WorldWideScience

Sample records for bubble chambers

  1. BEBC bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    Looking up into the interior of BEBC bubble chamber from the expansion cylinder. At the top of the chamber two fish-eye lenses are installed and three other fish-eye ports are blanked off. In the centre is a heat exchanger.

  2. Scanning bubble chamber pictures

    CERN Multimedia

    1974-01-01

    These were taken at the 2 m hydrogen bubble chamber. The photo shows an early Shiva system where the pre-measurements needed to qualify the event were done manually (cf photo 7408136X). The scanning tables were located in bld. 12. Gilberte Saulmier sits on foreground, Inge Arents at centre.

  3. Heavy liquid bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    The CERN Heavy liquid bubble chamber being installed in the north experimental hall at the PS. On the left, the 1180 litre body; in the centre the magnet, which can produce a field of 26 800 gauss; on the right the expansion mechanism.

  4. Bubble chamber: colour enhanced tracks

    CERN Multimedia

    1998-01-01

    This artistically-enhanced image of real particle tracks was produced in the Big European Bubble Chamber (BEBC). Liquid hydrogen is used to create bubbles along the paths of the particles as a piston expands the medium. A magnetic field is produced in the detector causing the particles to travel in spirals, allowing charge and momentum to be measured.

  5. The Big European Bubble Chamber

    CERN Multimedia

    1977-01-01

    The 3.70 metre Big European Bubble Chamber (BEBC), dismantled on 9 August 1984. During operation it was one of the biggest detectors in the world, producing direct visual recordings of particle tracks. 6.3 million photos of interactions were taken with the chamber in the course of its existence.

  6. BEBC Big European Bubble Chamber

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    A view of the dismantling of the magnet of BEBC, the 3.7 m European Bubble Chamber : iron magnetic shielding ; lower and upper parts of the vacuum enclosure of the magnet; turbo-molecular vacuum pumps for the "fish-eye" windows; the two superconducting coils; a handling platform; the two cryostats suspended from the bar of the travelling crane which has a 170 ton carrying capacity. The chamber proper, not dismantled, is inside the shielding.

  7. The use of microholography in bubble chambers

    CERN Document Server

    Royer, H

    1981-01-01

    In-line holography has been used for the first time in a bubble chamber for the account of the CERN (Geneva, CH). The holograms were recorded with the help of a single-mode pulse laser. Bubble tracks of 25 microns in diameter have been reconstructed with a resolution of 2 microns. (12 refs).

  8. A view inside the Gargamelle bubble chamber

    CERN Multimedia

    1970-01-01

    Gargamelle was the name given to a big bubble chamber built at the Saclay Laboratory in France during the late 1960s. It was designed principally for the detection at CERN of the elusive particles called neutrinos. A bubble chamber contains a liquid under pressure, which reveals the tracks of electrically charged particles as trails of tiny bubbles when the pressure is reduced. Neutrinos have no charge, and so leave no tracks, but the aim with Gargamelle was "see neutrinos" by making visible any charged particles set in motion by the interaction of neutrinos in the liquid

  9. The Gargamelle heavy liquid bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    This image shows the Gargamelle heavy liquid bubble chamber. It was used to detect particles in experiments at the PS between 1970 and 1976 before being moved to the SPS. In 1973, while working on the PS, it detected the first neutral current, an interaction vital to the electroweak theory. In 1978 a large fissure appeared in the body of the chamber and Gargamelle was stopped in 1979.

  10. Herds of methane chambers grazing bubbles

    Science.gov (United States)

    Grinham, Alistair; Dunbabin, Matthew

    2014-05-01

    Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique

  11. Rapid-Cycling Bubble-Chamber, details

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Parts of the hydraulic expansion system of the Rapid-Cycling Bubble-Chamber (RCBC). RCBC was the largest of 3 rapid-cycling bubble-chambers (the others were LEBC and HOLEBC), used as target- and vertex-detectors within the European Hybrid Spectrometer (EHS) in the SPS North Area (EHN1). RCBC contained 250 l of liquid hydrogen and was located inside a 3 T superconducting magnet. It was designed for 30 expansions/s (100 times faster than BEBC), the system shown here allowed 50 expansions/s. RCBC operated from 1981 to 1983 for experiments NA21, NA22 and NA23 at a rate of 15 expansions/s, clocking up a total of over 4 million. In the rear, at left, is bearded Lucien Veillet; Augustin Didona is at the right. See also 8001009. The installation of the piston assembly in the RCBC chamber body is shown in the Annual Report 1980, p.65.

  12. The Bern Infinitesimal Bubble Chamber (BIBC)

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The chamber body was machined from a block of aluminium. The visible volume was cylindrical with 65 mm diameter and 35 mm depth. It was filled with propane or freon. It was meant as vertex detector in the search of short-lived particles. It was also used with in-line holography resulting in 8 µm bubble size and 9 cm depth of the field. See E. Ramseyer, B. Hahn and E. Hugentobler, Nucl. Instrum. Methods 201 (1982) 335.

  13. BEBC, the Big European Bubble Chamber

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    The vessel of the Big European Bubble Chamber, BEBC, was installed at the beginning of the 1970s. The large stainless-steel vessel, measuring 3.7 metres in diameter and 4 metres in height, was filled with 35 cubic metres of liquid (hydrogen, deuterium or a neon-hydrogen mixture), whose sensitivity was regulated by means of a huge piston weighing 2 tonnes. During each expansion, the trajectories of the charged particles were marked by a trail of bubbles, where liquid reached boiling point as they passed through it. The first images were recorded in 1973 when BEBC, equipped with the largest superconducting magnet in service at the time, first received beam from the PS. In 1977, the bubble chamber was exposed to neutrino and hadron beams at higher energies of up to 450 GeV after the SPS came into operation. By the end of its active life in 1984, BEBC had delivered a total of 6.3 million photographs to 22 experiments devoted to neutrino or hadron physics. Around 600 scientists from some fifty laboratories through...

  14. Golden Jubilee photos: The first CERN bubble chamber

    CERN Multimedia

    2004-01-01

    In the 1950s and 1960s, bubble and spark chambers were the dominant experimental tools in high-energy physics. While spark chambers were usually built and fitted to specific experiments, bubble chambers were constructed as general purpose devices that could be used for a variety of experiments. At CERN, the bubble chamber programme started under Charles Peyrou in the late 1950s. The first of CERN's bubble chambers, a 30 cm hydrogen chamber, is seen here being inserted into its vacuum tank. The HBC30, as it was called, took its first beam from the SC in 1959. One of the first pictures taken, of a positive pion-proton interaction, began a long series of pretty images for which bubble chambers would become famous. When it stopped operating in spring 1962, the HBC30 had consumed 150 km of film in its 3 years of operation.

  15. Dark matter searches with PICO bubble chambers: An overview

    Science.gov (United States)

    Harris, Orin; PICO Collaboration

    2017-01-01

    The PICO collaboration uses bubble chambers to search for dark matter, with world-leading sensitivity to the direct-detection of WIMPs with spin-dependent couplings to protons. PICO currently operates a 2 liter (PICO-2L) and a 32 liter (PICO 60) bubble chamber at the SNOLAB deep underground laboratory, and is currently constructing a 40 liter demonstration device that is expected to eliminate an anomalous background that has previously proven significant for the scaling of the bubble chamber technique to a future ton-scale experiment (PICO-500). A discussion of the technology, recent progress, and future plans will be presented.

  16. 'Reading' bubble chamber pictures with the Spiral Reader eyes.

    CERN Multimedia

    1974-01-01

    Interactive techniques were widely used to study bubble chamber pictures. After a visual scanning of the pictures and a vertex measurement on a Shivamatic, the Spiral Reader allowed the track polar coordinates to be easily measured. See photo 7408137X

  17. Dark matter limits froma 15 kg windowless bubble chamber

    Energy Technology Data Exchange (ETDEWEB)

    Szydagis, Matthew Mark [Univ. of Chicago, IL (United States)

    2011-03-01

    The COUPP collaboration has successfully used bubble chambers, a technology previously applied only to high-energy physics experiments, as direct dark matter detectors. It has produced the world's most stringent spin-dependent WIMP limits, and increasingly competitive spin-independent limits. These limits were achieved by capitalizing on an intrinsic rejection of the gamma background that all other direct detection experiments must address through high-density shielding and empirically-determined data cuts. The history of COUPP, including its earliest prototypes and latest results, is briefly discussed in this thesis. The feasibility of a new, windowless bubble chamber concept simpler and more inexpensive in design is discussed here as well. The dark matter limits achieved with a 15 kg windowless chamber, larger than any previous COUPP chamber (2 kg, 4 kg), are presented. Evidence of the greater radiopurity of synthetic quartz compared to natural is presented using the data from this 15 kg device, the first chamber to be made from synthetic quartz. The effective reconstruction of the three-dimensional positions of bubbles in a highly distorted optical field, with ninety-degree bottom lighting similar to cloud chamber lighting, is demonstrated. Another innovation described in this thesis is the use of the sound produced by bubbles recorded by an array of piezoelectric sensors as the primary means of bubble detection. In other COUPP chambers, cameras have been used as the primary trigger. Previous work on bubble acoustic signature differentiation using piezos is built upon in order to further demonstrate the ability to discriminate between alpha- and neutron-induced events.

  18. The optical system for the Big European Bubble Chamber

    CERN Document Server

    Harigel, G G

    1977-01-01

    The optical system for the new giant bubble chamber, built for the European Organization for Nuclear Research (CERN), consists of four sets of fisheye windows, each equipped with a wide-angle lens which has an aperture angle of 108 degrees , while the fifth set has a periscope for visual observation of the chamber interior. Each of the fisheye sets is assembled from three hemispherical windows. The largest hemisphere is made from Schott BK7 glass and is exposed to the temperature of liquid hydrogen. The entire optical system has been operated successfully for the past 4 years. (13 refs).

  19. Golden Jubilee photos - BEBC, the Big European Bubble Chamber

    CERN Multimedia

    2004-01-01

    The vessel of the Big European Bubble Chamber, BEBC, was installed at the beginning of the 1970s. The large stainless-steel vessel, measuring 3.7 metres in diameter and 4 metres in height, was filled with 35 cubic metres of liquid (hydrogen, deuterium or a neon-hydrogen mixture), whose sensitivity was regulated by means of a huge piston weighing 2 tonnes. During each expansion, the trajectories of the charged particles were marked by a trail of bubbles, where liquid reached boiling point as they passed through it. The first images were recorded in 1973 when BEBC, equipped with the largest superconducting magnet in service at the time, first received beam from the PS. In 1977, the bubble chamber was exposed to neutrino and hadron beams at higher energies of up to 450 GeV after the SPS came into operation. By the end of its active life in 1984, BEBC had delivered a total of 6.3 million photographs to 22 experiments devoted to neutrino or hadron physics. Around 600 scient...

  20. Direct Measurement of the Bubble Nucleation Energy Threshold in a CF3I Bubble Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, E. [Indiana Univ. South Bend, IN (United States); Benjamin, T. [Indiana Univ. South Bend, IN (United States); Brice, S. J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Broemmelsiek, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Collar, J. I. [Univ. of Chicago, IL (United States); Cooper, P. S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Crisler, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dahl, C. E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Northwestern Univ., Evanston, IL (United States); Fustin, D. [Univ. of Chicago, IL (United States); Hall, Jeter C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Harnish, C. [Indiana Univ. South Bend, IN (United States); Levine, I. [Indiana Univ. South Bend, IN (United States); Lippincott, W. H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Moan, T. [Indiana Univ. South Bend, IN (United States); Nania, T. [Indiana Univ. South Bend, IN (United States); Neilson, R. [Univ. of Chicago, IL (United States); Ramberg, E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Robinson, A. E. [Univ. of Chicago, IL (United States); Ruschman, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sonnenschein, Andrew [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Vazquez-Jauregui, E. [SNOLAB, Sudbury, ON (Canada); RIvera, R. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Uplegger, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-07-30

    Here, we measured the energy threshold and efficiency for bubble nucleation from iodine recoils in a CF3I bubble chamber in the energy range of interest for a dark matter search. These interactions cannot be probed by standard neutron calibration methods, so we develop a new technique by observing the elastic scattering of 12 GeV/c negative pions. The pions are tracked with a silicon pixel telescope and the reconstructed scattering angle provides a measure of the nuclear recoil kinetic energy. The bubble chamber was operated with a nominal threshold of (13.6±0.6) keV. Interpretation of the results depends on the response to fluorine and carbon recoils, but in general we find agreement with the predictions of the classical bubble-nucleation theory. Moreover, this measurement confirms the applicability of CF3I as a target for spin-independent dark matter interactions and represents a novel technique for calibration of superheated fluid detectors.

  1. Liquid hydrogen bubble chamber (diam. 30 cm), seen here being inserted into its vacuum tank

    CERN Multimedia

    CERN PhotoLab

    1959-01-01

    In the 1950s and 1960s, bubble and spark chambers were the dominant experimental tools in high-energy physics. While spark chambers were usually built and fitted to specific experiments, bubble chambers were constructed as general purpose devices that could be used for a variety of experiments. At CERN, the bubble chamber programme started under Charles Peyrou in the late 1950s. The first of CERN's bubble chambers, a 30 cm hydrogen chamber, is seen here being inserted into its vacuum tank. The HBC30, as it was called, took its first beam from the SC in 1959. One of the first pictures taken, of a positive pion-proton interaction, began a long series of pretty images for which bubble chambers would become famous. When it stopped operating in spring 1962, the HBC30 had consumed 150 km of film in its 3 years of operation.

  2. A Freon-filled bubble chamber for neutron detection in inertial confinement fusion experiments.

    Science.gov (United States)

    Ghilea, M C; Meyerhofer, D D; Sangster, T C

    2011-03-01

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron-Freon interactions were observed at neutron yields of 10(13) emitted from deuterium-tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  3. The operation of a track sensitive hydrogen target in a 500 l neon hydrogen bubble chamber

    CERN Document Server

    Ayres, J F; Damerell, A R; Fisher, Colin M; Fitzharris, E W; Foster, J H; Gottfeldt, P; Mack, B; Mortimer, A R; Seager, P; Stokoe, J R; Williams, P R; Leutz, H; Tischhauser, Johann; Wenninger, Horst

    1973-01-01

    A 20 l hydrogen filled track sensitive target has been successfully operated in the 1.5 m cryogenic bubble chamber at The Rutherford High Energy Laboratory. The chamber is filled with a mixture of neon and hydrogen at a concentration of 45 mol eon giving a radiation length of 860 mm. Satisfactory track quality in both target and chamber is achieved and 65000 pictures have been obtained in a 4 GeV/c pi /sup +/ beam. (7 refs).

  4. Search for short-lived particles produced on nuclei with a heavy liquid mini bubble chamber

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to search for short-lived particles produced in hadronic interactions on nuclei with our high resolution heavy liquid mini bubble chamber BIBC, aiming to establish the cross-section for associated production in hadron-nucleus collisions, its $A$-dependence and an approximate value of the lifetime. The chamber will be operated at a bubble density of 290 bubbles/cm and with an apparent bubble size of 30 $\\mu$m in real space. In test runs at CERN we measured detection efficiencies which, together with simulations of $D\\bar{D}$ production and decay, lead to a sensitivity of 0.25 events/($\\mu$b/N) per day if the lifetime is of the order of $5\\times10^{-13}$s. A null result after 10 days running time would set an upper limit on the production cross section to $3 \\mu$b. \\\\ \\\\ In order to measure the momenta of charged decay products of short-lived particles, the bubble chamber will be placed 1.80 m upstream of the streamer chamber of the NA5 experiment (MPI). The geometrical acceptance ...

  5. First dark matter limits from the COUPP 4 kg bubble chamber at a deep underground site

    Science.gov (United States)

    Fustin, Drew Anthony

    The COUPP 4 kg bubble chamber employs 4.0 kg of CF3I as a WIMP scattering target for use as a dark matter direct detection search. This thesis reports the first experimental results from operating this bubble chamber at the deep underground site (6000 m.w.e.) of SNO-LAB, near Sudbury, Ontario. Twenty dark matter candidate events were observed during an effective exposure of 553.0 kg-days, when operating the bubble chamber at three different bubble nucleation thresholds. These data are consistent with a neutron background internal to the detector. Characterization of this neutron background has led to the recommendation to replace two detector components to maximize dark matter signal sensitivity in a future run with this bubble chamber. Measurement of the gamma-ray flux has confirmed that this detector should not be sensitive to a gamma-induced background for more than three orders of magnitude below current sensitivity. The dark matter search data presented here set a new world-leading limit on the spin-dependent WIMP-proton scattering cross section and demonstrate significant sensitivity to spin-independent WIMP-nucleon scattering.

  6. Track formation in a liquid hydrogen ultrasonic bubble chamber

    CERN Document Server

    Brown, R C A; Jarman, P D

    1973-01-01

    Track sensitivity to minimum ionising particles has been demonstrated in liquid hydrogen using only an intense ultrasonic field. Carefully designed transducer systems are shown to be capable of producing pressure amplitudes >2.8 atm in a standing wave system in liquid hydrogen. The growth of bubbles to visible size (0.1 mm) in less than 0.2 ms, and their collapse in less than 15 ms, indicates that rapid cycling rates of 50-100 pulses per second may be feasible with this technique. (11 refs).

  7. Dark Matter Search Results from the PICO-60 CF$_3$I Bubble Chamber

    CERN Document Server

    Amole, C; Asner, D M; Baxter, D; Behnke, E; Bhattacharjee, P; Borsodi, H; Bou-Cabo, M; Brice, S J; Broemmelsiek, D; Clark, K; Collar, J I; Cooper, P S; Crisler, M; Dahl, C E; Daley, S; Das, M; Debris, F; Dhungana, N; Farine, J; Felis, I; Filgas, R; Girard, F; Giroux, G; Grandison, A; Hai, M; Hall, J; Harris, O; Jin, M; Krauss, C B; Fallows, S; Lafrenière, M; Laurin, M; Lawson, I; Levine, I; Lippincott, W H; Mann, E; Maurya, D; Mitra, P; Neilson, R; Noble, A J; Plante, A; Podviianiuk, R B; Priya, S; Ramberg, E; Robinson, A E; Rucinski, R; Ruschman, M; Scallon, O; Seth, S; Simon, P; Sonnenschein, A; Štekl, I; Vàzquez-Jàuregui, E; Wells, J; Wichoski, U; Zacek, V; Zhang, J; Shkrob, I A

    2015-01-01

    New data are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 36.8 kg of CF$_3$I and located in the SNOLAB underground laboratory. PICO-60 is the largest bubble chamber to search for dark matter to date. With an analyzed exposure of 92.8 live-days, PICO-60 exhibits the same excellent background rejection observed in smaller bubble chambers. Alpha decays in PICO-60 exhibit frequency-dependent acoustic calorimetry, similar but not identical to that reported recently in a C$_3$F$_8$ bubble chamber. PICO-60 also observes a large population of unknown background events, exhibiting acoustic, spatial, and timing behaviors inconsistent with those expected from a dark matter signal. These behaviors allow for analysis cuts to remove all background events while retaining $48.2\\%$ of the exposure. Stringent limits on WIMPs interacting via spin-dependent proton and spin-independent processes are set, and the interpretation of the DAMA/LIBRA modulation signal as dark matter inte...

  8. First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering.

    Science.gov (United States)

    Baxter, D; Chen, C J; Crisler, M; Cwiok, T; Dahl, C E; Grimsted, A; Gupta, J; Jin, M; Puig, R; Temples, D; Zhang, J

    2017-06-09

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a ^{252}Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19±6  keV (1σ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3×10^{-7} bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF_{3}I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils, while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.

  9. First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering

    Science.gov (United States)

    Baxter, D.; Chen, C. J.; Crisler, M.; Cwiok, T.; Dahl, C. E.; Grimsted, A.; Gupta, J.; Jin, M.; Puig, R.; Temples, D.; Zhang, J.

    2017-06-01

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a Cf 252 neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19 ±6 keV (1 σ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3 ×10-7 bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF3 I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils, while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.

  10. Dark Matter Search Results from the PICO-60 C$_3$F$_8$ Bubble Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C.; et al.

    2017-02-24

    New results are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 52 kg of C$_3$F$_8$ located in the SNOLAB underground laboratory. As in previous PICO bubble chambers, PICO-60 C$_3$F$_8$ exhibits excellent electron recoil and alpha decay rejection, and the observed multiple-scattering neutron rate indicates a single-scatter neutron background of less than 1 event per month. A blind analysis of an efficiency-corrected 1167-kg-day exposure at a 3.3-keV thermodynamic threshold reveals no single-scattering nuclear recoil candidates, consistent with the predicted background. These results set the most stringent direct-detection constraint to date on the WIMP-proton spin-dependent cross section at 3.4 $\\times$ 10$^{-41}$ cm$^2$ for a 30-GeV$\\thinspace$c$^{-2}$ WIMP, more than one order of magnitude improvement from previous PICO results.

  11. R&D of a SIMPLE bubble chamber for dark matter searches

    Directory of Open Access Journals (Sweden)

    Felizardo M.

    2016-01-01

    Full Text Available SIMPLE (Superheated Instrument for Massive ParticLe Experiments intends the realization and full field tests of a 25 kg, low background, low frequency-instrumented BC (Bubble Chamber, with data from the BC testing and a small array demonstration providing new physics results. We report on the development of a 1 kg freon BC prototype, including chamber recompression system design and testing with initial acoustic detection of bubble formation. Realization of full field tests leading to a 25 kg, overall 10−6 recoil evt/kgF/d background, low frequency-instrumented BC, incorporating several innovations designed, are intended to serve for an anticipated 2500 kgd exposure, resulting in new exclusion contours with sensitivities of 2 × 10−8 and 5 × 10−5 pb at 35 GeV in the SI and SD sector of the WIMP phase space, respectively.

  12. External Particle Identifier (EPI) for the Big European Bubble Chamber (BEBC)

    CERN Document Server

    Aderholz, M; Lehraus, Ivan; Matthewson, R; Tejessy, W

    1975-01-01

    A description of a multi-layer proportional counter system being built to identify fast charged secondary particles behind the 3.7 m bubble chamber is given in detail. The device consists of 128 layers, each with 32(6*6 cm/sup 2/) cells across. It will be able to distinguish pions and kaons up to 70 GeV/c by sampling the ionization in the region of the relativistic rise. (8 refs).

  13. gamma. -converting plate system for neutrino-deuterium exposures in the FNAL 15-foot bubble chamber

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, J.; Mann, W.A.; Sommars, S.; Wald, H.

    1978-01-01

    During May 18-20 of this year the hydrogen-filled 15-foot bubble chamber at Fermilab was operated with an array of four half-inch thick stainless steel plates mounted in downstream portions of the fiducial volume. Notes from the test run, and results from a Monte Carlo study of efficiencies of the plate array for detection of photons and positrons in final states produced in a wide-band neutrino--deuterium exposure, are presented.

  14. Dark Matter Limits From a 2L C3F8 Filled Bubble Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alan Edward [Univ. of Chicago, IL (United States)

    2015-12-01

    The PICO-2L C3F8 bubble chamber search forWeakly Interacting Massive Particle (WIMP) dark matter was operated in the SNOLAB underground laboratory at the same location as the previous CF3I lled COUPP-4kg detector. Neutron calibrations using photoneutron sources in C3F8 and CF3I lled calibration bubble chambers were performed to verify the sensitivity of these target uids to dark matter scattering. This data was combined with similar measurements using a low-energy neutron beam at the University of Montreal and in situ calibrations of the PICO-2L and COUPP-4kg detectors. C3F8 provides much greater sensitivity to WIMP-proton scattering than CF3I in bubble chamber detectors. PICO-2L searched for dark matter recoils with energy thresholds below 10 keV. Radiopurity assays of detector materials were performed and the expected neutron recoil background was evaluated to be 1.6+0:3

  15. A SIMPLE Bubble Chamber for Dark Matter Searches: Testing and Development

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, A.R.; Fernandes, A.C.; Marques, J.G.; Kling, A. [C2TN, Instituto Superior Tecnico, Universidade de Lisboa, E.N. 10 - km 139.7, 2695-066 Bobadela, LRS (Portugal); Felizardo, M.; Girard, T.A. [Centro de Fisica Nuclear, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003, Lisbon (Portugal); Lazaro, I. [Laboratoire Souterrain a Bas Bruit, UMS 3538 UNS/UAPV/CNRS, 84400 Rustrel-Pays d' Apt (France); Puibasset, J. [Centre de Recherche sur la Matiere Divisee CNRS et Universite d' Orleans, 45071 Orleans, 02 (France)

    2015-07-01

    SIMPLE (Superheated Instrument for Massive Particle Experiments) is one of only three experiments worldwide in search of evidence of astroparticle dark matter (WIMPs) using halocarbon-loaded superheated liquid (SHL) detectors. The 2012 Phase II SIMPLE measurements yielded the most restrictive exclusion contour in the spin-dependent (SD) sector of WIMP-proton interactions from a direct search experiment at the time, overlapping for the first time results previously obtained only indirectly [1]. In order to remain competitive with other experiments in the field, the next phase measurement requires larger exposure over shorter observation times with significantly improved neutron shielding. To increase exposure, SIMPLE plans, as a first step, to replace its superheated droplet detectors (SDDs), each containing an active mass of about 15 g of halocarbon, with bubble chambers capable of holding up to 20 kg of active halocarbon mass. We report on the development of the first 1 kg halocarbon SIMPLE bubble chamber prototype, including chamber recompression system design and testing and initial acoustic detection of bubble formation. (authors)

  16. Anterior chamber gas bubbles during femtosecond laser flap creation in LASIK: video evidence of entry via trabecular meshwork.

    Science.gov (United States)

    Soong, H Kaz; de Melo Franco, Rafael

    2012-12-01

    Femtosecond laser photodisruption of corneal stroma during laser in situ keratomileusis flap creation is accompanied by the formation of cavitation gas bubbles consisting of carbon dioxide and water vapor. Entry of these bubbles into the anterior chamber is an infrequent complication. We present video evidence that these bubbles enter via the trabecular meshwork. Neither author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. Demonstrations of a Right-Side Up Bubble Chamber Using C3F8 for Dark Matter Detection

    Science.gov (United States)

    Zerbo, Salvatore; PICO Collaboration

    2017-09-01

    The PICO experiment is an international collaboration that is attempting to directly detect dark matter candidates through the observation of WIMP-nucleon interactions in bubble chambers located deep underground at SNOLAB. PICO experiments have provided world-leading constraints on spin-dependent WIMP-proton interactions. At Drexel University, we have constructed a ``right-side-up'' bubble chamber, which places the target volume above the pressure balancing bellows, rather than below as in previous PICO detectors, that will act as both a small-scale model and as a test chamber for future PICO experiments. This new design will lead to further improvements in the constraints of WIMP-nucleon cross-sections through a higher purity target volume. With the Drexel bubble chamber, we have successfully observed a variety of event types and have begun analyzing gathered data, proving the right-side up design's viability for the next-generation bubble chambers. In the future, we will work towards completion of data analysis, and we will continue to test features for use with the bubble chambers located at SNOLAB.

  18. MOSCAB: a geyser-concept bubble chamber to be used in a dark matter search

    Science.gov (United States)

    Antonicci, A.; Ardid, M.; Bertoni, R.; Bruno, G.; Burgio, N.; Caruso, G.; Cattaneo, D.; Chignoli, F.; Clemenza, M.; Corcione, M.; Cretara, L.; Cundy, D.; Felis, I.; Frullini, M.; Fulgione, W.; Lucchini, G.; Manara, L.; Maspero, M.; Mazza, R.; Papagni, A.; Perego, M.; Podviyanuk, R.; Pullia, A.; Quintino, A.; Redaelli, N.; Ricci, E.; Santagata, A.; Sorrenti, D.; Zanotti, L.

    2017-11-01

    The MOSCAB experiment (Materia OSCura A Bolle) uses the "geyser technique", a variant of the superheated liquid technique of extreme simplicity. Operating principles of the new dark matter detector and technical solutions of the device are reported in detail. First results obtained in a series of test runs taken in laboratory demonstrate that we have successfully built and tested a geyser-concept bubble chamber that can be used in particle physics, especially in dark matter searches, and that we are ready to move underground for extensive data taking.

  19. PICASSO, COUPP and PICO - search for dark matter with bubble chambers

    Directory of Open Access Journals (Sweden)

    Amole C.

    2015-01-01

    Full Text Available The PICASSO and COUPP collaborations use superheated liquid detectors to search for cold dark matter through the direct detection of weakly interacting massive particles (WIMPs. These experiments, located in the underground laboratory of SNOLAB, Canada, detect phase transitions triggered by nuclear recoils in the keV range induced by interactions with WIMPs. We present details of the construction and operation of these detectors as well as the results, obtained by several years of observations. We also introduce PICO, a joint effort of the two collaborations to build a second generation ton-scale bubble chamber with 250 liters of active liquid.

  20. PICASSO, COUPP and PICO - search for dark matter with bubble chambers

    Science.gov (United States)

    Amole, C.; Ardid, M.; Asner, D. M.; Baxter, D.; Behnke, E.; Bhattacharjee, P.; Borsodi, H.; Bou-Cabo, M.; Brice, S. J.; Broemmelsiek, D.; Clark, K.; Collar, J. I.; Cooper, P. S.; Crisler, M.; Dahl, C. E.; Das, M.; Debris, F.; Dhungana, N.; Farine, J.; Felis, I.; Filgas, R.; Fines-Neuschild, M.; Girard, F.; Giroux, G.; Hai, M.; Hall, J.; Harris, O.; Jackson, C. M.; Jin, M.; Krauss, C.; Lafrenière, M.; Laurin, M.; Lawson, I.; Levine, I.; Lippincott, W. H.; Mann, E.; Martin, J. P.; Maurya, D.; Mitra, P.; Neilson, R.; Noble, A. J.; Plante, A.; Podviyanuk, R.; Priya, S.; Robinson, A. E.; Ruschman, M.; Scallon, O.; Seth, S.; Sonnenschein, A.; Starinski, N.; Štekl, I.; Vázquez-Jáuregui, E.; Wells, J.; Wichoski, U.; Zacek, V.; Zhang, J.

    2015-05-01

    The PICASSO and COUPP collaborations use superheated liquid detectors to search for cold dark matter through the direct detection of weakly interacting massive particles (WIMPs). These experiments, located in the underground laboratory of SNOLAB, Canada, detect phase transitions triggered by nuclear recoils in the keV range induced by interactions with WIMPs. We present details of the construction and operation of these detectors as well as the results, obtained by several years of observations. We also introduce PICO, a joint effort of the two collaborations to build a second generation ton-scale bubble chamber with 250 liters of active liquid.

  1. Search for direct evidence for charm in hadronic interactions using a high-resolution bubble chamber

    CERN Multimedia

    2002-01-01

    A high-resolution rapid-cycling hydrogen bubble chamber will be used to search for direct evidence of charmed-particle production in $\\sim$350 GeV/c $\\pi^{-}$ interactions. The chamber is 20 cm in diameter and contains $\\sim$1l of liquid hydrogen. The bright field optical system is designed to achieve a resolution in space $\\simeq$ 20-30 $\\mu$m (optical depth of field 2-4 mm), which should allow the detection of charmed-particle decay vertices in complex events if $\\tau_{charm} \\geq 10^{-13}$ sec. An interaction trigger will be used to give an initial sensitivity $\\sim$5-10 events/$\\mu$b for a test run designed primarily to search for the signal and establish a cross-section and approximate lifetime for charm.

  2. Magnetic bubble chambers and sub-GeV dark matter direct detection

    Science.gov (United States)

    Bunting, Philip C.; Gratta, Giorgio; Melia, Tom; Rajendran, Surjeet

    2017-05-01

    We propose a new application of single molecule magnet crystals: their use as "magnetic bubble chambers" for the direct detection of sub-GeV dark matter. The spins in these macroscopic crystals effectively act as independent nanoscale magnets. When antialigned with an external magnetic field they form metastable states with a relaxation time that can be very long at sufficiently low temperatures. The Zeeman energy stored in this system can be released through localized heating, caused for example by the scattering or absorption of dark matter, resulting in a spin avalanche (or "magnetic deflagration") that amplifies the effects of the initial heat deposit, enabling detection. Much like the temperature and pressure in a conventional bubble chamber, the temperature and external magnetic field set the detection threshold for a single molecule magnet crystal. We discuss this detector concept for dark matter detection and propose ways to ameliorate backgrounds. If successfully developed, this detector concept can search for hidden photon dark matter in the meV-eV mass range with sensitivities exceeding current bounds by several orders of magnitude.

  3. Dark Matter Search Results from the PICO -60 C 3F8 Bubble Chamber

    Science.gov (United States)

    Amole, C.; Ardid, M.; Arnquist, I. J.; Asner, D. M.; Baxter, D.; Behnke, E.; Bhattacharjee, P.; Borsodi, H.; Bou-Cabo, M.; Campion, P.; Cao, G.; Chen, C. J.; Chowdhury, U.; Clark, K.; Collar, J. I.; Cooper, P. S.; Crisler, M.; Crowder, G.; Dahl, C. E.; Das, M.; Fallows, S.; Farine, J.; Felis, I.; Filgas, R.; Girard, F.; Giroux, G.; Hall, J.; Harris, O.; Hoppe, E. W.; Jin, M.; Krauss, C. B.; Laurin, M.; Lawson, I.; Leblanc, A.; Levine, I.; Lippincott, W. H.; Mamedov, F.; Maurya, D.; Mitra, P.; Nania, T.; Neilson, R.; Noble, A. J.; Olson, S.; Ortega, A.; Plante, A.; Podviyanuk, R.; Priya, S.; Robinson, A. E.; Roeder, A.; Rucinski, R.; Scallon, O.; Seth, S.; Sonnenschein, A.; Starinski, N.; Štekl, I.; Tardif, F.; Vázquez-Jáuregui, E.; Wells, J.; Wichoski, U.; Yan, Y.; Zacek, V.; Zhang, J.; PICO Collaboration

    2017-06-01

    New results are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 52 kg of C3 F8 located in the SNOLAB underground laboratory. As in previous PICO bubble chambers, PICO -60 C 3F8 exhibits excellent electron recoil and alpha decay rejection, and the observed multiple-scattering neutron rate indicates a single-scatter neutron background of less than one event per month. A blind analysis of an efficiency-corrected 1167-kg day exposure at a 3.3-keV thermodynamic threshold reveals no single-scattering nuclear recoil candidates, consistent with the predicted background. These results set the most stringent direct-detection constraint to date on the weakly interacting massive particle (WIMP)-proton spin-dependent cross section at 3.4 ×10-41 cm2 for a 30 -GeV c-2 WIMP, more than 1 order of magnitude improvement from previous PICO results.

  4. Dark Matter Search Results from the PICO-60 C_{3}F_{8} Bubble Chamber.

    Science.gov (United States)

    Amole, C; Ardid, M; Arnquist, I J; Asner, D M; Baxter, D; Behnke, E; Bhattacharjee, P; Borsodi, H; Bou-Cabo, M; Campion, P; Cao, G; Chen, C J; Chowdhury, U; Clark, K; Collar, J I; Cooper, P S; Crisler, M; Crowder, G; Dahl, C E; Das, M; Fallows, S; Farine, J; Felis, I; Filgas, R; Girard, F; Giroux, G; Hall, J; Harris, O; Hoppe, E W; Jin, M; Krauss, C B; Laurin, M; Lawson, I; Leblanc, A; Levine, I; Lippincott, W H; Mamedov, F; Maurya, D; Mitra, P; Nania, T; Neilson, R; Noble, A J; Olson, S; Ortega, A; Plante, A; Podviyanuk, R; Priya, S; Robinson, A E; Roeder, A; Rucinski, R; Scallon, O; Seth, S; Sonnenschein, A; Starinski, N; Štekl, I; Tardif, F; Vázquez-Jáuregui, E; Wells, J; Wichoski, U; Yan, Y; Zacek, V; Zhang, J

    2017-06-23

    New results are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 52 kg of C_{3}F_{8} located in the SNOLAB underground laboratory. As in previous PICO bubble chambers, PICO-60 C_{3}F_{8} exhibits excellent electron recoil and alpha decay rejection, and the observed multiple-scattering neutron rate indicates a single-scatter neutron background of less than one event per month. A blind analysis of an efficiency-corrected 1167-kg day exposure at a 3.3-keV thermodynamic threshold reveals no single-scattering nuclear recoil candidates, consistent with the predicted background. These results set the most stringent direct-detection constraint to date on the weakly interacting massive particle (WIMP)-proton spin-dependent cross section at 3.4×10^{-41}  cm^{2} for a 30-GeV c^{-2} WIMP, more than 1 order of magnitude improvement from previous PICO results.

  5. With its magnet rolled back during a shut-down of the Proton Synchrotron in 1969, the body of the 2 m hydrogen bubble chamber becomes visible

    CERN Multimedia

    CERN PhotoLab

    1969-01-01

    The 2 m hydrogen bubble chamber is undergoing modifications during the annual PS shutdown. For this, the two halves of the magnet, which normally hide the chamber, safety tanks, cooling pipes etc, are rolled back.

  6. A Proposal to Operate the COUPP-60 Bubble Chamber at SNOLAB

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Juan; Dahl, C.Eric; Fustin, Drew; Goetzke, Luke; Riley, Nathan; Schimmelpfennig, Hannes; Szydagis, Matthew; /KICP, Chicago; Behnke, Ed; Hinnefeld, Henry; Levine, Ilan; Palenchar, Andrea; /Indiana U., South Bend /Fermilab

    2009-08-01

    Bubble chambers are promising devices for the detection of WIMP dark matter, due to their easy scalability to large target masses and insensitivity to background {gamma} and {beta} radiation. The COUPP collaboration has constructed small chambers which have achieved competitive sensitivity for spin-dependent WIMP-nucleon scattering. A new chamber, COUPP-60, containing 60-kg of CF{sub 3}I target liquid, has been built and is being commissioned at Fermilab. We propose to move this detector to SNOLAB after completing tests in a shallow underground site at Fermilab. At SNOLAB, we expect the sensitivity of the experiment to be determined by the level of {alpha}emitting contamination in the target liquid. If we achieve state-of-the-art levels of {alpha} emitting contamination, we will improve current sensitivity by approximately four orders of magnitude beyond our published limits, to the region of 10{sup -4} pb for a 30 GeV WIMP interacting by spin-dependent couplings to the proton. This will allow a first exploration of the phase space favored by supersymmetric models in this regime.

  7. An experimental propane bubble chamber; Sur une chambre a bulles experimentale a propane

    Energy Technology Data Exchange (ETDEWEB)

    Rogozinski, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    Describes a propane bubble chamber 10 cm in diameter and 5 cm deep. The body of the chamber is in stainless steel, and it has two windows of polished hardened glass. The compression and decompression of the propane are performed either through a piston in direct contact with the liquid, or by the action on the liquid, through a triple-mylar-Perbunan membrane, of a compressed gas. The general and also optimum working conditions of the chamber are described, and a few results are given concerning, in particular, the tests of the breakage-resistance of the windows and the measurements of the thermal expansion of the compressibility isotherm for the propane employed. (author) [French] Description d'une chambre a bulles a propane de 10 cm de diametre et de 5 cm de profondeur. La chambre, dont le corps est en acier inoxydable, est munie de deux fenetres en verre poli et trempe. La compression et la detente du propane sont effectuees, soit a l'aide d'un piston en contact direct avec le liquide, soit en faisant agir sur ce dernier un gaz comprime a travers une triple membrane de teflon-mylar-perbunan. On decrit les conditions generales, ainsi que les conditions optimales de fonctionnement de la chambre et l'on signale un certain nombre de resultats obtenus concernant, notamment, les essais de resistance a la rupture des fenetres et les mesures de dilatation thermique de compressibilite isotherme du propane utilise. (auteur)

  8. Dark Matter Search Results from the PICO-2L C3F8 Bubble Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C.; Ardid, M.; Asner, David M.; Baxter, D.; Behnke, E.; Bhattacharjee, P. S.; Borsodi, H.; Bou-Cabo, M.; Brice, S. J.; Broemmelsiek, D.; Clark, K.; Collar, J. I.; Cooper, P. S.; Crisler, M.; Dahl, C. E.; Daley, S.; Das, Madhusmita; Debris, F.; Dhungana, N.; Farine, J.; Felis, I.; Filgas, R.; Fines-Neuschild, M.; Girard, Francoise; Giroux, G.; Hai, M.; Hall, Jeter C.; Harris, O.; Jackson, C. M.; Jin, M.; Krauss, C. B.; Lafreniere, M.; Laurin, M.; Lawson, I.; Levine, I.; Lippincott, W. H.; Mann, E.; Martin, J. P.; Maurya, D.; Mitra, Pitam; Neilson, R.; Noble, A. J.; Plante, A.; Podviianiuk, R. B.; Priya, S.; Robinson, A. E.; Ruschman, M.; Scallon, O.; Seth, S.; Sonnenschein, Andrew; Starinski, N.; Stekl, I.; Vazquez-Jauregui, E.; Wells, J.; Wichoski, U.; Zacek, V.; Zhang, J.

    2015-06-12

    New data are reported from the operation of a 2-liter C3F8 bubble chamber in the 2100 meter deep SNOLAB underground laboratory, with a total exposure of 211.5 kg-days at four different recoil energy thresholds ranging from 3.2 keV to 8.1 keV. These data show that C3F8 provides excellent electron recoil and alpha rejection capabilities at very low thresholds, including the rst observation of a dependence of acoustic signal on alpha energy. Twelve single nuclear recoil event candidates were observed during the run. The candidate events exhibit timing characteristics that are not consistent with the hypothesis of a uniform time distribution, and no evidence for a dark matter signal is claimed. These data provide the most sensitive direct detection constraints on WIMP-proton spin-dependent scattering to date, with signicant sensitivity at low WIMP masses for spin-independent WIMP-nucleon scattering.

  9. Electron beam welding of copper-stabilized superconductors for a large bubble chamber magnet

    CERN Document Server

    Albrecht, C

    1972-01-01

    In the European Nuclear Research Center CERN in Geneva, the presently largest hydrogen bubble chamber of the world is due to be put into operation at the end of 1972. The magnetic flux density of 3.5 T necessary for the detection of the high-energy elementary particles is generated by superconducting coils of 4.7 m inner diameter. The fully stabilized conductor for half of these coils was fabricated from component conductors by longitudinal seam welding with the electron beam under vacuum. The conductor design, the design and the method of operation of the electron beam welding installation and the operating and fabricating experience gained by the processing of approximately 60 t of conductor material are discussed. (7 refs).

  10. Bubbles

    DEFF Research Database (Denmark)

    Dholakia, Nikhilesh; Turcan, Romeo V.

    2013-01-01

    A goal of our ongoing research stream is to develop a multidisciplinary metatheory of bubbles. In this viewpoint paper we put forward a typology of bubbles by comparing four types of assets – entertainment, commodities, financial securities (stocks), and housing properties – where bubbles could a...

  11. A measurement of the holographic minimum-observable beam branching ratio in the Fermilab 15-foot bubble chamber

    CERN Document Server

    Aderholz, Michael; Akbari, H; Allport, P P; Badyal, S K; Ballagh, H C; Barth, Monique; Baton, Jean-Pierre; Bingham, Harry H; Bjelkhagen, H I; Brucker, E B; Burnstein, R A; Campbell, J Ronald; Cence, R J; Chatterjee, T K; Clayton, E F; Corrigan, G; Coutures, C; De Prospo, D F; Devanand, P; De Wolf, E A; Faulkner, P J W; Föth, H; Fretter, W B; Geissler, Kryno K; Gupta, V K; Hanlon, J; Harigel, G G; Harris, F A; Hawkins, J; Jabiol, M A; Jacques, P; Jones, G T; Jones, M D; Kafka, T; Kalelkar, M S; Kasper, P; Kohli, J M; Koller, E L; Krawiec, R J; Lauko, M; Lys, J E; Marage, P; Milburn, R H; Miller, D B; Mitra, I S; Mobayyen, M M; Moreels, J; Morrison, Douglas Robert Ogston; Myatt, Gerald; Naon, R; Napier, A; Naylor, P; Neveu, M; Passmore, D; Peters, M W; Peterson, V Z; Plano, R J; Rao, N K; Rubin, H A; Sacton, J; Sambyal, S S; Schmitz, N; Schneps, J; Sekulin, R L; Sewell, S J; Singh, J B; Smart, W M; Stamer, P E; Varvell, K E; Verluyten, L; Voyvodic, L; Wachsmuth, H W; Wainstein, S; Williams, W; Willocq, S; Yost, G P

    1999-01-01

    Holography has been used successfully in combination with conventional optics for the first time in a large cryogenic bubble chamber, the 15-Foot Bubble Chamber at Fermilab, during a physics run. The innovative system combined the reference beam with the object beam, illuminating a conical volume of $\\sim 1.4$~m$^3$. Bubble tracks from neutrino interactions with a width of $\\sim 120\\;\\mu$m have been recorded with good contrast. The ratio of intensities of the object light to the reference light striking the film is called the Beam Branching Ratio. We obtained in our experiment an exceedingly small minimum-observable ratio of $(0.54 \\pm 0.21) \\times 10^{-7}$. The technology has the potential for a wide range of applications.

  12. Dark Matter Search Results from the PICO-2L C3F8 Bubble Chamber.

    Science.gov (United States)

    Amole, C; Ardid, M; Asner, D M; Baxter, D; Behnke, E; Bhattacharjee, P; Borsodi, H; Bou-Cabo, M; Brice, S J; Broemmelsiek, D; Clark, K; Collar, J I; Cooper, P S; Crisler, M; Dahl, C E; Daley, S; Das, M; Debris, F; Dhungana, N; Farine, J; Felis, I; Filgas, R; Fines-Neuschild, M; Girard, F; Giroux, G; Hai, M; Hall, J; Harris, O; Jackson, C M; Jin, M; Krauss, C B; Lafrenière, M; Laurin, M; Lawson, I; Levine, I; Lippincott, W H; Mann, E; Martin, J P; Maurya, D; Mitra, P; Neilson, R; Noble, A J; Plante, A; Podviianiuk, R B; Priya, S; Robinson, A E; Ruschman, M; Scallon, O; Seth, S; Sonnenschein, A; Starinski, N; Štekl, I; Vázquez-Jáuregui, E; Wells, J; Wichoski, U; Zacek, V; Zhang, J

    2015-06-12

    New data are reported from the operation of a 2 liter C3F8 bubble chamber in the SNOLAB underground laboratory, with a total exposure of 211.5 kg days at four different energy thresholds below 10 keV. These data show that C3F8 provides excellent electron-recoil and alpha rejection capabilities at very low thresholds. The chamber exhibits an electron-recoil sensitivity of 98.2%. These data also include the first observation of a dependence of acoustic signal on alpha energy. Twelve single nuclear recoil event candidates were observed during the run. The candidate events exhibit timing characteristics that are not consistent with the hypothesis of a uniform time distribution, and no evidence for a dark matter signal is claimed. These data provide the most sensitive direct detection constraints on WIMP-proton spin-dependent scattering to date, with significant sensitivity at low WIMP masses for spin-independent WIMP-nucleon scattering.

  13. Gargamelle : this film recalls design, construction and operation of this heavy liquid bubble chamber named thus for its size of giantess

    CERN Document Server

    Sidney Jezequel

    1971-01-01

    1970 : in the Saclay Nuclear Research Center, the assembly of the two largest bubble chambers ever built was in the final stage; Mirabelle for the Soviet Serpukhov accelerator and Gargamelle for the CERN European accelerator ... Comments : Saturn particle accelerator at Saclay, most powerful in 1959. Since then: ISR, Brookhaven, Serpakov. History of bubble chambers. Ecole Polytechnique. Gargamelle, Rabelais legendary giant, wife of Gargantua. Demands of building of chamber body. Bubble chamber a kind of photographers studio. Animation explaining how a bubble chamber works. Decompression/recompression cycle. Film. * Most dramatic moment in film is when the man enters the chamber to paint it with an absolute photographic black. Magnet. Largest conventional magnet every built. Could compare that with the L3 magnet, to get a feel for the size expansion in 15 years. Assembly at CERN. Cost $5.000.000. Operation. Scanning. Ends with need to build bigger machines to get at secrets of nature. In a few years Gargamell...

  14. A Proposal for a Ton Scale Bubble Chamber for Dark Matter Detection

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Juan; Dahl, C.Eric; Fustin, Drew; Robinson, Alan; /Chicago U.; Behnke, Ed; Behnke, Joshua; Breznau, William; Connor, Austin; Kuehnemund, Emily Grace; Levine, Ilan; Moan, Timothy; /Indiana U., South Bend /Fermilab

    2010-10-07

    The nature of non-baryonic dark matter is one of the most intriguing questions for particle physics at the start of the 21st century. There is ample evidence for its existence, but almost nothing is known of its properties. WIMPs are a very appealing candidate particle and several experimental campaigns are underway around the world to search for these particles via the nuclear recoils that they should induce. The COUPP series of bubble chambers has played a significant role in the WIMP search. Through a sequence of detectors of increasing size, a number of R&D issues have arisen and been solved, and the technology has now been advanced to the point where the construction of large chambers requires a modest research effort, some development, but mostly just engineering. It is within this context that we propose to build the next COUPP detector - COUPP-500, a ton scale device to be built over the next three years at Fermilab and then deployed deep underground at SNOLAB. The primary advantages of the COUPP approach over other technologies are: (1) The ability to reject electron and gamma backgrounds by arranging the chamber thermodynamics such that these particles do not even trigger the detector. (2) The ability to suppress neutron backgrounds by having the radioactively impure detection elements far from the active volume and by using the self-shielding of a large device and the high granularity to identify multiple bubbles. (3) The ability to build large chambers cheaply and with a choice of target fluids. (4) The ability to increase the size of the chambers without changing the size or complexity of the data acquisition. (5) Sensitivity to spin-dependent and spin-independent WIMP couplings. These key advantages should enable the goal of one background event in a ton-year of exposure to be achieved. The conceptual design of COUPP-500 is scaled from the preceding devices. In many cases all that is needed is a simple scaling up of components previously used

  15. Improved limits on spin-dependent WIMP-proton interactions from a two liter CF3I bubble chamber.

    Science.gov (United States)

    Behnke, E; Behnke, J; Brice, S J; Broemmelsiek, D; Collar, J I; Cooper, P S; Crisler, M; Dahl, C E; Fustin, D; Hall, J; Hinnefeld, J H; Hu, M; Levine, I; Ramberg, E; Shepherd, T; Sonnenschein, A; Szydagis, M

    2011-01-14

    Data from the operation of a bubble chamber filled with 3.5 kg of CF3I in a shallow underground site are reported. An analysis of ultrasound signals accompanying bubble nucleations confirms that alpha decays generate a significantly louder acoustic emission than single nuclear recoils, leading to an efficient background discrimination. Three dark matter candidate events were observed during an effective exposure of 28.1  kg  day, consistent with a neutron background. This observation provides strong direct detection constraints on weakly interacting massive particle (WIMP)-proton spin-dependent scattering for WIMP masses >20  GeV/c2.

  16. Around the laboratories: Dubna: Physics results and progress on bubble chamber techniques; Stanford (SLAC): Operation of a very rapid cycling bubble chamber; Daresbury: Photographs of visitors to the Laboratory; Argonne: Charge exchange injection tests into the ZGS in preparation for a proposed Booster

    CERN Multimedia

    1969-01-01

    Around the laboratories: Dubna: Physics results and progress on bubble chamber techniques; Stanford (SLAC): Operation of a very rapid cycling bubble chamber; Daresbury: Photographs of visitors to the Laboratory; Argonne: Charge exchange injection tests into the ZGS in preparation for a proposed Booster

  17. First Dark Matter Search Results from a 4-kg CF$_3$I Bubble Chamber Operated in a Deep Underground Site

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, E.; /Indiana U., South Bend; Behnke, J.; /Indiana U., South Bend; Brice, S.J.; /Fermilab; Broemmelsiek, D.; /Fermilab; Collar, J.I.; /Chicago U., EFI; Conner, A.; /Indiana U., South Bend; Cooper, P.S.; /Fermilab; Crisler, M.; /Fermilab; Dahl, C.E.; /Chicago U., EFI; Fustin, D.; /Chicago U., EFI; Grace, E.; /Indiana U., South Bend /Fermilab

    2012-04-01

    New data are reported from the operation of a 4.0 kg CF{sub 3}I bubble chamber in the 6800 foot deep SNOLAB underground laboratory. The effectiveness of ultrasound analysis in discriminating alpha decay background events from single nuclear recoils has been confirmed, with a lower bound of >99.3% rejection of alpha decay events. Twenty single nuclear recoil event candidates and three multiple bubble events were observed during a total exposure of 553 kg-days distributed over three different bubble nucleation thresholds. The effective exposure for single bubble recoil-like events was 437.4 kg-days. A neutron background internal to the apparatus, of known origin, is estimated to account for five single nuclear recoil events and is consistent with the observed rate of multiple bubble events. This observation provides world best direct detection constraints on WIMP-proton spin-dependent scattering for WIMP masses >20 GeV/c{sup 2} and demonstrates significant sensitivity for spin-independent interactions.

  18. High-resolution recording of particle tracks with in-line holography in a large cryogenic bubble chamber

    CERN Document Server

    Harigel, G G

    2000-01-01

    Holography has been used successfully in combination with conventional optics for the first time in a large cryogenic bubble chamber, the 15-Foot Bubble Chamber at the Fermi National Accelerator Laboratory (FNAL), during a physics run in a high-energy neutrino beam. The innovative system combined the reference beam with the object beam, irradiating a conical volume of ~1.5 m/sup 3/. Bubble tracks from neutrino interactions with a width of ~120 mu m have been recorded with good contrast. The ratio of intensities of the object light to the reference light striking the film is called the beam branching ratio (BBR). We obtained in our experiment an exceedingly small minimum-observable ratio of BBR=(0.54/0.21)*10/sup -7/. The technology has the potential for a wide range of applications. This paper describes the various difficulties in achieving the success. It required the development of laser pulse stretching via enhanced closed loop control with slow Q-switching, to overcome excessive heating of the cryogenic l...

  19. Performance characteristics of the ferilab 15-foot bubble chamber with a 1/3-scale internal picket fence (IPF) and a two-plane external muon identifier (EMI)

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, M.L.

    1978-06-01

    The Fermilab 15-foot bubble chamber has been exposed to a quadrupole triplet neutrino beam. During this exposure, a 2-plane EMI and a 1/3-scale IPF, were in operation down-stream of the bubble chamber. The IPF consisted of sixteen 0.1 m/sup 2/ drift chambers (pickets) placed inside the vacuum tank of the bubble chamber to record temporal information from neutrino interactions. When a greater than or equal to 5-fold time coincidence between one or more of the pickets of the IPF and the EMI was formed, one was able to search the nagmetic tapes for dimuon candidates. Even with 1/3 geometrical coverage by the IPF, this system identified 70% of the dimuon candidates before the film was scanned. Other performance characteristics of the system will be presented with emphasis on the usefulness of the IPF.

  20. The Injection of Air/Oxygen Bubble into the Anterior Chamber of Rabbits as a Treatment for Hyphema in Patients with Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Emre Ayintap

    2014-01-01

    Full Text Available Purpose. To investigate the changes of partial oxygen pressure (PaO2 in aqueous humour after injecting air or oxygen bubble into the anterior chamber in sickle cell hyphema. Methods. Blood samples were taken from the same patient with sickle cell disease. Thirty-two rabbits were divided into 4 groups. In group 1 (n=8, there was no injection. Only blood injection constituted group 2 (n=8, both blood and air bubble injection constituted group 3 (n=8, and both blood and oxygen bubble injection constituted group 4 (n=8. Results. The PaO2 in the aqueous humour after 10 hours from the injections was 78.45 ± 9.9 mmHg (Mean ± SD for group 1, 73.97 ± 8.86 mmHg for group 2, 123.35 ± 13.6 mmHg for group 3, and 306.47 ± 16.5 mmHg for group 4. There was statistically significant difference between group 1 and group 2, when compared with group 3 and group 4. Conclusions. PaO2 in aqueous humour was increased after injecting air or oxygen bubble into the anterior chamber. We offer to leave an air bubble in the anterior chamber of patients with sickle cell hemoglobinopathies and hyphema undergoing an anterior chamber washout.

  1. Degassing of air bubbles in a chamber surge tank; Entgasung in einem Kammerwasserschloss

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Wolfgang; Schneider, Josef; Zenz, Gerald [Technische Univ. Graz (Austria). Inst. fuer Wasserbau Wasserwirtschaft; Kolb, Stephan [Schluchseewerk AG, Laufenburg (Germany)

    2012-07-01

    Increased flexibility for pumped hydro schemes with high discharge rates requires an optimized surge tank design. The objective of the surge tank layout is to protect the pressure tunnel from water hammer propagation and reduce mass oscillation due operational needs. In past decades surge tanks became more and more sophisticated to fulfill technical as well as economic aspects. Therefore the design of chamber surge tanks has been adapted with throtties and overflows to make use of differential effects. These are initiated during down-surge by water column separation. In the main shaft the water column is dropping through water still remains in the upper chamber which causes high air entrainment. It is important to avoid the transport of air into the pressure tunnel. The optimization of a large surge tank based on physical model tests supported by 3D-numerical calculation is demonstrated. (orig.)

  2. Bubble Combustion

    Science.gov (United States)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  3. Planar Soap Bubbles

    OpenAIRE

    Vaughn, Rick

    1998-01-01

    The generalized soap bubble problem seeks the least perimeter way to enclose and separate n given volumes in R^m. We study the possible configurations for perimeter minimizing bubble complexes enclosing more than two regions. We prove that perimeter minimizing planar bubble complexes with equal pressure regions and without empty chambers must have connected regions. As a consequence, we show that the least perimeter planar graph that...

  4. Science Bubbles

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Pedersen, David Budtz

    2013-01-01

    Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when...... bubbles appear in science, truth and reliability are the first victims. This paper explores how fashions in research funding and research management may turn science into something like a bubble economy....

  5. Around the laboratories: Rutherford: Successful tests on bubble chamber target technique; Stanford (SLAC): New storage rings proposal; Berkeley: The HAPPE project to examine cosmic rays with superconducting magnets; The 60th birthday of Professor N.N. Bogolyubov; Argonne: Performance of the automatic film measuring system POLLY II

    CERN Multimedia

    1969-01-01

    Around the laboratories: Rutherford: Successful tests on bubble chamber target technique; Stanford (SLAC): New storage rings proposal; Berkeley: The HAPPE project to examine cosmic rays with superconducting magnets; The 60th birthday of Professor N.N. Bogolyubov; Argonne: Performance of the automatic film measuring system POLLY II

  6. Dark matter search results from the PICO-60 CF3I bubble chamber

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C.; Ardid, M.; Asner, D. M.; Baxter, D.; Behnke, E.; Bhattacharjee, P.; Borsodi, H.; Bou-Cabo, M.; Brice, S. J.; Broemmelsiek, D.; Clark, K.; Collar, J. I.; Cooper, P. S.; Crisler, M.; Dahl, C. E.; Daley, S.; Das, M.; Debris, F.; Dhungana, N.; Fallows, S.; Farine, J.; Felis, I.; Filgas, R.; Girard, F.; Giroux, G.; Grandison, A.; Hai, M.; Hall, J.; Harris, O.; Jin, M.; Krauss, C. B.; Lafrenière, M.; Laurin, M.; Lawson, I.; Levine, I.; Lippincott, W. H.; Mann, E.; Maurya, D.; Mitra, P.; Neilson, R.; Noble, A. J.; Plante, A.; Podviianiuk, R. B.; Priya, S.; Ramberg, E.; Robinson, A. E.; Rucinski, R.; Ruschman, M.; Scallon, O.; Seth, S.; Simon, P.; Sonnenschein, A.; Štekl, I.; Vázquez-Jáuregui, E.; Wells, J.; Wichoski, U.; Zacek, V.; Zhang, J.; Shkrob, I. A.

    2016-03-01

    New data are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 36.8 kg of CF3I and located in the SNOLAB underground laboratory. PICO-60 is the largest bubble chamber to search for dark matter to date. With an analyzed exposure of 92.8 livedays, PICO-60 exhibits the same excellent background rejection observed in smaller bubble chambers. Alpha decays in PICO-60 exhibit frequency-dependent acoustic calorimetry, similar but not identical to that reported recently in a C3F8 bubble chamber. PICO-60 also observes a large population of unknown background events, exhibiting acoustic, spatial, and timing behaviors inconsistent with those expected from a dark matter signal. These behaviors allow for analysis cuts to remove all background events while retaining 48.2% of the exposure. Stringent limits on weakly interacting massive particles interacting via spin-dependent proton and spin-independent processes are set, and most interpretations of the DAMA/LIBRA modulation signal as dark matter interacting with iodine nuclei are ruled out.

  7. Bubble coalescence

    NARCIS (Netherlands)

    Orvalho, Sandra; Ruzicka, Marek C.; Olivieri, Giuseppe; Marzocchella, Antonio

    2015-01-01

    The goal of this study is to present new experimental data on the effect of the bubble approach velocity and liquid viscosity on pairwise bubble coalescence. Measurements were performed to investigate the dynamics of bubble coalescence under well-defined laboratory conditions. Air and pure

  8. Bubble systems

    CERN Document Server

    Avdeev, Alexander A

    2016-01-01

    This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boil...

  9. Dark Matter Search Results from the PICO-60C3F8 Bubble Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C.; Ardid, M.; Arnquist, I. J.; Asner, D. M.; Baxter, D.; Behnke, E.; Bhattacharjee, P.; Borsodi, H.; Bou-Cabo, M.; Campion, P.; Cao, G.; Chen, C. J.; Chowdhury, U.; Clark, K.; Collar, J. I.; Cooper, P. S.; Crisler, M.; Crowder, G.; Dahl, C. E.; Das, M.; Fallows, S.; Farine, J.; Felis, I.; Filgas, R.; Girard, F.; Giroux, G.; Hall, J.; Harris, O.; Hoppe, E. W.; Jin, M.; Krauss, C. B.; Laurin, M.; Lawson, I.; Leblanc, A.; Levine, I.; Lippincott, W. H.; Mamedov, F.; Maurya, D.; Mitra, P.; Nania, T.; Neilson, R.; Noble, A. J.; Olson, S.; Ortega, A.; Plante, A.; Podviyanuk, R.; Priya, S.; Robinson, A. E.; Roeder, A.; Rucinski, R.; Scallon, O.; Seth, S.; Sonnenschein, A.; Starinski, N.; Štekl, I.; Tardif, F.; Vázquez-Jáuregui, E.; Wells, J.; Wichoski, U.; Yan, Y.; Zacek, V.; Zhang, J.

    2017-06-01

    New results are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 52 kg of C3F8 located in the SNOLAB underground laboratory. As in previous PICO bubble chambers, PICO-60C3F8 exhibits excellent electron recoil and alpha decay rejection, and the observed multiple-scattering neutron rate indicates a single-scatter neutron background of less than one event per month.

  10. Bubble, Bubble, Toil and Trouble.

    Science.gov (United States)

    Journal of Chemical Education, 2001

    2001-01-01

    Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)

  11. Bubble diagnostics

    Science.gov (United States)

    Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.

    2003-01-01

    The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.

  12. Filter Bubble vs. Preference Bubble

    OpenAIRE

    Lindström, Hanna-Stiina; Soliman, Gabriela

    2016-01-01

    Tämän opinnäytetyön aiheena oli internetin personointi ja siitä aiheutuva filter bubble –ilmiö. Tarkoituksena oli tutkia kuluttajien suhtautumista ilmiöön, jota Suomessa ei vielä tunnisteta laajasti. Suhtautuminen haluttiin tuoda esiin vastakkainasettelun avulla. Filter bubble –näkökulma edusti tässä työssä ilmiön negatiivista suhtautumistapaa ja preference bubble –näkökulma positiivista. Opinnäytetyö oli tietopaketti yrityksille Filter bubble –ilmiön ominaisuuksista sekä sen käyttäytymisestä...

  13. A Pedagogical Experiment Using Bubble Chamber Pictures

    CERN Multimedia

    2002-01-01

    We have taken, in October 1981, 20.000 pictures of proton-proton interactions at 5 GeV/c in order to get some clean elastic events which can be easily studied by high school students. The purpose is to illustrate, by actual measurements of these real events, some basic concepts of relativistic mechanisms. This experiment will be an extension of our previous one, performed with HBC 2m events taken at 2 GeV/c. In 1980, all french lycees were provided with large size reproduction of HBC 2m events. Before distribution they were carefully selected and severe kinematical cuts were made. The students measured track curvatures by template, and checked the necessity and the validity of relativistic mechanics by computing the energy balance using non-relativistic and relativistic formulae. No practical problems have been encountered during this experiment and the pedagogical results are encouraging. This new sample of events will be interesting because they are relativistic than the old ones although with the same curv...

  14. Growing and Analyzing Biofilms in Flow Chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic...... conditions, and the environment can be carefully controlled and easily changed. The protocols in this unit include construction of the flow chamber and the bubble trap, assembly and sterilization of the flow chamber system, inoculation of the flow chambers, running of the system, image capture and analysis...

  15. Leverage bubble

    Science.gov (United States)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  16. Bubble drag reduction requires large bubbles

    CERN Document Server

    Verschoof, Ruben A; Sun, Chao; Lohse, Detlef

    2016-01-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  17. Bubble bath soap poisoning

    Science.gov (United States)

    ... medlineplus.gov/ency/article/002762.htm Bubble bath soap poisoning To use the sharing features on this page, please enable JavaScript. Bubble bath soap poisoning occurs when someone swallows bubble bath soap. ...

  18. Test chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2009-01-01

    A test chamber for measuring electromagnetic radiation emitted by an apparatus to be tested or for exposing an apparatus to be tested to an electromagnetic radiation field. The test chamber includes a reverberation chamber made of a conductive tent fabric. To create a statistically uniform field in

  19. Test chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    1999-01-01

    A test chamber for measuring electromagnetic radiation emitted by an apparatus to be tested or for exposing an apparatus to be tested to an electromagnetic radiation field. The test chamber includes a reverberation chamber made of a conductive tent fabric. To create a statistically uniform field in

  20. Design of experimental setup for investigation of cavitation bubble collapse close to a solid wall

    Directory of Open Access Journals (Sweden)

    Živný Martin

    2012-04-01

    Full Text Available The article describes experimental setup for investigation of the impact load from collapsing cavitation bubble on a solid wall. A vapour bubble is generated inside a cubic chamber by local heating of water inside a thin channel in a button. The bubble collapse is initiated by a piezoelectric actuator attached to the flexible wall of the chamber. A laser diode with a linear CCD sensor are used to detect the bubble position during its buoyancy-driven rise to the upper wall of the chamber. The bubble collapse impact load is measured using a PVDF piezoelectric transducer glued to the upper wall of the chamber and recorded by high-speed CCD camera illuminated by a high-power LED diode. The pressure inside the chamber is measured by the dynamic pressure transducer. All the system components are controlled and synchronized by an oscilloscope and pulse generator using the LabView software.

  1. Fama on bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    Eugene Fama has repeatedly expressed his discontent with the notion of an irrational bubble. However, he has never publicly expressed his opinion on rational bubbles. This is peculiar since such bubbles build naturally from the rational efficient markets paradigm that Fama strongly adheres to. On......, there is evidence of an explosive component in stock market valuation ratios, consistent with a rational bubble........ On empirical grounds Fama rejects bubbles by referring to the lack of reliable evidence that price declines are predictable. However, this argument cannot be used to rule out rational bubbles because such bubbles do not necessarily imply return predictability. On data samples that include the 1990s...

  2. Ussing Chamber

    NARCIS (Netherlands)

    Westerhout, J.; Wortelboer, H.; Verhoeckx, K.

    2015-01-01

    The Ussing chamber system is named after the Danish zoologist Hans Ussing, who invented the device in the 1950s to measure the short-circuit current as an indicator of net ion transport taking place across frog skin (Ussing and Zerahn, Acta Physiol Scand 23:110-127, 1951). Ussing chambers are

  3. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  4. Measuring bubbles in a bubbly wake flow

    Science.gov (United States)

    Lee, Seung-Jae; Kawakami, Ellison; Arndt, Roger E. A.

    2012-11-01

    This paper presents measurements of the velocity and size distribution of bubbles in a bubbly wake. This was carried out by utilizing particle shadow velocimetry (PSV). This technique is a non-scattering approach that relies on direct in-line volume illumination by a pulsed source such as a light-emitting diode (LED). A narrow depth-of-field (DoF) is required for imaging a 2-dimensional plane within a flow volume. Shadows of the bubbles were collected by a high-speed camera. Once a reference image, taken when no bubbles were present in the flow, was subtracted from the images, the image was segmented using an edge detection technique. The Canny algorithm was determined to be best suited for this application. A curvature profile method was employed to distinguish individual bubbles within a cluster of highly overlapping bubbles. The utilized algorithm was made to detect partly overlapping bubbles and reconstruct the missing parts. The movement of recognized individual bubbles was tracked on a two dimensional plane within a flow volume. In order to obtain quantitative results, the wake of a ventilated hydrofoil was investigated by applying the shadowgraphy technique and the described bubble detection algorithm. These experiments were carried out in the high speed cavitation tunnel at Saint Anthony Falls Laboratory (SAFL) of the University of Minnesota. This research is jointly sponsored by the Office of Naval Re- search, Dr. Ron Joslin, program manager, and the Department of Energy, Golden Field Office.

  5. Fama on Bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    2016-01-01

    . However, this argument cannot be used to rule out rational bubbles because such bubbles do not necessarily imply return predictability, and return predictability of the kind documented by Fama does not rule out rational bubbles. On data samples that include the 1990s, there is evidence of an explosive......While Eugene Fama has repeatedly expressed his discontent with the notion of an “irrational bubble,” he has never publicly expressed his opinion on “rational bubbles.” On empirical grounds Fama rejects bubbles by referring to the lack of reliable evidence that price declines are predictable...

  6. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  7. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  8. Soap Bubbles and Crystals

    Indian Academy of Sciences (India)

    volume work summarizing his decades of research into soap bubbles and related phe- nomena due to surface tension. He gave the rules governing the geometry of bubbles, without any proof. It is a remarkable achievement as these experiments.

  9. Soap Bubbles and Logic.

    Science.gov (United States)

    Levine, Shellie-helane; And Others

    1986-01-01

    Introduces questions and activities involving soap bubbles which provide students with experiences in prediction and logic. Examines commonly held false conceptions related to the shapes that bubbles take and provides correct explanations for the phenomenon. (ML)

  10. Economic Growth with Bubbles

    OpenAIRE

    Alberto Martin

    2010-01-01

    This paper presents a stylized model of economic growth with bubbles. This model views asset price bubbles as a market-generated device to moderate the effects of frictions in financial markets, improving the allocation of investments and raising the capital stock and welfare. It shows that, contrary to conventional wisdom, bubbles can arise even if all investments in the economy are dynamically efficient.

  11. Soap Films and Bubbles.

    Science.gov (United States)

    Rice, Karen

    1986-01-01

    Develops and explains a format for a workshop which focuses on soap films and bubbles. The plan consists of: a discussion to uncover what children know about bubbles; explanations of the demonstration equipment; the presentation itself; the assembly of the workshop kit; and time to play with the bubbles. (ML)

  12. Cavitation bubble dynamics.

    Science.gov (United States)

    Lauterborn, W; Ohl, C D

    1997-04-01

    The dynamics of cavitation bubbles on water is investigated for bubbles produced optically and acoustically. Single bubble dynamics is studied with laser produced bubbles and high speed photography with framing rates up to 20.8 million frames per second. Examples for jet formation and shock wave emission are given. Acoustic cavitation is produced in water in the interior of piezoelectric cylinders of different sizes (up to 12 cm inner diameter). The filementary structure composed of bubbles is investigated and their light emission (sonoluminescence) studied for various driving strengths.

  13. Demonstrating the Importance of Bubbles and Viscosity on Volcanic Eruptions

    Science.gov (United States)

    Namiki, A.

    2005-12-01

    The behavior of bubbles (exsolved volatile from magma) and viscosity of magma are important parameters that influence volcanic eruptions. Exsolved volatiles increase the volume of magma and reduce its density so that magma has sufficient volume and buoyancy force to erupt. Volatiles exsolve through nucleation and growth by diffusion and bubbles can expand as pressure is reduced. The time scale of diffusion depends on the viscosity of surrounding magma, and the expansion time scale of a bubble is also depends on the viscosity of magma. These control the time scale for volume change. If bubbles segregate from magma and collapse, the magma might not able to expand sufficiently to erupt violently. Whether a bubble can segregate from the liquid part of magma is also depends on viscosity of magma. In this poster, I introduce a straightforward demonstration to show the importance of bubbles and viscosity of magma on volcanic eruptions. To make bubbles, I use baking soda (NaHCO3) and citric acid. Reaction between them generates carbon dioxide (CO2) to make bubbles. I make citric acid solution gel by using agar at the bottom of a transparent glass and pour baking soda disolved corn syrup on top of the agar. This situation is a model of basally heated magma chamber. When water disolved magma (baking soda disolved corn syrup) receives sufficient heat (citric acid) bubbles are generated. I can change viscosity of corn syrup by varying the concentration of water. This demonstration shows how viscosity controls the time scale of volume change of bubbly magma and the distribution of bubbles in the fluid. In addition it helps to understand the important physical processes in volcanic eruption: bubble nucleation, diffusion grows, expansion, and bubble driving convection. I will perform a live demonstration at the site of the poster.

  14. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  15. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  16. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  17. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  18. Effect of bubble deformability on the vertical channel bubbly flow

    OpenAIRE

    Dabiri, Sadegh; Lu, Jiacai; Tryggvason, Gretar

    2012-01-01

    This article describes the fluid dynamics video: "Effect of bubble deformability on the vertical channel bubbly flow". The effect of bubble deformability on the flow rate of bubbly upflow in a turbulent vertical channel is examined using direct numerical simulations. A series of simulations with bubbles of decreasing deformability reveals a sharp transition from a flow with deformable bubbles uniformly distributed in the middle of the channel to a flow with nearly spherical bubbles with a wal...

  19. Bubble Formation at a Submerged Orifice for Aluminum Foams Produced by Gas Injection Method

    Science.gov (United States)

    Fan, Xueliu; Chen, Xiang; Liu, Xingnan; Zhang, Huiming; Li, Yanxiang

    2013-02-01

    The bubble formation at a submerged orifice in the process of aluminum foams produced by gas injection method is investigated. The experimental results show that the increase of the gas flow rate and the orifice diameter can lead to increasing of the bubble size. The large orifice can make the frequency of bubble formation decrease by slowing down the increase of the gas chamber pressure when the gas flow rate increases. The effect of the gas chamber volume on the bubble size can be ignored in the experiment when it expands from 1 to 125 cm3. A theoretical model of bubble formation, expansion, and detachment under constant flow conditions is established to predict the bubble size. The theoretical predictions for air-aluminum melt systems are consistent with the experimental results.

  20. Magnetic bubble materials.

    Science.gov (United States)

    Giess, E A

    1980-05-23

    Physicists, materials scientists, and engineers combined to bring solid-state bubble devices into the computer memory and recording marketplace. Devices with smaller bubbles are being developed for increased data capacity and lower cost. Epitaxial garnet films made by isothermal dipping in molten solutions helped put the technology in place and will probably satisfy the material needs of future devices with bubbles scaled down from 2 to 0.5 micrometer in size.

  1. Sonochemistry and bubble dynamics.

    Science.gov (United States)

    Mettin, Robert; Cairós, Carlos; Troia, Adriano

    2015-07-01

    The details of bubble behaviour in chemically active cavitation are still not sufficiently well understood. Here we report on experimental high-speed observations of acoustically driven single-bubble and few-bubble systems with the aim of clarification of the connection of their dynamics with chemical activity. Our experiment realises the sonochemical isomerization reaction of maleic acid to fumaric acid, mediated by bromine radicals, in a bubble trap set-up. The main result is that the reaction product can only be observed in a parameter regime where a small bubble cluster occurs, while a single trapped bubble stays passive. Evaluations of individual bubble dynamics for both cases are given in form of radius-time data and numerical fits to a bubble model. A conclusion is that a sufficiently strong collapse has to be accompanied by non-spherical bubble dynamics for the reaction to occur, and that the reason appears to be an efficient mixing of liquid and gas phase. This finding corroborates previous observations and literature reports on high liquid phase sonochemical activity under distinct parameter conditions than strong sonoluminescence emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Bubble and drop interfaces

    CERN Document Server

    Miller

    2011-01-01

    The book aims at describing the most important experimental methods for characterizing liquid interfaces, such as drop profile analysis, bubble pressure and drop volume tensiometry, capillary pressure technique, and oscillating drops and bubbles. Besides the details of experimental set ups, also the underlying theoretical basis is presented in detail. In addition, a number of applications based on drops and bubbles is discussed, such as rising bubbles and the very complex process of flotation. Also wetting, characterized by the dynamics of advancing contact angles is discussed critically. Spec

  3. Bubbles, Banks, and Financial Stability

    OpenAIRE

    Kosuke Aoki; Kalin Nikolov

    2011-01-01

    This paper asks two main questions: (1) What makes some asset price bubbles more costly for the real economy than others? and (2) When do costly bubbles occur? We construct a model of rational bubbles under credit frictions and show that when bubbles held by banks burst this is followed by a costly financial crisis. In contrast, bubbles held by ordinary savers have relatively muted effects. Banks tend to invest in bubbles when financial liberalisation decreases their profitability.

  4. Single bubble sonoluminescence

    NARCIS (Netherlands)

    Brenner, Michael P.; Hilgenfeldt, Sascha; Lohse, Detlef

    2002-01-01

    Single-bubble sonoluminescence occurs when an acoustically trapped and periodically driven gas bubble collapses so strongly that the energy focusing at collapse leads to light emission. Detailed experiments have demonstrated the unique properties of this system: the spectrum of the emitted light

  5. Bubbles in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Lin, Jun

    2015-01-01

    Strain-induced deformations in graphene are predicted to give rise to large pseudomagnetic fields. We examine theoretically the case of gas-inflated bubbles to determine whether signatures of such fields are present in the local density of states. Sharp-edged bubbles are found to induce Friedel...

  6. Understanding the bubbles

    DEFF Research Database (Denmark)

    Turcan, Romeo V.

    that are identified to exist between the Internet and housing market bubbles: uncertainty and sentiments. The iteration between uncertainty and sentiments leads to the emergence of the third commonality: residue. The residue is the difference between the actors’ overall sentiment about exaggerated future prospects......Understanding how and why bubbles occur as well as whether these could be anticipated, managed, or even prevented is equally important as to know how to recover from them. To address these questions, a model of bubble emergence is put forward. The model builds on two fundamental commonalities...... of a new venture and intended outcomes of that new venture; the higher the residue, the higher the likelihood of the bubble emergence; as residue increases, the likelihood of bubble burst increases. One question that arises is whether one can manage the hype, hence the residue. In this, it is maintained...

  7. Effect of Orifice Diameter on Bubble Generation Process in Melt Gas Injection to Prepare Aluminum Foams

    Science.gov (United States)

    Yuan, Jianyu; Li, Yanxiang; Wang, Ningzhen; Cheng, Ying; Chen, Xiang

    2016-06-01

    The bubble generation process in conditioned A356 alloy melt through submerged spiry orifices with a wide diameter range (from 0.07 to 1.0 mm) is investigated in order to prepare aluminum foams with fine pores. The gas flow rate and chamber pressure relationship for each orifice is first determined when blowing gas in atmospheric environment. The effects of chamber pressure ( P c) and orifice diameter ( D o) on bubble size are then analyzed separately when blowing gas in melt. A three-dimensional fitting curve is obtained illustrating both the influences of orifice diameter and chamber pressure on bubble size based on the experimental data. It is found that the bubble size has a V-shaped relationship with orifice diameter and chamber pressure neighboring the optimized parameter ( D o = 0.25 mm, P c = 0.4 MPa). The bubble generation mechanism is proposed based on the Rayleigh-Plesset equation. It is found that the bubbles will not be generated until a threshold pressure difference is reached. The threshold pressure difference is dependent on the orifice diameter, which determines the time span of pre-formation stage and bubble growth stage.

  8. Partial coalescence from bubbles to drops

    KAUST Repository

    Zhang, F. H.

    2015-10-07

    The coalescence of drops is a fundamental process in the coarsening of emulsions. However, counter-intuitively, this coalescence process can produce a satellite, approximately half the size of the original drop, which is detrimental to the overall coarsening. This also occurs during the coalescence of bubbles, while the resulting satellite is much smaller, approximately 10 %. To understand this difference, we have conducted a set of coalescence experiments using xenon bubbles inside a pressure chamber, where we can continuously raise the pressure from 1 up to 85 atm and thereby vary the density ratio between the inner and outer fluid, from 0.005 up to unity. Using high-speed video imaging, we observe a continuous increase in satellite size as the inner density is varied from the bubble to emulsion-droplet conditions, with the most rapid changes occurring as the bubble density grows up to 15 % of that of the surrounding liquid. We propose a model that successfully relates the satellite size to the capillary wave mode responsible for its pinch-off and the overall deformations from the drainage. The wavelength of the primary wave changes during its travel to the apex, with the instantaneous speed adjusting to the local wavelength. By estimating the travel time of this wave mode on the bubble surface, we also show that the model is consistent with the experiments. This wavenumber is determined by both the global drainage as well as the interface shapes during the rapid coalescence in the neck connecting the two drops or bubbles. The rate of drainage is shown to scale with the density of the inner fluid. Empirically, we find that the pinch-off occurs when 60 % of the bubble fluid has drained from it. Numerical simulations using the volume-of-fluid method with dynamic adaptive grid refinement can reproduce these dynamics, as well as show the associated vortical structure and stirring of the coalescing fluid masses. Enhanced stirring is observed for cases with second

  9. Bubble impacts with microcantilevers.

    Science.gov (United States)

    Stegmeir, Matthew; Longmire, Ellen; Ali, Mubassar; Mantell, Susan

    2006-11-01

    In the current study, we investigate bubbles in laminar channel flows impacting microcantilever obstacles. Static and resonating cantilevers instrumented with integrated strain gages are mounted perpendicular to the mean flow in a vertically-oriented channel with thickness 2mm, span 10mm, and length 585 mm. Steady, fully-developed upward flows with channel Reynolds numbers based on mean fluid velocity and hydraulic diameter of 0-2500 are considered. Bubbles of diameter 200-1000μm are introduced upstream of the test section, and impacts are observed using a microscope equipped with a high frame rate camera. Observations are made along the length of cantilevers backlit with white light. Strain gage signals are monitored and correlated to impact events. The effect of obstacles on bubble motion and deformation as well as the effect of bubble impacts on the cantilever will be discussed. The flow studies are part of a larger research program examining reliability and performance of vibrating microbeams.

  10. Chemistry in Soap Bubbles.

    Science.gov (United States)

    Lee, Albert W. M.; Wong, A.; Lee, H. W.; Lee, H. Y.; Zhou, Ning-Huai

    2002-01-01

    Describes a laboratory experiment in which common chemical gases are trapped inside soap bubbles. Examines the physical and chemical properties of the gases such as relative density and combustion. (Author/MM)

  11. Bubble dynamics in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Hanke, Andreas [Institut fuer Theoretische Physik, Universitaet Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany); Metzler, Ralf [NORDITA-Nordic Institute for Theoretical Physics, Blegdamsvej 17, DK-2100 Copenhagen O (Denmark)

    2003-09-12

    The formation of local denaturation zones (bubbles) in double-stranded DNA is an important example of conformational changes of biological macromolecules. We study the dynamics of bubble formation in terms of a Fokker-Planck equation for the probability density to find a bubble of size n base pairs at time t, on the basis of the free energy in the Poland-Scheraga model. Characteristic bubble closing and opening times can be determined from the corresponding first passage time problem, and are sensitive to the specific parameters entering the model. A multistate unzipping model with constant rates recently applied to DNA breathing dynamics (Altan-Bonnet et al 2003 Phys. Rev. Lett. 90 138101) emerges as a limiting case. (letter to the editor)

  12. Ligation-based mutation detection and RCA in surface un-modified OSTE+ polymer microfluidic chambers

    DEFF Research Database (Denmark)

    Saharil, Farizah; Ahlford, Annika; Kuhnemund, Malte

    2013-01-01

    For the first time, we demonstrate DNA mutation detection in surface un-modified polymeric microfluidic chambers without suffering from bubble trapping or bubble formation. Microfluidic devices were manufactured in off-stoichiometry thiol-ene epoxy (OSTE+) polymer using an uncomplicated and rapid...

  13. Cavitation Bubble Nucleation by Energetic Particles

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.

    1998-12-01

    In the early sixties, experimental measurements using a bubble chamber confirmed quantitatively the thermal spike theory of bubble nucleation by energetic particles: the energy of the slow, heavy alpha decay recoils used in those experiments matched the calculated bubble nucleation energy to within a few percent. It was a triumph, but was soon to be followed by a puzzle. Within a couple of years, experiments on similar liquids, but well below their normal boiling points, placed under tensile stress showed that the calculated bubble nucleation energy was an order of magnitude less than the recoil energy. Why should the theory work so well in the one case and so badly in the other? How did the liquid, or the recoil particle, "know" the difference between the two experiments? Another mathematical model of the same physical process, introduced in 1967, showed qualitatively why different analyses would be needed for liquids with high and low vapor pressures under positive or negative pressures. But, the quantitative agreement between the calculated nucleation energy and the recoil energy was still poor--the former being smaller by a factor of two to three. In this report, the 1967 analysis is extended and refined: the qualitative understanding of the difference between positive and negative pressure nucleation, "boiling" and "cavitation" respectively, is retained, and agreement between the negative pressure calculated to be needed for nucleation and the energy calculated to be available is much improved. A plot of the calculated negative pressure needed to induce bubble formation against the measured value now has a slope of 1.0, although there is still considerable scatter in the individual points.

  14. Row bubbles up over particle prize

    CERN Multimedia

    Chalmers, Matthew

    2009-01-01

    "The European Physical Society (EPS) has defended its handling of the 2009 prize for high-energy and particle physics despite complaints that the awarding committee overlooked a vital scientific contribution to the prize-winning work. The biennial award, worth SwFr 5000, was given to collaborators on the Gargamelle bubble-chamber experiment at Cern for their descovery in 1973 of the "weak neutral current" - one of the ways in which the weak nuclear force is mediated between fundamental particles" (0.75 page)

  15. Doriot Climatic Chambers

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers are two, 60-feet long, 11-feet high, 15-feet wide chambers that are owned and operated by NSRDEC. The Doriot Climatic Chambers are among...

  16. Rigorous buoyancy driven bubble mixing for centrifugal microfluidics.

    Science.gov (United States)

    Burger, S; Schulz, M; von Stetten, F; Zengerle, R; Paust, N

    2016-01-21

    We present batch-mode mixing for centrifugal microfluidics operated at fixed rotational frequency. Gas is generated by the disk integrated decomposition of hydrogen peroxide (H2O2) to liquid water (H2O) and gaseous oxygen (O2) and inserted into a mixing chamber. There, bubbles are formed that ascent through the liquid in the artificial gravity field and lead to drag flow. Additionaly, strong buoyancy causes deformation and rupture of the gas bubbles and induces strong mixing flows in the liquids. Buoyancy driven bubble mixing is quantitatively compared to shake mode mixing, mixing by reciprocation and vortex mixing. To determine mixing efficiencies in a meaningful way, the different mixers are employed for mixing of a lysis reagent and human whole blood. Subsequently, DNA is extracted from the lysate and the amount of DNA recovered is taken as a measure for mixing efficiency. Relative to standard vortex mixing, DNA extraction based on buoyancy driven bubble mixing resulted in yields of 92 ± 8% (100 s mixing time) and 100 ± 8% (600 s) at 130g centrifugal acceleration. Shake mode mixing yields 96 ± 11% and is thus equal to buoyancy driven bubble mixing. An advantage of buoyancy driven bubble mixing is that it can be operated at fixed rotational frequency, however. The additional costs of implementing buoyancy driven bubble mixing are low since both the activation liquid and the catalyst are very low cost and no external means are required in the processing device. Furthermore, buoyancy driven bubble mixing can easily be integrated in a monolithic manner and is compatible to scalable manufacturing technologies such as injection moulding or thermoforming. We consider buoyancy driven bubble mixing an excellent alternative to shake mode mixing, in particular if the processing device is not capable of providing fast changes of rotational frequency or if the low average rotational frequency is challenging for the other integrated fluidic operations.

  17. Colliding with a crunching bubble

    Energy Technology Data Exchange (ETDEWEB)

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  18. Directed Energy Anechoic Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — The Directed Energy Anechoic Chamber comprises a power anechoic chamber and one transverse electromagnetic cell for characterizing radiofrequency (RF) responses of...

  19. A Bubble Bursts

    Science.gov (United States)

    2005-01-01

    RCW 79 is seen in the southern Milky Way, 17,200 light-years from Earth in the constellation Centaurus. The bubble is 70-light years in diameter, and probably took about one million years to form from the radiation and winds of hot young stars. The balloon of gas and dust is an example of stimulated star formation. Such stars are born when the hot bubble expands into the interstellar gas and dust around it. RCW 79 has spawned at least two groups of new stars along the edge of the large bubble. Some are visible inside the small bubble in the lower left corner. Another group of baby stars appears near the opening at the top. NASA's Spitzer Space Telescope easily detects infrared light from the dust particles in RCW 79. The young stars within RCW 79 radiate ultraviolet light that excites molecules of dust within the bubble. This causes the dust grains to emit infrared light that is detected by Spitzer and seen here as the extended red features.

  20. Bubble nuclei; Noyaux Bulles

    Energy Technology Data Exchange (ETDEWEB)

    Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1998-07-22

    For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.

  1. Multivariate bubbles and antibubbles

    Science.gov (United States)

    Fry, John

    2014-08-01

    In this paper we develop models for multivariate financial bubbles and antibubbles based on statistical physics. In particular, we extend a rich set of univariate models to higher dimensions. Changes in market regime can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. Moreover, our multivariate models are able to capture some of the contagious effects that occur during such episodes. We are able to show that declining lending quality helped fuel a bubble in the US stock market prior to 2008. Further, our approach offers interesting insights into the spatial development of UK house prices.

  2. The Liberal Arts Bubble

    Science.gov (United States)

    Agresto, John

    2011-01-01

    The author expresses his doubt that the general higher education bubble will burst anytime soon. Although tuition, student housing, and book costs have all increased substantially, he believes it is still likely that the federal government will continue to pour billions into higher education, largely because Americans have been persuaded that it…

  3. Bubble properties of heterogeneous bubbly flow in a square bubble column

    NARCIS (Netherlands)

    Bai, W.; Deen, N.G.; Kuipers, J.A.M.

    2010-01-01

    The present work focuses on the measurements of bubble properties in heterogeneous bubbly flows in a square bubble column. A four-point optical fibre probe was used for this purpose. The accuracy and intrusive effect of the optical probe was investigated first. The results show that the optical

  4. Characteristics of bubble plumes, bubble-plume bubbles and waves from wind-steepened wave breaking

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G. de

    2007-01-01

    Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened

  5. Bubbling controlled by needle movement

    Energy Technology Data Exchange (ETDEWEB)

    Vejrazka, Jiri; Fujasova, Maria; Stanovsky, Petr; Ruzicka, Marek C; Drahos, JirI [Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojova 135, 165 02 Prague (Czech Republic)], E-mail: vejrazka@icpf.cas.cz

    2008-07-30

    A device for 'on-demand' production of bubbles is presented. The device is based on a movable needle, through which air is injected. Bubbling is controlled by a rapid needle movement, which induces the bubble detachment. Conditions for proper function of the device include the restriction on the flow rate through the needle, sufficient needle pressure drop and adequate needle acceleration. Functionality of the device is demonstrated. Bubbling from a stationary needle is also discussed and a scaling for bubble size is proposed for the case of short needles, to which a constant flow rate is imposed through tubes of a finite volume.

  6. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  7. Ring Bubbles of Dolphins

    Science.gov (United States)

    Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since

  8. Bubble dynamics in drinks

    Directory of Open Access Journals (Sweden)

    Broučková Zuzana

    2014-03-01

    Full Text Available This study introduces two physical effects known from beverages: the effect of sinking bubbles and the hot chocolate sound effect. The paper presents two simple „kitchen” experiments. The first and second effects are indicated by means of a flow visualization and microphone measurement, respectively. To quantify the second (acoustic effect, sound records are analyzed using time-frequency signal processing, and the obtained power spectra and spectrograms are discussed.

  9. Quantum Subcritical Bubbles

    Science.gov (United States)

    Uesugi, T.; Morikawa, M.; Shiromizu, T.

    1996-08-01

    We quantize subcritical bubbles which are formed in the weakly first order phase transition. We find that the typical size of the thermal fluctuation reduces in quantum-statistical physics. We estimate the typical size and the amplitude of thermal fluctuations near the critical temperature in the electroweak phase transition using a quantum statistical average. Furthermore, based on our study, we discuss implications for the dynamics of phase transitions.

  10. Popping the filter bubble

    OpenAIRE

    Hughes, Katie; Cronin, G; Welch, L

    2017-01-01

    So-called “fake news” is everywhere and is having a major impact on daily life from politics to education. The rapid growth of information and the numbers of people who can create it means that we need more sophisticated tools to process the news we receive. Join us to learn about different methods you can use to be your own fact checker and pop your filter bubble.

  11. BubbleDeck

    OpenAIRE

    ECT Team, Purdue

    2013-01-01

    Conventional horizontal concrete slabs are heavy that limit their spans. Enhancement of span results in addition of beams that increases the cost of the structure. Thus, there is a need for a technology that will help in increasing the span by reducing weight of the span. BubbleDeck is a revolutionary construction method that virtually eliminates concrete from the middle of a floor slab between columns that does not perform any structural function, thereby dramatically reducing structural dea...

  12. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubbles...... spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on the sources of bubble...

  13. Molecular dynamics simulations of bubble nucleation in dark matter detectors.

    Science.gov (United States)

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.

  14. In Search of the Big Bubble

    Science.gov (United States)

    Simoson, Andrew; Wentzky, Bethany

    2011-01-01

    Freely rising air bubbles in water sometimes assume the shape of a spherical cap, a shape also known as the "big bubble". Is it possible to find some objective function involving a combination of a bubble's attributes for which the big bubble is the optimal shape? Following the basic idea of the definite integral, we define a bubble's surface as…

  15. The analysis of track chamber photographs using flying spot digitizers

    CERN Multimedia

    Powell, Brian W

    1966-01-01

    A vast quantity of data pours from the experiments on particle accelerators throughout the world. For example, over 300 000 photographs per week came from the three bubble chambers operating on the CERN PS at the end of 1965. The conventional method of processing these bubble chamber photographs is for each one of them to be examined ('scanned') to see whether it records an interesting particle interaction. The interesting photographs are then passed to hand operated measuring machines to obtain precise measurements of the particle trajectories recorded on the film. Similar measurements are carried out on photographs taken in film spark chamber experiments. This article on the Flying Spot Digitizers at CERN describes one of the most fruitful attempts to speed and make more accurate the process of analysis of bubble and spark chamber photographs. There are two types of Flying Spot Digitizer at CERN — the HPD or Hough Powell Device (named after Professor Hough and the author who, together, initiated the devel...

  16. Bubble measuring instrument and method

    Science.gov (United States)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2003-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  17. Electroweak bubble wall speed limit

    Science.gov (United States)

    Bödeker, Dietrich; Moore, Guy D.

    2017-05-01

    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can "run away," that is, achieve extreme ultrarelativistic velocities γ ~ 1014. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ~ 1/α. Though the bubble walls can move at almost the speed of light, they carry an infinitesimal share of the plasma's energy.

  18. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  19. Radiation dose mapping using magnetic resonance imaging in a superheated emulsion chamber

    Science.gov (United States)

    Lamba, Michael A. S.

    This work describes the magnetic resonance (MR) imaging techniques and image processing algorithms developed for radiation dosimetry with the superheated emulsion chamber. The chamber contains an emulsion of chloropentafluoroethane droplets in a tissue-equivalent glycerin-based gel. The droplets are highly superheated and expand into vapor bubbles upon exposure to irradiation. Brachytherapy sources can be inserted into the superheated emulsion chamber to create distributions of bubbles. The distribution of bubbles is then representative of the dose distribution to which the emulsion is exposed. Cumulating data from multiple independent exposures is required to calculate statistically significant bubble densities. MR imaging is well suited to determining the bubble distribution. Susceptibility gradients at the interfaces between bubbles and gel are exploited to enhance contrast so microscopic bubbles can be imaged using relatively large voxel sizes. A conventional three-dimensional gradient echo imaging method is developed and applied to multiple independent irradiations of the superheated emulsion chamber from an 125I source. An image post-processing technique is developed to semi-automatically segment the bubbles from the images and to assess dose distributions based on the measured bubble densities. Relative bubble densities compare favorably to relative radial dose distributions calculated as recommended by Task Group 43 (TG43) of the American Association of Physicists in Medicine as well as Monte Carlo radiation transport simulations. A three-dimensional, segmented, double sampled, echo-planar imaging (EPI) technique is subsequently developed and applied to an 125I source. Combining two-dimensional EPI with a conventional phase encode in the third dimension provides for rapid acquisition of susceptibility weighted images. Segmentation reduces artifacts produced by magnetic field inhomogeneities, while double sampling removes Nyquist ghosting. Post-processing is

  20. Na emission and bubble instability in single-bubble sonoluminescence.

    Science.gov (United States)

    Choi, Pak-Kon; Takumori, Keisuke; Lee, Hyang-Bok

    2017-09-01

    Na emission in single-bubble sonoluminescence (SBSL) was observed from 0.1mM sodium dodecyl sulfate (SDS) solution containing a dissolved noble gas at a low acoustic pressure, at which a continuous spectral component was negligible. High-speed shadowgraph movies were captured at a frame rate of 30,000fps, which indicated that bubble dancing is responsible for the Na emission. The measured bubble path length was well correlated with the Na intensity. The disintegration of a daughter bubble followed by immediate coalescence was frequently observed, which may have been the cause of the bubble dancing. A comparison of the Na spectra obtained in SBSL and multibubble SL showed that the conditions under which Na emission is generated are twofold. A narrow component was observed in the Na spectrum in SBSL, while narrow and broad components were observed in MBSL. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Bubble formation in shear-thinning fluids: Laser image measurement and a novel correlation for detached volume

    Directory of Open Access Journals (Sweden)

    Fan Wenyuan

    2017-01-01

    Full Text Available A laser image system has been established to quantify the characteristics of growing bubbles in quiescent shear-thinning fluids. Bubble formation mechanism was investigated by comparing the evolutions of bubble instantaneous shape, volume and surface area in two shear-thinning liquids with those in Newtonian liquid. The effects of solution mass concentration, gas chamber volume and orifice diameter on bubble detachment volume are discussed. By dimensional analysis, a single bubble volume detached within a moderate gas flowrate range was developed as a function of Reynolds number ,Re, Weber number, We, and gas chamber number, Vc, based on the orifice diameter. The results reveal that the generated bubble presents a slim shape due to the shear-thinning effect of the fluid. Bubble detachment volume increases with the solution mass concentration, gas chamber volume and orifice diameter. The results predicted by the present correlation agree better with the experimental data than the previous ones within the range of this paper.

  2. Sonoporation from jetting cavitation bubbles

    NARCIS (Netherlands)

    Ohl, C.D.; Arora, M.; Ikink, Roy; de Jong, N.; Versluis, Michel; Delius, Michael; Lohse, Detlef

    2006-01-01

    The fluid dynamic interaction of cavitation bubbles with adherent cells on a substrate is experimentally investigated. We find that the nonspherical collapse of bubbles near to the boundary is responsible for cell detachment. High-speed photography reveals that a wall bounded flow leads to the

  3. Sonoporation from jetting cavitation bubbles

    NARCIS (Netherlands)

    C.-D. Ohl (Claus-Dieter); M. Arora (Manish); R. Ikink (Roy); N. de Jong (Nico); M. Versluis (Michel); M. Delius (Michael); D. Lohse (Detlef)

    2006-01-01

    textabstractThe fluid dynamic interaction of cavitation bubbles with adherent cells on a substrate is experimentally investigated. We find that the nonspherical collapse of bubbles near to the boundary is responsible for cell detachment. High-speed photography reveals that a wall bounded flow leads

  4. Bubble size distribution of foam

    NARCIS (Netherlands)

    den Engelsen, C.W.; den Engelsen, C.W.; Isarin, J.C.; Warmoeskerken, Marinus; Groot Wassink, J.; Groot Wassink, J.

    2002-01-01

    A procedure based upon image analysis has been adopted to study the influence of several physical parameters on bubble size in foam. A procedure has been described to account for the distribution of bubble size. Foam was generated in a rotor-stator mixer. In the present research, the nature of the

  5. Hadron bubbles in nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Troitskii, M.A.; Khodel' , V.A.

    1983-08-25

    Nonlinear effects in the interaction of hadrons with a nucleus are analyzed. It is shown that K/sup +/ mesons form bubbles in nuclear matter which are similar to electron bubbles in liquid helium. Charged pions produced in collisions of heavy relativistic ions may collect and form droplets approx.5--7 Fm in size containing approx.10/sup 2/ particles.

  6. Mr. Bubble Gum: "Not Now!"

    National Research Council Canada - National Science Library

    1989-01-01

    PreS-Gr 2-- Mr. Bubble Gum is a Level 3 book, the most difficult in this series. In four short stories of varying lengths, an older brother tells about his younger brother Eli, who "sticks to me like bubble gum...

  7. Bubble columns : Structures or stability?

    NARCIS (Netherlands)

    Harteveld, W.K.

    2005-01-01

    The aim of the thesis is to contribute to the understanding of the hydrodynamics of the gravity driven bubbly flow that can be found in bubble columns. Special attention is paid to the large scale structures that have a strong impact on several key parameters such as the degree of mixing, mass and

  8. Phase diagrams for sonoluminescing bubbles

    NARCIS (Netherlands)

    Hilgenfeldt, Sascha; Lohse, Detlef; Brenner, Michael P.

    1996-01-01

    Sound driven gas bubbles in water can emit light pulses. This phenomenon is called sonoluminescence (SL). Two different phases of single bubble SL have been proposed: diffusively stable and diffusively unstable SL. We present phase diagrams in the gas concentration versus forcing pressure state

  9. Bubble coalescence in breathing DNA

    DEFF Research Database (Denmark)

    Novotný, Tomas; Pedersen, Jonas Nyvold; Ambjörnsson, Tobias

    2007-01-01

    We investigate the coalescence of two DNA bubbles initially located at weak segments and separated by a more stable barrier region in a designed construct of double-stranded DNA. The characteristic time for bubble coalescence and the corresponding distribution are derived, as well...

  10. Growing bubbles rising in line

    Directory of Open Access Journals (Sweden)

    John F. Harper

    2001-01-01

    Full Text Available Over many years the author and others have given theories for bubbles rising in line in a liquid. Theory has usually suggested that the bubbles will tend towards a stable distance apart, but experiments have often showed them pairing off and sometimes coalescing. However, existing theory seems not to deal adequately with the case of bubbles growing as they rise, which they do if the liquid is boiling, or is a supersaturated solution of a gas, or simply because the pressure decreases with height. That omission is now addressed, for spherical bubbles rising at high Reynolds numbers. As the flow is then nearly irrotational, Lagrange's equations can be used with Rayleigh's dissipation function. The theory also works for bubbles shrinking as they rise because they dissolve.

  11. Prototype multiwire proportional chamber

    CERN Multimedia

    1975-01-01

    Chambers of this type were initially developed within the Alpha project (finally not approved). They were designed such to minimize the radiation length with a view to a mass spectrometer of high resolution meant to replace the Omega detector. The chambers were clearly forerunners for the (drift) chambers later built for R606 with the novel technique of crimping the wires. See also photo 7510039X.

  12. Streamer chamber: pion decay

    CERN Multimedia

    1992-01-01

    The real particles produced in the decay of a positive pion can be seen in this image from a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. A magnetic field is added to cause the decay products to follow curved paths so that their charge and momentum can be measured.

  13. Electromagnetic reverberation chambers

    CERN Document Server

    Besnier, Philippe

    2013-01-01

    Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments.In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration proc

  14. Magnetic resonance imaging of microbubbles in a superheated emulsion chamber for brachytherapy dosimetry.

    Science.gov (United States)

    Lamba, M; Holland, S K; Elson, H; d'Errico, F; Nath, R

    1998-12-01

    This paper describes development of magnetic resonance imaging (MRI) techniques for three-dimensional (3D) imaging of a position-sensitive detector for brachytherapy dosimetry. The detector is a 0.5 l chamber containing an emulsion of halocarbon-115 droplets in a tissue-equivalent glycerin-based gel. The halocarbon droplets are highly superheated and expand into vapor microbubbles upon irradiation. Brachytherapy sources can be inserted into the superheated emulsion chamber to create distributions of bubbles. Three-dimensional MRI of the chamber is then performed. A 3D gradient-echo technique was optimized for spatial resolution and contrast between bubbles and gel. Susceptibility gradients at the interfaces between bubbles and gel are exploited to enhance contrast so microscopic bubbles can be imaged using relatively large voxel sizes. Three-dimensional gradient-echo images are obtained with an isotropic resolution of 300 microns over a 77 mm x 77 mm x 9.6 mm field-of-view in an imaging time of 14 min. A post-processing technique was developed to semi-automatically segment the bubbles from the images and to assess dose distributions based on the measured bubble densities. Relative dose distributions are computed from MR images for a 125I brachytherapy source and the results compare favorably to relative radial dose distributions calculated as recommended by Task Group 43 of the American Association of Physicists in Medicine.

  15. Refrigeration Test Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — The enclosed and environmentally controlled chamber is able to test four units (single-phase) simultaneously at conditions ranging from tundra to desert temperatures...

  16. DORIOT CLIMATIC CHAMBERS

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers reproduce environmental conditions occurring anywhere around the world. They provide an invaluable service by significantly reducing the...

  17. The bubble legacy

    Science.gov (United States)

    Hecht, Jeff

    2010-05-01

    Imagine an optics company - let's call it JDS Uniphase - with a market capitalization approaching the gross domestic product (GDP) of Ireland. Now imagine it merging with a laser company - say, SDL - that has a stock valuation of 41bn, higher than the GDP of Costa Rica. Finally, imagine a start-up with 109m in venture capital in its pocket but no product to its name (Novalux) turning down an offer of 500m as insufficient. It may be hard to believe, but these tales are true: they occurred in the year 2000 - an era when the laser, fibre-optics and photonics industries were the darlings of the financial world. Such was the madcap nature of that brief period that survivors call it simply "the bubble".

  18. The Mobile Chamber

    Science.gov (United States)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  19. DELPHI time projection chamber

    CERN Multimedia

    1989-01-01

    The time projection chamber is inserted inside the central detector of the DELPHI experiment. Gas is ionised in the chamber as a charged particle passes through, producing an electric signal from which the path of the particle can be found. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  20. Climatic chamber ergometer

    CSIR Research Space (South Africa)

    Atkins, AR

    1968-01-01

    Full Text Available The design and calibration of an ergometer for exercising subjects during calorimetric studies in the climate chamber, are described. The ergometer is built into the climatic chamber and forms an integral part of the whole instrumentation system foe...

  1. Bubble size distribution and inner surface in a bubble flow

    Science.gov (United States)

    Žitek, P.; Valenta, V.

    2017-09-01

    This paper follows the reports [4] and gives instructions on how to theoretically determine the bubble size and its distribution using the distribution function of Nukiyama-Tanasawa with friction factors.

  2. Sonochemistry and the acoustic bubble

    CERN Document Server

    Grieser, Franz; Enomoto, Naoya; Harada, Hisashi; Okitsu, Kenji; Yasui, Kyuichi

    2015-01-01

    Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the p

  3. Partial coalescence of soap bubbles

    Science.gov (United States)

    Harris, Daniel M.; Pucci, Giuseppe; Bush, John W. M.

    2015-11-01

    We present the results of an experimental investigation of the merger of a soap bubble with a planar soap film. When gently deposited onto a horizontal film, a bubble may interact with the underlying film in such a way as to decrease in size, leaving behind a smaller daughter bubble with approximately half the radius of its progenitor. The process repeats up to three times, with each partial coalescence event occurring over a time scale comparable to the inertial-capillary time. Our results are compared to the recent numerical simulations of Martin and Blanchette and to the coalescence cascade of droplets on a fluid bath.

  4. Bubble stimulation efficiency of dinoflagellate bioluminescence.

    Science.gov (United States)

    Deane, Grant B; Stokes, M Dale; Latz, Michael I

    2016-02-01

    Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors. Copyright © 2015 John Wiley & Sons, Ltd.

  5. New evidence on the first financial bubble

    NARCIS (Netherlands)

    Frehen, R.G.P.; Goetzmann, W.; Rouwenhorst, K.G.

    2013-01-01

    The Mississippi Bubble, South Sea Bubble and the Dutch Windhandel of 1720 together represent the world's first global financial bubble. We hand-collect cross-sectional price data and investor account data from 1720 to test theories about market bubbles. Our tests suggest that innovation was a key

  6. Aspherical bubble dynamics and oscillation times

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, A.; Noack, J. [Meizinisches Laserzentrum Luebeck (Germany); Chapyak, E.J.; Godwin, R.P. [Los Alamos National Lab., NM (United States)

    1999-06-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored by time-resolved photography and numerical simulations. The growth-collapse period of cylindrical bubbles of large aspect ratio (length:diameter {approximately}20) differs only slightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble size and energy even for aspherical bubbles. The change of the oscillation period of bubbles near solid walls and elastic (tissue-like) boundaries relative to that of isolated spherical bubbles is also investigated.

  7. The Housing Bubble Fact Sheet

    OpenAIRE

    Dean Baker

    2005-01-01

    This paper explains the basic facts about the current housing market. It lays out the evidence that the rise in housing prices constitutes a housing bubble - and explains what can be expected when it inevitably collapses.

  8. Magnetism. Blowing magnetic skyrmion bubbles.

    Science.gov (United States)

    Jiang, Wanjun; Upadhyaya, Pramey; Zhang, Wei; Yu, Guoqiang; Jungfleisch, M Benjamin; Fradin, Frank Y; Pearson, John E; Tserkovnyak, Yaroslav; Wang, Kang L; Heinonen, Olle; te Velthuis, Suzanne G E; Hoffmann, Axel

    2015-07-17

    The formation of soap bubbles from thin films is accompanied by topological transitions. Here we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally "blow" magnetic skyrmion bubbles from a geometrical constriction. The presence of a spatially divergent spin-orbit torque gives rise to instabilities of the magnetic domain structures that are reminiscent of Rayleigh-Plateau instabilities in fluid flows. We determine a phase diagram for skyrmion formation and reveal the efficient manipulation of these dynamically created skyrmions, including depinning and motion. The demonstrated current-driven transformation from stripe domains to magnetic skyrmion bubbles could lead to progress in skyrmion-based spintronics. Copyright © 2015, American Association for the Advancement of Science.

  9. Microstreaming from Sessile Semicylindrical Bubbles

    Science.gov (United States)

    Hilgenfeldt, Sascha; Rallabandi, Bhargav; Guo, Lin; Wang, Cheng

    2014-03-01

    Powerful steady streaming flows result from the ultrasonic driving of microbubbles, in particular when these bubbles have semicylindrical cross section and are positioned in contact with a microfluidic channel wall. We have used this streaming in experiment to develop novel methods for trapping and sorting of microparticles by size, as well as for micromixing. Theoretically, we arrive at an analytical description of the streaming flow field through an asymptotic computation that, for the first time, reconciles the boundary layers around the bubble and along the substrate wall, and also takes into account the oscillation modes of the bubble. This approach gives insight into changes in the streaming pattern with bubble size and driving frequency, including a reversal of the flow direction at high frequencies with potentially useful applications. Present address: Mechanical and Aerospace Engineering, Missouri S &T.

  10. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  11. Doughnut-shaped soap bubbles.

    Science.gov (United States)

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L. It is well known that the sphere is the solution for V=L(3)/6π(2), and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for Vbubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V<αL(3)/6π(2) cannot be stable and should not exist in foams, for instance.

  12. Bubbles and foams in microfluidics.

    Science.gov (United States)

    Huerre, Axel; Miralles, Vincent; Jullien, Marie-Caroline

    2014-09-28

    Microfluidics offers great tools to produce highly-controlled dispersions of gas into liquid, from isolated bubbles to organized microfoams. Potential technological applications are manifold, from novel materials to scaffolds for tissue engineering or enhanced oil recovery. More fundamentally, microfluidics makes it possible to investigate the physics of complex systems such as foams at scales where the capillary forces become dominant, in model experiments involving few well-controlled parameters. In this context, this review does not have the ambition to detail in a comprehensive manner all the techniques and applications involving bubbles and foams in microfluidics. Rather, it focuses on particular consequences of working at the microscale, under confinement, and hopes to provide insight into the physics of such systems. The first part of this work focuses on bubbles, and more precisely on (i) bubble generation, where the confinement can suppress capillary instabilities while inertial effects may play a role, and (ii) bubble dynamics, paying special attention to the lubrication film between bubble and wall and the influence of confinement. The second part addresses the formation and dynamics of microfoams, emphasizing structural differences from macroscopic foams and the influence of the confinement.

  13. From rational bubbles to crashes

    Science.gov (United States)

    Sornette, D.; Malevergne, Y.

    2001-10-01

    We study and generalize in various ways the model of rational expectation (RE) bubbles introduced by Blanchard and Watson in the economic literature. Bubbles are argued to be the equivalent of Goldstone modes of the fundamental rational pricing equation, associated with the symmetry-breaking introduced by non-vanishing dividends. Generalizing bubbles in terms of multiplicative stochastic maps, we summarize the result of Lux and Sornette that the no-arbitrage condition imposes that the tail of the return distribution is hyperbolic with an exponent μbubble model to arbitrary dimensions d: a number d of market time series are made linearly interdependent via d× d stochastic coupling coefficients. We derive the no-arbitrage condition in this context and, with the renewal theory for products of random matrices applied to stochastic recurrence equations, we extend the theorem of Lux and Sornette to demonstrate that the tails of the unconditional distributions associated with such d-dimensional bubble processes follow power laws, with the same asymptotic tail exponent μmodel and the non-stationary growth rate model) of the RE bubble model that provide two ways of reconciliation with the stylized facts of financial data.

  14. Measuring online social bubbles

    Directory of Open Access Journals (Sweden)

    Dimitar Nikolov

    2015-12-01

    Full Text Available Social media have become a prevalent channel to access information, spread ideas, and influence opinions. However, it has been suggested that social and algorithmic filtering may cause exposure to less diverse points of view. Here we quantitatively measure this kind of social bias at the collective level by mining a massive datasets of web clicks. Our analysis shows that collectively, people access information from a significantly narrower spectrum of sources through social media and email, compared to a search baseline. The significance of this finding for individual exposure is revealed by investigating the relationship between the diversity of information sources experienced by users at both the collective and individual levels in two datasets where individual users can be analyzed—Twitter posts and search logs. There is a strong correlation between collective and individual diversity, supporting the notion that when we use social media we find ourselves inside “social bubbles.” Our results could lead to a deeper understanding of how technology biases our exposure to new information.

  15. ALICE Time Projection Chamber

    CERN Multimedia

    Lippmann, C

    2013-01-01

    The Time Projection Chamber (TPC) is the main device in the ALICE 'central barrel' for the tracking and identification (PID) of charged particles. It has to cope with unprecedented densities of charges particles.

  16. Obelix Wire Chamber

    CERN Multimedia

    1986-01-01

    Two wire chambers made originally for the R807 Experiment at CERN's Intersecting Storage Rings. In 1986 they were used for the PS 201 experiment (Obelix Experiment) at LEAR, the Low Energy Antiproton Ring. The group of researchers from Turin, using the chambers at that time, changed the acquisition system using for the first time 8 bit (10 bit non linear) analog to digital conversion for incoming signals from the chambers. The acquisition system was controlled by 54 CPU and 80 digital signal processors. The power required for all the electronics was 40 kW. For the period, this system was one of the most powerful on-line apparatus in the world. The Obelix Experiment was closed in 1996. To find more about how a wire chamber works, see the description for object CERN-OBJ-DE-038.

  17. Vacuum chamber 'bicone'

    CERN Multimedia

    1977-01-01

    This chamber is now in the National Museum of History and Technology, Smithsonian Institution, Washington, DC, USA, where it was exposed in an exhibit on the History of High Energy Accelerators (1977).

  18. FEASTING BLACK HOLE BLOWS BUBBLES

    Science.gov (United States)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  19. "Bubble-in-the-Roll" Technique Using the Endoject DMEK Injector: Influence of the Air Bubble on Endothelial Cell Loss.

    Science.gov (United States)

    Akbaba, Yasemin; Weller, Julia M; Rössler, Kathrin; Armitage, W John; Schlötzer-Schrehardt, Ursula; Kruse, Friedrich E; Tourtas, Theofilos

    2017-12-01

    To evaluate the impact of the air bubble on endothelial cell loss using the "bubble-in-the-roll" technique during Descemet membrane endothelial keratoplasty (DMEK). Twenty DMEK grafts not suitable for transplantation were manually prepared from organ-cultured corneoscleral discs and injected into culture media using the Endoject DMEK injector (Medicel AG, Wolfhalden, Switzerland). Based on the injection method, the grafts were divided into 2 groups: In group A (n = 10), a small air bubble was placed inside the graft roll while it was in the injector. In group B (n = 10), the grafts were injected without an air bubble inside the graft roll. Main outcome measures included endothelial cell density (ECD) after graft stripping and graft injection. There were no statistically significant differences between groups A and B in donor age, storage duration, and donor ECD. ECD decreased from 1929 ± 145 cells/mm to 1796 ± 303 cells/mm after graft stripping in group A and from 1801 ± 226 cells/mm to 1709 ± 290 cells/mm in group B. ECD after graft injection further decreased to 1683 ± 291 cells/mm in group A and to 1651 ± 292 cells/mm in group B. Endothelial cell loss after graft stripping and graft injection was not statistically significant between groups A and B (P = 0.29 and P = 1, respectively). The bubble-in-the-roll technique for injection and unfolding of the graft is a safe method for graft delivery into the anterior chamber guaranteeing orientation of the graft without harming the endothelium.

  20. BUBBLE FORMATION EXPERIMENTS IN SNOW DENSIFICATION

    OpenAIRE

    イシイ, セイゴ; ナリタ, ヒデキ; マエノ, ノリカズ; Seigo, ISHII; Hideki, NARITA; Norikazu, MAENO

    1995-01-01

    Bubble formation experiments were conducted for snow composed of ice spheres 303μm in diameter at various temperatures and applied pressures. By measuring volumes of closed-off bubbles at various densities, the bubble formation density (ρ_f) and the bubble close-off density (ρ_c) were obtained. ρ_f, that is the density at which bubble formation begins, decreased with lowering temperature or pressure. On the other hand, ρ_c, that is the density at which bubble formation finishes, increased wit...

  1. Spherical Solutions of an Underwater Explosion Bubble

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw

    1998-01-01

    Full Text Available The evolution of the 1D explosion bubble flow field out to the first bubble minimum is examined in detail using four different models. The most detailed is based on the Euler equations and accounts for the internal bubble fluid motion, while the simplest links a potential water solution to a stationary, Isentropic bubble model. Comparison of the different models with experimental data provides insight into the influence of compressibility and internal bubble dynamics on the behavior of the explosion bubble.

  2. On the Inception of Financial Representative Bubbles

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferrara

    2017-11-01

    Full Text Available In this work, we aim to formalize the inception of representative bubbles giving the condition under which they may arise. We will find that representative bubbles may start at any time, depending on the definition of a behavioral component. This result is at odds with the theory of classic rational bubbles, which are those models that rely on the fulfillment of the transversality condition by which a bubble in a financial asset can arise just at its first trade. This means that a classic rational bubble (differently from our model cannot follow a cycle since if a bubble exists, it will burst by definition and never arise again.

  3. A new microcirculation chamber for inexpensive long-term investigations of nervous tissue in vitro.

    Science.gov (United States)

    Thiemann, W; Malisch, R; Reymann, K G

    1986-07-01

    The construction of a simple universal chamber for long-term recording from submerged and interface brain slices is described. The medium is circulated and oxygenated constantly by an O2-CO2 gas mixture using the principle of a bubble pump. The design permits experiments which require long-term exposure to expensive drugs as well as great economy of oxygen consumption.

  4. Bubble rearrangements dynamics in foams

    Science.gov (United States)

    Le Merrer, Marie; Costa, Severine; Cohen-Addad, Sylvie; Hoehler, Reinhard

    2011-11-01

    Liquid foams are jammed dispersions of gas bubbles in a surfactant solution. Their structure evolves with time because surface tension drives a diffusive gas exchange between neighboring bubbles. This coarsening leads to a build-up of stresses which are relaxed upon local intermittent bubble rearrangements. These events govern the slow viscoelastic foam response, and similar bubble rearrangements are the elementary processes of plastic flow. Thus, the rearrangement duration is a key parameter describing how the microstructure dynamics control the macroscopic rheological response. We probe the duration of coarsening-induced rearrangements in 3D foams using a multiple light scattering technique (time resolved Diffusing-Wave Spectroscopy) as a function of the surfactant chemistry and the liquid fraction. As the foam becomes wetter, the confinement pressure of the packing goes to zero and the contacts between bubbles vanish. For mobile interfaces, we find that the rearrangements slow down as the jamming point is approached. These findings are compared to scaling laws which reveal an analogy between rearrangements dynamics in foams and granular suspensions.

  5. Ethnic diversity deflates price bubbles

    Science.gov (United States)

    Levine, Sheen S.; Apfelbaum, Evan P.; Bernard, Mark; Bartelt, Valerie L.; Zajac, Edward J.; Stark, David

    2014-01-01

    Markets are central to modern society, so their failures can be devastating. Here, we examine a prominent failure: price bubbles. Bubbles emerge when traders err collectively in pricing, causing misfit between market prices and the true values of assets. The causes of such collective errors remain elusive. We propose that bubbles are affected by ethnic homogeneity in the market and can be thwarted by diversity. In homogenous markets, traders place undue confidence in the decisions of others. Less likely to scrutinize others’ decisions, traders are more likely to accept prices that deviate from true values. To test this, we constructed experimental markets in Southeast Asia and North America, where participants traded stocks to earn money. We randomly assigned participants to ethnically homogeneous or diverse markets. We find a marked difference: Across markets and locations, market prices fit true values 58% better in diverse markets. The effect is similar across sites, despite sizeable differences in culture and ethnic composition. Specifically, in homogenous markets, overpricing is higher as traders are more likely to accept speculative prices. Their pricing errors are more correlated than in diverse markets. In addition, when bubbles burst, homogenous markets crash more severely. The findings suggest that price bubbles arise not only from individual errors or financial conditions, but also from the social context of decision making. The evidence may inform public discussion on ethnic diversity: it may be beneficial not only for providing variety in perspectives and skills, but also because diversity facilitates friction that enhances deliberation and upends conformity. PMID:25404313

  6. Ethnic diversity deflates price bubbles.

    Science.gov (United States)

    Levine, Sheen S; Apfelbaum, Evan P; Bernard, Mark; Bartelt, Valerie L; Zajac, Edward J; Stark, David

    2014-12-30

    Markets are central to modern society, so their failures can be devastating. Here, we examine a prominent failure: price bubbles. Bubbles emerge when traders err collectively in pricing, causing misfit between market prices and the true values of assets. The causes of such collective errors remain elusive. We propose that bubbles are affected by ethnic homogeneity in the market and can be thwarted by diversity. In homogenous markets, traders place undue confidence in the decisions of others. Less likely to scrutinize others' decisions, traders are more likely to accept prices that deviate from true values. To test this, we constructed experimental markets in Southeast Asia and North America, where participants traded stocks to earn money. We randomly assigned participants to ethnically homogeneous or diverse markets. We find a marked difference: Across markets and locations, market prices fit true values 58% better in diverse markets. The effect is similar across sites, despite sizeable differences in culture and ethnic composition. Specifically, in homogenous markets, overpricing is higher as traders are more likely to accept speculative prices. Their pricing errors are more correlated than in diverse markets. In addition, when bubbles burst, homogenous markets crash more severely. The findings suggest that price bubbles arise not only from individual errors or financial conditions, but also from the social context of decision making. The evidence may inform public discussion on ethnic diversity: it may be beneficial not only for providing variety in perspectives and skills, but also because diversity facilitates friction that enhances deliberation and upends conformity.

  7. Target Chamber Manipulator

    Science.gov (United States)

    Tantillo, Anthony; Watson, Matthew

    2015-11-01

    A system has been developed to allow remote actuation of sensors in a high vacuum target chamber used with a particle accelerator. Typically, sensors of various types are placed into the target chamber at specific radial and angular positions relative to the beam line and target. The chamber is then evacuated and the experiments are performed for those sensor positions. Then, the chamber is opened, the sensors are repositioned to new angles or radii, and the process is repeated, with a separate pump-down cycle for each set of sensor positions. The new sensor positioning system allows scientists to pre-set the radii of up to a dozen sensors, and then remotely actuate their angular positions without breaking the vacuum of the target chamber. This reduces the time required to reposition sensors from 6 hours to 1 minute. The sensors are placed into one of two tracks that are separately actuated using vacuum-grade stepping motors. The positions of the sensors are verified using absolute optical rotary encoders, and the positions are accurate to 0.5 degrees. The positions of the sensors are electronically recorded and time-stamped after every change. User control is through a GUI using LabVIEW.

  8. Aspherical bubble dynamics and oscillation times

    Energy Technology Data Exchange (ETDEWEB)

    Godwin, R.P.; Chapyak, E.J. [Los Alamos National Lab., NM (United States); Noack, J.; Vogel, A. [Medizinisches Laserzentrum Luebeck (Germany)

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  9. The KLOE drift chamber

    CERN Document Server

    Adinolfi, M; Ambrosino, F; Andryakov, A; Antonelli, A; Antonelli, M; Anulli, F; Bacci, C; Bankamp, A; Barbiellini, G; Bellini, F; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Bulychjov, S A; Cabibbo, G; Calcaterra, A; Caloi, R; Campana, P; Capon, G; Carboni, G; Cardini, A; Casarsa, M; Cataldi, G; Ceradini, F; Cervelli, F; Cevenini, F; Chiefari, G; Ciambrone, P; Conetti, S; Conticelli, S; Lucia, E D; Robertis, G D; Sangro, R D; Simone, P D; Zorzi, G D; Dell'Agnello, S; Denig, A; Domenico, A D; Donato, C D; Falco, S D; Doria, A; Drago, E; Elia, V; Erriquez, O; Farilla, A; Felici, G; Ferrari, A; Ferrer, M L; Finocchiaro, G; Forti, C; Franceschi, A; Franzini, P; Gao, M L; Gatti, C; Gauzzi, P; Giovannella, S; Golovatyuk, V; Gorini, E; Grancagnolo, F; Grandegger, W; Graziani, E; Guarnaccia, P; Von Hagel, U; Han, H G; Han, S W; Huang, X; Incagli, M; Ingrosso, L; Jang, Y Y; Kim, W; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Lomtadze, F; Luisi, C; Mao Chen Sheng; Martemyanov, M; Matsyuk, M; Mei, W; Merola, L; Messi, R; Miscetti, S; Moalem, A; Moccia, S; Moulson, M; Müller, S; Murtas, F; Napolitano, M; Nedosekin, A; Panareo, M; Pacciani, L; Pagès, P; Palutan, M; Paoluzi, L; Pasqualucci, E; Passalacqua, L; Passaseo, M; Passeri, A; Patera, V; Petrolo, E; Petrucci, Guido; Picca, D; Pirozzi, G; Pistillo, C; Pollack, M; Pontecorvo, L; Primavera, M; Ruggieri, F; Santangelo, P; Santovetti, E; Saracino, G; Schamberger, R D; Schwick, C; Sciascia, B; Sciubba, A; Scuri, F; Sfiligoi, I; Shan, J; Silano, P; Spadaro, T; Spagnolo, S; Spiriti, E; Stanescu, C; Tong, G L; Tortora, L; Valente, E; Valente, P; Valeriani, B; Venanzoni, G; Veneziano, Stefano; Wu, Y; Xie, Y G; Zhao, P P; Zhou, Y

    2001-01-01

    The tracking detector of the KLOE experiment is 4 m diameter, 3.3 m length drift chamber, designed to contain a large fraction of the decays of low-energy K sub L produced at the Frascati DAPHINE phi-factory. The chamber is made by a thin carbon fiber structure and operated with a helium-based gas mixture in order to minimise conversion of low-energy photons and multiple scattering inside the sensitive volume. The tracking information is provided by 58 layers of stereo wires defing 12,582 cells, 2x2 cm sup 2 in size in the 12 innermost layers and 3x3 cm sup 2 in the outer ones. Details of the chamber design, calibration procedure and tracking performances are presented.

  10. DELPHI Barrel Muon Chamber Module

    CERN Multimedia

    1989-01-01

    The module was used as part of the muon identification system on the barrel of the DELPHI detector at LEP, and was in active use from 1989 to 2000. The module consists of 7 individual muons chambers arranged in 2 layers. Chambers in the upper layer are staggered by half a chamber width with respect to the lower layer. Each individual chamber is a drift chamber consisting of an anode wire, 47 microns in diameter, and a wrapped copper delay line. Each chamber provided 3 signal for each muon passing through the chamber, from which a 3D space-point could be reconstructed.

  11. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial.

    Directory of Open Access Journals (Sweden)

    Vincent Souday

    Full Text Available To test the hypothesis whether enriched air nitrox (EAN breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression.Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2 in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes. Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler.Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0-3.5] vs. 8 [4.5-10]; P < 0.001. Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217. Weak correlations were observed between bubble scores and age or body mass index, respectively.EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing.ISRCTN 31681480.

  12. Soap Bubbles on a Cold Day.

    Science.gov (United States)

    Waiveris, Charles

    1994-01-01

    Discusses the effects of blowing bubbles in extremely cold weather. Describes the freezing conditions of the bubbles and some physical properties. Suggests using the activity with all ages of students. (MVL)

  13. Unorthodox bubbles when boiling in cold water

    Science.gov (United States)

    Parker, Scott; Granick, Steve

    2014-01-01

    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

  14. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  15. micro strip gas chamber

    CERN Multimedia

    1998-01-01

    About 16 000 Micro Strip Gas Chambers like this one will be used in the CMS tracking detector. They will measure the tracks of charged particles to a hundredth of a millimetre precision in the region near the collision point where the density of particles is very high. Each chamber is filled with a gas mixture of argon and dimethyl ether. Charged particles passing through ionise the gas, knocking out electrons which are collected on the aluminium strips visible under the microscope. Such detectors are being used in radiography. They give higher resolution imaging and reduce the required dose of radiation.

  16. Bubble nucleation in an explosive micro-bubble actuator

    NARCIS (Netherlands)

    van den Broek, D.M.; Elwenspoek, Michael Curt

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure

  17. Does monetary policy generate asset price bubbles ?

    OpenAIRE

    Blot, Christophe; Hubert, Paul; Labondance, Fabien

    2017-01-01

    This paper empirically assesses the effect of monetary policy on asset price bubbles and aims to disentangle the competing predictions of theoretical bubble models. First, we take advantage of the model averaging feature of Principal Component Analysis to estimate bubble indicators, for the stock, bond and housing markets in the United States and Euro area, based on the structural, econometric and statistical approaches proposed in the literature to measure bubbles. Second, we ...

  18. Microjet Penetrator - medical use of laser induced shock waves and bubbles

    Science.gov (United States)

    Yoh, Jack

    2013-06-01

    The laser-driven microjet penetrator system accelerates liquids drug and delivers them without a needle, which is shown to overcome the weaknesses of existing piston-driven jet injectors. The system consists of two back-to-back chambers separated by a rubber membrane, one containing ``driving'' water behind another of the liquid drug to be delivered. The laser pulse is sent once, and a bubble forms in the water chamber, which puts elastic strain on the membrane, causing the drug to be forcefully ejected from a miniature nozzle in a narrow jet of 150 micron in diameter. The impacting jet pressure is higher than the skin tensile strength and thus causes the jet to penetrate into the targeted depth underneath the skin. Multiple pulses of the laser increase the desired dosage. The experiments are performed with commercially available Nd:YAG and Er:YAG lasers for clinical applications in laser dermatology and dentistry. The difference in bubble behavior within the water chamber comes from pulse duration and wavelength. For Nd:YAG laser, the pulse duration is very short relative to the bubble lifetime making the bubble behavior close to that of a cavitation bubble (inertial), while in Er:YAG case the high absorption in water and the longer pulse duration change the initial behavior of the bubble making it close to a vapor bubble (thermal). The contraction and subsequent rebound for both cases were seen typical of cavitation bubble. The laser-induced microjet penetrators generate velocities which are sufficient for delivery of drug into a guinea-pig skin for both laser beams of different pulse duration and wavelength. We estimate the typical velocity within 30-80 m/s range and the breakup length to be larger than 1 mm, thus making it a contamination-free medical procedure. Hydrodynamic theory confirms the nozzle exit jet velocity obtained by the microjet system. A significant increase in the delivered dose of drugs is achieved with multiple pulses of a 2.9 μm Er

  19. Eulerian simulations of bubble behaviour in a two-dimensional gas-solid bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Lu Huilin; Liu Wentie; Zhao Guangbo; He Yurong [Harbin Institute of Technology (China). Dept. of Power Engineering; Li Feng [Jiangxi Boiler Co. Ltd., Nanchang (China)

    2002-07-01

    In the present study, the CFD model is based on a two-fluid model extended with the kinetic theory of granular flow. The simulation results of bubble diameter and bubble rise velocity are compared to the Darton equation and the Davidson model in a free bubbling fluidized bed. The predicted values are in reasonable agreement with the values from the Darton bubble size equation and the Davidson model for isolated bubbles. It is shown that the break-up and direct wall interaction effects influence the dynamic bubble behavior in the free bubbling fluidized beds. (author)

  20. Behavior of a Large Bubble in a Horizontal Channel : 2nd Report, Large Bubble Penetrating into Running Liquid

    OpenAIRE

    坂口, 忠司; 小澤, 守; 浜口, 八朗; 福永, 毅

    1990-01-01

    The behavior of a large bubble penetrating into running liquid in a horizontal pipe has been studied experimentally. The flow regime of the large bubble is classified into the following three regimes : a steadily moving bubble regime, a transition regime and a stationary bubble regime. In the steadily moving bubble regime, the large bubble penetrates at constant velocity and the shape of the bubble nose does not change along the pipe. An analysis of the behavior of the large bubble has been c...

  1. Vapor Bubbles in Flow and Acoustic Fields

    NARCIS (Netherlands)

    Prosperetti, Andrea; Hao, Yue; Sadhal, S.S

    2002-01-01

    A review of several aspects of the interaction of bubbles with acoustic and flow fields is presented. The focus of the paper is on bubbles in hot liquids, in which the bubble contains mostly vapor, with little or no permanent gas. The topics covered include the effect of translation on condensation

  2. Bubble Size Distributions in Coastal Seas

    NARCIS (Netherlands)

    Leeuw, G. de; Cohen, L.H.

    1995-01-01

    Bubble size distributions have been measured with an optical system that is based on imaging of a small sample volume with a CCD camera system, and processing of the images to obtain the size of individual bubbles in the diameter range from 30 to lOOO^m. This bubble measuring system is deployed from

  3. Mechanics of gas-vapor bubbles

    NARCIS (Netherlands)

    Hao, Yue; Zhang, Yuhang; Prosperetti, Andrea

    2017-01-01

    Most bubbles contain a mixture of vapor and incondensible gases. While the limit cases of pure vapor and pure gas bubbles are well studied, much less is known about the more realistic case of a mixture. The bubble contents continuously change due to the combined effects of evaporation and

  4. Frictional drag reduction by bubble injection

    Science.gov (United States)

    Murai, Yuichi

    2014-07-01

    The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.

  5. LEP Vacuum Chamber

    CERN Multimedia

    1983-01-01

    This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.

  6. Rocket Combustion Chamber Coating

    Science.gov (United States)

    Holmes, Richard R. (Inventor); McKechnie, Timothy N. (Inventor)

    2001-01-01

    A coating with the ability to protect (1) the inside wall (i.e., lining) of a rocket engine combustion chamber and (2) parts of other apparatuses that utilize or are exposed to combustive or high temperature environments. The novelty of this invention lies in the manner a protective coating is embedded into the lining.

  7. Chamber Profile Measurement System.

    Science.gov (United States)

    1980-10-01

    travel with the proper electronics. Other features of tihe gage assembly are: 1. Micrometer controlled down chamber positioning of the master template to...pressure sensitive "stiff stick" for infinitely varying the rate of travel from zero to maximum. A manual vernier control is incorporated to permit fine

  8. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  9. Affirmative Discrimination and the Bubble

    Science.gov (United States)

    Clegg, Roger

    2011-01-01

    In this essay, the author discusses how affirmative action contributed to an unnatural rise in enrollments in college. In considering the higher education bubble, he makes the case that as the opposition to preferences continues to build, the momentum of this trend will only increase as funding shrinks. He offers some tentative answers to a series…

  10. The Coming Law School Bubble

    Science.gov (United States)

    Krauss, Michael I.

    2011-01-01

    In this article, the author explains how forty years of politicized hiring in the law schools has left its destructive mark. The results are potentially catastrophic: Market forces and internal law school policies may be combining to produce a legal education bubble the likes of which the country has never seen. (Contains 11 footnotes.)

  11. Models of cylindrical bubble pulsation

    Science.gov (United States)

    Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.

    2012-01-01

    Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863

  12. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    van den Broek, D.M.; Elwenspoek, Michael Curt

    2007-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a very high temperature in a very short time. At these temperatures homogeneous nucleation takes place. The nucleated bubbles almost instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse and

  13. Droplets, Bubbles and Ultrasound Interactions

    NARCIS (Netherlands)

    Shpak, O.; Verweij, M.; de Jong, N.; Versluis, Michel; Escoffre, J.M.; Bouakaz, A.

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to

  14. Electrolysis Bubbles Make Waterflow Visible

    Science.gov (United States)

    Schultz, Donald F.

    1990-01-01

    Technique for visualization of three-dimensional flow uses tiny tracer bubbles of hydrogen and oxygen made by electrolysis of water. Strobe-light photography used to capture flow patterns, yielding permanent record that is measured to obtain velocities of particles. Used to measure simulated mixing turbulence in proposed gas-turbine combustor and also used in other water-table flow tests.

  15. Impurity bubbles in a BEC

    Science.gov (United States)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  16. "Financial Bubbles" and Monetary Policy

    Science.gov (United States)

    Tikhonov, Yuriy A.; Pudovkina, Olga E.; Permjakova, Juliana V.

    2016-01-01

    The relevance of this research is caused by the need of strengthening a role of monetary regulators to prevent financial bubbles in the financial markets. The aim of the article is the analysis of a problem of crisis phenomena in the markets of financial assets owing to an inadequate growth of their cost, owing to subjective reasons. The leading…

  17. Bubble bouncing at a clean water surface.

    Science.gov (United States)

    Zawala, Jan; Dorbolo, Stéphane; Vandewalle, Nicolas; Malysa, Kazimierz

    2013-10-28

    Experiments on the coalescence time of submillimeter bubbles colliding with a distilled water/air interface either being at rest (undisturbed) or vibrating vertically (with controlled amplitude and frequency) were carried out. It was found that the outcome of the bubble collision (coalescence or bounce) depends on impact velocity and size of the bubble, i.e. the parameters determining the bubble deformation degree. With the surface at rest, when the deformation of the bubble was sufficiently high, bubble bouncing was observed. It was caused by the fact that the radius of the intervening liquid film formed between the colliding bubble and water/air interface was large enough to prevent the liquid layer from reaching its thickness of rupture within the time of bubble-interface contact. Coalescence occurred in a consecutive collision if the bubble deformation was below a threshold value, as a result of dissipation of the kinetic energy associated with the bubble motion. The hypothesis about the crucial role of the bubble deformation and size of the liquid film formed in the bouncing mechanism was confirmed in a series of experiments where the bubble collided with a vibrating water/air interface. It was shown that when the kinetic energy was properly re-supplied from an external source (interface vibrations), the spectacular phenomenon of "immortal" bubbles, dancing indefinitely at the water/air interface, was achieved. It was shown that "immortal" bubble formation is a consequence of a similarly high degree of the bubble shape deformation and consequently a large enough radius of the liquid film formed.

  18. Robust acoustic wave manipulation of bubbly liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gumerov, N. A., E-mail: gumerov@umiacs.umd.edu [Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland 20742 (United States); Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076 (Russian Federation); Akhatov, I. S. [Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Ohl, C.-D. [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076 (Russian Federation); Sametov, S. P. [Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076 (Russian Federation); Khazimullin, M. V. [Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076 (Russian Federation); Institute of Molecule and Crystal Physics, Ufa Research Center of Russian Academy of Sciences, Ufa 450054 (Russian Federation); Gonzalez-Avila, S. R. [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

    2016-03-28

    Experiments with water–air bubbly liquids when exposed to acoustic fields of frequency ∼100 kHz and intensity below the cavitation threshold demonstrate that bubbles ∼30 μm in diameter can be “pushed” away from acoustic sources by acoustic radiation independently from the direction of gravity. This manifests formation and propagation of acoustically induced transparency waves (waves of the bubble volume fraction). In fact, this is a collective effect of bubbles, which can be described by a mathematical model of bubble self-organization in acoustic fields that matches well with our experiments.

  19. Bubbles generated from wind-steepened breaking waves: 2. Bubble plumes, bubbles, and wave characteristics

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G.de

    2006-01-01

    Measurements of breaking-wave-generated bubble plumes were made in fresh (but not clean) water in a large wind-wave tunnel. To preserve diversity, a classification scheme was developed on the basis of plume dimensions and "optical density," or the plume's ability to obscure the background. Optically

  20. Simulations of Rising Hydrodynamic and Magnetohydrodynamic Bubbles

    Science.gov (United States)

    Ricker, P. M.; Robinson, K.; Dursi, L. J.; Rosner, R.; Calder, A. C.; Zingale, M.; Truran, J. W.; Linde, T.; Caceres, A.; Fryxell, B.; Olson, K.; Riley, K.; Siegel, A.; Vladimirova, N.

    Motivated by recent Chandra and XMM-Newton observations of X-ray emission voids in galaxy cluster cooling flows, we have investigated the behavior of rising bubbles in stratified atmospheres using the FLASH adaptive-mesh simulation code. We present results from two-dimensional simulations with and without the effects of magnetic fields, and with varying bubble sizes and background stratifications. We find purely hydrodynamic bubbles to be unstable; a dynamically important magnetic field is required to maintain a bubble's integrity. This suggests that, even absent thermal conduction, for bubbles to be persistent enough to be regularly observed, they must be supported in large part by magnetic fields. We also observe that magnetically supported bubbles leave a tail as they rise. The structure of these tails may provide clues to the bubble's dynamical history.

  1. How to build a cloud chamber?; Comment realiser une chambre a bouillard?

    Energy Technology Data Exchange (ETDEWEB)

    Mariaud, C. [Lycee Rene Descartes, 37000 Tours (France)

    2012-01-15

    The cloud chamber had its heyday in the first half of last century and allowed the discovery of new particles such as the anti-electron, the muon and the neutral and the charged kaon. The bubble chamber replaced it in the mid fifties. This article recalls the principle of the cloud chamber and shows, in a detailed way, how to proceed to build one with on-the-shelf materials. This design is based on the use of isopropanol whose liquefaction through the form of droplets materializes the track of the particle and on the use of combined Peltier cells (instead of CO{sub 2} snow) to cool the chamber. This cloud chamber has been successfully used in schools to observe particles mainly electrons, alphas and muons generated by cosmic rays. (A.C.)

  2. Multiwire proportional chamber development

    Science.gov (United States)

    Doolittle, R. F.; Pollvogt, U.; Eskovitz, A. J.

    1973-01-01

    The development of large area multiwire proportional chambers, to be used as high resolution spatial detectors in cosmic ray experiments is described. A readout system was developed which uses a directly coupled, lumped element delay-line whose characteristics are independent of the MWPC design. A complete analysis of the delay-line and the readout electronic system shows that a spatial resolution of about 0.1 mm can be reached with the MWPC operating in the strictly proportional region. This was confirmed by measurements with a small MWPC and Fe-55 X-rays. A simplified analysis was carried out to estimate the theoretical limit of spatial resolution due to delta-rays, spread of the discharge along the anode wire, and inclined trajectories. To calculate the gas gain of MWPC's of different geometrical configurations a method was developed which is based on the knowledge of the first Townsend coefficient of the chamber gas.

  3. Double bubble with the big-bubble technique during deep anterior lamellar keratoplasty.

    Science.gov (United States)

    Wise, Stephanie; Dubord, Paul; Yeung, Sonia N

    2017-04-28

    To report a case of intraoperative double bubble that formed during big-bubble DALK surgery in a patient with corneal scarring secondary to herpetic stromal keratitis. Case report. A 22 year old woman presented with a large corneal scar, likely secondary to previous herpetic stromal keratitis. She underwent big-bubble DALK surgery for visual rehabilitation. Intraoperatively, a mixed bubble with persistent type 2 bubble postoperatively was noted. The second bubble resorbed with clearance of the graft and good visual outcome after 6 weeks. This case report describes the unusual development of a mixed bubble during big-bubble DALK surgery. This graft cleared with resolution of the second bubble postoperatively without further surgical intervention.

  4. Anechoic Radio Frequency Test Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — This chamber is used for characterization test of such systems as communications gear, tanks, radar, missiles, and helicopters. The dimensions of the chamber are 114...

  5. A stable and convenient protein electrophoresis titration device with bubble removing system.

    Science.gov (United States)

    Zhang, Qiang; Fan, Liu-Yin; Li, Wen-Lin; Cong, Feng-Song; Zhong, Ran; Chen, Jing-Jing; He, Yu-Chen; Xiao, Hua; Cao, Cheng-Xi

    2017-07-01

    Moving reaction boundary titration (MRBT) has a potential application to immunoassay and protein content analysis with high selectivity. However, air bubbles often impair the accuracy of MRBT, and the leakage of electrolyte greatly decreases the safety and convenience of electrophoretic titration. Addressing these two issues a reliable MRBT device with modified electrolyte chamber of protein titration was designed. Multiphysics computer simulation was conducted for optimization according to two-phase flow. The single chamber was made of two perpendicular cylinders with different diameters. After placing electrophoretic tube, the resident air in the junction next to the gel could be eliminated by a simple fast electrolyte flow. Removing the electrophoretic tube automatically prevented electrolyte leakage at the junction due to the gravity-induced negative pressure within the chamber. Moreover, the numerical simulation and experiments showed that the improved MRBT device has following advantages: (i) easy and rapid setup of electrophoretic tube within 20 s; (ii) simple and quick bubble dissipates from the chamber of titration within 2 s; (iii) no electrolyte leakage from the two chambers: and (iv) accurate protein titration and safe instrumental operation. The developed technique and apparatus greatly improves the performance of the previous MRBT device, and providing a new route toward practical application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Application of Defocusing Technique to Bubble Depth Measurement

    OpenAIRE

    Mugikura, Yuki

    2017-01-01

    The thesis presents a defocusing technique to extract bubble depth information. Typically, when a bubble is out of focus in an image, the bubble is ignored by applying a filter or thresholding. However, it is known that a bubble image becomes blurred as the bubble moves away from the focal plane. Then, this technique is applied to determine the bubble distance along the optical path based on the blurriness or intensity gradient information of the bubble. Using the image processing algorithm, ...

  7. Cavitation inception from bubble nuclei

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2015-01-01

    . The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model......The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years......, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid...

  8. Conformal gravity and "gravitational bubbles"

    CERN Document Server

    Berezin, V A; Eroshenko, Yu N

    2015-01-01

    We describe the general structure of the spherically symmetric solutions in the Weyl conformal gravity. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions, consisting of two classes, is found. The first one contains the solutions with constant two-dimensional curvature scalar, and the representatives are the famous Robertson--Walker metrics. We called one of them the "gravitational bubbles", which is compact and with zero Weyl tensor. These "gravitational bubbles" are the pure vacuum curved space-times (without any material sources, including the cosmological constant), which are absolutely impossible in General Relativity. This phenomenon makes it easier to create the universe from "nothing". The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family, which can be conformally covered by the thee-para...

  9. Bubble entrapment through topological change

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2010-05-03

    When a viscousdrop impacts onto a solid surface, it entraps a myriad of microbubbles at the interface between liquid and solid. We present direct high-speed video observations of this entrapment. For viscousdrops, the tip of the spreading lamella is separated from the surface and levitated on a cushion of air. We show that the primary mechanism for the bubble entrapment is contact between this precursor sheet of liquid with the solid and not air pulled directly through cusps in the contact line. The sheet makes contact with the solid surface,forming a wetted patch, which grows in size, but only entraps a bubble when it meets the advancing contact line. The leading front of this wet patch can also lead to the localized thinning and puncturing of the liquid film producing strong splashing of droplets.

  10. Soap bubbles in paintings: Art and science

    Science.gov (United States)

    Behroozi, F.

    2008-12-01

    Soap bubbles became popular in 17th century paintings and prints primarily as a metaphor for the impermanence and fragility of life. The Dancing Couple (1663) by the Dutch painter Jan Steen is a good example which, among many other symbols, shows a young boy blowing soap bubbles. In the 18th century the French painter Jean-Simeon Chardin used soap bubbles not only as metaphor but also to express a sense of play and wonder. In his most famous painting, Soap Bubbles (1733/1734) a translucent and quavering soap bubble takes center stage. Chardin's contemporary Charles Van Loo painted his Soap Bubbles (1764) after seeing Chardin's work. In both paintings the soap bubbles have a hint of color and show two bright reflection spots. We discuss the physics involved and explain how keenly the painters have observed the interaction of light and soap bubbles. We show that the two reflection spots on the soap bubbles are images of the light source, one real and one virtual, formed by the curved surface of the bubble. The faint colors are due to thin film interference effects.

  11. Informational pathologies and interest bubbles

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Wiewiura, Joachim Schmidt

    2017-01-01

    This article contends that certain configurations of information networks facilitate specific cognitive states that are instrumental for decision and action on social media. Group-related knowledge and belief states—in particular common knowledge and pluralistic ignorance—may enable strong public...... signals. Indeed, some network configurations and attitude states foster informational pathologies that may fuel interest bubbles affecting agenda-setting and the generation of narratives in public spheres....

  12. Bubble-induced cave collapse.

    Science.gov (United States)

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned "natural" instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a "collapse". We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor.

  13. Bubble capture by a propeller

    Science.gov (United States)

    Caillé, François; Clanet, Christophe; Magnaudet, Jacques

    2006-08-01

    A small air bubble (radius a) is injected in water (kinematic viscosity nu) in the vicinity (distance r_0) of a propeller (radius r_p, angular frequency omega). We study experimentally and theoretically the conditions under which the bubble can be ‘captured’, i.e. deviated from its vertical trajectory (imposed by gravity g) and moved toward the centre of the propeller (r {=} 0). We show that the capture frequency omega_{scriptsizecapt} follows the relationship [omega_{hboxriptsizeit capt}=left(frac{2ga^2}{9betanu r_p f(hboxRe_b)}right)left(frac{r_0}{r_p}right)^2(1+\\cos\\varphi_0),] where beta is a dimensionless parameter characterizing the propeller, f(Re_b) is an empirical correction to Stokes' drag law which accounts for finite-Reynolds-number effects and pi/2-varphi_0 is the angle between the axis of the propeller and the line between the centre of the propeller and the point where the bubble is injected. This law is found to be valid as long as the distance d between the propeller and the water surface is larger than 3r_0. For smaller distances, the capture frequency increases; using an image technique, we show how the above expression is modified by the presence of the surface.

  14. Interaction of positive streamers in air with bubbles floating on liquid surfaces: conductive and dielectric bubbles

    Science.gov (United States)

    Babaeva, Natalia Yu; Naidis, George V.; Kushner, Mark J.

    2018-01-01

    The interaction of plasmas sustained in humid air with liquids produces reactive species in both the gas phase and liquid for applications ranging from medicine to agriculture. In several experiments, enhanced liquid reactivity has been produced when the liquid is a foam or a bubble coated liquid. To investigate the phenomena of streamers interacting with bubbles a two-dimensional computational investigation has been performed of streamer initiation and propagation on and inside hemispherical bubble-shells floating on a liquid surface. Following prior experiments, water and oil bubble-shells with an electrode located outside and inside the bubble were investigated. We found that positive air streamers interact differently with conductive water and dielectric oil bubbles. The streamer propagates along the external surface of a water bubble while not penetrating through the bubble due to screening of the electric field by the conducting shell. If the electrode is inserted inside the bubble, the path of the streamer depends on how deeply the electrode penetrates. For shallow penetration, the streamer propagates along the inner surface of the bubble. Due to the low conductivity of oil bubble-shells, the electric field from an external electrode penetrates into the interior of the bubble. The streamer can then be re-initiated inside the bubble.

  15. Vacuum Chambers for LEP sections

    CERN Multimedia

    1983-01-01

    The picture shows sections of the LEP vacuum chambers to be installed in the dipole magnets (left) and in the quadrupoles (right). The dipole chamber has three channels: the beam chamber, the pumping duct where the NEG (non-evaporabe getter) is installed and the water channel for cooling (on top in the picture). The pumping duct is connected to the beam chamber through holes in the separating wall. The thick lead lining to shield radiation can also be seen. These chambers were manufactured as extruded aluminium alloy profiles.

  16. Route to Chaos due to ion sheath oscillations observed in plasma bubble

    Science.gov (United States)

    Megalingam, Mariammal; Sarma, Bornali; Sarma, Arun

    2017-10-01

    The report is intended to investigate experimentally nonlinear behavior of fluctuations in current carrying unstable plasma and compared with the theory that describes ion dynamics in the sheath and pre-sheath region. Plasma bubbles are created in bulk plasma by negatively biased spherical mesh grid of 80% optical transparency inserted in bulk plasma of the system. Argon plasma is produced in cylindrical chamber of 350 mm in length and 400 mm in diameter by hot cathode filament discharge method. The spherical mesh grid can congregate the particles from the plasma radially in presence or absence of biasing. A virtual anode structure has formed around the bubble when all electrons are reflected. A radially movable Langmuir and emissive probe are used to measure basic parameters. Sheath instability inside the bubble has observed, there appears regime of quasi-periodicity with various frequencies. Scanning has done throughout the bubble to understand fluctuations and its associated instabilities. These instabilities are leading to chaos through a region of quasi-period to period doubling at different positions inside the bubble. Experimentally observed ion sheath oscillations are confirmed with some theoretical analysis The authors would like to thank Indian Space Research Organisation(ISRO) for their Grant and support.

  17. Wire chambers revisited.

    Science.gov (United States)

    Ott, R J

    1993-04-01

    Detectors used for radioisotope imaging have, historically, been based on scintillating crystal/photomultiplier combinations in various forms. From the rectilinear scanner through to modern gamma cameras and positron cameras, the basic technology has remained much the same. Efforts to overcome the limitations of this form of technology have foundered on the inability to reproduce the required sensitivity, spatial resolution and sensitive area at acceptable cost. Multiwire proportional chambers (MWPCs) have long been used as position-sensitive charged particle detectors in nuclear and high-energy physics. MWPCs are large-area gas-filled ionisation chambers in which large arrays of fine wires are used to measure the position of ionisation produced in the gas by the passage of charged particles. The important properties of MWPCs are high-spatial-resolution, large-area, high-count-rate performance at low cost. For research applications, detectors several metres square have been built and small-area detectors have a charged particle resolution of 0.4 mm at a count rate of several million per second. Modification is required to MWPCs for nuclear medicine imaging. As gamma rays or X-rays cannot be detected directly, they must be converted into photo- or Compton scatter electrons. Photon-electron conversion requires the use of high atomic number materials in the body of the chamber. Pressurised xenon is the most useful form of "gas only" photon-electron convertor and has been used successfully in a gamma camera for the detection of gamma rays at energies below 100 keV. This camera has been developed specifically for high-count-rate first-pass cardiac imaging. This high-pressure xenon gas MWPC is the key to a highly competitive system which can outperform scintillator-based systems. The count rate performance is close to a million counts per second and the intrinsic spatial resolution is better than the best scintillator-based camera. The MWPC camera produces quantitative

  18. Review of wire chamber aging

    Energy Technology Data Exchange (ETDEWEB)

    Va' Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs.

  19. Bernoulli Suction Effect on Soap Bubble Blowing?

    Science.gov (United States)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  20. Single DNA denaturation and bubble dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, Ralf [Physics Department, Technical University of Munich, James Franck Strasse, 85747 Garching (Germany); Ambjoernsson, Tobias [Chemistry Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Hanke, Andreas [Department of Physics and Astronomy, University of Texas, 80 Fort Brown, Brownsville (United States); Fogedby, Hans C [Department of Physics and Astronomy, University of Arhus, Ny Munkegade, 8000 Arhus C (Denmark)], E-mail: metz@ph.tum.de

    2009-01-21

    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation bubbles and selectively single-stranded DNA binding proteins.

  1. Direct Numerical Simulation of the Lift Force in Bubbly Flows

    NARCIS (Netherlands)

    Dijkhuizen, W.; van Sint Annaland, M.; Kuipers, J.A.M.

    2008-01-01

    It is well-known that the lift force is responsible for the segregation of small and large bubbles encountered in bubbly flows through pipes and bubble columns: in the case of up flow small spherical bubbles move to the wall, while larger deformed bubbles move to the core region. Depending on the

  2. Bursting the bubble of melt inclusions

    Science.gov (United States)

    Lowenstern, Jacob B.

    2015-01-01

    Most silicate melt inclusions (MI) contain bubbles, whose significance has been alternately calculated, pondered, and ignored, but rarely if ever directly explored. Moore et al. (2015) analyze the bubbles, as well as their host glasses, and conclude that they often hold the preponderance of CO2 in the MI. Their findings entreat future researchers to account for the presence of bubbles in MI when calculating volatile budgets, saturation pressures, and eruptive flux.

  3. Cusped Bubbles Rising through Polyelectrolyte Solutions

    Science.gov (United States)

    Belmonte, Andrew; Sostarecz, Michael

    2000-11-01

    It is well known that a bubble rising in a polymer fluid can have a cusp-like tail. We report on an experimental study of bubbles rising through solutions of glycerol/water with the addition of the polymer xanthan gum, a polyelectrolyte which becomes more rigid as the free ion concentration is increased. The addition of salt also decreases the elasticity of the xanthan gum solutions, and we observe its effects on the velocity and shape of the cusped bubble.

  4. Detailed Jet Dynamics in a Collapsing Bubble

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2015-12-01

    We present detailed visualizations of the micro-jet forming inside an aspherically collapsing cavitation bubble near a free surface. The high-quality visualizations of large and strongly deformed bubbles disclose so far unseen features of the dynamics inside the bubble, such as a mushroom-like flattened jet-tip, crown formation and micro-droplets. We also find that jetting near a free surface reduces the collapse time relative to the Rayleigh time.

  5. Asset Bubbles, Endogenous Growth, and Financial Frictions

    OpenAIRE

    Hirano, Tomohiro; Yanagawa, Noriyuki

    2016-01-01

    This paper analyzes the effects of bubbles in an infinitely-lived agent model of endogenous growth with financial frictions and heterogeneous agents. We provide a complete characterization on the relationship between financial frictions and the existence of bubbles. Our model predicts that if the degree of pledgeability is sufficiently high or sufficiently low, bubbles can not exist. They can only arise at an intermediate degree. This suggests that improving the financial market condition mig...

  6. Bubbles, Financial Crises, and Systemic Risk

    OpenAIRE

    Markus K. Brunnermeier; Martin Oehmke

    2012-01-01

    This chapter surveys the literature on bubbles, financial crises, and systemic risk. The first part of the chapter provides a brief historical account of bubbles and financial crisis. The second part of the chapter gives a structured overview of the literature on financial bubbles. The third part of the chapter discusses the literatures on financial crises and systemic risk, with particular emphasis on amplification and propagation mechanisms during financial crises, and the measurement of sy...

  7. Posterior chamber pseudophakia.

    Science.gov (United States)

    Simcoe, C W

    1982-01-01

    Anatomically, the most physiological type of implant is that of the posterior chamber of the eye. After a brief historical review of these implants, two models differing by their loops are compared, these being either in the form of a J with narrow extremities or in the form of a C. The latter model possesses definite advantages. Firstly, the point of pressure on the lens capsule is less concentrated, reducing the pressure exerted by the loops and thus avoiding rupture of the zonular ciliaris, Secondly, contact in the form of an are prevents movement of the implant around its axis, a factor favorizing capsule slipping. Thirdly, the improved pressure distribution of the loops resulting from their greater flexibility also prevents the "windscreen wiper syndrome", providing improved stability of the implant. The technique employed avoids all contact taking place with the endothelium. The upper loop is placed in position after closure of the incision. Results in 1532 cases were very positive, and studies are currently being conducted with an implant with four loops in which the optic is within the posterior chamber, and which could be positioned after intracapsular extraction. A system of irrigation-aspiration is described which employs a fine curved canula that is easier to manage and permits improved cleaning of the capsule. Emphasis is placed on the need for narrow, deep, corneal sutures to reduce postoperative astigmatism.

  8. Council Chamber exhibition

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    To complete the revamp of CERN’s Council Chamber, a new exhibition is being installed just in time for the June Council meetings.   Panels will showcase highlights of CERN’s history, using some of the content prepared for the exhibitions marking 50 years of the PS, which were displayed in the main building last November. The previous photo exhibition in the Council Chamber stopped at the 1970s. To avoid the new panels becoming quickly out of date, photos are grouped together around specific infrastructures, rather than following a classic time-line. “We have put the focus on the accelerators – the world-class facilities that CERN has been offering researchers over the years, from the well-known large colliders to the lesser-known smaller facilities,” says Emma Sanders, who worked on the content. The new exhibition will be featured in a future issue of the Bulletin with photos and an interview with Fabienne Marcastel, designer of the exhibit...

  9. Stable bubble oscillations beyond Blake's critical threshold.

    Science.gov (United States)

    Hegedűs, Ferenc

    2014-04-01

    The equilibrium radius of a single spherical bubble containing both non-condensable gas and vapor is determined by the mechanical balance at the bubble interface. This expression highlights the fact that decreasing the ambient pressure below the so called Blake's critical threshold, the bubble has no equilibrium state at all. In the last decade many authors have tried to find evidence for the existence of stable bubble oscillation under harmonic forcing in this regime, that is, they have tried to stabilize the bubble motion applying ultrasonic radiation on the bubble. The available numerical results provide only partial proof for the existence as they are usually based on linearized or weakly nonlinear (higher order approximation) bubble models. Here, based on numerical techniques of the modern nonlinear and bifurcation theory, the existence of stable bubble motion has been proven without any restrictions in nonlinearities. Although the model, applied in this paper, is the rather simple Rayleigh-Plesset equation, the presented technique can be extended to more complex bubble models easily. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Improvised bubble continuous positive airway pressure (BCPAP ...

    African Journals Online (AJOL)

    Improvised bubble continuous positive airway pressure (BCPAP) device at the National Hospital Abuja gives immediate improvement in respiratory rate and oxygenation in neonates with respiratory distress.

  11. Michigan ATLAS MDT Chamber Mass Production

    CERN Document Server

    Diehl, E; Levin, D; McKee, S; Neal, H; Schick, H; Tarle, G; Thun, R; Weaverdyck, C; Xu, Q; Zhao, Z; Zhou, B

    2001-01-01

    This paper describes the ATLAS MDT precision muon chamber construction at the University of Michigan. The chamber assembly facilities, the jigging set up, alignment procedures, and other measurements necessary for chamber assembly are described. The chamber quality assurance monitoring procedures and data for the first year mass production are presented. The chamber gas system assembly facilities, and the chamber leak test procedure together with data also reported. The chamber production database, which monitors chamber production, is also discussed.

  12. Liquid jet formation through the interactions of a laser-induced bubble and a gas bubble

    Science.gov (United States)

    Han, Bing; Liu, Liu; Zhao, Xiong-Tao; Ni, Xiao-Wu

    2017-10-01

    The mechanisms of the liquid jet formation from the interaction of the laser-induced and gas bubble pair are investigated and compared with the jet formation from the interaction of the laser-induced anti-phase bubble pair. The strobe photography experimental method and numerical simulations are implemented to obtain the parameter space of the optimum liquid jet, i.e. highest speed and lowest diameter. It is found that due to the enhanced "catapult effect", which is induced by the protrusion of the first bubble into the second bubble and the flip back of the elongated part of the first bubble, the optimum liquid jet of the second bubble of the laser-induced anti-phase bubble pair compared to that of the laser-induced and gas bubble pair is 54 %, 65 % and 11 % faster in speed, and 4 %, 44 % and 64 % smaller in diameter, for the 500 μm, 50 μm and 5 μm sized bubbles, respectively. The optimum dimensionless distance for the optimum jet of the laser-induced and the gas bubble is around 0.7, when the maximum bubble radius increases from ˜ 5μm to ˜500 μm, which is different from the laser-induced anti-phase bubble pairs. Besides, the optimum jet of the laser-induced bubble appeared when the bubbles are equal sized, while that of the gas bubble is independent of the relative bubble size, i.e. the liquid jet of the gas bubble has higher robustness in real liquid jet assisted applications when the laser-induced bubble size varies. However, the jet of bubble 2 could maintain a high speed (20 m/s - 35 m/s) and a low diameter (˜5 % of the maximum bubble diameter) over a big range of the dimensionless distance (0.6 - 0.9) for both of the 50 μm and 500 μm sized laser-induced equal sized anti-phase bubble pairs.

  13. Colorful Demos with a Long-Lasting Soap Bubble.

    Science.gov (United States)

    Behroozi, F.; Olson, D. W.

    1994-01-01

    Describes several demonstrations that feature interaction of light with soap bubbles. Includes directions about how to produce a long-lasting stationary soap bubble with an easily changeable size and describes the interaction of white light with the bubble. (DDR)

  14. Mush Column Magma Chambers

    Science.gov (United States)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  15. Neural basis of economic bubble behavior.

    Science.gov (United States)

    Ogawa, A; Onozaki, T; Mizuno, T; Asamizuya, T; Ueno, K; Cheng, K; Iriki, A

    2014-04-18

    Throughout human history, economic bubbles have formed and burst. As a bubble grows, microeconomic behavior ceases to be constrained by realistic predictions. This contradicts the basic assumption of economics that agents have rational expectations. To examine the neural basis of behavior during bubbles, we performed functional magnetic resonance imaging while participants traded shares in a virtual stock exchange with two non-bubble stocks and one bubble stock. The price was largely deflected from the fair price in one of the non-bubble stocks, but not in the other. Their fair prices were specified. The price of the bubble stock showed a large increase and battering, as based on a real stock-market bust. The imaging results revealed modulation of the brain circuits that regulate trade behavior under different market conditions. The premotor cortex was activated only under a market condition in which the price was largely deflected from the fair price specified. During the bubble, brain regions associated with the cognitive processing that supports order decisions were identified. The asset preference that might bias the decision was associated with the ventrolateral prefrontal cortex and the dorsolateral prefrontal cortex (DLPFC). The activity of the inferior parietal lobule (IPL) was correlated with the score of future time perspective, which would bias the estimation of future price. These regions were deemed to form a distinctive network during the bubble. A functional connectivity analysis showed that the connectivity between the DLPFC and the IPL was predominant compared with other connectivities only during the bubble. These findings indicate that uncertain and unstable market conditions changed brain modes in traders. These brain mechanisms might lead to a loss of control caused by wishful thinking, and to microeconomic bubbles that expand, on the macroscopic scale, toward bust. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. The ALICE time projection chamber

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    This time projection chamber is part of the ALICE detector on the new LHC accelerator at CERN. Particles produced in collisions at the core of the detector will follow paths outward through the various sub-detector layers. If these particles carry a charge, they will ionise the gas contained within this chamber producing an electric signal as the ions drift in the chamber's electric field.

  17. Portable electron beam weld chamber

    Science.gov (United States)

    Lewis, J. R.; Dimino, J. M.

    1972-01-01

    Development and characteristics of portable vacuum chamber for skate type electron beam welding are discussed. Construction and operational details of equipment are presented. Illustrations of equipment are provided.

  18. Study of the effect of water vapor on a resistive plate chamber with glass electrodes

    CERN Document Server

    Sakai, H H; Teramoto, Y; Nakano, E E; Takahashi, T T

    2002-01-01

    We studied the effects of water vapor on the efficiencies of resistive plate chambers with glass electrodes, operated in the streamer mode. With moisture in the chamber gas that has freon as a component (water vapor approx 1000 ppm), a decrease in the efficiency (approx 20%) has been observed after operating for a period of several weeks to a few months. From our study, the cause of the efficiency decrease was identified as a change on the cathode surface. In addition, a recovery method was found: flushing for 1 day with argon bubbled through water containing >=3% ammonia, followed by a few weeks of training with dry gas.

  19. Intraoperative review of different bubble types formed during pneumodissection (big-bubble) deep anterior lamellar keratoplasty.

    Science.gov (United States)

    Goweida, Mohamed Bahgat Badawi

    2015-06-01

    To evaluate the preoperative factors and intraoperative complications of the 2 bubble types formed during big-bubble deep anterior lamellar keratoplasty (DALK). This is a retrospective review of medical records of a series of patients who underwent DALK using the big-bubble technique from September 2009 to March 2014. A total of 134 eyes were included in this study-89 eyes with advanced keratoconus, 35 eyes with post-microbial keratitis corneal scars, 8 eyes with stromal dystrophies, and 2 eyes with post-laser in situ keratomileusis ectasia. A type 1 bubble (white margin) was achieved in 56 eyes (41.8%), whereas a type 2 bubble (clear margin) was formed in 14 eyes (10.4%) and a mixed bubble was formed in 2 eyes (1.5%). Big-bubble formation failed in 62 (46.3%). All eyes with the type 1 bubble were completed as DALK; microperforation occurred in 4 eyes. Twelve of 14 eyes with the type 2 bubble were converted to penetrating keratoplasty because of large perforations. The type 2 bubble is more likely to form in elderly patients and those with deep corneal scars and thin corneas. Because of the high rate of conversion to penetrating keratoplasty, better surgical strategies may be needed to manage type 2 bubbles.

  20. Measurement of Bubble Size Distribution Based on Acoustic Propagation in Bubbly Medium

    Science.gov (United States)

    Wu, Xiongjun; Hsiao, Chao-Tsung; Choi, Jin-Keun; Chahine, Georges

    2013-03-01

    Acoustic properties are strongly affected by bubble size distribution in a bubbly medium. Measurement of the acoustic transmission becomes increasingly difficulty as the void fraction of the bubbly medium increases due to strong attenuation, while acoustic reflection can be measured more easily with increasing void fraction. The ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright, an instrument for bubble size measurement that is under development tries to take full advantage of the properties of acoustic propagation in bubbly media to extract bubble size distribution. Properties of both acoustic transmission and reflection in the bubbly medium from a range of short single-frequency bursts of acoustic waves at different frequencies are measured in an effort to deduce the bubble size distribution. With the combination of both acoustic transmission and reflection, assisted with validations from photography, the ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright has the potential to measure bubble size distributions in a wider void fraction range. This work was sponsored by Department of Energy SBIR program

  1. Bubble aspect ratio in dense bubbly flows: experimental studies in low Morton-number systems

    Science.gov (United States)

    Besagni, G.; Inzoli, F.; Ziegenhein, T.; Hessenkemper, H.; Lucas, D.

    2017-11-01

    Almost every modelling approach of bubbly flows includes assumptions concerning the bubble shape. Such assumptions are usually made based on single bubble experiments in quiescent flows, which is far away from the flow field observed in large-scale multiphase facilities. Considering low Morton-numbers and the highly deformable interface at medium and large Eötvös-numbers, the evaluation of the bubble shape in such systems under real flow conditions is highly desirable. In this study, we experimentally evaluate the bubble shape (in terms of aspect ratio), at low Morton-numbers, in different bubble column setups and a pipe flow setup under different operating conditions. The bubble shape in the bubble column experiments were obtained with cameras at Politecnico di Milano and Helmholtz-Zentrum Dresden Rossendorf (HZDR) whereas the shapes in the pipe flows were measured by the ultrafast electron beam X-ray tomography system (ROFEX) at HZDR. In the bubble column experiments almost the same shape is observed; conversely, the shape in the pipe flows distinctly depends on the flow conditions. In conclusion, in bubble columns the assumption of a constant shape regardless of the flow conditions is valid whereas in pipe flows the turbulence and shear rates can be strong enough to deform distinctly the bubbles.

  2. Bubble Movement on Inclined Hydrophobic Surfaces.

    Science.gov (United States)

    Kibar, Ali; Ozbay, Ridvan; Sarshar, Mohammad Amin; Kang, Yong Tae; Choi, Chang-Hwan

    2017-10-31

    The movement of a single air bubble on an inclined hydrophobic surface submerged in water, including both the upward- and downward-facing sides of the surface, was investigated. A planar Teflon sheet with an apparent contact angle of a sessile water droplet of 106° was used as a hydrophobic surface. The volume of a bubble and the inclination angle of a Teflon sheet varied in the ranges 5-40 μL and 0-45°, respectively. The effects of the bubble volume on the adhesion and dynamics of the bubble were studied experimentally on the facing-up and facing-down surfaces of the submerged hydrophobic Teflon sheet, respectively, and compared. The result shows that the sliding angle has an inverse relationship with the bubble volume for both the upward- and downward-facing surfaces. However, at the same given volume, the bubble on the downward-facing surface spreads over a larger area of the hydrophobic surface than the upward-facing surface due to the greater hydrostatic pressure acting on the bubble on the downward-facing surface. This makes the lateral adhesion force of the bubble greater and requires a larger inclination angle to result in sliding.

  3. The Minnaert Bubble: An Acoustic Approach

    Science.gov (United States)

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude; Leroy, Valentin

    2008-01-01

    We propose an "ab initio" introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian…

  4. The life and death of film bubbles

    Science.gov (United States)

    Poulain, S.; Villermaux, E.; Bourouiba, L.

    2017-11-01

    Following its burst, the fragmentation of a large bubble (film bubble) at the air-water interface can release hundreds of micrometer-sized film-drops in the air we breathe. This mechanism of droplet formation is one of the most prominent sources of sea spray. Indoor or outdoor, pathogens from contaminated water are transported by these droplets and have also been linked to respiratory infection. The lifetime and thickness of bubbles govern the number and size of the droplets they produce. Despite these important implications, little is known about the factors influencing the life and death of surface film bubbles. In particular, the fundamental physical mechanisms linking bubble aging, thinning, and lifetime remain poorly understood. To address this gap, we present the results of an extensive investigation of the aging of film-drop-producing bubbles in various ambient air, water composition, and temperature conditions. We present and validate a generalized physical picture and model of bubble cap thickness evolution. The model and physical picture are linked to the lifetime of bubbles via a series of cap rupture mechanisms of increasing efficiency.

  5. Steady State Vapor Bubble in Pool Boiling.

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-02-03

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  6. Measuring the surface tension of soap bubbles

    Science.gov (United States)

    Sorensen, Carl D.

    1992-01-01

    The objectives are for students to gain an understanding of surface tension, to see that pressure inside a small bubble is larger than that inside a large bubble. These concepts can be used to explain the behavior of liquid foams as well as precipitate coarsening and grain growth. Equipment, supplies, and procedures are explained.

  7. Microfluidics with ultrasound-driven bubbles

    NARCIS (Netherlands)

    Marmottant, P.; Marmottant, P.G.M.; Raven, J.P.; Gardeniers, Johannes G.E.; Bomer, Johan G.; Hilgenfeldt, Sascha; Hilgenfeldt, S.

    2006-01-01

    Microstreaming from oscillating bubbles is known to induce vigorous vortex flow. Here we show how to harness the power of bubble streaming in an experiment to achieve directed transport flow of high velocity, allowing design and manufacture of microfluidic MEMS devices. By combining oscillating

  8. Videotaping the Lifespan of a Soap Bubble.

    Science.gov (United States)

    Ramme, Goran

    1995-01-01

    Describes how the use of a videotape to record the history of a soap bubble allows a study of many interesting events in considerable detail including interference fringes, convection and turbulence patterns on the surface, formation of black film, and the ultimate explosion of the bubble. (JRH)

  9. The Interaction of Two Underwater Explosion Bubbles

    Science.gov (United States)

    Milligan, Charles; Duncan, James

    1996-11-01

    The interaction between two growing and collapsing underwater explosion bubbles is studied experimentally and numerically. In the experiments, the bubbles are generated by detonating small Lead Azide explosive charges submerged in a transparent water tank, and the resulting interactions are photographed using a high-speed camera. The parametric studies include simultaneous detonation of two charges of different sizes, and detonation of identically sized charges at staggered times. When the time delay between detonations is significant, the collapsing first bubble forms a jet directed away from the expanding second bubble and then re-expands nonspherically. During the re-expansion of the first bubble, a micro-jet forms in the second bubble. Eventually this micro-jet pierces the side of the second bubble farthest from the first and vortex rings are formed. Numerical simulations of the interaction phenomena are achieved using a boundary element method. By partitioning the system into computational sub-domains it is possible to replicate many relevant physical details including jet formation, fluid-fluid impact, and bubble re-expansion after complete jet penetration. The numerical results are in qualitative agreement with the experimental findings.

  10. Interaction of cavitation bubbles on a wall

    NARCIS (Netherlands)

    Bremond, Nicolas; Bremond, N.P.; Arora, M.; Dammer, S.M.; Lohse, Detlef

    2006-01-01

    We report experimental and numerical investigations on the dynamics of the cavitation of bubbles on a solid surface and the interaction between them with the help of controlled cavitation nuclei: hemispherical bubbles are nucleated from hydrophobic microcavities that act as gas traps when the

  11. Clustering and Lagrangian Statistics of Bubbles

    NARCIS (Netherlands)

    Martinez Mercado, J.

    2011-01-01

    Due to their relevance and occurrence in both natural phenomena and in industrial applications, the study and understanding of bubbly flows is currently an important topic for fluid dynamicists. Bubble columns are commonly used in bio- and petrochemical industries to enhance mixing, mass and heat

  12. The charged bubble oscillator: Dynamics and thresholds

    Indian Academy of Sciences (India)

    Technology-Bangalore (IIIT-B), 26/C Electronics City, Hosur Road, Bengaluru 560 100, India. 2School of Natural Sciences & Engineering, .... liquid, the difference in pressure causes expansion and rapid collapse of the bubble, followed ... of the dimensions of the bubble, we define an expansion- compression ratio that we ...

  13. Laminar separation bubbles: Dynamics and control

    Indian Academy of Sciences (India)

    it thus are essential prerequisites for efficient design of these aerodynamic devices. Gaster. (1967) was the first to systematically explore the stability characteristics associated with the transition taking place in separation bubble. Many recent studies have been directed towards exploring the dynamics of separation bubbles ...

  14. Laminar separation bubbles: Dynamics and control

    Indian Academy of Sciences (India)

    This work is an experimental investigation of the dynamics and control of the laminar separation bubbles which are typically present on the suction surface of an aerofoil at a large angle of attack. A separation bubble is produced on the upper surface of a flat plate by appropriately contouring the top wall of the wind tunnel.

  15. Cavitation inception from bubble nuclei

    Science.gov (United States)

    Mørch, K. A.

    2015-01-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure–time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  16. Galactic Teamwork Makes Distant Bubbles

    Science.gov (United States)

    Kohler, Susanna

    2016-03-01

    During the period of reionization that followed the dark ages of our universe, hydrogen was transformed from a neutral state, which is opaque to radiation, to an ionized one, which is transparent to radiation. But what generated the initial ionizing radiation? The recent discovery of multiple distant galaxies offers evidence for how this process occurred.Two Distant GalaxiesWe believe reionization occurred somewhere between a redshift of z = 6 and 7, because Ly-emitting galaxies drop out at roughly this redshift. Beyond this distance, were generally unable to see the light from these galaxies, because the universe is no longer transparent to their emission. This is not always the case, however: if a bubble of ionized gas exists around a distant galaxy, the radiation can escape, allowing us to see the galaxy.This is true of two recently-discovered Ly-emitting galaxies, confirmed to be at a redshift of z~7 and located near one another in a region known as the Bremer Deep Field. The fact that were able to see the radiation from these galaxies means that they are in an ionized HII region presumably one of the earlier regions to have become reionized in the universe.But on their own, neither of these galaxies is capable of generating an ionized bubble large enough for their light to escape. So what ionized the region around them, and what does this mean for our understanding of how reionization occurred in the universe?A Little Help From FriendsLocation in different filters of the objects in the Hubble Bremer Deep Field catalog. The z~7 selection region is outlined by the grey box. BDF-521 and BDF-3299 were the two originally discovered galaxies; the remaining red markers indicate the additional six galaxies discovered in the same region. [Castellano et al. 2016]A team of scientists led by Marco Castellano (Rome Observatory, INAF) investigated the possibility that there are other, faint galaxies near these two that have helped to ionize the region. Performing a survey

  17. Constraining hadronic models of the Fermi bubbles

    Science.gov (United States)

    Razzaque, Soebur

    2018-01-01

    The origin of sub-TeV gamma rays detected by Fermi-LAT from the Fermi bubbles at the Galactic center is unknown. In a hadronic model, acceleration of protons and/or nuclei and their subsequent interactions with gas in the bubble volume can produce observed gamma ray. Such interactions naturally produce high-energy neutrinos, and detection of those can discriminate between a hadronic and a leptonic origin of gamma rays. Additional constraints on the Fermi bubbles gamma-ray flux in the PeV range from recent HAWC observations restrict hadronic model parameters, which in turn disfavor Fermi bubbles as the origin of a large fraction of neutrino events detected by IceCube along the bubble directions. We revisit our hadronic model and discuss future constraints on parameters from observations in very high-energy gamma rays by CTA and in neutrinos.

  18. Oscillation of large air bubble cloud

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  19. Bubble mobility in mud and magmatic volcanoes

    Science.gov (United States)

    Tran, Aaron; Rudolph, Maxwell L.; Manga, Michael

    2015-03-01

    The rheology of particle-laden fluids with a yield stress, such as mud or crystal-rich magmas, controls the mobility of bubbles, both the size needed to overcome the yield stress and their rise speed. We experimentally measured the velocities of bubbles and rigid spheres in mud sampled from the Davis-Schrimpf mud volcanoes adjacent to the Salton Sea, Southern California. Combined with previous measurements in the polymer gel Carbopol, we obtained an empirical model for the drag coefficient and bounded the conditions under which bubbles overcome the yield stress. Yield stresses typical of mud and basaltic magmas with sub-mm particles can immobilize millimeter to centimeter sized bubbles. At Stromboli volcano, Italy, a vertical yield stress gradient in the shallow conduit may immobilize bubbles with diameter ≲ 1 cm and hinder slug coalescence.

  20. Mesoporous hollow spheres from soap bubbling.

    Science.gov (United States)

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Primordial black hole formation by vacuum bubbles

    Science.gov (United States)

    Deng, Heling; Vilenkin, Alexander

    2017-12-01

    Vacuum bubbles may nucleate during the inflationary epoch and expand, reaching relativistic speeds. After inflation ends, the bubbles are quickly slowed down, transferring their momentum to a shock wave that propagates outwards in the radiation background. The ultimate fate of the bubble depends on its size. Bubbles smaller than certain critical size collapse to ordinary black holes, while in the supercritical case the bubble interior inflates, forming a baby universe, which is connected to the exterior region by a wormhole. The wormhole then closes up, turning into two black holes at its two mouths. We use numerical simulations to find the masses of black holes formed in this scenario, both in subcritical and supercritical regime. The resulting mass spectrum is extremely broad, ranging over many orders of magnitude. For some parameter values, these black holes can serve as seeds for supermassive black holes and may account for LIGO observations.

  2. Interacting bubble clouds and their sonochemical production

    CERN Document Server

    Stricker, Laura; Rivas, David Fernandez; Lohse, Detlef

    2013-01-01

    Acoustically driven air pockets trapped in artificial crevices on a sur- face can emit bubbles which organize in (interacting) bubble clusters. With increasing driving power Fernandez Rivas et al. [Angew. Chem. Int. Ed., 2010] observed three different behaviors: clusters close to the very pits out of which they had been created, clusters pointing toward each other, and merging clusters. The latter behavior is highly undesired for technological purposes as it is associated with a reduction of the radical production and an enhancement of the erosion of the reactor walls. The dependence on the control parameters such as the distance of the pits and the conditions for cluster-merging are examined. The underlying mechanism, governed by the secondary Bjerknes forces, turns out to be strongly influenced by the nonlinearity of the bubble oscillations and not directly by the number of nucleated bubbles. The Bjerknes forces are found to dampen the bubble oscillations, thus reducing the radical production. Therefore, th...

  3. Bubble streams rising beneath an inclined surface

    Science.gov (United States)

    Bird, James; Brasz, Frederik; Kim, Dayoung; Menesses, Mark; Belden, Jesse

    2017-11-01

    Bubbles released beneath a submerged inclined surface can tumble along the wall as they rise, dragging the surrounding fluid with them. This effect has recently regained attention as a method to mitigate biofouling in marine environment, such as a ship hull. It appears that the efficacy of this approach may be related to the velocity of the rising bubbles and the extent that they spread laterally as they rise. Yet, it is unclear how bubble stream rise velocity and lateral migration depend on bubble size, flow rate, and inclination angle. Here we perform systematic experiments to quantify these relationships for both individual bubble trajectories and ensemble average statistics. Research supported by the Office of Naval Research under Grant Number award N00014-16-1-3000.

  4. Development of a 150 m/sup 2/ proportional chamber system with a 1 million bit buffer The EMI for BEBC

    CERN Document Server

    Brand, C; Chesi, Enrico Guido; Föth, H; Gilgrass, A; Hilke, H J; Jacobs, D; Lazeyras, Pierre; Sacquin, Yu

    1976-01-01

    For the identification of muons behind the Big European Bubble Chamber (BEBC) a detector wall of 6 m*25 m is required. The authors describe the construction of the wire chambers, the electronics and the performance of the first chambers. The 50 modular 3 m*1 m chambers contain 75000 wires and 10000 cathode stripes, grouped into 20000 electronic channels to give a variable space resolution. Geometrical acceptance is maximized by the suppression of support lines and spacers. The electronics can buffer up to 1023 events without dead time losses and without limitation on the number of hits per event. Ar /CO/sub 2/ mixtures have given good results. (6 refs).

  5. Gas bubble dynamics in soft materials.

    Science.gov (United States)

    Solano-Altamirano, J M; Malcolm, John D; Goldman, Saul

    2015-01-07

    Epstein and Plesset's seminal work on the rate of gas bubble dissolution and growth in a simple liquid is generalized to render it applicable to a gas bubble embedded in a soft elastic solid. Both the underlying diffusion equation and the expression for the gas bubble pressure were modified to allow for the non-zero shear modulus of the medium. The extension of the diffusion equation results in a trivial shift (by an additive constant) in the value of the diffusion coefficient, and does not change the form of the rate equations. But the use of a generalized Young-Laplace equation for the bubble pressure resulted in significant differences on the dynamics of bubble dissolution and growth, relative to an inviscid liquid medium. Depending on whether the salient parameters (solute concentration, initial bubble radius, surface tension, and shear modulus) lead to bubble growth or dissolution, the effect of allowing for a non-zero shear modulus in the generalized Young-Laplace equation is to speed up the rate of bubble growth, or to reduce the rate of bubble dissolution, respectively. The relation to previous work on visco-elastic materials is discussed, as is the connection of this work to the problem of Decompression Sickness (specifically, "the bends"). Examples of tissues to which our expressions can be applied are provided. Also, a new phenomenon is predicted whereby, for some parameter values, a bubble can be metastable and persist for long times, or it may grow, when embedded in a homogeneous under-saturated soft elastic medium.

  6. Characterization of a Reverberation Chamber

    Science.gov (United States)

    2015-10-01

    applied to the same device inside another facility, such as a gigahertz transverse electromagnetic (GTEM) or fully- anechoic chamber for further...and found to be consistent; reflections measured from inside the chamber yielded heavy spiking. The antenna used to transmit power into the room was

  7. Observation of Microhollows Produced by Bubble Cloud Cavitation

    Science.gov (United States)

    Yamakoshi, Yoshiki; Miwa, Takashi

    2012-07-01

    When an ultrasonic wave with sound pressure less than the threshold level of bubble destruction irradiates microbubbles, the microbubbles aggregate by an acoustic radiation force and form bubble clouds. The cavitation of bubble clouds produces a large number of microhollows (microdips) on the flow channel wall. In this study, microhollow production by bubble cloud cavitation is evaluated using a blood vessel phantom made of N-isopropylacrylamide (NIPA) gel. Microbubble dynamics in bubble cloud cavitation is observed by a microscope with a short pulse light emitted diode (LED) light source. Microhollows produced on the flow channel wall are evaluated by a confocal laser microscope with a water immersion objective. It is observed that a mass of low-density bubbles (bubble mist) is formed by bubble cloud cavitation. The spatial correlation between the bubble mist and the microhollows shows the importance of the bubble mist in microhollow production by bubble cloud cavitation.

  8. Study of Parameters Effect on Hydrodynamics of a Gas-Solid Chamber Experimentally and Numerically

    Directory of Open Access Journals (Sweden)

    Rahimzadeh Hassan

    2012-04-01

    Full Text Available In this research, gas velocity, initial static bed height and particle size effect on hydrodynamics of a non-reactive gas–solid fluidized bed chamber were studied experimentally and computationally. A multi fluid Eulerian model incorporating the kinetic theory for solid particles was applied to simulate the unsteady state behavior of this chamber and momentum exchange coefficients were calculated by using the Syamlal- O’Brien drag functions. Simulation results were compared with the experimental data in order to validate the CFD model. Pressure drops predicted by the simulations at different particle sizes and initial static bed height were in good agreement with experimental measurements at superficial gas velocity higher than the minimum fluidization velocity. Simulation results also indicated that small bubbles were produced at the bottom of the bed. These bubbles collided with each other as they moved upwards forming larger bubbles. Furthermore, this comparison showed that the model can predict hydrodynamic behavior of gas solid fluidized bed chambers reasonably well.

  9. Haemodynamic changes induced by submaximal exercise before a dive and its consequences on bubble formation

    Science.gov (United States)

    Blatteau, Jean‐Eric; Boussuges, Alain; Gempp, Emmanuel; Pontier, Jean‐Michel; Castagna, Olivier; Robinet, Claude; Galland, Francois‐Michel; Bourdon, Lionel

    2007-01-01

    Objectives To evaluate the effects of a submaximal exercise performed 2 h before a simulated dive on bubble formation and to observe the haemodynamic changes and their influence on bubble formation. Participants and methods 16 trained divers were compressed in a hyperbaric chamber to 400 kPa for 30 min and decompressed at a rate of 100 kPa/min with a 9 min stop at 130 kPa (French Navy MN90 procedure). Each diver performed two dives 3 days apart, one without exercise and one with exercise before the dive. All participants performed a 40 min constant‐load submaximal and calibrated exercise, which consisted of outdoor running 2 h before the dive. Circulating bubbles were detected with a precordial Doppler at 30, 60 and 90 min after surfacing. Haemodynamic changes were evaluated with Doppler echocardiography. Results A single bout of strenuous exercise 2 h before a simulated dive significantly reduced circulating bubbles. Post‐exercise hypotension (PEH) was observed after exercise with reductions in diastolic and mean blood pressure (DBP and MBP), but total peripheral resistance was unchanged. Stroke volume was reduced, whereas cardiac output was unchanged. Simulated diving caused a similar reduction in cardiac output independent of pre‐dive exercise, suggesting that pre‐dive exercise only changed DBP and MBP caused by reduced stroke volume. Conclusion A single bout of strenuous exercise 2 h before a dive significantly reduced the number of bubbles in the right heart of divers and protected them from decompression sickness. Declining stroke volume and moderate dehydration induced by a pre‐dive exercise might influence inert gas load and bubble formation. PMID:17138641

  10. National Ignition Facility Target Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This

  11. The CLEO III drift chamber

    CERN Document Server

    Peterson, D; Briere, R A; Chen, G; Cronin-Hennessy, D; Csorna, S; Dickson, M; Dombrowski, S V; Ecklund, K M; Lyon, A; Marka, S; Meyer, T O; Patterson, J R; Sadoff, A; Thies, P; Thorndike, E H; Urner, D

    2002-01-01

    The CLEO group at the Cornell Electron Storage Ring has constructed and commissioned a new central drift chamber. With 9796 cells arranged in 47 layers ranging in radius from 13.2 to 79 cm, the new drift chamber has a smaller outer radius and fewer wires than the drift chamber it replaces, but allows the CLEO tracking system to have improved momentum resolution. Reduced scattering material in the chamber gas and in the inner skin separating the drift chamber from the silicon vertex detector provides a reduction of the multiple scattering component of the momentum resolution and an extension of the usable measurement length into the silicon. Momentum resolution is further improved through quality control in wire positioning and symmetry of the electric fields in the drift cells which have provided a reduction in the spatial resolution to 88 mu m (averaged over the full drift range).

  12. Nonlinear ultrasonic waves in bubbly liquids with nonhomogeneous bubble distribution: Numerical experiments.

    Science.gov (United States)

    Vanhille, Christian; Campos-Pozuelo, Cleofé

    2009-06-01

    This paper deals with the nonlinear propagation of ultrasonic waves in mixtures of air bubbles in water, but for which the bubble distribution is nonhomogeneous. The problem is modelled by means of a set of differential equations which describes the coupling of the acoustic field and bubbles vibration, and solved in the time domain via the use and adaptation of the SNOW-BL code. The attenuation and nonlinear effects are assumed to be due to the bubbles exclusively. The nonhomogeneity of the bubble distribution is introduced by the presence of bubble layers (or clouds) which can act as acoustic screens, and alters the behaviour of the ultrasonic waves. The effect of the spatial distribution of bubbles on the nonlinearity of the acoustic field is analyzed. Depending on the bubble density, dimension, shape, and position of the layers, its effects on the acoustic field change. Effects such as shielding and resonance of the bubbly layers are especially studied. The numerical experiments are carried out in two configurations: linear and nonlinear, i.e. for low and high excitation pressure amplitude, respectively, and the features of the phenomenon are compared. The parameters of the medium are chosen such as to reproduce air bubbly water involved in the stable cavitation process.

  13. Effect of bubble's arrangement on the viscous torque in bubbly Taylor-Couette flow

    Science.gov (United States)

    Fokoua, G. Ndongo; Gabillet, C.; Aubert, A.; Colin, C.

    2015-03-01

    An experimental investigation of the interactions between bubbles, coherent motion, and viscous drag in a Taylor-Couette flow with the outer cylinder at rest is presented. The cylinder radii ratio η is 0.91. Bubbles are injected inside the gap through a needle at the bottom of the apparatus. Different bubbles sizes are investigated (ratio between the bubble diameter and the gap width ranges from 0.05 to 0.125) for very small void fraction (α ≤ 0.23%). Different flow regimes are studied corresponding to Reynolds number Re based on the gap width and velocity of the inner cylinder, ranging from 6 × 102 to 2 × 104. Regarding these Re values, Taylor vortices are persistent leading to an axial periodicity of the flow. A detailed characterization of the vortices is performed for the single-phase flow. The experiment also develops bubbles tracking in a meridian plane and viscous torque of the inner cylinder measurements. The findings of this study show evidence of the link between bubbles localisation, Taylor vortices, and viscous torque modifications. We also highlight two regimes of viscous torque modification and various types of bubbles arrangements, depending on their size and on the Reynolds number. Bubbles can have a sliding and wavering motion near the inner cylinder and be either captured by the Taylor vortices or by the outflow areas near the inner cylinder. For small buoyancy effect, bubbles are trapped, leading to an increase of the viscous torque. When buoyancy induced bubbles motion is increased by comparison to the coherent motion of the liquid, a decrease in the viscous torque is rather observed. The type of bubble arrangement is parameterized by the two dimensionless parameters C and H introduced by Climent et al. ["Preferential accumulation of bubbles in Couette-Taylor flow patterns," Phys. Fluids 19, 083301 (2007)]. Phase diagrams summarizing the various types of bubbles arrangements, viscous torque modifications, and axial wavelength evolution are

  14. Detonation wave phenomena in bubbled liquid

    Science.gov (United States)

    Gülhan, A.; Beylich, A. E.

    1990-07-01

    Shock wave propagation was investigated in two phase media consisting of diluted glycerin (85%) and reactive gas bubbles. To understand these complex phenomena, we first performed a numerical analysis and experimental studies of single bubbles containing a reactive gas-mixture. For the two-phase mixtures, a needle matrix bubble-generator enabled us to produce a homogeneous bubble distribution with a size dispersion less than 5%. The void fraction β0 was varied over one order of magnitude, β0=0.2-2%. It was found that there exists a critical value of shock strength above which bubble explosion starts. Once a bubble explodes, it stimulates the adjacent bubbles to explode due to emission of a blast wave; this process is followed by a series of similar events. A steady detonationlike wave propagates as a precurser with a constant velocity which is much higher than that of the first wave. To study the structure of the detonation wave the measured pressured profiles were averaged by superimposing 50 shots.

  15. The rheology of gravity driven bubbly liquids

    Science.gov (United States)

    Martinez-Mercado, Julian; Zenit, Roberto

    2002-11-01

    Experiments on a vertical channel were performed to to study the behavior of a monodispersed bubble suspension. Using water and water-glycerin mixtures, we were able to obtain measurements for a range of Reynolds and Weber numbers. To generate a uniform stream of bubbles an array of identical capillaries was used. To avoid the coalescence effects, a small amount of salt was added to the interstitial fluid, which did not affect the fluid properties significantly. Measurements of the bubble phase velocity were obtained using a dual impedance probe and through high speed digital video processing. We also obtained measurements of the bubble size and shape as a function of the gas volume fraction for the different flow regimes. We found that, for all cases, the bubble velocity decreases as mean gas volume fraction increases. The flow agitation, characterized with the bubble velocity variance, increases with bubble concentration. The flow becomes unstable for lower gas concentrations as the viscosity of the interstitial fluid increases.

  16. Shock waves from nonspherical cavitation bubbles

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Tinguely, Marc; Dorsaz, Nicolas; Farhat, Mohamed

    2017-09-01

    We present detailed observations of the shock waves emitted at the collapse of single cavitation bubbles using simultaneous time-resolved shadowgraphy and hydrophone pressure measurements. The geometry of the bubbles is systematically varied from spherical to very nonspherical by decreasing their distance to a free or rigid surface or by modulating the gravity-induced pressure gradient aboard parabolic flights. The nonspherical collapse produces multiple shocks that are clearly associated with different processes, such as the jet impact and the individual collapses of the distinct bubble segments. For bubbles collapsing near a free surface, the energy and timing of each shock are measured separately as a function of the anisotropy parameter ζ , which represents the dimensionless equivalent of the Kelvin impulse. For a given source of bubble deformation (free surface, rigid surface, or gravity), the normalized shock energy depends only on ζ , irrespective of the bubble radius R0 and driving pressure Δ p . Based on this finding, we develop a predictive framework for the peak pressure and energy of shock waves from nonspherical bubble collapses. Combining statistical analysis of the experimental data with theoretical derivations, we find that the shock peak pressures can be estimated as jet impact-induced hammer pressures, expressed as ph=0.45 (ρc2Δ p ) 1 /2ζ-1 at ζ >10-3 . The same approach is found to explain the shock energy decreasing as a function of ζ-2 /3.

  17. Performance Tests for Bubble Blockage Device

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kwang Soon; Wi, Kyung Jin; Park, Rae Joon; Wan, Han Seong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Postulated severe core damage accidents have a high threat risk for the safety of human health and jeopardize the environment. Versatile measures have been suggested and applied to mitigate severe accidents in nuclear power plants. To improve the thermal margin for the severe accident measures in high-power reactors, engineered corium cooling systems involving boiling-induced two-phase natural circulation have been proposed for decay heat removal. A boiling-induced natural circulation flow is generated in a coolant path between a hot vessel wall and cold coolant reservoir. In general, it is possible for some bubbles to be entrained in the natural circulation loop. If some bubbles entrain in the liquid phase flow passage, flow instability may occur, that is, the natural circulation mass flow rate may be oscillated. A new device to block the entraining bubbles is proposed and verified using air-water test loop. To avoid bubbles entrained in the natural circulation flow loop, a new device was proposed and verified using an air-water test loop. The air injection and liquid circulation loop was prepared, and the tests for the bubble blockage devices were performed by varying the geometry and shape of the devices. The performance of the bubble blockage device was more effective as the area ratio of the inlet to the down-comer increased, and the device height decreased. If the device has a rim to generate a vortex zone, the bubbles will be most effectively blocked.

  18. Bubbles in live-stranded dolphins.

    Science.gov (United States)

    Dennison, S; Moore, M J; Fahlman, A; Moore, K; Sharp, S; Harry, C T; Hoppe, J; Niemeyer, M; Lentell, B; Wells, R S

    2012-04-07

    Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber-muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness.

  19. Inert gas bubbles in bcc Fe

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Xiao, E-mail: windgx22@hotmail.com; Smith, Roger, E-mail: r.smith@lboro.ac.uk; Kenny, S.D., E-mail: masdk@lboro.ac.uk

    2016-03-15

    The properties of inert gas bubbles in bcc Fe is examined using a combination of static energy minimisation, molecular dynamics and barrier searching methods with empirical potentials. Static energy minimisation techniques indicate that for small Ar and Xe bubbles, the preferred gas to vacancy ratio at 0 K is about 1:1 for Ar and varies between 0.5:1 and 0.9:1 for Xe. In contrast to interstitial He atoms and small He interstitial clusters, which are highly mobile in the lattice, Ar and Xe atoms prefer to occupy substitutional sites and any interstitials present in the lattice soon displace Fe atoms and become substitutional. If a pre-existing bubble is present then there is a capture radius around a bubble which extends up to the 6th neighbour position. Collision cascades can also enlarge an existing bubble by the capture of vacancies. Ar and Xe can diffuse through the lattice through vacancy driven mechanisms but with relatively high energy barriers of 1.8 and 2.0 eV respectively. This indicates that Ar and Xe bubbles are much harder to form than bubbles of He and that such gases produced in a nuclear reaction would more likely be dispersed at substitutional sites without the help of increased temperature or radiation-driven mechanisms.

  20. Pressure waves in a supersaturated bubbly magma

    Science.gov (United States)

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  1. Numerical investigation of bubble nonlinear dynamics characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jie, E-mail: shijie@hrbeu.edu.cn; Yang, Desen; Shi, Shengguo; Hu, Bo [Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang, Haoyang; Jiang, Wei [College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001 (China)

    2015-10-28

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  2. Single DNA denaturation and bubble dynamics

    DEFF Research Database (Denmark)

    Metzler, Ralf; Ambjörnsson, Tobias; Hanke, Andreas

    2009-01-01

    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration......, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments...

  3. Experimental investigation of shock wave - bubble interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohsen

    2010-04-09

    In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An

  4. Arrested Bubble Rise in a Narrow Tube

    Science.gov (United States)

    Lamstaes, Catherine; Eggers, Jens

    2017-05-01

    If a long air bubble is placed inside a vertical tube closed at the top it can rise by displacing the fluid above it. However, Bretherton found that if the tube radius, R, is smaller than a critical value Rc=0.918 ℓ _c, where ℓ _c=√{γ /ρ g} is the capillary length, there is no solution corresponding to steady rise. Experimentally, the bubble rise appears to have stopped altogether. Here we explain this observation by studying the unsteady bubble motion for Rmotion.

  5. The bubbling galactic plane: fertilization or sterilization?

    Science.gov (United States)

    Testi, Leonardo; Cunningham, Maria; Zavagno, Annie; Deharveng, Lise; Leurini, Silvia; Molinari, Sergio

    2010-04-01

    Spitzer surveys have revealed that the galactic plane has a high density of bubbles. Many of these show evidence of being associated with star formation. Followup observations collected so far have failed to conclusively determine the relationship (if any) between the bubbles and the triggering of star formation. We propose to obtain MOPRA molecular line pointed observations towards bubbles detected with APEX in the millimeter continuum and with Herschel in the far infrared/submm to reveal the presence and kinematics of dense gas and to search for evidence of the initial phases of star formation.

  6. Bubble Size Distributions on the North Atlantic and North Sea

    NARCIS (Netherlands)

    Leeuw, G. de; Cohen, L.H.

    2002-01-01

    Bubble size distributions were measured at open sea with optical bubble measuring systems(BMS)deployed from buoys at depths from 0.4 to l.5m. The BMS measures the bubbles in a small sample volume that is monitored with a video camera. The images are analyzed to obtain bubble size distributions in

  7. MARANGONI CONVECTION AROUND A VENTILATED AIR BUBBLE UNDER MICROGRAVITY CONDITIONS

    NARCIS (Netherlands)

    HOEFSLOOT, HCJ; JANSSEN, LPBM; HOOGSTRATEN, HW

    Under microgravity conditions in both parabolic and sounding rocket flights, the mass-transfer-induced Marangoni convection around an air bubble was studied. To prevent the bubble from becoming saturated, the bubble was ventilated. It turned out that the flow rate of the air through the bubble

  8. Stability of a bubble expanding and translating through an inviscid ...

    Indian Academy of Sciences (India)

    A bubble expands adiabatically and translates in an incompressible and inviscid liquid. We investigate the number of equilibrium points of the bubble and the nature of stability of the bubble at these points. We find that there is only one equilibrium point and the bubble is stable there.

  9. Approach to universality in axisymmetric bubble pinch-off

    NARCIS (Netherlands)

    Gekle, S.; Snoeijer, Jacobus Hendrikus; Lohse, Detlef; van der Meer, Roger M.

    2009-01-01

    The pinch-off of an axisymmetric air bubble surrounded by an inviscid fluid is compared in four physical realizations: (i) cavity collapse in the wake of an impacting disk, (ii) gas bubbles injected through a small orifice, (iii) bubble rupture in a straining flow, and (iv) a bubble with an

  10. 21 CFR 870.4205 - Cardiopulmonary bypass bubble detector.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass bubble detector. 870.4205... bypass bubble detector. (a) Identification. A cardiopulmonary bypass bubble detector is a device used to detect bubbles in the arterial return line of the cardiopulmonary bypass circuit. (b) Classification...

  11. Stochastic DSMC method for dense bubbly flows : Methodology

    NARCIS (Netherlands)

    Kamath, S.; Padding, J.T.; Buist, K. A.; Kuipers, J.

    2018-01-01

    A stochastic Direct Simulation Monte Carlo (DSMC) method has been extended for handling bubble-bubble and bubble-wall collisions. Bubbly flows are generally characterized by highly correlated velocities due to presence of the surrounding liquid. The DSMC method has been improved to account for

  12. Conservation of bubble size distribution during gas reactive absorption in bubble column reactors

    Directory of Open Access Journals (Sweden)

    P. L.C. LAGE

    1999-12-01

    Full Text Available Conservation of the bubble size distribution function was applied to the reactive absorption of carbon dioxide in a bubble column reactor. The model developed was solved by the method of characteristics and by a Monte Carlo method. Simulations were carried out using simplified models for the liquid phase and for the gas-liquid mass transfer. Predictions of gas holdup and outlet gas composition showed that the concept of a mean bubble diameter is not applicable when the bubble size distribution is reasonably polydispersed. In these cases, the mass mean velocity and the numerical mean velocity of the bubbles are very different. Therefore, quantification of the polydispersion of bubbles was shown to be essential to gas-phase hydrodynamics modeling.

  13. IMPLEMENTATION OF SERIAL AND PARALLEL BUBBLE SORT ON FPGA

    Directory of Open Access Journals (Sweden)

    Dwi Marhaendro Jati Purnomo

    2016-06-01

    Full Text Available Sorting is common process in computational world. Its utilization are on many fields from research to industry. There are many sorting algorithm in nowadays. One of the simplest yet powerful is bubble sort. In this study, bubble sort is implemented on FPGA. The implementation was taken on serial and parallel approach. Serial and parallel bubble sort then compared by means of its memory, execution time, and utility which comprises slices and LUTs. The experiments show that serial bubble sort required smaller memory as well as utility compared to parallel bubble sort. Meanwhile, parallel bubble sort performed faster than serial bubble sort

  14. Time-Dependent Changes in a Shampoo Bubble

    Science.gov (United States)

    Chattopadhyay, Arun

    2000-10-01

    This article demonstrates the fascinating phenomenon of time evolution of a shampoo bubble through experiments that can be performed by undergraduate students. The changes in thickness of the bubble films with time are followed by UV-vis spectroscopy. The change in chemical composition as a bubble film evolves is monitored by FTIR spectroscopy. It is observed that the change in thickness of a typical shampoo bubble film enclosed in a container is gradual and slow, and the hydrocarbon components of the bubble drain from the bubble much more slowly than water. An additional agent, such as acetonitrile, strikingly alters the dynamics of evolution of such a bubble.

  15. Lattice Boltzmann Simulation of Multiple Bubbles Motion under Gravity

    Directory of Open Access Journals (Sweden)

    Deming Nie

    2015-01-01

    Full Text Available The motion of multiple bubbles under gravity in two dimensions is numerically studied through the lattice Boltzmann method for the Eotvos number ranging from 1 to 12. Two kinds of initial arrangement are taken into account: vertical and horizontal arrangement. In both cases the effects of Eotvos number on the bubble coalescence and rising velocity are investigated. For the vertical arrangement, it has been found that the coalescence pattern is similar. The first coalescence always takes place between the two uppermost bubbles. And the last coalescence always takes place between the coalesced bubble and the bottommost bubble. For four bubbles in a horizontal arrangement, the outermost bubbles travel into the wake of the middle bubbles in all cases, which allows the bubbles to coalesce. The coalescence pattern is more complex for the case of eight bubbles, which strongly depends on the Eotvos number.

  16. Optimization of the bubble radius in a moving single bubble sonoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Mirheydari, Mona; Sadighi-Bonabi, Rasoul; Rezaee, Nastaran; Ebrahimi, Homa, E-mail: sadighi@sharif.ir [Department of Physics, Sharif University of Technology, 11365-91, Tehran (Iran, Islamic Republic of)

    2011-05-01

    A complete study of the hydrodynamic force on a moving single bubble sonoluminescence in N-methylformamide is presented in this work. All forces exerted, trajectory, interior temperature and gas pressure are discussed. The maximum values of the calculated components of the hydrodynamic force for three different radii at the same driving pressure were compared, while the optimum bubble radius was determined. The maximum value of the buoyancy force appears at the start of bubble collapse, earlier than the other forces whose maximum values appear at the moment of bubble collapse. We verified that for radii larger than the optimum radius, the temperature peak value decreases.

  17. Chaotic behavior in bubble formation dynamics

    Science.gov (United States)

    Tufaile, A.; Sartorelli, J. C.

    2000-01-01

    We constructed an experimental apparatus to study the dynamics of the formation of air bubbles in a submerged nozzle in a water/glycerin solution inside a cylindrical tube. The delay time between successive bubbles was measured with a laser-photodiode system. It was observed bifurcations, chaotic behavior, and sudden changes in a periodic regime as a function of the decreasing air pressure in a reservoir. We also observed dynamical effects by applying a sound wave tuned to the fundamental frequency of the air column above the solution. As a function of the sound wave amplitude, we obtained a limit cycle, a flip bifurcation, chaotic behavior, and the synchronization of the bubbling with sound wave frequency. We related some of the different dynamical behaviors to coalescent effects and bubble sizes.

  18. Large bubble entrainment in drop impact

    Science.gov (United States)

    Thoraval, Marie-Jean; Li, Yangfan; Thoroddsen, Sigurdur T.

    2015-11-01

    A drop impacting on a pool of the same liquid can entrap air bubbles in many different ways. A peculiar entrapment was observed by Pumphrey and Elmore (1990) and remained unexplained until now. For a small range of parameters, the cavity produced by the impacting drop spreads radially in a dish-shape and then closes to entrap a bubble larger than the drop. We demonstrate that the large bubble is caused by a vortex ring produced in the liquid during the impact of the drop. We combine experiments and numerical simulations to show that the vortex ring pulls on the interface on the side of the cavity to stretch it radially, explaining the shape of the cavity. Only prolate drops are able to generate large bubbles. This is due to the self-destruction of the vortex earlier during the impact for flatter drops.

  19. On the shape of giant soap bubbles.

    Science.gov (United States)

    Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H; Quéré, David; Clanet, Christophe

    2017-03-07

    We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures.

  20. The Soap-Bubble-Geometry Contest.

    Science.gov (United States)

    Morgan, Frank; Melnick, Edward R.; Nicholson, Ramona

    1997-01-01

    Presents an activity on soap-bubble geometry using a guessing contest, explanations, and demonstrations that allow students to mesh observation and mathematical reasoning to discover that mathematics is much more than just number crunching. (ASK)

  1. TE Scattering From Bubbles In RAM

    National Research Council Canada - National Science Library

    Cochran, John

    1999-01-01

    ... (00) to 450 and at a frequency range from 2-18 GHz, TE polarization. The results from the absolute RCS measurement of the various sized RAM bubbles are discussed in terms of a frequency dependent increase in RCS...

  2. Test and evaluation of bubble memories

    Science.gov (United States)

    Bahm, E.

    1978-01-01

    A description is presented of a test program which has shown that well-constructed bubble memories can operate reliably over long periods of time and at low error rates. Even the relatively high error rate of one memory during burn-in can be considered acceptable if compared with tape recorder standards. No wear-out mechanism or aging could be detected. Bubble memories are now considered suitable for long-duration space missions and certainly are suitable for many military and commercial applications. It must be recognized, however, that bubble memories are complex devices and not yet fully understood. While the particular memory tested may never find practical applications, it nevertheless has provided insight into performance characteristics considered typical of bubble memories.

  3. Purging device for suppression chamber

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Koichi.

    1987-11-14

    Purpose: To completely drive out air or the like in the suppression chamber in a short period of time thereby protect bent pipes from embrittled rupture. Constitution: Nitrogen gases, etc. entering through the inlet penetration to the inside of a reactor container are guided downwardly through communication pipeways, and the released downwardly in a stable manner while the blowing speed being retained by blowing mechanisms. Released nitrogen gases, etc. diffuse along the water surface of the suppression chamber and fill the inside of the chamber from below. Air, etc. in the suppression chamber prior to the supply of nitrogen gas, etc. is discharged through the exit penetration from the purging discharge pipe smoothly to the outside. In this way, air is replaced with nitrogen gas, etc., the released nitrogen is not directly blown to bent pipe, the operation is simplified, and the charge/discharge operation can be made in a short time efficiently. (Kamimura, M.).

  4. Vaporization chambers and associated methods

    Science.gov (United States)

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Shunn, Lee P.

    2017-02-21

    A vaporization chamber may include at least one conduit and a shell. The at least one conduit may have an inlet at a first end, an outlet at a second end and a flow path therebetween. The shell may surround a portion of each conduit and define a chamber surrounding the portion of each conduit. Additionally, a plurality of discrete apertures may be positioned at longitudinal intervals in a wall of each conduit, each discrete aperture of the plurality of discrete apertures sized and configured to direct a jet of fluid into each conduit from the chamber. A liquid may be vaporized by directing a first fluid comprising a liquid into the inlet at the first end of each conduit, directing jets of a second fluid into each conduit from the chamber through discrete apertures in a wall of each conduit and transferring heat from the second fluid to the first fluid.

  5. The multigap resistive plate chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zeballos, E. Cerron [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Crotty, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Hatzifotiadou, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Valverde, J. Lamas [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Univ. Louis Pasteur, Strasbourg (France); Neupane, S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Williams, M. C. S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Zichichi, A. [Univ. of Bologna, Bologna (Italy)

    2015-02-03

    The paper describes the multigap resistive plate chamber (RPC). This is a variant of the wide gap RPC. However it has much improved time resolution, while keeping all the other advantages of the wide gap RPC design.

  6. Electron acceleration in the bubble regime

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Oliver

    2014-02-03

    The bubble regime of laser-wakefield acceleration has been studied over the recent years as an important alternative to classical accelerators. Several models and theories have been published, in particular a theory which provides scaling laws for acceleration parameters such as energy gain and acceleration length. This thesis deals with numerical simulations within the bubble regime, their comparison to these scaling laws and data obtained from experiments, as well as some specific phenomenona. With a comparison of the scaling laws with numerical results a parameter scan was able to show a large parameter space in which simulation and theory agree. An investigation of the limits of this parameter space revealed boundaries to other regimes, especially at very high (a{sub 0} > 100) and very low laser amplitudes (a{sub 0} < 4). Comparing simulation data with data from experiments concerning laser pulse development and electron energies, it was found that experimental results can be adequately reproduced using the Virtual-Laser-Plasma-Laboratory code. In collaboration with the Institut fuer Optik und Quantenelektronik at the Friedrich-Schiller University Jena synchrotron radiation emitted from the inside of the bubble was investigated. A simulation of the movement of the electrons inside the bubble together with time dependent histograms of the emitted radiation helped to prove that the majority of radiation created during a bubble acceleration originates from the inside of the bubble. This radiation can be used to diagnose the amplitude of oscillation of the trapped electrons. During a further study it was proven that the polarisation of synchrotron radiation from a bubble contains information about the exact oscillation direction. This oscillation was successfully controlled by using either a laser pulse with a tilted pulse front or an asymmetric laser pulse. First results of ongoing studies concerning injecting electrons into an existing bubble and a scheme called

  7. Validation of an Animal Isolation Imaging Chamber for Use in Animal Biosafety Level-3 Containment.

    Science.gov (United States)

    Alderman, T Scott; Frothingham, Richard; Sempowski, Gregory D

    2010-01-01

    Live imaging of animals infected with pathogenic microbes poses a contamination risk to equipment, personnel and other animals. A Caliper animal isolation chamber designed for the IVIS(®) Spectrum imaging system was tested as a containment device for mice infected with microbes assigned to animal biosafety level-3 (ABSL-3). A testing protocol was developed by adapting two published standards to test other equipment in high containment environments. The protocol included quantitative leak-testing of the high efficiency particulate air (HEPA) filters, soap bubble testing of the animal isolation chamber, and pressure decay testing of the complete containment system. HEPA filters were > 99.999% efficient (soap bubble testing at flow rates of 0.25 L/min to 2.0 L/min, generating pressures up to 2.90 in H(2)O. (26-fold increase over normal operating pressure). The complete containment system passed pressure decay testing at 2.0 in H(2)O by sustaining 95% of the initial pressure over a 30 minute period.The Caliper animal isolation chamber provides appropriate isolation for the IVIS(®) Spectrum imaging system. When used as a containment device, it must undergo periodic performance testing, as described here, since it operates under positive pressure. The chamber is an appropriate component of ABSL-3 containment when combined with proper administrative controls and work practices. The testing protocol described here can be used to validate containment devices for other imaging systems or animal species.

  8. Numerical simulation of single bubble boiling behavior

    Directory of Open Access Journals (Sweden)

    Junjie Liu

    2017-06-01

    Full Text Available The phenomena of a single bubble boiling process are studied with numerical modeling. The mass, momentum, energy and level set equations are solved using COMSOL multi-physics software. The bubble boiling dynamics, the transient pressure field, velocity field and temperature field in time are analyzed, and reasonable results are obtained. The numeral model is validated by the empirical equation of Fritz and could be used for various applications.

  9. Test ventilation with smoke, bubbles, and balloons

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, P.L.; Cucchiara, A.L.; McAtee, J.L.; Gonzales, M.

    1987-01-01

    The behavior of smoke, bubbles, and helium-filled balloons was videotaped to demonstrate the mixing of air in the plutonium chemistry laboratories, a plutonium facility. The air-distribution patterns, as indicated by each method, were compared. Helium-filled balloons proved more useful than bubbles or smoke in the visualization of airflow patterns. The replay of various segments of the videotape proved useful in evaluating the different techniques and in identifying airflow trends responsible for air mixing. 6 refs.

  10. Anterior chamber depth during hemodialysis

    Directory of Open Access Journals (Sweden)

    Gracitelli CPB

    2013-08-01

    Full Text Available Carolina Pelegrini Barbosa Gracitelli,1 Francisco Rosa Stefanini,1 Fernando Penha,1 Miguel Ângelo Góes,2 Sérgio Antonio Draibe,2 Maria Eugênia Canziani,2 Augusto Paranhos Junior1 1Ophthalmology Department, 2Division of Nephrology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil Background: Exacerbation of chronic glaucoma or acute glaucoma is occasionally observed in patients undergoing hemodialysis (HD because of anterior chamber depth changes during this therapy. Purpose: To evaluate anterior chamber depth and axial length in patients during HD sessions. Methods: A total of 67 eyes of 35 patients were prospectively enrolled. Axial length and anterior chamber depth were measured using ultrasonic biometry, and these measures were evaluated at three different times during HD sessions. Body weight and blood pressure pre- and post-HD were also measured. Results: There was no difference in the axial length between the three measurements (P = 0.241. We observed a significantly decreased anterior chamber depth (P = 0.002 during HD sessions. Conclusion: Our results support the idea that there is a change in anterior chamber depth in HD sessions. Keywords: anterior chamber, hemodialysis, axial length, acute angle-closure glaucoma

  11. Fluid dynamics of bubbles in liquid

    Directory of Open Access Journals (Sweden)

    C.M. SCHEID

    1999-12-01

    Full Text Available Results gathered from the literature on the dynamics of bubbles in liquid are correlated by means of a formulation traditionally employed to describe the dynamics of isometric solid particles. It is assumed that the shape of the bubble depends, by means of the Eotvos number, on its diameter and on the gas-liquid surface tension. The analysis reported herein includes the dynamics of the isolated bubble along with wall and concentration effects. However, the effects of gas circulation in the bubble, which result in terminal velocities higher than those of a rigid sphere, are not being considered. A limited number of experimental points are obtained employing a modified version of the Mariotte flask which permits the precise measure of bubble volume. A classic bubble column is also employed in order to measure gas holdup in the continuous phase. Experiments were carried out employing air, with distilled water, potable water, water with variable amounts of surfactant and glycerin as the liquid phase.

  12. Gas Bubble Dynamics under Mechanical Vibrations

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  13. Fearless versus fearful speculative financial bubbles

    Science.gov (United States)

    Andersen, J. V.; Sornette, D.

    2004-06-01

    Using a recently introduced rational expectation model of bubbles, based on the interplay between stochasticity and positive feedbacks of prices on returns and volatility, we develop a new methodology to test how this model classifies nine time series that have been previously considered as bubbles ending in crashes. The model predicts the existence of two anomalous behaviors occurring simultaneously: (i) super-exponential price growth and (ii) volatility growth, that we refer to as the “fearful singular bubble” regime. Out of the nine time series, we find that five pass our tests and can be characterized as “fearful singular bubbles”. The four other cases are the information technology Nasdaq bubble and three bubbles of the Hang Seng index ending in crashes in 1987, 1994 and 1997. According to our analysis, these four bubbles have developed with essentially no significant increase of their volatility. This paper thus proposes that speculative bubbles ending in crashes form two groups hitherto unrecognized, namely those accompanied by increasing volatility (reflecting increasing risk perception) and those without change of volatility (reflecting an absence of risk perception).

  14. Pre-measuring pictures from the 2 m Hydrogen Bubble Chamber

    CERN Multimedia

    1974-01-01

    The photo shows on foreground a Shivamatic system with two working places (tables) at opposite sides (Monique Demornex sits on the right). In between, the two windows allow light a free path to each surface. For an interesting event observed a few points are roughly recorded making use of an electronic box (bottom left).

  15. Capstan to be used with a camera for rapid cycling bubble chambers

    CERN Document Server

    CERN PhotoLab

    1978-01-01

    To achieve the high speed film transport required for high camera rate (15 and 25 Hz, for LEBC and RCBC respectively) a new drive mechanism was developed, which moved the frames (up to about 110 mm x 90 mm) by rotating a capstan stepwise through 60 deg, to bring the next face into position for photography (see also photo 7801001). Details are given for instance in J.L. Benichou et al. Nucl. Instrum. Methods 190 (1981) 487

  16. The Scientometric Bubble Considered Harmful.

    Science.gov (United States)

    Génova, Gonzalo; Astudillo, Hernán; Fraga, Anabel

    2016-02-01

    This article deals with a modern disease of academic science that consists of an enormous increase in the number of scientific publications without a corresponding advance of knowledge. Findings are sliced as thin as salami and submitted to different journals to produce more papers. If we consider academic papers as a kind of scientific 'currency' that is backed by gold bullion in the central bank of 'true' science, then we are witnessing an article-inflation phenomenon, a scientometric bubble that is most harmful for science and promotes an unethical and antiscientific culture among researchers. The main problem behind the scenes is that the impact factor is used as a proxy for quality. Therefore, not only for convenience, but also based on ethical principles of scientific research, we adhere to the San Francisco Declaration on Research Assessment when it emphasizes "the need to eliminate the use of journal-based metrics in funding, appointment and promotion considerations; and the need to assess research on its own merits rather on the journal in which the research is published". Our message is mainly addressed to the funding agencies and universities that award tenures or grants and manage research programmes, especially in developing countries. The message is also addressed to well-established scientists who have the power to change things when they participate in committees for grants and jobs.

  17. Factors influencing big-bubble formation during deep anterior lamellar keratoplasty in keratoconus.

    Science.gov (United States)

    Feizi, Sepehr; Javadi, Mohammad Ali; Daryabari, Seyed-Hashem

    2016-05-01

    To investigate recipient and operative factors that can influence the rate of achieving a bare Descemet's membrane (DM) during deep anterior lamellar keratoplasty (DALK) for keratoconus. In this retrospective comparative study, a total of 290 (153 right) consecutive eyes from 257 (179 male) keratoconus-affected patients who underwent DALK with the big-bubble technique were enrolled. Univariate analyses and multiple logistic regressions were used to investigate factors including patient age and sex, family history of keratoconus, history of contact lens wear or vernal keratoconjunctivitis, the presence of Vogt's striae or superficial stromal opacities, keratometric readings, corneal diameter, central and peripheral corneal thickness, anterior chamber depth, vitreous length, and trephination size, which could predict achievement of a bare DM. The surgery was completed as a DALK in 289 of 290 eyes, and a bare DM was successfully achieved in 229 (79.2%) eyes. The recipient sex and trephination size significantly influenced the success rate of big-bubble formation. Females had decreased odds of achieving a bare DM by 0.44 times (p=0.02). For each 0.1 mm increase in the trephination size, the odds of a successful big-bubble formation increased by 1.36 times (p=0.03). Other investigated factors did not significantly influence the rate of achieving a bare DM. The rate of successful big-bubble formation was 79.2% in keratoconus. Among the different factors, recipient sex and trephination size significantly influenced this rate. Females had a lower probability of big-bubble formation, and a large trephination size was associated with an increase in the probability of achieving a bare DM. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Bubble formation and endothelial function before and after 3 months of dive training.

    Science.gov (United States)

    Pontier, Jean-Michel; Guerrero, François; Castagna, Olivier

    2009-01-01

    It has been suggested that repeated compression-decompression cycles reduce diver susceptibility to decompression sickness (DCS). This study examined whether intensive scuba dive training would reduce bubble formation and modulate endothelial function as shown by skin circulation. There were 22 military divers who were studied before and after a 90-d program of physical training and open-sea air diving (mean 67 dives total). Skin blood flow in the forearm was measured at rest (baseline), during post-occlusive hyperemia (endothelium-dependent vasodilatation), and with local heating to 42 degrees C (maximal vasodilatation). Subjects were also examined by pulsed Doppler for venous bubbles 30, 60, and 90 min after surfacing from a hyperbaric exposure to 400 kPa (30 msw) for 30 min in a dry chamber. None of the divers experienced DCS during the training period. There was no change in weight, body mass index, maximal oxygen uptake, or endothelial function. Bubble grades by the Kisman Integrated Severity Score were significantly decreased immediately after the diving training period (3.6 +/- 9.2 vs. 16.4 +/- 14.3) and increased 3 mo after this period (10.3 +/- 13.9 vs. 3.6 +/- 9.2). The results highlight that repeated scuba dives and regular physical exercise activity reduce bubble formation and probably have a protective effect against DCS risk. Although this phenomenon has been observed for decades, the mechanism remains complex and the results cannot elucidate the effects of physical exercise and NO production. Bubble formation could activate the stress response which could be the basis for diving acclimatization.

  19. Bubbles and semi-bubbles as a new kind of superheavy nuclei

    CERN Document Server

    Dechargé, J; Girod, M; Dietrich, K G

    2003-01-01

    Applying the HFB theory with the effective interaction D1S of Gogny, two kinds of 'hyperheavy nuclei' were discovered: true 'bubbles' with practically vanishing nuclear density in the central region of the nucleus, and 'semi-bubbles' ('unsaturated nuclei') with a reduced but finite density near the nuclear center. Semi-bubbles are found to be stable with regard to the emission of a neutron or a proton for nucleon numbers A and charge numbers Z in the ranges 292 < or approx. 750 and 120 < or approx. 240, and true bubbles for 750 < or approx. 920 and 240 < or approx. 280, respectively. For a limited number of nuclear species, a third type of hyperheavy nuclei with a finite, strongly reduced, halo-like central density ('internal halo nuclei') is found. Coexistence of bubble and semi-bubble solutions for given nucleon and charge numbers is frequently obtained, the semi-bubbles being the ground states for A < or approx. 240, and the true bubbles for the heavier nuclear species. The dominant disinteg...

  20. The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor-Couette flow

    NARCIS (Netherlands)

    van Gils, Dennis Paulus Maria; Narezo Guzman, Daniela; Sun, Chao; Lohse, Detlef

    2013-01-01

    Bubbly turbulent Taylor–Couette (TC) flow is globally and locally studied at Reynolds numbers of Re=5×105 to 2×106 with a stationary outer cylinder and a mean bubble diameter around 1 mm. We measure the drag reduction (DR) based on the global dimensional torque as a function of the global gas volume

  1. Dynamics and switching processes for magnetic bubbles in nanoelements

    Science.gov (United States)

    Moutafis, C.; Komineas, S.; Bland, J. A. C.

    2009-06-01

    We study numerically the dynamics of a magnetic bubble in a disk-shaped magnetic element which is probed by a pulse of a magnetic field gradient. Magnetic bubbles are nontrivial magnetic configurations which are characterized by a topological (skyrmion) number N and they have been observed in mesoscopic magnetic elements with strong perpendicular anisotropy. For weak fields we find a skew deflection of the axially symmetric N=1 bubble and a subsequent periodic motion around the center of the dot. This gyrotropic motion of the magnetic bubble is shown here for the first time. Stronger fields induce switching of the N=1 bubble to a bubble which contains a pair of Bloch lines and has N=0 . The N=0 bubble can be switched back to a N=1 bubble by applying again an external field gradient. Detailed features of the unusual bubble dynamics are described by employing the skyrmion number and the moments of the associated topological density.

  2. Convective mass transfer around a dissolving bubble

    Science.gov (United States)

    Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric

    2017-11-01

    Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.

  3. Scaling laws and dynamics of bubble coalescence

    Science.gov (United States)

    Anthony, Christopher R.; Kamat, Pritish M.; Thete, Sumeet S.; Munro, James P.; Lister, John R.; Harris, Michael T.; Basaran, Osman A.

    2017-08-01

    The coalescence of bubbles and drops plays a central role in nature and industry. During coalescence, two bubbles or drops touch and merge into one as the neck connecting them grows from microscopic to macroscopic scales. The hydrodynamic singularity that arises when two bubbles or drops have just touched and the flows that ensue have been studied thoroughly when two drops coalesce in a dynamically passive outer fluid. In this paper, the coalescence of two identical and initially spherical bubbles, which are idealized as voids that are surrounded by an incompressible Newtonian liquid, is analyzed by numerical simulation. This problem has recently been studied (a) experimentally using high-speed imaging and (b) by asymptotic analysis in which the dynamics is analyzed by determining the growth of a hole in the thin liquid sheet separating the two bubbles. In the latter, advantage is taken of the fact that the flow in the thin sheet of nonconstant thickness is governed by a set of one-dimensional, radial extensional flow equations. While these studies agree on the power law scaling of the variation of the minimum neck radius with time, they disagree with respect to the numerical value of the prefactors in the scaling laws. In order to reconcile these differences and also provide insights into the dynamics that are difficult to probe by either of the aforementioned approaches, simulations are used to access both earlier times than has been possible in the experiments and also later times when asymptotic analysis is no longer applicable. Early times and extremely small length scales are attained in the new simulations through the use of a truncated domain approach. Furthermore, it is shown by direct numerical simulations in which the flow within the bubbles is also determined along with the flow exterior to them that idealizing the bubbles as passive voids has virtually no effect on the scaling laws relating minimum neck radius and time.

  4. Financial Bubbles, Real Estate Bubbles, Derivative Bubbles, and the Financial and Economic Crisis

    Science.gov (United States)

    Sornette, Didier; Woodard, Ryan

    The financial crisis of 2008, which started with an initially well-defined epicenter focused on mortgage backed securities (MBS), has been cascading into a global economic recession, whose increasing severity and uncertain duration has led and is continuing to lead to massive losses and damage for billions of people. Heavy central bank interventions and government spending programs have been launched worldwide and especially in the USA and Europe, with the hope to unfreeze credit and bolster consumption. Here, we present evidence and articulate a general framework that allows one to diagnose the fundamental cause of the unfolding financial and economic crisis: the accumulation of several bubbles and their interplay and mutual reinforcement have led to an illusion of a "perpetual money machine" allowing financial institutions to extract wealth from an unsustainable artificial process. Taking stock of this diagnostic, we conclude that many of the interventions to address the so-called liquidity crisis and to encourage more consumption are ill-advised and even dangerous, given that precautionary reserves were not accumulated in the "good times" but that huge liabilities were. The most "interesting" present times constitute unique opportunities but also great challenges, for which we offer a few recommendations.

  5. Emulsion Chamber Technology Experiment (ECT)

    Science.gov (United States)

    Gregory, John C.; Takahashi, Yoshiyuki

    1996-01-01

    The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.

  6. Plasma chemistry in wire chambers

    Energy Technology Data Exchange (ETDEWEB)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

  7. 'Blue bubble' technique: an ab interno approach for Descemet separation in deep anterior lamellar keratoplasty using trypan blue stained viscoelastic device.

    Science.gov (United States)

    Livny, Eitan; Bahar, Irit; Hammel, Naama; Nahum, Yoav

    2017-07-03

    In this study, we examined a novel variant of 'big-bubble' deep anterior lamellar keratoplasty using trypan-blue-stained viscoelastic device for the creation of a pre-descemetic bubble. Ten corneoscleral rims were mounted on an artificial anterior chamber (AC). The AC was filled with air through a limbal paracentesis. A Melles' triangulated spatula was inserted through the paracentesis, with its tip penetrating the AC, was then slightly retracted and pushed into the deep stroma above the roof of the paracentesis. A mixture of trypan blue and viscoelastic device (Healon, Abbott Medical Optics, Abbott Park, Illinois) was injected into this intra-stromal pocket using a 27-G cannula to create a pre-descemetic separation bubble. Bubble type and visualization of dyed viscoelastic device were noted. The method was later employed in three cases. In all 10 corneoscleral rims, the technique successfully created a visible pre-descemetic (type 1) bubble that could be expanded up to the predicted diameter of trephination. Subsequent trephination and the removal of corneal stroma were uneventful. In two out of four clinical cases, a type 1 bubble was created, while in two others, visco-dissection failed and dyed viscoelastic was seen in the AC. The presented technique holds promise of being a relatively easy to perform, predictable and well-controlled alternative for achieving a type 1 bubble during deep anterior lamellar keratoplasty surgery. The trypan-blue-stained viscoelastic device facilitates proper visualization and control of the separation bubble and assists in identifying the penetrance to the separation bubble prior to removal of the stromal cap. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  8. Research of bubble flow characteristics in microfluidic chip

    Science.gov (United States)

    Qiu, Chao; Cheng, Han; Chen, Shuxian

    2017-04-01

    Bubble is the heart of the microfluidic chip, which takes a significant role in drug release, biological detection and so on. In this case, bubble flow characteristics in microfluidic chip are the key to realize its function. In this paper, bubble flow characteristics in the microfluidic chip have been studied with high speed photography system by controlling the wettability and the heat flux of the microelectrode surface. The result shows that bubble flows faster on the electrode with hydrophobic surface. In addition, loading current to the electrode with hydrophilic surface could also speed up the movement of bubble, and the flow rate of bubble increases with the increasing heat flux of the electrode.

  9. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  10. The stability of large oscillating bubbles

    Science.gov (United States)

    Blake, John; Pearson, Antony

    2002-11-01

    In a most remarkable paper, in October 1942, Penney & Price developed a theory for the stability of large oscillating bubbles; in their case they were interested in underwater explosions. Much of our current understanding on the stability of oscillating bubbles can be traced to the theoretical and experimental insight shown in this paper. While interest in this particular area continues with regard ship survivability to underwater explosions, other newer areas include the oscillatory behaviour of of seismic airgun generated bubbles. Apart from large volume oscillations with a characteristic period, the other dominant parameter is associated with buoyancy. An appropriate parameter is chosen that provides a measure of the distance of migration of a bubble over one period. An analytical and computational analysis of this class of problem reveals that this pressure gradient driven instability, normally observed in the form of a high speed liquid jet threading the bubble, is the most dominant surface instability, a characteristic feature borne out in most experimental and practical applications due to the presence of an incipient pressure gradient associated with hydrostatics, dynamics or boundaries

  11. Argonne Bubble Experiment Thermal Model Development III

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-11

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vessel geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.

  12. Drop impact entrapment of bubble rings

    KAUST Repository

    Thoraval, M.-J.

    2013-04-29

    We use ultra-high-speed video imaging to look at the initial contact of a drop impacting on a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, article 264506). These dynamics mainly occur within 50 -s after the first contact, requiring imaging at 1 million f.p.s. For a water drop impacting on a thin layer of water, the entrapment of isolated bubbles starts through azimuthal instability, which forms at low impact velocities, in the neck connecting the drop and pool. For Reynolds number Re above -12 000, up to 10 partial bubble rings have been observed at the base of the ejecta, starting when the contact is -20% of the drop size. More regular bubble rings are observed for a pool of ethanol or methanol. The video imaging shows rotation around some of these air cylinders, which can temporarily delay their breakup into micro-bubbles. The different refractive index in the pool liquid reveals the destabilization of the vortices and the formation of streamwise vortices and intricate vortex tangles. Fine-scale axisymmetry is thereby destroyed. We show also that the shape of the drop has a strong influence on these dynamics. 2013 Cambridge University Press.

  13. The Quest for the Most Spherical Bubble

    CERN Document Server

    Obreschkow, Danail; Dorsaz, Nicolas; Kobel, Philippe; de Bosset, Aurele; Farhat, Mohamed

    2013-01-01

    We describe a recently realized experiment producing the most spherical cavitation bubbles today. The bubbles grow inside a liquid from a point-plasma generated by a nanosecond laser pulse. Unlike in previous studies, the laser is focussed by a parabolic mirror, resulting in a plasma of unprecedented symmetry. The ensuing bubbles are sufficiently spherical that the hydrostatic pressure gradient caused by gravity becomes the dominant source of asymmetry in the collapse and rebound of the cavitation bubbles. To avoid this natural source of asymmetry, the whole experiment is therefore performed in microgravity conditions (ESA, 53rd and 56th parabolic flight campaign). Cavitation bubbles were observed in microgravity (~0g), where their collapse and rebound remain spherical, and in normal gravity (1g) to hyper-gravity (1.8g), where a gravity-driven jet appears. Here, we describe the experimental setup and technical results, and overview the science data. A selection of high-quality shadowgraphy movies and time-res...

  14. Bubble growth in a narrow horizontal space

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, Benoit; Goulet, Remi [CETHIL, UMR5008, CNRS, INSA-Lyon, Universite Lyon1 (France); Passos, Julio Cesar [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. LABSOLAR

    2009-07-01

    The purpose of this work is to develop an axis-symmetric two-phase flow model describing the growth of a single bubble squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and the kinetic limit of vaporisation are studied. The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible except at the early stages of the bubble growth. (author)

  15. High energy neutrinos from the Fermi bubbles.

    Science.gov (United States)

    Lunardini, Cecilia; Razzaque, Soebur

    2012-06-01

    Recently the Fermi-LAT data have revealed two gamma-ray emitting bubble-shaped structures at the Galactic center. If the observed gamma rays have hadronic origin (collisions of accelerated protons), the bubbles must emit high energy neutrinos as well. This new, Galactic, neutrino flux should trace the gamma-ray emission in spectrum and spatial extent. Its highest energy part, above 20-50 TeV, is observable at a kilometer-scale detector in the northern hemisphere, such as the planned KM3NeT, while interesting constraints on it could be obtained by the IceCube Neutrino Observatory at the South Pole. The detection or exclusion of neutrinos from the Fermi bubbles will discriminate between hadronic and leptonic models, thus bringing unique information on the still mysterious origin of these objects and on the time scale of their formation.

  16. Root Causes of the Housing Bubble

    Science.gov (United States)

    Kaizoji, Taisei

    In this chapter we investigate root causes of the recent US housing bubble which has been caused a serious downturn in US economic growth since autumn of 2008. We propose a simple model of housing markets in order to indicate the possible determinants of recent housing prices. Utilizing the model, we verify a number of hypotheses which have been proposed in the recent literature on the housing bubbles. We suggest that the main causes of the housing bubble from 2000 to 2006 are (1) non-elastic housing supply in the metropolitan areas, and (2) declines in the mortgage loan rate and the housing premium by the massive mortgage credit expansion. We also suggest that these factors were strongly influenced by policies that governments and the Federal Reserve Board performed.

  17. Toward a Metatheory of Economic Bubbles

    DEFF Research Database (Denmark)

    Dholakia, Nikhilesh; Turcan, Romeo V.

    Dholakia and Turcan present their interdisciplinary metatheory of bubbles with short case studies of minor and major bubbles. They comprehensively identify and exemplify constructs of the theory, set its temporal and contextual boundaries, and examine the underlying economic, psychological......, and social dynamics assumptions, explaining how these elements are related. By doing so, they provide a partial window into the precarious nature of contemporary finance-driven capitalism and suggest some possible ways of overcoming the wrenching ups and downs of the prevalent system. The case studies...... and original research in Toward a Metatheory of Economic Bubbles have far-reaching implications for the study and practice of entrepreneurship and marketing, public and corporate finance, and public policies towards innovation, economy, and finance. It contributes to the defining issues for economic sociology...

  18. Rational speculative bubbles: A critical view

    Directory of Open Access Journals (Sweden)

    Radonjić Ognjen

    2007-01-01

    Full Text Available According to the theory of rational bubbles, the bubble is present whenever asset prices progressively diverge from their fundamental value, which occurs because agents expect that asset prices will continue to grow exponentially (self-fulfilling prophecies far in the future and consistently, which promises the realization of ever larger capital gains. In our opinion, the basic shortcoming of this theory refers to the assumption that all market agents are perfectly informed and rational and, accordingly, form homogeneous expectations. The model does not explain decision-making processes or expectation formation, nor does it detect potential psychological and institutional factors that might significantly influence decision making processes and market participants’ reactions to news. Since assumptions of the model critically determine its validity, we conclude that comprehensiveness of the rational bubble model is, to put it mildly, limited.

  19. Bubbles, shocks and elementary technical trading strategies

    Science.gov (United States)

    Fry, John

    2014-01-01

    In this paper we provide a unifying framework for a set of seemingly disparate models for bubbles, shocks and elementary technical trading strategies in financial markets. Markets operate by balancing intrinsic levels of risk and return. This seemingly simple observation is commonly over-looked by academics and practitioners alike. Our model shares its origins in statistical physics with others. However, under our approach, changes in market regime can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. This structure leads to an improved physical and econometric model. We develop models for bubbles, shocks and elementary technical trading strategies. The list of empirical applications is both interesting and topical and includes real-estate bubbles and the on-going Eurozone crisis. We close by comparing the results of our model with purely qualitative findings from the finance literature.

  20. Topological vacuum bubbles by anyon braiding.

    Science.gov (United States)

    Han, Cheolhee; Park, Jinhong; Gefen, Yuval; Sim, H-S

    2016-03-31

    According to a basic rule of fermionic and bosonic many-body physics, known as the linked cluster theorem, physical observables are not affected by vacuum bubbles, which represent virtual particles created from vacuum and self-annihilating without interacting with real particles. Here we show that this conventional knowledge must be revised for anyons, quasiparticles that obey fractional exchange statistics intermediate between fermions and bosons. We find that a certain class of vacuum bubbles of Abelian anyons does affect physical observables. They represent virtually excited anyons that wind around real anyonic excitations. These topological bubbles result in a temperature-dependent phase shift of Fabry-Perot interference patterns in the fractional quantum Hall regime accessible in current experiments, thus providing a tool for direct and unambiguous observation of elusive fractional statistics.

  1. Moving with bubbles: a review of the interactions between bubbles and the microorganisms that surround them.

    Science.gov (United States)

    Walls, Peter L L; Bird, James C; Bourouiba, Lydia

    2014-12-01

    Bubbles are ubiquitous in biological environments, emerging during the complex dynamics of waves breaking in the open oceans or being intentionally formed in bioreactors. From formation, through motion, until death, bubbles play a critical role in the oxygenation and mixing of natural and artificial ecosystems. However, their life is also greatly influenced by the environments in which they emerge. This interaction between bubbles and microorganisms is a subtle affair in which surface tension plays a critical role. Indeed, it shapes the role of bubbles in mixing or oxygenating microorganisms, but also determines how microorganisms affect every stage of the bubble's life. In this review, we guide the reader through the life of a bubble from birth to death, with particular attention to the microorganism-bubble interaction as viewed through the lens of fluid dynamics. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  2. A dual deformable reverberation chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2009-01-01

    There is disclosed an arrangement for measuring the effectiveness of a shielding material against electromagnetic fields. The arrangement comprises a first and a second reverberation chamber sharing a common wall. The common wall is partly made of the shielding material. A first antenna is arranged

  3. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The same vacuum chamber as in 7810256, read the detailed description there. Here, the 4 strip-shaped ion-getter pumps are poised at the entrance to their slots. Ion-getter pumps were not retained, thermal getter pumps were chosen instead (see 8301153 and 8305170).

  4. Testing an hydrogen streamer chamber

    CERN Multimedia

    1975-01-01

    A 2x10 cm gap streamer chamber, 35x55 cm2 in surface, was built and tested at CERN. Good tracks of cosmic rays were obtained up to atmospheric pressure, see F. Rohrbach et al, CERN-LAL (Orsay) Collaboration, Nucl. Instr. Methods 141 (1977) 229. Michel Cathenoz stand on the center.

  5. DELPHI's Ring Imaging Cherenkov Chamber

    CERN Multimedia

    1989-01-01

    The hundreds of mirrors around this Ring Imaging Cherenkov Chamber reflect cones of light created by fast moving particles to a detector. The velocity of a particle can be measured by the size of the ring produced on the detector. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  6. "Bubble-on-demand" generator with precise adsorption time control.

    Science.gov (United States)

    Zawala, J; Niecikowska, A

    2017-09-01

    The paper presents the principles of our new single bubble generator, which allows a precise control of bubble formation in pure liquids and surfactant solutions, i.e., their detachment frequency and the adsorption time at their motionless surface. We show that the bubbles with equilibrium size can be produced at the capillaries of various orifice diameters (0.022-0.128 mm) on demand and with outstanding reproducibility. Moreover, it is shown that a fully automatized and programmable bubble trap, synchronized with bubble detachment frequency, can be used to (i) control the radius of the released bubble and (ii) precisely adjust the initial adsorption coverage over the surface of detaching bubble, and hence to study the influence of adsorption coverage degree on kinetics of dynamic adsorption layer formation at the rising bubble surface.

  7. Simulations of Bubble Motion in an Oscillating Liquid

    Science.gov (United States)

    Kraynik, A. M.; Romero, L. A.; Torczynski, J. R.

    2010-11-01

    Finite-element simulations are used to investigate the motion of a gas bubble in a liquid undergoing vertical vibration. The effect of bubble compressibility is studied by comparing "compressible" bubbles that obey the ideal gas law with "incompressible" bubbles that are taken to have constant volume. Compressible bubbles exhibit a net downward motion away from the free surface that does not exist for incompressible bubbles. Net (rectified) velocities are extracted from the simulations and compared with theoretical predictions. The dependence of the rectified velocity on ambient gas pressure, bubble diameter, and bubble depth are in agreement with the theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. "Bubble-on-demand" generator with precise adsorption time control

    Science.gov (United States)

    Zawala, J.; Niecikowska, A.

    2017-09-01

    The paper presents the principles of our new single bubble generator, which allows a precise control of bubble formation in pure liquids and surfactant solutions, i.e., their detachment frequency and the adsorption time at their motionless surface. We show that the bubbles with equilibrium size can be produced at the capillaries of various orifice diameters (0.022-0.128 mm) on demand and with outstanding reproducibility. Moreover, it is shown that a fully automatized and programmable bubble trap, synchronized with bubble detachment frequency, can be used to (i) control the radius of the released bubble and (ii) precisely adjust the initial adsorption coverage over the surface of detaching bubble, and hence to study the influence of adsorption coverage degree on kinetics of dynamic adsorption layer formation at the rising bubble surface.

  9. Cavitation Bubble Dynamics in Ammoniacal Fluids Transferred by Centrifugal Pumps

    Directory of Open Access Journals (Sweden)

    Jorge Reyes-Cruz

    2016-10-01

    Full Text Available An experiment with water and ammoniacal liquor at 27% and 34% concentrations of ammonia was carried out in order to determine the pressure dynamics during the formation of bubbles and their movement when causing cavitations in centrifugal pumps. The dynamics of bubbles was calculated numerically by applying the Rayleigh-Plesset equation using the bubble radius and the bubble build-up time. It is concluded that the pressure to form the bubbles at 22 ºC is 10,135.103 Pa for water and 45,468.103 Pa for the ammoniacal liquor at a concentration of 34 %. The radius of the bubbles found in ammoniacal liquor is in the range of 30 to 120 times the original bubble radius while the bubbles formed in water are only in the range of 15 times the original radius value.

  10. Bubble Dynamics in a Two-Phase Medium

    CERN Document Server

    Jayaprakash, Arvind; Chahine, Georges

    2010-01-01

    The spherical dynamics of a bubble in a compressible liquid has been studied extensively since the early work of Gilmore. Numerical codes to study the behavior, including when large non-spherical deformations are involved, have since been developed and have been shown to be accurate. The situation is however different and common knowledge less advanced when the compressibility of the medium surrounding the bubble is provided mainly by the presence of a bubbly mixture. In one of the present works being carried out at DYNAFLOW, INC., the dynamics of a primary relatively large bubble in a water mixture including very fine bubbles is being investigated experimentally and the results are being provided to several parallel on-going analytical and numerical approaches. The main/primary bubble is produced by an underwater spark discharge from two concentric electrodes placed in the bubbly medium, which is generated using electrolysis. A grid of thin perpendicular wires is used to generate bubble distributions of vary...

  11. A note on effects of rational bubble on portfolios

    Science.gov (United States)

    Wang, Chan; Nie, Pu-yan

    2018-02-01

    In general, demand increases in wealth and decreases in price in microeconomics. We thereby propose a completely different perspective. By establishing expected utility function of investors, this article introduces one rational bubble asset and one bubble free asset in portfolios and focuses on the effects of bubble on investment portfolios from wealth and price perspectives. All conclusions are obtained by theoretical analysis with microeconomics theory. We argue that inferior goods and Giffen behavior can occur for the bubble free asset in microeconomic fields. The results can help investors to recognize bubble assets and bubble free assets more scientifically. Both bubble and bubble free assets can be inferior goods under some conditions, so we cannot to say which asset better than the other one absolutely.

  12. A prototype experiment to study charmed particle production and decay using a Holographic High Resolution Hydrogen Chamber (HOLEBC) and the European Hybrid Spectrometer

    CERN Multimedia

    2002-01-01

    The high resolution hydrogen bubble chamber LEBC has already been used in experiments at the SPS to detect particles with lifetime $\\geq 5 \\times 10^{-13}$s (NA13 & NA16). \\\\\\\\For this experiment, a new version of LEBC called HOLEBC, has been constructed. This chamber and the NA26 version of the spectrometer have been used with classical optics in the NA27 experiment. A significant improvement in resolution was achieved ($\\simeq$ 20 microns compared with $\\simeq$ 40 $\\mu$m in LEBC) and hence a good sensitivity to all (known) charmed particle decays. The development of holographic recording techniques with HOLEBC is in progress. \\\\\\\\The prototype NA26 experiment is designed to evaluate the feasibility of the high sensitivity, high resolution holographic hydrogen bubble chamber technique and evaluate various possible charm selective triggers using the information from the spectrometer.

  13. Surface magnetostatic oscillations in elliptical bubble domains

    Science.gov (United States)

    Popov, M. A.; Zavislyak, I. V.

    2009-01-01

    A theory of surface magnetostatic oscillations in magnetic bubble domains with an elliptical cross section is presented. The dependences of the eigenfrequencies of resonant modes on the applied magnetic field are analyzed for a barium hexaferrite sample with allowance made for the change in the domain size due to a variation in the bias magnetic field. The range of frequency tuning in response to a magnetic field ranging from the elliptical instability field to the collapse field is estimated. It is demonstrated that elliptical bubble domains can be used as microminiature resonators operating in the millimeter range.

  14. Impact of money supply on stock bubbles

    Directory of Open Access Journals (Sweden)

    Martin Širůček

    2013-01-01

    Full Text Available This article focuses on the effect and implications of changes in money supply in the US on stock bubble rise on the US capital market, which is represented by the Dow Jones Industrial Average index. This market was chosen according to the market capitalization. The attention of the paper is drawn to issues – if according to the results of empirical analysis, the money supply is a significant factor which causes the bubbles and if during the time the significance and impact of this macroeconomic factor on stock index increase.

  15. On the maximum drawdown during speculative bubbles

    Science.gov (United States)

    Rotundo, Giulia; Navarra, Mauro

    2007-08-01

    A taxonomy of large financial crashes proposed in the literature locates the burst of speculative bubbles due to endogenous causes in the framework of extreme stock market crashes, defined as falls of market prices that are outlier with respect to the bulk of drawdown price movement distribution. This paper goes on deeper in the analysis providing a further characterization of the rising part of such selected bubbles through the examination of drawdown and maximum drawdown movement of indices prices. The analysis of drawdown duration is also performed and it is the core of the risk measure estimated here.

  16. Stochastic modelling for financial bubbles and policy

    Directory of Open Access Journals (Sweden)

    John Fry

    2015-12-01

    Full Text Available In this paper, we draw upon the close relationship between statistical physics and mathematical finance to develop a suite of models for financial bubbles and crashes. By modifying previous approaches, we are able to derive novel analytical formulae for evaluation problems and for the expected timing of future change points. In particular, we help to explain why previous approaches have systematically overstated the timing of changes in market regime. The list of potential empirical applications is deep and wide ranging, and includes contemporary housing bubbles, the Eurozone crisis and the Crash of 2008.

  17. Intraalveolar bubbles and bubble films: III. Vulnerability and preservation in the laboratory.

    Science.gov (United States)

    Scarpelli, E M; Mautone, A J; Chinoy, M R; Defouw, D O; Clutario, B C

    1997-08-01

    Having confirmed (Scarpelli et al. 1996. Anat. Rec. 244:344-357 and 246:245-270) the discovery of intraalveolar bubbles and films as the normal anatomical infrastructure of aerated alveoli at all ages, we now address three questions. Why have these structures been so elusive? Visible in fresh lungs from the in vivo state, can they be preserved by known laboratory methods? Can they be preserved intact for study in tissue sections? Lungs of adult rabbits and pups were examined in thorax directly from the in vivo state to confirm normal bubbles both at functional residual capacity and at maximal volume; other lungs were permitted to deflate naturally to minimal volume. The fate of bubbles in situ (either intact, transected, or diced lung tissue) and of isolated bubbles was assessed (1) during conventional histopreparative processing, (2) during inflation-deflation after degassing, (3) after drying in air, (4) during and after quick freezing in liquid N2, and (5) after preservation in fixed and stained tissue sections prepared by a new double-impregnation procedure in which glutaraldehyde-fixed tissue was preembedded in agar, dehydrated and clarified chemically, embedded in paraffin, sectioned, and stained. Control studies included both blocking of bubble formation by rinsing the air spaces with Tween 20 prior to double impregnation and preparation of normal tissue without preembedding in agar. (1) Each of the following procedures in conventional processing dislocated and disrupted bubbles and films: osmium tetroxide and glutaraldehyde:formaldehyde:tannic acid mixture fixation; chemical dehydration (70-100% ethanol) and clarification (xylene and acetone); and embedding in paraffin or epoxy resin. Transection and dicing of the tissue aggravated the untoward effects. In contrast, bubbles and films remained stable in either glutaraldehyde or formaldehyde, which, however, did not protect against the other agents. (2) Degassing destroyed all bubbles as expected; however

  18. Microstructure, morphology and lifetime of armored bubbles exposed to surfactants

    OpenAIRE

    Subramaniam, Anand Bala; Mejean, Cecile; Abkarian, Manouk; Stone, Howard A.

    2006-01-01

    We report the behavior of particle-stabilized bubbles (armored bubbles) when exposed to various classes and concentrations of surfactants. The bubbles are non-spherical due to the jamming of the particles on the interface and are stable to dissolution prior to the addition of surfactant. We find that the dissolving bubbles exhibit distinct morphological, microstructural, and lifetime changes, which correlate with the concentration of surfactant employed. For low concentrations of surfactant a...

  19. Measurement of Entrained Air Bubbles and Vortices in Breaking Waves

    OpenAIRE

    大塚, 淳一; 渡部, 靖憲; Junichi, Otsuka; Yasunori, Watanabe; 北海道大学大学院工学研究科; School of Engineering, Hokkaido University

    2007-01-01

    Breaking waves produce numbers of vortices through a jet splashing process and also entrain many air bubbles, forming complicated air-water two-phase turbulent flow field in a surf zone. In this research, a simultaneous velocity measurement technique of water and bubble flows in breaking waves is developed for characterizing water-bubble interactions within vortices in a surf zone. The bubbles and neutral buoyant tracers are separately recorded by two different digital video cameras on the ba...

  20. A COINTEGRATION TEST TO VERIFY THE HOUSING BUBBLE

    OpenAIRE

    Bala Arshanapalli; William Nelson

    2008-01-01

    Housing prices in the US rose rapidly from 2000-2007Q3. Based on this evidence, the financial and general press concluded the US experienced a housing bubble. The efficient market theory denies the possibility of a bubble. This paper applies the statistical technique of cointegration to substantiate the presence of a housing bubble. The paper finds the statistical evidence consistent with the presence of a housing bubble in the period 2000-2007Q3 and not the underlying economic conditions.

  1. Air bubble migration is a random event post embryo transfer.

    Science.gov (United States)

    Confino, E; Zhang, J; Risquez, F

    2007-06-01

    Air bubble location following embryo transfer (ET) is the presumable placement spot of embryos. The purpose of this study was to document endometrial air bubble position and migration following embryo transfer. Multicenter prospective case study. Eighty-eight embryo transfers were performed under abdominal ultrasound guidance in two countries by two authors. A single or double air bubble was loaded with the embryos using a soft, coaxial, end opened catheters. The embryos were slowly injected 10-20 mm from the fundus. Air bubble position was recorded immediately, 30 minutes later and when the patient stood up. Bubble marker location analysis revealed a random distribution without visible gravity effect when the patients stood up. The bubble markers demonstrated splitting, moving in all directions and dispersion. Air bubbles move and split frequently post ET with the patient in the horizontal position, suggestive of active uterine contractions. Bubble migration analysis supports a rather random movement of the bubbles and possibly the embryos. Standing up changed somewhat bubble configuration and distribution in the uterine cavity. Gravity related bubble motion was uncommon, suggesting that horizontal rest post ET may not be necessary. This report challenges the common belief that a very accurate ultrasound guided embryo placement is mandatory. The very random bubble movement observed in this two-center study suggests that a large "window" of embryo placement maybe present.

  2. Optical measurement of bubbles: System design and application

    NARCIS (Netherlands)

    Leifer, I.; Leeuw, G.de; Cohen, L.H.

    2003-01-01

    Affordable high quality charge-coupled device (CCD) video cameras and image processing software are powerful tools for bubble measurements. Because of the wide variation between bubble populations, different bubble measurement systems (BMSs) are required depending upon the application. Two BMSs are

  3. Rhetoric, Risk, and Markets: The Dot-Com Bubble

    Science.gov (United States)

    Goodnight, G. Thomas; Green, Sandy Edward, Jr.

    2010-01-01

    Post-conventional economic theories are assembled to inquire into the contingent, mimetic, symbolic, and material spirals unfolding the dot-com bubble, 1992-2002. The new technologies bubble is reconstructed as a rhetorical movement across the practices of the hybrid market-industry risk culture of communications. The legacies of the bubble task…

  4. Modeling of flow in microchannel with bubbles layer on surface

    Directory of Open Access Journals (Sweden)

    Gluzdov Dmitriy

    2017-01-01

    Full Text Available Results of 2D numerical solution of liquid flow in microchannel with bubbles layers on surface are presented. Bubbles layers are modeled by setting of bubble size and Navier slip condition. Calculations have been done using OpenFoam PISO method. The results of modeling compared with analytical solution.

  5. Bubble size reduction in a fluidized bed by electric fields

    NARCIS (Netherlands)

    Kleijn van Willigen, F.; Van Turnhout, J.; Van Ommen, J.R.; Van den Bleek, C.

    2003-01-01

    The reduction of the size of bubbles can improve both selectivity and conversion in gas-solid fluidized beds. Results are reported of the reduction of bubble size by the application of electric fields to uncharged, polarizable particles in fluidized beds. It is shown how average bubble diameters can

  6. Nanoemulsions obtained via bubble bursting at a compound interface

    NARCIS (Netherlands)

    Feng, J.; Roche, M.; Vigolo, D.; Arnaudov, L.N.; Stoyanov, S.D.; Gurkov, T.D.; Tsutsumanova, G.G.; Stone, H.A.

    2014-01-01

    Bursting of bubbles at an air/liquid interface is a familiar occurrence relevant to foam stability, cell cultures in bioreactors and ocean–atmosphere mass transfer. In the latter case, bubble-bursting leads to the dispersal of sea-water aerosols in the surrounding air. Here we show that bubbles

  7. Bubbles as a means for the deaeration of water bodies

    NARCIS (Netherlands)

    Zhang, Yuhang; Zhou, Gedi; Prosperetti, Andrea

    2017-01-01

    Occasional dissolved-air supersaturation - such as may occur, for instance, downstream of dams - is harmful to fish because it causes gas bubble disease. A counterintuitive but effective means of reducing dissolved air content is the injection of bubbles in the supersaturated water. The bubbles

  8. Shape oscillation of bubbles in the acoustic field

    OpenAIRE

    Matsumoto, Keishi; Ueno, Ichiro

    2009-01-01

    The authors introduce dynamics of multiple air bubbles exposed to ultrasonic wave while ascending in water in the present fluid dynamics video. The authors pay attention to the shape oscillation and the transition from the volume to the shape oscillations of the bubble. Correlation between the bubble size and the mechanism of the excitation of the shape oscillation is introduced.

  9. Variability Of Plasma Bubble In The Equatorial Ionosphere At Midnight

    African Journals Online (AJOL)

    There are various types of ionospheric irregularities. Among these is the plasma bubble occurrence. They are most prominent at night time in the equatorial ionosphere. Many of the bubbles drift with approximately the velocity of the background plasma, but it is possible to infer that most bubbles have moved upward at some ...

  10. Maximal air bubble entrainment at liquid-drop impact

    NARCIS (Netherlands)

    Bouwhuis, W.; van der Veen, Roeland; Tran, Tuan; Keij, D.L.; Winkels, K.G.; Peters, I.R.; van der Meer, Roger M.; Sun, Chao; Snoeijer, Jacobus Hendrikus; Lohse, Detlef

    2012-01-01

    At impact of a liquid drop on a solid surface, an air bubble can be entrapped. Here, we show that two competing effects minimize the (relative) size of this entrained air bubble: for large drop impact velocity and large droplets, the inertia of the liquid flattens the entrained bubble, whereas for

  11. Drag an lift forces on bubbles in a rotating flow

    NARCIS (Netherlands)

    van Nierop, Ernst A.; Luther, S.; Bluemink, J.J.; Magnaudet, Jacques; Prosperetti, Andrea; Lohse, Detlef

    2007-01-01

    The motion of small air bubbles in a horizontal solid-body rotating flow is investigated experimentally. Bubbles with a typical radius of 1mm are released in a liquid-filled horizontally rotating cylinder. We measure the transient motion of the bubbles in solid-body rotation and their final

  12. Calibrating optical bubble size by the displaced-mass method.

    NARCIS (Netherlands)

    Leifer, I.; Leeuw, G. de; Kunz, G.; Cohen, L.H.

    2003-01-01

    Bubble sizing by optical means is very common, but requires calibration by non-optical means. This is particularly important since apparent bubble size increases with decreasing threshold intensity. A calibration experiment was conducted comparing the displaced water mass from captured bubbles with

  13. Metal explosion chambers: designing, manufacturing, application

    Science.gov (United States)

    Stoyanovskii, O. I.; Zlobin, B. S.; Shtertser, A. A.; Meshcheryakov, Y. P.

    2017-10-01

    Designing of explosion chambers is based on research investigations of the chamber body stress-strain state, which is determined by numerical computation and experimentally by the strain gage technique. Studies show that chamber bottoms are the most loaded elements, and maximal stresses arise in chamber poles. Increasing the shell thickness around poles by welding-in an insert is a simple and saving way to solve this problem. There are structural solutions, enabling reliable hermetic closure and preventing leakage of detonation products from the chamber. Explosion chambers are employed in scientific research and in different industrial applications: explosive welding and hardening, synthesis of new materials, disposal of expired ammunition, and etc.

  14. Multi-Dimensional Analysis of the Forced Bubble Dynamics Associated with Bubble Fusion Phenomena. Final Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Lahey, Jr., Richard T. [Rensselaer Polytechnic Inst., Troy, NY (United States). Center for Multiphase Research and Dept. of Mechanical, Aeronautical and Nuclear Engineering; Jansen, Kenneth E. [Rensselaer Polytechnic Inst., Troy, NY (United States). Center for Multiphase Research and Dept. of Mechanical, Aeronautical and Nuclear Engineering; Nagrath, Sunitha [Rensselaer Polytechnic Inst., Troy, NY (United States). Center for Multiphase Research and Dept. of Mechanical, Aeronautical and Nuclear Engineering

    2002-12-02

    A new adaptive grid, 3-D FEM hydrodynamic shock (ie, HYDRO )code called PHASTA-2C has been developed and used to investigate bubble implosion phenomena leading to ultra-high temperatures and pressures. In particular, it was shown that nearly spherical bubble compressions occur during bubble implosions and the predicted conditions associated with a recent ORNL Bubble Fusion experiment [Taleyarkhan et al, Science, March, 2002] are consistent with the occurrence of D/D fusion.

  15. Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound.

    Science.gov (United States)

    Yasui, Kyuichi; Lee, Judy; Tuziuti, Toru; Towata, Atsuya; Kozuka, Teruyuki; Iida, Yasuo

    2009-09-01

    Influence of the bubble-bubble interaction on the pulsation of encapsulated microbubbles has been studied by numerical simulations under the condition of the experiment reported by Chang et al. [IEEE Trans. Ultrason Ferroelectr. Freq. Control 48, 161 (2001)]. It has been shown that the natural (resonance) frequency of a microbubble decreases considerably as the microbubble concentration increases to relatively high concentrations. At some concentration, the natural frequency may coincide with the driving frequency. Microbubble pulsation becomes milder as the microbubble concentration increases except at around the resonance condition due to the stronger bubble-bubble interaction. This may be one of the reasons why the threshold of acoustic pressure for destruction of an encapsulated microbubble increases as the microbubble concentration increases. A theoretical model for destruction has been proposed.

  16. Is Education Facing a "Tech Bubble"?

    Science.gov (United States)

    Davis, Michelle R.

    2013-01-01

    Educational technology companies and entrepreneurs may face the risk of a "tech bubble," similar to the massive boom-and-bust that rocked the technology market in the late 1990s, according to market analysts and a recently released paper. A relatively new focus on K-12 educational technology as an investment vehicle, a surge of investors looking…

  17. Ultrasound contrast agents : dynamics of coated bubbles

    NARCIS (Netherlands)

    Overvelde, M.L.J.

    2010-01-01

    Contrast-enhanced ultrasound imaging relies on the nonlinear scattering of microbubbles suspended in an ultrasound contrast agent. The bubble dynamics is described by a Rayleigh-Plesset-type equation, and the success of harmonic imaging using contrast agents has always been attributed to the

  18. Bubble growth on an impulsively powered microheater

    NARCIS (Netherlands)

    Yin, Z.; Prosperetti, Andrea; Kim, J.

    2004-01-01

    The dynamics of single vapor bubbles in FC-72 generated by a transient heat pulse applied to a square 260 × 260 μm2 microheater are investigated for different heat fluxes between 3 and 44 MW/m2. It is found that in all cases the growth consists of two steps, a first relatively violent one, followed

  19. Inert gas accumulation in sonoluminescing bubbles

    NARCIS (Netherlands)

    Lohse, Detlef; Hilgenfeldt, Sascha

    1997-01-01

    In this paper we elaborate on the idea [Lohse et al., Phys. Rev. Lett. 78, 1359-1362 (1997)] that (single) sonoluminescing air bubbles rectify argon. The reason for the rectification is that nitrogen and oxygen dissociate and their reaction products dissolve in water. We give further experimental

  20. Radiolytic and thermolytic bubble gas hydrogen composition

    Energy Technology Data Exchange (ETDEWEB)

    Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-11

    This report describes the development of a mathematical model for the estimation of the hydrogen composition of gas bubbles trapped in radioactive waste. The model described herein uses a material balance approach to accurately incorporate the rates of hydrogen generation by a number of physical phenomena and scale the aforementioned rates in a manner that allows calculation of the final hydrogen composition.

  1. Argonne Bubble Experiment Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations. The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.

  2. Non-Abelian bubbles in microstate geometries

    Science.gov (United States)

    Ramírez, Pedro F.

    2016-11-01

    We find the first smooth bubbling microstate geometries with non-Abelian fields. The solutions constitute an extension of the BPS three-charge smooth microstates. These consist in general families of regular supersymmetric solutions with non-trivial topology, i.e. bubbles, of {N}=d , d = 5 Super-Einstein-Yang-Mills theory, having the asymptotic charges of a black hole or black ring but with no horizon. The non-Abelian fields make their presence at the very heart of the microstate structure: the physical size of the bubbles is affected by the non-Abelian topological charge they carry, which combines with the Abelian flux threading the bubbles to hold them up. Interestingly the non-Abelian fields carry a set of adjustable continuous parameters that do not alter the asymptotics of the solutions but modify the local geometry. This feature can be used to obtain a classically infinite number of microstate solutions with the asymptotics of a single black hole or black ring.

  3. Big Bubbles in Boiling Liquids: Students' Views

    Science.gov (United States)

    Costu, Bayram

    2008-01-01

    The aim of this study was to elicit students' conceptions about big bubbles in boiling liquids (water, ethanol and aqueous CuSO[subscript 4] solution). The study is based on twenty-four students at different ages and grades. The clinical interviews technique was conducted to solicit students' conceptions and the interviews were analyzed to…

  4. Four-bubble clusters and Menelaus' theorem

    Science.gov (United States)

    Fischer, Fred

    2002-10-01

    We discuss a relatively easy way to construct a stable cluster of four soap bubbles using the radii of four selected spherical films out of a total of ten. To this end, we extend Menelaus' theorem, a geometrical relation between a triangle and a straight line in the plane, to three and higher dimensions.

  5. Soap-bubble Optimization of Gaits

    Science.gov (United States)

    Ramasamy, Suresh; Hatton, Ross

    We present a geometric gait optimizer that applies Lie bracket theory to identify optimal cost-of-transport (displacement divided by effort) gaits. This optimizer builds on our previous work, where we have shown that for drag-dominated systems, the efficiency of a gait corresponds to a ratio between ``metric-weighted perimeter length of the cycle and the area integral of the Lie bracket it encloses. In this work, we encode this geometric insight into a variational gait optimizer. For a system with two shape variables, the dynamics of this optimizer are similar to the dynamics of a soap bubble, with the Lie bracket providing internal pressure which causes the boundary of the bubble to expand, the metric-weighted path length providing surface tension constraining the growth of the soap bubble, and a pace-balancing term corresponding to the concentration gradient that evenly distributes soap across the surface of the bubble. In systems with three shape variables, the dynamics are more akin to a windsock, capturing maximum flux through a loop. The variational form of the optimizer allows us to extend it to higher dimensional shape spaces beyond these physical analogies.

  6. Condensation of vapor bubble in subcooled pool

    Science.gov (United States)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  7. BUBBLE - an urban boundary layer meteorology project

    DEFF Research Database (Denmark)

    Rotach, M.W.; Vogt, R.; Bernhofer, C.

    2005-01-01

    The Basel urban Boundary Layer Experiment (BUBBLE) was a year-long experimental effort to investigate in detail the boundary layer structure in the City of Basel, Switzerland. At several sites over different surface types (urban, sub-urban and rural reference) towers up to at least twice the main...

  8. Non-Abelian bubbles in microstate geometries

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, Pedro F. [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera, 13-15, C.University Cantoblanco, E-28049 Madrid (Spain); Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS,Orme des Merisiers bâtiment 774, F-91191 Gif-sur-Yvette (France)

    2016-11-24

    We find the first smooth bubbling microstate geometries with non-Abelian fields. The solutions constitute an extension of the BPS three-charge smooth microstates. These consist in general families of regular supersymmetric solutions with non-trivial topology, i.e. bubbles, of N=1, d=5 Super-Einstein-Yang-Mills theory, having the asymptotic charges of a black hole or black ring but with no horizon. The non-Abelian fields make their presence at the very heart of the microstate structure: the physical size of the bubbles is affected by the non-Abelian topological charge they carry, which combines with the Abelian flux threading the bubbles to hold them up. Interestingly the non-Abelian fields carry a set of adjustable continuous parameters that do not alter the asymptotics of the solutions but modify the local geometry. This feature can be used to obtain a classically infinite number of microstate solutions with the asymptotics of a single black hole or black ring.

  9. Heat transport in bubbling turbulent convection.

    Science.gov (United States)

    Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-06-04

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.

  10. A method for indication and improving the position stability of the bubble in single-bubble cavitation experiments

    Science.gov (United States)

    Plocek, Jaroslav

    2017-10-01

    A newly developed method for indication of the bubble state in classical single-bubble cavitation experiments is introduced. The method is based on processing the signal from a sensor, positioned on the flask from outside. The technical means of the method are further explored to improve the position stability of the bubble.

  11. Modeling of mass transfer and chemical reactions in a bubble column reactor using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2004-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas-liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  12. Detailed modeling of hydrodynamics mass transfer and chemical reactions in a bubble column using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas¿liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  13. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The structure of LEP, with long bending magnets and little access to the vacuum chamber between them, required distributed pumping. This is an early prototype for the LEP vacuum chamber, made from extruded aluminium. The main opening is for the beam. The small channel to the right is for cooling water, to carry away the heat deposited by the synchroton radiation from the beam. The 4 slots in the channel to the left house the strip-shaped ion-getter pumps (see 7810255). The ion-getter pumps depended on the magnetic field of the bending magnets, too low at injection energy for the pumps to function well. Also, a different design was required outside the bending magnets. This design was therefore abandoned, in favour of a thermal getter pump (see 8301153 and 8305170).

  14. Development of multiwire proportional chambers

    CERN Multimedia

    Charpak, G

    1969-01-01

    It has happened quite often in the history of science that theoreticians, confronted with some major difficulty, have successfully gone back thirty years to look at ideas that had then been thrown overboard. But it is rare that experimentalists go back thirty years to look again at equipment which had become out-dated. This is what Charpak and his colleagues did to emerge with the 'multiwire proportional chamber' which has several new features making it a very useful addition to the armoury of particle detectors. In the 1930s, ion-chambers, Geiger- Muller counters and proportional counters, were vital pieces of equipment in nuclear physics research. Other types of detectors have since largely replaced them but now the proportional counter, in new array, is making a comeback.

  15. A derivation of the stable cavitation threshold accounting for bubble-bubble interactions.

    Science.gov (United States)

    Guédra, Matthieu; Cornu, Corentin; Inserra, Claude

    2017-09-01

    The subharmonic emission of sound coming from the nonlinear response of a bubble population is the most used indicator for stable cavitation. When driven at twice their resonance frequency, bubbles can exhibit subharmonic spherical oscillations if the acoustic pressure amplitude exceeds a threshold value. Although various theoretical derivations exist for the subharmonic emission by free or coated bubbles, they all rest on the single bubble model. In this paper, we propose an analytical expression of the subharmonic threshold for interacting bubbles in a homogeneous, monodisperse cloud. This theory predicts a shift of the subharmonic resonance frequency and a decrease of the corresponding pressure threshold due to the interactions. For a given sonication frequency, these results show that an optimal value of the interaction strength (i.e. the number density of bubbles) can be found for which the subharmonic threshold is minimum, which is consistent with recently published experiments conducted on ultrasound contrast agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Relationship between Liquidity and Price Bubble in Tehran's Asset Market

    Directory of Open Access Journals (Sweden)

    J. Khodaparast SHIRAZI

    2012-12-01

    Full Text Available In this paper, according to Austrian school, the existence of bubbles in asset market of Tehran from 1998 to 2009 is attributed to the unexpected fluctuations of liquidity. To find out the process of bubble, the state space form and Kalman filter are used and bubble is brought out as unobserved variable of price series. In order to determine the long run relationship between liquidity and price bubble the VAR method proposed by Johanson and Jelisus is used. The result confirms that variation of liquidity has a significant effect on the creating of bubble in long run.

  17. Path instabilities of air bubbles rising in clean water

    CERN Document Server

    Wu, M; Wu, Mingming; Gharib, Moteza

    1998-01-01

    Experiments are conducted to study the path and shape of single air bubbles (diameter range 0.10- 0.20cm) rising freely in clean water. The experimental results demonstrate that the bubble shape has a bistable state, i. e. the bubble chooses to be in spherical or ellipsoidal shape depending on its generation mechanism. The path of a spherical/ellipsoidal bubble is found to change from a straight path to a zigzag/spiral path via a supercritical/subcritical bifurcation when the Reynolds number of the bubble exceeds a threshold.

  18. Champagne experiences various rhythmical bubbling regimes in a flute.

    Science.gov (United States)

    Liger-Belair, Gérard; Tufaile, Alberto; Jeandet, Philippe; Sartorelli, José-Carlos

    2006-09-20

    Bubble trains are seen rising gracefully from a few points on the glass wall (called nucleation sites) whenever champagne is poured into a glass. As time passes during the gas-discharging process, the careful observation of some given bubble columns reveals that the interbubble distance may change suddenly, thus revealing different rhythmical bubbling regimes. Here, it is reported that the transitions between the different bubbling regimes of some nucleation sites during gas discharging is a process which may be ruled by a strong interaction between tiny gas pockets trapped inside the nucleation site and/or also by an interaction between the tiny bubbles just blown from the nucleation site.

  19. GBO RF Anechoic Chamber & Antenna Test Range

    Data.gov (United States)

    Federal Laboratory Consortium — A shielded anechoic chamber measuring 15 by 15 by 37 feet is located in the Jansky Laboratory at Green Bank. This chamber has been outfitted as a far-field antenna...

  20. Triple chamber: a clinical rarity after deep anterior lamellar keratoplasty and role of optical coherence tomography in management.

    Science.gov (United States)

    Selvan, Harathy; Patil, Mukesh; Yadav, Shikha; Tandon, Radhika

    2017-10-30

    To report a case demonstrating triple chamber following deep anterior lamellar keratoplasty (DALK) and its successful intra-operative optical coherence tomography-guided management. Case report of a young male with macular corneal dystrophy, who underwent DALK in his left eye by Big-Bubble technique. The surgery was uneventful. On the first post-operative day, triple chamber was observed and followed-up with serial clinical photography and anterior segment optical coherence tomography. Due to decrease in graft clarity and increase in volume of the two extra chambers, interface drainage along with descemetopexy was undertaken 4 days later. The compartments constituting the triple chamber were those in-between the donor tissue and host pre-Descemet layer (Dua's layer), the latter and host Descemet membrane and the true anterior chamber. Presence of viscoelastic in the interface was identified as the cause. Microscope integrated optical coherence tomography (MiOCT) guided drainage followed by intracameral air tamponade ensured near total disappearance of the two extra chambers at the end of surgery. Examination on the next day confirmed complete apposition of the graft and host. To the best of our knowledge, this is a unique demonstration of Dua's layer in vivo by slit lamp biomicroscopy and description of MiOCT guided management of triple chamber.

  1. A note on the dynamics of two aligned bubbles perpendicular to and above a thin membrane

    Energy Technology Data Exchange (ETDEWEB)

    Aghdam, A Hajizadeh [Department of Mechanical Engineering, Arak University of Technology, Arak 3818141167 (Iran, Islamic Republic of); Khoo, B C, E-mail: Hajizadeh@arakut.ac.ir [Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)

    2015-06-15

    The interaction of two perpendicular bubbles of a similar size (upper bubble and lower bubble) and the thin elastic membrane beneath them is studied experimentally. The dynamical behavior of the lower bubble (Bubble1), which is placed between the membrane and upper bubble (Bubble2), is rather complex. Observed phenomena such as the splitting of Bubble1 into the ‘mushroom shape’ and ‘masher shape’, the bubble-collapse induced jetting toward Bubble2 and even the coalescence effect are found and systematically categorized by the stated dimensionless parameters. (paper)

  2. Design of a Fully Anechoic Chamber

    OpenAIRE

    Rusz, Roman

    2015-01-01

    This thesis deals with fully anechoic chamber design. The main aim of this thesis is to design fully anechoic chamber according to acoustics laws and customers (Honeywell’s) requirements. The fully anechoic chamber will be used for measuring sound and vibration quantities. This work is divided into two main parts. The first part deals with the general anechoic chamber theory and all its related design aspects. The second part, practical part, focus on specific design according to requirements...

  3. Predawn plasma bubble cluster observed in Southeast Asia

    Science.gov (United States)

    Watthanasangmechai, Kornyanat; Yamamoto, Mamoru; Saito, Akinori; Tsunoda, Roland; Yokoyama, Tatsuhiro; Supnithi, Pornchai; Ishii, Mamoru; Yatini, Clara

    2016-06-01

    Predawn plasma bubble was detected as deep plasma depletion by GNU Radio Beacon Receiver (GRBR) network and in situ measurement onboard Defense Meteorological Satellite Program F15 (DMSPF15) satellite and was confirmed by sparse GPS network in Southeast Asia. In addition to the deep depletion, the GPS network revealed the coexisting submesoscale irregularities. A deep depletion is regarded as a primary bubble. Submesoscale irregularities are regarded as secondary bubbles. Primary bubble and secondary bubbles appeared together as a cluster with zonal wavelength of 50 km. An altitude of secondary bubbles happened to be lower than that of the primary bubble in the same cluster. The observed pattern of plasma bubble cluster is consistent with the simulation result of the recent high-resolution bubble (HIRB) model. This event is only a single event out of 76 satellite passes at nighttime during 3-25 March 2012 that significantly shows plasma depletion at plasma bubble wall. The inside structure of the primary bubble was clearly revealed from the in situ density data of DMSPF15 satellite and the ground-based GRBR total electron content.

  4. Daughter bubble cascades produced by folding of ruptured thin films.

    Science.gov (United States)

    Bird, James C; de Ruiter, Riëlle; Courbin, Laurent; Stone, Howard A

    2010-06-10

    Thin liquid films, such as soap bubbles, have been studied extensively for over a century because they are easily formed and mediate a wide range of transport processes in physics, chemistry and engineering. When a bubble on a liquid-gas or solid-gas interface (referred to herein as an interfacial bubble) ruptures, the general expectation is that the bubble vanishes. More precisely, the ruptured thin film is expected to retract rapidly until it becomes part of the interface, an event that typically occurs within milliseconds. The assumption that ruptured bubbles vanish is central to theories on foam evolution and relevant to health and climate because bubble rupture is a source for aerosol droplets. Here we show that for a large range of fluid parameters, interfacial bubbles can create numerous small bubbles when they rupture, rather than vanishing. We demonstrate, both experimentally and numerically, that the curved film of the ruptured bubble can fold and entrap air as it retracts. The resulting toroidal geometry of the trapped air is unstable, leading to the creation of a ring of smaller bubbles. The higher pressure associated with the higher curvature of the smaller bubbles increases the absorption of gas into the liquid, and increases the efficiency of rupture-induced aerosol dispersal.

  5. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    Science.gov (United States)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  6. Modelling of Air Bubble Rising in Water and Polymeric Solution

    Science.gov (United States)

    Hassan, N. M. S.; Khan, M. M. K.; Rasul, M. G.; Subaschandar, N.

    2010-06-01

    This study investigates a Computational Fluid Dynamics (CFD) model for a single air bubble rising in water and xanthan gum solution. The bubble rise characteristics through the stagnant water and 0.05% xanthan gum solution in a vertical cylindrical column is modelled using the CFD code Fluent. Single air bubble rise dispersed into the continuous liquid phase has been considered and modelled for two different bubble sizes. Bubble velocity and vorticity magnitudes were captured through a surface-tracking technique i.e. Volume of Fluid (VOF) method by solving a single set of momentum equations and tracking the volume fraction of each fluid throughout the domain. The simulated results of the bubble flow contours at two different heights of the cylindrical column were validated by the experimental results and literature data. The model developed is capable of predicting the entire flow characteristics of different sizes of bubble inside the liquid column.

  7. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan

    2013-01-10

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  8. The elasticity of soap bubbles containing wormlike micelles.

    Science.gov (United States)

    Sabadini, Edvaldo; Ungarato, Rafael F S; Miranda, Paulo B

    2014-01-28

    Slow-motion imaging of the rupture of soap bubbles generally shows the edges of liquid films retracting at a constant speed (known as the Taylor-Culick velocity). Here we investigate soap bubbles formed from simple solutions of a cationic surfactant (cetyltrimethylammonium bromide - CTAB) and sodium salicylate. The interaction of salicylate ions with CTAB leads to the formation of wormlike micelles (WLM), which yield a viscoelastic behavior to the liquid film of the bubble. We demonstrate that these elastic bubbles collapse at a velocity up to 30 times higher than the Taylor-Culick limit, which has never been surpassed. This is because during the bubble inflation, the entangled WLM chains stretch, storing elastic energy. This extra energy is then released during the rupture of the bubble, yielding an additional driving force for film retraction (besides surface tension). This new mechanism for the bursting of elastic bubbles may have important implications to the breakup of viscoelastic sprays in industrial applications.

  9. Numerical simulation of high Reynolds number bubble motion

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, J.B. [Clarkson Univ., Potsdam, NY (United States)

    1995-12-31

    This paper presents the results of numerical simulations of bubble motion. All the results are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the motion created by the bubble, which is axisymmetric. The main focus of the paper is on bubbles that are of order 1 mm in diameter in water. Of particular interest is the effect of surfactant molecules on bubble motion. Results for the {open_quotes}insoluble surfactant{close_quotes} model will be presented. These results extend research by other investigators to finite Reynolds numbers. The results indicate that, by assuming complete coverage of the bubble surface, one obtains good agreement with experimental observations of bubble motion in tap water. The effect of surfactant concentration on the separation angle is discussed.

  10. Dynamics of magnetic bubbles in acoustic and magnetic fields.

    Science.gov (United States)

    Zhao, Xue; Quinto-Su, Pedro A; Ohl, Claus-Dieter

    2009-01-16

    We report on shelled bubbles that can be manipulated with magnetic fields. The magnetic shell consists of self-assembled magnetic nanoparticles. The magnetic susceptibility of the bubbles is proportional to the surface area, chi_{b}=(9+/-3x10;{-6} m)r;{2} where r is the radius. Magnetic bubbles are compressible in moderate acoustic fields. A bubble with a radius of 121 mum oscillates in resonance in a sound field of 27 kHz with a peak-to-peak radial amplitude of 1.7 mum. The bubble oscillations induce a microstreaming flow with a toroidal vortex at the upper pole of the bubble. Further findings are the longevity of the magnetic bubbles and the ease of manipulation with standard magnets.

  11. Vacuum chamber at intersection I-6

    CERN Multimedia

    1971-01-01

    The vacuum chamber at intersection region I-6, one of these where experiments in colliding-beam physics will be taking place. The "wheels" prevent the thin wall (1.5 mm) of the chamber from collapsing. The chamber is equipped with heating tapes and its wrapped in thermal insulation. Residual gas pressure at this and other similar regions is around 10_11.

  12. Making a Fish Tank Cloud Chamber

    Science.gov (United States)

    Green, Frances

    2012-01-01

    The cloud chambers described here are large, made from readily available parts, simple to set up and always work. With no source in the chamber, background radiation can be observed. A large chamber means that a long rod containing a weakly radioactive material can be introduced, increasing the chance of seeing decays. Details of equipment and…

  13. A Sensitive Cloud Chamber without Radioactive Sources

    Science.gov (United States)

    Zeze, Syoji; Itoh, Akio; Oyama, Ayu; Takahashi, Haruka

    2012-01-01

    We present a sensitive diffusion cloud chamber which does not require any radioactive sources. A major difference from commonly used chambers is the use of a heat sink as its bottom plate. The result of a performance test of the chamber is given. (Contains 8 figures.)

  14. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...

  15. Growing and analyzing biofilms in flow chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic cond...

  16. Chamber B Thermal/Vacuum Chamber: User Test Planning Guide

    Science.gov (United States)

    Montz, Mike E.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of Chamber B. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  17. Lithotripter shock wave interaction with a bubble near various biomaterials

    Science.gov (United States)

    Ohl, S. W.; Klaseboer, E.; Szeri, A. J.; Khoo, B. C.

    2016-10-01

    Following previous work on the dynamics of an oscillating bubble near a bio-material (Ohl et al 2009 Phys. Med. Biol. 54 6313-36) and the interaction of a bubble with a shockwave (Klaseboer et al 2007 J. Fluid Mech. 593 33-56), the present work concerns the interaction of a gas bubble with a traveling shock wave (such as from a lithotripter) in the vicinity of bio-materials such as fat, skin, muscle, cornea, cartilage, and bone. The bubble is situated in water (to represent a water-like biofluid). The bubble collapses are not spherically symmetric, but tend to feature a high speed jet. A few simulations are performed and compared with available experimental observations from Sankin and Zhong (2006 Phys. Rev. E 74 046304). The collapses of cavitation bubbles (created by laser in the experiment) near an elastic membrane when hit by a lithotripter shock wave are correctly captured by the simulation. This is followed by a more systematic study of the effects involved concerning shockwave bubble biomaterial interactions. If a subsequent rarefaction wave hits the collapsed bubble, it will re-expand to a very large size straining the bio-materials nearby before collapsing once again. It is noted that, for hard bio-material like bone, reflection of the shock wave at the bone—water interface can affect the bubble dynamics. Also the initial size of the bubble has a significant effect. Large bubbles (˜1 mm) will split into smaller bubbles, while small bubbles collapse with a high speed jet in the travel direction of the shock wave. The numerical model offers a computationally efficient way of understanding the complex phenomena involving the interplay of a bubble, a shock wave, and a nearby bio-material.

  18. Bubble Proliferation in Shock Wave Lithotripsy Occurs during Inertial Collapse

    Science.gov (United States)

    Pishchalnikov, Yuri A.; McAteer, James A.; Pishchalnikova, Irina V.; Williams, James C.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2008-06-01

    In shock wave lithotripsy (SWL), firing shock pulses at slow pulse repetition frequency (0.5 Hz) is more effective at breaking kidney stones than firing shock waves (SWs) at fast rate (2 Hz). Since at fast rate the number of cavitation bubbles increases, it appears that bubble proliferation reduces the efficiency of SWL. The goal of this work was to determine the basis for bubble proliferation when SWs are delivered at fast rate. Bubbles were studied using a high-speed camera (Imacon 200). Experiments were conducted in a test tank filled with nondegassed tap water at room temperature. Acoustic pulses were generated with an electromagnetic lithotripter (DoLi-50). In the focus of the lithotripter the pulses consisted of a ˜60 MPa positive-pressure spike followed by up to -8 MPa negative-pressure tail, all with a total duration of about 7 μs. Nonlinear propagation steepened the shock front of the pulses to become sufficiently thin (˜0.03 μm) to impose differential pressure across even microscopic bubbles. High-speed camera movies showed that the SWs forced preexisting microbubbles to collapse, jet, and break up into daughter bubbles, which then grew rapidly under the negative-pressure phase of the pulse, but later coalesced to re-form a single bubble. Subsequent bubble growth was followed by inertial collapse and, usually, rebound. Most, if not all, cavitation bubbles emitted micro-jets during their first inertial collapse and re-growth. After jetting, these rebounding bubbles could regain a spherical shape before undergoing a second inertial collapse. However, either upon this second inertial collapse, or sometimes upon the first inertial collapse, the rebounding bubble emerged from the collapse as a cloud of smaller bubbles rather than a single bubble. These daughter bubbles could continue to rebound and collapse for a few cycles, but did not coalesce. These observations show that the positive-pressure phase of SWs fragments preexisting bubbles but this initial

  19. Measurements of fast neutrons by bubble detectors

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, F.; Martinez, H. [Laboratorio de Espectroscopia, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62251, Cuernavaca Morelos (Mexico); Leal, B. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F. (Mexico); Rangel, J. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F (Mexico); Reyes, P. G. [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario 100, Col. Centro, 50000, Toluca Estado de Mexico (Mexico)

    2013-07-03

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / {mu}Sv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ {mu}Sv, 0093 b/{mu}Sv, 0.14 b/{mu}Sv, 0.17 b/{mu}Sv, 0051 b/{mu}Sv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90 Degree-Sign this was done for a certain number of shots. In both cases, the standard response is reported (Dose in {mu}Sv) for each of the six detectors representing an energy range, this response is given by the expression R{sub i}= B{sub i} / S{sub i} where B{sub i} is the number of bubbles formed in each and the detector sensitivity (S{sub i}) is given for each detector in (b / {mu}Sv). Also, reported for both cases, the detected neutron flux (n cm{sup -2}), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 {mu}Sv fields mixed neutron and gamma, and pulsed generated fusion

  20. Optical monitoring of bubble size and shape in a pulsating bubble surfactometer.

    Science.gov (United States)

    Seurynck, Shannon L; Brown, Nathan J; Wu, Cindy W; Germino, Kevin W; Kohlmeir, Ellen K; Ingenito, Edward P; Glucksberg, Matthew R; Barron, Annelise E; Johnson, Mark

    2005-08-01

    The pulsating bubble surfactometer (PBS) is often used for in vitro characterization of exogenous lung surfactant replacements and lung surfactant components. However, the commercially available PBS is not able to dynamically track bubble size and shape. The PBS therefore does not account for bubble growth or elliptical bubble shape that frequently occur during device use. More importantly, the oscillatory volume changes of the pulsating bubble are different than those assumed by the software of the commercial unit. This leads to errors in both surface area and surface tension measurements. We have modified a commercial PBS through the addition of an image-acquisition system, allowing real-time determination of bubble size and shape and hence the accurate tracking of surface area and surface tension. Compression-expansion loops obtained with the commercially available PBS software were compared with those provided by the image-analysis system for dipalmitoylphosphatidylcholine, Infasurf, and Tanaka lipids (dipalmitoylphosphatidylcholine-palmitoyloleoylphosphatidyl-glycerol-palmitic acid, 68:22:9) at concentrations of 0.1 and 1.0 mg/ml and at frequencies of 1 and 20 cycles/min. Whereas minimum surface tension as determined by the image-analysis system is similar to that measured by the commercially available software, the maximum surface tension and the shapes of the interfacial area-surface tension loops are quite different. Differences are attributable to bubble drift, nonsinusoidal volume changes, and variable volume excursions seen with the modified system but neglected by the original system. Image analysis reveals that the extent of loop hysteresis is greatly overestimated by the commercial device and that an apparent, rapid increase in surface tension upon film expansion seen in PBS loops is not observed with the image-analysis system. The modified PBS system reveals new dynamic characteristics of lung surfactant preparations that have not previously been

  1. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London...

  2. A silicon microstrip gas chamber

    Energy Technology Data Exchange (ETDEWEB)

    Van der Marel, J. (Radiation Technology Group, Faculty of Applied Physics, Delft Univ. of Tech. (Netherlands)); Van den Bogaard, A. (Delft Inst. of Microelectronics and Submicrotechnology, Delft Univ. of Tech. (Netherlands)); Van Eijk, C.W.E. (Radiation Technology Group, Faculty of Applied Physics, Delft Univ. of Tech. (Netherlands)); Hollander, R.W. (Radiation Technology Group, Faculty of Applied Physics, Delft Univ. of Tech. (Netherlands)); Okx, W.J.C. (Radiation Technology Group, Faculty of Applied Physics, Delft Univ. of Tech. (Netherlands)); Sarro, P.M. (Delft Inst. of Microelectronics and Submicrotechnology, Delft Univ. of Tech. (Netherlands))

    1994-09-01

    We are manufacturing microstrip gas chambers (MSGC) on silicon with an insulating SiO[sub 2] layer. To study the effect of the sheet resistance of the SiO[sub 2] on the operation of the detector several processes to modify the SiO[sub 2] layer have been investigated: ion implantation, boron and phosphorus diffusion, phosphosilicate glass evaporation and polycrystalline silicon deposition. The dependence of the gas gain on the potentials of the different electrodes and the long term stability have been studied. ((orig.))

  3. CS EMISSION NEAR MIR-BUBBLES

    Energy Technology Data Exchange (ETDEWEB)

    Watson, C. [Manchester University, Department of Physics, 604 E. College Ave., North Manchester, IN 46962 (United States); Devine, Kathryn [College of Idaho, Department of Physics, 2112 Cleveland Blvd, Caldwell, ID 83605 (United States); Quintanar, N. [Texas A and M University, Department of Nuclear Engineering, 401 Joe Routt Blvd, College Station, TX 77843 (United States); Candelaria, T., E-mail: cwatson@manchester.edu, E-mail: KDevine@collegeofidaho.edu, E-mail: nrquintanar@tamu.edu, E-mail: tcandela@nmt.edu [New Mexico Institute of Mining and Technology, Department of Physics, 801 Leroy Place, Socorro, NM 87801 (United States)

    2016-02-10

    We survey 44 young stellar objects located near the edges of mid-IR-identified bubbles in CS (1–0) using the Green Bank Telescope. We detect emission in 18 sources, indicating young protostars that are good candidates for being triggered by the expansion of the bubble. We calculate CS column densities and abundances. Three sources show evidence of infall through non-Gaussian line-shapes. Two of these sources are associated with dark clouds and are promising candidates for further exploration of potential triggered star formation. We obtained on-the-fly maps in CS (1–0) of three sources, showing evidence of significant interactions between the sources and the surrounding environment.

  4. Hydrodynamic models for slurry bubble column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D. [IIT Center, Chicago, IL (United States)

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  5. The Recent Financial Bubble: an Overview

    Directory of Open Access Journals (Sweden)

    Thalassinos E.

    2009-12-01

    Full Text Available The main aim of this paper is to analyse the recent financial crisis and to make recommendations how to handle it in the best possible way. Financial bubbles, since the great depression, have been analysed and some recommendations have been made taking into account the internationalization of the world economy which behaves like a domino. The recent financial crisis in the sub-prime mortgage market creates new problems in the world market with unforeseen continuances. Deflation has been referred to as a possible continuance after a financial bubble because often but not always deflation follows. Deflation often results in financial and economic crises. Financial and economic crises affect the architecture of the monetary system, while a change in the system may affect the role of the dollar, the euro and the yen.

  6. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao

    2016-04-01

    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  7. Pupillary block glaucoma following implantation of a posterior chamber pseudophakos in the anterior chamber.

    Directory of Open Access Journals (Sweden)

    Mandal Anil

    2002-01-01

    Full Text Available Pupillary block glaucoma is a common complication of cataract surgery, especially following anterior chamber intraocular lens implantation. We report a case of pupillary block glaucoma with a posterior chamber IOL that was implanted in the anterior chamber following a complicated extracapsular cataract extraction. The case was successfully managed by explantation of the posterior chamber lens, anterior vitrectomy, peripheral iridectomy and secondary anterior chamber intraocular lens implantation. The intraocular pressure was controlled with a single topical antiglaucoma medication.

  8. Bubble propagation on a rail: a concept for sorting bubbles by size.

    Science.gov (United States)

    Franco-Gómez, Andrés; Thompson, Alice B; Hazel, Andrew L; Juel, Anne

    2017-11-10

    We demonstrate experimentally that the introduction of a rail, a small height constriction, within the cross-section of a rectangular channel could be used as a robust passive sorting device in two-phase fluid flows. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes can propagate (stably) over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a complementary theoretical analysis based on a depth-averaged theory, which is in qualitative agreement with the experiments. The theoretical study reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions.

  9. Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid.

    Science.gov (United States)

    Thiemann, Andrea; Holsteyns, Frank; Cairós, Carlos; Mettin, Robert

    2017-01-01

    The detailed link of liquid phase sonochemical reactions and bubble dynamics is still not sufficiently known. To further clarify this issue, we image sonoluminescence and bubble oscillations, translations, and shapes in an acoustic cavitation setup at 23kHz in sulfuric acid with dissolved sodium sulfate and xenon gas saturation. The colour of sonoluminescence varies in a way that emissions from excited non-volatile sodium atoms are prominently observed far from the acoustic horn emitter ("red region"), while such emissions are nearly absent close to the horn tip ("blue region"). High-speed images reveal the dynamics of distinct bubble populations that can partly be linked to the different emission regions. In particular, we see smaller strongly collapsing spherical bubbles within the blue region, while larger bubbles with a liquid jet during collapse dominate the red region. The jetting is induced by the fast bubble translation, which is a consequence of acoustic (Bjerknes) forces in the ultrasonic field. Numerical simulations with a spherical single bubble model reproduce quantitatively the volume oscillations and fast translation of the sodium emitting bubbles. Additionally, their intermittent stopping is explained by multistability in a hysteretic parameter range. The findings confirm the assumption that bubble deformations are responsible for pronounced sodium sonoluminescence. Notably the observed translation induced jetting appears to serve as efficient mixing mechanism of liquid into the heated gas phase of collapsing bubbles, thus potentially promoting liquid phase sonochemistry in general. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A bubble detection system for propellant filling pipeline.

    Science.gov (United States)

    Wen, Wen; Zong, Guanghua; Bi, Shusheng

    2014-06-01

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  11. The influence of bubbles on the perception carbonation bite.

    Directory of Open Access Journals (Sweden)

    Paul M Wise

    Full Text Available Although many people naively assume that the bite of carbonation is due to tactile stimulation of the oral cavity by bubbles, it has become increasingly clear that carbonation bite comes mainly from formation of carbonic acid in the oral mucosa. In Experiment 1, we asked whether bubbles were in fact required to perceive carbonation bite. Subjects rated oral pungency from several concentrations of carbonated water both at normal atmospheric pressure (at which bubbles could form and at 2.0 atmospheres pressure (at which bubbles did not form. Ratings of carbonation bite under the two pressure conditions were essentially identical, indicating that bubbles are not required for pungency. In Experiment 2, we created controlled streams of air bubbles around the tongue in mildly pungent CO2 solutions to determine how tactile stimulation from bubbles affects carbonation bite. Since innocuous sensations like light touch and cooling often suppress pain, we predicted that bubbles might reduce rated bite. Contrary to prediction, air bubbles flowing around the tongue significantly enhanced rated bite, without inducing perceived bite in blank (un-carbonated solutions. Accordingly, though bubbles are clearly not required for carbonation bite, they may well modulate perceived bite. More generally, the results show that innocuous tactile stimulation can enhance chemogenic pain. Possible physiological mechanisms are discussed.

  12. Period Doubling in Bubbling from a Submerged Nozzle

    Science.gov (United States)

    Dennis, Jordan; Grace, Laura; Lehman, Susan

    The timing of bubbles rising from a nozzle submerged in a viscous solution was measured to examine the period-doubling route to chaos in this system. A narrow nozzle was submerged in a mixture of water and glycerin, and nitrogen was supplied to the nozzle at a varying flow rate. The bubbles were detected using a laser and photodiode system; when the bubbles rise through the laser beam, they scatter the light so that the signal at the photodiode decreases. The period between bubbles as well as the duration of each bubble (a function of bubble size and bubble velocity) was determined, and examined as the nitrogen flow rate increased, for solutions with five different concentrations of glycerin. Bubbles were also recorded visually using a high-speed camera. Within the flow rates tested, we observed a bifurcation of the period to period-2 behavior for all solutions tested, and a further bifurcation to period-4 for all solutions except pure glycerin. The solution viscosity affected both the onset of the bifurcation and the precise bubble behavior during the bifurcation. Unusually, a short period/long period pair of bubbles recurring at a regular interval was sometimes observed in the low flow regime which is typically period-1, an observation which requires further investigation. Research supported by NSF DMR 1560093.

  13. Luminescence from cavitation bubbles deformed in uniform pressure gradients

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2017-09-01

    Presented here are observations that demonstrate how the deformation of millimetric cavitation bubbles by a uniform pressure gradient quenches single-collapse luminescence. Our innovative measurement system captures a broad luminescence spectrum (wavelength range, 300-900 nm) from the individual collapses of laser-induced bubbles in water. By varying the bubble size, driving pressure, and perceived gravity level aboard parabolic flights, we probed the limit from aspherical to highly spherical bubble collapses. Luminescence was detected for bubbles of maximum radii within the previously uncovered range, R0=1.5 -6 mm, for laser-induced bubbles. The relative luminescence energy was found to rapidly decrease as a function of the bubble asymmetry quantified by the anisotropy parameter ζ , which is the dimensionless equivalent of the Kelvin impulse. As established previously, ζ also dictates the characteristic parameters of bubble-driven microjets. The threshold of ζ beyond which no luminescence is observed in our experiment closely coincides with the threshold where the microjets visibly pierce the bubble and drive a vapor jet during the rebound. The individual fitted blackbody temperatures range between Tlum=7000 and Tlum=11 500 K but do not show any clear trend as a function of ζ . Time-resolved measurements using a high-speed photodetector disclose multiple luminescence events at each bubble collapse. The averaged full width at half-maximum of the pulse is found to scale with R0 and to range between 10 and 20 ns.

  14. Soap-bubble Optimization of Gaits

    OpenAIRE

    Ramasamy, Suresh; Hatton, Ross L.

    2016-01-01

    In this paper, we present a geometric variational algorithm for optimizing the gaits of kinematic locomoting systems. The dynamics of this algorithm are analogous to the physics of a soap bubble, with the system's Lie bracket supplying an "inflation pressure" that is balanced by a "surface tension" term derived from a Riemannian metric on the system's shape space. We demonstrate this optimizer on a variety of system geometries (including Purcell's swimmer) and for optimization criteria that i...

  15. Expendable bubble tiltmeter for geophysical monitoring

    OpenAIRE

    Westphal, J. A.; Carr, M. A.; Miller, W. F.; Dzurisin, Daniel

    1983-01-01

    An unusually rugged highly sensitive and inexpensive bubble tiltmeter has been designed, tested, and built in quantity. These tiltmeters are presently used on two volcanoes and an Alaskan glacier, where they continuously monitor surface tilts of geological interest. This paper discusses the mechanical, thermal, and electric details of the meter, and illustrates its performance characteristics in both large ( > 10^(-4) radian) and small ( < 10^(-6) radian) tilt environments. The meter's ult...

  16. Measuring Bubble Expectations and Investor Confidence

    OpenAIRE

    Robert J. Shiller

    1999-01-01

    This paper presents evidence on attitude changes among investors in the US stock market. Two basic attitudes are explored: bubble expectations and investor confidence. Semiannual time-series indicators of these attitudes are presented for US stock market institutional investors based on questionnaire survey results 1989 1998, from surveys that I have derived in collaboration with Fumiko Kon-Ya and Yoshiro Tsutsui. Five different time-series indicators of whether there is among investors an ex...

  17. On the shape of giant soap bubbles

    NARCIS (Netherlands)

    Cohen, C.; Darbois Texier, B.; Reyssat, E.; Snoeijer, Jacobus Hendrikus; Quere, D.; Clanet, Christophe

    2017-01-01

    We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size ℓ=a2/e0ℓ=a2/e0, where e0e0 is the mean thickness of the soap film and a=γb/ρg−√a=γb/ρg is the capillary length ( γbγb stands for vapor–liquid surface tension, and ρρ stands for the liquid

  18. Influence of surfactant on gas bubble stability.

    Science.gov (United States)

    Hanwright, Jennifer; Zhou, James; Evans, Geoffrey M; Galvin, Kevin P

    2005-05-24

    Gas-bubble stability is achieved either by a reduction in the Laplace pressure or by a reduction in the permeability of the gas-liquid interface. Although insoluble surfactants have been shown definitively in many studies to lower the permeability of the gas-liquid interface and hence increase the resistance to interfacial mass transfer, remarkably little work has been done on the effects of soluble surfactants. An experimental system was developed to measure the effect of the soluble surfactant dodecyl trimethylammonium bromide on the desorption and absorption of carbon dioxide gas through a quiescent planar interface. The desorption experiments conformed to the model of non-steady-state molecular diffusion. The absorption experiments, however, produced an unexpected mass transfer mechanism, with surface renewal, probably because of instability in the density gradient formed by the carbon dioxide. In general, the soluble surfactant produced no measurable reduction in the rate of interfacial mass transfer for desorption or absorption. This finding is consistent with the conclusion of Caskey and Barlage that soluble surfactants produce a significantly lower resistance to interfacial mass transfer than do insoluble surfactants. The dynamic adsorption and desorption of the surfactant molecules at the gas-liquid interface creates short-term vacancies, which presumably permit the unrestricted transfer of the gas molecules through the interface. This surfactant exchange does not occur for insoluble surfactants. Gas bubbles formed in the presence of a high concentration of soluble surfactant were observed to dissolve completely, while those formed in the presence of the insoluble surfactant stearic acid did not dissolve easily, and persisted for very long periods. The interfacial concentration of stearic acid rises during bubble dissolution, as it is insoluble, and must eventually achieve full monolayer coverage and a state of compression, lowering the permeability of the

  19. Explosive Bubble Modelling by Noncausal Process

    OpenAIRE

    Christian Gouriéroux; Jean-Michel Zakoian

    2013-01-01

    The linear mixed causal and noncausal autoregressive processes provide often a better fit to economic and financial time series than the standard causal linear autoregressive processes. By considering the example of the noncausal Cauchy autoregressive process, we show that it might be explained by the special associated nonlinear causal dynamics. Indeed, this causal dynamics can include unit root, bubble phenomena, or asymmetric cycles often observed on financial markets. The noncausal Cauchy...

  20. Stochastic modelling for financial bubbles and policy

    OpenAIRE

    Fry, John

    2015-01-01

    In this paper, we draw upon the close relationship between statistical physics and mathematical finance to develop a suite of models for financial bubbles and crashes. By modifying previous approaches, we are able to derive novel analytical formulae for evaluation problems and for the expected timing of future change points. In particular, we help to explain why previous approaches have systematically overstated the timing of changes in market regime. The list of potential empirical applicati...

  1. Liquid-bubble Interaction under Surf Zone Breaking Waves

    Science.gov (United States)

    Derakhti, M.; Kirby, J. T., Jr.

    2014-12-01

    Liquid-bubble interaction, especially in complex two-phase bubbly flow under breaking waves, is still poorly understood. Derakhti and Kirby (2014a,b) have recently studied bubble entrainment and turbulence modulation by dispersed bubbles under isolated unsteady breaking waves along with extensive model verifications and convergence tests. In this presentation, we continue this examination with attention turned to the simulation of periodic surf zone breaking waves. In addition, the relative importance of preferential accumulation of dispersed bubbles in coherent vortex cores is investigated. Heavier-than-liquid particles, i.e. sediment, tend to accumulate in regions of high strain rate and avoid regions of intense vorticity. In contrast, lighter-than-liquid particles such as bubbles tend to congregate in vortical regions. We perform a three dimensional (3D) large-eddy simulation (LES) using a Navier-Stokes solver extended to incorporate entrained bubble populations, using an Eulerian-Eulerian formulation for the polydisperse bubble phase. The volume of fluid (VOF) method is used for free surface tracking. The model accounts for momentum exchange between dispersed bubbles and liquid phase as well as bubble-induced dissipation. We investigate the formation and evolution of breaking-induced turbulent coherent structures (BTCS) under both plunging and spilling periodic breaking waves as well as BTCS's role on the intermittent 3D distributions of bubble void fraction in the surf zone. We particularly examine the correlation between bubble void fractions and Q-criterion values to quantify this interaction. Also, the vertical transport of dispersed bubbles by downburst type coherent structures in the transition region is compared to that by obliquely descending eddies. All the results are summarized at different zones from outer to inner surf zone.

  2. Bayesian Analysis of Bubbles in Asset Prices

    Directory of Open Access Journals (Sweden)

    Andras Fulop

    2017-10-01

    Full Text Available We develop a new model where the dynamic structure of the asset price, after the fundamental value is removed, is subject to two different regimes. One regime reflects the normal period where the asset price divided by the dividend is assumed to follow a mean-reverting process around a stochastic long run mean. The second regime reflects the bubble period with explosive behavior. Stochastic switches between two regimes and non-constant probabilities of exit from the bubble regime are both allowed. A Bayesian learning approach is employed to jointly estimate the latent states and the model parameters in real time. An important feature of our Bayesian method is that we are able to deal with parameter uncertainty and at the same time, to learn about the states and the parameters sequentially, allowing for real time model analysis. This feature is particularly useful for market surveillance. Analysis using simulated data reveals that our method has good power properties for detecting bubbles. Empirical analysis using price-dividend ratios of S&P500 highlights the advantages of our method.

  3. Characterization of polymers by bubble inflation

    DEFF Research Database (Denmark)

    Christensen, Jens Horslund; Rasmussen, Henrik K.; Kjær, Erik Michael

    1999-01-01

    In order to characterise materials using a simple and relative inexpensive method, the bubble inflation technique was modified. A polymer plate is clamped between a Teflon coated heating plate and a heated cylinder. By applying air through the heating plate the polymer membrane deforms into the c......In order to characterise materials using a simple and relative inexpensive method, the bubble inflation technique was modified. A polymer plate is clamped between a Teflon coated heating plate and a heated cylinder. By applying air through the heating plate the polymer membrane deforms...... into the cylinder. The top position of the membrane is monitored by fibreoptic sensors positioned in the cylinder. The pressure difference across the membrane is measured as well. The deformation in this inflation device is nonuniform and is only equal biaxial in the top of the deformed membrane. Due to this......, the response is modelled using a finite element method in 3D Cartesian coordinates. The K-BKZ constitutive equation is used to model the nonlinear properties of the material. Using linear viscoelastic properties from oscillatory shear measurements and measurements of the bubble inflation, estimation...

  4. Wrinkling in the deflation of elastic bubbles

    KAUST Repository

    Aumaitre, Elodie

    2013-03-01

    The protein hydrophobin HFBII self-assembles into very elastic films at the surface of water; these films wrinkle readily upon compression. We demonstrate and study this wrinkling instability in the context of non-planar interfaces by forming HFBII layers at the surface of bubbles whose interfaces are then compressed by deflation of the bubble. By varying the initial concentration of the hydrophobin solutions, we are able to show that buckling occurs at a critical packing fraction of protein molecules on the surface. Independent experiments show that at this packing fraction the interface has a finite positive surface tension, and not zero surface tension as is usually assumed at buckling. We attribute this non-zero wrinkling tension to the finite elasticity of these interfaces. We develop a simple geometrical model for the evolution of the wrinkle length with further deflation and show that wrinkles grow rapidly near the needle (used for deflation) towards the mid-plane of the bubble. This geometrical model yields predictions for the length of wrinkles in good agreement with experiments independently of the rheological properties of the adsorbed layer. © 2013 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  5. Bubbles of nothing and supersymmetric compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Pillado, Jose J. [IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Shlaer, Benjamin [Department of Physics, University of Auckland,Private Bag 92019, Auckland (New Zealand); Institute of Cosmology, Department of Physics and Astronomy,Tufts University, Medford, MA 02155 (United States); Sousa, Kepa [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Urrestilla, Jon [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain)

    2016-10-03

    We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such “topologically unobstructed” cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to M{sub 3}×S{sub 1} presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this decay. This demonstrates the dynamical origin of the decay suppression, as opposed to the more familiar argument based on the spin structure. We conjecture that this is a generic mechanism that enforces stability of any topologically unobstructed supersymmetric compactification.

  6. Limits to Drift Chamber Resolution

    CERN Document Server

    Riegler, Werner

    1998-01-01

    ATLAS (A Large Toroidal LHC Apparatus) will be a general-purpose experiment at the Large Hadron Collider that will be operational at CERN in the year 2004. The ATLAS muon spectrometer aims for a momentum resolution of 10% for a transverse momentum of pT=1TeV. The precision tracking devices in the muon system will be high pressure drift tubes (MDTs) with a single wire resolution of 1100 chambers covering an area of ≈ 2500m2. The high counting rates in the spectrometer as well as the aim for excellent spatial resolution and high efficiency put severe constraints on the MDT operating parameters. This work describes a detailed study of all the resolution limiting factors in the ATLAS environment. A ’full chain’ simulation of the MDT response to photons and charged particles as well as quantitative comparisons with measurements was performed. The good agreement between simulation and measurements resulted in a profound understanding of the drift chamber processes and the individual contributions to the spat...

  7. Physicist makes muon chamber sing

    CERN Document Server

    2007-01-01

    This Monitored Drift Tube detector, consisting of argon-CO2-filled aluminium tubes with a wire down the centre of each, will track muons in ATLAS; Tiecke used a single tube from one of these detectors to create the pipes in his organ. Particle physicists can make good musicians; but did you know particle detectors can make good music? That's what NIKHEF physicist Henk Tiecke learned when he used pipes cut from the ATLAS Monitored Drift Tube detector (MDT) to build his own working Dutch-style barrel organ in the autumn of 2005. 'I like to work with my hands,' said Tiecke, who worked as a senior physicist at NIKHEF, Amsterdam, on ZEUS until his retirement last summer. Tiecke had already constructed his barrel organ when he visited some colleagues in the ATLAS muon chambers production area at Nikhef in 2005. He noticed that the aluminium tubes they were using to build the chambers were about three centimetres in diameter-just the right size for a pipe in a barrel organ. 'The sound is not as nice as from wooden...

  8. The dynamics of underwater bubbles near deformable boundaries

    Science.gov (United States)

    Milligan, Charles Dean

    Bubble hydrodynamic simulations including re-entrant jet impact and penetration are performed using domain partitioning methods along with traditional boundary element techniques. By combining the new multi-subdomain scheme with the boundary conditions for jet impact and penetration presented by Zhang, Duncan and Chahine (1), continuous simulations of the jet impact and penetration process are achieved. The strategy is verified through comparisons with theoretical and numerical potential flow problems, and proves to be more stable than existing jet impact and penetration models (1). The fluid model is used to study bubble-bubble interactions and bubble-structure interaction phenomena. The fluid model is coupled to a nonlinear finite element code through fully nonlinear coupling equations. For the first time, stable fluid-structure interaction calculations with jet impact are performed. The method is used to simulate the interaction between a small explosion bubble and aluminum plates of different thicknesses. The results are compared with experimental results (2, 3), and the predicted bubble motions prior to and during jet penetration are in agreement with the measurements. In the experiments, secondary cavities form on the surface of the thinnest plate. The secondary cavitation is not rigorously modeled in the numerical scheme but reasonable agreement between predicted and measured plate strain was achieved. The simulations help identify the role of secondary cavitation in the interaction process. The multi-subdomain fluid model is also used to simulate the interaction between two explosion bubbles generated with a time delay between the two explosive detonations. The approach is verified through direct comparisons with experimental results (4, 5). The numerical model shows that when the time delay between the two detonations is small, the inertia of the fluid around each bubble is comparable, so the bubbles act as images of each other. For larger time delays

  9. Investigation on Effect of Gravity Level on Bubble Distribution and Liquid Turbulence Modification for Horizontal Channel Bubbly Flow

    Science.gov (United States)

    Pang, M. J.; Wei, J. J.; Yu, B.

    2017-08-01

    Bubbly flows in the horizontal channel or pipe are often seen in industrial engineering fields, so it is very necessary to fully understand hydrodynamics of horizontal bubbly flows so as to improve industrial efficiency and to design an efficient bubbly system. In this paper, in order to fully understand mechanisms of phase distribution and liquid-phase turbulence modulation in the horizontal channel bubbly flow, the influence of gravity level on both of them were investigated in detail with the developed Euler-Lagrange two-way coupling method. For the present investigation, the buoyance on bubbles in both sides of the channel always points to the corresponding wall in order to study the liquid-phase turbulence modulation by bubbles under the symmetric physical condition. The present investigation shows that the gravity level has the important influence on the wall-normal distribution of bubbles and the liquid-phase turbulence modulation; the higher the gravity level is, the more bubbles can overcome the wall-normal resistance to accumulate near the wall, and the more obvious the liquid-phase turbulence modulation is. It is also discovered that interphase forces on the bubbles are various along the wall-normal direction, which leads to the fact that the bubble located in different wall-normal places has a different wall-normal velocity.

  10. The cloud chamber and its metamorphoses; La chambre a brouillard et ses metamorphoses

    Energy Technology Data Exchange (ETDEWEB)

    Fadel, K. [Palais de la Decouverte, Dept. de Physique, 75 - Paris (France)

    2010-04-15

    The stunning invention of the Wilson chamber in 1911 stayed almost ignored by the physicist community for more than a decade although it permitted the visualization of the track of an alpha particle as soon as 1911. The detection principle is based on the expansion of a saturated vapor that allows the visualization of a ionizing particle motion through the formation of droplets around the ions created all along the particle path. The original device was too slow (only one expansion per minute) to be used for the detection of rare events unless to operate it for months or years. A decisive step was made in the beginning of the twenties by the Japanese physicist Takeo Shimizu, working at the Cavendish Laboratory. He managed to automate the Wilson chamber and to equip it with 2 mirrors and a camera. This new generation allowed 5 expansion per second and the knowledge of the particle track orientation in space thanks to a simultaneous photography following 2 perpendicular directions. A rate of 4 shots a minute was achieved. The Wilson chamber was constantly improved during its 30 years long career and was only supplanted by the bubble chamber in the fifties. (A.C.)

  11. A Study of Drag Force in Isothermal Bubbly Flow

    Directory of Open Access Journals (Sweden)

    C. Li

    2009-12-01

    Full Text Available Driven by the extensive demands of simulating highly concentrated gas bubbly flows in many engineering fields, numerical studies have been performed to investigate the neighbouring effect of a swarm of bubbles on the interfacial drag forces. In this study, a novel drag coefficient correlation (Simonnet et al., 2007 in terms of local void fraction coupled with the population balance model based on average bubble number density (ABND has been implemented and compared with Ishii-Zuber densely distributed fluid particles drag model. The predicted local radial distributions of three primitive variables: gas void fraction, Sauter mean bubble diameter, and gas velocity, are validated against the experimental data of Hibiki et al. (2001. In general, satisfactory agreements between predicted and measured results are achieved by both drag force models. With additional consideration for closely packed bubbles, the latest coefficient model by Simonnet et al. (2007 shows considerably better performance in capturing the reduction of drag forces incurred by neighbouring bubbles.

  12. An apparatus to measure electrical charge of bubble swarms.

    Science.gov (United States)

    Uddin, S; Jin, L; Mirnezami, M; Finch, J A

    2013-01-01

    An apparatus has been developed to characterize bubble charge by measuring the swarm potential of gas bubbles. The technique allows in-process measurement of all system variables associated with bubble surface electrical charge: swarm potential, solution conductivity, gas holdup, pH and bubble size distribution. The method was validated by comparing with literature iso-electric point (iep) values. Bubble swarm potential was measured as a function of concentration and pH for a series of non-ionic surfactant frothers, ionic surfactant collectors and multivalent metal ions. Results showed good agreement with established theory and prior experimental findings. The setup is a step towards measurement of charge on flotation size range of bubble swarms. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Bubble nucleation from micro-crevices in a shear flow

    Science.gov (United States)

    Groß, T. F.; Bauer, J.; Ludwig, G.; Fernandez Rivas, D.; Pelz, P. F.

    2018-01-01

    The formation of gas bubbles at gas cavities located in walls bounding the flow occurs in many technical applications, but is usually hard to observe. Even though, the presence of a fluid flow undoubtedly affects the formation of bubbles, there are very few studies that take this fact into account. In the present paper new experimental results on bubble formation (diffusion-driven nucleation) from surface nuclei in a shear flow are presented. The observed gas-filled cavities are micrometre-sized blind holes etched in silicon substrates. We measure the frequency of bubble generation (nucleation rate), the size of the detaching bubbles and analyse the growth of the surface nuclei. The experimental findings support an extended understanding of bubble formation as a self-excited cyclic process and can serve as validation data for analytical and numerical models.

  14. Bubble migration in a rotating, liquid-filled sphere

    Science.gov (United States)

    Annamalai, P.; Subramanian, R. S.; Cole, R.

    1982-01-01

    Results and analysis of ground-based experiments performed to aid in designing experiments on the behavior of bubbles in a rotating liquid body on board the Shuttle in free fall are presented. Spherical shells filled with silicone oil containing a small gas bubble were spun and filmed by high speed motion picture photography. The rotation of the shell and the trajectory of the bubble motion were recorded and the film was exposed to a motion analyzer connected to a keypunch. The analyzer measured Cartesian coordinates as well as angle, frame number, and rotation rate. Optical correction equations were employed to determine the apparent bubble trajectory relative to an inertial frame of reference. An analytical model for the bubble motion was defined, yielding predictions of velocity and position at different times. Rotation of the fluid container is concluded to aid in centering the bubbles.

  15. The Morphology of Equatorial Plasma Bubbles – a review

    Directory of Open Access Journals (Sweden)

    Hyosub Kil

    2015-03-01

    Full Text Available Plasma bubbles that occur in the equatorial F-region make up one of the most distinguishing phenomena in the ionosphere. Bubbles represent plasma depletions with respect to the background ionosphere, and are the major source of electron density irregularities in the equatorial F-region. Such bubbles are seen as plasma depletion holes (in situ satellite observations, vertical plumes (radar observations, and emission-depletion bands elongated in the north-south direction (optical observations. However, no technique can observe the whole three-dimensional structure of a bubble. Various aspects of bubbles identified using different techniques indicate that a bubble has a “shell” structure. This paper reviews the development of the concepts of “bubble” and “shell” in this context.

  16. The equilibrium shape of bubbles on curved interfaces

    Science.gov (United States)

    Bird, James; Poe, Daniel; Walls, Peter

    2016-11-01

    The equilibrium shape for a bubble resting at a free surface depends on a balance of hydrostatic and capillary forces, with the smallest bubbles approximating a sphere and a hemisphere for the largest. This shape has been shown to be important to several processes ranging from gas transfer across the thin film cap to the production of jet droplets. Past works calculating the equilibrium shape assume that the interface is flat. However, there are instances where the curvature of the boundary may be comparable to the bubble itself. For example, a bubble bursting on the surface of a rain droplet. Here we relax the assumption of a flat interface and extend the classic bubble shape calculations to account for a curved interface boundary. An understanding of the extent of this deformation and the precise equilibrium bubble shape is important to applications in fields ranging from air-sea exchange to combustion dynamics. We acknowledge financial support from NSF Grant No. 1351466.

  17. Bubbles Outside the Plume During the LUMINY Wind-Wave Experiment

    NARCIS (Netherlands)

    Leeuw, G. de; Leifer, I.

    2002-01-01

    Since many bubble-mediated processes are size dependent, it is often necessary to characterize the bubble distribution over the full size spectrum. For example, in regards to bubble-mediated gas transfer, small bubbles are important for insoluble gases like helium, while large bubbles are important

  18. THE INFLUENCE OF GAS-DENSITY AND LIQUID PROPERTIES ON BUBBLE BREAKUP

    NARCIS (Netherlands)

    WILKINSON, PM; VANSCHAYK, A; SPRONKEN, JPM; VANDIERENDONCK, LL

    On the basis of a literature review of bubble breakup experiments, it is demonstrated that both liquid viscosity and surface tension have an influence on bubble stability and, thus, bubble breakup, for small as well as large bubbles. Possible influences of the gas properties on bubble breakup have

  19. Transferring calibration coefficients from ionisation chambers used for diagnostic radiology to transmission chambers.

    Science.gov (United States)

    Yoshizumi, Maíra T; Caldas, Linda V E

    2012-07-01

    In this work, the response of a double volume transmission ionisation chamber, developed at the Instituto de Pesquisas Energéticas e Nucleares, was compared to that of a commercial transmission chamber. Both ionisation chambers were tested in different X-ray beam qualities using secondary standard ionisation chambers as reference dosimeters. These standard ionisation chambers were a parallel-plate and a cylindrical ionisation chambers, used for diagnostic radiology and mammography beam qualities, respectively. The response of both transmission chambers was compared to that of the secondary standard chambers to obtain coefficients of equivalence. These coefficients allow the transmission chambers to be used as reference equipment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. CFD – facilitated Prognosis of Bubble Bed Bioreactor Performance Based on Bubble Swarms Oscillation Analysis

    OpenAIRE

    Vlaev, S. D.; Staykov, P.; Fialova, M.

    2009-01-01

    Bubble column reactors are widely used as gas-liquid and gas liquid-solid contactors in biotechnology applications. A basic issue in biotechnology is oxygen availability related to gas hold-up distribution, since aerobic bioprocessing depends on the dissolved oxygen substrate. The aim of this study is to analyze oxygen availability in bubble column bioreactors in terms of specific spatial and temporal gas-liquid flow. 3D CFD simulation is used to simulate the dispersed gas-liquid flow field o...

  1. Bubbles are more than you think - The Center for Information and Bubble Studies

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella

    2016-01-01

    in social media, trading likes for likes all the time, and without much market research. Of course, social media is awash with what the finance world would call liquidity – there is no shortage of likes, upvotes, posts and retweets. However, too much liquidity can poison a financial market, leading prices...... to inflate beyond their fundamental value – what we call a bubble. Furthermore, it can possibly poison a market in which we invest opinions and expressions rather than money. By this means, the pivotal aim of the Center for Information and Bubble Studies (CIBS) is to uncover the structure and dynamics...

  2. Bubble-Induced Endothelial Microparticles Promote Endothelial Dysfunction.

    Science.gov (United States)

    Yu, Xuhua; Xu, Jiajun; Huang, Guoyang; Zhang, Kun; Qing, Long; Liu, Wenwu; Xu, Weigang

    2017-01-01

    Decompression sickness is a systemic pathophysiological process caused by bubbles and endothelial microparticles (EMPs) are established markers reflecting competency of endothelial function and vascular biology. Here, we investigated the effects of bubble-induced EMPs on endothelial cells in vitro and vivo. Rat pulmonary microvascular endothelial cells (PMVECs) were isolated and stimulated by bubbles and bubble-induced EMPs were collected and incubated with normal PMVECs in vitro. Cell viability and apoptosis were detected using Cell Counting Kit-8 assay and Annexin V FITC/PI double staining, respectively. Cell permeability and pro-inflammatory cytokines were determined by electric cell substrate impedance sensing and enzyme-linked immunosorbent assay, respectively. Intracellular nitric oxide and reactive oxygen species production were analyzed microscopically. In vivo study, bubble-induced EMPs were intravenously injected to the rats and soluble thrombomodulin, intercellular adhesion molecule 1, and vascullar adhesion molecule 1 were involved in evaluating endothelial dysfunction. In our study, bubble stimulus resulted in a significant increase of EMPs release by 3 fold. Bubble-induced EMPs significantly decreased cell viability and increased cell apoptosis. Moreover, bubble-induced EMPs induced abnormal increase of cell permeability and over-expression of pro-inflammatory cytokines. Intracellular ROS production increased while NO production decreased. These negative effects caused by bubble-induced EMPs were remarkably suppressed when EMPs pretreated with surfactant FSN-100. Finally, intravenous injection of bubble-induced EMPs caused elevations of soluble thrombomodulin and pro-inflammatory cytokines in the circulation. Altogether, our results demonstrated that bubble-induced EMPs can mediate endothelial dysfunction in vitro and vivo, which can be attenuated by EMPs abatement strategy. These data expanded our horizon of the detrimental effects of bubble

  3. A biophysical vascular bubble model for devising decompression procedures.

    Science.gov (United States)

    Arieli, Ran; Marmur, Abraham

    2017-03-01

    Vascular bubble models, which present a realistic biophysical approach, hold great promise for devising suitable diver decompression procedures. Nanobubbles were found to nucleate on a flat hydrophobic surface, expanding to form bubbles after decompression. Such active hydrophobic spots (AHS) were formed from lung surfactants on the luminal aspect of ovine blood vessels. Many of the phenomena observed in these bubbling vessels correlated with those known to occur in diving. On the basis of our previous studies, which proposed a new model for the formation of arterial bubbles, we now suggest the biophysical model presented herein. There are two phases of bubble expansion after decompression. The first is an extended initiation phase, during which nanobubbles are transformed into gas micronuclei and begin to expand. The second, shorter phase is one of simple diffusion-driven growth, the inert gas tension in the blood remaining almost constant during bubble expansion. Detachment of the bubble occurs when its buoyancy exceeds the intermembrane force. Three mechanisms underlying the appearance of arterial bubbles should be considered: patent foramen ovale, intrapulmonary arteriovenous anastomoses, and the evolution of bubbles in the distal arteries with preference for the spinal cord. Other parameters that may be quantified include age, acclimation, distribution of bubble volume, AHS, individual sensitivity, and frequency of bubble formation. We believe that the vascular bubble model we propose adheres more closely to proven physiological processes. Its predictability may therefore be higher than other models, with appropriate adjustments for decompression illness (DCI) data. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  4. Dynamics of bubble rising at small Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2015-01-01

    Full Text Available Results of experimental study of a single spherical bubble rising in the non-stationary regime in a viscous liquid (with and without surfactant at small Reynolds numbers Re<1 have been presented. Improved empirical correlations for drag coefficient of the bubble rising with and without surfactant in the stationary regime have been obtained. Influence of nonstationary effects on the dynamics of bubble rising has been analyzed.

  5. Bubble-Induced Endothelial Microparticles Promote Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    Xuhua Yu

    Full Text Available Decompression sickness is a systemic pathophysiological process caused by bubbles and endothelial microparticles (EMPs are established markers reflecting competency of endothelial function and vascular biology. Here, we investigated the effects of bubble-induced EMPs on endothelial cells in vitro and vivo. Rat pulmonary microvascular endothelial cells (PMVECs were isolated and stimulated by bubbles and bubble-induced EMPs were collected and incubated with normal PMVECs in vitro. Cell viability and apoptosis were detected using Cell Counting Kit-8 assay and Annexin V FITC/PI double staining, respectively. Cell permeability and pro-inflammatory cytokines were determined by electric cell substrate impedance sensing and enzyme-linked immunosorbent assay, respectively. Intracellular nitric oxide and reactive oxygen species production were analyzed microscopically. In vivo study, bubble-induced EMPs were intravenously injected to the rats and soluble thrombomodulin, intercellular adhesion molecule 1, and vascullar adhesion molecule 1 were involved in evaluating endothelial dysfunction. In our study, bubble stimulus resulted in a significant increase of EMPs release by 3 fold. Bubble-induced EMPs significantly decreased cell viability and increased cell apoptosis. Moreover, bubble-induced EMPs induced abnormal increase of cell permeability and over-expression of pro-inflammatory cytokines. Intracellular ROS production increased while NO production decreased. These negative effects caused by bubble-induced EMPs were remarkably suppressed when EMPs pretreated with surfactant FSN-100. Finally, intravenous injection of bubble-induced EMPs caused elevations of soluble thrombomodulin and pro-inflammatory cytokines in the circulation. Altogether, our results demonstrated that bubble-induced EMPs can mediate endothelial dysfunction in vitro and vivo, which can be attenuated by EMPs abatement strategy. These data expanded our horizon of the detrimental effects

  6. Shape Oscillations of Gas Bubbles With Newtonian Interfacial Rheological Properties

    Science.gov (United States)

    Nadim, Ali

    1996-01-01

    The oscillation frequency and damping rate for small-amplitude axisymmetric shape modes of a gas bubble in an ideal liquid are obtained, in the limit when the bubble interface possesses Newtonian interfacial rheology with constant surface shear and dilatational viscosities. Such results permit the latter surface properties to be measured by analyzing experimental data on frequency shift and damping rate of specific shape modes of suspended bubbles in the presence of surfactants.

  7. Study Of Bubble-Count Measurement Of Surface Tension

    Science.gov (United States)

    Nishioka, Gary M.; Berg, James I.

    1993-01-01

    Report presents study of bubble-count method of measurement of surface or interfacial tension of liquids. In method, gas or liquid pumped at known rate along capillary tube. One end of tube open and immersed in liquid that wets tube. Pumped gas or liquid forms bubbles, detaching themselves from immersed open end of tube, and one measures average period, Pi, for formation and detachment of bubbles.

  8. Date Stamping Bubbles in Real Estate Investment Trusts

    OpenAIRE

    Escobari, Diego; Jafarinejad, Mohammad

    2015-01-01

    We test for the existence of single and multiple bubble periods in four Real Estate Investment Trust (REIT) indices using the Supremum Augmented Dickey-Fuller (SADF) and the Generalized SADF. These methods allow us to estimate the beginning and the end of bubble periods. Our results provide statistically significant evidence of speculative bubbles in the REIT index and its three components: Equity, Mortgage and Hybrid REITs. These results may be valuable for real estate financial managers and...

  9. Modeling of bubble dynamics in relation to medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, P.A.; London, R.A. [Lawrence Livermore National Lab., CA (United States); Strauss, M. [California Univ., Davis, CA (United States)]|[Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev] [and others

    1997-03-12

    In various pulsed-laser medical applications, strong stress transients can be generated in advance of vapor bubble formation. To better understand the evolution of stress transients and subsequent formation of vapor bubbles, two-dimensional simulations are presented in channel or cylindrical geometry with the LATIS (LAser TISsue) computer code. Differences with one-dimensional modeling are explored, and simulated experimental conditions for vapor bubble generation are presented and compared with data. 22 refs., 8 figs.

  10. Soap bubbles: two years old and sixty centimeters in diameter.

    Science.gov (United States)

    Grosse, A V

    1969-04-18

    Soap bubbles of long life (over 2 years) and large size (over 60 centimeters in diameter, 100 liters volume) have been produced from bubble solutions improved by the addition of water-soluble synthetic organic polymers such as polyvinyl alcohol or polyoxyethylene. The natural life can be defined as the time it takes for the bubble, if left undisturbed, to contract from the original size to a flat film.

  11. Bubble Impingement and the Mechanisms of Heat Transfer

    OpenAIRE

    Robinson, Anthony; ALBADAWI, ABDULALEEM; MURRAY, DARINA

    2014-01-01

    PUBLISHED Heat transfer augmentation resulting from the effects of two phase flow can play a significant role in convective cooling applications. To date, the interaction between a rising gas bubble impinging on a heated horizontal surface has received limited attention. Available research has focused on bubble dynamics and the associated heat transfer has not been reported. To address this, this study investigates the effect of a single bubble impinging on a heated horizontal surface. Loc...

  12. From Rising Bubble to RNA/DNA and Bacteria

    Science.gov (United States)

    Marks, Roman; Cieszyńska, Agata; Wereszka, Marzena; Borkowski, Wojciech

    2017-04-01

    In this study we have focused on the movement of rising bubbles in a salty water body. Experiments reviled that free buoyancy movement of bubbles forces displacement of ions, located on the outer side of the bubble wall curvatures. During the short moment of bubble passage, all ions in the vicinity of rising bubble, are separated into anions that are gathered on the bubble upper half sphere and cations that slip along the bottom concave half-sphere of a bubble and develop a sub-bubble vortex. The principle of ions separation bases on the differences in displacement resistance. In this way, relatively heavier and larger, thus more resistant to displacement anions are gathered on the rising bubble upper half sphere, while smaller and lighter cations are assembled on the bottom half sphere and within the sub-bubble vortex. The acceleration of motion generates antiparallel rotary of bi-ionic domains, what implies that anions rotate in clockwise (CW) and cationic in counter-clockwise (CCW) direction. Then, both rotational systems may undergo splicing and extreme condensing by bi-pirouette narrowing of rotary. It is suggested that such double helix motion of bi-ionic domains creates RNA/DNA molecules. Finally, when the bubble reaches the water surface it burst and the preprocessed RNA/DNA matter is ejected into the droplets. Since that stage, droplet is suspended in positively charged troposphere, thus the cationic domain is located in the droplet center, whilst negative ions are attracted to configure the outer areola. According to above, the present study implies that the rising bubbles in salty waters may incept synergistic processing of matter resulting in its rotational/spherical organization that led to assembly of RNA/DNA molecules and bacteria cells.

  13. Compressibility of a translating bubble in an oscillating pressure field

    Science.gov (United States)

    Watts, R. G.; Hsu, Y.-Y.

    1974-01-01

    The response of a single translating vapor-gas bubble to a sinusoidal pressure variation is analyzed analytically and experimentally. The bubble is assumed to move in an infinite liquid with a constant translational velocity. Bubbles are assumed to consist of saturated vapor and a noncondensible gas. The experimental results are in the low frequency range with no noncondensible gas present, although the theory is more general. Agreement between experiment and theory is satisfactory.

  14. Bubble coalescence dynamics and supersaturation in electrolytic gas evolution

    Energy Technology Data Exchange (ETDEWEB)

    Stover, R.L. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-08-01

    The apparatus and procedures developed in this research permit the observation of electrolytic bubble coalescence, which heretofore has not been possible. The influence of bubble size, electrolyte viscosity, surface tension, gas type, and pH on bubble coalescence was examined. The Navier-Stokes equations with free surface boundary conditions were solved numerically for the full range of experimental variables that were examined. Based on this study, the following mechanism for bubble coalescence emerges: when two gas bubbles coalesce, the surface energy decreases as the curvature and surface area of the resultant bubble decrease, and the energy is imparted into the surrounding liquid. The initial motion is driven by the surface tension and slowed by the inertia and viscosity of the surrounding fluid. The initial velocity of the interface is approximately proportional to the square root of the surface tension and inversely proportional to the square root of the bubble radius. Fluid inertia sustains the oblate/prolate oscillations of the resultant bubble. The period of the oscillations varies with the bubble radius raised to the 3/2 power and inversely with the square root of the surface tension. Viscous resistance dampens the oscillations at a rate proportional to the viscosity and inversely proportional to the square of the bubble radius. The numerical simulations were consistent with most of the experimental results. The differences between the computed and measured saddle point decelerations and periods suggest that the surface tension in the experiments may have changed during each run. By adjusting the surface tension in the simulation, a good fit was obtained for the 150-{micro}m diameter bubbles. The simulations fit the experiments on larger bubbles with very little adjustment of surface tension. A more focused analysis should be done to elucidate the phenomena that occur in the receding liquid film immediately following rupture.

  15. Tests of anechoic chamber for aeroacoustics investigations

    Science.gov (United States)

    Palchikovskiy, V. V.; Bersenev, Yu. V.; Makashov, S. Yu.; Belyaev, I. V.; Korin, I. A.; Sorokin, E. V.; Khramtsov, I. V.; Kustov, O. Yu.

    2016-10-01

    The paper presents the results of qualification tests in the new anechoic chamber of Perm National Research Polytechnic University (PNRPU) built in 2014-2015 and evaluation of the chamber quality in aeroacoustic experiments. It describes design features of the chamber and its sound-absorption lining. The qualification tests were carried out with tonal and broadband noise sources in the frequency range 100 Hz - 20 kHz for two different cases of the source arrangement. In every case, measurements were performed in three directions by traverse microphones. Qualification tests have determined that in the chamber there is a free acoustic field within radius of 2 m for tonal noise and 3 m for broadband noise. There was also evaluated acoustic quality of the chamber by measurements of the jet noise and vortex ring noise. The results of the experiments demonstrate that PNRPU anechoic chamber allows the aeroacoustic measurements to be performed to obtain quantitative results.

  16. The CAST Time Projection Chamber

    CERN Document Server

    Autiero, D.; Carmona, J.M.; Cebrian, S.; Chesi, E.; Davenport, M.; Delattre, M.; Di Lella, L.; Formenti, F.; Irastorza, I.G.; Gomez, H.; Hasinoff, M.; Lakic, B.; Luzon, G.; Morales, J.; Musa, L.; Ortiz, A.; Placci, A.; Rodriguez, A.; Ruz, J.; Villar, J.A.; Zioutas, K.

    2007-01-01

    One of the three X-ray detectors of the CAST experiment searching for solar axions is a Time Projection Chamber (TPC) with a multi-wire proportional counter (MWPC) as a readout structure. Its design has been optimized to provide high sensitivity to the detection of the low intensity X-ray signal expected in the CAST experiment. A low hardware threshold of 0.8 keV is safely set during normal data taking periods, and the overall efficiency for the detection of photons coming from conversion of solar axions is 62 %. Shielding has been installed around the detector, lowering the background level to 4.10 x 10^-5 counts/cm^2/s/keV between 1 and 10 keV. During phase I of the CAST experiment the TPC has provided robust and stable operation, thus contributing with a competitive result to the overall CAST limit on axion-photon coupling and mass.

  17. Time Projection Chamber at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Bryman, D.; Leitch, M.; Navon, I.; Numao, T.; Schlatter, P.; Dixit, M.S.; Hargrove, C.K.; Mes, H.; Bennett, A.; Macdonald, J.A.

    1984-01-01

    The Time Projection Chamber at TRIUMF is being used to search for muon-electron conversion. The best spatial resolution in the TPC, sigma approx. = 200 ..mu..m, occurs at the minimum drift length and for an optimum track-to-anode crossing angle determined by the magnetic field. The observed resolution is dependent on the diffusion of the drifting electrons, the track-to-anode crossing angle, vector E X vector B effects near the anode wire and the discrete nature of the ionization process. Distortion due to positive ions leaking back into the drift volume from the anode wire region have been nearly eliminated by the use of a pulsed dual grid system.

  18. Model for bubble pulsation in liquid between parallel viscoelastic layers

    Science.gov (United States)

    Hay, Todd A.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2012-01-01

    A model is presented for a pulsating spherical bubble positioned at a fixed location in a viscous, compressible liquid between parallel viscoelastic layers of finite thickness. The Green’s function for particle displacement is found and utilized to derive an expression for the radiation load imposed on the bubble by the layers. Although the radiation load is derived for linear harmonic motion it may be incorporated into an equation for the nonlinear radial dynamics of the bubble. This expression is valid if the strain magnitudes in the viscoelastic layer remain small. Dependence of bubble pulsation on the viscoelastic and geometric parameters of the layers is demonstrated through numerical simulations. PMID:22779461

  19. Effect of surfactant on the evolution of bubble motion

    Directory of Open Access Journals (Sweden)

    Antonnikova Aleksandra

    2017-01-01

    Full Text Available Results of an experimental study of the process of ascent of a single bubble of air in the presence of a surfactant are presented. An empirical dependence for drag coefficient of the bubble that emerges in a liquid containing a surfactant in the region of small Reynolds numbers has been obtained. Theoretical studies of the effect of surfactants on the velocity of motion of a bubble in a nonstationary regime have been carried out. A theoretical analysis of the effect of nonstationary forces on the dynamics of bubble rising in the nonstationary regime has been conducted.

  20. Morphology of Rising Hydrodynamic and Magnetohydrodynamic Bubbles from Numerical Simulations

    Science.gov (United States)

    Robinson, K.; Dursi, L. J.; Ricker, P. M.; Rosner, R.; Calder, A. C.; Zingale, M.; Truran, J. W.; Linde, T.; Caceres, A.; Fryxell, B.; Olson, K.; Riley, K.; Siegel, A.; Vladimirova, N.

    2004-02-01

    Recent Chandra and XMM-Newton observations of galaxy cluster cooling flows have revealed X-ray emission voids of up to 30 kpc in size that have been identified with buoyant, magnetized bubbles. Motivated by these observations, we have investigated the behavior of rising bubbles in stratified atmospheres using the FLASH9 adaptive-mesh simulation code. We present results from two-dimensional simulations with and without the effects of magnetic fields and with varying bubble sizes and background stratifications. We find purely hydrodynamic bubbles to be unstable; a dynamically important magnetic field is required to maintain a bubble's integrity. This suggests that, even absent thermal conduction, for bubbles to be persistent enough to be regularly observed, they must be supported in large part by magnetic fields. Thermal conduction unmitigated by magnetic fields can dissipate the bubbles even faster. We also observe that the bubbles leave a tail as they rise; the structure of these tails can indicate the history of the dynamics of the rising bubble.