phase distributions indicate that the two types of boundary conditions yield similar results for the downstream flow behaviors for the bubbly flow conditions investigated. In addition, the results with and without the lift force demonstrated that the lift force is essential to obtain accurate lateral phase distribution.

  2. Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts.

    Science.gov (United States)

    Xu, W W; Tzanakis, I; Srirangam, P; Mirihanage, W U; Eskin, D G; Bodey, A J; Lee, P D

    2016-07-01

    Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al-10 wt%Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm(2) and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t)=αt(β), and α=0.0021 &β=0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts. PMID:26964960

  3. Complete velocity distribution in river cross-sections measured by acoustic instruments

    Science.gov (United States)

    Cheng, R.T.; Gartner, J.W.

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  4. Manipulating bubbles with secondary Bjerknes forces

    International Nuclear Information System (INIS)

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices

  5. Manipulating bubbles with secondary Bjerknes forces

    Energy Technology Data Exchange (ETDEWEB)

    Lanoy, Maxime [Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, 1 rue Jussieu, 75005 Paris (France); Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), 10 rue Alice Domon et Léonie Duquet, 75013 Paris (France); Derec, Caroline; Leroy, Valentin [Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), 10 rue Alice Domon et Léonie Duquet, 75013 Paris (France); Tourin, Arnaud [Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, 1 rue Jussieu, 75005 Paris (France)

    2015-11-23

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices.

  6. Robust Distributed Noise Reduction in Hearing Aids with External Acoustic Sensor Nodes

    Science.gov (United States)

    Bertrand, Alexander; Moonen, Marc

    2009-12-01

    The benefit of using external acoustic sensor nodes for noise reduction in hearing aids is demonstrated in a simulated acoustic scenario with multiple sound sources. A distributed adaptive node-specific signal estimation (DANSE) algorithm, that has a reduced communication bandwidth and computational load, is evaluated. Batch-mode simulations compare the noise reduction performance of a centralized multi-channel Wiener filter (MWF) with DANSE. In the simulated scenario, DANSE is observed not to be able to achieve the same performance as its centralized MWF equivalent, although in theory both should generate the same set of filters. A modification to DANSE is proposed to increase its robustness, yielding smaller discrepancy between the performance of DANSE and the centralized MWF. Furthermore, the influence of several parameters such as the DFT size used for frequency domain processing and possible delays in the communication link between nodes is investigated.

  7. Robust Distributed Noise Reduction in Hearing Aids with External Acoustic Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Marc Moonen

    2009-01-01

    Full Text Available The benefit of using external acoustic sensor nodes for noise reduction in hearing aids is demonstrated in a simulated acoustic scenario with multiple sound sources. A distributed adaptive node-specific signal estimation (DANSE algorithm, that has a reduced communication bandwidth and computational load, is evaluated. Batch-mode simulations compare the noise reduction performance of a centralized multi-channel Wiener filter (MWF with DANSE. In the simulated scenario, DANSE is observed not to be able to achieve the same performance as its centralized MWF equivalent, although in theory both should generate the same set of filters. A modification to DANSE is proposed to increase its robustness, yielding smaller discrepancy between the performance of DANSE and the centralized MWF. Furthermore, the influence of several parameters such as the DFT size used for frequency domain processing and possible delays in the communication link between nodes is investigated.

  8. Distributed Remote Vector Gaussian Source Coding for Wireless Acoustic Sensor Networks

    DEFF Research Database (Denmark)

    Zahedi, Adel; Østergaard, Jan; Jensen, Søren Holdt;

    2014-01-01

    and the estimates of the source resulting from decoding the received messages are then jointly encoded and transmitted to a neighboring node in the network. We show that for this distributed source coding scenario, one can encode a so-called conditional sufficient statistic of the sources instead of......In this paper, we consider the problem of remote vector Gaussian source coding for a wireless acoustic sensor network. Each node receives messages from multiple nodes in the network and decodes these messages using its own measurement of the sound field as side information. The node’s measurement...... jointly encoding multiple sources. We focus on the case where node measurements are in form of noisy linearly mixed combinations of the sources and the acoustic channel mixing matrices are invertible. For this problem, we derive the rate-distortion function for vector Gaussian sources and under covariance...

  9. Ostwald Ripening in Multiple-Bubble Nuclei

    OpenAIRE

    Watanabe, Hiroshi; Suzuki, Masaru; Inaoka, Hajime; Ito, Nobuyasu

    2014-01-01

    The ostwald ripening of bubbles is studied by molecular dynamics simulations involving up to 679 million Lennard-Jones particles. Many bubbles appear after depressurizing a system that is initially maintained in the pure-liquid phase, and the coarsening of bubbles follows. The self-similarity of the bubble-size distribution function predicted by Lifshitz-Slyozov-Wagner theory is directly confirmed. The total number of bubbles decreases asymptotically as $t^{-x}$ with scaling exponent $x$. As ...

  10. Shelf-Scale Mapping of Fish Distribution Using Active and Passive Acoustics

    Science.gov (United States)

    Wall, Carrie C.

    Fish sound production has been associated with courtship and spawning behavior. Acoustic recordings of fish sounds can be used to identify distribution and behavior. Passive acoustic monitoring (PAM) can record large amounts of acoustic data in a specific area for days to years. These data can be collected in remote locations under potentially unsafe seas throughout a 24-hour period providing datasets unattainable using observer-based methods. However, the instruments must withstand the caustic ocean environment and be retrieved to obtain the recorded data. This can prove difficult due to the risk of PAMs being lost, stolen or damaged, especially in highly active areas. In addition, point-source sound recordings are only one aspect of fish biogeography. Passive acoustic platforms that produce low self-generated noise, have high retrieval rates, and are equipped with a suite of environmental sensors are needed to relate patterns in fish sound production to concurrently collected oceanographic conditions on large, synoptic scales. The association of sound with reproduction further invokes the need for such non-invasive, near-real time datasets that can be used to enhance current management methods limited by survey bias, inaccurate fisher reports, and extensive delays between fisheries data collection and population assessment. Red grouper (Epinephelus morio) exhibit the distinctive behavior of digging holes and producing a unique sound during courtship. These behaviors can be used to identify red grouper distribution and potential spawning habitat over large spatial scales. The goal of this research was to provide a greater understanding of the temporal and spatial distribution of red grouper sound production and holes on the central West Florida Shelf (WFS) using active sonar and passive acoustic recorders. The technology demonstrated here establishes the necessary methods to map shelf-scale fish sound production. The results of this work could aid resource

  11. Bubble systems

    CERN Document Server

    Avdeev, Alexander A

    2016-01-01

    This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boil...

  12. Aspherical bubble dynamics and oscillation times

    Energy Technology Data Exchange (ETDEWEB)

    Godwin, R.P.; Chapyak, E.J. [Los Alamos National Lab., NM (United States); Noack, J.; Vogel, A. [Medizinisches Laserzentrum Luebeck (Germany)

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  13. Velocity distribution of the flow field in the cyclonic zone of cyclone-static micro-bubble flotation column

    Institute of Scientific and Technical Information of China (English)

    Deng Xiao-wei; Liu Jiong-tian; Wang Yong-tian; Cao Yi-jun

    2013-01-01

    Laboratory experiments have been conducted to study the flow field in a cyclone static micro-bubble flotation column.The method of Particle Image Velocimetry (PIV) was used.The flow field velocity distribution in both cross section and longitudinal section within cyclonic zone was studied for different circulating volumes.The cross sectional vortex was also analyzed.The results show that in cross section as the circulating volume increases from 0.187 to 0.350 m3/h,the flow velocity ranges from 0 to 0.68 m/s.The flow field is mainly a non-vortex potential flow that forms a free vortex without outside energy input.In the cyclonic region the vortex deviates from the center of the flotation column because a single tangential opening introduces circulating fluid into the column.The tangential component of the velocity plays a defining role in the cross section.In the longitudinal section the velocity ranges from 0 to 0.08 m/s.The flow velocity increases as does the circulating volume.Advantageous mineral separation conditions arise from the combined effects of cyclonic flow in cross and longitudinal section.

  14. Acoustic estimates of abundance and distribution of spawning lake trout on Sheboygan Reef in Lake Michigan

    Science.gov (United States)

    Warner, D.M.; Claramunt, R.M.; Janssen, J.; Jude, D.J.; Wattrus, N.

    2009-01-01

    Efforts to restore self-sustaining lake trout (Salvelinus namaycush) populations in the Laurentian Great Lakes have had widespread success in Lake Superior; but in other Great Lakes, populations of lake trout are maintained by stocking. Recruitment bottlenecks may be present at a number of stages of the reproduction process. To study eggs and fry, it is necessary to identify spawning locations, which is difficult in deep water. Acoustic sampling can be used to rapidly locate aggregations of fish (like spawning lake trout), describe their distribution, and estimate their abundance. To assess these capabilities for application to lake trout, we conducted an acoustic survey covering 22 km2 at Sheboygan Reef, a deep reef (trout, that lake trout were 1–2 m above bottom, and that spawning took place over specific habitat. Lake trout density exhibited a high degree of spatial structure (autocorrelation) up to a range of ~190 m, and highest lake trout and egg densities occurred over rough substrates (rubble and cobble) at the shallowest depths sampled (36–42 m). Mean lake trout density in the area surveyed (~2190 ha) was 5.8 fish/ha and the area surveyed contained an estimated 9500–16,000 large lake trout. Spatial aggregation in lake trout densities, similarity of depths and substrates at which high lake trout and egg densities occurred, and relatively low uncertainty in the lake trout density estimate indicate that acoustic sampling can be a useful complement to other sampling tools used in lake trout restoration research.

  15. Memory-Effect on Acoustic Cavitation

    OpenAIRE

    Yavaṣ, Oğuz; Leiderer, Paul; Park, Hee K.; Grigoropoulos, Costas P.; Poon, Chie C.; Tam, Andrew C.

    1994-01-01

    The formation of bubbles at a liquid-solid interface due to acoustic cavitation depends particularly on the preconditions of the interface. Here, it wiIl be shown that following laser-induced bubble formation at the interface the acoustic cavitation efficiency is strongly enhanced. Optical reflectance measurements reveal that this observed enhancement of acoustic cavitation due to preceding laser-induced bubble formation, which could be termed as memory effect, decays in a few hundred microse...

  16. Pseudopotential approach for dust acoustic solitary waves in dusty plasmas with kappa-distributed ions and electrons and dust grains having power law size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Gadadhar; Maitra, Sarit [Department of Mathematics, National Institute of Technology Durgapur, Durgapur (India)

    2015-04-15

    Sagdeev's pseudopotential method is used to study small as well as arbitrary amplitude dust acoustic solitons in a dusty plasma with kappa distributed electrons and ions with dust grains having power law size distribution. The existence of potential well solitons has been shown for suitable parametric region. The criterion for existence of soliton is derived in terms of upper and lower limit for Mach numbers. The numerical results show that the size distribution can affect the existence as well as the propagation characteristics of the dust acoustic solitons. The effect of kappa distribution is also highlighted.

  17. Pseudopotential approach for dust acoustic solitary waves in dusty plasmas with kappa-distributed ions and electrons and dust grains having power law size distribution

    International Nuclear Information System (INIS)

    Sagdeev's pseudopotential method is used to study small as well as arbitrary amplitude dust acoustic solitons in a dusty plasma with kappa distributed electrons and ions with dust grains having power law size distribution. The existence of potential well solitons has been shown for suitable parametric region. The criterion for existence of soliton is derived in terms of upper and lower limit for Mach numbers. The numerical results show that the size distribution can affect the existence as well as the propagation characteristics of the dust acoustic solitons. The effect of kappa distribution is also highlighted

  18. Cylindrical and spherical dust-acoustic wave modulations in dusty plasmas with non-extensive distributions

    Indian Academy of Sciences (India)

    M Eghbali; B Farokhi

    2015-04-01

    The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distributions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified nonlinear Schrödinger equation (NLSE) is derived. The presence of hot non-extensive -distributed ions and electron is shown to influence the modulational instability (MI) of the waves. It is shown that the properties of the MI of DAW in cylindrical and spherical geometries differ from those in a planar one-dimensional geometry. Furthermore, it is observed that the non-extensive distributed ions have more effect on the MI of the DAW than electrons. Also, it is found that there is a MI period for cylindrical and spherical wave modulations, which does not exist in the one-dimensional case.

  19. Dust-acoustic solitons in quantum plasma with kappa-distributed ions

    Indian Academy of Sciences (India)

    Mehran Shahmansouri

    2013-02-01

    Arbitrary amplitude dust-acoustic (DA) solitary waves in an unmagnetized and collisionless quantum dusty plasma comprising cold dust particles, kappa ()-distributed ions and degenerate electrons are investigated. The influence of suprathermality and quantum effects on the linear dispersion relation of DA waves is investigated. Then, the effect of -distributed ions and degenerate electrons on the existence domain of solitons is discussed in the space of (, ). The comparison of the existence domain for higher and lower values of shows that suprathermality results in propagation of solitons with lower values of Mach number, and the quantum effects, lead to a higher values of Mach number. The existence domain of solitons for nondegenerate -distributed electrons is considered for comparison with effect of degenerate electrons. Also, we found that the Sagdeev potential well becomes deeper and wider as $_{F-i}$ decreases, as for lower values, the influence of quantum effects on the Sagdeev pseudopotential profile is smaller.

  20. Localizing Near and Far Field Acoustic Sources with Distributed Microhone Arrays

    DEFF Research Database (Denmark)

    Hansen, Martin Weiss; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2014-01-01

    In this paper, we consider the problem of acoustic source localization using distributed microphone arrays. Time differences of arrival (TDOAs) are estimated using a recently proposed method based on joint direction of arrival (DOA) and range estimation. The TDOAs are used to estimate the location...... method based on joint DOA and pitch estimation, using synthesized harmonic signals with varying source position. Results show a decrease in the error of the estimated position when joint DOA and range estimation is used for TDOA estimation, compared to the GCC-PHAT and joint DOA and pitch methods....

  1. Nonlinear Ion-Acoustic Waves in a Plasma Consisting of Warm Ions and Isothermal Distributed Electrons

    International Nuclear Information System (INIS)

    The formation of (1+1) dimensional ion-acoustic waves (IAWs) in an unmagnetized collisionless plasma consisting of warm ions and isothermal distributed electrons is investigated. The electrodynamics system of equations are solved analytically in terms of a new variable ξκχ-φ τ, where k=k(ω) is a complex function, at a fixed position. The analytical calculations gives that the critical value σ = τ/τ ∼ 0.25 distinguishes between the linear and nonlinear characters of IAW within the nanosecond time scale. The flow velocity, pressure, number density, electric potential, electric field, mobility and the total energy in the system are estimated and illustrated

  2. In-situ optical and acoustical measurements of the buoyant cyanobacterium p. Rubescens: spatial and temporal distribution patterns.

    Science.gov (United States)

    Hofmann, Hilmar; Peeters, Frank

    2013-01-01

    Optical (fluorescence) and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP) and a Seapoint Chlorophyll Fluorometer (SCF). In-situ measurements of the acoustic backscatter strength (ABS) were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV). The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes) and spatial (decimeters) resolution or covering large temporal (seasonal) and spatial (basin scale) scales. PMID:24303028

  3. In-situ optical and acoustical measurements of the buoyant cyanobacterium p. Rubescens: spatial and temporal distribution patterns.

    Directory of Open Access Journals (Sweden)

    Hilmar Hofmann

    Full Text Available Optical (fluorescence and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP and a Seapoint Chlorophyll Fluorometer (SCF. In-situ measurements of the acoustic backscatter strength (ABS were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV. The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes and spatial (decimeters resolution or covering large temporal (seasonal and spatial (basin scale scales.

  4. Bubble puzzles

    NARCIS (Netherlands)

    Lohse, Detlef

    2003-01-01

    With their ubiquitous occurrence in a multitude of fluid systems, bubbles occupy an important place in contemporary science and technology. One can readily cite several examples: the production and transport of oil, in which bubbles are purposely injected to help lift heavy oil to the surface; energ

  5. The statistical distributed source boundary point method to calculate the acoustic radiation from the random vibrating body

    Institute of Scientific and Technical Information of China (English)

    WANGXiufeng; CHENXinzhao; LIUZhao

    2003-01-01

    The statistical distributed source boundary point method (SDSBPM) put forward is applied to calculate the acoustic radiation from the random vibrating body. A detailed description of this method is presented. A test for the SDSBPM is carried out through the random vibrating sphere and the random vibrating cuboid. An experiment on the exterior acoustic radiation of a random vibrating simulation axial box of the lathe tool is performed in a semi-anechoic chamber.

  6. Behavior of two-dimensional aerated bubbly flows within a narrow duct when a water jet is vertically injected into a cahm water. 2nd Report. Void fraction and bubble distribution; Suifunryu ga kukiken wo totte suichoku suichu totsunyusuru sai ni shojiru semai duct nai nijigen suikomi kihooryu no kyodo. 2. boido ritsu to kiho bunpu

    Energy Technology Data Exchange (ETDEWEB)

    Yamabe, M.; Sudo, S.; Tsuyuki, K. [Iwaki Meisei University, Fukushima (Japan); Oba, R. [Saitama Inst. of Technology, Saitama (Japan); Hashimoto, T

    2000-04-25

    In order to clarify the draft-tube-performance of cross-flow-turbines or the submerged-waterjet-performance, in the same two-dimensional aerated-bubbly-flow within a narrow duct reported previously, we experimentally systematically investigate the characteristic behavior of the mean-and the local-void fraction, of the vortical flow and of the bubble distribution, when the jet is vertically injected. It is shown that the mean-void fraction is a control parameter of the hydraulic losses, when the jet velocity is low. The intermediate vortical flow containing huge number of very fine bubbles often results in circulating string bubbles and fluctuates periodically at about 0.6s in period. Owing to the Daily's effects, the bubbles in the up-flow and in the down-flow are considerably concentrated into the intermediate vortical flow. (author)

  7. Divergence of acoustic signals in a widely distributed frog: relevance of inter-male interactions.

    Science.gov (United States)

    Velásquez, Nelson A; Opazo, Daniel; Díaz, Javier; Penna, Mario

    2014-01-01

    Divergence of acoustic signals in a geographic scale results from diverse evolutionary forces acting in parallel and affecting directly inter-male vocal interactions among disjunct populations. Pleurodema thaul is a frog having an extensive latitudinal distribution in Chile along which males' advertisement calls exhibit an important variation. Using the playback paradigm we studied the evoked vocal responses of males of three populations of P. thaul in Chile, from northern, central and southern distribution. In each population, males were stimulated with standard synthetic calls having the acoustic structure of local and foreign populations. Males of both northern and central populations displayed strong vocal responses when were confronted with the synthetic call of their own populations, giving weaker responses to the call of the southern population. The southern population gave stronger responses to calls of the northern population than to the local call. Furthermore, males in all populations were stimulated with synthetic calls for which the dominant frequency, pulse rate and modulation depth were varied parametrically. Individuals from the northern and central populations gave lower responses to a synthetic call devoid of amplitude modulation relative to stimuli containing modulation depths between 30-100%, whereas the southern population responded similarly to all stimuli in this series. Geographic variation in the evoked vocal responses of males of P. thaul underlines the importance of inter-male interactions in driving the divergence of the acoustic traits and contributes evidence for a role of intra-sexual selection in the evolution of the sound communication system of this anuran. PMID:24489957

  8. Bubble, Bubble, Toil and Trouble.

    Science.gov (United States)

    Journal of Chemical Education, 2001

    2001-01-01

    Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)

  9. Direct and indirect measurement of rain drop size distributions using an acoustic water tank disdrometer

    International Nuclear Information System (INIS)

    Several rain drop size distribution (DSD) point measurement technologies exist, but all are unable to sample either short timescales or the large drop tail of the DSD due to inherent instrumental limitations. The development of an acoustic water tank disdrometer (AWTD) is described, which improves the sampling statistics by increasing the catchment area. This is achieved by distinguishing individual drops, locating them on the surface of the tank then converting the impact pressure into a drop size. Wavelet decomposition is used to distinguish the broadband, short duration impact events and a fast multilateration method is used to position the drop. Issues relating to the different types of noise are also investigated and mitigated. Also, further work on inverting the measured acoustic intensity into a DSD, by fitting sampling distributions, is presented. Six months of data were collected in the Eastern UK. The AWTD then converted the data into DSDs and the results were compared to a commercially available co-located laser precipitation monitor. The sampling errors are far lower due to the increased catchment size, and hence the large drop sized tail of the DSD is greatly improved. DSD results compare favourably to other disdrometers for drop diameters greater than 1.8 mm. Below this size individual drops become increasingly difficult to detect and are underestimated. (paper)

  10. Growth process of helium bubbles in aluminum

    International Nuclear Information System (INIS)

    The growth process of helium bubbles in α-particle bombarded pure aluminum during isothermal anneal at 200 to 6450C for 1 hr to 100 hr was observed by transmission electronmicroscopy and possible mechanisms are discussed. The effects of helium concentration and cold work were investigated. Helium bubbles are detectable only by annealing above 5500C for 1 hr in both the annealed and cold worked samples. The cold work does not cause any extra coarsening trend of bubbles. The observed types of the bubble distribution are divided into two categories, irrespective of helium concentration and cold work; (1) fine and uniform bubble distribution, in which case the average size is limited to about 200 A or less in diameter even by the anneal just below the melting point, and (2) the coarsened and nonuniform bubble distribution ranging from 500 to 4000 A in diameter. The intermediate size bubbles are scarcely found in any cases. In the above fine bubble distribution, the increase of helium concentration by a factor of two increases the density by the same factor of two, but does not change the mean size of bubbles. From these two characteristic bubble distributions, it is concluded that two different mechanisms are operative in this experiment (1) the growth of bubbles by Brownian motion, in which the growth rate of bubbles is decreased to almost zero by bubble faceting and this results in the bubble size constancy during the prolonged annealing, and (2) the growth of bubbles by the grain boundary sweep-out mechanism, by which the abrupt coarsening of bubbles is caused. The lack of the intermediate size bubble is explained in this way. (auth.)

  11. Modulation of electron-acoustic waves in a plasma with kappa distribution

    Science.gov (United States)

    Demiray, Hilmi

    2016-03-01

    In the present work, employing a one dimensional model of an unmagnetized collisionless plasma consisting of a cold electron fluid, hot electrons obeying κ velocity distribution, and stationary ions, we study the amplitude modulation of an electron-acoustic waves by use of the conventional reductive perturbation method. Employing the field equations of such a plasma, we obtained the nonlinear Schrödinger equation as the evolution equation. Seeking a harmonic wave solution with progressive wave amplitude to the evolution equation, as opposed to the plasma with vortex distribution, the amplitude wave assumes a shock wave type of solution. Finally, the modulational stability of the wave is studied and it is observed that the wave is modulationally stable for all admissible wave numbers.

  12. Modeling bubbly-cap flows using two-group average bubble number density

    International Nuclear Information System (INIS)

    The basic concept of two-group average bubble number density equations along with three-fluid model has been demonstrated for vertical gas-liquid flow. Specifically, the current study focused on: (i)classification of bubble interaction between spherical bubbles (Group-1) and cap bubbles (Group- 2), (ii) preliminary consideration of source and sink terms in the averaged bubble number density equations via the model of Hibiki and Ishii [1] and (iii) assessment by means of experimental data sets at bubbly-to-cap flow transition. Reasonable agreement was achieved between measured and predicted distributions of void fraction, interfacial area concentration (IAC) and volume equivalent bubble diameter. (author)

  13. Moving single bubble sonoluminescence in phosphoric acid and sulphuric acid solutions.

    Science.gov (United States)

    Troia, A; Ripa, D Madonna; Spagnolo, R

    2006-04-01

    The phenomenon of sonoluminescence still presents some unsolved aspects. Recently [Y.T. Didenko, K. Suslick, Molecular Emission during Single Bubble Sonoluminescence, Nature 407 (2000) 877-879.], it was found that a single cavitating air bubble in polar aprotic liquids (including formamide and adiponitrile) can produce very strong sonoluminescence while undergoing macroscopic translation movements in the resonator, a condition known as moving single bubble sonoluminescing (MSBSL). Here we describe some experiments conducted in aqueous solutions of phosphoric and sulphuric acid. In these liquid media, it is possible to reproduce MSBSL and luminescence is emitted even if a trapped bubble is subjected to a strong shape instability, named in the literature "jittering phase". When a moving and luminescing bubble was present and the acoustic pressure gradually increased, we observed the generation of a discrete lattice of trapped bubbles. The bubbles in the lattice emit very intense light flashes and can change their position while maintaining the overall spatial distribution in time. Some preliminary results, obtained from Mie-scattering and measurements of relative light intensity, are reported. PMID:16309944

  14. Bubble coalescence in breathing DNA

    DEFF Research Database (Denmark)

    Novotný, Tomas; Pedersen, Jonas Nyvold; Ambjörnsson, Tobias; Hansen, Mikael Sonne; Metzler, Ralf

    2007-01-01

    We investigate the coalescence of two DNA bubbles initially located at weak segments and separated by a more stable barrier region in a designed construct of double-stranded DNA. The characteristic time for bubble coalescence and the corresponding distribution are derived, as well as the distribu...

  15. Exploring Bubbles

    Science.gov (United States)

    O'Geary, Melissa A.

    Bubbles provide an enjoyable and festive medium through which to teach many concepts within the science topics of light, color, chemistry, force, air pressure, electricity, buoyancy, floating, density, among many others. In order to determine the nature of children's engagement within a museum setting and the learning opportunities of playing with bubbles, I went to a children's interactive museum located in a metropolitan city in the Northeastern part of the United States.

  16. Antigravitating bubbles

    CERN Document Server

    Barnaveli, A T; Barnaveli, Andro; Gogberashvili, Merab

    1995-01-01

    We investigate the gravitational behavior of spherical domain walls (bubbles) arising during the phase transitions in the early Universe. In the thin-wall approximation we show the existence of the new solution of Einstein equations with negative gravitational mass of bubbles and the reversed direction of time flow on the shell. This walls exhibit gravitational repulsion just as the planar walls are assumed to do. The equilibrium radius and critical mass of such objects are found for realistic models.

  17. Noise Bubbles

    OpenAIRE

    Mario Forni; Luca Gambetti; Marco Lippi; Luca Sala

    2014-01-01

    We introduce noisy information into a standard present value stock price model. Agents receive a noisy signal about the structural shock driving future dividend variations. The resulting equilibrium stock price includes a transitory component — the "noise bubble" — which can be responsible for boom and bust episodes unrelated to economic fundamentals. We propose a non-standard VAR procedure to estimate the structural shock and the "noise" shock, their impulse response functions and the bubble...

  18. Bubbling away

    International Nuclear Information System (INIS)

    Bubble chambers may have almost vanished from the front line of physics research, but the vivid memory of their intricate and sometimes beautiful patterns of particle tracks lives on, and has greatly influenced the computer graphics of track reconstruction in today's big experiments. 'Seeing' an interaction makes it more understandable. Bubble chambers, with their big collaborations of physicists from many widely scattered research institutes, started another ball rolling. The groups formed are even now only surpassed in size by the big collaborations working on today's major detectors at colliding beam machines. From 14-16 July, about 130 physicists gathered at CERN to commemorate the 40th anniversary of the invention of the bubble chamber by Donald Glaser. The meeting, organized by Derek C. Colley from Birmingham, gave a comprehensive overview of bubble chamber contributions to physics, their challenging technology, and the usefulness of bubble chamber photographs in education, both for physics and the public at large. After opening remarks by CERN Director Carlo Rubbia, Donald Glaser began with a brief review of the work which led to his invention - there was much more to it than idly watching beer bubbles rise up the wall of the glass - before turning to his present line of research, biophysics, also very visually oriented

  19. Aeration and bubble measurements of coastal breaking waves

    International Nuclear Information System (INIS)

    The air entrainment process of surf zone waves is studied experimentally to understand as a first step of two-phase characteristics of surf zone breaking waves. A set of laboratory experiments of free surface elevation, water velocity, void fraction and bubble distribution is conducted simultaneously for regular gravity wave breaking on a plane slope. The in situ data are collected by using a measurement array of wave gages, a dual-tip resistivity void fraction probe and an acoustic Doppler velocimeter. Two-dimensional projected bubble size measurements are conduced by the high speed camera with imaging technique. The experimental data show a linear relationship between the void fraction and turbulent intensity. In addition, the bubble size distributions are proportional to the bubble size to the power of -1 and -3.4 independent of the distance from breaking point and water depth. The length scale separating two power laws is the Hinze scale which corresponds to the wave energy dissipation scale. This result will be important for modeling and implication for the study of surf zone dynamics.

  20. A Non-Equilibrium Ionization Model of the Local and Loop I Bubbles - Tracing the Ovi Distribution

    CERN Document Server

    de Avillez, Miguel A; Spitoni, Emanuele; Carvalho, Nuno

    2011-01-01

    We present the first to date three-dimensional high-resolution hydrodynamical simulation tracing the non-equilibrium ionization evolution (using the Eborae Atomic and Molecular Plasma Emission Code - E(A+M)PEC) of the Local Bubble and Loop I superbubbles embedded in a turbulent supernova-driven interstellar medium.

  1. Numerical simulation of the nonlinear ultrasonic pressure wave propagation in a cavitating bubbly liquid inside a sonochemical reactor.

    Science.gov (United States)

    Dogan, Hakan; Popov, Viktor

    2016-05-01

    We investigate the acoustic wave propagation in bubbly liquid inside a pilot sonochemical reactor which aims to produce antibacterial medical textile fabrics by coating the textile with ZnO or CuO nanoparticles. Computational models on acoustic propagation are developed in order to aid the design procedures. The acoustic pressure wave propagation in the sonoreactor is simulated by solving the Helmholtz equation using a meshless numerical method. The paper implements both the state-of-the-art linear model and a nonlinear wave propagation model recently introduced by Louisnard (2012), and presents a novel iterative solution procedure for the nonlinear propagation model which can be implemented using any numerical method and/or programming tool. Comparative results regarding both the linear and the nonlinear wave propagation are shown. Effects of bubble size distribution and bubble volume fraction on the acoustic wave propagation are discussed in detail. The simulations demonstrate that the nonlinear model successfully captures the realistic spatial distribution of the cavitation zones and the associated acoustic pressure amplitudes. PMID:26611813

  2. Oblique propagation of arbitrary amplitude electron acoustic solitary waves in magnetized kappa-distributed plasmas

    CERN Document Server

    Sultana, S; Hellberg, M A

    2012-01-01

    The linear and nonlinear properties of large amplitude electron-acoustic waves are investigated in a magnetized plasma comprising two distinct electron populations (hot and cold) and immobile ions. The hot electrons are assumed to be in a non-Maxwellian state, characterized by an excess of superthermal particles, here modelled by a kappa-type long-tailed distribution function. Waves are assumed to propagate obliquely to the ambient magnetic field. Two types of electrostatic modes are shown to exist in the linear regime, and their properties are briefly analyzed. A nonlinear pseudopotential type analysis reveals the existence of large amplitude electrostatic solitary waves and allows for an investigation of their propagation characteristics and existence domain, in terms of the soliton speed (Mach number). The effects of the key plasma configuration parameters, namely, the superthermality index and the cold electron density, on the soliton characteristics and existence domain, are studied. The role of obliquen...

  3. Colloidal Plasmas : Effect of nonthermal ion distribution and dust temperature on nonlinear dust acoustic solitary waves

    Indian Academy of Sciences (India)

    Tarsem Singh Gill; Harvinder Kaur

    2000-11-01

    The effects of nonthermal ion distribution and finite dust temperature are incorporated in the investigation of nonlinear dust acoustic waves in an unmagnetized dusty plasma. Sagdeev pseudopotential method which takes into account the full nonlinearity of plasma equations, is used here to study solitary wave solutions. Possibility of co-existence of refractive and compressive solitons as a function of Mach number, dust temperature and concentration of nonthermal ions, is considered. For the fixed value of nonthermal ions, it is found that the effect of increase in dust temperature is to reduce the range of co-existence of compressive and refractive solitons. Particular concentration of nonthermal ions results in disappearance of refractive solitons while the decrease in dust temperature, at this concentration restores the lost refractive solitons.

  4. An audible demonstration of the speed of sound in bubbly liquids

    Science.gov (United States)

    Wilson, Preston S.; Roy, Ronald A.

    2008-10-01

    The speed of sound in a bubbly liquid is strongly dependent upon the volume fraction of the gas phase, the bubble size distribution, and the frequency of the acoustic excitation. At sufficiently low frequencies, the speed of sound depends primarily on the gas volume fraction. This effect can be audibly demonstrated using a one-dimensional acoustic waveguide, in which the flow rate of air bubbles injected into a water-filled tube is varied by the user. The normal modes of the waveguide are excited by the sound of the bubbles being injected into the tube. As the flow rate is varied, the speed of sound varies as well, and hence, the resonance frequencies shift. This can be clearly heard through the use of an amplified hydrophone and the user can create aesthetically pleasing and even musical sounds. In addition, the apparatus can be used to verify a simple mathematical model known as Wood's equation that relates the speed of sound of a bubbly liquid to its void fraction.

  5. In vitro and in vivo evaluation of poly(L-lactide-co glycolide)( PLGA) micro bubbles as a contrast agent

    International Nuclear Information System (INIS)

    To achieve reliable and reproducible myocardial opacification after intravenous administration of echocardiographic contrast agents, this study was performed to fabricate a kind of poly(L-lactide-co-glycolide) (PLGA) micro bubbles-based contrast agent with a modified double emulsion method which incorporates and later sublimes po rogen, leaving voids capable of being filled with gas in their places. The morphology and size distribution of the micro bubbles were investigated. The porous inner structure formed in the micro bubble contrast agents were further proved by con focal laser scanning microscope (CLSM). All the results satisfied the requirements of ideal contrast agents. Acoustic measurement set-up detected the excellent scatter ability of the PLGA (70/30) micro bubbles. It demonstrated this kind of polymer-shell contrast agents could achieve efficient left ventricular opacification and the improved delineation of left ventricular endocardial borders. Especially the safe and successful myocardial opacification in close-chest dogs were observed

  6. Effect of internal bubbly flow on pipe vibrations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper presents an experimental investigation on wall vibrations of a pipe due to injection of a uniform bubble cloud into the pipe flow. For different bubble void fractions and averaged bubble sizes, the vibrations were measured using accelerometers. To understand the underlying physics, the evolution of the vibration spectra along the streamwise direction was examined. Results showed that wall vibrations were greatly enhanced up to 25 dB, compared with no bubble case. The characteristics of the vibration were mainly dependent on void fraction. These vibrations were believed to be caused by two mechanisms: acoustic resonance and normal modes of the bubble cloud. The former, originating from the interaction between the first mode of the bubble cloud and the first acoustic mode of the pipe, persisted along the entire pipe to enhance the vibration over a broad band frequency range, while the later, due to the process of bubble formation, successively decayed in the streamwise direction.

  7. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan

    2013-01-10

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  8. Passive Underwater Noise Attenuation Using Large Encapsulated Air Bubbles.

    Science.gov (United States)

    Lee, Kevin M; Wochner, Mark S; Wilson, Preston S

    2016-01-01

    Measurements demonstrating low-frequency underwater sound attenuation using arrays of large, tethered, stationary encapsulated bubbles to surround a sound source were compared with various effective medium models for the acoustic dispersion relationship in bubbly liquids. Good agreement was observed between measurements for the large bubbles (on the order of 10 cm) at frequencies below 1 kHz and a model originally intended to describe the acoustic behavior of ultrasound contrast agents. The primary goal is to use the model for designing encapsulated-bubble-based underwater noise abatement systems and to reduce uncertainty in system performance. PMID:26611010

  9. Bubbling Threat

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The shift of China’s monetary policy stance from "moderately loose" to "prudent" in 2011 indicates curbing inflation and asset bubbles have become the Central Government’s top priority. But is China’s bubble problem short-term or long-term? Is it only monetary or related to economic structure? Is it the cause of China’s economic imbalance or the result? And what kind of deep-rooted problems in the macro economy does it reflect? All these questions call for deep thought,said Zhang Monan,a

  10. Dust acoustic solitary structures in a multi-fluid dusty plasma in the presence of kappa distributed particles

    Science.gov (United States)

    Singh, Manpreet; Singh Saini, Nareshpal; Ghai, Yashika; Kaur, Nimardeep

    2016-07-01

    Dusty plasma is a fully or partially ionized gas which contain micron or sub-micron sized dust particles. These dust particles can be positively or negatively charged, depending upon the mechanism of charging . Dusty plasma is often observed in most of the space and astrophysical plasma environments. Presence of these dust particles can modify the dispersion properties of waves in the plasma and can introduce several new wave modes, e.g., dust acoustic (DA) waves, dust-ion acoustic (DIA) waves, dust-acoustic shock waves etc. In this investigation we have studied the small amplitude dust acoustic waves in an unmagnetized plasma comprising of electrons, positively charged ions, negatively charged hot as well as cold dust. Electrons and ions are described by superthermal distribution which is more appropriate for modeling space and astrophysical plasmas. Kadomtsev- Petviashvili (KP) equation has been derived using reductive perturbation technique. Positive as well as negative potential structures are observed, depending upon some critical values of parameters. Amplitude and width of dust acoustic solitary waves are modified by varying these parameters such as superthermality of electrons and ions, direction of propagation of the wave, relative concentration of hot and cold dust particles etc. This study may be helpful in understanding the formation and dynamics of nonlinear structures in various space and astrophysical plasma environments such Saturn's F-rings.

  11. Size Distribution of Sperm Whales Acoustically Identified during Long Term Deep-Sea Monitoring in the Ionian Sea.

    Science.gov (United States)

    Caruso, Francesco; Sciacca, Virginia; Bellia, Giorgio; De Domenico, Emilio; Larosa, Giuseppina; Papale, Elena; Pellegrino, Carmelo; Pulvirenti, Sara; Riccobene, Giorgio; Simeone, Francesco; Speziale, Fabrizio; Viola, Salvatore; Pavan, Gianni

    2015-01-01

    The sperm whale (Physeter macrocephalus) emits a typical short acoustic signal, defined as a "click", almost continuously while diving. It is produced in different time patterns to acoustically explore the environment and communicate with conspecifics. Each emitted click has a multi-pulse structure, resulting from the production of the sound within the sperm whale's head. A Stable Inter Pulse Interval (Stable IPI) can be identified among the pulses that compose a single click. Applying specific algorithms, the measurement of this interval provides useful information to assess the total length of the animal recorded. In January 2005, a cabled hydrophone array was deployed at a depth of 2,100 m in the Central Mediterranean Sea, 25 km offshore Catania (Ionian Sea). The acoustic antenna, named OνDE (Ocean noise Detection Experiment), was in operation until November 2006. OνDE provided real time acoustic data used to perform Passive Acoustic Monitoring (PAM) of cetacean sound emissions. In this work, an innovative approach was applied to automatically measure the Stable IPI of the clicks, performing a cepstrum analysis to the energy (square amplitude) of the signals. About 2,100 five-minute recordings were processed to study the size distribution of the sperm whales detected during the OνDE long term deep-sea acoustic monitoring. Stable IPIs were measured in the range between 2.1 ms and 6.4 ms. The equations of Gordon (1991) and of Growcott (2011) were used to convert the IPIs into measures of size. The results revealed that the sperm whales recorded were distributed in length from about 7.5 m to 14 m. The size category most represented was from 9 m to 12 m (adult females or juvenile males) and specimens longer than 14 m (old males) seemed to be absent. PMID:26675588

  12. Development of an optical microscopy system for automated bubble cloud analysis.

    Science.gov (United States)

    Wesley, Daniel J; Brittle, Stuart A; Toolan, Daniel T W

    2016-08-01

    Recently, the number of uses of bubbles has begun to increase dramatically, with medicine, biofuel production, and wastewater treatment just some of the industries taking advantage of bubble properties, such as high mass transfer. As a result, more and more focus is being placed on the understanding and control of bubble formation processes and there are currently numerous techniques utilized to facilitate this understanding. Acoustic bubble sizing (ABS) and laser scattering techniques are able to provide information regarding bubble size and size distribution with minimal data processing, a major advantage over current optical-based direct imaging approaches. This paper demonstrates how direct bubble-imaging methods can be improved upon to yield high levels of automation and thus data comparable to ABS and laser scattering. We also discuss the added benefits of the direct imaging approaches and how it is possible to obtain considerable additional information above and beyond that which ABS and laser scattering can supply. This work could easily be exploited by both industrial-scale operations and small-scale laboratory studies, as this straightforward and cost-effective approach is highly transferrable and intuitive to use. PMID:27505394

  13. An Anomaly in the Angular Distribution of Quasar Magnitudes: Evidence for a Bubble Universe with a Mass ~10^21 M\\odot

    CERN Document Server

    Longo, Michael J

    2012-01-01

    Quasars provide our farthest-reaching view of the Universe. The Sloan Survey now contains over 100,000 quasar candidates. A careful look at the angular distribution of quasar magnitudes shows a surprising intensity enhancement with a "bulls eye" pattern toward (alpha,delta) ~ (195{\\deg}, 0{\\deg}) for all wavelengths from UV through infrared. The angular pattern and size of the enhancement is very similar for all wavelengths, which is inconsistent with a Doppler shift due to a large peculiar velocity toward that direction. The shift is also too large to explain as a systematic error in the quasar magnitudes. The general features of the anomaly can be explained by the gravitational lensing of a massive bubble with Mlens ~ 10^21 M\\odot, a lens radius ~350 Mpc, and with the lens subtending an angle of \\pm15{\\deg} on the sky. It is remarkable that the presence of such a massive bubble universe can explain not only the anomalies in the angular distribution of quasar intensities, but also anomalies in the distributi...

  14. Flat acoustic sources with frequency response correction based on feedback and feed-forward distributed control

    NARCIS (Netherlands)

    Ho, Jen-Hsuan; Berkhoff, A.P.

    2015-01-01

    This paper presents an acoustic source with a small thickness and high bending stiffness. The high bending stiffness is obtained with a sandwich structure in which the face of the sandwich structure internal to the source is perforated to increase the acoustic compliance, thereby leading to increase

  15. Developed ‘laminar’ bubbly flow with non-uniform bubble sizes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Bubbles with different sizes have different dynamic and kineticbehavior in a two-phase bubbly flow. A common two-fluid model based on the uniform bubble size assumption is not suitable for a bubbly flow with non-uniform bubble sizes. To deal with non-uniform bubbly flows, a multi-fluid model is established, with which bubbles are divided into several groups according to their sizes and a set of basic equations is derived for each group of bubbles with almost the same size. Through analyzing the bubble-bubble and bubble-pipe wall interactions, two new constitutive laws for the wall-force and pressure difference between the liquid phase and interface are developed to close the averaged basic equations. The respective phase distributions for each group of bubbles measured by a specially designed three-dimensional photographic method are used to check the model. Comparison between model-predicted values and experimental data shows that the model can describe laminar bubbly flow with non-uniform bubble sizes.

  16. Bubble drag reduction requires large bubbles

    CERN Document Server

    Verschoof, Ruben A; Sun, Chao; Lohse, Detlef

    2016-01-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  17. Ion acoustic waves in the plasma with the power-law q-distribution in nonextensive statistics

    CERN Document Server

    Liyan, Liu

    2008-01-01

    We investigate the dispersion relation and Landau damping of ion acoustic waves in the collisionless magnetic-field-free plasma if it is described by the nonextensive q-distributions of Tsallis statistics. We show that the increased numbers of superthermal particles and low velocity particles can explain the strengthened and weakened modes of Landau damping, respectively, with the q-distribution. When the ion temperature is equal to the electron temperature, the weakly damped waves are found to be the distributions with small values of q.

  18. Field Trial of Distributed Acoustic Sensing Using Active Sources at Garner Valley, California

    Science.gov (United States)

    Wang, H. F.; Lord, N. E.; Chalari, A.; Lancelle, C.; Baldwin, J. A.; Castongia, E.; Fratta, D.; Nigbor, R. L.; Karaulanov, R.

    2014-12-01

    An optical fiber Distributed Acoustic Sensor array was deployed in a shallow trench at the site of the Garner Valley Downhole Array (GVDA) in southern California. The site was operated as a collaborator of the Network for Earthquake Engineering Simulation (NEES) by UCSB. The fiber-optic cable layout approximated a rectangle whose dimensions were roughly 160 meters by 80 meters. The layout included two subdiagonals to provide a variety of orientations of the cable relative to source locations. The study included different seismic sources deployed at a number of surveyed positions: a 45 kN shear shaker operated at the site by NEES@UCLA, a portable 450 N shaker, a small Vibroseis truck, and hammer blows on a steel plate to map cable locations. Several dozen separate tests were recorded in which each test typically included ten repeats. The data were utilized for several studies. First, the characteristics of the recorded signals were analyzed for directivity and sensitivity of the cable response (Lancelle et al., 2014, this meeting). The DAS system recorded dynamic ground events in the direction of the cable and hence comparisons with geophones required signal processing. The one-meter spacing of DAS traces could be well correlated over distances of a few meters. Second, swept-sine sources were used to obtain surface-wave velocity dispersion to determine near-surface shear-wave velocity distribution using Multispectral Analysis of Surface Waves (MASW) (Baldwin et al., 2014, this meeting). The results were in good agreement with previous Vibroseis results at the site (Stokoe et al. 2004). Third, a new method for time-frequency filtering was developed for extracting the surface-wave phase velocities from uncorrelated receiver traces (Lord et al., 2014, this meeting).

  19. Flow velocity measurement with the nonlinear acoustic wave scattering

    International Nuclear Information System (INIS)

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution

  20. Flow velocity measurement with the nonlinear acoustic wave scattering

    Energy Technology Data Exchange (ETDEWEB)

    Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  1. Flow velocity measurement with the nonlinear acoustic wave scattering

    Science.gov (United States)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  2. Acoustic characterization of void distributions across carbon-fiber composite layers

    Science.gov (United States)

    Tayong, Rostand B.; Smith, Robert A.; Pinfield, Valerie J.

    2016-02-01

    Carbon Fiber Reinforced Polymer (CFRP) composites are often used as aircraft structural components, mostly due to their superior mechanical properties. In order to improve the efficiency of these structures, it is important to detect and characterize any defects occurring during the manufacturing process, removing the need to mitigate the risk of defects through increased thicknesses of structure. Such defects include porosity, which is well-known to reduce the mechanical performance of composite structures, particularly the inter-laminar shear strength. Previous work by the authors has considered the determination of porosity distributions in a fiber-metal laminate structure [1]. This paper investigates the use of wave-propagation modeling to invert the ultrasonic response and characterize the void distribution within the plies of a CFRP structure. Finite Element (FE) simulations are used to simulate the ultrasonic response of a porous composite laminate to a typical transducer signal. This simulated response is then applied as input data to an inversion method to calculate the distribution of porosity across the layers. The inversion method is a multi-dimensional optimization utilizing an analytical model based on a normal-incidence plane-wave recursive method and appropriate mixture rules to estimate the acoustical properties of the structure, including the effects of plies and porosity. The effect of porosity is defined through an effective wave-number obtained from a scattering model description. Although a single-scattering approach is applied in this initial study, the limitations of the method in terms of the considered porous layer, percentage porosity and void radius are discussed in relation to single- and multiple-scattering methods. A comparison between the properties of the modeled structure and the void distribution obtained from the inversion is discussed. This work supports the general study of the use of ultrasound methods with inversion to

  3. On the dynamics of moving single bubble sonoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Galavani, Zeinab, E-mail: z_galavani@sina.kntu.ac.i [Department of Physics, K. N. Toosi University of Technology, P.O. Box: 16315-1618, Tehran (Iran, Islamic Republic of); Rezaei-Nasirabad, Reza, E-mail: rezanuc_83@ph.iut.ac.i [Department of Physics, Isfahan University of Technology, P.O. Box: 84154, Isfahan (Iran, Islamic Republic of); Bhattarai, Suresh [Department of Physics, St. Xavier' s College, P.O. Box: 7437, Kathmandu (Nepal)

    2010-10-04

    It is well known that the primary Bjerknes force is the origin of the trapping of sonoluminescing bubble in the sound field in liquid. In the present Letter, the quantitative investigation of the behavior of hydrodynamic force on the moving sonoluminescing (SL) bubble introduces the new role of stabilizing the trajectory motion of the bubble for primary Bjerknes force. Using a complete force balanced radial-translational dynamics, it is analytically discussed that by increasing the bubble distance from the antinode of the sound field the increase of the magnitude of inward Bjerknes force, controls the size of the domain of the bubble trajectory. At this time the wake produced by the rapid variation of the bubble's relative translational velocity to the surrounding liquid, changes the bubble direction of motion through the effect of history force. The required momentum for accelerating the SL bubble around the central antinode is produced by the added mass force at the bubble collapse. It is revealed in a re-examination of the coupled radial-translational dynamics for a trapping bubble that because of the bubble lower translational acceleration caused due to the lower added mass force and the bubble attraction towards the acoustic antinodes in presence of inward Bjerknes force, the small bubble will be trapped at the antinode of the sound field.

  4. Bubbles with shock waves and ultrasound: a review.

    Science.gov (United States)

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-10-01

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead. PMID:26442143

  5. Bubbles Outside the Plume During the LUMINY Wind-Wave Experiment

    NARCIS (Netherlands)

    Leeuw, G. de; Leifer, I.

    2002-01-01

    Since many bubble-mediated processes are size dependent, it is often necessary to characterize the bubble distribution over the full size spectrum. For example, in regards to bubble-mediated gas transfer, small bubbles are important for insoluble gases like helium, while large bubbles are important

  6. Optimization of the Acoustic Pressure Distribution in a Resonant Photoacoustic Cell

    Institute of Scientific and Technical Information of China (English)

    陈柏; 陈兰荣; 范薇; 林尊琪

    2001-01-01

    The size of a cylindrical photoacoustic cell with suitable size was selected so that the resonant frequency of the first radial mode was equal to that of a longitudinal higher mode. By maintaining two thin coaxial tubes at each end, a enhanced photoacoustic cell was constructed with two tubes of 1/2 and 1/4 of the wavelength. In this enhanced photoacoustie cell, both the first radial resonance and the higher longitudinal resonance were excited adequately. Coupling of two acoustic modes makes the acoustic energy concentrating in the middle of the cell. The surface loss was decreased, the acoustic quality factor and pressure amplitude increased obviously as compared with conventional cylindrical cell.

  7. Exploiting flow to control the in vitro spatiotemporal distribution of microbubble-seeded acoustic cavitation activity in ultrasound therapy

    International Nuclear Information System (INIS)

    Focused ultrasound and microbubbles have been extensively used to generate therapeutic bioeffects. Despite encouraging in vivo results, there remains poor control of the magnitude and spatial distribution of these bioeffects due to the limited ability of conventional pulse shapes and sequences to control cavitation dynamics. Thus current techniques are restricted by an efficacy-safety trade-off. The primary aim of the present study was to incorporate the presence of flow in the design of new short pulse sequences, which can more uniformly distribute the cavitation activity. Microbubbles flowing (fluid velocity: 10 mm s−1) through a 300 μm tube were sonicated with a focused 0.5 MHz transducer while acoustic emissions were captured with an inserted focused 7.5 MHz passive cavitation detector. The two foci were co-axially aligned and their focal points were overlapped. Whereas conventional sequences are composed of a long burst (>10 000 cycles) emitted at a low burst repetition frequency (<10 Hz), we decomposed this burst into short pulses by adding intervals to facilitate inter-pulse microbubble movement. To evaluate how this sequence influenced cavitation distribution, we emitted short pulses (peak-rarefactional pressure (PRP): 40–366 kPa, pulse length (PL): 5–25 cycles) at high pulse repetition frequencies (PRF: 0.625–10 kHz) for a burst length of 100 ms. Increased cavitation persistence, implied by the duration of the microbubble acoustic emissions, was a measure of improved distribution due to the presence of flow. Sonication at lower acoustic pressures, longer pulse intervals and lower PLs improved the spatial distribution of cavitation. Furthermore, spectral analysis of the microbubble emissions revealed that the improvement at low pressures is due to persisting stable cavitation. In conclusion, new short-pulse sequences were shown to improve spatiotemporal control of acoustic cavitation dynamics during physiologically relevant flow

  8. Evolution of acoustically vaporized microdroplets in gas embolotherapy

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    Acoustic vaporization dynamics of a superheated dodecafluoropentane (DDFP) microdroplet inside a microtube and the resulting bubble evolution is investigated in the present work. This work is motivated by a developmental gas embolotherapy technique that is intended to treat cancers by infarcting tumors using gas bubbles. A combined theoretical and computational approach is utilized and compared with the experiments to understand the evolution process and to estimate the resulting stress distribution associated with vaporization event. The transient bubble growth is first studied by ultra-high speed imaging and then theoretical and computational modeling is used to predict the entire bubble evolution process. The evolution process consists of three regimes: an initial linear rapid spherical growth followed by a linear compressed oval shaped growth and finally a slow asymptotic nonlinear spherical bubble growth. Although the droplets are small compared to the tube diameter, the bubble evolution is influenced by the tube wall. The final bubble radius is found to scale linearly with the initial droplet radius and is approximately five times the initial droplet radius. A short pressure pulse with amplitude almost twice as that of ambient conditions is observed. The width of this pressure pulse increases with increasing droplet size whereas the amplitude is weakly dependent. Although the rise in shear stress along the tube wall is found to be under peak physiological limits, the shear stress amplitude is found to be more prominently influenced by the initial droplet size. The role of viscous dissipation along the tube wall and ambient bulk fluid pressure is found to be significant in bubble evolution dynamics. © 2012 American Society of Mechanical Engineers.

  9. Using sound to study bubble coalescence.

    Science.gov (United States)

    Kracht, W; Finch, J A

    2009-04-01

    Frothers are surfactants used in flotation to aid generation of small bubbles, an effect attributed to coalescence prevention. Studying coalescence at the moment of bubble creation is a challenge because events occur over a time frame of milliseconds. This communication introduces a novel acoustic technique to study coalescence as bubbles are generated at a capillary. The sound signal was linked to bubble formation and coalescence events using high-speed cinematography. The technique has the resolution to detect events that occur within 1-2 ms. The results show that for common flotation frothers and n-alcohols (C(4)-C(8)) coalescence prevention is not simply related to surface activity. A total stress model is used to give a qualitative explanation to the action observed. Results for salt (sodium chloride) are included for comparison. PMID:19128806

  10. Effect of nonthermal ion distribution and dust temperature on nonlinear dust-acoustic solitary waves

    Indian Academy of Sciences (India)

    K Annou; R Annou

    2012-01-01

    Dust-acoustic solitary waves in unmagnetized dusty plasma whose constituents are inertial charged dust grains, Boltzmannian electrons and nonthermal ions have been investigated by taking into account finite dust temperature. The pseudopotential has been used to study solitary solution. The existence of solitary waves having negative potential is reported.

  11. Jet formation in shock-heavy gas bubble interaction

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Zhai; Ting Si; Li-Yong Zou; Xi-Sheng Luo

    2013-01-01

    The influences of the acoustic impedance and shock strength on the jet formation in shock-heavy gas bubble interaction are numerically studied in this work.The process of a shock interacting with a krypton or a SF6 bubble is studied by the numerical method VAS2D.As a validation,the experiments of a SF6 bubble accelerated by a planar shock were performed.The results indicate that,due to the mismatch of acoustic impedance,the way of jet formation in heavy gas bubble with different species is diversified under the same initial condition.With respect to the same bubble,the manner of jet formation is also distinctly different under different shock strengths.The disparities of the acoustic impedance result in different effects of shock focusing in the bubble,and different behaviors of shock wave inside and outside the bubble.The analyses of the wave pattern and the pressure variation indicate that the jet formation is closely associated with the pressure perturbation.Moreover,the analysis of the vorticity deposition,and comparisons of circulation and baroclinic torque show that the baroclinic vorticity also contributes to the jet formation.It is concluded that the pressure perturbation and baroclinic vorticity deposition are the two dominant factors for the jet formation in shock-heavy gas bubble interaction.

  12. OptaSense distributed acoustic and seismic sensing using COTS fiber optic cables for infrastructure protection and counter terrorism

    Science.gov (United States)

    Duckworth, Gregory L.; Ku, Emery M.

    2013-06-01

    The OptaSense® Distributed Acoustic Sensing (DAS) technology can turn any cable with single-mode optical fiber into a very large and densely sampled acoustic/seismic sensor array—covering up to a 50 km aperture per system with "virtual" sensor separations as small as 1 meter on the unmodified cable. The system uses Rayleigh scattering from the imperfections in the fiber to return the optical signals measuring local fiber strain from seismic or air and water acoustic signals. The scalable system architecture can provide border monitoring and high-security perimeter and linear asset protection for a variety of industries—from nuclear facilities to oil and gas pipelines. This paper presents various application architectures and system performance examples for detection, localization, and classification of personnel footsteps, vehicles, digging and tunneling, gunshots, aircraft, and earthquakes. The DAS technology can provide a costeffective alternative to unattended ground sensors and geophone arrays, and a complement or alternative to imaging and radar sensors in many applications. The transduction, signal processing, and operator control and display technology will be described, and performance examples will be given from research and development testing and from operational systems on pipelines, critical infrastructure perimeters, railroads, and roadways. Potential new applications will be discussed that can take advantage of existing fiber-optic telecommunications infrastructure as "the sensor"—leading to low-cost and high-coverage systems.

  13. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands

    Science.gov (United States)

    Ariza, A.; Landeira, J. M.; Escánez, A.; Wienerroither, R.; Aguilar de Soto, N.; Røstad, A.; Kaartvedt, S.; Hernández-León, S.

    2016-05-01

    Diel vertical migration (DVM) facilitates biogeochemical exchanges between shallow waters and the deep ocean. An effective way of monitoring the migrant biota is by acoustic observations although the interpretation of the scattering layers poses challenges. Here we combine results from acoustic observations at 18 and 38 kHz with limited net sampling in order to unveil the origin of acoustic phenomena around the Canary Islands, subtropical northeast Atlantic Ocean. Trawling data revealed a high diversity of fishes, decapods and cephalopods (152 species), although few dominant species likely were responsible for most of the sound scattering in the region. We identified four different acoustic scattering layers in the mesopelagic realm: (1) at 400-500 m depth, a swimbladder resonance phenomenon at 18 kHz produced by gas-bearing migrant fish such as Vinciguerria spp. and Lobianchia dofleini, (2) at 500-600 m depth, a dense 38 kHz layer resulting primarily from the gas-bearing and non-migrant fish Cyclothone braueri, and to a lesser extent, from fluid-like migrant fauna also inhabiting these depths, (3) between 600 and 800 m depth, a weak signal at both 18 and 38 kHz ascribed either to migrant fish or decapods, and (4) below 800 m depth, a weak non-migrant layer at 18 kHz which was not sampled. All the dielly migrating layers reached the epipelagic zone at night, with the shorter-range migrations moving at 4.6 ± 2.6 cm s - 1 and the long-range ones at 11.5 ± 3.8 cm s - 1. This work reduces uncertainties interpreting standard frequencies in mesopelagic studies, while enhances the potential of acoustics for future research and monitoring of the deep pelagic fauna in the Canary Islands.

  14. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands

    KAUST Repository

    Ariza, A.

    2016-01-21

    Diel vertical migration (DVM) facilitates biogeochemical exchanges between shallow waters and the deep ocean. An effective way of monitoring the migrant biota is by acoustic observations although the interpretation of the scattering layers poses challenges. Here we combine results from acoustic observations at 18 and 38 kHz with limited net sampling in order to unveil the origin of acoustic phenomena around the Canary Islands, subtropical northeast Atlantic Ocean. Trawling data revealed a high diversity of fishes, decapods and cephalopods (152 species), although few dominant species likely were responsible for most of the sound scattering in the region. We identified four different acoustic scattering layers in the mesopelagic realm: (1) at 400–500 m depth, a swimbladder resonance phenomenon at 18 kHz produced by gas-bearing migrant fish such as Vinciguerria spp. and Lobianchia dofleini, (2) at 500–600 m depth, a dense 38 kHz layer resulting primarily from the gas-bearing and non-migrant fish Cyclothone braueri, and to a lesser extent, from fluid-like migrant fauna also inhabiting these depths, (3) between 600 and 800 m depth, a weak signal at both 18 and 38 kHz ascribed either to migrant fish or decapods, and (4) below 800 m depth, a weak non-migrant layer at 18 kHz which was not sampled. All the dielly migrating layers reached the epipelagic zone at night, with the shorter-range migrations moving at 4.6 ± 2.6 cm s − 1 and the long-range ones at 11.5 ± 3.8 cm s − 1. This work reduces uncertainties interpreting standard frequencies in mesopelagic studies, while enhances the potential of acoustics for future research and monitoring of the deep pelagic fauna in the Canary Islands.

  15. Bubble nonlinear dynamics and stimulated scattering process

    Science.gov (United States)

    Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu

    2016-02-01

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).

  16. Ostwald ripening in multiple-bubble nuclei

    Science.gov (United States)

    Watanabe, Hiroshi; Suzuki, Masaru; Inaoka, Hajime; Ito, Nobuyasu

    2014-12-01

    The Ostwald ripening of bubbles is studied by molecular dynamics simulations involving up to 679 × 106 Lennard-Jones particles. Many bubbles appear after depressurizing a system that is initially maintained in the pure-liquid phase, and the coarsening of bubbles follows. The self-similarity of the bubble-size distribution function predicted by Lifshitz-Slyozov-Wagner theory is directly confirmed. The total number of bubbles decreases asymptotically as t-x with scaling exponent x. As the initial temperature increases, the exponent changes from x = 3/2 to 1, which implies that the growth of bubbles changes from interface-limited (the t1/2 law) to diffusion-limited (the t1/3 law) growth.

  17. Ostwald Ripening in Multiple-Bubble Nuclei

    CERN Document Server

    Watanabe, Hiroshi; Inaoka, Hajime; Ito, Nobuyasu

    2014-01-01

    The ostwald ripening of bubbles is studied by molecular dynamics simulations involving up to 679 million Lennard-Jones particles. Many bubbles appear after depressurizing a system that is initially maintained in the pure-liquid phase, and the coarsening of bubbles follows. The self-similarity of the bubble-size distribution function predicted by Lifshitz-Slyozov-Wagner theory is directly confirmed. The total number of bubbles decreases asymptotically as $t^{-x}$ with scaling exponent $x$. As the initial temperature increases, the exponent changes from $x=3/2$ to $1$, which implies that the growth of bubbles changes from interface-limited (the $t^{1/2}$ law) to diffusion-limited (the $t^{1/3}$ law) growth.

  18. Measurements of sub-surface bubble populations and the modelling of air-sea gas flux

    OpenAIRE

    Coles, David Geoffrey Hallstaff

    2010-01-01

    Bubbles, formed by breaking waves, play an important role in the transfer of gases between the Earth’s oceans and atmosphere and have been shown to increase the flux of gases during periods of heightened sea state. Having been formed, these bubble clouds evolve through the effects of buoyancy, gas exsolution and dissolution, and the fragmentation and coalescence of bubbles. A number of experimenters have successfully measured sub-surface bubble clouds using a variety of acoustic and opt...

  19. On thermonuclear processes in cavitation bubbles

    International Nuclear Information System (INIS)

    The theoretical and experimental foundations of so-called bubble nuclear fusion are reviewed. In the nuclear fusion process, a spherical cavitation cluster ∼10−2 m in diameter is produced of spherical bubbles at the center of a cylindrical chamber filled with deuterated acetone using a focused acoustic field having a resonant frequency of about 20 kHz. The acoustically-forced bubbles effectuate volume oscillations with sharp collapses during the compression stage. At the final stages of collapse, the bubble cluster emits 2.5 MeV D-D fusion neutron pulses at a rate of ∼2000 per second. The neutron yield is ∼105 s−1. In parallel, tritium nuclei are produced at the same yield. It is shown numerically that, for bubbles having sufficient molecular mass, spherical shock waves develop in the center of the cluster and that these spherical shock waves (microshocks) produce converging shocks within the interior bubbles, which focus energy on the centers of the bubbles. When these shock waves reflect from the centers of the bubbles, extreme conditions of temperature (∼108 K) and density (∼104 kg m−3) arise in a (nano)spherical region (∼10−7 m in size) that last for ∼10−12 s, during which time about ten D-D fusion neutrons and tritium nuclei are produced in the region. A paradoxical result in our experiments is that it is bubble cluster (not streamer) cavitation and the sufficiently high molecular mass of (and hence the low sound speed in) D-acetone (C3D6O) vapor (as compared, for example, to deuterated water D2O) which are necessary conditions for the formation of convergent spherical microshock waves in central cluster bubbles. It is these waves that allow the energy to be sufficiently focused in the nanospherical regions near the bubble centers for fusion events to occur. The criticism to which the concept of 'bubble fusion' has been subjected in the literature, in particular, most recently in Uspekhi Fizicheskikh Nauk (Physics

  20. Electron acoustic waves in a magnetized plasma with kappa distributed ions

    Energy Technology Data Exchange (ETDEWEB)

    Devanandhan, S.; Lakhina, G. S. [Indian Institute of Geomagnetism, Navi Mumbai (India); Singh, S. V. [Indian Institute of Geomagnetism, Navi Mumbai (India); School of Physics, University of Kwazulu-Natal, Durban (South Africa); Bharuthram, R. [University of the Western Cape, Bellville (South Africa)

    2012-08-15

    Electron acoustic solitary waves in a two component magnetized plasma consisting of fluid cold electrons and hot superthermal ions are considered. The linear dispersion relation for electron acoustic waves is derived. In the nonlinear regime, the energy integral is obtained by a Sagdeev pseudopotential analysis, which predicts negative solitary potential structures. The effects of superthermality, obliquity, temperature, and Mach number on solitary structures are studied in detail. The results show that the superthermal index {kappa} and electron to ion temperature ratio {sigma} alters the regime where solitary waves can exist. It is found that an increase in magnetic field value results in an enhancement of soliton electric field amplitude and a reduction in soliton width and pulse duration.

  1. Modulational instability of ion-acoustic waves in plasma with a q-nonextensive nonthermal electron velocity distribution

    International Nuclear Information System (INIS)

    Modulation instability of ion-acoustic waves (IAWs) is investigated in a collisionless unmagnetized one dimensional plasma, containing positive ions and electrons following the mixed nonextensive nonthermal distribution [Tribeche et al., Phys. Rev. E 85, 037401 (2012)]. Using the reductive perturbation technique, a nonlinear Schrödinger equation which governs the modulation instability of the IAWs is obtained. Valid range of plasma parameters has been fixed and their effects on the modulational instability discussed in detail. We find that the plasma supports both bright and dark solutions. The valid domain for the wave number k where instabilities set in varies with both nonextensive parameter q as well as non thermal parameter α. Moreover, the analysis is extended for the rational solutions of IAWs in the instability regime. Present study is useful for the understanding of IAWs in the region where such mixed distribution may exist

  2. Modulational instability of electron-acoustic waves in a plasma with a q-nonextensive electron velocity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bains, Amandeep Singh, E-mail: bainsphysics@yahoo.co.i [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Tribeche, Mouloud [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Sciences-Physics, University of Bab-Ezzouar, U.S.T.H.B., B.P. 32, El Alia, Algiers 16111 (Algeria); Gill, Tarsem Singh [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2011-05-16

    The amplitude modulation of electron-acoustic waves (EAWs) propagating in space plasmas whose constituents are inertial cold electrons, hot nonextensive q-distributed electrons, and stationary ions is presented theoretically. The nonlinear Schroedinger equation (NLSE) which governs the modulational instability of the EAWs is obtained using reductive perturbation method (RPM). The presence of the hot nonextensive q-distributed electrons is shown to influence the modulational instability of the waves. Further, the nondimensional parameter {alpha}=n{sub e0}/n{sub c0}, which is the equilibrium density ratio of the hot to cold electron component, is shown to play a vital role in the formation of both bright and dark solitons. - Highlights: Nonlinear Schroedinger equation is derived for EAW with nonextensive electrons. Both dark and bright excitations are formed. The critical wave number increase with increase in the nonextensive parameter.

  3. Modelling of boiling bubbly flows using a polydisperse approach

    International Nuclear Information System (INIS)

    The objective of this work was to improve the modelling of boiling bubbly flows.We focused on the modelling of the polydisperse aspect of a bubble population, i.e. the fact that bubbles have different sizes and different velocities. The multi-size aspect of a bubble population can originate from various mechanisms. For the bubbly flows we are interested in, bubble coalescence, bubble break-up, phase change kinematics and/or gas compressibility inside the bubbles can be mentioned. Since, bubble velocity depends on bubble size, the bubble size spectrum also leads to a bubble velocity spectrum. An averaged model especially dedicated to dispersed flows is introduced in this thesis. Closure of averaged interphase transfer terms are written in a polydisperse framework, i.e. using a distribution function of the bubble sizes and velocities. A quadratic law and a cubic law are here proposed for the modelling of the size distribution function, whose evolution in space and time is then obtained with the use of the moment method. Our averaged model has been implemented in the NEPTUNE-CFD computation code in order to simulate the DEBORA experiment. The ability of our model to deal with sub-cooled boiling flows has therefore been evaluated. (author)

  4. Taming Acoustic Cavitation

    CERN Document Server

    Rivas, David Fernandez; Enriquez, Oscar R; Versluis, Michel; Prosperetti, Andrea; Gardeniers, Han; Lohse, Detlef

    2012-01-01

    In this fluid dynamics video we show acoustic cavitation occurring from pits etched on a silicon surface. By immersing the surface in a liquid, gas pockets are entrapped in the pits which upon ultrasonic insonation, are observed to shed cavitation bubbles. Modulating the driving pressure it is possible to induce different behaviours based on the force balance that determines the interaction among bubbles and the silicon surface. This system can be used for several applications like sonochemical water treatment, cleaning of surfaces with deposited materials such as biofilms.

  5. The condensation of sodium vapour bubbles

    International Nuclear Information System (INIS)

    This is a preliminary analytic study of the violent collapse of a vapour bubble by condensation in cold liquid. A calculation method is described and is applied to the condensation of sodium vapour bubbles such as might be formed in an overheating accident in a fast reactor. The method is not satisfactory, and a more thorough study of the problem is needed, but these preliminary results suggest that while the violent collapse is unlikely to do much mechanical damage, it produces a considerable amount of acoustic energy. (author)

  6. Primary Particles from different bubble generation techniques

    Science.gov (United States)

    Butcher, A. C.; King, S. M.; Rosenoern, T.; Nilsson, E. D.; Bilde, M.

    2011-12-01

    Sea spray aerosols (SSA) are of major interest to global climate models due to large uncertainty in their emissions and ability to form Cloud Condensation Nuclei (CCN). In general, SSA are produced from wind breaking waves that entrain air and cause bubble bursting on the ocean surface. Preliminary results are presented for bubble generation, bubble size distribution, and CCN activity for laboratory generated SSA. In this study, the major processes of bubble formation are examined with respect to particle emissions. It has been suggested that a plunging jet closely resembles breaking wave bubble entrainment processes and subsequent bubble size distributions (Fuentes, Coe et al. 2010). Figure 1 shows the different particle size distributions obtained from the various bubble generation techniques. In general, frits produce a higher concentration of particles with a stronger bimodal particle size distribution than the various jet configurations used. The experiments consist of a stainless steel cylinder closed at both ends with fittings for aerosol sampling, flow connections for the recirculating jet, and air supply. Bubble generation included a recirculating jet with 16 mm or 4 mm nozzles, a stainless steel frit, or a ceramic frit. The chemical composition of the particles produced via bubble bursting processes has been probed using particle CCN activity. The CCN activity of sodium chloride, artificial sea salt purchased from Tropic Marin, and laboratory grade artificial sea salt (Kester, Duedall et al. 1967) has been compared. Considering the the limits of the shape factor as rough error bars for sodium chloride and bubbled sea salt, the CCN activity of artificial sea salt, Tropic Marin sea salt, and sodium chloride are not significantly different. This work has been supported by the Carlsberg Foundation.

  7. Fama on Bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    2016-01-01

    While Eugene Fama has repeatedly expressed his discontent with the notion of an “irrational bubble,” he has never publicly expressed his opinion on “rational bubbles.” On empirical grounds Fama rejects bubbles by referring to the lack of reliable evidence that price declines are predictable....... However, this argument cannot be used to rule out rational bubbles because such bubbles do not necessarily imply return predictability, and return predictability of the kind documented by Fama does not rule out rational bubbles. On data samples that include the 1990s, there is evidence of an explosive...

  8. Fama on bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    Eugene Fama has repeatedly expressed his discontent with the notion of an irrational bubble. However, he has never publicly expressed his opinion on rational bubbles. This is peculiar since such bubbles build naturally from the rational efficient markets paradigm that Fama strongly adheres to....... On empirical grounds Fama rejects bubbles by referring to the lack of reliable evidence that price declines are predictable. However, this argument cannot be used to rule out rational bubbles because such bubbles do not necessarily imply return predictability. On data samples that include the 1990s...

  9. Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant

    CERN Document Server

    Ledenyov, Oleg P

    2013-01-01

    The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antin...

  10. The phase transformation of methane caused by pressure change during its rising from seepage, revealed by acoustic reflection data

    Science.gov (United States)

    Aoyama, C.; Aoyama, S.

    2014-12-01

    The objective of this survey is to measure acoustical reflection from the methane plumes at close range by utilizing a remotely-operated vehicle, in order to quantify methane gas flux seeping out from shallow methane hydrates in the sea of japan. In the off-Joetsu area, we conducted acoustic survey for methane plumes distribution using quantitative echo sounder (Simrad EK60) and Multi beam echo sounder (SEABAT 8160) installed on R/V Natsushima, and then conducted underwater survey using ROV Hyper-Dolphin in the following methods, 1) Observing seafloor morphology, 2) Measurement methane discharge with a calibrated collecting equipment , 3) Measuring rising speed of methane bubbles with a ruler, 4) Collecting acoustic reflection data using quantitative echo sounder, 5) Observing rising methane bubbles. All processes in the underwater survey were recorded by a HD camera equipped on ROV, and those videos are used for after-cruise analysis. In the underwater survey by ROV, we found three methane plume points and successfully collected acoustic data which would detect each methane bubble. Based on videos and acoustic data obtained in this survey, detailed analysis conducted.

  11. Cavitation inception by the backscattering of pressure waves from a bubble interface

    Science.gov (United States)

    Takahira, Hiroyuki; Ogasawara, Toshiyuki; Mori, Naoto; Tanaka, Moe

    2015-10-01

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t0 to a characteristic time of wave propagation tS, η = t0/ts, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  12. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    Directory of Open Access Journals (Sweden)

    Maria Calado

    2012-06-01

    Full Text Available This paper proposes a distributed system for analysis and monitoring (DSAM of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs. The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  13. Soap Bubbles and Logic.

    Science.gov (United States)

    Levine, Shellie-helane; And Others

    1986-01-01

    Introduces questions and activities involving soap bubbles which provide students with experiences in prediction and logic. Examines commonly held false conceptions related to the shapes that bubbles take and provides correct explanations for the phenomenon. (ML)

  14. Preheating in Bubble Collision

    CERN Document Server

    Zhang, Jun

    2010-01-01

    In a landscape with metastable minima, the bubbles will inevitably nucleate. We show that when the bubbles collide, due to the dramatically oscillating of the field at the collision region, the energy deposited in the bubble walls can be efficiently released by the explosive production of the particles. In this sense, the collision of bubbles is actually high inelastic. The cosmological implications of this result are discussed.

  15. Bubble Dynamics in a Two-Phase Medium

    CERN Document Server

    Jayaprakash, Arvind; Chahine, Georges

    2010-01-01

    The spherical dynamics of a bubble in a compressible liquid has been studied extensively since the early work of Gilmore. Numerical codes to study the behavior, including when large non-spherical deformations are involved, have since been developed and have been shown to be accurate. The situation is however different and common knowledge less advanced when the compressibility of the medium surrounding the bubble is provided mainly by the presence of a bubbly mixture. In one of the present works being carried out at DYNAFLOW, INC., the dynamics of a primary relatively large bubble in a water mixture including very fine bubbles is being investigated experimentally and the results are being provided to several parallel on-going analytical and numerical approaches. The main/primary bubble is produced by an underwater spark discharge from two concentric electrodes placed in the bubbly medium, which is generated using electrolysis. A grid of thin perpendicular wires is used to generate bubble distributions of vary...

  16. Beer tapping: dynamics of bubbles after impact

    Science.gov (United States)

    Mantič-Lugo, V.; Cayron, A.; Brun, P.-T.; Gallaire, F.

    2015-12-01

    Beer tapping is a well known prank where a bottle of beer is impacted from the top by a solid object, usually another bottle, leading to a sudden foam overflow. A description of the shock-driven bubble dynamics leading to foaming is presented based on an experimental and numerical study evoking the following physical picture. First, the solid impact produces a sudden downwards acceleration of the bottle creating a strong depression in the liquid bulk. The existing bubbles undergo a strong expansion and a sudden contraction ending in their collapse and fragmentation into a large amount of small bubbles. Second, the bubble clouds present a large surface area to volume ratio, enhancing the CO2 diffusion from the supersaturated liquid, hence growing rapidly and depleting the CO2. The clouds of bubbles migrate upwards in the form of plumes pulling the surrounding liquid with them and eventually resulting in the foam overflow. The sudden pressure drop that triggers the bubble dynamics with a collapse and oscillations is modelled by the Rayleigh-Plesset equation. The bubble dynamics from impact to collapse occurs over a time (tb ≃ 800 μs) much larger than the acoustic time scale of the liquid bulk (tac = 2H/c ≃ 80 μs), for the experimental container of height H = 6 cm and a speed of sound around c ≃ 1500 m/s. This scale separation, together with the comparison of numerical and experimental results, suggests that the pressure drop is controlled by two parameters: the acceleration of the container and the distance from the bubble to the free surface.

  17. Propagation of Electron Acoustic Soliton, Periodic and Shock Waves in Dissipative Plasma with a q-Nonextensive Electron Velocity Distribution

    Science.gov (United States)

    A. M., El-Hanbaly; E. K., El-Shewy; Elgarayhi, A.; A. I., Kassem

    2015-11-01

    The nonlinear properties of small amplitude electron-acoustic (EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma with nonextensive distribution for hot electrons have been investigated. A reductive perturbation method used to obtain the Kadomstev-Petviashvili-Burgers equation. Bifurcation analysis has been discussed for non-dissipative system in the absence of Burgers term and reveals different classes of the traveling wave solutions. The obtained solutions are related to periodic and soliton waves and their behavior are shown graphically. In the presence of the Burgers term, the EXP-function method is used to solve the Kadomstev-Petviashvili-Burgers equation and the obtained solution is related to shock wave. The obtained results may be helpful in better conception of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.

  18. Bubbles tomorrow and bubbles yesterday, but never bubbles today?

    OpenAIRE

    Williams, John C.

    2013-01-01

    Standard asset price models have generally failed to detect bubbles, with enormous costs to the economy. Economists are now creating promising new models that account for bubbles by relaxing the assumption of rational expectations and allowing people’s decisions to be driven by their perceptions of what the future may hold. ; This letter is adapted from a presentation by the president and CEO of the Federal Reserve Bank of San Francisco to the National Association for Business Economics in Sa...

  19. The size of active bubbles for the production of hydrogen in sonochemical reaction field.

    Science.gov (United States)

    Merouani, Slimane; Hamdaoui, Oualid

    2016-09-01

    The sonication of aqueous solution generates microscopic cavitation bubbles that may growth and violently collapse to produce highly reactive species (i.e. OH, HO2 and H2O2), hydrogen and emit light, sonoluminescence. The bubble size is a key parameter that influences the chemical activity of the system. This wok aims to study theoretically the size of active bubbles for the production of hydrogen in ultrasonic cavitation field in water using a single bubble sonochemistry model. The effect of several parameters such as frequency of ultrasound, acoustic intensity and liquid temperature on the range of sonochemically active bubbles for the production of hydrogen was clarified. The numerical simulation results showed that the size of active bubbles is an interval which includes an optimum value at which the production rate of H2 is maximal. It was shown that the range of ambient radius for an active bubble as well as the optimum bubble radius for the production of hydrogen increased with increasing acoustic intensity and decreased with increasing ultrasound frequency and bulk liquid temperature. It was found that the range of ambient bubble radius dependence of the operational conditions followed the same trend as those reported experimentally for sonoluminescing bubbles. Comparison with literature data showed a good agreement between the theoretical determined optimum bubble sizes for the production of hydrogen and the experimental reported sizes for sonoluminescing bubbles. PMID:27150777

  20. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    Science.gov (United States)

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect. PMID:26585023

  1. Early work on fiber optic gyro technology at McDonnell Douglas and spinoffs leading to acoustic sensing, distributed sensing, and a secure fiber optic communication system

    Science.gov (United States)

    Udd, Eric

    2006-08-01

    In the late 1970s the closed loop fiber optic gyro was invented and demonstrated at McDonnell Douglas Astronautics Company in Huntington Beach, California. This development was followed by a series of derivative inventions that included the Sagnac acoustic sensor, Sagnac distributed sensors and finally a Sagnac secure fiber optic communication system. This paper provides an overview of these developments.

  2. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  3. A Detection of Baryon Acoustic Oscillations from the Distribution of Galaxy Clusters

    Science.gov (United States)

    Hong, Tao; Han, J. L.; Wen, Z. L.

    2016-08-01

    We calculate the correlation function of 79,091 galaxy clusters in the redshift region of z≤slant 0.5, selected from the WH15 cluster catalog. With a weight of cluster mass, a significant baryon acoustic oscillation (BAO) peak is detected on the correlation function with a significance of 3.7σ . By fitting the correlation function with a ΛCDM model curve, we find {D}v(z=0.331){r}d{fid}/{r}d=1261.5+/- 48 Mpc, which is consistent with the Planck 2015 cosmology. We find that the correlation function of the higher mass sub-sample shows a higher amplitude at small scales of r\\lt 80 {h}-1 {{Mpc}}, which is consistent with our previous result. The two-dimensional correlation function of this large sample of galaxy clusters shows a faint BAO ring with a significance of 1.8σ , from which we find that the distance scale parameters on directions across and along the line of sight are {α }σ =1.02+/- 0.06 and {α }π =0.94+/- 0.10, respectively.

  4. A detection of Baryon Acoustic Oscillations from the distribution of galaxy clusters

    CERN Document Server

    Hong, Tao; Wen, Z L

    2015-01-01

    We calculate the correlation function of 79,091 galaxy clusters in the redshift region of $0.05 \\leq z \\leq 0.5$ selected from the WH15 cluster catalog. With a weight of cluster mass, a significant baryon acoustic oscillation (BAO) peak is detected on the correlation function with a significance of $3.9 \\sigma$. By fitting the correlation function with a $\\Lambda$CDM model curve, we find $D_v(z = 0.331) r_d^{fid}/r_d = 1269.4 \\pm 58$ Mpc which is consistent with the Planck 2015 cosmology. We find that the correlation functions of the higher mass sub-samples show a higher amplitude at small scales of $r < 80~h^{-1}{\\rm Mpc}$, which is consistent with our precious result. We find a clear signal of the `Finger-of-God' effect on the 2D correlation function of the whole sample, which indicates the random peculiar motion of central bright galaxies in the gravitation potential well of clusters.

  5. Anatomy of bubbling solutions

    CERN Document Server

    Skenderis, Kostas

    2007-01-01

    We present a comprehensive analysis of holography for the bubbling solutions of Lin-Lunin-Maladacena. These solutions are uniquely determined by a coloring of a 2-plane, which was argued to correspond to the phase space of free fermions. We show that in general this phase space distribution does not determine fully the 1/2 BPS state of N=4 SYM that the gravitational solution is dual to, but it does determine it enough so that vevs of all single trace 1/2 BPS operators in that state are uniquely determined to leading order in the large N limit. These are precisely the vevs encoded in the asymptotics of the LLM solutions. We extract these vevs for operators up to dimension 4 using holographic renormalization and KK holography and show exact agreement with the field theory expressions.

  6. Electrochemical ‘Bubble Swarm’ Enhancement of Ultrasonic Surface Cleaning

    OpenAIRE

    Birkin, Peter; Offin, Douglas; Vian, Christopher; Leighton, Timothy

    2015-01-01

    An investigation of surface cleaning using a swarm of gas bubbles within an acoustically activated stream is presented. Electrolysis of water at Pt microwires (100 µm diameter) to produce both hydrogen and oxygen bubbles is shown to enhance the extent of ultrasonic surface cleaning in a free flowing water stream containing an electrolyte (0.1 M Na2SO4) and low surfactant concentration (2 mM SDS). The surfactant was employed to allow control of the average size of the bubble population withi...

  7. Electrochemical ‘bubble swarm’ enhancement of ultrasonic surface cleaning

    OpenAIRE

    Birkin, P.R.; Offin, D.G.; Vian, C.J.B.; Leighton, T. G.

    2015-01-01

    An investigation of surface cleaning using a swarm of gas bubbles within an acoustically activated stream is presented. Electrolysis of water at Pt microwires (100 ?m diameter) to produce both hydrogen and oxygen bubbles is shown to enhance the extent of ultrasonic surface cleaning in a free flowing water stream containing an electrolyte (0.1 M Na2SO4) and low surfactant concentration (2 mM SDS). The surfactant was employed to allow control of the average size of the bubble population within ...

  8. An initial test of an Intelligent Distributed Acoustic Sensing (iDAS) in the ice in Lake Mendota

    Science.gov (United States)

    Castongia, E.; Fratta, D.; Wang, H. F.; Mondanos, M.; Chalari, A.

    2013-12-01

    A Distributed Acoustic Sensor (DAS) was deployed to assess wave propagation detection in ice using fiber-optic cable. The acoustic field is sensed continuously along an optical fiber cable by interrogating it with pulses of light. The Sensor (iDAS manufactured by Silixa) samples the coupled medium as to the fiber, as waves travel through the medium, at several kilohertz along every meter of the cable. In March 2012 measurements were carried out along a triangular shaped array on the frozen surface of Lake Mendota. The purpose of the test was to assess the applicability of DAS to determine near surface geophysical properties from its unique way of measuring acoustic fields. We constructed an equilateral triangle array with a side length of 30 meters by freezing optical fiber cables into the sub surface layer of the ice which ranged in thickness between 15 to 20 cm. The fiber cables were frozen to a depth of about 10 cm to achieve uniform cable-ice coupling. The cable sensor was continuous and was looped about 4 times around to get multiple readings at each sampling location, and resulted in a total cable length of about 445 meters. Two different cable constructions were tested. The first type was of tight-buffered central stainless steel capillary tube and the second type of steel-reinforced central stainless steel loose tube. Seismic shots were generated using a sledge hammer and steel plate. Various shot sequences were taken along three different directions to assess the response and sensitivity of the system. A vertical geophone array was also deployed for a reference measurement every 5 meters along each of the sides of the triangle. Every 10 meters, the vertical geophones were complemented by two horizontal geophones. Analysis of the data showed that wavefronts of first arrivals were clearly visible from even the furthest shot location which enabled calculations of properties of the ice as the wavefronts traveled through it. Differences in sign in the recorded

  9. Ultrasound contrast agents : optical and acoustical characterization

    OpenAIRE

    Sijl, Jeroen

    2009-01-01

    This thesis describes the characterization of the dynamics and the acoustic responses of single BR14 (Bracco Research S.A., Geneva, Switzerland) ultra- sound contrast agent microbubbles under the in°uence of ultrasound. In Ch. 2 of this thesis we investigate the small amplitude behavior of isolated microbubbles acoustically. To ensure that the measured acoustic response orig- inates from one bubble only, it requires the isolation of a single microbubble within an ultrasound beam. Furthermore ...

  10. INTRASPECIFIC VARIATION IN ACOUSTIC TRAITS AND BODY SIZE, AND NEW DISTRIBUTIONAL RECORDS FOR PSEUDOPALUDICOLA GIARETTAI CARVALHO, 2012 (ANURA, LEPTODACTYLIDAE, LEIUPERINAE: IMPLICATIONS FOR ITS CONGENERIC DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    THIAGO RIBEIRO DE CARVALHO

    2015-01-01

    Full Text Available In this paper, we provide an updated diagnosis for Pseudopaludicola giarettai based on the morphometric and acoustic variation observed with the assessment of new populations, plus an expansion of its distribution range. Our results support that all acoustic variation observed might be attributed to intraspecific variation. The variation in body size and dorsal stripe patterns observed for Pseudopaludicola giarettai reinforces that the distinctive whistling advertisement call pattern is the most reliable evidence line to diagnose it from its congeners, whereas morphological (robust body, glandular dorsum and morphometric (body size features vary considerably within and among populations so that they should no longer be employed as diagnostic features of Pseudopaludicola giarettai.

  11. Detecting dark matter with scintillating bubble chambers

    Science.gov (United States)

    Zhang, Jianjie; Dahl, C. Eric; Jin, Miaotianzi; Baxter, Daniel

    2016-03-01

    Threshold based direct WIMP dark matter detectors such as the superheated bubble chambers developed by the PICO experiment have demonstrated excellent electron-recoil and alpha discrimination, excellent scalability, ease of change of target fluid, and low cost. However, the nuclear-recoil like backgrounds have been a limiting factor in their dark matter sensitivity. We present a new type of detector, the scintillating bubble chamber, which reads out the scintillation pulse of the scattering events as well as the pressure, temperature, acoustic traces, and bubble images as a conventional bubble chamber does. The event energy provides additional handle to discriminate against the nuclear-recoil like backgrounds. Liquid xenon is chosen as the target fluid in our prototyping detector for its high scintillation yield and suitable vapor pressure which simplifies detector complexity. The detector can be used as an R&D tool to study the backgrounds present in the current PICO bubble chambers or as a prototype for standalone dark matter detectors in the future. Supported by DOE Grant DE-SC0012161.

  12. Wall slip of bubbles in foams

    OpenAIRE

    WEAIRE, DENIS LAWRENCE

    2006-01-01

    PUBLISHED We present a computational analysis of the flow of liquid foam along a smooth wall, as encountered in the transport of foams in vessels and pipes. We concentrate on the slip of the bubbles at the wall and present some novel finite element calculations of this motion for the case of fully mobile gas/liquid interfaces. Our two-dimensional simulations provide for the first time the bubble shapes and entire flow field, giving detailed insight into the distribution of stre...

  13. Test ventilation with smoke, bubbles, and balloons

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, P.L.; Cucchiara, A.L.; McAtee, J.L.; Gonzales, M.

    1987-01-01

    The behavior of smoke, bubbles, and helium-filled balloons was videotaped to demonstrate the mixing of air in the plutonium chemistry laboratories, a plutonium facility. The air-distribution patterns, as indicated by each method, were compared. Helium-filled balloons proved more useful than bubbles or smoke in the visualization of airflow patterns. The replay of various segments of the videotape proved useful in evaluating the different techniques and in identifying airflow trends responsible for air mixing. 6 refs.

  14. Tribonucleation of bubbles

    CERN Document Server

    Wildeman, Sander; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea

    2016-01-01

    We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rubbing force and velocity exceed a certain threshold. Direct observation through a transparent solid shows that each bubble in the trail results from the early coalescence of several microscopic bubbles, themselves detaching from microscopic gas pockets forming between the solids. From a detailed study of the wear tracks, with atomic force and scanning electron microscopy imaging, we conclude that these microscopic gas pockets originate from a local fracturing of the surface asperities, possibly enhanced by chemical reactions at the freshly created surfaces. Our findings will be useful either for preventing undesired bubble formation or, on the contrary, for "writing with bubbles," i.e., creating controlled patterns ...

  15. Flow Structures Around Micro-bubbles During Subcooled Nucleate Boiling

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; PENG Xiao-Feng; David M. Christopher; WANG Bu-Xuan

    2005-01-01

    The flow structures were investigated around micro bubbles on extremely thin wires during subcooled nucleate boiling. Jet flows emanating from the bubbles were observed visually with the fluid field measurement using high-speed photography and a PIV system. The jet flows induced a strong pumping effect around a bubble. The multi-jet structure was further observed experimentally, indicating the evolution of flow structure around micro bubbles. Numerical simulations explore that the jet flows were induced by a strong Marangoni effect due to high temperature gradients near the wire. The bubble interface with multi-jet structure has abnormal temperature distribution such that the coolest parts were observed at two sides of a bubble extending into the subcooled bulk liquid rather than at the top. Evaporation and condensation on the bubble interface play important roles not only in controlling the intensity of the jet flow, but also in bringing out the multi-jet structure.

  16. Bubbles and market crashes

    CERN Document Server

    Youssefmir, M; Hogg, T; Youssefmir, Michael; Huberman, Bernardo; Hogg, Tad

    1994-01-01

    We present a dynamical theory of asset price bubbles that exhibits the appearance of bubbles and their subsequent crashes. We show that when speculative trends dominate over fundamental beliefs, bubbles form, leading to the growth of asset prices away from their fundamental value. This growth makes the system increasingly susceptible to any exogenous shock, thus eventually precipitating a crash. We also present computer experiments which in their aggregate behavior confirm the predictions of the theory.

  17. Inexperienced Investors and Bubbles

    OpenAIRE

    Robin Greenwood; Stefan Nagel

    2008-01-01

    We use mutual fund manager data from the technology bubble to examine the hypothesis that inexperienced investors play a role in the formation of asset price bubbles. Using age as a proxy for managers' investment experience, we find that around the peak of the technology bubble, mutual funds run by younger managers are more heavily invested in technology stocks, relative to their style benchmarks, than their older colleagues. Furthermore, young managers, but not old managers, exhibit trend-ch...

  18. Sonoluminescence and bubble fusion

    OpenAIRE

    Arakeri, Vijay H

    2003-01-01

    Sonoluminescence (SL), the phenomenon of light emission from nonlinear motion of a gas bubble, involves an extreme degree of energy focusing. The conditions within the bubble during the last stages of the nearly catastrophic implosion are thought to parallel the efforts aimed at developing inertial confinement fusion. A limited review on the topic of SL and its possible connection to bubble nuclear fusion is presented here. The emphasis is on looking for a link between the various forms o...

  19. Distributed Fiber-Optic Sensor for Detection and Localization of Acoustic Vibrations

    Directory of Open Access Journals (Sweden)

    Sifta Radim

    2015-03-01

    Full Text Available A sensing system utilizing a standard optical fiber as a distributed sensor for the detection and localization of mechanical vibrations is presented. Vibrations can be caused by various external factors, like moving people, cars, trains, and other objects producing mechanical vibrations that are sensed by a fiber. In our laboratory we have designed a sensing system based on the Φ-OTDR (phase sensitive Optical Time Domain Reflectometry using an extremely narrow laser and EDFAs.

  20. Seamount acoustic scattering

    Science.gov (United States)

    Boehlert, George W.

    The cover of the March 1 issue of Eos showed a time series of acoustic scattering above Southeast Hancock Seamount (29°48‧N, 178°05‧E) on July 17-18, 1984. In a comment on that cover Martin Hovland (Eos, August 2, p. 760) argued that gas or “other far reaching causes” may be involved in the observed acoustic signals. He favors a hypothesis that acoustic scattering observed above a seeping pockmark in the North Sea is a combination of bubbles, stable microbubbles, and pelagic organisms and infers that this may be a more general phenomenon and indeed plays a role in the attraction of organisms to seamounts

  1. Bubble and drop interfaces

    CERN Document Server

    Miller

    2011-01-01

    The book aims at describing the most important experimental methods for characterizing liquid interfaces, such as drop profile analysis, bubble pressure and drop volume tensiometry, capillary pressure technique, and oscillating drops and bubbles. Besides the details of experimental set ups, also the underlying theoretical basis is presented in detail. In addition, a number of applications based on drops and bubbles is discussed, such as rising bubbles and the very complex process of flotation. Also wetting, characterized by the dynamics of advancing contact angles is discussed critically. Spec

  2. A method for predicting the number of active bubbles in sonochemical reactors.

    Science.gov (United States)

    Merouani, Slimane; Ferkous, Hamza; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2015-01-01

    Knowledge of the number of active bubbles in acoustic cavitation field is very important for the prediction of the performance of ultrasonic reactors toward most chemical processes induced by ultrasound. The literature in this field is scarce, probably due to the complicated nature of the phenomena. We introduce here a relatively simple semi-empirical method for predicting the number of active bubbles in an acoustic cavitation field. By coupling the bubble dynamics in an acoustical field with chemical kinetics occurring in the bubble during oscillation, the amount of the radical species OH and HO2 and molecular H2O2 released by a single bubble was estimated. Knowing that the H2O2 measured experimentally during sonication of water comes from the recombination of hydroxyl (OH) and perhydroxyl (HO2) radicals in the liquid phase and assuming that in sonochemistry applications, the cavitation is transient and the bubble fragments at the first collapse, the number of bubbles formed per unit time per unit volume is then easily determined using material balances for H2O2, OH and HO2 in the liquid phase. The effect of ultrasonic frequency on the number of active bubbles was examined. It was shown that increasing ultrasonic frequency leads to a substantial increase in the number of bubbles formed in the reactor. PMID:25127247

  3. Quantifying quagga mussel veliger abundance and distribution in Copper Basin Reservoir (California) using acoustic backscatter.

    Science.gov (United States)

    Anderson, Michael A; Taylor, William D

    2011-11-01

    Quagga mussels (Dreissena bugensis) have been linked to oligotrophication of lakes, alteration of aquatic food webs, and fouling of infrastructure associated with water supply and power generation, causing potentially billions of dollars in direct and indirect damages. Understanding their abundance and distribution is key in slowing their advance, assessing their potential impacts, and evaluating effectiveness of control strategies. Volume backscatter strength (Sv) measurements at 201- and 430-kHz were compared with quagga mussel veliger and zooplankton abundances determined from samples collected using a Wisconsin closing net from the Copper Basin Reservoir on the Colorado River Aqueduct. The plankton within the lower portion of the water column (>18 m depth) was strongly dominated by D-shaped quagga mussel veligers, comprising up to 95-99% of the community, and allowed direct empirical measurement of their mean backscattering cross-section. The upper 0-18 m of the water column contained a smaller relative proportion of veligers based upon net sampling. The difference in mean volume backscatter strength at these two frequencies was found to decrease with decreasing zooplankton abundance (r(2) = 0.94), allowing for correction of Sv due to the contribution of zooplankton and the determination of veliger abundance in the reservoir. Hydroacoustic measurements revealed veligers were often present at high abundances (up to 100-200 ind L(-1)) in a thin 1-2 m layer at the thermocline, with considerable patchiness in their distribution observed along a 700 m transect on the reservoir. Under suitable conditions, hydroacoustic measurements can rapidly provide detailed information on the abundance and distribution of quagga mussel veligers over large areas with high horizontal and vertical resolution. PMID:21906773

  4. Acoustic energy density distribution and sound intensity vector field inside coupled spaces.

    Science.gov (United States)

    Meissner, Mirosław

    2012-07-01

    In this paper, the modal expansion method supported by a computer implementation has been used to predict steady-state distributions of the potential and kinetic energy densities, and the active and reactive sound intensities inside two coupled enclosures. The numerical study was dedicated to low-frequency room responses. Calculation results have shown that the distribution of energetic quantities in coupled spaces is strongly influenced by the modal localization. Appropriate descriptors of the localization effect were introduced to identify localized modes. As was evidenced by numerical data, the characteristic objects in the active intensity field are vortices positioned irregularly inside the room. It was found that vortex centers lie exactly on the lines corresponding to zeros of the eigenfunction for a dominant mode. Finally, an impact of the wall impedance on the quantitative relationship between the active and reactive intensities was analyzed and it was concluded that for very small sound damping the behavior of the sound intensity inside the room space is essentially only oscillatory. PMID:22779472

  5. Rising motion of a bubble layer near a vertical wall

    Science.gov (United States)

    Dabiri, Sadegh; Bhuvankar, Pramod

    2015-11-01

    Bubbly flows in vertical pipes and channels form a wall-peak distribution of bubbles under certain conditions. The dynamics of the bubbles near the wall is different than in an unbounded liquid. Here we report the rising motion of bubbles in a liquid near a vertical wall. In a simulation of a bubbly flow in a periodic domain with a vertical wall on one side, an average pressure gradient is applied to the domain that balances the weight of the liquid phase. The upward flow is created by the rising motion of the bubbles. The bubbles are kept near the wall by the lateral lift force acting on them as a result of rising in a shear flow which is in turn generated by rising motion of bubbles. The rise velocity of the bubbles on the wall and the average rise velocity of the liquid depend on three dimensionless parameters, Archimedes number, Eotvos number, and the average volume fraction of bubbles near the wall. In the limit of small Eo, bubbles are nearly spherical and the dependency on Eo becomes negligible. In this limit, the scaling of the liquid Reynolds number with Archimedes number and the void fraction is presented.

  6. Prospects for bubble fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, R.I. [Tyumen Institute of Mechanics of Multiphase Systems (TIMMS), Marx (Russian Federation); Lahey, R.T. Jr. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  7. Head-on collision of two ion-acoustic solitary waves in plasmas with electrons described by Tsallis distribution

    Science.gov (United States)

    Merriche, Abderrzak; Ait Gougam, Leila; Tribeche, Mouloud

    2016-01-01

    The problem of the head-on collision of two ion-acoustic solitary waves (IASWs) is addressed in electronegative plasmas with a nonextensive electron velocity distribution. Our plasma model is inspired from the experimental studies of Ichiki et al. (2001). Using the extended Poincare-Lighthill-Kuo (PLK) perturbation method, the phase shifts of the head-on collision are obtained. Analytical and numerical results reveal that the magnitude of the phase shift of the IASWs depends sensitively on the number density ratios μ and υ, the mass ratio σ as well as the nonextensive parameter q. For a given mass ratio σ ≃ 0.27 (Ar+ - SF6-), the magnitude of the phase shift increases with an increase of the nonextensive parameter q. An increase of the electron-to-positive ion density ratio μ lowers the phase shift, a trend which is much perceptible for q > 1. As σ increases [ σ ≃ 0.89 (Xe+ - SF6-) ], the phase shift becomes larger.

  8. Acoustic scattering from an infinitely long cylindrical shell with an internal mass attached by multiple axisymmetrically distributed stiffeners

    CERN Document Server

    Titovich, Alexey S

    2014-01-01

    A thin infinitely long elastic shell is stiffened by $J$ in number identical lengthwise ribs distributed uniformly around the circumference and joined to a rod in the center. The 2D model of the substructure is a rigid central mass supported by $J$ axisymmetrically placed linear springs. The response of the shell-spring-mass system is quite different from a fluid filled shell or that of a solid cylinder due to the discrete number of contact points which couple the displacement of the shell at different locations. Exterior acoustic scattering due to normal plane wave incidence is solved in closed form for arbitrary $J$. The scattering matrix associated with the normal mode solution displays a simple structure, composed of distinct sub-matrices which decouple the incident and scattered fields into $J$ families. The presence of a springs-mass substructure causes resonances which are shown to be related to the subsonic shell flexural waves, and an approximate analytic expression is derived for the quasi-flexural ...

  9. A note on the cylindrical solitary waves in an electron-acoustic plasma with vortex electron distribution

    Energy Technology Data Exchange (ETDEWEB)

    Demiray, Hilmi, E-mail: demiray@isikun.edu.tr [Department of Mathematics, Faculty of Arts and Sciences, Işık University, 34980 Şile-İstanbul (Turkey); Bayındır, Cihan, E-mail: cihan.bayindir@isikun.edu.tr [Department of Civil Engineering, Faculty of Engineering, Işık University, 34980 Şile-İstanbul (Turkey)

    2015-09-15

    In the present work, we consider the propagation of nonlinear electron-acoustic non-planar waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical coordinates through the use reductive perturbation method in the long-wave approximation. The modified cylindrical Korteweg-de Vries equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, which is fractional, this evolution equation cannot be reduced to the conventional Korteweg–de Vries equation. An analytical solution to the evolution equation, by use of the method developed by Demiray [Appl. Math. Comput. 132, 643 (2002); Comput. Math. Appl. 60, 1747 (2010)] and a numerical solution by employing a spectral scheme are presented and the results are depicted in a figure. The numerical results reveal that both solutions are in good agreement.

  10. A note on the cylindrical solitary waves in an electron-acoustic plasma with vortex electron distribution

    International Nuclear Information System (INIS)

    In the present work, we consider the propagation of nonlinear electron-acoustic non-planar waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical coordinates through the use reductive perturbation method in the long-wave approximation. The modified cylindrical Korteweg-de Vries equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, which is fractional, this evolution equation cannot be reduced to the conventional Korteweg–de Vries equation. An analytical solution to the evolution equation, by use of the method developed by Demiray [Appl. Math. Comput. 132, 643 (2002); Comput. Math. Appl. 60, 1747 (2010)] and a numerical solution by employing a spectral scheme are presented and the results are depicted in a figure. The numerical results reveal that both solutions are in good agreement

  11. Ion-Acoustic Vortices in Two-Electron-Temperature Magnetoplasma with Cairn's Distributed Electrons and in the Presence of Ion Shear Flow

    Science.gov (United States)

    Haque, Q.; Mirza, Arshad M.; Iqbal, Javed

    2016-04-01

    Linear and nonlinear characteristics of electrostatic waves in a multicomponent magnetoplasma comprising of Boltzmann distributed electrons, Cairn's distributed hot electrons, and cold dynamic ions are studied. It is found that the effect of superthermal electrons, ion-neutral collisions, and ion shear flow modifies the propagation of ion-acoustic and drift waves. The growth rate of the ion shear flow instability varies with the addition of Cairn's distributed hot electrons. It is also investigated that the behavior of different type of vortices changes with the inclusion of superthermal hot electrons. The relevance of this investigation in space plasmas such as in auroral region and geomagnetic tail is also pointed out.

  12. Electrochemical 'bubble swarm' enhancement of ultrasonic surface cleaning.

    Science.gov (United States)

    Birkin, P R; Offin, D G; Vian, C J B; Leighton, T G

    2015-09-01

    An investigation of surface cleaning using a swarm of gas bubbles within an acoustically activated stream is presented. Electrolysis of water at Pt microwires (100 μm diameter) to produce both hydrogen and oxygen bubbles is shown to enhance the extent of ultrasonic surface cleaning in a free flowing water stream containing an electrolyte (0.1 M Na2SO4) and low surfactant concentration (2 mM SDS). The surfactant was employed to allow control of the average size of the bubble population within the swarm. The electrochemical bubble swarm (EBS) is shown to perturb acoustic transmission through the stream. To optimise the cleaning process both the ultrasonic field and the electrochemical current are pulsed and synchronized but with different duty cycles. Cleaning action is demonstrated on structured surfaces (porcine skin and finger mimics) loaded with fluorescent particles. This action is shown to be significantly enhanced compared to that found with an inherent bubble population produced by the flow and acoustic regime alone under the same conditions. PMID:26234563

  13. The effect of viscosity, applied frequency and driven pressure on the laser induced bubble luminescence in water-sulfuric acid mixtures

    Science.gov (United States)

    Sadighi-Bonabi, Rasoul; Alijan Farzad Lahiji, Faezeh; Razeghi, Fatemeh

    2016-06-01

    Production and oscillation of sonoluminescence bubbles by laser pulse in the presence of acoustic field in water and different concentrations of sulfuric acid are investigated. In the presence of acoustic field, the laser causes variable speed of sound, surface tension and density; and the host liquid acts as a compressible one and strongly affects the bubble's dynamics equations. The effect of various concentrations of sulfuric acid as a host liquid on the oscillation of bubble radius, bubble wall velocity and bubble interior temperature is studied. Furthermore, the effect of applied frequency on LI-SCBL in the presence of the acoustic field is investigated and an optimum sound wave frequency for the bubble oscillation and bubble interior temperature in pure water and SA is introduced. Based on the modification of RP equation, by applying the optimum frequency, the results indicate that the maximum bubble radius for LI-SCBL in the presence of the acoustic field is increased up to 7 ×10-4 m as this article presents, which is more than 40% improvement. This amount results in interior temperature of more than three times, from almost 5000 K in the previous works to almost 16 000 K in the present report. This is very similar to the experimental measurements for bubble radius induced by laser. Furthermore, the effects of driving pressure amplitudes on the bubble radius, the bubble interior temperature and the bubble wall velocity in different host liquids and in optimum frequency are investigated.

  14. Metal mixing by buoyant bubbles in galaxy clusters

    CERN Document Server

    Roediger, E; Rebusco, P; Böhringer, H; Churazov, E

    2006-01-01

    Using a series of three-dimensional, hydrodynamic simulations on an adaptive grid, we have performed a systematic study on the effect of bubble-induced motions on metallicity profiles in clusters of galaxies. In particular, we have studied the dependence on the bubble size and position, the recurrence times of the bubbles, the way these bubbles are inflated and the underlying cluster profile. We find that in hydrostatic cluster models, the resulting metal distribution is very elongated along the direction of the bubbles. Anisotropies in the cluster or ambient motions are needed if the metal distribution is to be spherical. In order to parametrise the metal transport by bubbles, we compute effective diffusion coefficients. The diffusion coefficients inferred from our simple experiments lie at values of around $\\sim 10^{29}$ cm$^2$s$^{-1}$ at a radius of 10 kpc. The runs modelled on the Perseus cluster yield diffusion coefficients that agree very well with those inferred from observations.

  15. Understanding the bubbles

    DEFF Research Database (Denmark)

    Turcan, Romeo V.

    prospects of a new venture and intended outcomes of that new venture; the higher the residue, the higher the likelihood of the bubble emergence; as residue increases, the likelihood of bubble burst increases. One question that arises is whether one can manage the hype, hence the residue. In this, it is...

  16. Tribonucleation of bubbles

    NARCIS (Netherlands)

    Wildeman, Sander; Lhuissier, Henri; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea

    2014-01-01

    We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rub

  17. Bubbles in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Lin, Jun;

    2015-01-01

    Strain-induced deformations in graphene are predicted to give rise to large pseudomagnetic fields. We examine theoretically the case of gas-inflated bubbles to determine whether signatures of such fields are present in the local density of states. Sharp-edged bubbles are found to induce Friedel...

  18. Characterization of mechanical properties of hybrid contrast agents by combining atomic force microscopy with acoustic/optic assessments.

    Science.gov (United States)

    Guo, Gepu; Tu, Juan; Guo, Xiasheng; Huang, Pintong; Wu, Junru; Zhang, Dong

    2016-02-01

    Multi-parameter fitting algorithms, which are currently used for the characterization of coated-bubbles, inevitably introduce uncertainty into the results. Therefore, a better technique that can accurately determine the microbubbles׳ mechanical properties is urgently needed. A comprehensive technology combining atomic force microscopy, optical, and acoustic measurements with simulations of coated-bubble dynamics was developed. Using this technique, the mechanical parameters (size distribution, shell thickness, elasticity, and viscosity) of hybrid (ultrasound/magnetic-resonance-imaging) contrast microbubbles and their structure-property relationship were determined. The measurements indicate that when more superparamagnetic iron oxide nanoparticles are embedded in the microbubbles׳ shells, their mean diameter and effective viscosity increase, and their elastic modulus decreases. This reduces the microbubbles׳ resonance frequency and thus enhances acoustic scattering and attenuation effects. PMID:26726783

  19. Cloud cavitation induced by shock-bubble interaction in a viscoelastic solid

    Science.gov (United States)

    Oguri, Ryota; Ando, Keita

    2015-12-01

    We experimentally study a shock-bubble interaction problem in a viscoelastic solid, which is relevant to shock wave lithotripsy. A gas bubble is produced by focusing an infrared laser pulse into gelatin. A spherical shock is then created, through rapid expansion of plasma that results from the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gelatin under tension that results from acoustic impedance mismatching at the bubble wall. Namely, the shock reflects at the bubble interface as a rarefaction wave, which induces the nucleation of cavitation bubbles as a result of rupturing the gelatin.

  20. Impact of chevron spacing and asymmetric distribution on supersonic jet acoustics and flow

    Science.gov (United States)

    Heeb, N.; Gutmark, E.; Kailasanath, K.

    2016-05-01

    An experimental investigation into the effect of chevron spacing and distribution on supersonic jets was performed. Cross-stream and streamwise particle imaging velocimetry measurements were used to relate flow field modification to sound field changes measured by far-field microphones in the overexpanded, ideally expanded, and underexpanded regimes. Drastic modification of the jet cross-section was achieved by the investigated configurations, with both elliptic and triangular shapes attained downstream. Consequently, screech was nearly eliminated with reductions in the range of 10-25 dB depending on the operating condition. Analysis of the streamwise velocity indicated that both the mean shock spacing and strength were reduced resulting in an increase in the broadband shock associated noise spectral peak frequency and a reduction in the amplitude, respectively. Maximum broadband shock associated noise amplitude reductions were in the 5-7 dB range. Chevron proximity was found to be the primary driver of peak vorticity production, though persistence followed the opposite trend. The integrated streamwise vorticity modulus was found to be correlated with peak large scale turbulent mixing noise reduction, though optimal overall sound pressure level reductions did not necessarily follow due to the shock/fine scale mixing noise sources. Optimal large scale mixing noise reductions were in the 5-6 dB range.

  1. Nucleus factory on cavitation bubble for amyloid β fibril

    Science.gov (United States)

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-02-01

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability.

  2. 多级鼓泡塔内液体速度分布的实验研究%Experimental study on liquid velocity distribution in multi-stage bubble column

    Institute of Scientific and Technical Information of China (English)

    樊亚超; 靳海波; 秦岭; 杨索和; 何广湘

    2011-01-01

    液体循环流动是多级鼓泡塔重要流体力学特征之一,文中在内径为282 mm,高2000 mm的鼓泡塔内,采用不同类型的筛板将普通鼓泡塔分割成双级气液鼓泡塔.采用Pavlov管测液速的方法考察了不同筛板、不同表观气速下该鼓泡塔中上下二侧的液体速度分布.根据实验结果得出了液体速度在塔中心处最大,且与表观气速有关,随着表观气速的增大而增大;气液鼓泡塔内液速分布呈半抛物线状,在量纲一径向位置0.7左右处,液体速度方向发生改变;加入筛板后,径向速度区发生改变,转折点的位置与筛板的类型有关;同时筛板的加入对鼓泡塔的湍流会有一定程度的抑制,筛板对鼓泡塔上侧液速径向分布的影响明显大于对鼓泡塔下侧液速径向分布的影响.%The characteristic of liquid circulation flow is an important feature of hydrodynamics in multi-stage bubble columns. A bubble column of 282 mm in diameter and 2000 mm in height was selected, and various kinds of sieve plates were introduced to divide a conventional gas-liquid column into a two-stage gas-liquid bubble column. The effects of sieve plate and superficial gas velocity on the liquid velocity distribution in the upper and the lower of the multi-stage gas-liquid bubble column were studied by the method of Pavlov tube. The experimental results show that the maximum liquid velocity appears in the center of the bubble column, and increases with an increase of superficial gas velocity. The curves of liquid velocity distribution are half-parabolic in a gas-liquid bubble column, and liquid velocity direction is changed at around 0. 7 of dimensional-one radial direction. Meanwhile, the introduction of sieve plate suppresses the liquid turbulent flow, and affects the inversion point of liquid velocity. Moreover, the value of inversion point changes with the difference of sieve plate structure. The radial distribution of liquid velocity on the

  3. Bubble oscillations and motion under vibration

    CERN Document Server

    O'Hern, Tim; Torczynski, John

    2011-01-01

    Bubbles under vibration can behave in unusual ways, e.g., moving downward against the force of buoyancy. While the bubble downward motion due to the Bjerknes force is well known at acoustic frequencies close to the bubble resonant frequency, these experiments demonstrate that these effects can be observed at relatively low frequencies as well. Experiments were performed in a thin, quasi-two-dimensional rectangular acrylic box partially filled with 20-cSt PDMS silicone oil with overlying ambient air. The apparatus was subjected to sinusoidal axial vibration that produced breakup of the gas-liquid free surface, producing liquid jets into the air, droplets pinching off from these jets, gas cavities in the liquid from impacts of these droplets, and bubble transport below the interface. Vibration conditions for the attached videos are 280 Hz frequency, 15 g acceleration, and 94 micron peak-to-peak displacement. Behaviors shown in the videos include the following. 1. Free surface breakup into jets and droplets, and...

  4. Calculus of the uncertainty in acoustic field measurements: comparative study between the uncertainty propagation method and the distribution propagation method

    OpenAIRE

    Navacerrada Saturio, Maria Angeles; Díaz Sanchidrián, César; Pedrero González, Antonio; Iglesias Martínez, Luis

    2008-01-01

    The new Spanish Regulation in Building Acoustic establishes values and limits for the different acoustic magnitudes whose fulfillment can be verify by means field measurements. In this sense, an essential aspect of a field measurement is to give the measured magnitude and the uncertainty associated to such a magnitude. In the calculus of the uncertainty it is very usual to follow the uncertainty propagation method as described in the Guide to the expression of Uncertainty in Measurements (GUM...

  5. Using a fibre-optic cable as Distributed Acoustic Sensor for Vertical Seismic Profiling - Overview of various field tests

    Science.gov (United States)

    Götz, Julia; Lüth, Stefan; Henninges, Jan; Reinsch, Thomas

    2015-04-01

    Fibre-optic Distributed Acoustic Sensing (DAS) or Distributed Vibration Sensing (DVS) is a technology, where an optical fibre cable is used as a sensor for acoustic signals. An ambient seismic wavefield, which is coupled by friction or pressure to the optical fibre, induces dynamic strain changes along the cable. The DAS/DVS technology offers the possibility to record an optoelectronic signal which is linearly related to the time dependent local strain. The DAS/DVS technology is based on the established technique of phase-sensitive optical time-domain reflectometry (phi-OTDR). Coherent laser pulses are launched into the fibre to monitor changes in the resulting elastic Rayleigh backscatter with time. Dynamic strain changes lead to small displacements of the scattering elements (non-uniformities within the glass structure of the optical fibre), and therefore to variations of the relative phases of the backscattered photons. The fibre behaves as a series of interferometers whose output is sensitive to small changes of the strain at any point along its length. To record the ground motion not only in space but also in time, snapshots of the wavefield are created by repeatedly firing laser pulses into the fibre at sampling frequencies much higher than seismic frequencies. DAS/DVS is used e.g. for continuous monitoring of pipelines, roads or borders and for production monitoring from within the wellbore. Within the last years, the DAS/DVS technology was further developed to record seismic data. We focus on the recording of Vertical Seismic Profiling (VSP) data with DAS/DVS and present an overview of various field tests published between 2011 and 2014. Here, especially CO2 storage pilot sites provided the opportunity to test this new technology for geophysical reservoir monitoring. DAS/DVS-VSP time-lapse measurements have been published for the Quest CO2 storage site in Canada. The DAS/DVS technology was also tested at the CO2 storage sites in Rousse (France), Citronelle

  6. Modeling the dynamics of single-bubble sonoluminescence

    CERN Document Server

    Vignoli, Lucas L; Thomé, Roberto C A; Nogueira, A L M A; Paschoal, Ricardo C; Rodrigues, Hilario

    2014-01-01

    Sonoluminescence (SL) is the phenomenon in which acoustic energy is (partially) transformed into light. It may occur by means of many or just one bubble of gas inside a liquid medium, giving rise to the terms multi-bubble- and single-bubble sonoluminescence (MBSL and SBSL). In the last years some models have been proposed to explain this phenomenon, but there is still no complete theory for the light emission mechanism (especially in the case of SBSL). In this work, we will not address this more complicated particular issue, but only present a simple model describing the dynamical behaviour of the sonoluminescent bubble, in the SBSL case. Using simple numerical techniques within the software Matlab, we discuss solutions considering various possibilities for some of the parameters involved: liquid compressibility, superficial tension, viscosity, and type of gas. The model may be used as an introductory study of sonoluminescence in physics courses at undergraduate or graduate levels, as well as a quite clarifyi...

  7. On the influence of stochastic pulsations of a bubble on its translational motion

    Science.gov (United States)

    Melnikov, N. P.

    2016-06-01

    This communication is devoted to theoretical analysis of the dynamics of a solitary cavitation bubble pulsating in a compressible viscous liquid under the action of a nonuniform acoustic field. The system of two nonlinear ordinary second-order differential equations is integrated numerically. In the range of acoustic field parameters corresponding to the principal resonance region, the bubble performs large-scale spatial oscillations. It is shown that in a very small range of initial radii, the bubble stops its oscillatory motion due to stochastic pulsations and is expelled into the region of the acoustic-pressure block. Therefore, stochastic pulsations of the bubble radically change the form of the solution to the system of the above-mentioned equations.

  8. Bubble growth in decompression fields, 2

    International Nuclear Information System (INIS)

    Numerical analysis was performed for the growth of a vapor bubble in decompression fields of uniformly superheated water. The numerical solution obtained for the bubble growth was compared with experimental data reported in the 1st report. Bubble growth rates calculated were somewhat lower than the experimental data. The present solution was, however, shown to compare more favorably with the experimental bubble growth curves than the previous analytical solutions reported in the 1st report. In addition, existing solutions by other researchers provided that the sphericity correction factor was in agreement. Of course, the previous solutions with the correction factor of π/2 were the best-estimated solutions as reported in 1st report. Transient temperature distributions across the thermal boundary layer surrounding the bubble interface were also analyzed. It was found that, during the very short duration of the earlier bubble growth, the thermal boundary layer developed fully and the interfacial temperature approached that of saturation corresponding to the decompressed liquid pressure. (author)

  9. Rotating bubble membrane radiator

    Science.gov (United States)

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  10. Voronoi analysis of bubbly flows via ultrafast X-ray tomographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Yuk Man; Mueller, Karolin; Azizi, Salar; Schubert, Markus [Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Fluid Dynamics, Dresden (Germany)

    2016-03-15

    Although clustering of bubbles plays a significant role in bubble column reactors regarding the heat and mass transfer due to bubble-bubble and flow field interactions, it has yet to be fully understood. Contrary to flows in bubble columns, most literature studies on clustering report numerical and experimental results on dilute or micro-bubbly flows. In this paper, clustering of bubbles in a cylindrical bubble column of 100 mm diameter is experimentally investigated. Ultrafast X-ray tomographic imaging is used to obtain the bubble positions within a hybrid Eulerian framework. By means of Voronoi analysis, the clustering behavior of bubbles is investigated. Experiments are performed with different superficial gas velocities, where Voronoi diagrams are constructed at several column heights. From the PDFs of the Voronoi diagrams, it is shown that the bubble structuring in terms of Voronoi cell volumes develops slower than the bubble size distribution. The latter reaches a steady state earlier with increasing column height. The measured PDFs are compared with the PDF of randomly distributed points, which showed that the amount of bubbles as part of clusters (Voronoi cells < V/ anti V{sub cluster}) as well as bubbles as part of voids (Voronoi cells > V/ anti V{sub void}) increases with the superficial gas velocity. It is found that all experiments have an approximate cluster limit V/ anti V{sub cluster} of 0.63, while the void limit V/ anti V{sub void} varies between 1.5 and 3.0. (orig.)

  11. Rapid vapor bubble growth during decompression of superheated water

    International Nuclear Information System (INIS)

    Both analytical and experimental investigations are performed for vapor bubble growth in a uniformly superheated water under rapid decompression. Numerical and analytical solutions are obtained by solving a complete set of governing equations for bubble growth, and compared with experimental data obtained in the present experiment and previously by Toda and Kitamura. Bubble growth rates calculated numerically are lower than the experimental data, however, they approach more favorably our experimental data than the analytical solutions without the added correction factor given by Toda and Kitamura. Their solutions with the correction factor of π/2 are the best-fit solutions reported thus far. Available solutions by other researchers are found to underpredict bubble growth rates. Transient temperature distributions across the thermal boundary layer on the bubble interface are also estimsted. It is found that for initial periods thermal boundary layer fully develops and the bubble interface temperature approaches that of saturation corresponding to decompressed liquid pressure. (author)

  12. Experimental investigation on bubble characteristics entrained by surface vortex

    International Nuclear Information System (INIS)

    The cover gas entrainment at the free surface of sodium coolant becomes one of the significant issues according to the compact sizing of reactor vessel in the latest reactor design. In the present study, some basic experiments for the gas entrainment due to the surface vortex were performed in order to obtain the fundamental knowledge about the entrained bubble size. Distributions of entrained bubble diameters in several experimental conditions were obtained from bubble images using an image processing technique. Velocity fields around vortices and surface dimple shapes (gas cores) due to surface vortices were measured to grasp those influences on bubble shapes. The result showed that mean equivalent diameters of bubbles were varied from 1.3 to 2.1 mm in the range of present experimental conditions. The bubble sizes were influenced by the thickness of gas core.

  13. Bubble Collision in Curved Spacetime

    International Nuclear Information System (INIS)

    We study vacuum bubble collisions in curved spacetime, in which vacuum bubbles were nucleated in the initial metastable vacuum state by quantum tunneling. The bubbles materialize randomly at different times and then start to grow. It is known that the percolation by true vacuum bubbles is not possible due to the exponential expansion of the space among the bubbles. In this paper, we consider two bubbles of the same size with a preferred axis and assume that two bubbles form very near each other to collide. The two bubbles have the same field value. When the bubbles collide, the collided region oscillates back-and-forth and then the collided region eventually decays and disappears. We discuss radiation and gravitational wave resulting from the collision of two bubbles

  14. Liquid-bubble Interaction under Surf Zone Breaking Waves

    Science.gov (United States)

    Derakhti, M.; Kirby, J. T., Jr.

    2014-12-01

    Liquid-bubble interaction, especially in complex two-phase bubbly flow under breaking waves, is still poorly understood. Derakhti and Kirby (2014a,b) have recently studied bubble entrainment and turbulence modulation by dispersed bubbles under isolated unsteady breaking waves along with extensive model verifications and convergence tests. In this presentation, we continue this examination with attention turned to the simulation of periodic surf zone breaking waves. In addition, the relative importance of preferential accumulation of dispersed bubbles in coherent vortex cores is investigated. Heavier-than-liquid particles, i.e. sediment, tend to accumulate in regions of high strain rate and avoid regions of intense vorticity. In contrast, lighter-than-liquid particles such as bubbles tend to congregate in vortical regions. We perform a three dimensional (3D) large-eddy simulation (LES) using a Navier-Stokes solver extended to incorporate entrained bubble populations, using an Eulerian-Eulerian formulation for the polydisperse bubble phase. The volume of fluid (VOF) method is used for free surface tracking. The model accounts for momentum exchange between dispersed bubbles and liquid phase as well as bubble-induced dissipation. We investigate the formation and evolution of breaking-induced turbulent coherent structures (BTCS) under both plunging and spilling periodic breaking waves as well as BTCS's role on the intermittent 3D distributions of bubble void fraction in the surf zone. We particularly examine the correlation between bubble void fractions and Q-criterion values to quantify this interaction. Also, the vertical transport of dispersed bubbles by downburst type coherent structures in the transition region is compared to that by obliquely descending eddies. All the results are summarized at different zones from outer to inner surf zone.

  15. Acoustic survey for marine mammal occurrence and distribution off East Antarctica (30-80°E) in January-February 2006

    Science.gov (United States)

    Gedamke, Jason; Robinson, Sarah M.

    2010-05-01

    A large scale, systematic, acoustic survey for whales and seals in eastern Antarctic waters was conducted in January-February 2006. During the BROKE-West survey of Southern Ocean waters between 30 and 80° E longitude, an acoustic survey was conducted to complement a traditional visual survey for marine mammal occurrence and distribution. As part of the survey, 145 DIFAR sonobuoys were deployed every 30' of latitude on north-south transects, and prior to CTD stations on the initial east-west transect. Underwater sound was analyzed for 70 minute samples from each sonobuoy. Blue whales were the most commonly recorded species, identified at 55 of the sonobuoy deployment sites. Other species recorded include: sperm (46 sites), fin (14), humpback (2), and sei (3) whales, and leopard (11) and Ross (17) seals. Large numbers of blue and sperm whales, and all Ross seals were detected on the westernmost two transects, which were the only transects of the survey with relatively extensive sea ice remaining off the continental shelf. Large numbers of blue whales were also detected in the more eastern waters of the survey off the Prydz Bay region, while two detections of pygmy blue whales represent the farthest south these whales have been recorded. Of the relatively few fin whale detections, most occurred in more northerly waters. Fin whale vocalizations from this region were distinctly different than those recorded elsewhere around Antarctica suggesting acoustic recordings may be useful to delineate regional or stock boundaries of this species. Previously undescribed sounds were attributed to Ross seals. Acoustic detections of these and leopard seal sounds indicate these animals venture further from their traditionally described distributions, with vocalizing leopard seals occurring much further north than might be expected. Overall, the results of the sonobuoy survey provide a measure of each species' relative spatial distribution over the survey area based on acoustic

  16. Planar dust-acoustic waves in electron-positron-ion-dust plasmas with dust-size distribution under higher-order transverse perturbations

    International Nuclear Information System (INIS)

    Propagation of small but finite nonlinear dust-acoustic solitary waves are investigated in a planar unmagnetized dusty plasma, which consists of electrons, positrons, ions and negatively charged dust particles with different sizes and masses. A Kadomtsev-Petviashvili (KP) equation is obtained by using reductive perturbation method. The effect of positron density and positron- electron temperature ratio on dust-acoustic solitary structures are studied. Numerical results show that the increase in positron number density increases the amplitude of hump-like solitons but decreases the dip-like solitary waves. Furthermore, increase in the positron-electron temperature ratio results in the decrease of the amplitude of dip-like solitary waves. It seems that both the dip and hump-like solitary waves can exist in this system. Our results also suggest that the dust-size distribution has a significant role on the amplitude of the solitary waves. (author)

  17. Effect of nonthermal distributed electrons and temperature on phase shifts during the collision of inward and outward ion-acoustic solitary waves in nonplanar geometry

    Indian Academy of Sciences (India)

    Uday Narayan Ghosh; Prasantha Chatterjee; Deb Kumar Ghosh

    2013-10-01

    Interaction of nonplanar ion-acoustic solitary waves is an important source of information for studying the nature and characteristics of ion-acoustic solitary waves (IASWs). The head-on collision between two cylindrical/spherical IASWs in un-magnetized plasmas comprising of nonthermal distributed electrons and warm ions is investigated using the extended version of Poincaré–Lighthill–Kuo (PLK) perturbation method. How the interactions are taking place in cylindrical and spherical geometries are shown numerically. Analytical phase shifts are derived for nonplanar geometry. The effects of the ion to electron temperature parameter and the nonthermal electrons parameter on the phase shift are studied. It is shown that the properties of the interaction of IASWs in different geometries are very different.

  18. Planar dust-acoustic waves in electron–positron–ion–dust plasmas with dust-size distribution under higher-order transverse perturbations

    Indian Academy of Sciences (India)

    Hong-Yan Wang; Kai-Biao Zhang

    2015-01-01

    Propagation of small but finite nonlinear dust-acoustic solitary waves are investigated in a planar unmagnetized dusty plasma, which consists of electrons, positrons, ions and negatively charged dust particles with different sizes and masses. A Kadomtsev–Petviashvili (KP) equation is obtained by using reductive perturbation method. The effect of positron density and positron–electron temperature ratio on dust-acoustic solitary structures are studied. Numerical results show that the increase in positron number density increases the amplitude of hump-like solitons but decreases the dip-like solitary waves. Furthermore, increase in the positron–electron temperature ratio results in the decrease of the amplitude of dip-like solitary waves. It seems that both the dipand hump-like solitary waves can exist in this system. Our results also suggest that the dust-size distribution has a significant role on the amplitude of the solitary waves.

  19. Quantitative calculation of reaction performance in sonochemical reactor by bubble dynamics

    Institute of Scientific and Technical Information of China (English)

    徐峥; 安田启司; 刘晓峻

    2015-01-01

    In order to design a sonochemical reactor with high reaction efficiency, it is important to clarify the size and intensity of the sonochemical reaction field. In this study, the reaction field in a sonochemical reactor is estimated from the distribution of pressure above the threshold for cavitation. The quantitation of hydroxide radical in a sonochemical reactor is obtained from the calculation of bubble dynamics and reaction equations. The distribution of the reaction field of the numerical simulation is consistent with that of the sonochemical luminescence. The sound absorption coefficient of liquid in the sonochemical reactor is much larger than that attributed to classical contributions which are heat conduction and shear viscosity. Under the dual irradiation, the reaction field becomes extensive and intensive because the acoustic pressure amplitude is intensified by the interference of two ultrasonic waves.

  20. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Fumiya; Ando, Keita, E-mail: kando@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, Yokohama 223-8522 (Japan)

    2015-11-15

    Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh–Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh–Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

  1. Detached eddy simulations of Taylor bubbles rising in stagnant liquid columns

    Science.gov (United States)

    Shaban, Hassan; Tavoularis, Stavros

    2015-11-01

    The rise of a single air Taylor bubble in a vertical circular tube filled with stagnant water was investigated numerically using the Volume Of Fluid (VOF) method to model the phase distribution and the Detached Eddy Simulation (DES) method for turbulence modelling. The predictions were in good quantitative agreement with previous experimental results. The simulation results provided insight into bubble shedding in the wake of the Taylor bubble, frictional pressure drop along the tube and scalar dispersion caused by the passage of the Taylor bubble. The interaction between adjacent Taylor bubbles and the process of Taylor bubble coalescence were also examined in detail. Supported by NSERC and UNENE.

  2. Bubble chamber: antiproton annihilation

    CERN Multimedia

    1971-01-01

    These images show real particle tracks from the annihilation of an antiproton in the 80 cm Saclay liquid hydrogen bubble chamber. A negative kaon and a neutral kaon are produced in this process, as well as a positive pion. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  3. A Gold Bubble?

    OpenAIRE

    Dirk G Baur; Kristoffer Glover

    2012-01-01

    In this paper we use a test developed by Phillips et al. (2011) to identify a bubble in the gold market. We find that the price of gold followed an explosive price process between 2002 and 2012 interrupted only briefly by the subprime crisis in 2008. We also provide a theoretical foundation for such bubble tests based on a behavioural model of heterogeneous agents and demonstrate that periods of explosive price behaviour are consistent with increased chartist activity in the gold market. The ...

  4. CONDITIONS FOR BUBBLE FORMATION

    OpenAIRE

    Joffe, M

    2010-01-01

    A bubble is typically defined as ìtrade in high volume at prices that are considerably at variance from intrinsic valueî, which is compatible both with higher or lower prices, whereas the metaphor suggests something asymmetric that gradually inflates rather than deflates. Whether bubbles are symmetric or not is an empirical question; the historical record appears to be that they are asymmetric, but the literature is unclear on this point. In addition, in some types of market such as property,...

  5. Sounds of marine seeps: a study of bubble activity near a rigid boundary.

    Science.gov (United States)

    Maksimov, A O; Burov, B A; Salomatin, A S; Chernykh, D V

    2014-09-01

    A passive acoustic method for detecting environmentally dangerous gas leaks from pipelines and methane naturally leaking from the seabed has been investigated. Gas escape involves the formation and release of bubbles of different sizes. Each bubble emits a sound at a specific frequency. Determination of the bubble radius from the frequency of its signature passive acoustic emission by use of so-called Minnaert formula has a restricted area of applicability near the seabed. The point is that the inertial mass and the damping constant of the birthing bubble are markedly different from those of a free bubble. The theoretical model for the bubble volume oscillations near the seabed has been proposed and an analytical solution has been derived. It was shown that the bispherical coordinates provide separation of variables and are more suitable for analysis of the volume oscillations of these constrained bubbles. Explicit formulas have been derived, which describe the dependence of the bubble emission near a rigid wall on its size and the separation distance between the bubble and the boundary. PMID:25190382

  6. Radio Bubbles in Clusters

    CERN Document Server

    Dunn, R J H; Taylor, G B

    2005-01-01

    We extend our earlier work on cluster cores with distinct radio bubbles, adding more active bubbles, i.e. those with Ghz radio emission, to our sample, and also investigating ``ghost bubbles,'' i.e. those without GHz radio emission. We have determined k, which is the ratio of the total particle energy to that of the electrons radiating between 10 MHz and 10 GHz. Constraints on the ages of the active bubbles confirm that the ratio of the energy factor, k, to the volume filling factor, f lies within the range 1 < k/f < 1000. In the assumption that there is pressure equilibrium between the radio-emitting plasma and the surrounding thermal X-ray gas, none of the radio lobes has equipartition between the relativistic particles and the magnetic field. A Monte-Carlo simulation of the data led to the conclusion that there are not enough bubbles present in the current sample to be able to determine the shape of the population. An analysis of the ghost bubbles in our sample showed that on the whole they have high...

  7. Large-Scale Clustering in Bubble Models

    CERN Document Server

    Borgani, S

    1993-01-01

    We analyze the statistical properties of bubble models for the large-scale distribution of galaxies. To this aim, we realize static simulations, in which galaxies are mostly randomly arranged in the regions surrounding bubbles. As a first test, we realize simulations of the Lick map, by suitably projecting the three-dimensional simulations. In this way, we are able to safely compare the angular correlation function implied by a bubbly geometry to that of the APM sample. We find that several bubble models provide an adequate amount of large-scale correlation, which nicely fits that of APM galaxies. Further, we apply the statistics of the count-in-cell moments to the three-dimensional distribution and compare them with available observational data on variance, skewness and kurtosis. Based on our purely geometrical constructions, we find that a well defined hierarchical scaling of higher order moments up to scales $\\sim 70\\hm$. The overall emerging picture is that the bubbly geometry is well suited to reproduce ...

  8. Cavitation inception by the backscattering of pressure waves from a bubble interface

    Energy Technology Data Exchange (ETDEWEB)

    Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp; Tanaka, Moe [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531 (Japan)

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  9. Study of droplet entrainment from bubbling surface in a bubble column

    International Nuclear Information System (INIS)

    In a bubble column droplets are ejected from the free surface by bubble bursting or splashing. Depending on their size, the droplets are partly carried away by the streaming gas or fall back to the bubbling surface by gravity force. Experiments have been carried out to determine the void fraction in the column by means of an optical probe. In the interfacial zone the bubble bursting process was captured with a high-speed video camera. Simultaneous measurements were made of size and velocity of droplets at several distances from the bubbling surface with a Phase-Doppler Anemometry. The bubble column can be divided into three regions: A lower zone with a flat profile of the local void fraction, a central zone where the flow regime is steady and an upper zone where the local void fraction grows rapidly. A two-parameter log-normal distribution function was proposed in order to describe the polydisperse distribution of droplet-size. Results were obtained concerning the entrainment, concentration, volume fraction and interfacial area of droplets. Finally, it was found that the turbulence intensity affects the droplet terminal velocity for droplets smaller than the Kolmogorov microscale

  10. Alternative ion-acoustic solitary waves in magnetized plasma consisting of warm adiabatic ions and non-thermal electrons having vortex-like velocity distribution: existence and stability

    Science.gov (United States)

    Das, Jayasree; Bandyopadhyay, Anup; Das, K. P.

    2007-12-01

    The solitary structures of the ion-acoustic waves have been considered in a plasma consisting of warm adiabatic ions and non-thermal electrons (due to the presence of fast energetic electrons) having a vortex-like velocity distribution function (due to the presence of trapped electrons), immersed in a uniform (space-independent) and static (time-independent) magnetic field. The nonlinear dynamics of ion-acoustic waves in such a plasma is governed by the Schamel's modified Korteweg-de Vries-Zakharov-Kuznetsov (S-ZK) equation. This equation admits solitary wave solutions having a profile sech4. When the coefficient of the nonlinear term of this equation vanishes, the vortex-like velocity distribution function of electrons simply becomes the non-thermal velocity distribution function of electrons and the nonlinear behaviour of the same ion-acoustic wave is described by a Korteweg-de Vries-Zakharov-Kuznetsov (KdV-ZK) equation. This equation admits solitary wave solutions having a profile sech2. A combined S-KdV-ZK equation more efficiently describes the nonlinear behaviour of an ion-acoustic wave when the vortex-like velocity distribution function of electrons approaches the non-thermal velocity distribution function of electrons, i.e. when the contribution of trapped electrons tends to zero. This combined S-KdV-ZK equation admits an alternative solitary wave solution having a profile different from either sech4 or sech2. The condition for the existence of this alternative solitary wave solution has been derived. It is found that this alternative solitary wave solution approaches the solitary wave solution (the sech2 profile) of the KdV-ZK equation when the contribution of trapped electrons tends to zero. The three-dimensional stability of these solitary waves propagating obliquely to the external uniform and static magnetic field has been investigated by the multiple-scale perturbation expansion method of Allen and Rowlands. The instability condition and the growth

  11. Measurement of the impuslive force generated by colapsing bubble close to a solid boundary

    Directory of Open Access Journals (Sweden)

    Zima Patrik

    2012-04-01

    Full Text Available The article presents experimental results of the acoustical and optical study of cavitation bubble collapse close to a solid boundary in water. The bubble was generated by discharge of low-voltage capacitor into a couple of wires closing a simple circuit. Different distances from the solid wall and different maximum bubble radii were studied. The bubble radius was studied using time-resolved photography and by PVDF film sensor glued on the solid boundary. The illumination was provided by high-power led diode. Synchronization of the system was provided by pulse generator connected to an oscilloscope. The impact power of the bubble to the wall was estimated from the time-resolved photography of the bubble and from the PVDF film sensor signal. The PVDF film sensor calibration was performed by a pendulum test to estimate the impact force.

  12. Bubble migration in a compacting crystal-liquid mush

    Science.gov (United States)

    Boudreau, Alan

    2016-04-01

    Recent theoretical models have suggested that bubbles are unlikely to undergo significant migration in a compaction crystal mush by capillary invasion while the system remains partly molten. To test this, experiments of bubble migration during compaction in a crystal-liquid mush were modeled using deformable foam crystals in corn syrup in a volumetric burette, compacted with rods of varying weights. A bubble source was provided by sodium bicarbonate (Alka-Seltzer®). Large bubbles (>several crystal sizes) are pinched by the compacting matrix and become overpressured and deformed as the bubbles experience a load change from hydrostatic to lithostatic. Once they begin to move, they move much faster than the compaction-driven liquid. Bubbles that are about the same size as the crystals but larger than the narrower pore throats move by deformation or breaking into smaller bubbles as they are forced through pore restrictions. Bubbles that are less than the typical pore diameter generally move with the liquid: The liquid + bubble mixture behaves as a single phase with a lower density than the bubble-free liquid, and as a consequence it rises faster than bubble-free liquid and allows for faster compaction. The overpressure required to force a bubble through the matrix (max grain size = 5 mm) is modest, about 5 %, and it is estimated that for a grain size of 1 mm, the required overpressure would be about 25 %. Using apatite distribution in a Stillwater olivine gabbro as an analog for bubble nucleation and growth, it is suggested that relatively large bubbles initially nucleate and grow in liquid-rich channels that develop late in the compaction history. Overpressure from compaction allows bubbles to rise higher into hotter parts of the crystal pile, where they redissolve and increase the volatile content of the liquid over what it would have without the bubble migration, leading to progressively earlier vapor saturation during crystallization of the interstitial liquid

  13. Controlled Acoustic Bass System (CABS) A Method to Achieve Uniform Sound Field Distribution at Low Frequencies in Rectangular Rooms

    DEFF Research Database (Denmark)

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    2008-01-01

    The sound field produced by loudspeakers at low frequencies in small- and medium-size rectangular listening rooms is highly nonuniform due to the multiple reflections and diffractions of sound on the walls and different objects in the room. A new method, called controlled acoustic bass system (CABS...

  14. Concepts and Development of Bio-Inspired Distributed Embedded Wired/Wireless Sensor Array Architectures for Acoustic Wave Sensing in Integrated Aerospace Vehicles

    Science.gov (United States)

    Ghoshal, Anindya; Prosser, William H.; Kirikera, Goutham; Schulz, Mark J.; Hughes, Derke J.; Orisamolu, Wally

    2003-01-01

    This paper discusses the modeling of acoustic emissions in plate structures and their sensing by embedded or surface bonded piezoelectric sensor arrays. Three different modeling efforts for acoustic emission (AE) wave generation and propagation are discussed briefly along with their advantages and disadvantages. Continuous sensors placed at right angles on a plate are being discussed as a new approach to measure and locate the source of acoustic waves. Evolutionary novel signal processing algorithms and bio-inspired distributed sensor array systems are used on large structures and integrated aerospace vehicles for AE source localization and preliminary results are presented. These systems allow for a great reduction in the amount of data that needs to be processed and also reduce the chances of false alarms from ambient noises. It is envisioned that these biomimetic sensor arrays and signal processing techniques will be useful for both wireless and wired sensor arrays for real time health monitoring of large integrated aerospace vehicles and earth fixed civil structures. The sensor array architectures can also be used with other types of sensors and for other applications.

  15. Quantifying Methane Flux from a Prominent Seafloor Crater with Water Column Imagery Filtering and Bubble Quantification Techniques

    Science.gov (United States)

    Mitchell, G. A.; Gharib, J. J.; Doolittle, D. F.

    2015-12-01

    Methane gas flux from the seafloor to atmosphere is an important variable for global carbon cycle and climate models, yet is poorly constrained. Methodologies used to estimate seafloor gas flux commonly employ a combination of acoustic and optical techniques. These techniques often use hull-mounted multibeam echosounders (MBES) to quickly ensonify large volumes of the water column for acoustic backscatter anomalies indicative of gas bubble plumes. Detection of these water column anomalies with a MBES provides information on the lateral distribution of the plumes, the midwater dimensions of the plumes, and their positions on the seafloor. Seafloor plume locations are targeted for visual investigations using a remotely operated vehicle (ROV) to determine bubble emission rates, venting behaviors, bubble sizes, and ascent velocities. Once these variables are measured in-situ, an extrapolation of gas flux is made over the survey area using the number of remotely-mapped flares. This methodology was applied to a geophysical survey conducted in 2013 over a large seafloor crater that developed in response to an oil well blowout in 1983 offshore Papua New Guinea. The site was investigated by multibeam and sidescan mapping, sub-bottom profiling, 2-D high-resolution multi-channel seismic reflection, and ROV video and coring operations. Numerous water column plumes were detected in the data suggesting vigorously active vents within and near the seafloor crater (Figure 1). This study uses dual-frequency MBES datasets (Reson 7125, 200/400 kHz) and ROV video imagery of the active hydrocarbon seeps to estimate total gas flux from the crater. Plumes of bubbles were extracted from the water column data using threshold filtering techniques. Analysis of video images of the seep emission sites within the crater provided estimates on bubble size, expulsion frequency, and ascent velocity. The average gas flux characteristics made from ROV video observations is extrapolated over the number

  16. On the maximum drawdown during speculative bubbles

    CERN Document Server

    Rotundo, G; Navarra, Mauro; Rotundo, Giulia

    2006-01-01

    A taxonomy of large financial crashes proposed in the literature locates the burst of speculative bubbles due to endogenous causes in the framework of extreme stock market crashes, defined as falls of market prices that are outlier with respect to the bulk of drawdown price movement distribution. This paper goes on deeper in the analysis providing a further characterization of the rising part of such selected bubbles through the examination of drawdown and maximum drawdown movement of indices prices. The analysis of drawdown duration is also performed and it is the core of the risk measure estimated here.

  17. Molecular dynamics simulations of bubble nucleation in dark matter detectors.

    Science.gov (United States)

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes. PMID:26871185

  18. Nonintrusive Monitoring and Control of Metallurgical Processes by Acoustic Measurements

    Science.gov (United States)

    Yu, Hao-Ling; Khajavi, Leili Tafaghodi; Barati, Mansoor

    2011-06-01

    The feasibility of developing a new online monitoring technique based on the characteristic acoustic response of gas bubbles in a liquid has been investigated. The method is intended to monitor the chemistry of the liquid through its relation to the bubble sound frequency. A low-temperature model consisting of water and alcohol mixtures was established, and the frequency of bubbles rising under varying concentrations of methanol was measured. It was shown that the frequency of the sound created by bubble pulsation varies with the percentage of alcohol in water. The frequency drops sharply with the increase in methanol content up to 20 wt pct, after which the decreases is gradual. Surface tension seems to be a critical liquid property affecting the sound frequency through its two-fold effects on the bubble size and the pulsation domain. The dependence between the frequency and the liquid composition suggests the feasibility of developing an acoustic-based technique for process control purposes.

  19. Colliding with a crunching bubble

    Energy Technology Data Exchange (ETDEWEB)

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  20. Fermi Bubbles with HAWC

    CERN Document Server

    Solares, H A Ayala; Hüntemeyer, P

    2015-01-01

    The Fermi Bubbles, which comprise two large and homogeneous regions of spectrally hard gamma-ray emission extending up to $55^{o}$ above and below the Galactic Center, were first noticed in GeV gamma-ray data from the Fermi Telescope in 2010. The mechanism or mechanisms which produce the observed hard spectrum are not understood. Although both hadronic and lep- tonic models can describe the spectrum of the bubbles, the leptonic model can also explain similar structures observed in microwave data from the WMAP and Planck satellites. Recent publications show that the spectrum of the Fermi Bubbles is well described by a power law with an exponential cutoff in the energy range of 100MeV to 500GeV. Observing the Fermi Bubbles at higher gamma-ray energies will help constrain the origin of the bubbles. A steeper cutoff will favor a leptonic model. The High Altitude Water Cherenkov (HAWC) Observatory, located 4100m above sea level in Mexico, is designed to measure high-energy gamma rays between 100GeV to 100TeV. With...

  1. Bubbles of Metamorphosis

    Science.gov (United States)

    Prakash, Manu

    2011-11-01

    Metamorphosis presents a puzzling challenge where, triggered by a signal, an organism abruptly transforms its entire shape and form. Here I describe the role of physical fluid dynamic processes during pupal metamorphosis in flies. During early stages of pupation of third instar larvae into adult flies, a physical gas bubble nucleates at a precise temporal and spatial location, as part of the normal developmental program in Diptera. Although its existence has been known for the last 100 years, the origin and control of this ``cavitation'' event has remained completely mysterious. Where does the driving negative pressure for bubble nucleation come from? How is the location of the bubble nucleation site encoded in the pupae? How do molecular processes control such a physical event? What is the role of this bubble during development? Via developing in-vivo imaging techniques, direct bio-physical measurements in live insect pupal structures and physical modeling, here I elucidate the physical mechanism for appearance and disappearance of this bubble and predict the site of nucleation and its exact timing. This new physical insight into the process of metamorphosis also allows us to understand the inherent design of pupal shell architectures in various species of insects. Milton Award, Harvard Society of Fellows; Terman Fellowship, Stanford

  2. Effect of dust size distribution and dust charge fluctuation on dust ion-acoustic shock waves in a multi-ion dusty plasma

    Indian Academy of Sciences (India)

    WANG HONGYAN; ZHANG KAIBIAO

    2016-07-01

    The effects of dust size distribution and dust charge fluctuation of dust grains on the small but finite amplitude nonlinear dust ion-acoustic shock waves, in an unmagnetized multi-ion dusty plasma which contains negative ions, positive ions and electrons, are studied in this paper. A Burgers equation and its stationary solutions are obtained by using the reductive perturbation method. The analytical and numerical results show that the height with polynomial dust size distribution is larger than that of the monosized dusty plasmas with the same dustgrains, but the thickness in the case of different dust grains is smaller than that of the monosized dusty plasmas. Furthermore, the moving speed of the shock waves also depend on different dust size distributions.

  3. Helium ion implantation in zirconium: Bubble formation and growth

    Science.gov (United States)

    Totemeier, Aaron Robert

    To evaluate the behavior of inert helium gas bubbles in zirconium three variants of the metal were implanted with 140 keV helium ions to a total fluence of 3x1017 cm--2 and characterized in cross-section TEM in their as-implanted state as well as during annealing at different temperatures. The three zirconium alloys included high-purity crystal bar material, Zircaloy-4, and a powder-metallurgically extruded material with high carbon and oxygen concentrations. At a sample depth consistent with a helium concentration of approximately 5 atomic percent, a change in the structure of the zirconium was observed a high density region of small (4nm diameter) bubbles formed at concentrations above 10 atom percent. Initial bubble formation and growth was observed to occurred at a temperature between 400-450 °C and these initial bubbles had a unique planar geometry prior to migration and coalescence into more three-dimensional bubbles. These planar bubbles appear to be aligned with major axes parallel to the TEM specimen surface and their formation and growth is possibly due to an increase in the thermal vacancy flux within the zirconium. The observations of bubble response to high temperature annealing suggest that in zirconium, as in other metals, maximum bubble size is weakly dependent on annealing time, whereas the bubble size distribution is strongly dependent on time. Specimens that underwent a prolonged room temperature aging developed a multimodal bubble size distribution within the high density region of small bubbles, concentrated near the highest helium concentration depth.

  4. Extension of the inhomogeneous MUSIG model for bubble condensation

    International Nuclear Information System (INIS)

    Highlights: ► The inhomogenous MUSIG model allows 3D simulations for poly-dispersed bubbly flows. ► The model is now extended to consider flows with phase transfer. ► Experimental data for the condensation of steam bubbles in sub-cooled vertical pipe flow are used for validation. ► There is a good agreement between experimental data and CFD simulations with the ANSYS-CFX code. - Abstract: Bubble condensation plays an important role, e.g. in sub-cooled boiling or steam injection into pools. Since the condensation rate is proportional to the interfacial area density, bubble size distributions have to be considered in an adequate modeling of the condensation process. The effect of bubble sizes was clearly shown in experimental investigations done previously at the TOPFLOW facility of FZD. Steam bubbles were injected into a sub-cooled upward pipe flow via orifices in the pipe wall located at different distances from measuring plane. 1 mm and 4 mm injection orifices were used to vary the initial bubble size distribution. Measurements were done using a wire-mesh sensor. Condensation is clearly faster in case of the injection via the smaller orifices, i.e. in case of smaller bubble sizes. Recently the Inhomogeneous MUSIG model was implemented into the CFD code CFX from ANSYS enabling the simulation of poly-dispersed flows including the effects of separation of small and large bubbles due to bubble size dependent lift force inversion. It allows to divide the dispersed phase into size classes regarding the mass as well as regarding the momentum balance. Up to now transfers between the classes in the mass balance can be considered only by bubble coalescence and breakup (population balance). Here an extension of the model is proposed to include the effects due to phase transfer. The paper focuses on the derivation of equations for the extension of the Inhomogeneous MUSIG model and presents some first results for verification and validation.

  5. Optical sensing for characterization of bubble plumes from methane seeps

    Science.gov (United States)

    Pizarro, O.; Camilli, R.; Whelan, J.

    2004-12-01

    Methane seeps are potentially a key contributor to atmospheric methane and to the global greenhouse gas budget. Improved estimates of methane flux from ocean floor seeps is required to understand the magnitude and characteristics of this contribution to the carbon cycle. % State of the art In steady, slow seeps a large portion of the gas is dissolved and oxidized before reaching the surface. However, in high-intensity methane seeps the bubble density, speed and size are such that a significant fraction of the gas can reach the atmosphere. Dissolved methane can be measured fairly reliably at the sea surface with traditional equilibration techniques. New types of in-situ chemical sensors can quantify dissolved methane deeper in the water column. Quantifying methane within the water column in the free gas phase (i.e., in the form of bubbles) remains a challenging problem. Current approaches rely either on indirect acoustic methods or direct collection of bubbles. Acoustic methods have the disadvantage of requiring extensive calibration, and can fail to distinguish the bubble signal from other sources of acoustic noise. Gas-capture techniques are mechanically complex, have a surface expression that introduces some noise, and can potentially alias episodic events. %how slow ? In both cases the fine scale structure such as herogeneity of the bubbling plume is lost. % Proposed We propose a vision-based system to detect and track bubble plumes. High speed optical imagery is propenables precise measurements of the motion of bubbles through a process involving identification of the individual bubbles (and rejection of other particles). Additional image processing steps are then used to estimate each bubble's volume and velocity. These are then integrated to produce an estimate of volumetric flux rate. This technique can also reveal fine scale variabilities in the spatial and temporal structure within the plume. %We discuss sensing configurations based on a stereo setup and

  6. MEASUREMENT OF BUBBLE-BUBBLE INTERACTION DEPENDED ON REYNOLDS NUMBER USING STEREOSCOPIC BUBBLE-TRACKING TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    QU Jian-wu; MURAI Yuichi; YAMAMOTO Fujio

    2005-01-01

    Bubble-bubble interaction in free rising bubbly flows is experimentally investigated in the present study.The velocity vectors of the bubbles are measured by a stereoscopic bubble-tracking technique and then the relative velocity vectors of two nearest-neighbor bubbles are calculated with high statistical reliability.With the measurement data at Reynolds number ranging from 5 to 75, the vertical attraction and the horizontal repulsion are confirmed for Re<10 as known by the past study based on Navier-Stokes simulation.The new finding of the present measurement is that the bubbles of Re>30 have repulsive velocity bothin the horizontal and the vertical directions as those rise closely.Moreover, the three-dimensional structure of the bubble-bubble interaction is discussed with the data analysis of the interaction vector fields.

  7. Dynamics and acoustics of a cavitating Venturi flow using a homogeneous air-propylene glycol mixture

    Science.gov (United States)

    Navarrete, M.; Naude, J.; Mendez, F.; Godínez, F. A.

    2015-12-01

    Dynamics and acoustics generated in a cavitating Venturi tube are followed up as a function of the input power of a centrifugal pump. The pump of 5 hp with a modified impeller to produce uniform bubbly flow, pumps 70 liters of propylene glycol in a closed loop (with a water cooling system), in which the Venturi is arranged. The goal was to obtain correlations among acoustical emission, dynamics of the shock waves and the light emission from cavitation bubbles. The instrumentation includes: two piezoelectric transducers, a digital camera, a high-speed video camera, and photomultipliers. As results, we show the cavitation patterns as function of the pump power, and a graphical template of the distribution of the Venturi conditions as a function of the cavitation parameter. Our observations show for the first time the sudden formation of bubble clouds in the straight portion of the pipe after the diverging section of the Venturi. We assume that this is due to pre-existing of nuclei-cloud structures which suddenly grow up by the tensile tails of propagating shock waves (producing a sudden drop in pressure).

  8. Frictional drag reduction in bubbly Couette-Taylor flow

    Science.gov (United States)

    Murai, Yuichi; Oiwa, Hiroshi; Takeda, Yasushi

    2008-03-01

    Frictional drag reduction due to the presence of small bubbles is investigated experimentally using a Couette-Taylor flow system; i.e., shear flow between concentric cylinders. Torque and bubble behavior are measured as a function of Reynolds number up to Re =5000 while air bubbles are injected constantly and rise through an array of vortical cells. Silicone oil is used to avoid the uncertain interfacial property of bubbles and to produce nearly monosized bubble distributions. The effect of drag reduction on sensitivity and power gain are assessed. The sensitivity exceeds unity at Re rotating inner cylinder, which is little affected by turbulence. The power gain, which is defined by the power saving from the drag reduction per the pumping power of bubble injection, has a maximum value of O(10) at higher Re numbers around 2500. An image processing measurement shows this is because of the disappearance of azimuthal waves when the organized bubble distribution transforms from toroidal to spiral modes. Moreover, the axial spacing of bubble clouds expands during the transition, which results in an effective reduction in the momentum exchange.

  9. Analyzing Cosmic Bubble Collisions

    CERN Document Server

    Gobbetti, Roberto

    2012-01-01

    We develop a set of controlled, analytic approximations to study the effects of bubble collisions on cosmology. We expand the initial perturbation to the inflaton field caused by the collision in a general power series, and determine its time evolution during inflation in terms of the coefficients in the expansion. In models where the observer's bubble undergoes sufficient slow-roll inflation to solve the flatness problem, in the thin wall limit only one coefficient in the expansion is relevant to observational cosmology, allowing nearly model-independent predictions. We discuss two approaches to determining the initial perturbation to the inflaton and the implications for the sign of the effect (a hot or cold spot on the Cosmic Microwave Background temperature map). Lastly, we analyze the effects of collisions with thick-wall bubbles, i.e. away from the thin-wall limit.

  10. Pseudo-Stable Bubbles

    CERN Document Server

    Gleiser, Marcello

    1994-01-01

    The evolution of spherically symmetric unstable scalar field configurations (``bubbles'') is examined for both symmetric (SDWP) and asymmetric (ADWP) double-well potentials. Bubbles with initial static energies $E_0\\la E_{{\\rm crit}}$, where $E_{{\\rm crit}}$ is some critical value, shrink in a time scale determined by their linear dimension, or ``radius''. Bubbles with $E_0\\ga E_{{\\rm crit}}$ evolve into time-dependent, localized configurations which are {\\it very} long-lived compared to characteristic time-scales in the models examined. The stability of these configurations is investigated and possible applications are briefly discussed.tic time-scales in the models examined. The stability of these configurations is investigated and possible applications are briefly discussed.

  11. Bubble nuclei; Noyaux Bulles

    Energy Technology Data Exchange (ETDEWEB)

    Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1998-07-22

    For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.

  12. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  13. LET dependence of bubbles evaporation pulses in superheated emulsion detectors

    Energy Technology Data Exchange (ETDEWEB)

    Di Fulvio, Angela; Huang, Jean; Staib, Lawrence [Yale University, Department of Diagnostic Radiology, TAC N140, New Haven, CT 06520-8043 (United States); D’Errico, Francesco [Yale University, Department of Diagnostic Radiology, TAC N140, New Haven, CT 06520-8043 (United States); Scuola di Ingegneria, Universitá di Pisa, Largo Lucio Lazzarino 1, Pisa (Italy)

    2015-06-01

    Superheated emulsion detectors are suspensions of metastable liquid droplets in a compliant inert medium. Upon interaction with ionizing radiation, the droplets evaporate, generating visible bubbles. Bubble expansion associated with the boiling of the droplets is accompanied by pressure pulses in both the sonic and ultrasonic frequency range. In this work, we analyzed the signal generated by bubble evaporation in the frequency and time domain. We used octafluoropropane (R-218) based emulsions, sensitive to both photons and neutrons. The frequency content of the detected pulses appears to extend well into the hundreds of kHz, beyond the range used in commercial devices to count bubbles as they are formed (typically 1–10 kHz). Kilohertz components characterize the early part of the waveforms, potentially containing information about the energetics of the explosive bubble initial growth phase. The power spectral density of the acoustic signal produced by neutron-induced evaporation shows a characteristic frequency pattern in the 200–400 kHz range, which is not observed when bubbles evaporate upon gamma ray-induced irradiation. For practical applications, detection of ultrasonic pulses associated with the boiling of the superheated drops can be exploited as a fast readout method, negligibly affected by mechanical ambient noise.

  14. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  15. On the acoustic properties of vaporized submicron perfluorocarbon droplets.

    Science.gov (United States)

    Reznik, Nikita; Lajoinie, Guillaume; Shpak, Oleksandr; Gelderblom, Erik C; Williams, Ross; de Jong, Nico; Versluis, Michel; Burns, Peter N

    2014-06-01

    The acoustic characteristics of microbubbles created from vaporized submicron perfluorocarbon droplets with fluorosurfactant coating are examined. Utilizing ultra-high-speed optical imaging, the acoustic response of individual microbubbles to low-intensity diagnostic ultrasound was observed on clinically relevant time scales of hundreds of milliseconds after vaporization. It was found that the vaporized droplets oscillate non-linearly and exhibit a resonant bubble size shift and increased damping relative to uncoated gas bubbles due to the presence of coating material. Unlike the commercially available lipid-coated ultrasound contrast agents, which may exhibit compression-only behavior, vaporized droplets may exhibit expansion-dominated oscillations. It was further observed that the non-linearity of the acoustic response of the bubbles was comparable to that of SonoVue microbubbles. These results suggest that vaporized submicron perfluorocarbon droplets possess the acoustic characteristics necessary for their potential use as ultrasound contrast agents in clinical practice. PMID:24462162

  16. Acoustic micronektonic distribution is structured by macroscale oceanographic processes across 20-50°S latitudes in the South-Western Indian Ocean

    Science.gov (United States)

    Béhagle, Nolwenn; Cotté, Cédric; Ryan, Tim E.; Gauthier, Olivier; Roudaut, Gildas; Brehmer, Patrice; Josse, Erwan; Cherel, Yves

    2016-04-01

    Micronekton constitutes the largest unexploited marine biomass worldwide. It is one of the most conspicuous and ecologically important components of the still poorly known mesopelagic ecosystem. Acoustic data were collected from both fishing and research vessels along 18 transects for a total of 47 682 linear kilometers to investigate large-scale distribution of micronekton over a long latitudinal gradient (20-50°S) and two contrasted seasons (summer and winter) in the South-Western Indian Ocean. Acoustic backscatter at 38 kHz was used as a proxy of mid-water organisms' abundance (0-800 m depth). Two consistent features were diel vertical migration of backscatters and vertical distribution of micronekton in three distinct layers, namely the surface (SL), intermediate (IL) and deep (DL) layers. Satellite remote sensing data was used to position oceanic fronts, and hence define water masses, from the tropical to low Antarctic zones. A key finding of this study was the significant correlation observed between abundance and distribution of acoustic backscatter and position relative to these front and water masses. Total backscatter peaked in the subtropical zone, with low abundances in the colder Polar Frontal Zone. The high overall abundances in subtropical waters resulted mainly from high backscatters in the IL and DL that contrasted with low SL values, especially during the day (2-11%). The warmer the waters, the higher SL backscatter was, with the highest absolute and relative (38-51% of the total abundance) values observed at night in the Tropical Zone and the lowest abundance in the Antarctic Zone. No significant seasonal pattern was found, but SL backscatters were very low in winter compared to summer in the Polar Frontal Zone. Moreover, the Northern winter shift of the fronts induced a Northern latitudinal shift of the peak in abundance from summer to winter. The present study highlights the value of building large acoustic databases collected from both

  17. Characterization of Acoustic Droplet Vaporization Using MRI

    Science.gov (United States)

    Li, David; Allen, Steven; Hernandez-Garcia, Luis; Bull, Joseph

    2013-11-01

    Acoustic droplet vaporization (ADV) is the selective vaporization of liquid droplets to form larger gas bubbles. The ADV process is currently being researched for biomedical applications such as gas embolotherapy, drug delivery, and phase-change contrast agents. In this study an albumin encapsulated dodecafluoropentane (DDFP, CAS: 678-26-2) microdroplet suspension was vaporized using a single element focused (f/2, D = 19 mm) 3.5 MHz transducer (Panametrics A321S, Olympus, Waltham, MA). The resulting DDFP bubble clouds were imaged using both bright field microscopy and MRI (Varian 7T, Agilent Technologies Inc., Santa Clara, CA). Field distortions due to DDFP bubble generation were characterized against the bright field images as a function of acoustic power and bubble cloud size. Experimentally a direct correlation between bubble cloud dimensions generated and field distortions seen in the MRI was observed. Additionally, MR velocimetry was used to measure the flow field resulting from ADV. The field distortions due to the bubbles were further characterized by modeling Maxwell's equations using COMSOL (COMSOL Inc., Burlington, MA). The ability to characterize ADV with alternative imaging modalities may prove useful in further development of ADV based biomedical therapies.

  18. Measurements of local interfacial area concentration in two-phase bubbly flow

    International Nuclear Information System (INIS)

    The local interfacial characteristics of an air-water, bubbly upflow in a circular pipe has been investigated experimentally cased on the measurements of a miniature two-sensor resistivity probe. Radial profiles of interfacial area concentration (IAC), together with other structural parameters (void fraction, bubble frequency, bubble velocity and Sauter mean bubble diameter) were simultaneously measured at four axial positions with entrance length (L)-to-internal diameter (D) ratios of 30, 60, 90 and 120. The experiments were carried out under various fixed gas and liquid fluxes, with only the bubble size being changed at the flow entrance. It is found that the phase distribution ana IAC are very sensitive to the variation oi the bubble size and the bubble coalescence effects during the development of bubbly flow. This paper summarizes the experimental results on the associated local interfacial parameters and compares the present data with the existing models used in predicting the IAC. (author)

  19. Acoustic Neuroma

    Science.gov (United States)

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  20. Acoustic Neuroma

    Science.gov (United States)

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  1. Dark Matter Search Results from the PICO-2L C$_3$F$_8$ Bubble Chamber

    CERN Document Server

    Amole, C; Asner, D M; Baxter, D; Behnke, E; Bhattacharjee, P; Borsodi, H; Bou-Cabo, M; Brice, S J; Broemmelsiek, D; Clark, K; Collar, J I; Cooper, P S; Crisler, M; Dahl, C E; Daley, S; Das, M; Debris, F; Dhungana, N; Farine, J; Felis, I; Filgas, R; Fines-Neuschild, M; Girard, F; Giroux, G; Hai, M; Hall, J; Harris, O; Jackson, C M; Jin, M; Krauss, C B; Lafrenière, M; Laurin, M; Lawson, I; Levine, I; Lippincott, W H; Mann, E; Martin, J P; Maurya, D; Mitra, P; Neilson, R; Noble, A J; Plante, A; Podviianiuk, R B; Priya, S; Robinson, A E; Ruschman, M; Scallon, O; Seth, S; Sonnenschein, A; Starinski, N; Štekl, I; Vàzquez-Jaùregui, E; Wells, J; Wichoski, U; Zacek, V; Zhang, J

    2015-01-01

    New data are reported from the operation of a 2-liter C$_3$F$_8$ bubble chamber in the 2100 meter deep SNOLAB underground laboratory, with a total exposure of 211.5 kg-days at four different recoil energy thresholds ranging from 3.2 keV to 8.1 keV. These data show that C3F8 provides excellent electron recoil and alpha rejection capabilities at very low thresholds, including the first observation of a dependence of acoustic signal on alpha energy. Twelve single nuclear recoil event candidates were observed during the run. The candidate events exhibit timing characteristics that are not consistent with the hypothesis of a uniform time distribution, and no evidence for a dark matter signal is claimed. These data provide the most sensitive direct detection constraints on WIMP-proton spin-dependent scattering to date, with significant sensitivity at low WIMP masses for spin-independent WIMP-nucleon scattering.

  2. Dark Matter Search Results from the PICO-2L C3F8 Bubble Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C.; Ardid, M.; Asner, David M.; Baxter, D.; Behnke, E.; Bhattacharjee, P. S.; Borsodi, H.; Bou-Cabo, M.; Brice, S. J.; Broemmelsiek, D.; Clark, K.; Collar, J. I.; Cooper, P. S.; Crisler, M.; Dahl, C. E.; Daley, S.; Das, Madhusmita; Debris, F.; Dhungana, N.; Farine, J.; Felis, I.; Filgas, R.; Fines-Neuschild, M.; Girard, Francoise; Giroux, G.; Hai, M.; Hall, Jeter C.; Harris, O.; Jackson, C. M.; Jin, M.; Krauss, C. B.; Lafreniere, M.; Laurin, M.; Lawson, I.; Levine, I.; Lippincott, W. H.; Mann, E.; Martin, J. P.; Maurya, D.; Mitra, Pitam; Neilson, R.; Noble, A. J.; Plante, A.; Podviianiuk, R. B.; Priya, S.; Robinson, A. E.; Ruschman, M.; Scallon, O.; Seth, S.; Sonnenschein, Andrew; Starinski, N.; Stekl, I.; Vazquez-Jauregui, E.; Wells, J.; Wichoski, U.; Zacek, V.; Zhang, J.

    2015-06-12

    New data are reported from the operation of a 2-liter C3F8 bubble chamber in the 2100 meter deep SNOLAB underground laboratory, with a total exposure of 211.5 kg-days at four different recoil energy thresholds ranging from 3.2 keV to 8.1 keV. These data show that C3F8 provides excellent electron recoil and alpha rejection capabilities at very low thresholds, including the rst observation of a dependence of acoustic signal on alpha energy. Twelve single nuclear recoil event candidates were observed during the run. The candidate events exhibit timing characteristics that are not consistent with the hypothesis of a uniform time distribution, and no evidence for a dark matter signal is claimed. These data provide the most sensitive direct detection constraints on WIMP-proton spin-dependent scattering to date, with signicant sensitivity at low WIMP masses for spin-independent WIMP-nucleon scattering.

  3. Scanning bubble chamber pictures

    CERN Multimedia

    1974-01-01

    These were taken at the 2 m hydrogen bubble chamber. The photo shows an early Shiva system where the pre-measurements needed to qualify the event were done manually (cf photo 7408136X). The scanning tables were located in bld. 12. Gilberte Saulmier sits on foreground, Inge Arents at centre.

  4. Critical scattering by bubbles

    International Nuclear Information System (INIS)

    We apply the complex angular momentum theory to the problem of the critical scattering of light by spherical cavities in the high frequency limit (permittivity greater than the external media) (e.g, air bubble in water) (M.W.O.)

  5. BEBC bubble chamber

    CERN Multimedia

    1972-01-01

    Looking up into the interior of BEBC bubble chamber from the expansion cylinder. At the top of the chamber two fish-eye lenses are installed and three other fish-eye ports are blanked off. In the centre is a heat exchanger.

  6. Condensation of steam bubbles injected into sub-cooled water

    International Nuclear Information System (INIS)

    Bubble condensation plays an important role e.g. in sub-cooled boiling or steam injection into pools. Since the condensation rate is proportional to the interfacial area density, bubble size distributions have to be considered in an adequate modeling of the condensation process. The effect of bubble sizes was clearly shown in experimental investigations done previously at the TOPFLOW facility of FZD. Steam bubbles were injected into a sub-cooled upward pipe flow via orifices in the pipe wall located at different distances from measuring plane. 1 mm and 4 mm injection orifices were used to vary the initial bubble size distribution. Measurements were done using a wire-mesh sensor. Condensation is clearly faster in case of the injection via the smaller orifices, i.e. in case of smaller bubble sizes. In a previous work a simplified test solver, developed especially to test models for vertical pipe flow was used to simulate these effects. Now the results will be transferred to the CFD code CFX from ANSYS. Recently the Inhomogeneous MUSIG model was implemented into the code enabling the simulation of poly-dispersed flows including the effects of separation of small and large bubbles due to bubble size dependent lift force inversion. It allows to divide the dispersed phase into size classes regarding the mass as well as regarding the momentum balance. Up to now transfers between the classes in the mass balance can be considered only by bubble coalescence and breakup (population balance). Now an extension of the model is proposed to include the effects due to phase transfer. The paper focuses on the derivation of equations for the extension of the Inhomogeneous MUSIG model and presents a new experimental setup for the investigation on steam bubble condensation. (author)

  7. Bubble reconstruction method for wire-mesh sensors measurements

    Science.gov (United States)

    Mukin, Roman V.

    2016-08-01

    A new algorithm is presented for post-processing of void fraction measurements with wire-mesh sensors, particularly for identifying and reconstructing bubble surfaces in a two-phase flow. This method is a combination of the bubble recognition algorithm presented in Prasser (Nuclear Eng Des 237(15):1608, 2007) and Poisson surface reconstruction algorithm developed in Kazhdan et al. (Poisson surface reconstruction. In: Proceedings of the fourth eurographics symposium on geometry processing 7, 2006). To verify the proposed technique, a comparison was done of the reconstructed individual bubble shapes with those obtained numerically in Sato and Ničeno (Int J Numer Methods Fluids 70(4):441, 2012). Using the difference between reconstructed and referenced bubble shapes, the accuracy of the proposed algorithm was estimated. At the next step, the algorithm was applied to void fraction measurements performed in Ylönen (High-resolution flow structure measurements in a rod bundle (Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 20961, 2013) by means of wire-mesh sensors in a rod bundle geometry. The reconstructed bubble shape yields bubble surface area and volume, hence its Sauter diameter d_{32} as well. Sauter diameter is proved to be more suitable for bubbles size characterization compared to volumetric diameter d_{30}, proved capable to capture the bi-disperse bubble size distribution in the flow. The effect of a spacer grid was studied as well: For the given spacer grid and considered flow rates, bubble size frequency distribution is obtained almost at the same position for all cases, approximately at d_{32} = 3.5 mm. This finding can be related to the specific geometry of the spacer grid or the air injection device applied in the experiments, or even to more fundamental properties of the bubble breakup and coagulation processes. In addition, an application of the new algorithm for reconstruction of a large air-water interface in a tube bundle is

  8. Ultrasonic excitation of a bubble inside a deformable tube: Implications for ultrasonically induced hemorrhage

    OpenAIRE

    Miao, Hongyu; Gracewski, Sheryl M.; Dalecki, Diane

    2008-01-01

    Various independent investigations indicate that the presence of microbubbles within blood vessels may increase the likelihood of ultrasound-induced hemorrhage. To explore potential damage mechanisms, an axisymmetric coupled finite element and boundary element code was developed and employed to simulate the response of an acoustically excited bubble centered within a deformable tube. As expected, the tube mitigates the expansion of the bubble. The maximum tube dilation and maximum hoop stress...

  9. Bubbly flows with fixed polydispersity: Validation of a baseline closure model

    Energy Technology Data Exchange (ETDEWEB)

    Rzehak, Roland, E-mail: R.Rzehak@hzdr.de; Krepper, Eckhard, E-mail: E.Krepper@hzdr.de

    2015-06-15

    Highlights: • Consideration of regime with significant but non-varying polydispersity. • Facilitates qualification of closure models. • Including bubble forces and bubble-induced turbulence. • Validation of the models with an experimental database for developing flow. • Shows reversing direction of shear lift force with bubble size. - Abstract: For practical applications the Euler–Euler two-fluid model relies on suitable closure relations describing interfacial exchange processes. In dispersed gas–liquid multiphase flow, closures are needed for bubble forces, bubble-induced turbulence, as well as bubble-coalescence and -breakup. The quest for models with a broad range of applicability allowing predictive simulations is an ongoing venture. Reasonable success has been achieved so far for flows that are amenable to a monodisperse approximation for the bubble size which limits the latter to no more than a few mm. In the present work we extend the validation to flow in which bubbles with a broad distribution of sizes up to ∼10 mm are present, but the shape of the distribution remains unchanged during the flow development. The existence of such conditions, which we term “fixed polydispersity”, is deduced from the experimental data. For this kind of situation the complexity of the closure problem is reduced since a balance between bubble-coalescence and -breakup prevails that allows to neglect these processes and simply impose a fixed bubble size distribution. Conclusions towards best practice guidelines for modeling bubbly flows are drawn and needs for further research identified.

  10. Bubbly flows with fixed polydispersity: Validation of a baseline closure model

    International Nuclear Information System (INIS)

    Highlights: • Consideration of regime with significant but non-varying polydispersity. • Facilitates qualification of closure models. • Including bubble forces and bubble-induced turbulence. • Validation of the models with an experimental database for developing flow. • Shows reversing direction of shear lift force with bubble size. - Abstract: For practical applications the Euler–Euler two-fluid model relies on suitable closure relations describing interfacial exchange processes. In dispersed gas–liquid multiphase flow, closures are needed for bubble forces, bubble-induced turbulence, as well as bubble-coalescence and -breakup. The quest for models with a broad range of applicability allowing predictive simulations is an ongoing venture. Reasonable success has been achieved so far for flows that are amenable to a monodisperse approximation for the bubble size which limits the latter to no more than a few mm. In the present work we extend the validation to flow in which bubbles with a broad distribution of sizes up to ∼10 mm are present, but the shape of the distribution remains unchanged during the flow development. The existence of such conditions, which we term “fixed polydispersity”, is deduced from the experimental data. For this kind of situation the complexity of the closure problem is reduced since a balance between bubble-coalescence and -breakup prevails that allows to neglect these processes and simply impose a fixed bubble size distribution. Conclusions towards best practice guidelines for modeling bubbly flows are drawn and needs for further research identified

  11. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  12. Use of an ultrasonic reflectance technique to examine bubble size changes in dough

    International Nuclear Information System (INIS)

    Bread quality largely depends on the manner in which bubbles are created and manipulated in the dough during processing. We have developed an ultrasonic reflectance technique to monitor bubbles in dough, even at high volume fractions, where near the bubble resonances it is difficult to make measurements using transmission techniques. A broadband transducer centred at 3.5 MHz in a normal incidence wave reflection set-up is used to measure longitudinal velocity and attenuation from acoustic impedance measurements. The technique is illustrated by examining changes in bubbles in dough due to two very different physical effects. In dough made without yeast, a peak in attenuation due to bubble resonance is observed at approximately 2 MHz. This peak diminishes rapidly and shifts to lower frequencies, indicative of Ostwald ripening of bubbles within the dough. The second effect involves the growth of bubble sizes due to gas generated by yeast during fermentation. This process is experimentally challenging to investigate with ultrasound because of very high attenuation. The reflectance technique allows the changes of the velocity and attenuation during fermentation to be measured as a function of frequency and time, indicating bubble growth effects that can be monitored even at high volume fractions of bubbles.

  13. Dynamic features of a laser-induced cavitation bubble near a solid boundary.

    Science.gov (United States)

    Yang, Yuan Xiang; Wang, Qian Xi; Keat, T S

    2013-07-01

    This paper deals with detailed features of bubble dynamics near a solid boundary. The cavitation bubble was created by using a Q-switched Nd: YAG laser pulse and observed using a high-speed camera (up to 100,000 frames per second). A hydrophone system was employed to monitor the acoustic signals generated by the transient pressure impulses and estimate the bubble oscillation periods. Experimental observations were carried out for bubbles with various maximum expanded radius Rmax (between 1.0mm and 1.6mm) and stand-off distances, ds (defined as the distance between the solid boundary and the bubble center at inception) of 0.4≤γ≤3.0, and γ=ds/Rmax. The existence of a solid boundary created asymmetry in the flow field and forced the bubble to collapse non-spherically, which finally brought forth the jet impact phenomenon. The dimensionless first and second oscillation periods were dependent on γ. A series of expansion and collapse of the bubble with cascading loss of energy were observed after the bubble had been generated. This study revealed that most bubbles lost about two-thirds of the total energy from the first maximum expansion to the second maximum expansion. PMID:23411165

  14. Interaction between shock wave and single inertial bubbles near an elastic boundary

    Science.gov (United States)

    Sankin, G. N.; Zhong, P.

    2006-10-01

    The interaction of laser-generated single inertial bubbles (collapse time=121μs ) near a silicon rubber membrane with a shock wave ( 55MPa in peak pressure and 1.7μs in compressive pulse duration) is investigated. The interaction leads to directional, forced asymmetric collapse of the bubble with microjet formation toward the surface. Maximum jet penetration into the membrane is produced during the bubble collapse phase with optimal shock wave arrival time and stand-off distance. Such interaction may provide a unique acoustic means for in vivo microinjection, applicable to targeted delivery of macromolecules and gene vectors to biological tissues.

  15. CFD Simulation of Polydispersed Bubbly Two-Phase Flow around an Obstacle

    OpenAIRE

    E. Krepper; Ruyer, P.; Beyer, M.; Lucas, D.; H.-M. Prasser; Seiler, N

    2009-01-01

    This paper concerns the model of a polydispersed bubble population in the frame of an ensemble averaged two-phase flow formulation. The ability of the moment density approach to represent bubble population size distribution within a multi-dimensional CFD code based on the two-fluid model is studied. Two different methods describing the polydispersion are presented: (i) a moment density method, developed at IRSN, to model the bubble size distribution function and (ii) a population balance meth...

  16. Dynamics of gas bubble growth in oil-refrigerant mixtures under isothermal decompression

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Joao Paulo; Barbosa Junior, Jader R.; Prata, Alvaro T. [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Mechanical Engineering], Emails: jpdias@polo.ufsc.br, jrb@polo.ufsc.br, prata@polo.ufsc.br

    2010-07-01

    This paper proposes a numerical model to predict the growth of gaseous refrigerant bubbles in oil-refrigerant mixtures with high contents of oil subjected to isothermal decompression. The model considers an Elementary Cell (EC) in which a spherical bubble is surrounded by a concentric and spherical liquid layer containing a limited amount of dissolved liquid refrigerant. The pressure reduction in the EC generates a concentration gradient at the bubble interface and the refrigerant is transported to the bubble by molecular diffusion. After a sufficiently long period of time, the concentration gradient in the liquid layer and the bubble internal pressure reach equilibrium and the bubble stops growing, having attained its stable radius. The equations of momentum and chemical species conservation for the liquid layer, and the mass balance at the bubble interface are solved via a coupled finite difference procedure to determine the bubble internal pressure, the refrigerant radial concentration distribution and the bubble growth rate. Numerical results obtained for a mixture of ISO VG10 ester oil and refrigerant HFC-134a showed that bubble growth dynamics depends on model parameters like the initial bubble radius, initial refrigerant concentration in the liquid layer, decompression rate and EC temperature. Despite its simplicity, the model showed to be a potential tool to predict bubble growth and foaming which may result from important phenomena occurring inside refrigeration compressors such as lubrication of sliding parts and refrigerant degassing from the oil stored in oil sump during compressor start-up. (author)

  17. More bubbling solutions

    International Nuclear Information System (INIS)

    In this note we construct families of asymptotically flat, smooth, horizonless solutions with a large number of non-trivial two-cycles (bubbles) of N = 1 five-dimensional supergravity with an arbitrary number of vector multiplets, which may or may not have the charges of a macroscopic black hole and which contain the known bubbling solutions as a sub-family. We do this by lifting various multi-center BPS states of type IIA compactified on Calabi-Yau three-folds and taking the decompactification (M-theory) limit. We also analyse various properties of these solutions, including the conserved charges, the shape, especially the (absence of) throat and closed timelike curves, and relate them to the various properties of the four-dimensional BPS states. We finish by briefly commenting on their degeneracies and their possible relations to the fuzzball proposal of Mathur et al

  18. Acoustic cloaking and transformation acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Chan, C T, E-mail: kenyon@ust.h, E-mail: phchan@ust.h [Department of Physics and the William Mong Institute of NanoScience and Technology, The Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2010-03-24

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  19. Acoustic cloaking and transformation acoustics

    International Nuclear Information System (INIS)

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  20. Bubble dynamics in drinks

    Czech Academy of Sciences Publication Activity Database

    Broučková, Zuzana; Trávníček, Zdeněk; Šafařík, P.

    Liberec: Technical University of Liberec, 2013 - (Vít, T.; Dančová, P.; Novotný, P.), s. 114-118 ISBN 978-80-260-5375-0. [Experimental Fluid Mechanics 2013. Kutná hora (CZ), 19.11.2013-22.11.2013] R&D Projects: GA ČR(CZ) GCP101/11/J019 Institutional support: RVO:61388998 Keywords : bubbles * hot chocolate effect * visualization Subject RIV: BK - Fluid Dynamics

  1. CRISIS FOCUS Blowing Bubbles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Chinese stock and property markets have been outperforming expectations, fueled by an unprecedented surge in bank lending. Xie Guozhong, an economist and board member of Rosetta Stone Advisors, argues the robust Chinese economic figures are only propped up by bubbles, whose bursting will lead to a hard landing for the economy. Xie published his opinion in a related article in Caijing Magazine. Edited excerpts follow:

  2. Optical measurement of acoustic radiation pressure of the near-field acoustic levitation through transparent object

    CERN Document Server

    Nakamura, Satoshi; Sasao, Yasuhiro; Katsura, Kogure; Naoki, Kondo

    2013-01-01

    It is known that macroscopic objects can be levitated for few to several hundred micrometers by near-field acoustic field and this phenomenon is called near-field acoustic levitation (NFAL). Although there are various experiments conducted to measure integrated acoustic pressure on the object surface, up to now there was no direct method to measure pressure distribution. In this study we measured the acoustic radiation pressure of the near-field acoustic levitation via pressure-sensitive paint.

  3. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  4. Gas bubbling cleaning method

    International Nuclear Information System (INIS)

    The present invention concerns a gas bubbling cleaning method for objects to be cleaned having complicate shapes such as reactor equipments. For instance, air is used as the gas, while water is used as the cleaning fluid. A jetting air is jetted out to an object to be cleaned from an air bubbling nozzle disposed below the object. This constitutes air/water two phase flow near the object to be cleaned, to generate a three dimensional circulating flow. The distance between the inner wall surface of a cleaning vessel and the object to be cleaned is set to greater than 5 mm, and the ratio between the air flow rate and the horizontal cross section of the cleaning vessel is set to 0.1 to 0.4m/sec. This enables to enter an appropriate amount of bubbles to the air at the inside of the object to be cleaned having a complicate shape. Accordingly, deposits adhered to the inside of the object to be cleaned can be eliminated and cleaned effectively. (I.N.)

  5. Experimental Investigation of Large-Scale Bubbly Plumes

    International Nuclear Information System (INIS)

    Carefully planned and instrumented experiments under well-defined boundary conditions have been carried out on large-scale, isothermal, bubbly plumes. The data obtained is meant to validate newly developed, high-resolution numerical tools for 3D transient, two-phase flow modelling. Several measurement techniques have been utilised to collect data from the experiments: particle image velocimetry, optical probes, electromagnetic probes, and visualisation. Bubble and liquid velocity fields, void-fraction distributions, bubble size and interfacial-area-concentration distributions have all been measured in the plume region, as well as recirculation velocities in the surrounding pool. The results obtained from the different measurement techniques have been compared. In general, the two-phase flow data obtained from the different techniques are found to be consistent, and of high enough quality for validating numerical simulation tools for 3D bubbly flows. (author)

  6. Mechanisms of gas bubble retention

    International Nuclear Information System (INIS)

    Retention and episodic release of flammable gases are critical safety concerns regarding double-shell tanks (DSTs) containing waste slurries. Previous investigations have concluded that gas bubbles are retained by the slurry that has settled at the bottom of the DST. However, the mechanisms responsible for the retention of these bubbles are not well understood. In addition, the presence of retained gas bubbles is expected to affect the physical properties of the sludge, but essentially no literature data are available to assess the effect of these bubbles. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The objectives of this study are to elucidate the mechanisms contributing to gas bubble retention and release from sludge such as is in Tank 241-SY-101, understand how the bubbles affect the physical properties of the sludge, develop correlations of these physical properties to include in computer models, and collect experimental data on the physical properties of simulated sludges with bubbles. This report presents a theory and experimental observations of bubble retention in simulated sludge and gives correlations and new data on the effect of gas bubbles on sludge yield strength

  7. Direct visualization of microalgae rupture by ultrasound-driven bubbles

    Science.gov (United States)

    Pommella, Angelo; Harun, Irina; Pouliopoulos, Antonis; Choi, James J.; Hellgardt, Klaus; Garbin, Valeria

    2015-11-01

    Cell rupture induced by ultrasound is central to applications in biotechnology. For instance, cell disruption is required in the production of biofuels from microalgae (unicellular species of algae). Ultrasound-induced cavitation, bubble collapse and jetting are exploited to induce sufficiently large viscous stresses to cause rupture of the cell membranes. It has recently been shown that seeding the flow with bubbles that act as cavitation nuclei significantly reduces the energy cost for cell processing. However, a fundamental understanding of the conditions for rupture of microalgae in the complex flow fields generated by ultrasound-driven bubbles is currently lacking. We perform high-speed video microscopy to visualize the miscroscale details of the interaction of Chlamydomonas reinhardtii , microalgae of about 10 μm in size, with ultrasound-driven microbubbles of 2-200 μm in diameter. We investigate the efficiency of cell rupture depending on ultrasound frequency and pressure amplitude (from 10 kPa up to 1 MPa), and the resulting bubble dynamics regimes. In particular we compare the efficiency of membrane rupture in the acoustic microstreaming flow induced by linear oscillations, with the case of violent bubble collapse and jetting. V.G. acknowledges partial support from the European Commission (FP7-PEOPLE-2013-CIG), Grant No. 618333.

  8. Argonne Bubble Experiment Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations. The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.

  9. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  10. Hydrodynamics of circulating and bubbling fluidized beds

    International Nuclear Information System (INIS)

    This paper reports that a review of modeling of the hydrodynamics of fluidization of bubbling beds showed that inviscid two-fluid models were able to predict a great deal of the behavior of bubbling beds because the dominant mechanism of energy dissipation is the drag between the particles and the fluid. The formation, the growth and the bursting of bubbles were predicted. Predicted wall-to-bed heat transfer coefficients and velocity profiles of jets agreed with measurements. Time average porosity distributions agreed with measurements done using gamma-ray densitometers without the use of any adjustable parameters. However, inviscid models could not correctly predict rates of erosion around tubes immersed into fluidized beds. To correctly model such behavior, granular stresses involving solids viscosity were added into the computer model. This viscosity arises due to random collision of particles. Several models fro this viscosity were investigated and the results compared to measurements of solids distributions in two-dimensional beds and to particle velocities reported in the literature. While in the case of bubbling beds the solids viscosity plays the role of a correction, modeling of a circulating fluidized bed (CFB) without a viscosity is not possible. Recent experimental data obtained at IIT and at IGT show that in CFB the solids viscous dissipation is responsible for as much as half of the pressure drop. From such measurement, solids viscosities were computed. These were used in the two fluid hydrodynamic model, to predict radial solids distributions and solids velocities which matched the experimental distributions. Most important, the model predicted cluster formation and transient internal circulation which is responsible for the favorable characteristics of CFBs, such as good wall-to-bed heat transfer. Video tape movies of computations compared favorably with high speed movies of the experiments

  11. Electrowetting of a soap bubble

    CERN Document Server

    Arscott, Steve

    2013-01-01

    A proof-of-concept demonstration of the electrowetting-on-dielectric of a sessile soap bubble is reported here. The bubbles are generated using a commercial soap bubble mixture - the surfaces are composed of highly doped, commercial silicon wafers covered with nanometre thick films of Teflon. Voltages less than 40V are sufficient to observe the modification of the bubble shape and the apparent bubble contact angle. Such observations open the way to inter alia the possibility of bubble-transport, as opposed to droplet-transport, in fluidic microsystems (e.g. laboratory-on-a-chip) - the potential gains in terms of volume, speed and surface/volume ratio are non-negligible.

  12. Bioeffects due to acoustic droplet vaporization

    Science.gov (United States)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  13. Positronium bubble formation in room temperature ionic liquids

    International Nuclear Information System (INIS)

    Positron annihilation age-momentum correlation (AMOC) measurements were performed for a room temperature ionic liquid (IL) to investigate positronium (Ps) bubble formation process. The Ps just after the formation must be squeezed Ps that has larger probability of annihilation with core electrons in liquids. However, it has been believed that the bubble formation in liquids is very fast and difficult to observe the squeezed Ps experimentally. When the bubble formation is slow, it can give broader energy distribution of annihilation gamma-rays at young age region. There have been several experimental results showing young age broadening and some of them are interpreted as the delayed Ps formation. However, if the bubble formation is slow, it also can be a reason of the young age broadening. If the squeezed Ps and the free positron give different momentum distributions by annihilation with core electrons on different atoms, it is possible to detect the annihilation from squeezed Ps at the young age, i.e. the bubble formation can be observed. We found larger high momentum distribution at young age in IL and it might be caused by the delayed bubble formation in IL. Positron annihilation methods can be a tool to investigate the IL molecular dynamics at the time range of pico-nano second and in the scale of sub-nano to nano meter.

  14. Novel Epoxy Resin/SiO2 Nanocomposites Preparation Method Based on Diminutive Bubbles Explosion

    Institute of Scientific and Technical Information of China (English)

    NIE Peng; ZHAO Xue-zeng; CHEN Fang; WANG Wei-jie; BAI Yong-ping

    2006-01-01

    To obtain suspended dispersion of nano-particles in liquid without any dispersant, a novel epoxy resin/SiO2 nanocomposites preparation method based on diminutive bubbles explosion is presented. And, corresponding nanocomposites preparation system was designed. The preparation system applies compressed gas as transmission medium to carry nanomaterials into epoxy resin solution. The compressed gas with nanomaterials turns into diminutive bubbles distributing in epoxy resin/SiO2. The great pressure difference between inner and outer-bubbles led to bubbles inflation and explosion. During the bubble inflation, bubble oscillation may generate. The stretching rate may reach 106 s-1, which favors more homogeneous dispersion of nanoparticles. During the bubbles explosion the released energy and the explosion shock waves disperse the nanoparticles into epoxy resin solution. By using the preparation system, epoxy resin/SiO2 nanocomposites were prepared. The SiO2 dispersed into epoxy as the configuration of 15 nm - 30 nm particles.

  15. Rational Bubbles in Stock Prices?

    OpenAIRE

    Behzad T. Diba; Grossman, Herschel I.

    1985-01-01

    This paper reports empirical tests for the existence of rational bubbles in stock prices. The analysis focuses on a familiar model that defines market fundamentals to be the expected present value of dividends, discounted at a constantrate, and defines a rational bubble to be a self-confirming divergence of stock prices from market fundamentals in response to extraneous variables. The tests are based on the theoretical result that, if rational bubbles exist, time series obtained by differenci...

  16. Rational Asset Pricing Bubbles Revisited

    OpenAIRE

    Jan Werner

    2012-01-01

    Price bubble arises when the price of an asset exceeds the asset's fundamental value, that is, the present value of future dividend payments. The important result of Santos and Woodford (1997) says that price bubbles cannot exist in equilibrium in the standard dynamic asset pricing model with rational agents as long as assets are in strictly positive supply and the present value of total future resources is finite. This paper explores the possibility of asset price bubbles when either one of ...

  17. Experimental and numerical investigations on the air–steam mixture bubble condensation characteristics in stagnant cool water

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Xiao-hang; Tian, Mao-cheng, E-mail: tianmc65@sdu.edu.cn; Zhang, Guan-min; Leng, Xue-li

    2015-04-15

    Highlights: • Air–steam mixture bubble condensation behavior is studied by visual experiment. • VOF and species models are coupled to simulated mixture bubble condensation. • Condensation is model as source terms based on correlation from experiment. • Simulation results agree well with experimental results. • Steam concentration distribution in bubble is analyzed using numerical method. - Abstract: In this study, condensation of air–steam mixture bubble with mass fraction of steam above 0.5 was investigated first by a visual experiment at atmosphere. Then a 3-D numerical model based on volume of fluid (VOF) model and species model was developed to simulate the bubble condensation. In order to model steam condensation, mass and energy transfer between phases were modeled as source terms of conservation equations, using a correlation obtained from the experiment to predict the condensation heat transfer coefficient (HTC). After validation of the numerical model with the experimental results, influences of steam fraction and diameter of bubble on condensation characteristics are studied numerically. Moreover, steam concentration distribution in bubble was also analyzed along the time series of bubble condensation process. It was found that condensation HTC decreases with the increase of bubble diameter. With increase of steam fraction in bubble, the bubble volume shrinks more quickly due to the increased condensation rate, and the bubble accelerates more quickly reaching a higher terminal velocity. Aggregation of non-condensable air inside the bubble near the gas and water interface deteriorates the condensation heat and mass transfer.

  18. Experimental and numerical investigations on the air–steam mixture bubble condensation characteristics in stagnant cool water

    International Nuclear Information System (INIS)

    Highlights: • Air–steam mixture bubble condensation behavior is studied by visual experiment. • VOF and species models are coupled to simulated mixture bubble condensation. • Condensation is model as source terms based on correlation from experiment. • Simulation results agree well with experimental results. • Steam concentration distribution in bubble is analyzed using numerical method. - Abstract: In this study, condensation of air–steam mixture bubble with mass fraction of steam above 0.5 was investigated first by a visual experiment at atmosphere. Then a 3-D numerical model based on volume of fluid (VOF) model and species model was developed to simulate the bubble condensation. In order to model steam condensation, mass and energy transfer between phases were modeled as source terms of conservation equations, using a correlation obtained from the experiment to predict the condensation heat transfer coefficient (HTC). After validation of the numerical model with the experimental results, influences of steam fraction and diameter of bubble on condensation characteristics are studied numerically. Moreover, steam concentration distribution in bubble was also analyzed along the time series of bubble condensation process. It was found that condensation HTC decreases with the increase of bubble diameter. With increase of steam fraction in bubble, the bubble volume shrinks more quickly due to the increased condensation rate, and the bubble accelerates more quickly reaching a higher terminal velocity. Aggregation of non-condensable air inside the bubble near the gas and water interface deteriorates the condensation heat and mass transfer

  19. Experimental investigations and modelling on the transition from bubble to slug flow in vertical pipes

    International Nuclear Information System (INIS)

    To qualify CFD codes for two-phase flows, they have to be equipped with constitutive laws describing the interaction between the gaseous and the liquid phases. In the case of bubble flow this particularly concerns the forces acting on the bubbles and bubble coalescence and break-up. To obtain detailed experimental data, an electrode wire-mesh sensor was used, which enables the measurement of the phase distribution with a very high resolution in space and in time. Air-water flow at ambient conditions in a vertical pipe (51.2 mm inner diameter) is investigated to have well defined boundary conditions. Local bubble size distributions are calculated from the data. The measurements were done in different distances from the gas injection device. As a result the development of bubble size distributions as well as the development of the radial gas fraction profiles can be studied. It was found, that the bubble size distribution as well as local effects determine the transition from bubble flow to slug flow. The data are used for the development of a model, which predicts the development of the bubble size distribution and the transition from bubble flow to slug flow in case of stationary flow in a vertical pipe. (orig.)

  20. Noise reduction by the application of an air-bubble curtain in offshore pile driving

    Science.gov (United States)

    Tsouvalas, A.; Metrikine, A. V.

    2016-06-01

    Underwater noise pollution is a by-product of marine industrial operations. In particular, the noise generated when a foundation pile is driven into the soil with an impact hammer is considered to be harmful for the aquatic species. In an attempt to reduce the ecological footprint, several noise mitigation techniques have been investigated. Among the various solutions proposed, the air-bubble curtain is often applied due to its efficacy in noise reduction. In this paper, a model is proposed for the investigation of the sound reduction during marine piling when an air-bubble curtain is placed around the pile. The model consists of the pile, the surrounding water and soil media, and the air-bubble curtain which is positioned at a certain distance from the pile surface. The solution approach is semi-analytical and is based on the dynamic sub-structuring technique and the modal decomposition method. Two main results of the paper can be distinguished. First, a new model is proposed that can be used for predictions of the noise levels in a computationally efficient manner. Second, an analysis is presented of the principal mechanisms that are responsible for the noise reduction due to the application of the air-bubble curtain in marine piling. The understanding of these mechanisms turns to be crucial for the exploitation of the maximum efficiency of the system. It is shown that the principal mechanism of noise reduction depends strongly on the frequency content of the radiated sound and the characteristics of the bubbly medium. For piles of large diameter which radiate most of the acoustic energy at relatively low frequencies, the noise reduction is mainly attributed to the mismatch of the acoustic impedances between the seawater and the bubbly layer. On the contrary, for smaller piles and when the radiated acoustic energy is concentrated at frequencies close to, or higher than, the resonance frequency of the air bubbles, the sound absorption within the bubbly layer

  1. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics. PMID:26486337

  2. Design of acoustic devices by topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard

    The goal of this study is to design and optimize structures and devices that are subjected to acoustic waves. Examples are acoustic lenses, sound walls, waveguides and loud speakers. We formulate the design problem as a topology optimization problem, i.e. distribute material in a design domain such...... that the acoustic response is optimized....

  3. Bubble Coalescence: Effect of Bubble Approach Velocity and Liquid Viscosity

    Czech Academy of Sciences Publication Activity Database

    Orvalho, Sandra; Růžička, Marek; Olivieri, G.; Marzocchella, A.

    2015-01-01

    Roč. 134, SEP 29 (2015), s. 205-216. ISSN 0009-2509 R&D Projects: GA MŠk(CZ) LD13018 Institutional support: RVO:67985858 Keywords : bubble coalescence * bubble approach velocity * liquid viscosity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.337, year: 2014

  4. Absorption boundary conditions for geomertical acoustics

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2012-01-01

    Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, the absorption coefficients or surface impedances of the boundary surfaces can be used, but no guideline has been developed...... solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. It is concluded that the impedance and random incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials....

  5. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  6. New technique for emboli detection and discrimination based on nonlinear characteristics of gas bubbles.

    Science.gov (United States)

    Palanchon, P; Bouakaz, A; van Blankenstein, J H; Klein, J; Bom, N; de Jong, N

    2001-06-01

    Detection and characterization of emboli in the blood stream is of high clinical importance for making decisions after surgery. In this study, a new technique based on the nonlinear oscillations of gas bubbles was applied to gaseous emboli detection, characterization and sizing. To simulate gaseous emboli, an experimental system was developed to produce air bubbles of uniform diameters ranging from 19 microm up to 200 microm. The ultrasonic setup consisted of low-frequency transducers operating at 130 kHz and 250 kHz and using low acoustic pressures (30 kPa and 55 kPa). The experimental and theoretical results show that, depending on the transmitted frequency and the bubble sizes, higher harmonic components were produced in the frequency spectrum of the backscattered echo. Nonresonating bubbles scatter either linearly when their sizes are far away from the resonance size or nonlinearly at the second or third harmonic frequency when their sizes are getting close to the resonance size. Only resonant bubbles or bubbles very close to the resonance size are able to scatter at higher harmonic frequencies (fourth and fifth). This property is used to discriminate resonating bubbles from other bubble sizes. The appearance of harmonic component in the frequency spectrum seems to be an unambiguous tool to differentiate gaseous emboli from solid emboli that scatter linearly. PMID:11516540

  7. 基于SαS的水声信号噪声统计分布建模%Statistical Noise Distribution Modelling for Underwater Acoustic Signals Based on SαS

    Institute of Scientific and Technical Information of China (English)

    林伟; 王汗青; 苑秉成; 王平波

    2012-01-01

    To accurately describe statistical noise distribution of underwater acoustic signal, we established a statistical noise distribution model of the acoustic signal based on relevant features of symmetric a-stable(SaS) distribution. Firstly, the model configuration for describing noise characteristics of underwater acoustic signal with reverberation was designed by considering the features of noise probability distribution of acoustic signal. Then, the range of index a was determined by trials in tank, lake and sea, respectively, in different acoustic environments. The analysis of the test data shows that the proposed SaS distribution-based model is applicable.%针对水声信号噪声统计分布难以准确描述的问题,在α稳定分布相关特性基础上,提出了一种基于对称α稳定分布(SαS)的水声信号噪声统计分布模型.首先结合水声信号噪声概率分布的特征,建立了用于描述水声信号噪声统计分布的SαS模型,再根据各种水声环境实际试验数据,对不同水声环境下特征指数α的取值范围进行了水池、湖试和海试试验统计.试验数据分析结果表明,SαS分布模型可用于水声噪声信号统计描述.

  8. Dynamic Bubble Behaviour during Microscale Subcooled Boiling

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; PENG Xiao-Feng; David M.Christopher

    2005-01-01

    @@ Bubble cycles, including initiation, growth and departure, are the physical basis of nucleate boiling. The presentinvestigation, however, reveals unusual bubble motions during subcooled nucleate boiling on microwires 25 orl00μm in diameter. Two types of bubble motions, bubble sweeping and bubble return, are observed in theexperiments. Bubble sweeping describes a bubble moving back and forth along the wire, which is motion parallelto the wire. Bubble return is the bubble moving back to the wire after it has detached or leaping above thewire. Theoretical analyses and numerical simulations are conducted to investigate the driving mechanisms forboth bubble sweeping and return. Marangoni flow from warm to cool regions along the bubble interface is foundto produce the shear stresses needed to drive these unusual bubble movements.

  9. Performance of the lift-pump with the lead-bismuth cooled fast reactor. Experimental study on bubble distribution and circulation flow rate

    International Nuclear Information System (INIS)

    Recently, the utilization of the lift pump is examined in a small reactor of the lead-bismuth eutectic cooling. Then, the experiments concerning about void behavior and performance of the lift pump in three kinds of risers (1124mm in height and inside diameters φ69.3mm, φ106.3mm, φ155.2mm) were performed by using lead bismuth eutectic. The main results are as follows: (1) The local void fraction varies in horizontal plane in case of the big diameter riser. (2) The lead-bismuth circulating flow rate evaluated by a present design method becomes lower than that of experiments in case of medium and small diameter risers. This design method can be used as an outline evaluating function for these cases, considering the evaluation accuracy of the pressure loss of the test section in the calculation. (3) In the big diameter riser, the present design method excessively evaluates the lead-bismuth circulating flow rate. It thought that the circulation head will not occur in the experiments such as a results of the present design method because the void rises biasing in horizontal plane in case of big diameter riser though the present method is one dimensional model. It is better to utilize a separator which can divides the riser into about 10cm diameter flow path and the void is fed uniformly distributed to each paths to obtain appropriate circulation head. (author)

  10. Ultrasonic excitation of a bubble inside a deformable tube: implications for ultrasonically induced hemorrhage.

    Science.gov (United States)

    Miao, Hongyu; Gracewski, Sheryl M; Dalecki, Diane

    2008-10-01

    Various independent investigations indicate that the presence of microbubbles within blood vessels may increase the likelihood of ultrasound-induced hemorrhage. To explore potential damage mechanisms, an axisymmetric coupled finite element and boundary element code was developed and employed to simulate the response of an acoustically excited bubble centered within a deformable tube. As expected, the tube mitigates the expansion of the bubble. The maximum tube dilation and maximum hoop stress were found to occur well before the bubble reached its maximum radius. Therefore, it is not likely that the expanding low pressure bubble pushes the tube wall outward. Instead, simulation results indicate that the tensile portion of the acoustic excitation plays a major role in tube dilation and thus tube rupture. The effects of tube dimensions (tube wall thickness 1-5 microm), material properties (Young's modulus 1-10 MPa), ultrasound frequency (1-10 MHz), and pressure amplitude (0.2-1.0 MPa) on bubble response and tube dilation were investigated. As the tube thickness, tube radius, and acoustic frequency decreased, the maximum hoop stress increased, indicating a higher potential for tube rupture and hemorrhage. PMID:19062875

  11. Micro-bubble morphologies following drop impacts onto a pool surface

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2012-10-01

    When a drop impacts at low velocity onto a pool surface, a hemispheric air layer cushions and can delay direct contact. Herein we use ultra-high-speed video to study the rupture of this layer, to explain the resulting variety of observed distribution of bubbles. The size and distribution of micro-bubbles is determined by the number and location of the primary punctures. Isolated holes lead to the formation of bubble necklaces when the edges of two growing holes meet, whereas bubble nets are produced by regular shedding of micro-bubbles from a sawtooth edge instability. For the most viscous liquids the air film contracts more rapidly than the capillary-viscous velocity through repeated spontaneous ruptures of the edge. From the speed of hole opening and the total volume of micro-bubbles we conclude that the air sheet ruptures when its thickness approaches ?100.

  12. Optimal filters for detecting cosmic bubble collisions

    CERN Document Server

    McEwen, J D; Johnson, M C; Peiris, H V

    2012-01-01

    A number of well-motivated extensions of the LCDM concordance cosmological model postulate the existence of a population of sources embedded in the cosmic microwave background (CMB). One such example is the signature of cosmic bubble collisions which arise in models of eternal inflation. The most unambiguous way to test these scenarios is to evaluate the full posterior probability distribution of the global parameters defining the theory; however, a direct evaluation is computationally impractical on large datasets, such as those obtained by the Wilkinson Microwave Anisotropy Probe (WMAP) and Planck. A method to approximate the full posterior has been developed recently, which requires as an input a set of candidate sources which are most likely to give the largest contribution to the likelihood. In this article, we present an improved algorithm for detecting candidate sources using optimal filters, and apply it to detect candidate bubble collision signatures in WMAP 7-year observations. We show both theoreti...

  13. Large Amplitude Dust Ion Acoustic Solitons and Double Layers in Dusty Plasmas with Ion Streaming and High-Energy Tail Electron Distribution

    International Nuclear Information System (INIS)

    Large amplitude dust ion acoustic (DIA) solitons as well as double layers (DLs) are studied in a dusty plasma having a high-energy-tail electron distribution. The influence of electron deviation from the Maxwellian distribution and ion streaming on the existence domain of solitons is discussed in the (M, f) space using the pseudo-potential approach. It is found that in the presence of streaming ions and for a fixed f, solitons may appear for larger values of M. This means that in the presence of ion streaming, high values of the Mach number are needed to have soliton. The DIA solitary waves profile is highly sensitive to the ion streaming speed. Their amplitude is found to decrease with an increase of the ion streaming speed. In addition, we find that the ion streaming effect may lead to the appearance of double layers. The results of this article should be useful in understanding the basic nonlinear features of DIA waves propagating in space dusty plasmas, especially those including a relative motion between species, such as comet tails and solar wind streams, etc. (physics of gases, plasmas, and electric discharges)

  14. Optical behavior of surface bubbles

    Science.gov (United States)

    Straulino, Samuele; Gambi, Cecilia M. C.; Molesini, Giuseppe

    2015-11-01

    The observation of diamond-like light spots produced by surface bubbles obliquely illuminated is reported. The phenomenon is discussed in terms of geometrical optics, and an explanation is provided attributing the effect to the astigmatism introduced by the deformation of the liquid surface surrounding the bubble. An essential ray tracing program is outlined and used to reconstruct the observed phenomenon numerically.

  15. Bubble chamber: colour enhanced tracks

    CERN Multimedia

    1998-01-01

    This artistically-enhanced image of real particle tracks was produced in the Big European Bubble Chamber (BEBC). Liquid hydrogen is used to create bubbles along the paths of the particles as a piston expands the medium. A magnetic field is produced in the detector causing the particles to travel in spirals, allowing charge and momentum to be measured.

  16. Dark matter limits froma 15 kg windowless bubble chamber

    Energy Technology Data Exchange (ETDEWEB)

    Szydagis, Matthew Mark [Univ. of Chicago, IL (United States)

    2011-03-01

    The COUPP collaboration has successfully used bubble chambers, a technology previously applied only to high-energy physics experiments, as direct dark matter detectors. It has produced the world's most stringent spin-dependent WIMP limits, and increasingly competitive spin-independent limits. These limits were achieved by capitalizing on an intrinsic rejection of the gamma background that all other direct detection experiments must address through high-density shielding and empirically-determined data cuts. The history of COUPP, including its earliest prototypes and latest results, is briefly discussed in this thesis. The feasibility of a new, windowless bubble chamber concept simpler and more inexpensive in design is discussed here as well. The dark matter limits achieved with a 15 kg windowless chamber, larger than any previous COUPP chamber (2 kg, 4 kg), are presented. Evidence of the greater radiopurity of synthetic quartz compared to natural is presented using the data from this 15 kg device, the first chamber to be made from synthetic quartz. The effective reconstruction of the three-dimensional positions of bubbles in a highly distorted optical field, with ninety-degree bottom lighting similar to cloud chamber lighting, is demonstrated. Another innovation described in this thesis is the use of the sound produced by bubbles recorded by an array of piezoelectric sensors as the primary means of bubble detection. In other COUPP chambers, cameras have been used as the primary trigger. Previous work on bubble acoustic signature differentiation using piezos is built upon in order to further demonstrate the ability to discriminate between alpha- and neutron-induced events.

  17. Dark matter limits froma 15 kg windowless bubble chamber

    Energy Technology Data Exchange (ETDEWEB)

    Szydagis, Matthew Mark; /Chicago U.

    2010-12-01

    The COUPP collaboration has successfully used bubble chambers, a technology previously applied only to high-energy physics experiments, as direct dark matter detectors. It has produced the world's most stringent spin-dependent WIMP limits, and increasingly competitive spin-independent limits. These limits were achieved by capitalizing on an intrinsic rejection of the gamma background that all other direct detection experiments must address through high-density shielding and empirically-determined data cuts. The history of COUPP, including its earliest prototypes and latest results, is briefly discussed in this thesis. The feasibility of a new, windowless bubble chamber concept simpler and more inexpensive in design is discussed here as well. The dark matter limits achieved with a 15 kg windowless chamber, larger than any previous COUPP chamber (2 kg, 4 kg), are presented. Evidence of the greater radiopurity of synthetic quartz compared to natural is presented using the data from this 15 kg device, the first chamber to be made from synthetic quartz. The effective reconstruction of the three-dimensional positions of bubbles in a highly distorted optical field, with ninety-degree bottom lighting similar to cloud chamber lighting, is demonstrated. Another innovation described in this thesis is the use of the sound produced by bubbles recorded by an array of piezoelectric sensors as the primary means of bubble detection. In other COUPP chambers, cameras have been used as the primary trigger. Previous work on bubble acoustic signature differentiation using piezos is built upon in order to further demonstrate the ability to discriminate between alpha- and neutron-induced events.

  18. Bubbling behaviors induced by gas-liquid mixture permeating through a porous medium

    Science.gov (United States)

    Hu, Liang; Li, Mingbo; Chen, Wenyu; Xie, Haibo; Fu, Xin

    2016-08-01

    This paper investigates the bubbling behaviors induced by gas-liquid mixture permeating through porous medium (PM), which was observed in developing immersion lithography system and was found having great differences with traditional bubbling behaviors injected with only gas phase through the PM. An experimental setup was built up to investigate the bubbling characteristics affected by the mixed liquid phase. Both the flow regimes of gas-liquid mixture in micro-channel (upstream of the PM) and the bubbling flow regimes in water tank (downstream of the PM) were recorded synchronously by high-speed camera. The transitions between the flow regimes are governed by gas and liquid Weber numbers. Based on the image analysis, the characteristic parameters of bubbling region, including the diameter of bubbling area on PM surface, gas-phase volume flux, and dispersion angle of bubbles in suspending liquid, were studied under different proportions of gas and liquid flow rate. Corresponding empirical correlations were developed to describe and predict these parameters. Then, the pertinent bubble characteristics in different bubbling flow regimes were systematically investigated. Specifically, the bubble size distribution and the Sauter mean diameter affected by increasing liquid flow rate were studied, and the corresponding analysis was given based on the hydrodynamics of bubble-bubble and bubble-liquid interactions. According to dimensionless analysis, the general prediction equation of Sauter mean diameter under different operating conditions was proposed and confirmed by experimental data. The study of this paper is helpful to improve the collection performance of immersion lithography and aims to reveal the differences between the bubbling behaviors on PM caused by only gas flow and gas-liquid mixture flow, respectively, for the researches of fluid flow.

  19. Interfacial characteristic measurements in a horizontal bubbly two-phase flow

    International Nuclear Information System (INIS)

    The internal phase distribution of concurrent, air-water bubbly flow in a 50.3 mm diameter transparent pipeline has been experimentally investigated by using a double-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 3.74 to 5.60 m/s and 0.25 to 1.37 m/s, respectively, and average void fractions ranged from 0.9 to 22.6%. The local values of void fractions, interfacial area concentration, mean bubble diameter, bubble interface velocity and bubble frequency distributions were measured. This paper reports that the experimental results indicate that the void fraction, interfacial area concentration and bubble frequency have local maxima near the upper pipe wall, and the profiles tend to flatten with increasing void fraction. The observed peak void fraction can reach 0.65, the peak interfacial area can go up to 1300 m2/m3, and the bubble frequency can reach a value of 2200/s. It is found that either decreasing the liquid flow rate or increasing the gas flow would increase the local void fraction, the interfacial area concentration and the bubble frequency. The axial bubble interface velocity and the Sauter mean diameter profiles show a relatively uniform distribution except near the upper pipe wall, where a sharp reduction in the velocity and mean diameter occurs. The local bubble velocity and the means diameter generally increases with the gas flow rate

  20. Sediment distribution and dynamics inferred by integrated electromagnetic, optical and acoustic benthic profiling in the western Bay of Plenty (New Zealand)

    Science.gov (United States)

    Kulgemeyer, T.; von Dobeneck, T. F.; Müller, H.; Bryan, K. R.; de Lange, W. P.; Battershill, C.

    2015-12-01

    In October 2011, New Zealand experienced a marine pollution disaster after the MV RENA ran aground in the western Bay of Plenty. To estimate the transport and burial potential of contaminants, local sediment distribution and dynamics had to be assessed quickly. Our study made use of the benthic profiler NERIDIS III of the University of Bremen. 33 cross-shore profiles, each ca. 8 km long, have been surveyed. The main instrument is a controlled-source electromagnetic (CSEM) sensor, which is measuring the electric conductivity and magnetic susceptibility of the seafloor. High-resolution, overlapping seafloor photos have been taken by a bow-mounted digital camera. An on-board CTD with turbidity sensor complete the sensor arrangement. From the EM data, porosity and magnetite concentrations have been calculated and interpolated. The resulting maps show specific zones of magnetite enrichment, higher concentrations are correlated to low porosity. Photos have been used along with acoustic backscatter measured by a sidescan sonar to sketch out a preliminary map of sediment facies. Based on this, sides for grab sampling were selected. By taking grain size and mineralogy into account, a detailed map of the regional lithofacies could be created. Local sediment dynamics have been inferred by the observation of bedforms, the turbidity of bottom water and lithofacies. The results show two anti-parallel longshore transport paths dependent on differing weather conditions and water depths. The longshore magnetite distribution indicates that the heavy mineral fraction is mainly affected by storm-induced sediment transport. Our study demonstrates how integrated benthic profiling adds to the interpretability of data obtained by established methods. By bridging the gap between area-covering, but indirect data from hydroacoustics and precise, but punctual data from samples, benthic profiling enables fast and detailed assessment of sediment distribution and dynamics on a large scale.

  1. Stability of ion acoustic solitary waves in a magnetized plasma consisting of warm adiabatic ions and non-thermal electrons having vortex-like velocity distribution

    Science.gov (United States)

    Das, Jayasree; Bandyopadhyay, Anup; Das, K. P.; Das

    2014-02-01

    Schamel's modified Korteweg-de Vries-Zakharov-Kuznetsov (S-ZK) equation, governing the behavior of long wavelength, weak nonlinear ion acoustic waves propagating obliquely to an external uniform static magnetic field in a plasma consisting of warm adiabatic ions and non-thermal electrons (due to the presence of fast energetic electrons) having vortex-like velocity distribution function (due to the presence of trapped electrons), immersed in a uniform (space-independent) and static (time-independent) magnetic field, admits solitary wave solutions having a sech 4 profile. The higher order stability of this solitary wave solution of the S-ZK equation has been analyzed with the help of multiple-scale perturbation expansion method of Allen and Rowlands (Allen, M. A. and Rowlands, G. 1993 J. Plasma Phys. 50, 413; 1995 J. Plasma Phys. 53, 63). The growth rate of instability is obtained correct to the order k 2, where k is the wave number of a long wavelength plane wave perturbation. It is found that the lowest order (at the order k) instability condition is strongly sensitive to the angle of propagation (δ) of the solitary wave with the external uniform static magnetic field, whereas at the next order (at the order k 2) the solitary wave solutions of the S-ZK equation are unstable irrespective of δ. It is also found that the growth rate of instability up to the order k 2 for the electrons having Boltzmann distribution is higher than that of the non-thermal electrons having vortex-like distribution for any fixed δ.

  2. Strings on Bubbling Geometries

    CERN Document Server

    Lin, Hai; Shock, Jonathan P

    2010-01-01

    We study gauge theory operators which take the form of a product of a trace with a Schur polynomial, and their string theory duals. These states represent strings excited on bubbling AdS geometries which are dual to the Schur polynomials. These geometries generically take the form of multiple annuli in the phase space plane. We study the coherent state wavefunction of the lattice, which labels the trace part of the operator, for a general Young tableau and their dual description on the droplet plane with a general concentric ring pattern. In addition we identify a density matrix over the coherent states on all the geometries within a fixed constraint. This density matrix may be used to calculate the entropy of a given ensemble of operators. We finally recover the BMN string spectrum along the geodesic near any circle from the ansatz of the coherent state wavefunction.

  3. Quantitative assessment of reactive oxygen sonochemically generated by cavitation bubbles

    Science.gov (United States)

    Yasuda, Jun; Miyashita, Takuya; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2015-07-01

    Acoustic cavitation bubbles can induce not only a thermal bioeffect but also a chemical bioeffect. When cavitation bubbles collapse and oscillate violently, they produce reactive oxygen species (ROS) that cause irreversible changes to the tissue. A sonosensitizer can promote such ROS generation. A treatment method using a sonosensitizer is called sonodynamic treatment. Rose bengal (RB) is one of the sonosensitizers whose in vivo and in vitro studies have been reported. In sonodynamic treatment, it is important to produce ROS at a high efficiency. For the efficient generation of ROS, a triggered high-intensity focused ultrasound (HIFU) sequence has been proposed. In this study, cavitation bubbles were generated in a chamber where RB solution was sealed, and a high-speed camera captured the behavior of these cavitation bubbles. The amount of ROS was also quantified by a potassium iodide (KI) method and compared with high-speed camera pictures to investigate the effectiveness of the triggered HIFU sequence. As a result, ROS could be obtained efficiently by this sequence.

  4. Towards the Characterization of the Bubble Presence in Liquid Sodium of Sodium Cooled Fast Reactors

    International Nuclear Information System (INIS)

    In a Sodium cooled Fast Reactors (SFR), different phenomena such as gas entrainment or nucleation can lead to gaseous micro-bubbles presence in the liquid sodium of the primary vessel. Although this free gas presence has no direct impact on the core neutronics, the French Atomic Energy and Alternative Energies Commission (CEA) currently works on its characterization to, among others, check the absence of risk of large gas pocket formation and to assess the induced modifications of the sodium acoustic properties. The main objective is to evaluate the void fraction values (volume fraction of free gas) and the radii histogram of the bubbles present in liquid sodium. Acoustics and electromagnetic techniques are currently developed at CEA: - The low-frequency speed of sound measurement, which allows us to link - thanks to Wood's model - the measured speed of sound to the actual void fraction. - The nonlinear mixing of two frequencies, based on the nonlinear resonance behavior of a bubble. This technique allows knowing the radius histogram associated to a bubble cloud. Two different mixing techniques are presented in this paper: the mixing of two high frequencies and the mixing of a high and a low frequency. - The Eddy-current flowmeter (ECFM), the output signal of which is perturbed by free gas presence and in consequence allows detecting bubbles. For each technique, initial results are presented. Some of them are really promising. So far, acoustic experiments have been led with an air-water experimental set-up. Micro-bubbles clouds are generated with a dissolved air flotation device and monitored by an optical device which provides reference measurements. Generated bubbles have radii range from few micrometers to several tens of micrometers. Present and future air/water experiments are presented. Furthermore, a development plan of in-sodium tests is presented in terms of a device set-up, instrumentation, modeling tools and experiments. (authors)

  5. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  6. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  7. Acoustic telemetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive...

  8. Acoustics Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  9. A Study of Bubble and Slug Gas-Liquid Flow in a Microgravity Environment

    Science.gov (United States)

    McQuillen, J.

    2000-01-01

    surfactant), to identify clusters that promote coalescence and transition the void fraction distribution in bubbly and slug flow,to measure the wall friction in bubbly flow. These experiments will consist of multiple bubbles type flows and will utilize hot wire and film anemometers to measure liquid velocity and wall shear stress respectively and double fiber optic probes to measure bubble size and velocity as a function of tube radius and axial location.

  10. Modeling of Wall Effects on Drag and Lift Acting on Bubbles in Bubbly Flow

    International Nuclear Information System (INIS)

    The two-fluid model based on Eulerian-Eulerian approach has been widely used for simulating two-phase flows in many industrial applications. However, the two-fluid approach needs accurate modeling for interfacial momentum exchange such as drag, shear induced lift, and wall-induced lift. In particular, it is important to accurately model the wall effect in order to predict 'wall peaking' or 'core peaking' phenomena observed in bubbly pipe flow. Those phenomena characterized by the radial distribution of void fraction are mainly determined by the balance between shear induced lift and wall-induced lift usually called 'wall lubrication force'. However, the wall effect is not fully understood yet and the wall force coefficient in previous studies has a wide range of values, probably tuned to the experimental results. Therefore, we propose a new model considering the wall effect on drag and lift forces and evaluate its accuracy by simulating laminar bubbly flows with available data for comparison. In this study, we proposed a new model for interfacial momentum exchange for wall-bounded bubbly flow. In particular, to accurately consider the wall effects on drag and lift, separate simulations were performed for the flow around a moving sphere near the wall. The present model was verified by solving the laminar bubbly flow in a vertical pipe and comparing the results with previous ones. The present void fraction and water velocity profiles showed good results

  11. Doughnut-shaped soap bubbles

    Science.gov (United States)

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L . It is well known that the sphere is the solution for V =L3/6 π2 , and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V <α L3/6 π2 cannot be stable and should not exist in foams, for instance.

  12. The electro-acoustic transition process of pulsed corona discharge in conductive water

    Science.gov (United States)

    Huang, Yifan; Yan, Hui; Wang, Bingzhe; Zhang, Xuming; Liu, Zhen; Yan, Keping

    2014-06-01

    A pulsed corona discharge in conductive water is studied theoretically and experimentally via pre-discharge analysis, thermodynamic and dynamic processes of a plasma-containing bubble, an acoustic signature and energy partitioning. The total particle density and electron density inside the bubble, internal temperature and pressure, bubble radius and bubble wall Mach number are simulated by solving a set of equations including the ideal gas equation, Rayleigh equation and energy balance equation. The bubble radius is also measured by a high-speed charge-coupled device camera on a homemade experimental device. The acoustic waveforms and their power spectral density are calculated indirectly. By using several diagnostic tools, the electrical parameters of the load, light emission from the plasma and acoustic waveforms are recorded simultaneously. Simulation and experimental results of the bubble radius and acoustic signature agree reasonably well over the range of energy inputs from 5 to 30 J per pulse. Different kinds of terminations or intermediates of the energy transition process are analysed through simulation and experimental data. The electro-acoustic efficiency varies from 0.8% to 1.9%, while most of the discharge energy is consumed by circuit loss, Joule heating and thermal radiation, or is transformed into kinetic energy in the water.

  13. The electro-acoustic transition process of pulsed corona discharge in conductive water

    International Nuclear Information System (INIS)

    A pulsed corona discharge in conductive water is studied theoretically and experimentally via pre-discharge analysis, thermodynamic and dynamic processes of a plasma-containing bubble, an acoustic signature and energy partitioning. The total particle density and electron density inside the bubble, internal temperature and pressure, bubble radius and bubble wall Mach number are simulated by solving a set of equations including the ideal gas equation, Rayleigh equation and energy balance equation. The bubble radius is also measured by a high-speed charge-coupled device camera on a homemade experimental device. The acoustic waveforms and their power spectral density are calculated indirectly. By using several diagnostic tools, the electrical parameters of the load, light emission from the plasma and acoustic waveforms are recorded simultaneously. Simulation and experimental results of the bubble radius and acoustic signature agree reasonably well over the range of energy inputs from 5 to 30 J per pulse. Different kinds of terminations or intermediates of the energy transition process are analysed through simulation and experimental data. The electro-acoustic efficiency varies from 0.8% to 1.9%, while most of the discharge energy is consumed by circuit loss, Joule heating and thermal radiation, or is transformed into kinetic energy in the water. (paper)

  14. Acoustic Droplet Vaporization in Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Chung-Yin Lin

    2013-01-01

    Full Text Available This paper reviews the literature regarding the use of acoustic droplet vaporization (ADV in clinical applications of imaging, embolic therapy, and therapeutic delivery. ADV is a physical process in which the pressure waves of ultrasound induce a phase transition that causes superheated liquid nanodroplets to form gas bubbles. The bubbles provide ultrasonic imaging contrast and other functions. ADV of perfluoropentane was used extensively in imaging for preclinical trials in the 1990s, but its use declined rapidly with the advent of other imaging agents. In the last decade, ADV was proposed and explored for embolic occlusion therapy, drug delivery, aberration correction, and high intensity focused ultrasound (HIFU sensitization. Vessel occlusion via ADV has been explored in rodents and dogs and may be approaching clinical use. ADV for drug delivery is still in preclinical stages with initial applications to treat tumors in mice. Other techniques are still in preclinical studies but have potential for clinical use in specialty applications. Overall, ADV has a bright future in clinical application because the small size of nanodroplets greatly reduces the rate of clearance compared to larger contrast agent bubbles and yet provides the advantages of ultrasonographic contrast, acoustic cavitation, and nontoxicity of conventional perfluorocarbon contrast agent bubbles.

  15. Simulation of bubble growth and coalescence in reacting polymer foams

    Science.gov (United States)

    Marchisio, Daniele; Karimi, Mohsen

    2015-11-01

    This work concerns with the simulation of reacting polymer foams with computational fluid dynamics (CFD). In these systems upon mixing of different ingredients polymerization starts and some gaseous compounds are produced, resulting in the formation of bubbles that growth and coalesce. As the foam expands, the polymerization proceeds resulting in an increase of the apparent viscosity. The evolution of the collective behavior of the bubbles within the polymer foam is tracked by solving a master kinetic equation, formulated in terms of the bubble size distribution. The rate with which individual bubbles grow is instead calculated by resolving the momentum and concentration boundary layers around the bubbles. Moreover, since it is useful to track the evolution of the interface between the foam and the surrounding air, a volume-of-fluid (VOF) model is adopted. The final computational model is implemented in the open-source CFD code openFOAM by making use of the compressibleInterFoam solver. The master kinetic equation is solved with a quadrature-based moment method (QBMM) directly implemented in openFOAM, whereas the bubble growth model is solved independently and ''called'' from the CFD code by using an unstructured database. Model predictions are validated against experimental data. This work was funded by the European Commission under the grant agreement number 604271 (Project acronym: MoDeNa; call identifier: FP7-NMP-2013-SMALL-7).

  16. Interaction of reactive oily bubble in flotation of bastnaesite

    Institute of Scientific and Technical Information of China (English)

    周芳; 王娄翔; 徐政和; 刘青侠; 池汝安

    2014-01-01

    To understand the flotation mechanism of bastnaesite using reactive oily bubble, the interaction between bastnaesite parti-cles and reactive oily bubbles was investigated by electro-kinetic studies, induction time measurements and small-scale flotation ex-periments. The bastnaesite flotation could be seen as a hetero-coagulation between bastnaesite particles and reactive oily bubbles which was confirmed by the zeta potential distribution and induction time measurements from pH 4.8 to pH 9.0. The small-scale flo-tation tests were consistent with the hetero-coagulation results, and showed a better flotation of reactive oily bubble than air bubble among all pH range. The interaction force between bastnaesite particles and reactive oily bubbles was evaluated by the classical DLVO theory. It indicated that the attachment could be predicted well by the DLVO theory only in a restricted pH range due to the absence of hydrophilic interaction repulsion force and chemical interaction force.

  17. Molecular dynamics study of helium bubble pressure in tungsten

    International Nuclear Information System (INIS)

    Molecular dynamics simulations were performed to calculate the stress field in a tungsten matrix containing a nano-scale helium bubble. A helium bubble in tungsten is found to consist of a core and an interface of finite thickness of approximately 0.6 nm. The core contains only helium atoms that are uniformly distributed. The interface is composed of both helium and tungsten atoms. In the periphery region of the helium bubble, the stress filed is found to follow the stress formula based on the elasticity theory of solid. The pressure difference between both sides of the interface can be well described by the Young–Laplace equation for the core size of a helium bubble as small as 0.48 nm. A comparison was performed between the pressure in the helium bubble core and the pressure in pure helium. For a core size larger than 0.3 nm, the pressure in the core of a helium bubble is in good agreement with the pressure in pure helium of the same helium density. These results provide guidance to larger scale simulation methods, such as in kinetic Monte Carlo methods and rate theory

  18. Nozzle-Free Liquid Microjetting via Homogeneous Bubble Nucleation

    Science.gov (United States)

    Lee, Taehwa; Baac, Hyoung Won; Ok, Jong G.; Youn, Hong Seok; Guo, L. Jay

    2015-04-01

    We propose and demonstrate a physical mechanism for producing liquid microjets by taking an optoacoustic approach that can convert light to sound through a carbon-nanotube-coated lens, where light from a pulsed laser is converted to high momentum sound wave. The carbon-nanotube lens can focus high-amplitude sound waves to a microspot of visualizes two consecutive jets closely correlated with bubble dynamics. Because of the acoustic scattering from the interface, negative pressure amplitudes are significantly increased up to 80 MPa, even allowing homogeneous bubble nucleation. As a demonstration, this nozzle-free approach is applied to inject colored liquid into a tissue-mimicking gel as well as print a material on a glass substrate.

  19. Introductory Applicaton of Defocusing DPIV to the Study of Bubbly Shear Flows

    Science.gov (United States)

    Pereira, Francisco; Gharib, Morteza; Dabiri, Dana; Modarress, Darius

    1999-11-01

    A study of a three-dimensional bubbly flow is presented to demonstrate the applicability of the newly developed defocusing digital particle image velocimetry technique. The DDPIV instrument provides bubble size and location information within a one cubic foot volume. A three-dimensional two-phase flow measurement is performed to obtain a full-field quantitative description of the global dynamics of air bubbles in a vortical shear flow generated by a model boat propeller. Clouds of sub-millimeter air bubbles are injected upstream the propeller. The velocity field is calculated from volumetric cross-correlation of consecutive three-dimensional sets of bubble locations, whereas the bubble size information is estimated from the blurred image of bubbles. Flow analysis is presented in terms of vorticity and bubble trajectory. The bubble size distribution upstream and downstream the propeller is discussed. Growth and collapse of bubbles are detected and related to the respective velocity field in the suction and high-pressure regions of the propeller.

  20. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang Y.; Burkes, Douglas; Lavender, Curt A.; Senor, David J.; Setyawan, Wahyu; Xu, Zhijie

    2016-07-08

    Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the for- mation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was devel- oped. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn’t cause the gas bubble alignment, and fast 1-D migration of interstitials along 〈110〉 directions in the body-centered cubic U matrix causes the gas bubble alignment along 〈110〉 directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.

  1. Fission gas bubble characterisation in irradiated UO2 fuel by SEM

    International Nuclear Information System (INIS)

    The behaviour of gases produced by fission is of great importance for nuclear fuel operation. The fission gases affect fuel performance in different manners. Retained gas in the form of bubbles may lead to fuel swelling. The released gases reduce the heat transfer between the fuel and clad, leading to increase in the fuel temperature. They also increase the fuel pin pressure which may lead to cladding failure and to the consequent release of fission products to the coolant circuit. The mechanism of fission gas release includes diffusion of gas atoms to grain boundaries, formation of fission gas bubbles, growth of the bubbles and their interlinkage to form channels through which the gas gets released into the free space in the fuel pin. It is important to characterise the fission gas bubbles/channels formed in the fuel, especially under high burnup conditions. Within this context, characterisation of the fission gas bubbles from fractured grains of irradiated UO2 fuels with burnups ranging from 400 MWd/t U to 22,000 z MWd/t U has been carried out under Scanning Electron Microscope (SEM). In low burnup fuels, small bubbles were observed on the grain faces. With increasing burnup, larger bubbles and wide channels were observed in addition to the small bubbles. This paper describes the evolution of grain face bubbles in UO2 and provides the data on gas bubble size and distribution in fuel irradiated to different burnup levels which is an important input for fuel modeling. (author)

  2. Bubble Growth in Lunar Basalts

    Science.gov (United States)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  3. Acoustic surveys for juvenile anchovy in the Bay of Biscay: Abundance estimate as an indicator of the next year's recruitment and spatial distribution patterns

    KAUST Repository

    Boyra, Guillermo

    2013-08-16

    A series of acoustic surveys (JUVENA) began in 2003 targeting juvenile anchovy (Engraulis encrasicolus) in the Bay of Biscay. A specific methodology was designed for mapping and estimating juvenile abundance annually, four months after the spawning season. After eight years of the survey, a consistent picture of the spatial pattern of the juvenile anchovy has emerged. Juveniles show a vertical and horizontal distribution pattern that depends on size. The younger individuals are found isolated from other species in waters closer to the surface, mainly off the shelf within the mid-southern region of the bay. The largest juveniles are usually found deeper and closer to the shore in the company of adult anchovy and other pelagic species. In these eight years, the survey has covered a wide range of juvenile abundances, and the estimates show a significant positive relationship between the juvenile biomasses and the one-year-old recruits of the following year. This demonstrates that the JUVENA index provides an early indication of the strength of next year\\'s recruitment to the fishery and can therefore be used to improve the management advice for the fishery of this short-lived species. © 2013 International Council for the Exploration of the Sea.

  4. Remobilizing the Interfaces of Thermocapillary Driven Bubbles Retarded by the Adsorption of a Surfactant Impurity on the Bubble Surface

    Science.gov (United States)

    Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    concentrations than the impurity, it adsorbs to the bubble much faster than the impurity when the bubble is formed, and thereby prevents the impurity from adsorbing onto the surface. In addition the rapid kinetic exchange and high bulk concentration maintain a saturated surface with a uniform surface concentrations. This prevents retarding surface tension gradients and keeps the velocity high. In our first report last year, we detailed experimental results which verified the theory of remobilization in ground based experiments in which the steady velocity of rising bubbles was measured in a continuous phase consisting of a glycerol/water mixture containing a polyethylene glycol surfactant C12E6 (CH3(CH2)11(OCH2CH2)6OH). In our report this year, we detail our efforts to describe theoretically the remobilization observed. We construct a model in which a bubble rises steadily by buoyancy in a continuous (Newtonian) viscous fluid containing surfactant with a uniform far field bulk concentration. We account for the effects of inertia as well as viscosity in the flow in the continuous phase caused by the bubble motion (order one Reynolds number), and we assume that the bubble shape remains spherical (viscous and inertial forces are smaller than capillary forces, i e. small Weber and capillary numbers). The surfactant distribution is calculated by solving the mass transfer equations including convection and diffusion in the bulk, and finite kinetic exchange the bulk and the surface. Convective effects dominate diffusive mass transfer in the bulk of the liquid (high Peclet numbers) except in a thin boundary layer near the surface. A finite volume method is used to numerically solve the hydrodynamic and mass transfer equations on a staggered grid which accounts specifically for the thin boundary layer. We present the results of the nondimensional drag as a function of the bulk concentration of surfactant for different rates of kinetic exchange, from which we develop criteria for the

  5. ADSORPTION OF NANO-PARTICLES ON BUBBLE SURFACE IN NANO-PARTICLE SUSPENSION

    Institute of Scientific and Technical Information of China (English)

    Buxuan Wang; Chunhui Li; Xiaofeng Peng

    2005-01-01

    The adsorption of nano-particles on bubble surface is discussed for saturated boiling on thin wire of nano-particle suspensions. Owing to the decrease of surface tension for suspensions, the nano-particles tend to adsorb on the bubble surface to decrease the Gibbs free energy for stability, and meanwhile the velocity of nano-particles would be smaller than that of bubble growth. The long-range van der Waals force existing between "water particles" and nano-particles is considered the attractive force between the nano-particles and the bubble surface. Thus, the nano-particles would attach on the bubble surface if the particle-surface distance is smaller than its critical value. The distribution of nano-particles on the bubble surface and in the adjacent region is also investigated.

  6. Coanda effect on bubble characteristics in a bubbling jet rising near the side wall of a cylindrical vessel

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, M.

    1998-12-01

    Experimental investigation was carried out on the behavior of an air-water bubbling jet generated vettically upward by air injection through a tingle-hole nozzle placed near the side wall of a cylindrical vessel. The bubbling jet was pulled towards the side wall, attached to it at a certain vertical distance from the nozzle top, and afterwards rose along it. Such a phenomenon was caused through the Coanda effect. The vertical distance from the nozzle top to the attachment position was defined as the attachment length. This length was closely associated with the gas flow rate and the horizontal distance between the nozzle top and the side wall. The inner diameter of nozzle, however, exerted a negligibly small effect on the attachment length. Rubble characteristics represented by bubble frequency, gas holdup, mean bubble rising velocity and mean bubble chord length were measured with a two-needle electroresistivity prohe. The horizontal distributions of the bubble frequency and gas holdup were similar in the vertical region above the attachment position. (author)

  7. Measuring and modeling the bubble population produced by an underwater explosion.

    Science.gov (United States)

    Holt, Fred D; Lee Culver, R

    2011-11-01

    Underwater explosions have been studied intensively in the United States since 1941 [e.g., R. H. Cole, Underwater Explosions (Princeton University Press, Princeton, NJ, 1945), pp. 3-13]. Research to date has primarily focused on the initial shock and subsequent pressure waves caused by the oscillations of the "gas-globe" resulting from charge detonation. These phenomena have relatively short timescales (typically less than 2 s). However, after the gas-globe rises through the water column and breaks the surface, there remains behind a cloud of bubbles and perhaps debris from the explosion container which has been markedly less studied. A recent experiment measured the spatial and temporal acoustic response of the bubble cloud resulting from a 13.6 kg PBXN-111 charge detonated at 15.2 m (50 ft) depth. A directional projector was used to propagate linear frequency-modulated (5-65 kHz) and 40 kHz tonal pulses through the bubble cloud. Two hydrophone arrays were positioned so as to measure the energy lost in propagating through the bubble cloud. Three methods have been utilized to invert measurements and estimate the bubble population. The bubble population estimates have been used to develop a model for the bubble population resulting from an underwater explosion. PMID:22088003

  8. Aerosol behaviour in an acoustic field

    International Nuclear Information System (INIS)

    The average size of an aerosol submitted to acoustic waves is increased. This results from coagulation of the finest particles on the largest ones. The mechanisms responsible for acoustic agglomeration are mentioned. An experimental apparatus was developed in order to control the evolution of aerosol distribution in an acoustic field. Important deposition on the walls of the agglomeration chamber was observed as a consequence of the acoustically induced turbulent flow. Finally, a dimensionless relationship was established between deposition rates and particle diameters as a function of experimental parameters (aeraulic and acoustic conditions, etc...)

  9. Effective dynamic constitutive parameters of acoustic metamaterials with random microstructure

    International Nuclear Information System (INIS)

    A multiple scattering analysis in a non-viscous fluid is developed in order to predict the effective constitutive parameters of certain suspensions of disordered particles or bubbles. The analysis is based on an effective field approach, and uses suitable pair-correlation functions to account for the essential features of densely distributed particles. The effective medium that is equivalent to the original suspension of particles is a medium with space and time dispersion, and hence, its parameters are functions of the frequency of the incident acoustic wave. Under the quasi-crystalline approximation, novel expressions are presented for effective constitutive parameters, which are valid at any frequency and wavelength. The emerging possibility of designing fluid-particle mixtures to form acoustic metamaterials is discussed. Our theory provides a convenient tool for testing ideas in silico in the search for new metamaterials with specific desired properties. An important conclusion of the proposed approach is that negative constitutive parameters can also be achieved by using suspensions of particles with random microstructures with properties similar to those shown in periodic arrays of microstructures. (paper)

  10. The Housing Bubble Fact Sheet

    OpenAIRE

    Dean Baker

    2005-01-01

    This paper explains the basic facts about the current housing market. It lays out the evidence that the rise in housing prices constitutes a housing bubble - and explains what can be expected when it inevitably collapses.

  11. Bubble bean bags in shampoo

    OpenAIRE

    Kundu, Anup; Sharma, Chandan; Das, Gargi; Harikrishnan, G.

    2011-01-01

    In these fluid dynamics videos, we, for the first time, show various interactions of a 'Taylor bubble' with their smaller and differently, shaped counterparts, in a shear thinning, non-Newtonian fluid, confined in a narrow channel.

  12. Helium bubbles in UO2

    International Nuclear Information System (INIS)

    A certain part of helium generated in MOX fuel could form additional bubbles in fuel pellets as a result of the combination of radiation defects and high temperature. In the present study, the helium infusion treatments were conducted at high temperature with highly pressurized helium for both polycrystalline UO2 fragments and hyperstoichiometric single crystal UO2+x particles. Annealing tests for polycrystalline UO2 were followed by the helium infusion treatment to evaluate formation of helium bubble. In case of as helium-infused polycrystalline sample, it was confirmed that helium bubbles were formed after slight oxidative annealing at more than 1573K. On the other hand, the cavity observed in as-helium-infused single crystal sample grew up to form a negative crystal. Formation mechanism of helium bubble and negative crystal were discussed. (author)

  13. Transient bubbles, bublets and breakup

    Science.gov (United States)

    Keen, Giles; Blake, John

    1999-11-01

    The non-spherical nature of the collapse of bubbles has important ramifications in many practical situations such as ultrasonic cleaning, tanning of leather, and underwater explosions. In particular the high speed liquid jet that can thread a collapsing bubble is central to the functional performance. An impressive photographic record of a liquid jet was obtained by Crum using a bubble situated in the vicinity of a platform oscillating vertically at a frequency of 60 Hz. A boundary integral method is used to model this situation and is found to closely mimic some of the observations. However, a slight variation of parameters or a change in the phase of the driving frequency can lead to dramatically different bubble behaviour, a feature also observed by Crum.

  14. Pulling bubbles from a bath

    Science.gov (United States)

    Kao, Justin C. T.; Blakemore, Andrea L.; Hosoi, A. E.

    2010-06-01

    Deposition of bubbles on a wall withdrawn from a liquid bath is a phenomenon observed in many everyday situations—the foam lacing left behind in an emptied glass of beer, for instance. It is also of importance to the many industrial processes where uniformity of coating is desirable. We report work on an idealized version of this situation, the drag-out of a single bubble in Landau-Levich-Derjaguin flow. We find that a well-defined critical wall speed exists, separating the two regimes of bubble persistence at the meniscus and bubble deposition on the moving wall. Experiments show that this transition occurs at Ca∗˜Bo0.73. A similar result is obtained theoretically by balancing viscous stresses and gravity.

  15. Interactions between bubble formation and heating surface in nucleate boiling

    Energy Technology Data Exchange (ETDEWEB)

    Luke, Andrea [Leibniz University, Hannover (Denmark). Inst. of Thermodynamics], e-mail: ift@ift.uni-hannover.de

    2009-07-01

    The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size. (author)

  16. Modeling the Local Bubble

    Science.gov (United States)

    Cox, D. P.

    Modeling the Local Bubble is one of those activities fraught with danger. It is very easy to be too naive, to fail to consider the dependence of the model on assumptions about the nearby ambient state, or the likelihood of such a structure. It is similarly easy to become so caught up in the details of the vicinity that it is unclear where to begin a necessarily idealized modeling effort. And finally, it is important to remember that the data we have may in some cases be lying to us, and that we have not yet learned to read their facial expressions quite carefully enough. That said, I've tried in this paper to be helpful to those who may wish to take the risks. I surveyed the very most basic stories that the data seem to tell, and pointed out the standard coincidences that may be telling us a lot about what is happening, but may turn out once again to have been just coincidences. I've described 5 distinct conceptions that in one flavor or another pretty well survey the collection of mental images that have so far been carried by those who've attempted models. One may be right, or something entirely different may be more appropriate. It's at least vital to realize that a conception comes first, followed by a simplified model of details. I've also included a long list of questions directed at observers. Some have partial answers, some one wouldn't know today quite how to approach. But it is a list that students of the soft x-ray background, interstellar absorption lines, possible instrumentation, and the heliosphere may wish to review from time to time, just to see whether they can figure out how to be more helpful. There is another list for modelers, things the models must address, however-so-flimsily if necessary, because there are strong observational constraints (and stronger ones coming) on what can and cannot be present in the local ISM. To that I've added a few remarks concerning x-ray emission coming from beyond the Local Bubble, and another few on how x

  17. On Collisionless Damping of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Petersen, P.I.

    1973-01-01

    Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....

  18. Mechanisms of single bubble cleaning.

    Science.gov (United States)

    Reuter, Fabian; Mettin, Robert

    2016-03-01

    The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8flows touch down onto the substrate and remove particles without significant contact of the gas phase. (II) For small distances, γflows at the substrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1cleaning mechanisms similar to an effective small γ collapse: particles are removed by the jet flow and the flow induced by the bubble wall oscillation. Furthermore, the observations reveal that the extent of direct bubble gas phase contact to the solid is partially

  19. Cryogenic Liquid Slug and Taylor Bubble Length Distributions in an Inclined Tube%倾斜管内低温液弹和Taylor汽泡的长度分布

    Institute of Scientific and Technical Information of China (English)

    王淑华; 张华; 王经

    2009-01-01

    An experimental study was carried out to understand the phenomena of the boiling flow of liquid nitrogen in an inclined tube with closed bottom by using a high speed motion analyzer. The experimental tube is 0.018 m ID and 1.0 m in length. The range of the inclination angle is 45°-90° from the horizontal. The experiment focused on the effect of the inclination angle show that the mean liquid slug length and Taylor bubble length increase with the increasing x/D at various inclination angles. At the same x/D, the mean liquid slug length and Taylor bubble length increase first, and then decrease with decreasing inclination angles, with the maximum at 60°. In the vertical tube, standard deviation of the nitrogen Taylor bubble length increase with the increasing x/D. For the inclined tube, standard deviation of the nitrogen Taylor bubble length increases first, and then decreases with the increasing x/D. Standard deviation of the liquid slug length increases with increasing x/D for all inclination angles.

  20. Learning the CAPM through Bubbles

    OpenAIRE

    Haim Kedar-Levy

    2004-01-01

    Bubbles are generally considered the outcome of investor irrationality or informational asymmetry, both objectionable in efficient markets with rational investors. We introduce an Intertemporal-CAPM with market clearing between high- and low-risk-averse rational investors who learn the CAPM under incomplete, yet symmetric information. Periodic equilibrium prices make a lognormal price process that nests the classic CAPM with a potential for endogenous bubbles through learning. The absence of ...

  1. Interfacial wave dynamics of a drop with an embedded bubble

    Science.gov (United States)

    Bhattacharya, S.

    2016-02-01

    This article describes how an embedded bubble changes the surface wave of a suspended liquid drop, and how such modifications, if recorded experimentally, can be used to detect voids in typically opaque interior of the fluid. The analysis uses a matrix formalism to predict the frequencies for natural oscillation and the deformation for acoustically induced forced vibration. The theory shows that the embedded cavity causes major shifts in the frequency and amplitude values as well as twofold increase in number of natural modes, indicating multifacetted utility of the results in process diagnostics, material characterizations, and combustion technology.

  2. Doughnut-shaped soap bubbles

    CERN Document Server

    Preve, Deison

    2015-01-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume $V$ and with a fixed equatorial perimeter $L$. It is well known that the sphere is the solution for $V=L^3/6\\pi^2$, and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for $V<\\alpha L^3/6\\pi^2$, with $\\alpha\\approx 0.21$, such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtainin...

  3. Bubble Chamber Research Group Microcomputer Unit

    International Nuclear Information System (INIS)

    A distributed data acquisition system has been developed by the Bubble Chamber Research Group at the Rutherford Appleton laboratory for use with their film measuring machines. The system is based upon a set of microcomputers linked together with a VAX 11/780 computer, in a local area computer network. This network is of the star type and uses a packet switching technique. Each film measuring machine is equipped with a microcomputer which controls the function of the table, buffers data and enhances the interface between operators and machines. This paper provides a detailed description of each microcomputer and can be used as a reference manual for these computers. (author)

  4. Beyond the gas bubble

    International Nuclear Information System (INIS)

    The deliverability issue currently being discussed within the natural gas industry involves both near-term and long-term questions. In the near-term, over the next two or three years, it is probable that the natural gas industry will need to mobilize for much greater levels of investment than have been the experience over the past few years. In the longer-term, it is expected that new opportunities for gas will arise as the nation seeks to meet increasing energy requirements within new environmental constraints. Methane for emissions control, CNG vehicles, expanded gas-fired electricity generation, and increased efficiency of traditional energy services are just a few examples. The issues in the longer-term center on the ability of the gas industry to meet increasing supply requirements reliably and at cost-competitive prices for these markets. This paper begins by reviewing the historical situation of gas deliverability that is the capability of the gas producing and transportation portions of the industry. The delivery system's ability to handle shifts in the centers of consumption and production is discussed, with an emphasis on regional problems of gas deliverability and potential bottlenecks. On the production side, the paper reviews the capability and the required investment necessary to handle an orderly transition to a stable supply and demand balance once the elusive bubble had finally disappeared

  5. A global survey of the distribution of free gas in marine sediments

    Science.gov (United States)

    Fleischer, Peter; Orsi, Tim; Richardson, Michael

    2003-10-01

    Following the work of Aubrey Anderson in the Gulf of Mexico, we have attempted to quantify the global distribution of free gas in shallow marine sediments, and have identified and indexed over one hundred documented cases in the scientific and engineering literature. Our survey confirms previous assumptions, primarily that gas bubbles are ubiquitous in the organic-rich muds of coastal waters and shallow adjacent seas. Acoustic turbidity as recorded during seismo-acoustic surveys is the most frequently cited evidence used to infer the presence of seafloor gas. Biogenic methane predominates within these shallow subbottom deposits. The survey also reveals significant imbalances in the geographic distribution of studies, which might be addressed in the future by accessing proprietary data or local studies with limited distribution. Because of their global prevalence, growing interest in gassy marine sediments is understandable as their presence has profound scientific, engineering and environmental implications.

  6. Bubbly-to-cap bubbly flow transition in a long-26 m vertical large diameter pipe at low liquid flow rate

    International Nuclear Information System (INIS)

    monotonously again with axial position in the fully-developed cap bubbly flow. The temporary void fraction decrease phenomenon in the transition region from bubbly to cap bubbly flow can be attributed to the formation of medium to large cap bubbles and their gradual growth into the maximum size of cap bubble and/or cluster of large cap bubbles in the developing cap bubbly flow. In order to predict the N-shaped axial void fraction changing behaviors in the flow regime transition from bubbly to cap bubbly flow, the existing 12 drift flux correlation sets for large diameter pipes are reviewed and their predictabilities are studied against the present experimental data. Although some drift flux correlation sets, such as those of Clark and Flemmer (1986) and Hibiki and Ishii (2003), can predict the present experimental data with reasonable average relative deviations, no drift flux correlation set for distribution parameter and drift velocity can give a reliable prediction for the observed N-shaped axial void fraction changing behaviors in the region from bubbly to cap bubbly flow in a vertical large diameter pipe

  7. Acoustic emission

    International Nuclear Information System (INIS)

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  8. STRAIN LOCALIZATION PECULIARITIES AND DISTRIBUTION OF ACOUSTIC EMISSION SOURCES IN ROCK SAMPLES TESTED BY UNIAXIAL COMPRESSION AND EXPOSED TO ELECTRIC PULSES

    Directory of Open Access Journals (Sweden)

    V. A. Mubassarova

    2015-09-01

    Full Text Available Results of uniaxial compression tests of rock samples in electromagnetic fields are presented. The experiments were performed in the Laboratory of Basic Physics of Strength, Institute of Continuous Media Mechanics, Ural Branch of RAS (ICMM. Deformation of samples was studied, and acoustic emission (AE signals were recorded. During the tests, loads varied by stages. Specimens of granite from the Kainda deposit in Kyrgyzstan (similar to samples tested at the Research Station of RAS, hereafter RS RAS were subject to electric pulses at specified levels of compression load. The electric pulses supply was galvanic; two graphite electrodes were fixed at opposite sides of each specimen. The multichannel Amsy-5 Vallen System was used to record AE signals in the six-channel mode, which provided for determination of spatial locations of AE sources. Strain of the specimens was studied with application of original methods of strain computation based on analyses of optical images of deformed specimen surfaces in LaVISION Strain Master System.Acoustic emission experiment data were interpreted on the basis of analyses of the AE activity in time, i.e. the number of AE events per second, and analyses of signals’ energy and AE sources’ locations, i.e. defects.The experiment was conducted at ICMM with the use of the set of equipment with advanced diagnostic capabilities (as compared to earlier experiments described in [Zakupin et al., 2006a, 2006b; Bogomolov et al., 2004]. It can provide new information on properties of acoustic emission and deformation responses of loaded rock specimens to external electric pulses.The research task also included verification of reproducibility of the effect (AE activity when fracturing rates responded to electrical pulses, which was revealed earlier in studies conducted at RS RAS. In terms of the principle of randomization, such verification is methodologically significant as new effects, i.e. physical laws, can be considered

  9. FEASTING BLACK HOLE BLOWS BUBBLES

    Science.gov (United States)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  10. Bubbles Tomorrow and Bubbles Yesterday, but Never Bubbles Today?

    OpenAIRE

    Williams, John C.

    2013-01-01

    Considering their importance and the amount of effort that has gone into understanding them, asset price bubbles continue to perplex. The evidence of these bubbles seldom squares with what would be expected from standard asset price theory. Unlike the suggestions from theory, expectations of prices of both stocks and houses tend to be procyclical—price expectations are driven by recent price performance. Thus, price expectations are extrapolative rather than rational, as assumed by standard a...

  11. Wall Shear Stress Induced by Taylor Bubbles in Inclined Flow Channels

    Directory of Open Access Journals (Sweden)

    Vejražka J.

    2013-04-01

    Full Text Available The motion of single air bubbles in flat channels is experimentally investigated. The electrodiffusion technique of near-wall flow diagnostics is applied to measure the wall shear stress distribution under large rising bubbles. The measurements are synchronized with the visual observation of bubble movement by a high-speed camera. The analysis of video records provides information on the bubble shape and terminal velocity. The experiments are carried out for three different channel configuration (with heights of 1.5, 4, and 8 mm, cover a wide range of channel inclination angles (from horizontal to vertical position, and dealing with both the bubbles in stagnant and in co-flowing water. The directionally sensitive, two-strip electrodiffusion probe is proved to be an effective tool to investigate the near-wall flow response to translating bubbles. It provides information not only on the wall shear rate distribution, but also detects the location of near-wall flow reversal, gives an estimate of the thickness of liquid film separating the large bubble from the wall, and provides also the characteristics of capillary waves appearing in the bubble tail region. The effect of channel inclination angle on the modification of wall shear stress distribution along the upper and bottom wall is also discussed.

  12. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    Directory of Open Access Journals (Sweden)

    J. Schneider von Deimling

    2012-03-01

    Full Text Available Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.

  13. Comprehensive experimental and numerical investigations of the effect of frequency and acoustic intensity on the sonolytic degradation of naphthol blue black in water.

    Science.gov (United States)

    Ferkous, Hamza; Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2015-09-01

    In the present work, comprehensive experimental and numerical investigations of the effects of frequency and acoustic intensity on the sonochemical degradation of naphthol blue black (NBB) in water have been carried out. The experiments have been examined at three frequencies (585, 860 and 1140 kHz) and over a wide range of acoustic intensities. The observed experimental results have been discussed using a more realistic approach that combines the single bubble sonochemistry and the number of active bubbles. The single bubble yield has been predicted using a model that combines the bubble dynamics with chemical kinetics consisting of series of chemical reactions (73 reversible reactions) occurring inside an air bubble during the strong collapse. The experimental results showed that the sonochemical degradation rate of NBB increased substantially with increasing acoustic intensity and decreased with increasing ultrasound frequency. The numerical simulations revealed that NBB degraded mainly through the reaction with hydroxyl radical (OH), which is the dominant oxidant detected in the bubble during collapse. The production rate of OH radical inside a single bubble followed the same trend as that of NBB degradation rate. It increased with increasing acoustic intensity and decreased with increasing frequency. The enhancing effect of acoustic intensity toward the degradation of NBB was attributed to the rise of both the individual chemical bubble yield and the number of active bubbles with increasing acoustic intensity. The reducing effect of frequency was attributed to the sharp decrease in the chemical bubble yield with increasing frequency, which would not compensated by the rise of the number of active bubbles with the increase in ultrasound frequency. PMID:25753313

  14. Disruption of an Aligned Dendritic Network by Bubbles During Re-Melting in a Microgravity Environment

    Science.gov (United States)

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.

    2012-01-01

    The quiescent Microgravity environment can be quite dynamic. Thermocapillary flow about "large" static bubbles on the order of 1mm in diameter was easily observed by following smaller tracer bubbles. The bubble induced flow was seen to disrupt a large dendritic array, effectively distributing free branches about the solid-liquid interface. "Small" dynamic bubbles were observed to travel at fast velocities through the mushy zone with the implication of bringing/detaching/redistributing dendrite arm fragments at the solid-liquid interface. Large and small bubbles effectively re-orient/re-distribute dendrite branches/arms/fragments at the solid liquid interface. Subsequent initiation of controlled directional solidification results in growth of dendrites having random orientations which significantly compromises the desired science.

  15. The growth of bubbles in pure aluminum during and after irradiation with 600 MeV

    International Nuclear Information System (INIS)

    Pure aluminum specimens have been irradiated in the Pirex facility installed in a 600 MeV proton accelerator. Proton beams of current densities between 3 and 11 μA/mm2 have been used to obtain doses between 0.9 and 6 dpa at various irradiation temperatures from 390 to 750 K. The specimens were observed after irradiation in a transmission electron microscope (TEM). The helium bubble distributions formed as a function of dose and irradiation temperature have been systematically determined. The bubble growth results are discussed in terms of current models. For in-beam growth, this work shows that up to 520 K, the structure is controlled by nucleation and that the diatomic nucleation model, as proposed by Trinkaus, applies. At higher temperatures, bubble growth is controlling the bubble distribution, but which diffusion mechanism is dominant is not clear. In the case of post-irradiation growth, the results are interpreted in terms of bubble coalescence

  16. Study of air-liquid flow patterns in hydrocyclone enhanced by air bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Z.; Wang, H.; Tu, S.T. [School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai (China)

    2009-01-15

    In order to improve the oil-water separation efficiency of a hydrocyclone, a new process utilizing air bubbles has been developed to enhance separation performance. Using the two-component phase Doppler particle analyzer (PDPA) technique, the velocities of two phases, air and liquid, and air bubble diameter were measured in a hydrocyclone. The air-liquid mixing pump can produce 15 to 60 {mu}m-diameter air bubbles in water. There is an optimum air-liquid ratio for oil-water separation of a hydrocyclone enhanced by air bubbles. An air core occurs in the hydrocyclone when the air-liquid ratio is more than 1 %. The velocities of air bubbles have a similar flow pattern to the water phase. The axial and tangential velocity differences of the air bubbles at different air-liquid ratio are greater near the wall and near the core of the hydrocyclone. The measured results show that the size distribution of the air bubbles produced by the air-liquid mixing pump is beneficial to the process where air bubbles capture oil droplets in the hydrocyclone. These studies are helpful to understand the separation mechanism of a hydrocyclone enhanced by air bubbles. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  17. 用电导探针测定气-液多层桨搅拌槽内气泡尺寸分布%Bubble Size Distributions Measurement in a Gas-Liquid Multi-Impeller Stirred Tank by Using Dual-Conductivity Probe

    Institute of Scientific and Technical Information of China (English)

    朱姝; 包雨云; 陈雷; 高正明; 王东升

    2011-01-01

    In a multi-impeller stirred tank with 0.48 m diameter, the local bubble size distributions (BSD) in the sparged air-water system were measured at 24 ℃ and 81℃ by using the dual electric conductivity probe. The agitators including a hollow blade dispersing turbine below and two down-pumping or up-pumping hydrofoils above were identified as HEDT+2WHD and HEDT+2WHu, respectively. Both the calibration method and reconstruction model were used to convert the measured bubble chord length to the bubble size. The results show that the bubble sizes of using HEDT+2WHu are larger than those of HEDT+2WHD, and the difference is obvious in the regions near the bottom impeller and above the top impeller. The average bubble size of using HEDT+2WHu is 1.13 times of that of using HEDT+2WHD. The BSD measured at 81°C is similar as that measured at room temperature 24℃, but the average Sauter bubble size measured in hot system by using HEDT+2WHu is about 29% greater than that measured in cold system; and when using HEDT+2WHD, the average Sauter bubble size measured in hot system is about 26% greater than that measured in cold system. The measured bubble size values are in good agreement with those predicted by using the correlation published in literature.%在直径0.48 m的椭圆底三层组合桨搅拌槽中,使用双电导探针测定常温24℃及热态81℃通气条件下,空气-去离子水体系的局部气泡尺寸分布,分别利用标定法及数学重构法进行数据处理,得出适宜方法为数值解析的重构法.采用以半椭圆管盘式涡轮(HEDT)为底桨,上两层分别为四叶轴流桨下压(WHD)及上提(WHu)操作的HEDT+2WHD及HEDT+2WHU组合桨,测定槽内沿径向和轴向的气泡尺寸分布.结果表明:采用HEDT+2WHu的气泡尺寸较HEDT+2WHD大,在底桨附近及上层桨以上区域气泡尺寸差异较大:平均气泡直径前者约为后者的1.13倍.热态时气泡尺寸分布规律与常温相近,但气泡尺寸显著增大:热态与

  18. Influence of bubble size and thermal dissipation on compressive wave attenuation in liquid foams

    Science.gov (United States)

    Monloubou, M.; Saint-Jalmes, A.; Dollet, B.; Cantat, I.

    2015-11-01

    Acoustic or blast wave absorption by liquid foams is especially efficient and bubble size or liquid fraction optimization is an important challenge in this context. A resonant behavior of foams has recently been observed, but the main local dissipative process is still unknown. In this paper, we evidence the thermal origin of the dissipation, with an optimal bubble size close to the thermal boundary layer thickness. Using a shock tube, we produce typical pressure variation at time scales of the order of the millisecond, which propagates in the foam in linear and slightly nonlinear regimes.

  19. Axial and Radial Gas Holdup in Bubble Column Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Sameer M.; Ansari, Mohashin E Alan; Kene, Pragati T. [RTMNU Nagpur, Nagpur (India)

    2014-06-15

    Bubble column reactors are considered the reactor of choice for numerous applications including oxidation, hydrogenation, waste water treatment, and Fischer-Tropsch (FT) synthesis. They are widely used in a variety of industrial applications for carrying out gas-liquid and gas-liquid-solid reactions. In this paper, the computational fluid dynamics (CFD) model is used for predicting the gas holdup and its distribution along radial and axial direction are presented. Gas holdup increases linearly with increase in gas velocity. Gas bubbles tends to concentrate more towards the center of the column and follows a wavy path.

  20. Inclusion and Bubble in Steel--A Review

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-feng

    2006-01-01

    The type, morphology and sources of inclusion in steels, including indigenous and exogenous inclusions, were discussed and reviewed. Indigenous inclusions are deoxidation products or inclusions precipitated during cooling and solidification of steel. Exogenous inclusions arise primarily from the incidental chemical (reoxidation) and mechanical interaction of liquid steel with its surroundings (slag entrainment and erosion of lining refractory). Types and causes for the nozzle clogging were also summarized. Reasons for bubble formation and bubble size distribution in steels were discussed thereafter. Finally, morphology and causes of inclusion-related defects in continuously cast steel products were reviewed, such as flange cracking in cans, slag spots and line defects on strips.

  1. Parallel node placement method by bubble simulation

    Science.gov (United States)

    Nie, Yufeng; Zhang, Weiwei; Qi, Nan; Li, Yiqiang

    2014-03-01

    An efficient Parallel Node Placement method by Bubble Simulation (PNPBS), employing METIS-based domain decomposition (DD) for an arbitrary number of processors is introduced. In accordance with the desired nodal density and Newton’s Second Law of Motion, automatic generation of node sets by bubble simulation has been demonstrated in previous work. Since the interaction force between nodes is short-range, for two distant nodes, their positions and velocities can be updated simultaneously and independently during dynamic simulation, which indicates the inherent property of parallelism, it is quite suitable for parallel computing. In this PNPBS method, the METIS-based DD scheme has been investigated for uniform and non-uniform node sets, and dynamic load balancing is obtained by evenly distributing work among the processors. For the nodes near the common interface of two neighboring subdomains, there is no need for special treatment after dynamic simulation. These nodes have good geometrical properties and a smooth density distribution which is desirable in the numerical solution of partial differential equations (PDEs). The results of numerical examples show that quasi linear speedup in the number of processors and high efficiency are achieved.

  2. Acoustic analog of a free-electron laser

    International Nuclear Information System (INIS)

    As well known, at the present time there are many types of laser the operation of which is based on the stimulated emission of light by an active medium. Lasers are generators of coherent electromagnetic waves in the range from ultraviolet to submillimeters. But acoustic analogs of such devices have not been created up to now in spite of the progress in laser technology. Meanwhile, an acoustic laser could have a lot of interesting applications. Recently a theoretical scheme for an acoustic laser was proposed by the present author. A liquid dielectric with dispersed particles was considered as an active medium. The pumping was created by an oscillating electric field deforming dispersed particle volumes. Different types of oils or distilled water can serve as a liquid dielectric with gas bubbles as dispersed particles. Gas bubbles in water can be created by an electrolysis. The phase bunching of the initially incoherent emitters (gas bubbles) was realized by acoustic radiation forces. This scheme is an analog of the free-electron laser (FEL). It was shown that two types of losses must be overcome for the beginning of a generation. The first type results from the energy dissipation in the active medium and the second one is caused by radiation losses at the boundaries of the resonator. The purposes of this report are: (1) to discuss the analogies between the acoustic laser and FEL; (2) to propose an effective scheme of an acoustic laser with a mechanical pumping (by a piezoelectric emitter of the piston type); (3) to consider the schemes of acoustic lasers with the different types of the resonators (rectangular and cylindrical); (4) to discuss the possibility of the creation of an impact acoustic laser (5) to discuss the experimental works which are planned to be carried out in cooperation with prof. L.A. Crum

  3. Cavitation bubbles collapse characteristics behind a convex body

    Institute of Scientific and Technical Information of China (English)

    李瑶; 许唯临; 张亚磊; 张敬威; 陈春祺; 阿蓉

    2013-01-01

    Cavitation bubbles behind a convex body were experimentally studied by a high speed camera and a hydrophone synch- ronously. The experiments were conducted in a circulating water tunnel with five various contraction ratios:b=0.497,b=0.6,b=0.697,b=0.751, andb=0.799. The distributions of the cavitation bubble collapse positions behind the five different convex bodies were obtained by combining the images taken by the high speed camera. According to the collapse positions, it was found that no cavitation bubble was collapsed in the region near the wall until the ratio of the water head loss over the convex body height was larger than 20, which can be used to predict if the cavitation damage would occur in the tunnel with orifice energy dissipaters.

  4. Conformal grasping using feedback controlled bubble actuator array

    Science.gov (United States)

    Carrigan, Wei; Stein, Richard; Mittal, Manoj; Wijesundara, Muthu B. J.

    2014-06-01

    This paper presents an implementation of a bubble actuator array (BAA) based active robotic skin, a modular system, onto existing low cost robotic end-effectors or prosthetic hands for conformal grasping of objects. The active skin is comprised of pneumatically controlled polyurethane rubber bubbles with overlaid sensors for feedback control. Sensor feedback allows the BAA based robotic skin to conformally grasp an object with an explicit uniform force distribution. The bubble actuator array reported here is capable of applying up to 4N of force at each point of contact and tested for conformally grasping objects with a radius of curvature up to 57.15mm. Once integrated onto a two-finger gripper with one degree of freedom (DOF), the active skin was shown to reduce point of contact forces of up to 50% for grasped objects.

  5. Using DNS and Statistical Learning to Model Bubbly Channel Flow

    Science.gov (United States)

    Ma, Ming; Lu, Jiacai; Tryggvason, Gretar

    2015-11-01

    The transient evolution of laminar bubbly flow in a vertical channel is examined by direct numerical simulation (DNS). Nearly spherical bubbles, initially distributed evenly in a fully developed parabolic flow, are driven relatively quickly to the walls, where they increase the drag and reduce the flow rate on a longer time scale. Once the flow rate has been decreased significantly, some of the bubbles move back into the channel interior and the void fraction there approaches the value needed to balance the weight of the mixture and the imposed pressure gradient. A database generated by averaging the DNS results is used to model the closure terms in a simple model of the average flow. Those terms relate the averaged lateral flux of the bubbles, the velocity fluctuations and the averaged surface tension force to the fluid shear, the void fraction and its gradient, as well as the distance to the nearest wall. An aggregated neural network is used for the statistically leaning of unknown closures, and closure relationships are tested by following the evolution of bubbly channel flow with different initial conditions. It is found that the model predictions are in reasonably good agreement with DNS results. Supported by NSF.

  6. Bursting Bubbles and Bilayers

    Directory of Open Access Journals (Sweden)

    Steven P. Wrenn, Stephen M. Dicker, Eleanor F. Small, Nily R. Dan, Michał Mleczko, Georg Schmitz, Peter A. Lewin

    2012-01-01

    Full Text Available This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition - in particular, poly (ethylene glyclol (PEG - is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the “brush” regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented

  7. Measurement and Analysis of Gas Bubbles Near a Reference Electrode in Aqueous Solutions

    International Nuclear Information System (INIS)

    Bubble size distributions (BSDs) near a reference electrode (RE) in aqueous glycerol solutions of an electrolyte NaCl have been investigated under various gas superficial velocities (US). BSD and voltage reading of the solution were measured by using a high-speed digital camera and a pH/voltage meter, respectively. The results show that bubble size (b) increases with liquid viscosity (μc) and US. Self-similarity is seen and can be described by the log-normal form of the continuous number frequency distribution. The result shows that b controls the voltage reading in each solution. As b increases, the voltage increases because of gas bubbles interrupting their electrolyte paths in the solutions. An analysis of bubble rising velocity reveals that Stokes Law should be used cautiously to describe the system. The fundamental equation for bubble formation was developed via Newton's second law of motion and shown to be the function of three dimensionless groups--Weber number, Bond number, and Capillary number. After linking an electrochemical principle in the practical application, the result indicates that the critical bubble size is ∼177 (micro)m. Further analysis suggests that there may be 3000 to 70,000 bubbles generated on the anode surface depending on the size of initial bubbles and provides the potential cause of the efficiency drop observed in the practical application

  8. Tohoku one meter bubble chamber

    International Nuclear Information System (INIS)

    At the request of Tohoku University and the National Laboratory for High Energy Physics, IHI has developed a complete freon bubble chamber system successfully, which is used for photo analysis of elementary particles physics. This system will be delivered to Fermi National Accelerator Laboratory (FNAL) in Illinois (U.S.A.) and will be coupled with the superconducting accelerator (TEVATRON) for the study of elementary particles. The total system of the freon bubble chamber is composed of a stainless steel casting spherical bubble chamber with a diameter of about one meter, an expansion system for freon pressure control, hydraulic system for driving an expansion piston, a freon feed system, a temperature control system, an overall control system as well as camera and flashlight for photograph. (author)

  9. Holmium laser ablation of cartilage: effects of cavitation bubbles

    Science.gov (United States)

    Asshauer, Thomas; Jansen, Thomas; Oberthur, Thorsten; Delacretaz, Guy P.; Gerber, Bruno E.

    1995-05-01

    The ablation of fresh harvested porcine femur patellar groove cartilage by a 2.12 micrometers Cr:Tm:Ho:YAG laser in clinically used irradiation conditions was studied. Laser pulses were delivered via a 600 micrometers diameter fiber in isotonic saline. Ablation was investigated as a function of the angle of incidence of the delivery fiber with respect to the cartilage surface (0-90 degrees) and of radiant exposure. Laser pulses with energies of 0.5, 1.0 and 1.5 J and a duration of 250 microseconds were used. A constant fiber tip-tissue distance of 1 mm was maintained for all experiments. The dynamics of the induced vapor bubble and of the ablation process was monitored by time resolved flash videography with a 1 microseconds illumination. Acoustic transients were measured with a piezoelectric PVDF needle probe hydrophone. Bubble attachment to the cartilage surface during the collapse phase, leading to the direct exposition of the cartilage surface to the maximal pressure generated, was observed in all investigated irradiation conditions. Maximal pressure transients of up to 200 bars (at 1 mm distance from the collapse center) were measured at the bubble collapse at irradiation angles >= 60 degrees. No significant pressure variation was observed in perpendicular irradiation conditions as a function of radiant exposure. A significant reduction of the induced pressure for irradiation angles

  10. On the dynamics of bubbles in boiling water

    International Nuclear Information System (INIS)

    Research highlights: → We devote this work to investigate the bubbles dynamics in boiling water. → A simple experiment of laser scattering was designed to obtain dynamical features. → Correlations and non-exponential distributions were found. → A simple model was able to describe several aspects of the system. - Abstract: We investigate the dynamics of many interacting bubbles in boiling water by using a laser scattering experiment. Specifically, we analyze the temporal variations of a laser intensity signal which passed through a sample of boiling water. Our empirical results indicate that the return interval distribution of the laser signal does not follow an exponential distribution; contrariwise, a heavy-tailed distribution has been found. Additionally, we compare the experimental results with those obtained from a minimalist phenomenological model, finding a good agreement.

  11. Nanoscale dynamics of Joule heating and bubble nucleation in a solid-state nanopore.

    Science.gov (United States)

    Levine, Edlyn V; Burns, Michael M; Golovchenko, Jene A

    2016-01-01

    We present a mathematical model for Joule heating of an electrolytic solution in a nanopore. The model couples the electrical and thermal dynamics responsible for rapid and extreme superheating of the electrolyte within the nanopore. The model is implemented numerically with a finite element calculation, yielding a time and spatially resolved temperature distribution in the nanopore region. Temperatures near the thermodynamic limit of superheat are predicted to be attained just before the explosive nucleation of a vapor bubble is observed experimentally. Knowledge of this temperature distribution enables the evaluation of related phenomena including bubble nucleation kinetics, relaxation oscillation, and bubble dynamics. PMID:26871171

  12. Bubbles formation in helium ion irradiated Cu/W multilayer nanocomposites: Effects on structure and mechanical properties

    Science.gov (United States)

    Callisti, M.; Karlik, M.; Polcar, T.

    2016-05-01

    This study investigates the effects of He bubbles on structural and mechanical properties of sputter-deposited Cu/W multilayers. A multilayer with a periodicity of 10 nm was deposited and subjected to helium ion irradiation with two different fluences. He bubbles formed mostly in Cu layers and their distribution was affected by He concentration and radiation damage. According to SRIM calculations, in low He concentration regions bubbles formed mostly along interfaces, while more homogeneously distributed bubbles were found in Cu layers and along columnar grain boundaries in higher He concentration regions. We suggest that the capability of interfaces to annihilate point defects is weakened by the He bubbles shielding effect. Nanoindentation tests revealed a hardness decrease amounting to ∼0.5 and ∼1 GPa for low and high fluences, respectively. The observed softening effect is attributed to He storage-induced changes in residual stresses and columnar grain boundary/interfacial sliding facilitated by He bubbles.

  13. Hydrodynamic Interactions of a Bubble Pair and Bubbles in Clusters

    Czech Academy of Sciences Publication Activity Database

    Stanovský, Petr; Růžička, Marek

    Prague : ICPF ASCR, 2013. s. 122. ISBN N. [Workshop on Smart and Green Interfaces 2013. 20.3.2013-22.03.2013, Prague] Grant ostatní: COST (XE) MP1106 Institutional support: RVO:67985858 Keywords : ultrapure water * bubbles * silicon oils Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  14. Modulational instability of ion acoustic waves in e-p-i plasmas with electrons and positrons following a q-nonextensive distribution

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, Parvin [Department of Physics, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Mottaghizadeh, Marzieh [Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Pakzad, Hamid Reza [Department of Physics, Bojnourd Branch, Islamic Azad University, Bojnourd (Iran, Islamic Republic of)

    2011-10-15

    The propagation of ion acoustic waves (IAWs) in plasmas composed of ions and nonextensive electrons and positrons is investigated. By means of the reduction perturbation technique, a nonlinear Schroedinger equation is derived and the modulation instability (MI) of ion acoustic waves is analyzed in detail. The effects of different ranges of the nonextensive parameter q on the MI are studied. The growth rate of the MI is also given for different values of the q parameter. It is also found that the ratio of the electron temperature to positron temperature and the ratio of the positron density to electron density modify the nature of IAWs instability and the solitary structures.

  15. Acoustic lenses

    International Nuclear Information System (INIS)

    Acoustic lenses focus ultrasound to produce pencil-like beams with reduced near fields. When fitted to conventional (flat-faced) transducers, such lenses greatly improve the ability to detect and size defects. This paper describes a program developed to design acoustic lenses for use in immersion or contact inspection, using normal or angle beam mode with flat or curved targets. Lens surfaces are circular in geometry to facilitate machining. For normal beam inspection of flat plate, spherical or cylindrical lenses are used. For angle beam or curved surface inspections, a compound lens is required to correct for the extra induced aberration. Such a lens is aspherical with one radius of curvature in the plane of incidence, and a different radius of curvature in the plane perpendicular to the incident plane. The resultant beam profile (i.e., location of the acoustic focus, beam diameter, 6 dB working range) depends on the degree of focusing and the transducer used. The operating frequency and bandwidth can be affected by the instrumentation used. Theoretical and measured beam profiles are in good agreement. Various applications, from zone focusing used for defect sizing in thick plate, to line focusing for pipe weld inspection, are discussed

  16. Radiation Characteristics of Glass Containing Gas Bubbles

    OpenAIRE

    Pilon, Laurent; Viskanta, Raymond

    2003-01-01

    In many materials processing and manufacturing situations such as steel, aluminum, ceramics and glass, gas bubbles can form in liquid and solid phases. The presence of such bubbles affects the thermophysical properties and radiation characteristics of the two-phase system and hence the transport phenomena. This paper presents a general formulation of the radiation characteristics of semitransparent media containing large gas bubbles (bubble radius is much larger than the wavelength of radiati...

  17. Bubbles Quantified In vivo by Ultrasound Relates to Amount of Gas Detected Post-mortem in Rabbits Decompressed from High Pressure.

    Science.gov (United States)

    Bernaldo de Quirós, Yara; Møllerløkken, Andreas; Havnes, Marianne B; Brubakk, Alf O; González-Díaz, Oscar; Fernández, Antonio

    2016-01-01

    The pathophysiological mechanism of decompression sickness is not fully understood but there is evidence that it can be caused by intravascular and autochthonous bubbles. Doppler ultrasound at a given circulatory location is used to detect and quantify the presence of intravascular gas bubbles as an indicator of decompression stress. In this manuscript we studied the relationship between presence and quantity of gas bubbles by echosonography of the pulmonary artery of anesthetized, air-breathing New Zealand White rabbits that were compressed and decompressed. Mortality rate, presence, quantity, and distribution of gas bubbles elsewhere in the body was examined postmortem. We found a strong positive relationship between high ultrasound bubble grades in the pulmonary artery, sudden death, and high amount of intra and extra vascular gas bubbles widespread throughout the entire organism. In contrast, animals with lower bubble grades survived for 1 h after decompression until sacrificed, and showed no gas bubbles during dissection. PMID:27493634

  18. Frictional drag reduction by bubble injection

    Science.gov (United States)

    Murai, Yuichi

    2014-07-01

    The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.

  19. Modeling bubble collapse aggressiveness in traveling bubble cavitation using bubble breakup model

    Czech Academy of Sciences Publication Activity Database

    Zima, Patrik; Sedlář, M.

    Singapore : Research Publishing Services, 2012 - (Ohl, C.; Klaseboer, E.; Ohl, S.; Gong, S.; Khoo, B.), s. 182-186 ISBN 978-981-07-2826-7. [International Symposium on Cavitation /8./ CAV 2012. Singapur (SG), 13.08.2012-16.08.2012] R&D Projects: GA ČR GAP101/10/1428 Institutional research plan: CEZ:AV0Z20760514 Keywords : bubble collapse * traveling bubble cavitation * numerical modeling Subject RIV: BK - Fluid Dynamics http://rpsonline.com.sg/proceedings/9789810728267/html/209.xml51.xml

  20. Bubble performance of a novel dissolved air flotation(DAF) unit

    Institute of Scientific and Technical Information of China (English)

    CHEN Fu-tai; PENG Feng-xian; WU Xiao-qing; LUAN Zhao-kun

    2004-01-01

    ES-DAF, a novel DAF with Iow cost, high reliability and easy controllability, was studied. Without a costly air saturator, ESDAF consists of an ejector and a static mixer between the pressure side and suction side of the recycle rotary pump. The bubble size distribution in this novel unit was studied in detail by using a newly developed CCD imagination through a microscope. Compared with MDAF under the same saturation pressure, ES-DAF can produce smaller bubble size and higher bubble volume concentration, especially in lower pressure. In addition, the bubble size decreases with the increase of reflux ratio or decrease of superficial air-water ratio. These results suggested that smaller bubbles will be formed when the initial number of nucleation sites increases by enhancing the turbulence intensity in the saturation system.

  1. Observation of bubble formation in water during microwave irradiation by dynamic light scattering

    Science.gov (United States)

    Asakuma, Yusuke; Munenaga, Takuya; Nakata, Ryosuke

    2015-10-01

    A microwave reactor was designed for in situ observation of nano- and micro-bubbles, and size profiles during and after irradiation were measured with respect to irradiation power and time. Bubble formation in water during irradiation was observed even at temperatures below the boiling point of water. The maximum size strongly depended on radiation power and time, even at a given temperature. Nano-particles in the dispersion medium were found to play an important role in achieving more stable nucleation of bubbles around particles, and stable size distributions were obtained from clear autocorrelation by a dynamic light scattering system. Moreover, a combination of microwave induction heating and the addition of nano-particles to the dispersion medium can prevent heterogeneous nucleation of bubbles on the cell wall. Quantitative nano-bubble size profiles obtained by in situ observation provide useful information regarding microwave-based industrial processes for nano-particle production.

  2. Numerical study of bubble generation in a turbulent two-phase Couette flow

    Science.gov (United States)

    Ovsyannikov, Andrey; Mani, Ali; Moin, Parviz; Kim, Dokyun

    2014-11-01

    The objective of this work is to develop an understanding bubble generation mechanism due to interactions between free surfaces and turbulent boundary layers as commonly seen near ship walls. To this end, we have focused on a canonical problem that involves Couette flow between two vertical parallel walls with an air-water interface in between. We have considered flow at Reynolds number of 8000 and Froude number of 3.6, both based on half domain dimension and water properties. Our calculations resolve both Kolmogorov lengths and the Hinze scale. Additionally, a conservative VOF method coupled to a subgrid Lagrangian breakup model is used to represent the ligament breakup phenomena and their resulting bubbles and drops. We will present results from these calculations revealing bubble formation rates, bubble size distribution, and effects of bubbles on modulation of turbulence Supported by ONR.

  3. Automated high-speed video analysis of the bubble dynamics in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Ilchenko, Volodymyr; Sattelmayer, Thomas [Technische Univ. Muenchen, Lehrstuhl fuer Thermodynamik, Garching (Germany)

    2004-04-01

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The test-section consists of a rectangular channel with a one side heated copper strip and a very good optical access. For the optical observation of the bubble behaviour the high-speed cinematography is used. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, a huge number of bubble cycles could be analysed. The structure of the developed algorithms for the detection of the bubble diameter, the bubble lifetime, the lifetime after the detachment process and the waiting time between two bubble cycles is described. Subsequently, the results from using these automated procedures are presented. A remarkable novelty is the presentation of all results as distribution functions. This is of physical importance because the commonly applied spatial and temporal averaging leads to a loss of information and, moreover, to an unjustified deterministic view of the boiling process, which exhibits in reality a very wide spread of bubble sizes and characteristic times. The results show that the mass flux dominates the temporal bubble behaviour. An increase of the liquid mass flux reveals a strong decrease of the bubble life - and waiting time. In contrast, the variation of the heat flux has a much smaller impact. It is shown in addition that the investigation of the bubble history using automated algorithms delivers novel information with respect to the bubble lift-off probability. (Author)

  4. Applications of acoustics in insect pest management

    Science.gov (United States)

    Acoustic technology has been applied for many years in studies of insect communication and in the monitoring of calling-insect population levels, geographic distributions, and diversity, as well as in the detection of cryptic insects in soil, wood, container crops, and stored products. Acoustic devi...

  5. Eternal inflation, bubble collisions, and the disintegration of the persistence of memory

    International Nuclear Information System (INIS)

    We compute the probability distribution for bubble collisions in an inflating false vacuum which decays by bubble nucleation. Our analysis generalizes previous work of Guth, Garriga, and Vilenkin to the case of general cosmological evolution inside the bubble, and takes into account the dynamics of the domain walls that form between the colliding bubbles. We find that incorporating these effects changes the results dramatically: the total expected number of bubble collisions in the past lightcone of a typical observer is N ∼ γ Vf/Vi , where γ is the fastest decay rate of the false vacuum, Vf is its vacuum energy, and Vi is the vacuum energy during inflation inside the bubble. This number can be large in realistic models without tuning. In addition, we calculate the angular position and size distribution of the collisions on the cosmic microwave background sky, and demonstrate that the number of bubbles of observable angular size is NLS ∼ (Ωk)1/2N, where Ωk is the curvature contribution to the total density at the time of observation. The distribution is almost exactly isotropic

  6. Impurity bubbles in a BEC

    Science.gov (United States)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  7. Diamagnetic "bubble" equilibria in linear traps

    Science.gov (United States)

    Beklemishev, A. D.

    2016-08-01

    The plasma equilibrium in a linear trap at β ≈ 1 (or above the mirror-instability threshold) under the topology-conservation constraint evolves into a kind of diamagnetic "bubble." This can take two forms: either the plasma body greatly expands in radius while containing the same magnetic flux, or, if the plasma radius is limited, the plasma distribution across flux-tubes changes, so that the same cross-section contains a greatly reduced flux. If the magnetic field of the trap is quasi-uniform around its minimum, the bubble can be made roughly cylindrical, with radius much larger than the radius of the corresponding vacuum flux-tube, and with non-paraxial ends. Then the effective mirror ratio of the diamagnetic trap becomes very large, but the cross-field transport increases. The confinement time can be found from solution of the system of equilibrium and transport equations and is shown to be τ E ≈ √{ τ ∥ τ ⊥ } . If the cross-field confinement is not too degraded by turbulence, this estimate in principle allows construction of relatively compact fusion reactors with lengths in the range of a few tens of meters. In many ways, the described diamagnetic confinement and the corresponding reactor parameters are similar to those claimed by the field-reversed configurations.

  8. Hot and cold bubbles in M87

    CERN Document Server

    Kaiser, C R

    2003-01-01

    The X-ray data obtained with XMM-Newton is used to investigate the complex structure of the gas in the atmosphere of the Virgo cluster around M87. We construct a simple model for the temperature and density distribution. This model implies that the cumulative mass of the cluster gas is a power-law of its entropy index, $kT n^{-2/3}$, similar to the Hydra cluster. This supports the idea that such power-laws are a direct consequence of gas cooling in a gravitational potential. In the cluster atmosphere hot bubbles of gas injected by the AGN are rising buoyantly. We estimate the age of these structures from the synchrotron radio data and find that this `radiative age' is consistent with the estimated dynamical timescale. However, this requires a spatial separation of the relativistic particles from the magnetic field. The age estimates suggest an activity cycle of the AGN in M87 of roughly $10^8$ years. We show that the largest radio structures are consistent with being the remnants of buoyant bubbles injected b...

  9. Diamagnetic "bubble" equilibria in linear traps

    CERN Document Server

    Beklemishev, Alexei D

    2016-01-01

    The plasma equilibrium in a linear trap at $\\beta\\approx 1$ (or above the mirror-instability threshold) under the topology-conservation constraint evolves into a kind of diamagnetic "bubble". This can take two forms: either the plasma body greatly expands in radius while containing the same magnetic flux, or, if the plasma radius is limited, the plasma distribution across flux-tubes changes, so that the same cross-section contains a greatly reduced flux. If the magnetic field of the trap is quasi-uniform around its minimum, the bubble can be made roughly cylindrical, with radius much larger than the radius of the corresponding vacuum flux-tube, and with non-paraxial ends. Then the effective mirror ratio of the diamagnetic trap becomes very large, but the cross-field transport increases. The confinement time can be found from solution of the system of equilibrium and transport equations and is shown to be $\\tau_E\\approx\\sqrt{\\tau_\\parallel\\tau_\\perp}$. If the cross-field confinement is not too degraded by turb...

  10. The Development of Automated Detection Techniques for Passive Acoustic Monitoring as a Tool for Studying Beaked Whale Distribution and Habitat Preferences in the California Current Ecosystem

    Science.gov (United States)

    Yack, Tina M.

    The objectives of this research were to test available automated detection methods for passive acoustic monitoring and integrate the best available method into standard marine mammal monitoring protocols for ship based surveys. The goal of the first chapter was to evaluate the performance and utility of PAMGUARD 1.0 Core software for use in automated detection of marine mammal acoustic signals during towed array surveys. Three different detector configurations of PAMGUARD were compared. These automated detection algorithms were evaluated by comparing them to the results of manual detections made by an experienced bio-acoustician (author TMY). This study provides the first detailed comparisons of PAMGUARD automated detection algorithms to manual detection methods. The results of these comparisons clearly illustrate the utility of automated detection methods for odontocete species. Results of this work showed that the majority of whistles and click events can be reliably detected using PAMGUARD software. The second chapter moves beyond automated detection to examine and test automated classification algorithms for beaked whale species. Beaked whales are notoriously elusive and difficult to study, especially using visual survey methods. The purpose of the second chapter was to test, validate, and compare algorithms for detection of beaked whales in acoustic line-transect survey data. Using data collected at sea from the PAMGUARD classifier developed in Chapter 2 it was possible to measure the clicks from visually verified Baird's beaked whale encounters and use this data to develop classifiers that could discriminate Baird's beaked whales from other beaked whale species in future work. Echolocation clicks from Baird's beaked whales, Berardius bairdii, were recorded during combined visual and acoustic shipboard surveys of cetacean populations in the California Current Ecosystem (CCE) and with autonomous, long-term recorders at four different sites in the Southern

  11. Star formation around the mid-infrared bubble CN 148

    CERN Document Server

    Dewangan, L K; Grave, J M C; Mallick, K K

    2014-01-01

    We present a multi-wavelength study to analyse the star formation process associated with the mid-infrared bubble CN 148 (H II region G10.3-0.1), which harbors an O5V-O6V star. The arc-shaped distribution of molecular CO(2-1) emission, the cold dust emission, and the polycyclic aromatic hydrocarbon features trace a photodissociation region (PDR) around the H II region. We have identified 371 young stellar objects (YSOs) in the selected region and, interestingly, their spatial distribution correlates well with the PDR. 41% of these YSOs are present in 13 clusters, each having visual extinction larger than 16 mag. The clusters at the edges of the bubble (both northeast and southwest) are found to be relatively younger than the clusters located further away from the bubble. We also find that four 6.7 GHz methanol masers, two Extended Green Objects, an ultra-compact H II region, and a massive protostar candidate (as previously reported) are spatially positioned at the edges of the bubble. The existence of an appa...

  12. Numerical simulation of bubble behaviors in subcooled flow boiling under swing motion

    Energy Technology Data Exchange (ETDEWEB)

    Wei Jinghua [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044 (China); Pan Liangming, E-mail: cneng@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044 (China); Chen Deqi; Zhang Hui [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044 (China); Xu Jianjun; Huang Yanping [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 6140041 (China)

    2011-08-15

    Highlights: > Secondary flow exists inside bubbles due to the evaporation and condensation. > The relative motion of these two bubbles generates two symmetrical vortexes and a stagnant region. > The supplementary microlayer between the two coalescing bubbles is observed in the simulation. > The additional inertia forces generated by swing are negligible. > The fluctuation of mass flow rate caused by swing motion effects the F{sub sl}, F{sub qs}, F{sub h} and the phase distribution significantly. - Abstract: A numerical investigation of bubble behaviors in subcooled flow boiling of water under the effect of additional inertial forces has been performed considering energy and mass transfer during phase change based on the VOF (volume-of-fluid) method. The pressure ranges from 0.1 to 1.0 MPa, and heat flux from 200 to 500 kW/m{sup 2}. The mass flow rate and inlet subcooling are specified at 320 kg/m{sup 2} s and 10 K, respectively. The liquid-vapor interface is captured using the piecewise linearity interpolation calculation (PLIC) geometry restructuring method. The simulations are carried out on upward water flow in a vertical, rectangular duct with single side heating surface. The pressure, velocity vector and temperature distribution around two isolated bubbles are studied firstly. The behaviors of bubble coalescence, sliding, detachment from the heated wall, and the bubble shape variation during lifetime are further examined. The bubble behaviors in the different pressure and heat flux are investigated. The simulated results of bubble growth rate and wall temperature are agreed well with the correlations in the literatures. The additional inertial forces caused by swing are negligible, but the fluctuation of mass flow rate caused by swing motion influences the forces acting on bubble significantly. Compared with the motionless condition, the pressure drop is increased and the fluctuation becomes acute as heat flux increases under the swing condition.

  13. Experimental study of the interaction between the spark-induced cavitation bubble and the air bubble

    Institute of Scientific and Technical Information of China (English)

    罗晶; 许唯临; 牛志攀; 罗书靖; 郑秋文

    2013-01-01

    Experiments are carried out by using high-speed photography to investigate the interaction between the spark-generated cavitation bubble and the air bubble in its surrounding fluid. Three problems are discussed in detail: the impact of the air bubble upon the development of the cavitation bubble, the evolution of the air bubble under the influence of the cavitation bubble, and the change of the fluid pressure during the development of a micro jet of the cavitation bubble. Based on the experimental results, under the condition of no air bubble present, the lifetime of the cavitation bubble from expansion to contraction increases with the increase of the maximum radius. On the other hand, when there is an air bubble present, different sized cavitation bubbles have similarity with one another generally in terms of the lifetime from expansion to contraction, which does not depend on the maximum radius. Also, with the presence of an air bubble, the lifetime of the smaller cavitation bubble is extended while that of the bigger ones reduced. Furthermore, it is shown in the experiment that the low pressure formed in the opposite direction to the cavitation bubble micro jet makes the air bubble in the low pressure area being stretched into a steplike shape.

  14. Gas bubble disease monitoring and research of juvenile salmonids

    International Nuclear Information System (INIS)

    This document describes the project activities 1996--1997 contract year. This report is composed of three chapters which contain data and analyses of the three main elements of the project: field research to determine the vertical distribution of migrating juvenile salmonids, monitoring of juvenile migrants at dams on the Snake and Columbia rivers, and laboratory experiments to describe the progression of gas bubble disease signs leading to mortality. The major findings described in this report are: A miniature pressure-sensitive radio transmitter was found to be accurate and precise and, after compensation for water temperature, can be used to determine the depth of tagged-fish to within 0.32 m of the true depth (Chapter 1). Preliminary data from very few fish suggest that depth protects migrating juvenile steelhead from total dissolved gas supersaturation (Chapter 1). As in 1995, few fish had any signs of gas bubble disease, but it appeared that prevalence and severity increased as fish migrated downstream and in response to changing gas supersaturation (Chapter 2). It appeared to gas bubble disease was not a threat to migrating juvenile salmonids when total dissolved gas supersaturation was < 120% (Chapter 2). Laboratory studies suggest that external examinations are appropriate for determining the severity of gas bubble disease in juvenile salmonids (Chapter 3). The authors developed a new method for examining gill arches for intravascular bubbles by clamping the ventral aorta to reduce bleeding when arches were removed (Chapter 3). Despite an outbreak of bacterial kidney disease in the experimental fish, the data indicate that gas bubble disease is a progressive trauma that can be monitored (Chapter 3)

  15. Hydrodynamics in a swarm of rising bubbles

    International Nuclear Information System (INIS)

    In many applications, bubbles are used to agitate a liquid in order to enhance mixing and transfer. This work is devoted to the study of the hydrodynamics in a stable bubble column. Experimentally, we have determined the properties of the velocity fluctuations inside and behind a homogeneous swarm of rising bubbles for different bubble sizes and gas volume fractions α: self-similarity in α0,4, spectrum in k-3 and integral length scale controlled by buoyancy. Numerically, we have reproduced these properties by means of large-scale simulations, the bubbles being modeled by volume-forces. This confirms that the dynamics is controlled by wake interactions. (author)

  16. Shell correction energy for bubble nuclei

    CERN Document Server

    Yu, Y; Magierski, P; Bulgac, Aurel; Magierski, Piotr

    2000-01-01

    The positioning of a bubble inside a many fermion system does not affect the volume, surface or curvature terms in the liquid drop expansion of the total energy. Besides possible Coulomb effects, the only other contribution to the ground state energy of such a system arises from shell effects. We show that the potential energy surface is a rather shallow function of the displacement of the bubble from the center and in most cases the preferential position of a bubble is off center. Systems with bubbles are expected to have bands of extremely low lying collective states, corresponding to various bubble displacements.

  17. The Short Time Scale Events of Acoustic Droplet Vaporization

    Science.gov (United States)

    Li, David S.; Kripfgans, Oliver D.; Fowlkes, J. Brian; Bull, Joseph L.

    2012-11-01

    The conversion of a liquid microdroplets to gas bubbles initiated by an acoustic pulse, known as acoustic droplet vaporization (ADV), has been proposed as a method to selectively generate gas emboli for therapeutic purposes (gas embolotherapy), specifically for vascularized tumors. In this study we focused on the first 10 microseconds of the ADV process, namely the gas nucleation site formation and bubble evolution. BSA encapsulated dodecafluoropentane (CAS: 678-26-2) microdroplets were isolated at the bottom of a degassed water bath held at 37°C. Microdroplets, diameters ranging from 5-65 microns, were vaporized using a single pulse (4-16 cycles) from a 7.5 MHz focused single element transducer ranging from 2-5 MPa peak negative pressure and images of the vaporization process were recorded using an ultra-high speed camera (SIM802, Specialised Imaging Ltd). It was observed that typically two gas nuclei were formed in series with one another on axis with ultrasound pulse. However, relative positioning of the nucleation sites within the droplet depended on droplet diameter. Additionally, depending on acoustic parameters the bubble could deform into a toroidal shape. Such dynamics could suggest acoustic parameters that may result in tissue damage. This work is supported by NIH grant R01EB006476.

  18. Dark Matter Search Results from the PICO-2L C3F8 Bubble Chamber

    Science.gov (United States)

    Amole, C.; Ardid, M.; Asner, D. M.; Baxter, D.; Behnke, E.; Bhattacharjee, P.; Borsodi, H.; Bou-Cabo, M.; Brice, S. J.; Broemmelsiek, D.; Clark, K.; Collar, J. I.; Cooper, P. S.; Crisler, M.; Dahl, C. E.; Daley, S.; Das, M.; Debris, F.; Dhungana, N.; Farine, J.; Felis, I.; Filgas, R.; Fines-Neuschild, M.; Girard, F.; Giroux, G.; Hai, M.; Hall, J.; Harris, O.; Jackson, C. M.; Jin, M.; Krauss, C. B.; Lafrenière, M.; Laurin, M.; Lawson, I.; Levine, I.; Lippincott, W. H.; Mann, E.; Martin, J. P.; Maurya, D.; Mitra, P.; Neilson, R.; Noble, A. J.; Plante, A.; Podviianiuk, R. B.; Priya, S.; Robinson, A. E.; Ruschman, M.; Scallon, O.; Seth, S.; Sonnenschein, A.; Starinski, N.; Štekl, I.; Vázquez-Jáuregui, E.; Wells, J.; Wichoski, U.; Zacek, V.; Zhang, J.; PICO Collaboration

    2015-06-01

    New data are reported from the operation of a 2 liter C3F8 bubble chamber in the SNOLAB underground laboratory, with a total exposure of 211.5 kg days at four different energy thresholds below 10 keV. These data show that C3F8 provides excellent electron-recoil and alpha rejection capabilities at very low thresholds. The chamber exhibits an electron-recoil sensitivity of 98.2 %. These data also include the first observation of a dependence of acoustic signal on alpha energy. Twelve single nuclear recoil event candidates were observed during the run. The candidate events exhibit timing characteristics that are not consistent with the hypothesis of a uniform time distribution, and no evidence for a dark matter signal is claimed. These data provide the most sensitive direct detection constraints on WIMP-proton spin-dependent scattering to date, with significant sensitivity at low WIMP masses for spin-independent WIMP-nucleon scattering.

  19. Dark Matter Search Results from the PICO-2L C3F8 Bubble Chamber.

    Science.gov (United States)

    Amole, C; Ardid, M; Asner, D M; Baxter, D; Behnke, E; Bhattacharjee, P; Borsodi, H; Bou-Cabo, M; Brice, S J; Broemmelsiek, D; Clark, K; Collar, J I; Cooper, P S; Crisler, M; Dahl, C E; Daley, S; Das, M; Debris, F; Dhungana, N; Farine, J; Felis, I; Filgas, R; Fines-Neuschild, M; Girard, F; Giroux, G; Hai, M; Hall, J; Harris, O; Jackson, C M; Jin, M; Krauss, C B; Lafrenière, M; Laurin, M; Lawson, I; Levine, I; Lippincott, W H; Mann, E; Martin, J P; Maurya, D; Mitra, P; Neilson, R; Noble, A J; Plante, A; Podviianiuk, R B; Priya, S; Robinson, A E; Ruschman, M; Scallon, O; Seth, S; Sonnenschein, A; Starinski, N; Štekl, I; Vázquez-Jáuregui, E; Wells, J; Wichoski, U; Zacek, V; Zhang, J

    2015-06-12

    New data are reported from the operation of a 2 liter C3F8 bubble chamber in the SNOLAB underground laboratory, with a total exposure of 211.5 kg days at four different energy thresholds below 10 keV. These data show that C3F8 provides excellent electron-recoil and alpha rejection capabilities at very low thresholds. The chamber exhibits an electron-recoil sensitivity of 98.2%. These data also include the first observation of a dependence of acoustic signal on alpha energy. Twelve single nuclear recoil event candidates were observed during the run. The candidate events exhibit timing characteristics that are not consistent with the hypothesis of a uniform time distribution, and no evidence for a dark matter signal is claimed. These data provide the most sensitive direct detection constraints on WIMP-proton spin-dependent scattering to date, with significant sensitivity at low WIMP masses for spin-independent WIMP-nucleon scattering. PMID:26196790

  20. Dark Matter Search Results from the PICO-60 CF$_3$I Bubble Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C. [Queen' s Univ., Kingston, ON (Canada). et al.

    2015-10-26

    We reported new data from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 36.8 kg of CF3I and located in the SNOLAB underground laboratory. PICO-60 is the largest bubble chamber to search for dark matter to date. With an analyzed exposure of 92.8 live-days, PICO-60 exhibits the same excellent background rejection observed in smaller bubble chambers. Alpha decays in PICO-60 exhibit frequency-dependent acoustic calorimetry, similar but not identical to that reported recently in a C3F8 bubble chamber. PICO-60 also observes a large population of unknown background events, exhibiting acoustic, spatial, and timing behaviors inconsistent with those expected from a dark matter signal. We found these behaviors allow for analysis cuts to remove all background events while retaining 48.2%of the exposure. Stringent limits on WIMPs interacting via spin-dependent proton and spin-independent processes are set, and the interpretation of the DAMA/LIBRA modulation signal as dark matter interacting with iodine nuclei is ruled out.