On Thermodynamical Relation Between Rotating Charged BTZ Black Holes and Effective String Theory
Institute of Scientific and Technical Information of China (English)
Alexis Larra(~n)aga
2008-01-01
In this paper we study the first law of thermodynamics for the (2+1)-dimensional rotating charged BTZ black hole considering a pair of thermodynamical systems constructed with the two horizons of this solution. We show that these two systems are similar to the right and left movers of string theory and that the temperature associated with the black hole is the harmonic mean of the temperatures associated with these two systems.
Planck absolute entropy of a rotating BTZ black hole
Riaz, S. M. Jawwad
2018-04-01
In this paper, the Planck absolute entropy and the Bekenstein-Smarr formula of the rotating Banados-Teitelboim-Zanelli (BTZ) black hole are presented via a complex thermodynamical system contributed by its inner and outer horizons. The redefined entropy approaches zero as the temperature of the rotating BTZ black hole tends to absolute zero, satisfying the Nernst formulation of a black hole. Hence, it can be regarded as the Planck absolute entropy of the rotating BTZ black hole.
Geometric description of BTZ black hole thermodynamics
International Nuclear Information System (INIS)
Quevedo, Hernando; Sanchez, Alberto
2009-01-01
We study the properties of the space of thermodynamic equilibrium states of the Banados-Teitelboim-Zanelli (BTZ) black hole in (2+1) gravity. We use the formalism of geometrothermodynamics to introduce in the space of equilibrium states a two-dimensional thermodynamic metric whose curvature is nonvanishing, indicating the presence of thermodynamic interaction, and free of singularities, indicating the absence of phase transitions. Similar results are obtained for generalizations of the BTZ black hole which include a Chern-Simons term and a dilatonic field. Small logarithmic corrections of the entropy turn out to be represented by small corrections of the thermodynamic curvature, reinforcing the idea that thermodynamic curvature is a measure of thermodynamic interaction.
Dilatonic BTZ black holes with power-law field
International Nuclear Information System (INIS)
Hendi, S.H.; Eslam Panah, B.; Panahiyan, S.; Sheykhi, A.
2017-01-01
Motivated by low energy effective action of string theory and numerous applications of BTZ black holes, we will consider minimal coupling between dilaton and nonlinear electromagnetic fields in three dimensions. The main goal is studying thermodynamical structure of black holes in this set up. Temperature and heat capacity of these black holes are investigated and a picture regarding their phase transitions is given. In addition, the role and importance of studying the mass of black holes is highlighted. We will see how different parameters modify thermodynamical quantities, hence thermodynamical structure of these black holes. In addition, geometrical thermodynamics is used to investigate thermodynamical properties of these black holes. In this regard, the successful method is presented and the nature of interaction around bound and phase transition points is studied.
Dilatonic BTZ black holes with power-law field
Energy Technology Data Exchange (ETDEWEB)
Hendi, S.H., E-mail: hendi@shirazu.ac.ir [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha P.O. Box 55134-441 (Iran, Islamic Republic of); Eslam Panah, B., E-mail: behzad.eslampanah@gmail.com [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha P.O. Box 55134-441 (Iran, Islamic Republic of); Panahiyan, S., E-mail: sh.panahiyan@gmail.com [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Tehran 19839 (Iran, Islamic Republic of); Sheykhi, A., E-mail: asheykhi@shirazu.ac.ir [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha P.O. Box 55134-441 (Iran, Islamic Republic of)
2017-04-10
Motivated by low energy effective action of string theory and numerous applications of BTZ black holes, we will consider minimal coupling between dilaton and nonlinear electromagnetic fields in three dimensions. The main goal is studying thermodynamical structure of black holes in this set up. Temperature and heat capacity of these black holes are investigated and a picture regarding their phase transitions is given. In addition, the role and importance of studying the mass of black holes is highlighted. We will see how different parameters modify thermodynamical quantities, hence thermodynamical structure of these black holes. In addition, geometrical thermodynamics is used to investigate thermodynamical properties of these black holes. In this regard, the successful method is presented and the nature of interaction around bound and phase transition points is studied.
Dilatonic BTZ black holes with power-law field
Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Sheykhi, A.
2017-04-01
Motivated by low energy effective action of string theory and numerous applications of BTZ black holes, we will consider minimal coupling between dilaton and nonlinear electromagnetic fields in three dimensions. The main goal is studying thermodynamical structure of black holes in this set up. Temperature and heat capacity of these black holes are investigated and a picture regarding their phase transitions is given. In addition, the role and importance of studying the mass of black holes is highlighted. We will see how different parameters modify thermodynamical quantities, hence thermodynamical structure of these black holes. In addition, geometrical thermodynamics is used to investigate thermodynamical properties of these black holes. In this regard, the successful method is presented and the nature of interaction around bound and phase transition points is studied.
Entropy correction of BTZ black holes in a tunneling framework
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, using the Parikh-Wilczek tunneling framework, we first calculate the emission rates of non-rotating BTZ black holes and rotating BTZ black holes to second order accuracy. Then, by assuming that the emission process satisfies an underlying unitary theory, we obtain the corrected entropy of the BTZ black holes. A log term emerges naturally in the expression of the corrected entropy. A discussion about the inverse area term is also presented.
Thermodynamical and dynamical properties of charged BTZ black holes
Energy Technology Data Exchange (ETDEWEB)
Tang, Zi-Yu; Wang, Bin [Shanghai Jiao Tong University, Department of Physics and Astronomy, Center for Astronomy and Astrophysics, Shanghai (China); Zhang, Cheng-Yong [Peking University, Center for High-Energy Physics, Beijing (China); Kord Zangeneh, Mahdi [Shanghai Jiao Tong University, Department of Physics and Astronomy, Center for Astronomy and Astrophysics, Shanghai (China); Shahid Chamran University of Ahvaz, Physics Department, Faculty of Science, Ahvaz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)-Maragha, P. O. Box: 55134-441, Maragha (Iran, Islamic Republic of); Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile)
2017-06-15
We investigate the spacetime properties of BTZ black holes in the presence of the Maxwell field and Born-Infeld field and find rich properties in the spacetime structures when the model parameters are varied. Employing Landau-Lifshitz theory, we examine the thermodynamical phase transition in the charged BTZ black holes. We further study the dynamical perturbation in the background of the charged BTZ black holes and find different properties in the dynamics when the thermodynamical phase transition occurs. (orig.)
BTZ black hole from Poisson–Lie T-dualizable sigma models with spectators
Directory of Open Access Journals (Sweden)
A. Eghbali
2017-09-01
Full Text Available The non-Abelian T-dualization of the BTZ black hole is discussed in detail by using the Poisson–Lie T-duality in the presence of spectators. We explicitly construct a dual pair of sigma models related by Poisson–Lie symmetry. The original model is built on a 2+1-dimensional manifold M≈O×G, where G as a two-dimensional real non-Abelian Lie group acts freely on M, while O is the orbit of G in M. The findings of our study show that the original model indeed is canonically equivalent to the SL(2,R Wess–Zumino–Witten (WZW model for a given value of the background parameters. Moreover, by a convenient coordinate transformation we show that this model describes a string propagating in a spacetime with the BTZ black hole metric in such a way that a new family of the solutions to low energy string theory with the BTZ black hole vacuum metric, constant dilaton field and a new torsion potential is found. The dual model is built on a 2+1-dimensional target manifold M˜ with two-dimensional real Abelian Lie group G˜ acting freely on it. We further show that the dual model yields a three-dimensional charged black string for which the mass M and axion charge Q per unit length are calculated. After that, the structure and asymptotic nature of the dual space–time including the horizon and singularity are determined.
The BTZ black hole as a Lorentz-flat geometry
Energy Technology Data Exchange (ETDEWEB)
Alvarez, Pedro D., E-mail: alvarez@physics.ox.ac.uk [Rudolf Peierls Centre for Theoretical Physics, University of Oxford (United Kingdom); Pais, Pablo, E-mail: pais@cecs.cl [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile); Rodríguez, Eduardo, E-mail: eduarodriguezsal@unal.edu.co [Departamento de Matemática y Física Aplicadas, Universidad Católica de la Santísima Concepción, Concepción (Chile); Salgado-Rebolledo, Patricio, E-mail: pasalgado@udec.cl [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Zanelli, Jorge, E-mail: z@cecs.cl [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile)
2014-11-10
It is shown that 2+1 dimensional anti-de Sitter spacetimes are Lorentz-flat. This means, in particular, that any simply-connected patch of the BTZ black hole solution can be endowed with a Lorentz connection that is locally pure gauge. The result can be naturally extended to a wider class of black hole geometries and point particles in three-dimensional spacetime.
The mass formula for an exotic BTZ black hole
Energy Technology Data Exchange (ETDEWEB)
Zhang, Baocheng, E-mail: zhangbc.zhang@yahoo.com
2016-04-15
An exotic Bañados–Teitelboim–Zanelli (BTZ) black hole has an angular momentum larger than its mass in three dimension (3D), which suggests the possibility that cosmic censorship could be violated if angular momentum is extracted by the Penrose process. In this paper, we propose a mass formula for the exotic BTZ black hole and show no violation of weak cosmic censorship in the gedanken process above by understanding properly its mass formula. Unlike the other black holes, the total energy of the exotic BTZ black hole is represented by the angular momentum instead of the mass, which supports a basic point of view that the same geometry should be determined by the same energy in 3D general relativity whose equation of motion can be given either by normal 3D Einstein gravity or by exotic 3D Einstein gravity. However, only the mass of the exotic black hole is related to the thermodynamics and other forms of energy are “dumb”, which is consistent with the earlier thermodynamic analysis about exotic black holes.
The mass formula for an exotic BTZ black hole
International Nuclear Information System (INIS)
Zhang, Baocheng
2016-01-01
An exotic Bañados–Teitelboim–Zanelli (BTZ) black hole has an angular momentum larger than its mass in three dimension (3D), which suggests the possibility that cosmic censorship could be violated if angular momentum is extracted by the Penrose process. In this paper, we propose a mass formula for the exotic BTZ black hole and show no violation of weak cosmic censorship in the gedanken process above by understanding properly its mass formula. Unlike the other black holes, the total energy of the exotic BTZ black hole is represented by the angular momentum instead of the mass, which supports a basic point of view that the same geometry should be determined by the same energy in 3D general relativity whose equation of motion can be given either by normal 3D Einstein gravity or by exotic 3D Einstein gravity. However, only the mass of the exotic black hole is related to the thermodynamics and other forms of energy are “dumb”, which is consistent with the earlier thermodynamic analysis about exotic black holes.
Microscopic entropy of the charged BTZ black hole
International Nuclear Information System (INIS)
Cadoni, Mariano; Melis, Maurizio; Setare, Mohammad R
2008-01-01
The charged BTZ black hole is characterized by a power-law curvature singularity generated by the electric charge of the hole. The curvature singularity produces ln r terms in the asymptotic expansion of the gravitational field and divergent contributions to the boundary terms. We show that these boundary deformations can be generated by the action of the conformal group in two dimensions and that an appropriate renormalization procedure allows for the definition of finite boundary charges. In the semiclassical regime the central charge of the dual CFT turns out to be that calculated by Brown and Henneaux, whereas the charge associated with time translation is given by the renormalized black hole mass. We then show that the Cardy formula reproduces exactly the Bekenstein-Hawking entropy of the charged BTZ black hole
Entanglement Entropy for the charged BTZ black hole
International Nuclear Information System (INIS)
Larrañaga, A.
2011-01-01
Using the AdS/CFT correspondence we calculate the explicit form of the entanglement entropy for the charged BTZ (Banados-Teitelboim-Zanelli) black hole. The leading term in the large temperature expansion of the entropy function for this black hole reproduces its Bekenstein-Hawking entropy and the subleading term, representing the first corrections due to quantum entanglement, behaves as a logarithm of the BH entropy. It has also been obtained an inverse of area term in subleading order similar to the reported when considering Hawking radiation as quantum tunneling of particles through the event horizon
Winding strings and AdS3 black holes
International Nuclear Information System (INIS)
Troost, Jan
2002-01-01
We start a systematic study of string theory in AdS 3 black hole backgrounds. Firstly, we analyse in detail the geodesic structure of the BTZ black hole, including spacelike geodesics. Secondly, we study the spectrum for massive and massless scalar fields, paying particular attention to the connection between Sl(2,R) subgroups, the theory of special functions and global properties of the BTZ black holes. We construct classical strings that wind the black holes. Finally, we apply the general formalism to the vacuum black hole background, and formulate the boundary spacetime Virasoro algebra in terms of worldsheet operators. We moreover establish the link between a proposal for a ghost free spectrum for Sl(2,R) string propagation and the massless black hole background, thereby claryfing aspects of the AdS 3 /CFT correspondence. (author)
Thermodynamics of novel charged dilatonic BTZ black holes
Dehghani, M.
2017-10-01
In this paper, the three-dimensional Einstein-Maxwell theory in the presence of a dilatonic scalar field has been studied. It has been shown that the dilatonic potential must be considered as the linear combination of two Liouville-type potentials. Two new classes of charged dilatonic BTZ black holes, as the exact solutions to the coupled scalar, vector and tensor field equations, have been obtained and their properties have been studied. The conserved charge and mass of the new black holes have been calculated, making use of the Gauss's law and Abbott-Deser proposal, respectively. Through comparison of the thermodynamical extensive quantities (i.e. temperature and entropy) obtained from both, the geometrical and the thermodynamical methods, the validity of the first law of black hole thermodynamics has been confirmed for both of the new black holes we just obtained. A black hole thermal stability or phase transition analysis has been performed, making use of the canonical ensemble method. Regarding the black hole heat capacity, it has been found that for either of the new black hole solutions there are some specific ranges in such a way that the black holes with the horizon radius in these ranges are locally stable. The points of type one and type two phase transitions have been determined. The black holes, with the horizon radius equal to the transition points are unstable. They undergo type one or type two phase transitions to be stabilized.
Fermionic corrections to fluid dynamics from BTZ black hole
Energy Technology Data Exchange (ETDEWEB)
Gentile, L.G.C. [DISIT, Università del Piemonte Orientale,via T. Michel, 11, Alessandria, 15120 (Italy); Dipartimento di Fisica “Galileo Galilei”,Università di Padova, via Marzolo 8, 35131 Padova (Italy); INFN - Sezione di Padova,via Marzolo 8, 35131, Padova (Italy); Grassi, P.A. [DISIT, Università del Piemonte Orientale,via T. Michel, 11, Alessandria, 15120 (Italy); INFN - Gruppo Collegato di Alessandria, Sezione di Torino,Alessandria (Italy); PH-TH Department, CERN,CH-1211 Geneva 23 (Switzerland); Mezzalira, A. [Dipartimento di Fisica Teorica, Università di Torino,via P. Giuria, 1, Torino, 10125 (Italy); INFN - Gruppo Collegato di Alessandria, Sezione di Torino,Alessandria (Italy)
2015-11-23
We reconstruct the complete fermionic orbit of the non-extremal BTZ black hole by acting with finite supersymmetry transformations. The solution satisfies the exact supergravity equations of motion to all orders in the fermonic expansion and the final result is given in terms of fermionic bilinears. By fluid/gravity correspondence, we derive linearized Navier-Stokes equations and a set of new differential equations from Rarita-Schwinger equation. We compute the boundary energy-momentum tensor and we interpret the result as a perfect fluid with a modified definition of fluid velocity. Finally, we derive the modified expression for the entropy of the black hole in terms of the fermionic bilinears.
New coordinates for BTZ black hole and Hawking radiation via tunnelling
International Nuclear Information System (INIS)
Liu Wenbiao
2006-01-01
Hawking radiation can usefully be viewed as a semi-classical tunnelling process that originates at the black hole horizon. For the stationary axisymmetric BTZ black hole, a generalized Painleve coordinate system (Painleve-BTZ coordinates) is introduced, and Hawking radiation as tunnelling under the effect of self-gravitation is investigated. The corrected radiation is obtained which is not precise thermal spectrum. The result is consistent with the underlying unitary theory. Moreover, Bekenstein-Hawking entropy of BTZ black hole is not necessarily corrected when we choose appropriate coordinate system to study the tunnelling effect
Thermodynamic interpretation of the field equation of BTZ charged black hole near the horizon
International Nuclear Information System (INIS)
Larranaga, A.
2008-01-01
As is already known, a spacetime horizon acts like a boundary of a thermal system and we can associate with it notions such as temperature and entropy. Following the work of M. Akbar, in this paper we will show how it is possible to interpret the field equation of a charged BTZ black hole near the horizon as a thermodynamic identity dE=TdS+P r dA+ΦdQ$, where Φ is the electric potential and $Q$ is the electric charge of a BTZ black hole. These results indicate that the field equations for the charged BTZ black hole possess intrinsic thermodynamic properties near the horizon.
Quantum gravity effects on scalar particle tunneling from rotating BTZ black hole
Meitei, I. Ablu; Singh, T. Ibungochouba; Devi, S. Gayatri; Devi, N. Premeshwari; Singh, K. Yugindro
2018-04-01
Tunneling of scalar particles across the event horizon of rotating BTZ black hole is investigated using the Generalized Uncertainty Principle to study the corrected Hawking temperature and entropy in the presence of quantum gravity effects. We have determined explicitly the various correction terms in the entropy of rotating BTZ black hole including the logarithmic term of the Bekenstein-Hawking entropy (SBH), the inverse term of SBH and terms with inverse powers of SBH, in terms of properties of the black hole and the emitted particles — mass, energy and angular momentum. In the presence of quantum gravity effects, for the emission of scalar particles, the Hawking radiation and thermodynamics of rotating BTZ black hole are observed to be related to the metric element, hence to the curvature of space-time.
Charged BTZ-like black hole solutions and the diffusivity-butterfly velocity relation
Ge, Xian-Hui; Sin, Sang-Jin; Tian, Yu; Wu, Shao-Feng; Wu, Shang-Yu
2018-01-01
We show that there exists a class of charged BTZ-like black hole solutions in Lifshitz spacetime with a hyperscaling violating factor. The charged BTZ black hole is characterized by a charge-dependent logarithmic term in the metric function. As concrete examples, we give five such charged BTZ-like black hole solutions and the standard charged BTZ metric can be regarded as a special instance of them. In order to check the recent proposed universal relations between diffusivity and the butterfly velocity, we first compute the diffusion constants of the standard charged BTZ black holes and then extend our calculation to arbitrary dimension d, exponents z and θ. Remarkably, the case d = θ and z = 2 is a very special in that the charge diffusion D c is a constant and the energy diffusion D e might be ill-defined, but v B 2 τ diverges. We also compute the diffusion constants for the case that the DC conductivity is finite but in the absence of momentum relaxation.
Fermion Fields in BTZ Black Hole Space-Time and Entanglement Entropy
Directory of Open Access Journals (Sweden)
Dharm Veer Singh
2015-01-01
Full Text Available We study the entanglement entropy of fermion fields in BTZ black hole space-time and calculate prefactor of the leading and subleading terms and logarithmic divergence term of the entropy using the discretized model. The leading term is the standard Bekenstein-Hawking area law and subleading term corresponds to first quantum corrections in black hole entropy. We also investigate the corrections to entanglement entropy for massive fermion fields in BTZ space-time. The mass term does not affect the area law.
Quasinormal modes of BTZ black hole and Hawking-like radiation in graphene
Energy Technology Data Exchange (ETDEWEB)
Kandemir, B.S.; Ertem, Uemit [Department of Physics, Ankara University, Faculty of Sciences, 06100, Tandogan-Ankara (Turkey)
2017-04-15
The Banados-Teitelboim-Zanelli (BTZ) black hole model corresponds to a solution of (2+1)-dimensional Einstein gravity with negative cosmological constant, and by a conformal rescaling its metric can be mapped onto the hyperbolic pseudosphere surface (Beltrami trumpet) with negative curvature. Beltrami trumpet shaped graphene sheets have been predicted to emit Hawking radiation that is experimentally detectable by a scanning tunnelling microscope. Here, for the first time we present an analytical algorithm that allows variational solutions to the Dirac Hamiltonian of graphene pseudoparticles in BTZ black hole gravitational field by using an approach based on the formalism of pseudo-Hermitian Hamiltonians within a discrete-basis-set method. We show that our model not only reproduces the exact results for the real part of quasinormal mode frequencies of (2+1)-dimensional spinless BTZ black hole, but also provides analytical results for the real part of quasinormal modes of spinning BTZ black hole, and also offers some predictions for the observable effects with a view to gravity-like phenomena in a curved graphene sheet. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Quasi-normal modes of extremal BTZ black holes in TMG
Afshar, Hamid R.; Alishahiha, Mohsen; Mosaffa, Amir E.
2010-08-01
We study the spectrum of tensor perturbations on extremal BTZ black holes in topologically massive gravity for arbitrary values of the coefficient of the Chern-Simons term, μ. Imposing proper boundary conditions at the boundary of the space and at the horizon, we find that the spectrum contains quasi-normal modes.
Geometrical Method for Thermal Instability of Nonlinearly Charged BTZ Black Holes
International Nuclear Information System (INIS)
Panahiyan, Shahram; Hendi, Seyed Hossein; Eslam Panah, Behzad
2015-01-01
We consider three-dimensional BTZ black holes with three models of nonlinear electrodynamics as source. Calculating heat capacity, we study the stability and phase transitions of these black holes. We show that Maxwell, logarithmic, and exponential theories yield only type one phase transition which is related to the root(s) of heat capacity, whereas, for correction form of nonlinear electrodynamics, heat capacity contains two roots and one divergence point. Next, we use geometrical approach for studying classical thermodynamical behavior of the system. We show that Weinhold and Ruppeiner metrics fail to provide fruitful results and the consequences of the Quevedo approach are not completely matched to the heat capacity results. Then, we employ a new metric for solving this problem. We show that this approach is successful and all divergencies of its Ricci scalar and phase transition points coincide. We also show that there is no phase transition for uncharged BTZ black holes.
Absorption and radiation of nonminimally coupled scalar field from charged BTZ black hole
Huang, Lu; Chen, Juhua; Wang, Yongjiu
2018-06-01
In this paper we investigate the absorption and radiation of nonminimally coupled scalar field from the charged BTZ black hole. We find the analytical expressions for the reflection coefficient, the absorption cross section and the decay rate in strong coupling case. We find that the reflection coefficient is directly governed by Hawking temperature TH, scalar wave frequency ω , Bekenstein-Hawking entropy S_{BH}, angular momentum m and coupling constant ξ.
Scrambling time from local perturbations of the eternal BTZ black hole
Energy Technology Data Exchange (ETDEWEB)
Caputa, Paweł [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, Stockholm, SE-106 91 (Sweden); Simón, Joan; Štikonas, Andrius [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,King’s Buildings, Edinburgh, EH9 3FD (United Kingdom); Takayanagi, Tadashi [Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo,5-1-5 Kashiwanoha, Kashiwa, 277-8583 (Japan); Watanabe, Kento [Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502 (Japan)
2015-08-04
We compute the mutual information between finite intervals in two non-compact 2d CFTs in the thermofield double formulation after one of them has been locally perturbed by a primary operator at some time t{sub ω} in the large c limit. We determine the time scale, called the scrambling time, at which the mutual information vanishes and the original entanglement between the thermofield double gets destroyed by the perturbation. We provide a holographic description in terms of a free falling particle in the eternal BTZ black hole that exactly matches our CFT calculations. Our results hold for any time t{sub ω}. In particular, when the latter is large, they reproduce the bulk shock-wave propagation along the BTZ horizon description.
Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.
2017-10-01
Using a thin shell, the first law of thermodynamics, and a unified approach, we study the thermodymanics and find the entropy of a (2 +1 )-dimensional extremal rotating Bañados-Teitelbom-Zanelli (BTZ) black hole. The shell in (2 +1 ) dimensions, i.e., a ring, is taken to be circularly symmetric and rotating, with the inner region being a ground state of the anti-de Sitter spacetime and the outer region being the rotating BTZ spacetime. The extremal BTZ rotating black hole can be obtained in three different ways depending on the way the shell approaches its own gravitational or horizon radius. These ways are explicitly worked out. The resulting three cases give that the BTZ black hole entropy is either the Bekenstein-Hawking entropy, S =A/+ 4 G , or an arbitrary function of A+, S =S (A+) , where A+=2 π r+ is the area, i.e., the perimeter, of the event horizon in (2 +1 ) dimensions. We speculate that the entropy of an extremal black hole should obey 0 ≤S (A+)≤A/+ 4 G . We also show that the contributions from the various thermodynamic quantities, namely, the mass, the circular velocity, and the temperature, for the entropy in all three cases are distinct. This study complements the previous studies in thin shell thermodynamics and entropy for BTZ black holes. It also corroborates the results found for a (3 +1 )-dimensional extremal electrically charged Reissner-Nordström black hole.
Black strings and classical hair
International Nuclear Information System (INIS)
Horowitz, G.T.; Yang, H.
1997-01-01
We examine the geometry near the event horizon of a family of black string solutions with traveling waves. It has previously been shown that the metric is continuous there. Contrary to expectations, we find that the geometry is not smooth, and the horizon becomes singular whenever a wave is present. Both five-dimensional and six-dimensional black strings are considered with similar results. copyright 1997 The American Physical Society
Thermodynamics of charged dilatonic BTZ black holes in rainbow gravity
Dehghani, M.
2018-02-01
In this paper, the charged three-dimensional Einstein's theory coupled to a dilatonic field has been considered in the rainbow gravity. The dilatonic potential has been written as the linear combination of two Liouville-type potentials. Four new classes of charged dilatonic rainbow black hole solutions, as the exact solution to the coupled field equations of the energy dependent space time, have been obtained. Two of them are correspond to the Coulomb's electric field and the others are consequences of a modified Coulomb's law. Total charge and mass as well as the entropy, temperature and electric potential of the new charged black holes have been calculated in the presence of rainbow functions. Although the thermodynamic quantities are affected by the rainbow functions, it has been found that the first law of black hole thermodynamics is still valid for all of the new black hole solutions. At the final stage, making use of the canonical ensemble method and regarding the black hole heat capacity, the thermal stability or phase transition of the new rainbow black hole solutions have been analyzed.
Thermodynamics of charged dilatonic BTZ black holes in rainbow gravity
Directory of Open Access Journals (Sweden)
M. Dehghani
2018-02-01
Full Text Available In this paper, the charged three-dimensional Einstein's theory coupled to a dilatonic field has been considered in the rainbow gravity. The dilatonic potential has been written as the linear combination of two Liouville-type potentials. Four new classes of charged dilatonic rainbow black hole solutions, as the exact solution to the coupled field equations of the energy dependent space time, have been obtained. Two of them are correspond to the Coulomb's electric field and the others are consequences of a modified Coulomb's law. Total charge and mass as well as the entropy, temperature and electric potential of the new charged black holes have been calculated in the presence of rainbow functions. Although the thermodynamic quantities are affected by the rainbow functions, it has been found that the first law of black hole thermodynamics is still valid for all of the new black hole solutions. At the final stage, making use of the canonical ensemble method and regarding the black hole heat capacity, the thermal stability or phase transition of the new rainbow black hole solutions have been analyzed.
Cosmic strings and black holes
International Nuclear Information System (INIS)
Aryal, M.; Ford, L.H.; Vilenkin, A.
1986-01-01
The metric for a Schwarzschild black hole with a cosmic string passing through it is discussed. The thermodynamics of such an object is considered, and it is shown that S = (1/4)A, where S is the entropy and A is the horizon area. It is noted that the Schwarzschild mass parameter M, which is the gravitational mass of the system, is no longer identical to its energy. A solution representing a pair of black holes held apart by strings is discussed. It is nearly identical to a static, axially symmetric solution given long ago by Bach and Weyl. It is shown how these solutions, which were formerly a mathematical curiosity, may be given a more physical interpretation in terms of cosmic strings
A SIMPLE DERIVATION OF FINITE-TEMPERATURE CFT CORRELATORS FROM THE BTZ BLACK HOLE
Directory of Open Access Journals (Sweden)
Satoshi Ohya
2014-04-01
Full Text Available We present a simple Lie-algebraic approach to momentum-space two-point functions of two-dimensional conformal field theory at finite temperature dual to the BTZ black hole. Making use of the real-time prescription of AdS/CFT correspondence and ladder equations of the Lie algebra so(2,2 ∼= sl(2,RL⊕sl(2,RR, we show that the finite-temperature two-point functions in momentum space satisfy linear recurrence relations with respect to the left and right momenta. These recurrence relations are exactly solvable and completely determine the momentum-dependence of retarded and advanced two-point functions of finite-temperature conformal field theory.
Energy Technology Data Exchange (ETDEWEB)
Hubeny, V.
2005-01-12
We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.
International Nuclear Information System (INIS)
Rocha, Jorge V.; Cardoso, Vitor
2011-01-01
We analyze the gravitational perturbations induced by particles falling into a three dimensional, asymptotically AdS black hole geometry. More specifically, we solve the linearized perturbation equations obtained from the geodesic motion of a ringlike distribution of test particles in the BTZ background. This setup ensures that the U(1) symmetry of the background is preserved. The nonasymptotic flatness of the background raises difficulties in attributing the significance of energy and angular momentum to the conserved quantities of the test particles. This issue is well known but, to the best of our knowledge, has never been addressed in the literature. We confirm that the naive expressions for energy and angular momentum are the correct definitions. Finally, we put an asymptotically AdS version of the weak cosmic censorship to a test: by attempting to overspin the BTZ black hole with test particles it is found that the black hole cannot be spun-up past its extremal limit.
Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.
2017-02-01
In a (2 +1 )-dimensional spacetime with a negative cosmological constant, the thermodynamics and the entropy of an extremal rotating thin shell, i.e., an extremal rotating ring, are investigated. The outer and inner regions with respect to the shell are taken to be the Bañados-Teitelbom-Zanelli (BTZ) spacetime and the vacuum ground state anti-de Sitter spacetime, respectively. By applying the first law of thermodynamics to the extremal thin shell, one shows that the entropy of the shell is an arbitrary well-behaved function of the gravitational area A+ alone, S =S (A+). When the thin shell approaches its own gravitational radius r+ and turns into an extremal rotating BTZ black hole, it is found that the entropy of the spacetime remains such a function of A+, both when the local temperature of the shell at the gravitational radius is zero and nonzero. It is thus vindicated by this analysis that extremal black holes, here extremal BTZ black holes, have different properties from the corresponding nonextremal black holes, which have a definite entropy, the Bekenstein-Hawking entropy S (A+)=A/+4G , where G is the gravitational constant. It is argued that for extremal black holes, in particular for extremal BTZ black holes, one should set 0 ≤S (A+)≤A/+4G;i.e., the extremal black hole entropy has values in between zero and the maximum Bekenstein-Hawking entropy A/+4 G . Thus, rather than having just two entropies for extremal black holes, as previous results have debated, namely, 0 and A/+4 G , it is shown here that extremal black holes, in particular extremal BTZ black holes, may have a continuous range of entropies, limited by precisely those two entropies. Surely, the entropy that a particular extremal black hole picks must depend on past processes, notably on how it was formed. A remarkable relation between the third law of thermodynamics and the impossibility for a massive body to reach the velocity of light is also found. In addition, in the procedure, it
5D Black Holes and Matrix Strings
Dijkgraaf, R; Verlinde, Herman L
1997-01-01
We derive the world-volume theory, the (non)-extremal entropy and background geometry of black holes and black strings constructed out of the NS IIA fivebrane within the framework of matrix theory. The CFT description of strings propagating in the black hole geometry arises as an effective field theory.
Charged anti-de Sitter BTZ black holes in Maxwell-f(T) gravity
Nashed, G. G. L.; Capozziello, S.
2018-05-01
Inspired by the Bañados, Teitelboim and Zanelli (BTZ) formalism, we discuss the Maxwell-f(T) gravity in (2 + 1) dimensions. The main task is to derive exact solutions for a special form of f(T) = T + 𝜖T2, with T being the torsion scalar of Weitzenböck geometry. To this end, a triad field is applied to the equations of motion of charged f(T) and sets of circularly symmetric noncharged and charged solutions have been derived. We show that, in the charged case, the monopole-like and the ln terms are linked by a correlative constant despite the known results in teleparallel geometry and its extensions.39 Furthermore, it is possible to show that the event horizon is not identical with the Cauchy horizon due to such a constant. The singularities and the horizons of these black holes are examined: they are new and have no analogue in the literature due to the fact that their curvature singularities are soft. We calculate the energy content of these solutions by using the general vector form of the energy-momentum within the framework of f(T) gravity. Finally, some thermodynamical quantities, like entropy and Hawking temperature, are derived.
Wavy strings: Black or bright?
International Nuclear Information System (INIS)
Kaloper, N.; Myers, R.C.; Roussel, H.
1997-01-01
Recent developments in string theory have brought forth considerable interest in time-dependent hair on extended objects. This novel new hair is typically characterized by a wave profile along the horizon and angular momentum quantum numbers l,m in the transverse space. In this work, we present an extensive treatment of such oscillating black objects, focusing on their geometric properties. We first give a theorem of purely geometric nature, stating that such wavy hair cannot be detected by any scalar invariant built out of the curvature and/or matter fields. However, we show that the tidal forces detected by an infalling observer diverge at the open-quotes horizonclose quotes of a black string superposed with a vibration in any mode with l≥1. The same argument applied to longitudinal (l=0) waves detects only finite leading-order tidal forces. We also provide an example with a manifestly smooth metric, proving that at least a certain class of these longitudinal waves have regular horizons. copyright 1997 The American Physical Society
String model of black hole microstates
International Nuclear Information System (INIS)
Larsen, F.
1997-01-01
The statistical mechanics of black holes arbitrarily far from extremality is modeled by a gas of weakly interacting strings. As an effective low-energy description of black holes the string model provides several highly nontrivial consistency checks and predictions. Speculations on a fundamental origin of the model suggest surprising simplifications in nonperturbative string theory, even in the absence of supersymmetry. copyright 1997 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Prasia, P.; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Kochi (India)
2017-01-15
In this work we study the Quasi-Normal Modes (QNMs) under massless scalar perturbations and the thermodynamics of linearly charged BTZ black holes in massive gravity in the (Anti)de Sitter ((A)dS) space-time. It is found that the behavior of QNMs changes with the massive parameter of the graviton and also with the charge of the black hole. The thermodynamics of such black holes in the (A)dS space-time is also analyzed in detail. The behavior of specific heat with temperature for such black holes gives an indication of a phase transition that depends on the massive parameter of the graviton and also on the charge of the black hole. (orig.)
Correspondence principle for black holes and strings
International Nuclear Information System (INIS)
Horowitz, G.T.; Polchinski, J.
1997-01-01
For most black holes in string theory, the Schwarzschild radius in string units decreases as the string coupling is reduced. We formulate a correspondence principle, which states that (i) when the size of the horizon drops below the size of a string, the typical black hole state becomes a typical state of strings and D-branes with the same charges, and (ii) the mass does not change abruptly during the transition. This provides a statistical interpretation of black hole entropy. This approach does not yield the numerical coefficient, but gives the correct dependence on mass and charge in a wide range of cases, including neutral black holes. copyright 1997 The American Physical Society
Panotopoulos, Grigoris
2018-06-01
We perturb the non-rotating BTZ black hole with a non-minimally coupled massless scalar field, and we compute the quasinormal spectrum exactly. We solve the radial equation in terms of hypergeometric functions, and we obtain an analytical expression for the quasinormal frequencies. In addition, we compare our analytical results with the 6th order semi-analytical WKB method, and we find an excellent agreement. The impact of the nonminimal coupling as well as of the cosmological constant on the quasinormal spectrum is briefly discussed.
Extremal black holes as exact string solutions
International Nuclear Information System (INIS)
Horowitz, G.T.; Tseytlin, A.A.
1994-01-01
We show that the leading order solution describing an extremal electrically charged black hole in string theory is, in fact, an exact solution to all orders in α' when interpreted in a Kaluza-Klein fashion. This follows from the observation that it can be obtained via dimensional reduction from a five-dimensional background which is proved to be an exact string solution
Near-horizon limit of the charged BTZ black hole and AdS2 quantum gravity
International Nuclear Information System (INIS)
Cadoni, Mariano; Setare, Mohammad R.
2008-01-01
We show that the 3D charged Banados-Teitelboim-Zanelli (BTZ) black hole solution interpolates between two different 2D AdS spacetimes: a near-extremal, near-horizon AdS 2 geometry with constant dilaton and U(1) field and an asymptotic AdS 2 geometry with a linear dilaton. Thus, the charged BTZ black hole can be considered as interpolating between the two different formulations proposed until now for AdS 2 quantum gravity. In both cases the theory is the chiral half of a 2D CFT and describes, respectively, Brown-Hennaux-like boundary deformations and near-horizon excitations. The central charge c as of the asymptotic CFT is determined by 3D Newton constant G and the AdS length l, c as = 3l/G, whereas that of the near-horizon CFT also depends on the U(1) charge Q, c nh ∝lQ/√G.
Perturbative string thermodynamics near black hole horizons
International Nuclear Information System (INIS)
Mertens, Thomas G.; Verschelde, Henri; Zakharov, Valentin I.
2015-01-01
We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work http://dx.doi.org/10.1007/JHEP03(2014)086. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of α ′ -corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large k limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O’Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in g s ) to compute thermodynamical quantities in black hole spacetimes.
Dyonic black hole in heterotic string theory
International Nuclear Information System (INIS)
Jatkar, D.P.; Mukherji, S.
1997-01-01
We study some features of the dyonic black hole solution in heterotic string theory on a six-torus. This solution has 58 parameters. Of these, 28 parameters denote the electric charge of the black hole, another 28 correspond to the magnetic charge, and the other two parameters are the mass and the angular momentum of the black hole. We discuss the extremal limit and show that in various limits it reduces to the known black hole solutions. The solutions saturating the Bogomolnyi bound are identified. An explicit solution is presented for the non-rotating dyonic black hole. (orig.)
The black hole interpretation of string theory
Hooft, G. 't
1990-01-01
For scattering processes in which both s and t are significantly larger than the Planck mass we have string theory on the one hand, and on the other hand the physics of black hole formation and decay. Both these descriptions are as yet ill understood. It is argued in this paper that a lot of insight
Black silicon solar cells with black bus-bar strings
DEFF Research Database (Denmark)
Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io
2016-01-01
We present the combination of black silicon texturing and blackened bus-bar strings as a potential method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon was realized by maskless reactive ion etching resulting in total, average reflectance...... below 0.5% across a 156x156 mm2 silicon wafer. Four different methods to obtain blackened bus-bar strings were compared with respect to reflectance, and two of these methods (i.e., oxidized copper and etched solder) were used to fabricate functional allblack solar 9-cell panels. The black bus-bars (e.......g., by oxidized copper) have a reflectance below 3% in the entire visible wavelength range. The combination of black silicon cells and blackened bus-bars results in aesthetic, all-black panels based on conventional, front-contacted solar cells without compromising efficiency....
Black string in dRGT massive gravity
Energy Technology Data Exchange (ETDEWEB)
Tannukij, Lunchakorn [Mahidol University, Department of Physics, Faculty of Science, Bangkok (Thailand); Hanyang University, Department of Physics, Seoul (Korea, Republic of); Naresuan University, The Institute for Fundamental Study, Phitsanulok (Thailand); Wongjun, Pitayuth [Naresuan University, The Institute for Fundamental Study, Phitsanulok (Thailand); Ministry of Education, Thailand Center of Excellence in Physics, Bangkok (Thailand); Ghosh, Suchant G. [Jamia Millia Islamia, Centre of Theoretical Physics, New Delhi (India); University of Kwazulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Durban (South Africa)
2017-12-15
We present a cylindrically symmetric solution, both charged and uncharged, which is known as a black string solution to the nonlinear ghost-free massive gravity found by de Rham, Gabadadze, and Tolley (dRGT). This ''dRGT black string'' can be thought of as a generalization of the black string solution found by Lemos. Moreover, the dRGT black string solution includes other classes of black string solution such as the monopole-black string ones since the graviton mass contributes to the global monopole term as well as the cosmological-constant term. To investigate the solution, we compute mass, temperature, and entropy of the dRGT black string. We found that the existence of the graviton mass drastically affects the thermodynamics of the black string. Furthermore, the Hawking-Page phase transition is found to be possible for the dRGT black string as well as the charged dRGT black string. The dRGT black string solution is thermodynamically stable for r > r{sub c} with negative thermodynamical potential and positive heat capacity while it is unstable for r < r{sub c} where the potential is positive. (orig.)
Black silicon with black bus-bar strings
DEFF Research Database (Denmark)
Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io
2016-01-01
We present the combination of black silicon texturing and blackened bus-bar strings as a potential method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon was realized by mask-less reactive ion etching resulting in total, average reflectance...... below 0.5% across a 156x156 mm2 silicon wafer. Black bus-bars were realized by oxidized copper resulting in reflectance below 3% in the entire visible wavelength range. The combination of these two technologies may result in aesthetic, all-black panels based on conventional, front-contacted solar cells...
Counting states of black strings with traveling waves
International Nuclear Information System (INIS)
Horowitz, G.T.; Marolf, D.
1997-01-01
We consider a family of solutions to string theory which depend on arbitrary functions and contain regular event horizons. They describe six-dimensional extremal black strings with traveling waves and have an inhomogeneous distribution of momentum along the string. The structure of these solutions near the horizon is studied and the horizon area computed. We also count the number of BPS string states at weak coupling whose macroscopic momentum distribution agrees with that of the black string. It is shown that the number of such states is given by the Bekenstein-Hawking entropy of the black string with traveling waves. copyright 1997 The American Physical Society
STU black holes and string triality
International Nuclear Information System (INIS)
Behrndt, K.; Kallosh, R.; Rahmfeld, J.; Shmakova, M.; Wong, W.K.
1996-01-01
We find double-extreme black holes associated with the special geometry of the Calabi-Yau moduli space with the prepotential F=STU. The area formula is STU-moduli independent and has [SL(2,Z)] 3 symmetry in space of charges. The dual version of this theory without a prepotential treats the dilaton S asymmetric vs T,U moduli. We display the dual relation between new (STU) black holes and stringy (S|TU) black holes using a particular Sp(8,Z) transformation. The area formula of one theory equals that of the dual theory when expressed in terms of dual charges. We analyze the relation between (STU) black holes to string triality of black holes: (S|TU), (T|US), (U|ST) solutions. In the democratic STU-symmetric version we find that all three S, T, and U duality symmetries are nonperturbative and mix electric and magnetic charges. copyright 1996 The American Physical Society
STU Black Holes and String Triality
Energy Technology Data Exchange (ETDEWEB)
Shmakova, Marina
2003-05-23
We found double-extreme black holes associated with the special geometry of the Calabi-Yau moduli space with the prepotential F = STU. The area formula is STU-moduli independent and has [SL(2, Z)]{sup 3} symmetry in space of charges. The dual version of this theory without prepotential treats the dilaton S asymmetric versus T,U-moduli. We display the dual relation between new (STU) black holes and stringy (S|TU) black holes using particular Sp(8,Z) transformation. The area formula of one theory equals the area formula of the dual theory when expressed in terms of dual charges. We analyze the relation between (STU) black holes to string triality of black holes: (S|TU), (T|US), (U|ST) solutions. In democratic STU-symmetric version we find that all three S and T and U duality symmetries are non-perturbative and mix electric and magnetic charges.
Rotating black string with nonlinear source
International Nuclear Information System (INIS)
Hendi, S. H.
2010-01-01
In this paper, we derive rotating black string solutions in the presence of two kinds of nonlinear electromagnetic fields, so-called Born-Infeld and power Maxwell invariant. Investigation of the solutions show that for the Born-Infeld black string the singularity is timelike and the asymptotic behavior of the solutions is anti-de Sitter, but for power Maxwell invariant solutions, depending on the values of nonlinearity parameter, the singularity may be timelike as well as spacelike and the solutions are not asymptotically anti-de Sitter for all values of the nonlinearity parameter. Next, we calculate the conserved quantities of the solutions by using the counterterm method, and find that these quantities do not depend on the nonlinearity parameter. We also compute the entropy, temperature, the angular velocity, the electric charge, and the electric potential of the solutions, in which the conserved and thermodynamics quantities satisfy the first law of thermodynamics.
String necklaces and primordial black holes from type IIB strings
International Nuclear Information System (INIS)
Lake, Matthew; Thomas, Steve; Ward, John
2009-01-01
We consider a model of static cosmic string loops in type IIB string theory, where the strings wrap cycles within the internal space. The strings are not topologically stabilised, however the presence of a lifting potential traps the windings giving rise to kinky cycloops. We find that PBH formation occurs at early times in a small window, whilst at late times we observe the formation of dark matter relics in the scaling regime. This is in stark contrast to previous predictions based on field theoretic models. We also consider the PBH contribution to the mass density of the universe, and use the experimental data to impose bounds on the string theory parameters.
Stable black strings in anti-de sitter space
International Nuclear Information System (INIS)
Hirayama, Takayuki
2002-01-01
In my talk I show a black string which is a foliation of anti-de Sitter (AdS) Schwarzschild black hole becomes classically stable if the size of black hole horizon is larger than the AdS radius even if the black string extends infinitely. I will also give a comment on the relation with the Gubser-Mitra conjecture. This talk is based on our paper (Phys. Rev. D64: 064010, 2001) which is a collaboration with Gungwon Kang
Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops
International Nuclear Information System (INIS)
Caldwell, R.R.; Gates, E.
1993-05-01
The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and μ, the cosmic string mass-per-unit-length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and μ is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict μ, and therefore limit the viability of the cosmic string large-scale structure scenario
Horizon strings and interior states of a black hole
Directory of Open Access Journals (Sweden)
K.P. Yogendran
2015-11-01
Full Text Available We provide an explicit construction of classical strings that have endpoints on the horizons of the 2D Lorentzian black hole. We argue that this is a dual description of geodesics that are localized around the horizon which are the Lorentzian counterparts of the winding strings of the Euclidean black hole (the cigar geometry. Identifying these with the states of the black hole, we can expect that issues of black hole information loss can be posed sharply in terms of a fully quantizable string theory.
Stationary strings near a higher-dimensional rotating black hole
International Nuclear Information System (INIS)
Frolov, Valeri P.; Stevens, Kory A.
2004-01-01
We study stationary string configurations in a space-time of a higher-dimensional rotating black hole. We demonstrate that the Nambu-Goto equations for a stationary string in the 5D (five-dimensional) Myers-Perry metric allow a separation of variables. We present these equations in the first-order form and study their properties. We prove that the only stationary string configuration that crosses the infinite redshift surface and remains regular there is a principal Killing string. A worldsheet of such a string is generated by a principal null geodesic and a timelike at infinity Killing vector field. We obtain principal Killing string solutions in the Myers-Perry metrics with an arbitrary number of dimensions. It is shown that due to the interaction of a string with a rotating black hole, there is an angular momentum transfer from the black hole to the string. We calculate the rate of this transfer in a space-time with an arbitrary number of dimensions. This effect slows down the rotation of the black hole. We discuss possible final stationary configurations of a rotating black hole interacting with a string
Black strings, low viscosity fluids, and violation of cosmic censorship.
Lehner, Luis; Pretorius, Frans
2010-09-03
We describe the behavior of 5-dimensional black strings, subject to the Gregory-Laflamme instability. Beyond the linear level, the evolving strings exhibit a rich dynamics, where at intermediate stages the horizon can be described as a sequence of 3-dimensional spherical black holes joined by black string segments. These segments are themselves subject to a Gregory-Laflamme instability, resulting in a self-similar cascade, where ever-smaller satellite black holes form connected by ever-thinner string segments. This behavior is akin to satellite formation in low-viscosity fluid streams subject to the Rayleigh-Plateau instability. The simulation results imply that the string segments will reach zero radius in finite asymptotic time, whence the classical space-time terminates in a naked singularity. Since no fine-tuning is required to excite the instability, this constitutes a generic violation of cosmic censorship.
Black holes, strings and quantum gravity
International Nuclear Information System (INIS)
Maldacena, Juan
2001-01-01
Most physical phenomena can be explained by 'Quantum Mechanics' and 'Einstein Theory of Gravity'. Quantum mechanics is needed for descriptions involving small objects (atoms, nuclei, molecules, etc.) whereas gravity is required for understanding big objects (planets, galaxies). Since, usually small objects are light while big ones are heavy, when one theory is called for, the other is not relevant. Interestingly enough, if we pretend to use both theories simultaneously, for instance when small and very heavy objects are considered (as those in the beginning of our universe), we find that they are mutually inconsistent. Thus, a new theory, so called 'Quantum Gravity', is needed. This works comments on above inconsistencies and indicates how the string theory, rather than a pointlike particle theory, could provide us with a quantum theory of gravity. Though a discussion of black holes it shows us how a string theory on certain space, ca be equivalently described by a particle theory on its boundary, like a sort of hologram. (author)
The electrically charged BTZ black hole with self (anti-self) dual Maxwell field
International Nuclear Information System (INIS)
Kamata, M.; Koikawa, T.
1995-04-01
The Einstein-Maxwell equations with a negative cosmological constant Λ in 2 + 1 spacetime dimensions discussed by Banados, Teitelboim and Zanelli are solved by assuming a self (anti-self) dual equation E r-circumflex = ± B -circumflex , which is imposed on the orthonormal basis components of the electric field E r-circumflex and the magnetic field B -circumflex . This solution describes an electrically charged extra black hole with mass M=8πGQ 2 e , angular momentum J = ±8πGQ 2 e / modul Λ 1/2 and electric charge Q e . Although the coordinate components of the electric field E r and the magnetic field B have singularities on the horizon at r (4πGQ 2 e / modul Λ) 1/2 , the spacetime has the same value of constant negative curvature R = 6Λ as that of Banados et al. (author). 5 refs
Measuring the $W$-hair of String Black Holes
Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John
1992-01-01
We have argued previously that the infinitely many gauge symmetries of string theory provide an infinite set of conserved (gauge) quantum numbers ($W$-hair) which characterise black hole states and maintain quantum coherence. Here we study ways of measuring the $W$-hair of spherically-symmetric four-dimensional objects with event horizons, treated as effectively two-dimensional string black holes. Measurements can be done either through the s-wave scattering of light particles off the string black-hole background, or through interference experiments of Aharonov-Bohm type. In the first type of measurement, selection rules
Quantum aspects of black objects in string theory
Energy Technology Data Exchange (ETDEWEB)
Hyakutake, Yoshifumi [College of Science, Ibaraki University,Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan)
2017-01-17
One of important directions in superstring theory is to reveal the quantum nature of black hole. In this paper we embed Schwarzschild black hole into superstring theory or M-theory, which we call a smeared black hole, and resolve quantum corrections to it. Furthermore we boost the smeared black hole along the 11th direction and construct a smeared quantum black 0-brane in 10 dimensions. Quantum aspects of the thermodynamic for these black objects are investigated in detail. We also discuss radiations of a string and a D0-brane from the smeared quantum black 0-brane.
Quantum hair and the string-black hole correspondence
Veneziano, Gabriele
2013-01-01
We consider a thought experiment in which an energetic massless string probes a "stringhole" (a heavy string lying on the correspondence curve between strings and black holes) at large enough impact parameter for the regime to be under theoretical control. The corresponding, explicitly unitary, $S$-matrix turns out to be perturbatively sensitive to the microstate of the stringhole: in particular, at leading order in $l_s/b$, it depends on a projection of the stringhole's Lorentz-contracted quadrupole moment. The string-black hole correspondence is therefore violated if one assumes quantum hair to be exponentially suppressed as a function of black-hole entropy. Implications for the information paradox are briefly discussed.
Thermodynamical aspect of black hole solutions in heteric string theory
Fujisaki, H
2003-01-01
Thermodynamical properties of charged rotating dilatonic black holes are discussed on the basis of the general solution of Sen in the heterotic string theory compactified on a six dimensional torus. The most probable microcanonical configuration of black holes is then described in the single-massive-mode dominance scenario.
Rotating Dilaton Black Strings Coupled to Exponential Nonlinear Electrodynamics
Directory of Open Access Journals (Sweden)
Ahmad Sheykhi
2014-01-01
Full Text Available We construct a new class of charged rotating black string solutions coupled to dilaton and exponential nonlinear electrodynamic fields with cylindrical or toroidal horizons in the presence of a Liouville-type potential for the dilaton field. Due to the presence of the dilaton field, the asymptotic behaviors of these solutions are neither flat nor (AdS. We analyze the physical properties of the solutions in detail. We compute the conserved and thermodynamic quantities of the solutions and verify the first law of thermodynamics on the black string horizon. When the nonlinear parameter β2 goes to infinity, our results reduce to those of black string solutions in Einstein-Maxwell-dilaton gravity.
Energy Technology Data Exchange (ETDEWEB)
Lake, Matthew J. [The Institute for Fundamental Study, ' ' The Tah Poe Academia Institute' ' , Naresuan University, Phitsanulok (Thailand); Thailand Center of Excellence in Physics, Ministry of Education, Bangkok (Thailand); Harko, Tiberiu [Department of Physics, Babes-Bolyai University, Cluj-Napoca (Romania); Department of Mathematics, University College London (United Kingdom)
2017-10-15
The discovery of a large number of supermassive black holes (SMBH) at redshifts z > 6, when the Universe was only 900 million years old, raises the question of how such massive compact objects could form in a cosmologically short time interval. Each of the standard scenarios proposed, involving rapid accretion of seed black holes or black hole mergers, faces severe theoretical difficulties in explaining the short-time formation of supermassive objects. In this work we propose an alternative scenario for the formation of SMBH in the early Universe, in which energy transfer from superconducting cosmic strings piercing small seed black holes is the main physical process leading to rapid mass increase. As a toy model, the accretion rate of a seed black hole pierced by two antipodal strings carrying constant current is considered. Using an effective action approach, which phenomenologically incorporates a large class of superconducting string models, we estimate the minimum current required to form SMBH with masses of order M = 2 x 10{sup 9} M {sub CircleDot} by z = 7.085. This corresponds to the mass of the central black hole powering the quasar ULAS J112001.48+064124.3 and is taken as a test case scenario for early-epoch SMBH formation. For GUT scale strings, the required fractional increase in the string energy density, due to the presence of the current, is of order 10{sup -7}, so that their existence remains consistent with current observational bounds on the string tension. In addition, we consider an ''exotic'' scenario, in which an SMBH is generated when a small seed black hole is pierced by a higher-dimensional F-string, predicted by string theory. We find that both topological defect strings and fundamental strings are able to carry currents large enough to generate early-epoch SMBH via our proposed mechanism. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Testing effective string models of black holes with fixed scalars
International Nuclear Information System (INIS)
Krasnitz, M.; Klebanov, I.R.
1997-01-01
We solve the problem of mixing between the fixed scalar and metric fluctuations. First, we derive the decoupled fixed scalar equation for the four-dimensional black hole with two different charges. We proceed to the five-dimensional black hole with different electric (one-brane) and magnetic (five-brane) charges, and derive two decoupled equations satisfied by appropriate mixtures of the original fixed scalar fields. The resulting greybody factors are proportional to those that follow from coupling to dimension (2,2) operators on the effective string. In general, however, the string action also contains couplings to chiral operators of dimension (1,3) and (3,1), which cause disagreements with the semiclassical absorption cross sections. Implications of this for the effective string models are discussed. copyright 1997 The American Physical Society
Entropy Corrections for a Charged Black Hole of String Theory*
Institute of Scientific and Technical Information of China (English)
Alexis Larra(n)aga
2011-01-01
We study the entropy of the Gibbons-Macda-Garfinkle-Horowitz-Strominger (GMGHS) charged black hole, originated from the effective action that emerges in the low-energy of string theory, beyond semiclassical approximations. Applying the properties of exact differentials for three variables to the first law thermodynamics ve derive the quantum corrections to the entropy of the black hole. The leading (logarithmic) and non leading corrections to the area law are obtained.
On the black hole interior in string theory
Energy Technology Data Exchange (ETDEWEB)
Ben-Israel, Roy [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel); Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan; Liram, Lior [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel)
2017-05-17
The potential behind the horizon of an eternal black hole in classical theories is described in terms of data that is available to an external observer — the reflection coefficient of a wave that scatters on the black hole. In GR and perturbative string theory (in α{sup ′}), the potential is regular at the horizon and it blows up at the singularity. The exact reflection coefficient, that is known for the SL(2,ℝ){sub k}/U(1) black hole and includes non-perturbative α{sup ′} effects, seems however to imply that there is a highly non-trivial structure just behind the horizon.
Radiation from a class of string theoretic black holes
International Nuclear Information System (INIS)
de Alwis, S.P.; Sato, K.
1997-01-01
The emission of a scalar with low energy ω, from a D- (4≤D≤8) dimensional black hole with n charges, is studied in both string and semiclassical calculations. In the lowest order in ω, the weak coupling string and semiclassical calculations agree provided that the Bekenstein-Hawking formula is valid and the effective central charge c eff =6 for any D. When the next order in ω is considered, however, there is no agreement between the two schemes unless D=5, n=3 or D=4, n=4. copyright 1997 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Hyakutake, Yoshifumi [Faculty of Science, Ibaraki University,Bunkyo 2-1-1, Mito, Ibaraki, 310-8512 (Japan)
2015-09-11
We take into account higher derivative R{sup 4} corrections in M-theory and construct quantum black hole and black string solutions in 11 dimensions up to the next leading order. The quantum black string is stretching along the 11th direction and the Gregory-Laflamme instability is examined at the quantum level. Thermodynamics of the boosted quantum black hole and black string are also discussed. Especially we take the near horizon limit of the quantum black string and investigate its instability quantitatively.
Distortion of Schwarzschild-anti-de Sitter black holes to black strings
International Nuclear Information System (INIS)
Tomimatsu, Akira
2005-01-01
Motivated by the existence of black holes with various topologies in four-dimensional spacetimes with a negative cosmological constant, we study axisymmetric static solutions describing any large distortions of Schwarzschild-anti-de Sitter black holes parametrized by the mass m. Under the approximation such that m is much larger than the anti-de Sitter radius, it is found that a cylindrically symmetric black string is obtained as a special limit of distorted spherical black holes. Such a prolonged distortion of the event horizon connecting a Schwarzschild-anti-de Sitter black hole to a black string is allowed without violating both the usual black hole thermodynamics and the hoop conjecture for the horizon circumference
Wilson lines for AdS5 black strings
International Nuclear Information System (INIS)
Hristov, Kiril; Katmadas, Stefanos
2015-01-01
We describe a simple method of extending AdS 5 black string solutions of 5d gauged supergravity in a supersymmetric way by addition of Wilson lines along a circular direction in space. When this direction is chosen along the string, and due to the specific form of 5d supergravity that features Chern-Simons terms, the existence of magnetic charges automatically generates conserved electric charges in a 5d analogue of the Witten effect. Therefore we find a rather generic, model-independent way of adding electric charges to already existing solutions with no backreaction from the geometry or breaking of any symmetry. We use this method to explicitly write down more general versions of the Benini-Bobev black strings (http://dx.doi.org/10.1103/PhysRevLett.110.061601, http://dx.doi.org/10.1007/JHEP06(2013)005) and comment on the implications for the dual field theory and the similarities with generalizations of the Cacciatori-Klemm black holes (http://dx.doi.org/10.1007/JHEP01(2010)085) in AdS 4 .
Remarks on Remnants by Fermions’ Tunnelling from Black Strings
Directory of Open Access Journals (Sweden)
Deyou Chen
2014-01-01
Full Text Available Hawking’s calculation is unable to predict the final stage of the black hole evaporation. When effects of quantum gravity are taken into account, there is a minimal observable length. In this paper, we investigate fermions’ tunnelling from the charged and rotating black strings. With the influence of the generalized uncertainty principle, the Hawking temperatures are not only determined by the rings, but also affected by the quantum numbers of the emitted fermions. Quantum gravity corrections slow down the increases of the temperatures, which naturally leads to remnants left in the evaporation.
Thermodynamics of string black hole with hyperscaling violation
International Nuclear Information System (INIS)
Sadeghi, J.; Pourhassan, B.; Asadi, A.
2014-01-01
In this paper, we start with a black brane and construct a specific space-time which violates hyperscaling. To obtain the string solution, we apply the Null-Melvin Twist and KK reduction. Using the difference action method, we study the thermodynamics of the system to obtain a Hawking-Page phase transition. To have hyperscaling violation, we need to consider θ = (d)/(2). In this case, the free energy F is always negative and our solution is thermal radiation without a black hole. Therefore, we find that there is no Hawking-Page transition. Also, we discuss the stability of the system and all thermodynamical quantities. (orig.)
Entanglement interpretation of black hole entropy in string theory
International Nuclear Information System (INIS)
Brustein, Ram; Einhorn, Martin B.; Yarom, Amos
2006-01-01
We show that the entropy resulting from the counting of microstates of non extremal black holes using field theory duals of string theories can be interpreted as arising from entanglement. The conditions for making such an interpretation consistent are discussed. First, we interpret the entropy (and thermodynamics) of spacetimes with non degenerate, bifurcating Killing horizons as arising from entanglement. We use a path integral method to define the Hartle-Hawking vacuum state in such spacetimes and discuss explicitly its entangled nature and its relation to the geometry. If string theory on such spacetimes has a field theory dual, then, in the low-energy, weak coupling limit, the field theory state that is dual to the Hartle-Hawking state is a thermofield double state. This allows the comparison of the entanglement entropy with the entropy of the field theory dual, and thus, with the Bekenstein-Hawking entropy of the black hole. As an example, we discuss in detail the case of the five dimensional anti-de Sitter, black hole spacetime
Rotating black string and the effective Teukolsky equation in the braneworld
International Nuclear Information System (INIS)
Kanno, Sugumi; Soda, Jiro
2004-01-01
In the Randall-Sundrum two-brane (RS1) model, a large Kerr black hole on the brane can be naturally identified with a section of a rotating black string. To estimate Kaluza-Klein (KK) corrections on gravitational waves emitted by perturbed rotating black strings, we give the effective Teukolsky equation on the brane, which is a separable equation and hence numerically manageable. In this process, we derive the master equation for the electric part of the Weyl tensor, E μν , which is also useful in discussing the transition from black strings to localized black holes triggered by Gregory-Laflamme instability
String propagation in an exact four-dimensional black hole background
International Nuclear Information System (INIS)
Mahapatra, S.
1997-01-01
We study string propagation in an exact, stringy, four-dimensional dyonic black hole background. The exact solutions in terms of elliptic functions describing string configurations in the J=0 limit are obtained by solving the string equations of motion and constraints. By using the covariant formalism, we also investigate the propagation of physical perturbations along the string in the given curved background. copyright 1997 The American Physical Society
Thermodynamics and stability of flat anti-de Sitter black strings
International Nuclear Information System (INIS)
Chen Si; Schleich, Kristin; Witt, Donald M.
2008-01-01
We examine the thermodynamics and stability of 5-dimensional flat anti-de Sitter (AdS) black strings, locally asymptotically anti-de Sitter spacetimes whose spatial sections are AdS black holes with Ricci flat horizons. We find that there is a phase transition for the flat AdS black string when the AdS soliton string is chosen as the thermal background. We find that this bulk phase transition corresponds to a 4-dimensional flat AdS black hole to AdS soliton phase transition on the boundary Karch-Randall branes. We compute the possibility of a phase transition from a flat AdS black string to a 5-dimensional AdS soliton and show that, though possible for certain thin black strings, the transition to the AdS soliton string is preferred. In contrast to the case of the Schwarzschild-AdS black string, we find that the specific heat of the flat AdS black string is always positive; hence it is thermodynamically stable. We show numerically that both the flat AdS black string and AdS soliton string are free of a Gregory-Laflamme instability for all values of the mass parameter. Therefore thermodynamic stability implies perturbative stability for this spacetime. This may indicate that a generalization of the Gubser-Mitra conjecture, in which the assumption of a translational killing vector is weakened to that of a conformal killing vector of translational form, holds under certain conditions.
Dynamical black holes in low-energy string theory
Energy Technology Data Exchange (ETDEWEB)
Aniceto, Pedro [Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049 Lisboa (Portugal); Rocha, Jorge V. [Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)
2017-05-08
We investigate time-dependent spherically symmetric solutions of the four-dimensional Einstein-Maxwell-axion-dilaton system, with the dilaton coupling that occurs in low-energy effective heterotic string theory. A class of dilaton-electrovacuum radiating solutions with a trivial axion, previously found by Güven and Yörük, is re-derived in a simpler manner and its causal structure is clarified. It is shown that such dynamical spacetimes featuring apparent horizons do not possess a regular light-like past null infinity or future null infinity, depending on whether they are radiating or accreting. These solutions are then extended in two ways. First we consider a Vaidya-like generalisation, which introduces a null dust source. Such spacetimes are used to test the status of cosmic censorship in the context of low-energy string theory. We prove that — within this family of solutions — regular black holes cannot evolve into naked singularities by accreting null dust, unless standard energy conditions are violated. Secondly, we employ S-duality to derive new time-dependent dyon solutions with a nontrivial axion turned on. Although they share the same causal structure as their Einstein-Maxwell-dilaton counterparts, these solutions possess both electric and magnetic charges.
Entropy of a rotating and charged black string to all orders in the Planck length
International Nuclear Information System (INIS)
Ren, Zhao; Yue-Qin, Wu; Li-Chun, Zhang
2009-01-01
By using the entanglement entropy method, this paper calculates the statistical entropy of the Bose and Fermi fields in thin films, and derives the Bekenstein–Hawking entropy and its correction term on the background of a rotating and charged black string. Here, the quantum field is entangled with quantum states in the black string and thin film to the event horizon from outside the rotating and charged black string. Taking into account the effect of the generalized uncertainty principle on quantum state density, it removes the difficulty of the divergence of state density near the event horizon in the brick-wall model. These calculations and discussions imply that high density quantum states near the event horizon of a black string are strongly correlated with the quantum states in a black string and that black string entropy is a quantum effect. The ultraviolet cut-off in the brick-wall model is not reasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. From the viewpoint of quantum statistical mechanics, the correction value of Bekenstein–Hawking entropy is obtained. This allows the fundamental recognition of the correction value of black string entropy at nonspherical coordinates
Black branes and black strings in the astrophysical and cosmological context
Akarsu, Özgür; Chopovsky, Alexey; Zhuk, Alexander
2018-03-01
We consider Kaluza-Klein models where internal spaces are compact flat or curved Einstein spaces. This background is perturbed by a compact gravitating body with the dust-like equation of state (EoS) in the external/our space and an arbitrary EoS parameter Ω in the internal space. Without imposing any restrictions on the form of the perturbed metric and the distribution of the perturbed energy densities, we perform the general analysis of the Einstein and conservation equations in the weak-field limit. All conclusions follow from this analysis. For example, we demonstrate that the perturbed model is static and perturbed metric preserves the block-diagonal form. In a particular case Ω = - 1 / 2, the found solution corresponds to the weak-field limit of the black strings/branes. The black strings/branes are compact gravitating objects which have the topology (four-dimensional Schwarzschild spacetime) × (d-dimensional internal space) with d ≥ 1. We present the arguments in favour of these objects. First, they satisfy the gravitational tests for the parameterized post-Newtonian parameter γ at the same level of accuracy as General Relativity. Second, they are preferable from the thermodynamical point of view. Third, averaging over the Universe, they do not destroy the stabilization of the internal space. These are the astrophysical and cosmological aspects of the black strings/branes.
Is BTZ a separate superselection sector of CTMG?
Energy Technology Data Exchange (ETDEWEB)
Deser, S., E-mail: deser@brandeis.ed [Physics Department, Brandeis University, Waltham, MA 02454 (United States); Lauritsen Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Franklin, J., E-mail: jfrankli@reed.ed [Reed College, Portland, OR 97202 (United States)
2010-10-18
We exhibit exact solutions of (positive) matter coupled to original 'wrong G-sign' cosmological TMG. They all evolve to conical singularity, rather than to black hole - here negative mass - BTZ. This provides evidence that the latter constitute a separate 'superselection' sector, one that unlike in GR, is not reachable by physical sources.
Microscopic Calabi-Yau black holes in string theory
International Nuclear Information System (INIS)
Ansari, Saeid
2011-01-01
In this thesis we study microscopic aspects of Calabi-Yau black holes in string theory. We compute the absorption cross-section of the space-time massless scalars by the worldvolume of D2-branes, wrapped on the S 2 of an AdS 2 x S 2 x CY 3 geometry of a fourdimensional D4-D0 Calabi-Yau black hole. The D2-brane can also have a generic D0 probe-brane charge. However, we restrict ourselves to D2-branes with small D0-charge so that the perturbation theory is applicable. According to the proposed AdS 2 /QM correspondence the candidate for the dual theory is the quantum mechanics of a set of probe D0-branes in the AdS 2 geometry. For small but non-zero probe D0-charge we find the quantum mechanical absorption cross-section seen by an asymptotic anti-de Sitter observer. We repeat the calculations for vanishing probe D0-charge as well and discuss our result by comparing with the classical absorption cross-section. In other project, for a given fourdimensional Calabi-Yau black hole with generic D6-D4-D2-D0 charges we identify a set of supersymmetric branes, which are static or stationary in the global coordinates, of the corresponding eleven-dimensional near horizon geometry. The set of these BPS states, which include the branes partially or fully wrap the horizon, should play a role in understanding the partition function of black holes with D6-charge. (orig.)
Microscopic Calabi-Yau black holes in string theory
Energy Technology Data Exchange (ETDEWEB)
Ansari, Saeid
2011-07-22
In this thesis we study microscopic aspects of Calabi-Yau black holes in string theory. We compute the absorption cross-section of the space-time massless scalars by the worldvolume of D2-branes, wrapped on the S{sup 2} of an AdS{sub 2} x S{sup 2} x CY{sub 3} geometry of a fourdimensional D4-D0 Calabi-Yau black hole. The D2-brane can also have a generic D0 probe-brane charge. However, we restrict ourselves to D2-branes with small D0-charge so that the perturbation theory is applicable. According to the proposed AdS{sub 2}/QM correspondence the candidate for the dual theory is the quantum mechanics of a set of probe D0-branes in the AdS{sub 2} geometry. For small but non-zero probe D0-charge we find the quantum mechanical absorption cross-section seen by an asymptotic anti-de Sitter observer. We repeat the calculations for vanishing probe D0-charge as well and discuss our result by comparing with the classical absorption cross-section. In other project, for a given fourdimensional Calabi-Yau black hole with generic D6-D4-D2-D0 charges we identify a set of supersymmetric branes, which are static or stationary in the global coordinates, of the corresponding eleven-dimensional near horizon geometry. The set of these BPS states, which include the branes partially or fully wrap the horizon, should play a role in understanding the partition function of black holes with D6-charge. (orig.)
Entropy of non-extreme rotating black holes in string theories
International Nuclear Information System (INIS)
Youm, D.
1998-01-01
We formulate the Rindler space description of rotating black holes in string theories. We argue that the comoving frame is the natural frame for studying the thermodynamics of rotating black holes and the statistical analysis of rotating black holes gets simplified in this frame. We also calculate statistical entropies of a general class of rotating black holes in heterotic strings on tori by applying the D-brane description and the correspondence principle. We find at least a qualitative agreement between the Bekenstein-Hawking entropies and the statistical entropies of these black hole solutions. (orig.)
Three-charge black holes and quarter BPS states in Little String Theory
Energy Technology Data Exchange (ETDEWEB)
Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Harvey, Jeffrey; Kutasov, David; Lee, Sungjay [Enrico Fermi Institute and Department of Physics, The University of Chicago,5620 S. Ellis Av., Chicago, Illinois 60637 (United States)
2015-12-22
We show that the system of k NS5-branes wrapping T{sup 4}×S{sup 1} has non-trivial vacuum structure. Different vacua have different spectra of 1/4 BPS states that carry momentum and winding around the S{sup 1}. In one vacuum, such states are described by black holes; in another, they can be thought of as perturbative BPS states in Double Scaled Little String Theory. In general, both kinds of states are present. We compute the degeneracy of perturbative BPS states exactly, and show that it differs from that of the corresponding black holes. We comment on the implication of our results to the black hole microstate program, UV/IR mixing in Little String Theory, string thermodynamics, the string/black hole transition, and other issues.
Einstein-Gauss-Bonnet metrics: black holes, black strings and a staticity theorem
International Nuclear Information System (INIS)
Bogdanos, C.; Charmousis, C.; Gouteraux, B.; Zegers, R.
2009-01-01
We find the general solution of the 6-dimensional Einstein-Gauss-Bonnet equations in a large class of space and time-dependent warped geometries. Several distinct families of solutions are found, some of which include black string metrics, space and time-dependent solutions and black holes with exotic horizons. Among these, some are shown to verify a Birkhoff type staticity theorem, although here, the usual assumption of maximal symmetry on the horizon is relaxed, allowing exotic horizon geometries. We provide explicit examples of such static exotic black holes, including ones whose horizon geometry is that of a Bergman space. We find that the situation is very different from higher-dimensional general relativity, where Einstein spaces are admissible black hole horizons and the associated black hole potential is not even affected. In Einstein-Gauss-Bonnet theory, on the contrary, the non-trivial Weyl tensor of such exotic horizons is exposed to the bulk dynamics through the higher order Gauss-Bonnet term, severely constraining the allowed horizon geometries and adding a novel charge-like parameter to the black hole potential. The latter is related to the Euler characteristic of the four-dimensional horizon and provides, in some cases, additional black hole horizons.
Dynamics of toroidal spiral strings around five-dimensional black holes
International Nuclear Information System (INIS)
Igata, Takahisa; Ishihara, Hideki
2010-01-01
We examine the separability of the Nambu-Goto equation for test strings in a shape of toroidal spiral in a five-dimensional Kerr-AdS black hole. In particular, for a 'Hopf loop' string which is a special class of the toroidal spiral strings, we show the complete separation of variables occurs in two cases, Kerr background and Kerr-AdS background with equal angular momenta. We also obtain the dynamical solution for the Hopf loop around a black hole and for the general toroidal spiral in Minkowski background.
Pair creation of anti-de Sitter black holes on a cosmic string background
International Nuclear Information System (INIS)
Dias, Oscar J.C.
2004-01-01
We analyze the quantum process in which a cosmic string breaks in an anti-de Sitter (AdS) background, and a pair of charged or neutral black holes is produced at the ends of the strings. The energy to materialize and accelerate the pair comes from the string tension. In an AdS background this is the only study done on the process of production of a pair of correlated black holes with spherical topology. The acceleration A of the produced black holes is necessarily greater than √(|Λ|/3), where Λ A bh /4 , where A bh is the black hole horizon area. We also conclude that the general behavior of the pair creation rate with the mass and acceleration of the black holes is similar in the AdS, flat and de Sitter cases, and our AdS results reduce to the ones of the flat case when Λ→0
Evaporation of microscopic black holes in string theory and the bound on species
International Nuclear Information System (INIS)
Dvali, G.; Luest, D.
2010-01-01
We address the question how string compactifications with D-branes are consistent with the black hole bound, which arises in any theory with number of particle species to which the black holes can evaporate. For the Kaluza-Klein particles, both longitudinal and transversal to the D-branes, it is relatively easy to see that the black hole bound is saturated, and the geometric relations can be understood in the language of species-counting. We next address the question of the black hole evaporation into the higher string states and discover, that contrary to the naive intuition, the exponentially growing number of Regge states does not preclude the existence of semi-classical black holes of sub-stringy size. Our analysis indicates that the effective number of string resonances to which such micro black holes evaporate is not exponentially large but is bounded by N = 1/g s 2 , which suggests the interpretation of the well-known relation between the Planck and string scales as the saturation of the black hole bound on the species number. In addition, we also discuss some other issues in D-brane compactifications with a low string scale of order TeV, such as the masses of light moduli fields. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
All or nothing: On the small fluctuations of two-dimensional string theoretic black holes
Energy Technology Data Exchange (ETDEWEB)
Gilbert, Gerald [Univ. of Maryland, College Park, MD (United States); Raiten, Eric [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
1992-10-01
A comprehensive analysis of small fluctuations about two-dimensional string-theoretic and string-inspired black holes is presented. It is shown with specific examples that two-dimensional black holes behave in a radically different way from all known black holes in four dimensions. For both the SL(2,R)/U(1) black hole and the two-dimensional black hole coupled to a massive dilaton with constant field strength, it is shown that there are a {\\it continuous infinity} of solutions to the linearized equations of motion, which are such that it is impossible to ascertain the classical linear response. It is further shown that the two-dimensional black hole coupled to a massive, linear dilaton admits {\\it no small fluctuations at all}. We discuss possible implications of our results for the Callan-Giddings-Harvey-Strominger black hole.
State-Space Geometry, Statistical Fluctuations, and Black Holes in String Theory
Directory of Open Access Journals (Sweden)
Stefano Bellucci
2014-01-01
Full Text Available We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the intrinsic geometry, we offer a state-space perspective to the black hole vacuum fluctuations. For a given black hole entropy, we explicate the intrinsic geometric meaning of the statistical fluctuations, local and global stability conditions, and long range statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, namely, the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From the perspective of statistical fluctuation theory, we offer general remarks, future directions, and open issues towards the intrinsic geometric understanding of the vacuum fluctuations and black holes in string theory.
Time-dependent perturbations in two-dimensional string black holes
Diamandis, G A; Maintas, X N; Mavromatos, Nikolaos E
1992-01-01
We discuss time-dependent perturbations (induced by matter fields) of a black-hole background in tree-level two-dimensional string theory. We analyse the linearized case and show the possibility of having black-hole solutions with time-dependent horizons. The latter exist only in the presence of time-dependent `tachyon' matter fields, which constitute the only propagating degrees of freedom in two-dimensional string theory. For real tachyon field configurations it is not possible to obtain solutions with horizons shrinking to a point. On the other hand, such a possibility seems to be realized in the case of string black-hole models formulated on higher world-sheet genera. We connect this latter result with black hole evaporation/decay at a quantum level.}
On the W-hair of string black holes and the singularity problem
Ellis, John R.; Nanopoulos, Dimitri V.
1992-01-01
We argue that the infinitely many gauge symmetries of string theory provide an infinite set of conserved (gauge) quantum numbers (W-hair) which characterise black hole states and maintain quantum coherence, even during exotic processes like black hole evaporation/decay. We study ways of measuring the W-hair of spherically-symmetric four-dimensional objects with event horizons, treated as effectively two-dimensional string black holes. Measurements can be done either through the s-wave scattering of light particles off the string black-hole background, or through interference experiments of Aharonov-Bohm type. We also speculate on the role of the extended W-symmetries possessed by the topological field theories that describe the region of space-time around a singularity.
Instability of black strings in the third-order Lovelock theory
Giacomini, Alex; Henríquez-Báez, Carla; Lagos, Marcela; Oliva, Julio; Vera, Aldo
2016-05-01
We show that homogeneous black strings of third-order Lovelock theory are unstable under s-wave perturbations. This analysis is done in dimension D =9 , which is the lowest dimension that allows the existence of homogeneous black strings in a theory that contains only the third-order Lovelock term in the Lagrangian. As is the case in general relativity, the instability is produced by long wavelength perturbations and it stands for the perturbative counterpart of a thermal instability. We also provide a comparative analysis of the instabilities of black strings at a fixed radius in general relativity, Gauss-Bonnet, and third-order Lovelock theories. We show that the minimum critical wavelength that triggers the instability grows with the power of the curvature defined in the Lagrangian. The maximum exponential growth during the time of the perturbation is the largest in general relativity and it decreases with the number of curvatures involved in the Lagrangian.
String-theoretic breakdown of effective field theory near black hole horizons
Dodelson, Matthew; Silverstein, Eva
2017-09-01
We investigate the validity of the equivalence principle near horizons in string theory, analyzing the breakdown of effective field theory caused by longitudinal string spreading effects. An experiment is set up where a detector is thrown into a black hole a long time after an early infalling string. Light cone gauge calculations, taken at face value, indicate a detectable level of root-mean-square longitudinal spreading of the initial string as measured by the late infaller. This results from the large relative boost between the string and detector in the near-horizon region, which develops automatically despite their modest initial energies outside the black hole and the weak curvature in the geometry. We subject this scenario to basic consistency checks, using these to obtain a relatively conservative criterion for its detectability. In a companion paper, we exhibit longitudinal nonlocality in well-defined gauge-invariant S-matrix calculations, obtaining results consistent with the predicted spreading albeit not in a direct analog of the black hole process. We discuss applications of this effect to the firewall paradox, and estimate the time and distance scales it predicts for new physics near black hole and cosmological horizons.
F-Theory, spinning black holes and multi-string branches
International Nuclear Information System (INIS)
Haghighat, Babak; Murthy, Sameer; Vafa, Cumrun; Vandoren, Stefan
2016-01-01
We study 5d supersymmetric black holes which descend from strings of generic N=(1,0) supergravity in 6d. These strings have an F-theory realization in 6d as D3 branes wrapping smooth genus g curves in the base of elliptic 3-folds. They enjoy (0,4) worldsheet supersymmetry with an extra SU(2) L current algebra at level g realized on the left-movers. When the smooth curves degenerate they lead to multi-string branches and we find that the microscopic worldsheet theory flows in the IR to disconnected 2d CFTs having different central charges. The single string sector is the one with maximal central charge, which when wrapped on a circle, leads to a 5d spinning BPS black hole whose horizon volume agrees with the leading entropy prediction from the Cardy formula. However, we find new phenomena where this branch meets other branches of the CFT. These include multi-string configurations which have no bound states in 6 dimensions but are bound through KK momenta when wrapping a circle, as well as loci where the curves degenerate to spheres. These loci lead to black hole configurations which can have total angular momentum relative to a Taub-Nut center satisfying J 2 >M 3 and whose number of states, though exponentially large, grows much slower than those of the large spinning black hole.
Classical and quantum aspects of BPS black holes in N=2,D=4 heterotic string compactifications
International Nuclear Information System (INIS)
Rey, S.-J.
1997-01-01
We study classical and quantum aspects of D=4, N=2 BPS black holes for T 2 compactification of D=6, N=1 heterotic string vacua. We extend dynamical relaxation phenomena of moduli fields to a background consisting of a BPS soliton or a black hole and provide a simpler but more general derivation of the Ferrara-Kallosh extremized black hole mass and entropy. We study quantum effects to the BPS black hole mass spectra and to their dynamical relaxation. We show that, despite non-renormalizability of string effective supergravity, the quantum effect modifies BPS mass spectra only through coupling constant and moduli field renormalizations. Based on target-space duality, we establish a perturbative non-renormalization theorem and obtain the exact BPS black hole mass and entropy in terms of the renormalized string loop-counting parameter and renormalized moduli fields. We show that a similar conclusion holds, in the large T 2 limit, for leading non-perturbative correction. We finally discuss implications to type-I and type-IIA Calabi-Yau black holes. (orig.)
Quantum Mechanics and Black Holes in Four-Dimensional String Theory
Ellis, Jonathan Richard; Nanopoulos, Dimitri V
1992-01-01
In previous papers we have shown how strings in a two-dimensional target space reconcile quantum mechanics with general relativity, thanks to an infinite set of conserved quantum numbers, ``W-hair'', associated with topological soliton-like states. In this paper we extend these arguments to four dimensions, by considering explicitly the case of string black holes with radial symmetry. The key infinite-dimensional W-symmetry is associated with the $\\frac{SU(1,1)}{U(1)}$ coset structure of the dilaton-graviton sector that is a model-independent feature of spherically symmetric four-dimensional strings. Arguments are also given that the enormous number of string {\\it discrete (topological)} states account for the maintenance of quantum coherence during the (non-thermal) stringy evaporation process, as well as quenching the large Hawking-Bekenstein entropy associated with the black hole. Defining the latter as the measure of the loss of information for an observer at infinity, who - ignoring the higher string qua...
Rotating circular strings, and infinite non-uniqueness of black rings
International Nuclear Information System (INIS)
Emparan, Roberto
2004-01-01
We present new self-gravitating solutions in five dimensions that describe circular strings, i.e., rings, electrically coupled to a two-form potential (as e.g., fundamental strings do), or to a dual magnetic one-form. The rings are prevented from collapsing by rotation, and they create a field analogous to a dipole, with no net charge measured at infinity. They can have a regular horizon, and we show that this implies the existence of an infinite number of black rings, labeled by a continuous parameter, with the same mass and angular momentum as neutral black rings and black holes. We also discuss the solution for a rotating loop of fundamental string. We show how more general rings arise from intersections of branes with a regular horizon (even at extremality), closely related to the configurations that yield the four-dimensional black hole with four charges. We reproduce the Bekenstein-Hawking entropy of a large extremal ring through a microscopic calculation. Finally, we discuss some qualitative ideas for a microscopic understanding of neutral and dipole black rings. (author)
International Nuclear Information System (INIS)
Setare, M R; Kamali, V
2011-01-01
We show that a BTZ black hole solution of cosmological topological massive gravity has a hidden conformal symmetry. In this regard, we consider the wave equation of a massless scalar field propagating in BTZ spacetime and find that the wave equation could be written in terms of the SL(2, R) quadratic Casimir. From the conformal coordinates, the temperatures of the dual conformal field theories (CFTs) could be read directly. Moreover, we compute the microscopic entropy of the dual CFT by the Cardy formula and find a perfect match to the Bekenstein-Hawking entropy of a BTZ black hole. Then, we consider Galilean conformal algebras (GCA), which arises as a contraction of relativistic conformal algebras (x → εx, t → t, ε → 0). We show that there is a correspondence between GCA 2 on the boundary and contracted BTZ in the bulk. For this purpose we obtain the central charges and temperatures of GCA 2 . Then, we compute the microscopic entropy of the GCA 2 by the Cardy formula and find a perfect match to the Bekenstein-Hawking entropy of a BTZ black hole in a non-relativistic limit. The absorption cross section of a near-region scalar field also matches the microscopic absorption cross section of the dual GCA 2 . So we find further evidence that shows correspondence between a contracted BTZ black hole and two-dimensional GCA.
On black holes, space-time foam and the nature of time in string theory
International Nuclear Information System (INIS)
Mavromatos, N.E.; Grenoble-1 Univ., 74 - Annecy
1993-04-01
It is shown that the light particles in string theory obey an effective quantum mechanics modified by the inclusion of a quantum-gravitational friction term, induced by unavoidable couplings to unobserved massive string states in the space-time foam. This term is related to the W-symmetries that couple light particles to massive solitonic string states in black hole backgrounds, and has a formal similarity to simple models of environmental quantum friction. All properties follow from a definition of target-time as a Renormalization Group scale parameter and the associated (generic) properties of the renormalization group flow. Some experimental consequences, concerning CPT violation detectable in systems that are generally considered as sensitive probes of quantum mechanics (e.g. neutral kaons), are briefly discussed. (author). 52 refs., 1 fig
International Nuclear Information System (INIS)
Peng Junjin; Wu Shuangqing
2008-01-01
Motivated by the success of the recently proposed method of anomaly cancellation to derive Hawking fluxes from black hole horizons of spacetimes in various dimensions, we have further extended the covariant anomaly cancellation method shortly simplified by Banerjee and Kulkarni to explore the Hawking radiation of the (3+1)-dimensional charged rotating black strings and their higher dimensional extensions in anti-de Sitter spacetimes, whose horizons are not spherical but can be toroidal, cylindrical or planar, according to their global identifications. It should be emphasized that our analysis presented here is very general in the sense that the determinant of the reduced (1+1)-dimensional effective metric from these black strings need not be equal to one (√(-g)≠1). Our results indicate that the gauge and energy-momentum fluxes needed to cancel the (1+1)-dimensional covariant gauge and gravitational anomalies are compatible with the Hawking fluxes. Besides, thermodynamics of these black strings are studied in the case of a variable cosmological constant
Glimpses of black hole formation/evaporation in highly inelastic, ultra-planckian string collisions
Addazi, Andrea; Veneziano, Gabriele
2017-02-22
We revisit possible glimpses of black-hole formation by looking at ultra-planckian string-string collisions at very high final-state multiplicity. We compare, in particular, previous results using the optical theorem, the resummation of ladder diagrams at arbitrary loop order, and the AGK cutting rules, with the more recent study of $2 \\rightarrow N$ scattering at $N \\sim s M_P^{-2} \\gg 1$. We argue that some apparent tension between the two approaches disappears once a reinterpretation of the latter's results in terms of suitably defined infrared-safe cross sections is adopted. Under that assumption, the typical final state produced in an ultra-planckian collision does indeed appear to share some properties with those expected from the evaporation of a black hole of mass $\\sqrt{s}$, although no sign of thermalization is seen to emerge at this level of approximation.
Glimpses of black hole formation/evaporation in highly inelastic, ultra-planckian string collisions
Energy Technology Data Exchange (ETDEWEB)
Addazi, Andrea [Dipartimento di Fisica, Università di L’Aquila,67010 Coppito, L’Aquila (Italy); LNGS, Laboratori Nazionali del Gran Sasso,67010 Assergi (Italy); Bianchi, Massimo [Dipartimento di Fisica, Università di Roma Tor Vergata andI.N.F.N. Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Veneziano, Gabriele [Collége de France,11 place M. Berthelot, 75005 Paris (France); Theory Division, CERN,CH-1211 Geneva 23 (Switzerland); Dipartimento di Fisica, Università di Roma La Sapienza,00185 Roma (Italy)
2017-02-22
We revisit possible glimpses of black-hole formation by looking at ultra-planckian string-string collisions at very high final-state multiplicity. We compare, in particular, previous results using the optical theorem, the resummation of ladder diagrams at arbitrary loop order, and the AGK cutting rules, with the more recent study of 2→N scattering at N∼sM{sub P}{sup −2}≫1. We argue that some apparent tension between the two approaches disappears once a reinterpretation of the latter’s results in terms of suitably defined infrared-safe cross sections is adopted. Under that assumption, the typical final state produced in an ultra-planckian collision does indeed appear to share some properties with those expected from the evaporation of a black hole of mass √s, although no sign of thermalization is seen to emerge at this level of approximation.
Stability analysis of thin-shell wormholes from charged black string
Energy Technology Data Exchange (ETDEWEB)
Sharif, M.; Azam, M., E-mail: msharif.math@pu.edu.pk, E-mail: azammath@gmail.com [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan)
2013-04-01
In this paper, we construct thin-shell wormholes from charged black string through cut and paste procedure and investigate its stability. We assume modified generalized Chaplygin gas as a dark energy fluid (exotic matter) present in the thin layer of matter-shell. The stability of these constructed thin-shell wormholes is investigated in the scenario of linear perturbations. We conclude that static stable as well as unstable configurations are possible for cylindrical thin-shell wormholes.
Black-hole information puzzle: a generic string-inspired approach
International Nuclear Information System (INIS)
Nikolic, H.
2008-01-01
Given the insight stemming from string theory, the origin of the black-hole (BH) information puzzle is traced back to the assumption that it is physically meaningful to trace out the density matrix over negative-frequency Hawking particles. Instead, treating them as virtual particles necessarily absorbed by the BH in a manner consistent with the laws of BH thermodynamics, and tracing out the density matrix only over physical BH states, complete evaporation becomes compatible with unitarity. (orig.)
Coloured Black Holes in Higher Curvature String Gravity
Kanti, Panagiota
1997-01-01
We consider the combined Yang Mills-Dilaton-Gravity system in the presence of a Gauss-Bonnet term as it appears in the $4D$ Effective Superstring Action. We give analytical arguments and demonstrate numerically the existence of black hole solutions with non-trivial dilaton and Yang Mills hair for the particular case of SU(2) gauge fields. The thermodynamical properties of the solutions are also discussed.
Black string first order flow in N=2, d=5 abelian gauged supergravity
Energy Technology Data Exchange (ETDEWEB)
Klemm, Dietmar; Petri, Nicolò; Rabbiosi, Marco [Dipartimento di Fisica, Università di Milano andINFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy)
2017-01-25
We derive both BPS and non-BPS first-order flow equations for magnetically charged black strings in five-dimensional N=2 abelian gauged supergravity, using the Hamilton-Jacobi formalism. This is first done for the coupling to vector multiplets only and U(1) Fayet-Iliopoulos (FI) gauging, and then generalized to the case where also hypermultiplets are present, and abelian symmetries of the quaternionic hyperscalar target space are gauged. We then use these results to derive the attractor equations for near-horizon geometries of extremal black strings, and solve them explicitely for the case where the constants appearing in the Chern-Simons term of the supergravity action satisfy an adjoint identity. This allows to compute in generality the central charge of the two-dimensional conformal field theory that describes the black strings in the infrared, in terms of the magnetic charges, the CY intersection numbers and the FI constants. Finally, we extend the r-map to gauged supergravity and use it to relate our flow equations to those in four dimensions.
Entropy Spectrum of Black Holes of Heterotic String Theory via Adiabatic Invariance
Institute of Scientific and Technical Information of China (English)
Alexis Larra？ aga; Luis Cabarique; Manuel Londo？ o
2012-01-01
Using adiabatic invariance and the Bohr-Sommerfeld quantization rule we investigate the entropy spectroscopy of two black holes of heterotic string theory,the charged GMGHS and the rotating Sen solutions.It is shown that the entropy spectrum is equally spaced in both cases,identically to the spectrum obtained before for Schwarzschild,Reissner-Nordstr?m and Kerr black holes.Since the adiabatic invariance method does not use quasinormal mode analysis,there is no need to impose the small charge or small angular momentum limits and there is no confusion on whether the real part or the imaginary part of the modes is responsible for the entropy spectrum.
Echoes of chaos from string theory black holes
Energy Technology Data Exchange (ETDEWEB)
Balasubramanian, Vijay [David Rittenhouse Laboratory, University of Pennsylvania,Philadelphia, PA 19104 (United States); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB),and International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB),and International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Czech, Bartłomiej [Institute for Advanced Study,Princeton, NJ 08540 (United States); Sárosi, Gábor [David Rittenhouse Laboratory, University of Pennsylvania,Philadelphia, PA 19104 (United States); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB),and International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)
2017-03-29
The strongly coupled D1-D5 conformal field theory is a microscopic model of black holes which is expected to have chaotic dynamics. Here, we study the weak coupling limit of the theory where it is integrable rather than chaotic. In this limit, the operators creating microstates of the lowest mass black hole are known exactly. We consider the time-ordered two-point function of light probes in these microstates, normalized by the same two-point function in vacuum. These correlators display a universal early-time decay followed by late-time sporadic behavior. To find a prescription for temporal coarse-graining of these late fluctuations we appeal to random matrix theory, where we show that a progressive time-average smooths the spectral form factor (a proxy for the 2-point function) in a typical draw of a random matrix. This coarse-grained quantity reproduces the matrix ensemble average to a good approximation. Employing this coarse-graining in the D1-D5 system, we find that the early-time decay is followed by a dip, a ramp and a plateau, in remarkable qualitative agreement with recent studies of the Sachdev-Ye-Kitaev (SYK) model. We study the timescales involved, comment on similarities and differences between our integrable model and the chaotic SYK model, and suggest ways to extend our results away from the integrable limit.
α'-Corrections to extremal dyonic black holes in heterotic string theory
International Nuclear Information System (INIS)
Sahoo, Bindusar; Sen, Ashoke
2007-01-01
We explicitly compute the entropy of an extremal dyonic black hole in heterotic string theory compactified on T 6 or K3 x T 2 by taking into account all the tree level four derivative corrections to the low energy effective action. For supersymmetric black holes the result agrees with the answer obtained earlier 1) by including only the Gauss-Bonnet corrections to the effective action 2) by including all terms related to the curvature squared terms via space-time supersymmetry transformation, and 3) by using general arguments based on the assumption of AdS 3 near horizon geometry and space-time supersymmetry. For non-supersymmetric extremal black holes the result agrees with the one based on the assumption of AdS 3 near horizon geometry and space-time supersymmetry of the underlying theory
General rotating black holes in string theory: Greybody factors and event horizons
International Nuclear Information System (INIS)
Cvetic, M.; Larsen, F.
1997-01-01
We derive the wave equation for a minimally coupled scalar field in the background of a general rotating five-dimensional black hole. It is written in a form that involves two types of thermodynamic variables, defined at the inner and outer event horizon, respectively. We model the microscopic structure as an effective string theory, with the thermodynamic properties of the left- and right-moving excitations related to those of the horizons. Previously known solutions to the wave equation are generalized to the rotating case, and their regime of validity is sharpened. We calculate the greybody factors and interpret the resulting Hawking emission spectrum microscopically in several limits. We find a U-duality-invariant expression for the effective string length that does not assume a hierarchy between the charges. It accounts for the universal low-energy absorption cross section in the general nonextremal case. copyright 1997 The American Physical Society
The long string at the stretched horizon and the entropy of large non-extremal black holes
International Nuclear Information System (INIS)
Mertens, Thomas G.; Verschelde, Henri; Zakharov, Valentin I.
2016-01-01
We discuss how long strings can arise at the stretched horizon and how they can account for the Bekenstein-Hawking entropy. We use the thermal scalar field theory to derive the asymptotic density of states and corresponding stress tensor of a microcanonical long string gas in Rindler space. We show that the equality of the Hagedorn and Hawking temperatures gives rise to the tree-level entropy of large black holes in accordance with the Bekenstein-Hawking-Wald formula.
The long string at the stretched horizon and the entropy of large non-extremal black holes
Energy Technology Data Exchange (ETDEWEB)
Mertens, Thomas G. [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Ghent University, Department of Physics and Astronomy,Krijgslaan, 281-S9, 9000 Gent (Belgium); Verschelde, Henri [Ghent University, Department of Physics and Astronomy,Krijgslaan, 281-S9, 9000 Gent (Belgium); Zakharov, Valentin I. [ITEP,B. Cheremushkinskaya 25, Moscow 117218 (Russian Federation); Moscow Institute Phys. & Technol.,Dolgoprudny, Moscow Region 141700 (Russian Federation); School of Biomedicine, Far Eastern Federal University,Sukhanova str 8, Vladivostok 690950 (Russian Federation)
2016-02-04
We discuss how long strings can arise at the stretched horizon and how they can account for the Bekenstein-Hawking entropy. We use the thermal scalar field theory to derive the asymptotic density of states and corresponding stress tensor of a microcanonical long string gas in Rindler space. We show that the equality of the Hagedorn and Hawking temperatures gives rise to the tree-level entropy of large black holes in accordance with the Bekenstein-Hawking-Wald formula.
Non-Abelian, supersymmetric black holes and strings in 5 dimensions
International Nuclear Information System (INIS)
Meessen, Patrick; Ortín, Tomás; Ramírez, Pedro F.
2016-01-01
We construct and study the first supersymmetric black-hole and black-string solutions of non-Abelian-gauged N=1,d=5 supergravity (N=1,d=5 Super-Einstein-Yang-Mills theory) with non-trivial SU(2) gauge fields: BPST instantons for black holes and BPS monopoles of different kinds (’t Hooft-Polyakov, Wu-Yang and Protogenov) for black strings and also for certain black holes that are well defined solutions only for very specific values of all the moduli. Instantons, as well as colored monopoles do not contribute to the masses and tensions but do contribute to the entropies. The construction is based on the characterization of the supersymmetric solutions of gauged N=1,d=5 supergravity coupled to vector multiplets achieved in ref. http://dx.doi.org/10.1088/1126-6708/2007/08/096 which we elaborate upon by finding the rules to construct supersymmetric solutions with one additional isometry, both for the timelike and null classes. These rules automatically connect the timelike and null non-Abelian supersymmetric solutions of N=1,d=5 SEYM theory with the timelike ones of N=2,d=4 SEYM theory http://dx.doi.org/10.1103/PhysRevD.78.065031; http://dx.doi.org/10.1088/1126-6708/2008/09/099 by dimensional reduction and oxidation. In the timelike-to-timelike case the singular Kronheimer reduction recently studied in ref. http://dx.doi.org/10.1016/j.physletb.2015.04.065 plays a crucial role.
Thermodynamics of rotating black branes in gravity with first order string corrections
Directory of Open Access Journals (Sweden)
M. H. Dehghani
2005-09-01
Full Text Available In this paper, the rotating black brane solutions with zero curvature horizon of classical gravity with first order string corrections are introduced. Although these solutions are not asymptotically anti de Sitter, one can use the counterterm method in order to compute the conserved quantities of these solutions. Here, by reviewing the counterterm method for asymptotically anti de Sitter spacetimes, the conserved quantities of these rotating solutions are computed. Also a Smarr-type formula for the mass as a function of the entropy and the angular momenta is obtained, and it is shown that the conserved and thermodynamic quantities satisfy the first law of thermodynamics. Finally, a stability analysis in the canonical ensemble is performed, and it is shown that the system is thermally stable. This is in commensurable with the fact that there is no Hawking-Page phase transition for black object with zero curvature horizon.
Dark matter cosmic string in the gravitational field of a black hole
Nakonieczny, Łukasz; Nakonieczna, Anna; Rogatko, Marek
2018-03-01
We examined analytically and proposed a numerical model of an Abelian Higgs dark matter vortex in the spacetime of a stationary axisymmetric Kerr black hole. In analytical calculations the dark matter sector was modeled by an addition of a U(1)-gauge field coupled to the visible sector. The backreaction analysis revealed that the impact of the dark vortex presence is far more complicated than causing only a deficit angle. The vortex causes an ergosphere shift and the event horizon velocity is also influenced by its presence. These phenomena are more significant than in the case of a visible vortex sector. The area of the event horizon of a black hole is diminished and this decline is larger in comparison to the Kerr black hole with an Abelian Higgs vortex case. After analyzing the gravitational properties for the general setup, we focused on the subset of models that are motivated by particle physics. We retained the Abelian Higgs model as a description of the dark matter sector (this sector contained a heavy dark photon and an additional complex scalar) and added a real scalar representing the real component of the Higgs doublet in the unitary gauge, as well as an additional U(1)-gauge field representing an ordinary electromagnetic field. Moreover, we considered two coupling channels between the visible and dark sectors, which were the kinetic mixing between the gauge fields and a quartic coupling between the scalar fields. After solving the equations of motion for the matter fields numerically we analyzed properties of the cosmic string in the dark matter sector and its influence on the visible sector fields that are directly coupled to it. We found out that the presence of the cosmic string induced spatial variation in the vacuum expectation value of the Higgs field and a nonzero electromagnetic field around the black hole.
Natário, José; Queimada, Leonel; Vicente, Rodrigo
2018-04-01
We rederive the equations of motion for relativistic strings, that is, one-dimensional elastic bodies whose internal energy depends only on their stretching, and use them to study circular string loops rotating in the equatorial plane of flat and black hole spacetimes. We start by obtaining the conditions for equilibrium, and find that: (i) if the string’s longitudinal speed of sound does not exceed the speed of light then its radius when rotating in Minkowski’s spacetime is always larger than its radius when at rest; (ii) in Minkowski’s spacetime, equilibria are linearly stable for rotation speeds below a certain threshold, higher than the string’s longitudinal speed of sound, and linearly unstable for some rotation speeds above it; (iii) equilibria are always linearly unstable in Schwarzschild’s spacetime. Moreover, we study interactions of a rotating string loop with a Kerr black hole, namely in the context of the weak cosmic censorship conjecture and the Penrose process. We find that: (i) elastic string loops that satisfy the null energy condition cannot overspin extremal black holes; (ii) elastic string loops that satisfy the dominant energy condition cannot increase the maximum efficiency of the usual particle Penrose process; (iii) if the dominant energy condition (but not the weak energy condition) is violated then the efficiency can be increased. This last result hints at the interesting possibility that the dominant energy condition may underlie the well known upper bounds for the efficiencies of energy extraction processes (including, for example, superradiance).
International Nuclear Information System (INIS)
Israel, W
2006-01-01
lead to inconsistencies. Students and non-specialists will welcome this book, which provides an entry into this fascinating realm at a level that can be enjoyed by an enterprising undergraduate. The first chapter introduces the Schwarzschild black hole and the various coordinate systems used for its description. In four brief chapters (29 pages) the authors then manage a clear presentation of the thermal properties of quantum fields in Rindler and Schwarzschild space that skirts the operator formalism of QFT. Two further chapters treat charged black holes and the stretched-horizon description of black hole electrodynamics. Chapter 8, 'The Laws of Nature', explains how information is quantified, the quantum xerox principle and the entanglement entropy of black holes, with a detailed account of how this evolves as the hole evaporates. This sets the stage for a discussion of the black hole information puzzle and the complementarity principle in chapter 9. The pace heats up in the second part of the book, which in 48 pages sketches a variety of topics: Bousso's entropy bound and holography, the AdS/CFT correspondence, a 13 page introduction to string theory and the ideas underlying the string-based derivations of the entropy-area relation for higher-dimensional black holes. This well-planned, stimulating and sometimes provocative book can be enthusiastically recommended. (book review)
The partition function of the supersymmetric two-dimensional black hole and little string theory
International Nuclear Information System (INIS)
Israel, Dan; Kounnas, Costas; Troost, Jan; Pakman, Ari
2004-01-01
We compute the partition function of the supersymmetric two-dimensional euclidean black hole geometry described by the SL(2,R)/U(1) superconformal field theory. We decompose the result in terms of characters of the N = 2 superconformal symmetry. We point out puzzling sectors of states besides finding expected discrete and continuous contributions to the partition function. By adding an N = 2 minimal model factor of the correct central charge and projecting on integral N = 2 charges we compute the partition function of the background dual to little string theory in a double scaling limit. We show the precise correspondence between this theory and the background for NS5-branes on a circle, due to an exact description of the background as a null gauging of SL(2,R) x SU(2). Finally, we discuss the interplay between GSO projection and target space geometry. (author)
On the many saddle points description of quantum black holes
Energy Technology Data Exchange (ETDEWEB)
Germani, Cristiano, E-mail: cristiano.germani@physik.uni-muenchen.de
2014-06-02
Considering two dimensional gravity coupled to a CFT, we show that a semiclassical black hole can be described in terms of two Liouville theories matched at the horizon. The black hole exterior corresponds to a space-like while the interior to a time-like Liouville theory. This matching automatically implies that a semiclassical black hole has an infinite entropy. The path integral description of the time-like Liouville theory (the Black Hole interior) is studied and it is found that the correlation functions of the coupled CFT-gravity system are dominated by two (complex) saddle points, even in the semiclassical limit. We argue that this system can be interpreted as two interacting Bose–Einstein condensates constructed out of two degenerate quantum states. In AdS/CFT context, the same system is mapped into two interacting strings intersecting inside a three-dimensional BTZ black hole.
Energy Technology Data Exchange (ETDEWEB)
Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Silva, G.V., E-mail: gislainevs@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)
2015-11-15
Charged massive scalar fields are considered in the gravitational and electromagnetic field produced by a dyonic black hole with a cosmic string along its axis of symmetry. Exact solutions of both angular and radial parts of the covariant Klein–Gordon equation in this background are obtained, and are given in terms of the confluent Heun functions. The role of the presence of the cosmic string in these solutions is showed up. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation spectrum and the energy flux. -- Highlights: •A cosmic string is introduced along the axis of symmetry of the dyonic black hole. •The covariant Klein–Gordon equation for a charged massive scalar field in this background is analyzed. •Both angular and radial parts are transformed to a confluent Heun equation. •The resulting Hawking radiation spectrum and the energy flux are obtained.
First advanced research workshop: Gravity, astrophysics and strings at the Black Sea. Proceedings
International Nuclear Information System (INIS)
Fiziev, P.; Todorov, M.
2002-01-01
The aim of the First Advanced Workshop ‘Gravity, Astrophysics, and Strings’ was: 1)Bringing together scientists from various branches of gravitational physics, astrophysics and string theory gave an opportunity for interdisciplinary exchange of views and enhanced possible collaborations; 2)Provided a unique opportunity to scientists from various countries to communicate with colleagues on the hottest topics of gravitational physics, astrophysics, and string theory; 3) Opened new venue to young talented scientists to communicate and work with major research groups on the topics of the conference. The workshop covered wide aspects of gravity, astrophysics, and string theory concerning the topics: Astrophysics; Mathematical Modeling and Numerical Simulations in Relativity; Astrophysics, and Strings; Relativistic Gravity; (Super)Strings. About 40 participants from Europe, America and Asia gave 30 invited talks and contributed presentations. The full text of 17 of them are included in this book
Thermodynamics of Einstein-Born-Infeld black holes in three dimensions
International Nuclear Information System (INIS)
Myung, Yun Soo; Kim, Yong-Wan; Park, Young-Jai
2008-01-01
We show that all thermodynamic quantities of the Einstein-Born-Infeld black holes in three dimensions can be obtained from the dilaton and its potential of two-dimensional dilaton gravity through dimensional reduction. These are all between nonrotating uncharged BTZ (Banados-Teitelboim-Zanelli) black hole (NBTZ) and charged BTZ black hole (CBTZ).
International Nuclear Information System (INIS)
Paudel, Eak Raj
2007-01-01
Gravitational field of Schwarzschild and Schwarzschild de-sitter Black hole with a straight string passing through it. In such space analytical and numerical solutions of null and time like geodesics are investigated. The string parameter a + is found to affect both the angle of deflection in null geodesics and the precession of perihelion on time like geodesics .It is seen that the deflection of null and time like geodesics near the gravitating mass of de-sitter space time increases with t he gravitational field of a straight string in flat space time has the property that the Newtonian potential vanishes yet there are non trivial gravitational effects. A test particle is neither attracted nor repelled by a string, yet the conical nature of space outside of string produces observable effects such as light deflection . Schwarzschild Black hole is a mathematical solution to the Einstein's field equations and corresponds to the gravitational field of massive compact spherically symmetric ob normal. References 1. Aryal, M.M, A. Vilenkin and L.H Ford, 1986, Phys.Rev. D32 ,2262 2. Moriyasu ,K ., 1980 , An introduction to gauge Invariance 3. Vilenkin A., 1985 , Physical reports , cosmic strings and Domain walls 4. Berry, M. , 1976 , Principle of cosmology and Gravitation 5. Mishner , C.W ., K.S .Throne , J.A wheeler , 1973. (Author)
Second advanced research workshop: Gravity, astrophysics and strings at the Black Sea. Proceedings
International Nuclear Information System (INIS)
Fiziev, P.; Todorov, M.
2005-01-01
The Second Advanced Workshop ‘Gravity, Astrophysics, and Strings’ held on 10-16 June 2004. It served four purposes: 1) Bringing together scientists from various branches of gravitational physics, astrophysics, and string theory gave an opportunity for interdisciplinary exchange of views and enhanced possible collaborations; 2) Provided a unique opportunity to scientists from various countries to communicate with colleagues on the hottest topics of gravitational physics, astrophysics, and string theory; 3) Opened new venue to young talented scientists to communicate and work with major research groups on the topics of the conference; 4) Stimulated creation of a new generation of young physicists for further development of the above basic topics in fundamental science. The workshop covered wide aspects of gravity, astrophysics, and string theory concerning the topics: Astrophysics; Mathematical Modeling and Numerical Simulations in Relativity; Relativistic Gravity; (Super)Strings. About 35 participants from Europe, America and Asia gave 28 invited talks and contributed presentations. They and guided general discussion as well, which took place confirmed the considerable interest to the themes of the workshop. The full text of 16 of the presented papers are included in this book
Third advanced research workshop: Gravity, astrophysics and strings at the Black Sea. Proceedings
International Nuclear Information System (INIS)
Fiziev, P.; Todorov, M.
2006-01-01
The Third Advanced Workshop ‘Gravity, Astrophysics, and Strings’ held on 13-20 June 2005. The workshop: 1) Bringing together scientists from various branches of gravitational physics, astrophysics, particle physics, fundamental interactions and string theory gave an opportunity for interdisciplinary exchange of views and enhanced possible collaborations; 2) Provided a unique opportunity to scientists from various countries to communicate with colleagues on the hottest topics of gravitational physics, astrophysics, particle physics, fundamental interactions and string theory; 3) Opened new venue to young talented scientists to communicate and work with major research groups on the topics of the conference; 4) Stimulated creation of a new generation of young physicists for further development of the above basic topics in fundamental science. The workshop covered wide aspects of gravitational physics, astrophysics, particle physics, fundamental interactions and string theory concerning the topics: Astrophysics; Mathematical Modeling and Numerical Simulations in Relativity; Relativistic Gravity; Particle Physics and Fundamental Interactions; (Super)Strings. About 40 participants from Europe, America and Asia gave 32 invited talks and contributed presentations. They and guided general discussion as well, which took place confirmed the considerable interest to the themes of the workshop. The full text of 22 of the presented papers are included in this book
A non-critical string approach to black holes, time and quantum dynamics
Ellis, John R.; Nanopoulos, Dimitri V.
1994-01-01
We review our approach to time and quantum dynamics based on non-critical string theory, developing its relationship to previous work on non-equilibrium quantum statistical mechanics and the microscopic arrow of time. We exhibit specific non-factorizing contributions to the {\
Czech Academy of Sciences Publication Activity Database
Aad, G.; Abbott, B.; Abdallah, J.; Böhm, Jan; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Myška, M.; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav
2014-01-01
Roč. 2014, č. 8 (2014), s. 1-48 ISSN 1029-8479 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : gravitation * black hole * string * ATLAS * CERN LHC Coll Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.111, year: 2014
The Cardy limit of the topologically twisted index and black strings in AdS{sub 5}
Energy Technology Data Exchange (ETDEWEB)
Hosseini, Seyed Morteza; Nedelin, Anton; Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,I-20126 Milano (Italy); INFN, Sezione di Milano-Bicocca,I-20126 Milano (Italy)
2017-04-04
We evaluate the topologically twisted index of a general four-dimensional N=1 gauge theory in the “high-temperature' limit. The index is the partition function for N=1 theories on S{sup 2}×T{sup 2}, with a partial topological twist along S{sup 2}, in the presence of background magnetic fluxes and fugacities for the global symmetries. We show that the logarithm of the index is proportional to the conformal anomaly coefficient of the two-dimensional N=(0,2) SCFTs obtained from the compactification on S{sup 2}. We also present a universal formula for extracting the index from the four-dimensional conformal anomaly coefficient and its derivatives. We give examples based on theories whose holographic duals are black strings in type IIB backgrounds AdS{sub 5}×SE{sub 5}, where SE{sub 5} are five-dimensional Sasaki-Einstein spaces.
Phase transition for black holes with scalar hair and topological black holes
International Nuclear Information System (INIS)
Myung, Yun Soo
2008-01-01
We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by using differences between two free energies. However, we do not identify what order of the phase transition between scalar and non-rotating BTZ black holes occurs in three dimensions, although there exists a possible decay of scalar black hole to non-rotating BTZ black hole
Supersymmetric Conical Defects: Towards a string theoretic description of black hole formation
Balasubramanian, V.; de Boer, J.; Keski-Vakkuri, E.; Ross, S.F.
2001-01-01
Conical defects, or point particles, in $AdS_3$ are one of the simplest non-trivial gravitating systems, and are particularly interesting because black holes can form from their collision. We embed the BPS conical defects of three dimensions into the N=4b supergravity in six dimensions, which arises
Non-commutative black hole algebra and string theory from gravity
Haro, S. de
1998-01-01
We generalize the action found by 't Hooft, which describes the gravitational interaction between ingoing and outgoing particles in the neighbourhood of a black hole. The effect of this back-reaction is that of a shock wave, and it provides a mec hanism for reco vering information about the momen
An equivalence between momentum and charge in string theory
International Nuclear Information System (INIS)
Horne, J.H.; Horowitz, G.T.; Steif, A.R.
1992-01-01
It is shown that for a translationally invariant solution to string theory, spacetime duality interchanges the momentum in the symmetry direction and the axion charge per unit length. As one application, we show explicitly that charged black strings are equivalent to boosted (uncharged) black strings. The extremal black strings (which correspond to the field outside of a fundamental macroscopic string) are equivalent to plane-fronted waves describing strings moving at the speed of light
Energy Technology Data Exchange (ETDEWEB)
Hansen, Jakob [KISTI,Daejeon 305-806 (Korea, Republic of); Yeom, Dong-han [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University,Taipei 10617, Taiwan (China)
2015-09-07
We investigate the relation between the existence of mass inflation and model parameters of string-inspired gravity models. In order to cover various models, we investigate a Brans-Dicke theory that is coupled to a U(1) gauge field. By tuning a model parameter that decides the coupling between the Brans-Dicke field and the electromagnetic field, we can make both of models such that the Brans-Dicke field is biased toward strong or weak coupling directions after gravitational collapses. We observe that as long as the Brans-Dicke field is biased toward any (strong or weak) directions, there is no Cauchy horizon and no mass inflation. Therefore, we conclude that to induce a Cauchy horizon and mass inflation inside a charged black hole, either there is no bias of the Brans-Dicke field as well as no Brans-Dicke hair outside the horizon or such a biased Brans-Dicke field should be well trapped and controlled by a potential.
Vera-Cabrera, Lucio; Campos-Rivera, Mayra Paola; Gonzalez-Martinez, Norma Alejandra; Ocampo-Candiani, Jorge; Cole, Stewart T
2012-07-01
The in vitro activity of PA-824 and BTZ043 against 30 Nocardia brasiliensis isolates was tested. The MIC(50) and MIC(90) values for PA-824 were both >64 μg/ml. The same values for BTZ043 were 0.125 and 0.250 μg/ml. Given the MIC values for benzothiazinone (BTZ) compounds, we consider them good candidates to be tested in vivo against N. brasiliensis.
D-brane black holes: Large-N limit and the effective string description
Energy Technology Data Exchange (ETDEWEB)
Hassan, S F [International Centre for Theoretical Physics, Trieste (Italy); Wadia, S R [Theoretical Physics Div., CERN, Geneva (Switzerland)
1997-03-01
We address the derivation of the effective conformal field theory description of the 5-dimensional black hole, modelled by a collection of D1-and D5-branes, from the corresponding low energy U(Q{sub 1}) x U(Q{sub 5}) gauge theory. Finite horizon size at weak coupling requires both Q{sub 1} and Q{sub 5} to be large. We derive the results in the moduli space approximation (say for Q{sub 1} > Q{sub 5}) and appeal to supersymmetry to argue its validity beyond weak coupling. As a result of a combination of quenched Z{sub Q1} Wilson lines and a residual Weyl symmetry, the low-lying excitations of the U(Q{sub 1}) x U(Q{sub 5}) gauge theory are described by an effective N = 4 superconformal field theory with c = 6 in 1 + 1 dimensions, where the space is a circle of radius RQ{sub 1}Q{sub 5}. We also discuss the appearance of a marginal perturbation of the effective conformal field theory for large but finite values of Q{sub 5}. (author). 42 refs.
Lectures on strings and dualities
International Nuclear Information System (INIS)
Vafa, C.
1997-01-01
In this set of lectures I review recent developments in string theory emphasizing their non-perturbative aspects and their recently discovered duality symmetries. The goal of the lectures is to make the recent exciting developments in string theory accessible to those with no previous background in string theory who wish to join the research effort in this area. Topics covered include a brief review of string theory, its compactifications, solitons and D-branes, black hole entropy and wed of string dualities. (author)
Regular black hole in three dimensions
Myung, Yun Soo; Yoon, Myungseok
2008-01-01
We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.
International Nuclear Information System (INIS)
Emparan, Roberto; Reall, Harvey S
2006-01-01
A black ring is a five-dimensional black hole with an event horizon of topology S 1 x S 2 . We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)
Noncommutative geometry-inspired rotating black hole in three ...
Indian Academy of Sciences (India)
We ﬁnd a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect ﬂuid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution and give corrections to the area law to get the exact ...
String Theory for Pedestrians (1/3)
CERN. Geneva
2009-01-01
This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.
String Theory for Pedestrians (2/3)
CERN. Geneva
2009-01-01
This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.
String Theory for Pedestrians (3/3)
CERN. Geneva
2009-01-01
This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.
International Nuclear Information System (INIS)
Chan Hongmo.
1987-10-01
The paper traces the development of the String Theory, and was presented at Professor Sir Rudolf Peierls' 80sup(th) Birthday Symposium. The String theory is discussed with respect to the interaction of strings, the inclusion of both gauge theory and gravitation, inconsistencies in the theory, and the role of space-time. The physical principles underlying string theory are also outlined. (U.K.)
Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matsushita, Takashi; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moraes, Arthur; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petteni, Michele; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz
2014-01-01
A search for an excess of events with multiple high transverse momentum objects including charged leptons and jets is presented, using 20.3 fb$^{-1}$ of proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2012 at a centre-of-mass energy of $\\sqrt{s}$ = 8 TeV. No excess of events beyond Standard Model expectations is observed. Using extra-dimensional models for black hole and string ball production and decay, exclusion contours are determined as a function of the mass threshold for production and the fundamental gravity scale for two, four and six extra dimensions. For six extra dimensions, mass thresholds of $4.8$--$6.2$ TeV are excluded at 95% confidence level, depending on the fundamental gravity scale and model assumptions. Upper limits on the fiducial cross-sections for non-Standard Model production of these final states are set.
Vidisheva, Aleksandra P; Wang, James; Spektor, Tanya M; Bitran, Jacob D; Lutzky, Jose; Tabbara, Imad A; Ye, Joseph Z; Ailawadhi, Sikander; Stampleman, Laura V; Steis, Ronald G; Moezi, Mehdi M; Swift, Regina A; Maluso, Tina M; Udd, Kyle A; Eshaghian, Shahrooz; Nassir, Youram; Berenson, James R
2017-10-01
Neuropathy is an important complication that may limit treatment options for patients with multiple myeloma. Previous studies have focused on treatment efficacy and have shown that retreatment with bortezomib (BTZ) is an effective treatment option. The goal of this study was to focus on the clinical manifestations of peripheral neuropathy (PN) and to retrospectively compare the incidence and severity of PN between the initial BTZ regimen and upon retreatment. Furthermore, this study evaluated how certain factors affect BIPN, which will help determine what conditions should be considered prior to retreatment. Charts were reviewed from 93 patients who were retreated with a BTZ-containing regimen after previously being treated with this drug. Among the patients who developed PN, most patients in the study had low-grade neuropathy during the initial BTZ treatment (n = 52, 68%). The results showed no evidence of cumulative toxicity, and there was no significant difference in the incidence and severity of PN upon retreatment. Factors such as the presence of baseline PN, number of prior treatments, dose of BTZ, and comorbidities did not increase the severity of PN upon retreatment. The lapse of time between the two regimens also did not affect the severity of PN. The results suggest that retreatment with BTZ may be a feasible option, without additional risks of PN, for MM patients even with peripheral neuropathy during their initial treatment with this drug.
International Nuclear Information System (INIS)
Popov, A.D.
1991-01-01
We introduce hyperbolic strings as closed bosonic strings with the target space R d-1,1 xT q+1,1 which has an additional time-like dimension in the internal space. The Fock spaces of the q-parametric family of standard bosonic, fermionic and heterotic strings with the target spaces of dimension n≤d+q are shown to be embedded into the Fock space of hyperbolic strings. The condition of the absence of anomaly fixes d and q for all three types of strings written in a bosonized form. (orig.)
Nonextremal stringy black hole
International Nuclear Information System (INIS)
Suzuki, K.
1997-01-01
We construct a four-dimensional BPS saturated heterotic string solution from the Taub-NUT solution. It is a nonextremal black hole solution since its Euler number is nonzero. We evaluate its black hole entropy semiclassically. We discuss the relation between the black hole entropy and the degeneracy of string states. The entropy of our string solution can be understood as the microscopic entropy which counts the elementary string states without any complications. copyright 1997 The American Physical Society
String theory and quantum gravity '92
International Nuclear Information System (INIS)
Harvey, J.; Iengo, R.; Narain, K.S.; Randjbar Daemi, S.; Verlinde, H.
1993-01-01
These proceedings of the 1992 Trieste Spring School and Workshop on String Theory and Quantum Gravity contains introductions and overviews of recent work on the use of two-dimensional string inspired models in the study of black holes, a lecture on gravitational scattering at planckian energies, another on the physical properties of higher-dimensional black holes and black strings in string theory, a discussion on N=2 superconformal field theories, a lecture about the application of matrix model techniques to the study of string theory in two dimensions, and an overview of the current status and developments in string field theory. Connections with models in statistical mechanics are also discussed. These proceedings contain seven lectures and ten contributions. Refs and figs
Rossing, Thomas D.; Hanson, Roger J.
In the next eight chapters, we consider some aspects of the science of bowed string instruments, old and new. In this chapter, we present a brief discussion of bowed strings, a subject that will be developed much more thoroughly in Chap. 16. Chapters 13-15 discuss the violin, the cello, and the double bass. Chapter 17 discusses viols and other historic string instruments, and Chap. 18 discusses the Hutchins-Schelleng violin octet.
Jost, Jürgen
2007-01-01
This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmüller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and D-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.
Effective Stringy Description of Schwarzschild Black Holes
Krasnov , Kirill; Solodukhin , Sergey N.
2004-01-01
We start by pointing out that certain Riemann surfaces appear rather naturally in the context of wave equations in the black hole background. For a given black hole there are two closely related surfaces. One is the Riemann surface of complexified ``tortoise'' coordinate. The other Riemann surface appears when the radial wave equation is interpreted as the Fuchsian differential equation. We study these surfaces in detail for the BTZ and Schwarzschild black holes in four and higher dimensions....
Becker, Katrin; Becker, Melanie; Schwarz, John H.
String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697. Comprehensive coverage of topics from basics of string theory to recent developments Ideal textbook for a one-year course in string theory Includes over 100 exercises with solutions Contains over 200 homework problems with solutions available to lecturers on-line
International Nuclear Information System (INIS)
Wang, F.; Chun, W.
1985-01-01
The use of basis states described as hadronic (or hadron-hadron) or hidden-colour (or colour-colour) for a system of quarks does not necessarily imply that connected exotic multiquark hadrons do exist. Antisymmetrization of quark wave functions tends to make these descriptions ill defined. It appears necessary to have stable collective structures called strings or bags to provide the physical connections required by quark confinement. The masses of multiquark hadrons can then be estimated by using semplified string, bag and NR potential models. The results turn out to be qualitatively similar in all these models. The stability problem for multiquark strings is briefly discussed
International Nuclear Information System (INIS)
Bennett, D.P.
1988-07-01
Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs
International Nuclear Information System (INIS)
Chaves, Max
2006-01-01
The conception of the magnetic string is presented as an infinitely thin bundle of magnetic flux lines. The magnetic strings are surrounded by a film of current that rotates around them, and are a solution of Maxwell's equations. The magnetic potential contains a line singularity, and its stability can be established topologically. A few comments are added on the possibility that they may exist at a cosmological scale as relics of the Big Bang. (author) [es
International Nuclear Information System (INIS)
Thorn, C.B.
1988-01-01
The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs
International Nuclear Information System (INIS)
Le Meur, H.; Daninos, F.; Bachas, C.
2007-01-01
Since its beginning, in the sixties, the string theory has succeeded in overcoming a lot of theoretical difficulties but now the complete absence of experimental validation entertains doubts about its ability to represent the real world and questions its hegemony in today's theoretical physics. Other space-time theories like the twistors, or the non-commutative geometry, or the loop quantum gravity, or the causal dynamics triangulation might begin receiving more attention. Despite all that, the string theory can be given credit for 4 achievements. First, the string theory has provided a consistent quantum description of gravity. Secondly, the string theory has built a theoretical frame that has allowed the unification of the 4 basic interactions. Thirdly, the string theory applied to astrophysics issues has demonstrated that the evaporation of a black hole does not necessarily lead to a loss of information which comforts the universality of the conservation of the quantity of information in any system and as a consequence put a fatal blow to the so-called paradox observed in black holes. Fourthly, the string theory has given a new and original meaning on the true nature of space-time. (A.C.)
Cosmological string solutions by dimensional reduction
International Nuclear Information System (INIS)
Behrndt, K.; Foerste, S.
1993-12-01
We obtain cosmological four dimensional solutions of the low energy effective string theory by reducing a five dimensional black hole, and black hole-de Sitter solution of the Einstein gravity down to four dimensions. The appearance of a cosmological constant in the five dimensional Einstein-Hilbert produces a special dilaton potential in the four dimensional effective string action. Cosmological scenarios implement by our solutions are discussed
International Nuclear Information System (INIS)
Engquist, J.; Sundell, P.; Tamassia, L.
2007-01-01
The group theoretical structure underlying physics in anti de Sitter (AdS) spacetime is intrinsically different with respect to the flat case, due to the presence of special ultra-short representations, named singletons, that do not admit a flat space limit. The purpose of this collaboration is to exploit this feature in the study of string and brane dynamics in AdS spacetime, in particular while trying to establish a connection between String Theory in AdS backgrounds (in the tensionless limit) and Higher-Spin Gauge Theory. (orig.)
String theory and cosmological singularities
Indian Academy of Sciences (India)
Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics.
Ruppeiner theory of black hole thermodynamics
International Nuclear Information System (INIS)
Aman, Jan E; Bedford, James; Grumiller, Daniel; Pidokrajt, Narit; Ward, John
2007-01-01
The Ruppeiner metric as determined by the Hessian of the Gibbs surface provides a geometric description of thermodynamic systems in equilibrium. An interesting example is a black hole in equilibrium with its own Hawking radiation. In this article, we present results from the Ruppeiner study of various black hole families from different gravity theories e.g. 2D dilaton gravity, BTZ, general relativity and higher-dimensional Einstein-Maxwell gravity
Strings draw theorists together
International Nuclear Information System (INIS)
Green, Michael
2000-01-01
setting in which string theory in a space-time of dimension d is identical to Yang-Mills gauge theory in d - 1 dimensions. Maldacena and several others talked about recent developments in this area. It is one example of the remarkable ''holographic principle'', originally developed by Gerard 't Hooft of Utrecht University, who shared the Nobel Prize for Physics last year. According to this idea, a general feature of quantum gravity is that physical information inside any volume is encoded on the surface of that volume. 't Hooft believes that the holographic properties of quantum gravity can only be accommodated by making a radical change to the basic structure of quantum mechanics, which would imply that quantum mechanics has a classical origin. A number of other speakers gave fascinating glimpses into the way in which the structure of string theory should combine with the principles of quantum theory to produce a consistent description of physics under extreme conditions. For example, string theory could resolve long-standing paradoxes about quantum mechanics in the presence of black holes, which originated with the work of Hawking in the 1970s. The confident mood of the meeting was based largely on the compelling theoretical ideas in string theory, but there was also an acute sense that experimental verification is crucial. The theory should obviously have many observational ramifications, most clearly in the realm of ultrahigh-energy physics or the physics of the early universe. There was also unanimous agreement that the discovery of supersymmetry at Fermilab in the US or at the Large Hadron Collider at CERN would be a dramatic first step towards such verification. (UK)
Ibáñez, Luis E
2015-01-01
This chapter reviews a number of topics in the field of string phenomenology, focusing on orientifold/F-theory models yielding semirealistic low-energy physics. The emphasis is on the extraction of the low-energy effective action and possible tests of specific models at the LHC.
International Nuclear Information System (INIS)
Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.
1995-01-01
Standard SUSY-GUTs such as those based on SU(5) or SO(10) lead to predictions for the values of α s and sin 2 θ W in amazing agreement with experiment. In this article we investigate how these models may be obtained from string theory, thus bringing them into the only known consistent framework for quantum gravity. String models with matter in standard GUT representations require the realization of affine Lie algebras at higher levels. We start by describing some methods to build level k=2 symmetric orbifold string models with gauge groups SU(5) or SO(10). We present several examples and identify generic features of the type of models constructed. Chiral fields appropriate to break the symmetry down to the standard model generically appear in the massless spectrum. However, unlike in standard SUSY-GUTs, they often behave as string moduli, i.e., they do not have self-couplings. We also discuss briefly the doublet-triplet Higgs splitting. We find that, in some models, built-in sliding-singlet type of couplings exist. (orig.)
Aspects of some dualities in string theory
Kim, Bom Soo
AdS/CFT correspondence in string theory has changed landscape of the theoretical physics. Through this celebrated duality between gravity theory and field theory, one can investigate analytically strongly coupled gauge theories such as Quantum Chromodynamics (QCD) in terms of weakly coupled string theory such as supergravity theory and vice versa. In the first part of this thesis we used this duality to construct a new type of nonlocal field theory, called Puff Field Theory, in terms of D3 branes in type IIB string theory with a geometric twist. In addition to the strong-weak duality of AdS/CFT, there also exists a weak-weak duality, called Twistor String Theory. Twistor technique is successfully used to calculate the SYM scattering amplitude in an elegant fashion. Yet, the progress in the string theory side was hindered by a non-unitary conformal gravity. We extend the Twistor string theory by introducing mass terms, in the second part of the thesis. A chiral mass term is identified as a vacuum expectation value of a conformal supergravity field and is tied with the breaking of the conformal symmetry of gravity. As a prime candidate for a quantum theory of gravity, string theory revealed many promising successes such as counting the number of microstates in supersymmetric Black Holes thermodynamics and resolution of timelike and null singularities, to name a few. Yet, the fundamental string and M-theroy formulations are not yet available. Various string theories without gravity, such as Non-Commutative Open String (NCOS) and Open Membrane (OM) theories, are very nice playground to investigate the fundamental structure of string and M-theory without the complication of gravity. In the last part of the thesis, simpler Non-Relativistic String Theories are constructed and investigated. One important motivation for those theories is related to the connection between Non-Relativistic String Theories and Non-critical String Theories through the bosonization of betagamma
International Nuclear Information System (INIS)
Zhu, F.J.; Hua, Y.L.; Yin, S.G.; Deng, J.C.; Wu, K.W.; Niu, X.; Wu, X.M.; Petty, M.C.
2007-01-01
White organic light-emitting diodes (OLEDs) are fabricated with a simple bilayer structure: ITO/TPD/ Zn(BTZ) 2 /Al. White emission is composed of two parts: one is 470 nm, which originates from exciton emission in Zn(BTZ) 2 emitting layer; the other is 580 nm, which originates from exciplexes formation at the interface of TPD and Zn(BTZ) 2 . Specially, the thickness of Zn(BTZ) 2 layer effects the relative intensity of two emissions. When the Zn(BTZ) 2 layer becomes thin (or thick), the 470 nm (or 580 nm) emission intensity turns into weak (or strong). Finally, We successfully fabricated pure white OLED when the thickness of Zn(BTZ) 2 layer was 65 nm
Energy Technology Data Exchange (ETDEWEB)
Zhu, F.J. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China); Hua, Y.L. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China)]. E-mail: yulinhua@tjut.edu.cn; Yin, S.G. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China); Deng, J.C. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China); Wu, K.W. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China); Niu, X. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China); Wu, X.M. [Institute of Modern Optics, Nankai University, Tianjin 300191 (China); Petty, M.C. [Centre for Molecular and Nanoscale Electronics, University of Durham, Durham DH1 3LE (United Kingdom)
2007-01-15
White organic light-emitting diodes (OLEDs) are fabricated with a simple bilayer structure: ITO/TPD/ Zn(BTZ){sub 2}/Al. White emission is composed of two parts: one is 470 nm, which originates from exciton emission in Zn(BTZ){sub 2} emitting layer; the other is 580 nm, which originates from exciplexes formation at the interface of TPD and Zn(BTZ){sub 2}. Specially, the thickness of Zn(BTZ){sub 2} layer effects the relative intensity of two emissions. When the Zn(BTZ){sub 2} layer becomes thin (or thick), the 470 nm (or 580 nm) emission intensity turns into weak (or strong). Finally, We successfully fabricated pure white OLED when the thickness of Zn(BTZ){sub 2} layer was 65 nm.
Large-D gravity and low-D strings.
Emparan, Roberto; Grumiller, Daniel; Tanabe, Kentaro
2013-06-21
We show that in the limit of a large number of dimensions a wide class of nonextremal neutral black holes has a universal near-horizon limit. The limiting geometry is the two-dimensional black hole of string theory with a two-dimensional target space. Its conformal symmetry explains the properties of massless scalars found recently in the large-D limit. For black branes with string charges, the near-horizon geometry is that of the three-dimensional black strings of Horne and Horowitz. The analogies between the α' expansion in string theory and the large-D expansion in gravity suggest a possible effective string description of the large-D limit of black holes. We comment on applications to several subjects, in particular to the problem of critical collapse.
In Vivo Activity of the Benzothiazinones PBTZ169 and BTZ043 against Nocardia brasiliensis.
Directory of Open Access Journals (Sweden)
Norma Alejandra González-Martínez
Full Text Available Mycetoma is a neglected, chronic, and deforming infectious disease caused by fungi and actinomycetes. In Mexico, N. brasiliensis is the predominant etiologic agent. Therapeutic alternatives are necessary because the current drug regimens have several disadvantages. Benzothiazinones (BTZ are a new class of candidate drugs that inhibit decaprenyl-phosphoribose-epimerase (DprE1, an essential enzyme involved in the cell wall biosynthesis of Corynebacterineae.In this study, the in vitro activity of the next generation BTZ, PBTZ169, was tested against thirty Nocardia brasiliensis isolates. The MIC50 and MIC90 values for PBTZ169 were 0.0075 and 0.03 μg/mL, respectively. Because Nocardia is a potential intracellular bacterium, a THP-1 macrophage monolayer was infected with N. brasiliensis HUJEG-1 and then treated with PBTZ169, resulting in a decrease in the number of colony-forming units (CFUs at a concentration of 0.25X the in vitro value. The in vivo activity was evaluated after infecting female BALB/c mice in the right hind food-pad. After 6 weeks, treatment was initiated with PBTZ169 and its activity was compared with the first generation compound, BTZ043. Both BTZ compounds were administered at 100 mg/kg twice daily by gavage, and sulfamethoxazole/trimethoprim (SXT, at 100 mg/kg sulfamethoxazole, was used as a positive control. After 22 weeks of therapy, only PBTZ169 and SXT displayed statistically significant activity.These results indicate that DprE1 inhibitors may be useful for treating infections of Nocardia and may therefore be active against other actinomycetoma agents. We must test combinations of these compounds with other antimicrobial agents, such as linezolid, tedizolid or SXT, that have good to excellent in vivo activity, as well as new DprE1 inhibitors that can achieve higher plasma levels.
In Vivo Activity of the Benzothiazinones PBTZ169 and BTZ043 against Nocardia brasiliensis.
González-Martínez, Norma Alejandra; Lozano-Garza, Hector Gerardo; Castro-Garza, Jorge; De Osio-Cortez, Alexandra; Vargas-Villarreal, Javier; Cavazos-Rocha, Norma; Ocampo-Candiani, Jorge; Makarov, Vadim; Cole, Stewart T; Vera-Cabrera, Lucio
2015-01-01
Mycetoma is a neglected, chronic, and deforming infectious disease caused by fungi and actinomycetes. In Mexico, N. brasiliensis is the predominant etiologic agent. Therapeutic alternatives are necessary because the current drug regimens have several disadvantages. Benzothiazinones (BTZ) are a new class of candidate drugs that inhibit decaprenyl-phosphoribose-epimerase (DprE1), an essential enzyme involved in the cell wall biosynthesis of Corynebacterineae. In this study, the in vitro activity of the next generation BTZ, PBTZ169, was tested against thirty Nocardia brasiliensis isolates. The MIC50 and MIC90 values for PBTZ169 were 0.0075 and 0.03 μg/mL, respectively. Because Nocardia is a potential intracellular bacterium, a THP-1 macrophage monolayer was infected with N. brasiliensis HUJEG-1 and then treated with PBTZ169, resulting in a decrease in the number of colony-forming units (CFUs) at a concentration of 0.25X the in vitro value. The in vivo activity was evaluated after infecting female BALB/c mice in the right hind food-pad. After 6 weeks, treatment was initiated with PBTZ169 and its activity was compared with the first generation compound, BTZ043. Both BTZ compounds were administered at 100 mg/kg twice daily by gavage, and sulfamethoxazole/trimethoprim (SXT), at 100 mg/kg sulfamethoxazole, was used as a positive control. After 22 weeks of therapy, only PBTZ169 and SXT displayed statistically significant activity. These results indicate that DprE1 inhibitors may be useful for treating infections of Nocardia and may therefore be active against other actinomycetoma agents. We must test combinations of these compounds with other antimicrobial agents, such as linezolid, tedizolid or SXT, that have good to excellent in vivo activity, as well as new DprE1 inhibitors that can achieve higher plasma levels.
Ortín, Tomás
2015-01-01
Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.
Black Holes with Anisotropic Fluid in Lyra Scalar-Tensor Theory
Directory of Open Access Journals (Sweden)
Melis ULU DOĞRU
2018-02-01
Full Text Available In this paper, we investigate distribution of anisotropic fluid which is a resource of black holes in regard to Lyra scalar-tensor theory. As part of the theory, we obtain field equations of spherically symmetric space-time with anisotropic fluid. By using field equations, we suggest distribution of anisotropic fluid, responsible for space-time geometries such as Schwarzschild, Reissner-Nordström, Minkowski type, de Sitter type, Anti-de Sitter type, BTZ and charged BTZ black holes. Finally, we discuss obtained pressures and density of the fluid for different values of arbitrary constants, geometrically and physically.
International Nuclear Information System (INIS)
Skenderis, Kostas
2007-01-01
The book 'String Theory in a Nutshell' by Elias Kiritsis provides a comprehensive introduction to modern string theory. String theory is the leading candidate for a theory that successfully unifies all fundamental forces of nature, including gravity. The subject has been continuously developing since the early 1970s, with classic textbooks on the subject being those of Green, Schwarz and Witten (1987) and Polchinski (1998). Since the latter was published there have been substantial developments, in particular in understanding black holes and gravity/gauge theory dualities. A textbook treatment of this important material is clearly needed, both by students and researchers in string theory and by mathematicians and physicists working in related fields. This book has a good selection of material, starting from basics and moving into classic and modern topics. In particular, Kiritsis' presentation of the basic material is complementary to that of the earlier textbooks and he includes a number of topics which are not easily found or covered adequately elsewhere, for example, loop corrections to string effective couplings. Overall the book nicely covers the major advances of the last ten years, including (non-perturbative) string dualities, black hole physics, AdS/CFT and matrix models. It provides a concise but fairly complete introduction to these subjects which can be used both by students and by researchers. Moreover the emphasis is on results that are reasonably established, as is appropriate for a textbook; concise summaries are given for subjects which are still in flux, with references to relevant reviews and papers. A positive feature of the book is that the bibliography sections at the end of each chapter provide a comprehensive guide to the literature. The bibliographies point to reviews and pedagogical papers on subjects covered in this book as well as those that were omitted. It is rare for a textbook to contain such a self-contained and detailed guide to
Brandenberger, Robert H.
2008-01-01
String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...
International Nuclear Information System (INIS)
Strominger, A.
1987-01-01
A gauge invariant cubic action describing bosonic closed string field theory is constructed. The gauge symmetries include local spacetime diffeomorphisms. The conventional closed string spectrum and trilinear couplings are reproduced after spontaneous symmetry breaking. The action S is constructed from the usual ''open string'' field of ghost number minus one half. It is given by the associator of the string field product which is non-vanishing because of associativity anomalies. S does not describe open string propagation because open string states associate and can thereby be shifted away. A field theory of closed and open strings can be obtained by adding to S the cubic open string action. (orig.)
International Nuclear Information System (INIS)
Sikivie, P.
1991-01-01
The topics are: global strings; the gravitational field of a straight global string; how do global strings behave?; the axion cosmological energy density; computer simulations of the motion and decay of global strings; electromagnetic radiation from the conversion of Nambu-Goldstone bosons in astrophysical magnetic fields. (orig.)
Evidence for string substructure
International Nuclear Information System (INIS)
Bergman, O.
1996-06-01
The author argues that the behavior of string theory at high temperature and high longitudinal boosts, combined with the emergence of p-branes as necessary ingredients in various string dualities, point to a possible reformulation of strings, as well as p-branes, as composites of bits. He reviews the string-bit models, and suggests generalizations to incorporate p-branes
Throat quantization of the Schwarzschild–Tangherlini(-AdS) black hole
International Nuclear Information System (INIS)
Kunstatter, Gabor; Maeda, Hideki
2014-01-01
Adopting the throat quantization pioneered by Louko and Mäkelä, we derive the mass and area spectra for the Schwarzschild–Tangherlini black hole and its anti-de Sitter (AdS) generalization in arbitrary dimensions. We find that the system can be quantized exactly in three special cases: the three-dimensional BTZ black hole, toroidal black holes in any dimension, and five-dimensional Schwarzshild–Tangherlini(-AdS) black holes. For the remaining cases the spectra are obtained for large mass using the WKB approximation. For asymptotically flat black holes, the area/entropy has an equally spaced spectrum, as expected from previous work. In the asymptotically AdS case on the other hand, it is the mass spectrum that is equally spaced. Our exact results for the BTZ black hole mass with Dirichlet boundary conditions are consistent with the spectra of the corresponding operators in the dual CFT. (paper)
International Nuclear Information System (INIS)
Turok, N.
1987-11-01
It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation. 17 refs., 1 fig
Lowe, D. A.; Thorlacius, L.
1994-01-01
Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The average total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the ...
International Nuclear Information System (INIS)
Turok, N.
1988-01-01
It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation
Open string theory in 1+1 dimensions
International Nuclear Information System (INIS)
Bershadsky, M.; Kutasov, D.
1992-01-01
We show that tree level open two dimensional string theory is exactly solvable; the solution exhibits some unusual features, and is qualitatively different from the closed case. The open string 'tachyon' S-matrix describes free fermions, which can be interpreted as the quarks at the ends of the string. These 'quarks' live naturally on a lattice in space-time. We also find an exact vacuum solution of the theory, corresponding to a charged black hole. (orig.)
Quantum tunneling from three-dimensional black holes
International Nuclear Information System (INIS)
Ejaz, Asiya; Gohar, H.; Lin, Hai; Saifullah, K.; Yau, Shing-Tung
2013-01-01
We study Hawking radiation from three-dimensional black holes. For this purpose the emission of charged scalar and charged fermionic particles is investigated from charged BTZ black holes, with and without rotation. We use the quantum tunneling approach incorporating WKB approximation and spacetime symmetries. Another class of black holes which is asymptotic to a Sol three-manifold has also been investigated. This procedure gives us the tunneling probability of outgoing particles, and we compute the temperature of the radiation for these black holes. We also consider the quantum tunneling of particles from black hole asymptotic to Sol geometry
International Nuclear Information System (INIS)
Gross, D.J.
1986-01-01
Traditional string theories, either bosonic or supersymmetric, came in two varieties, closed string theories and open string theories. Closed string are neutral objects which describe at low energies gravity or supergravity. Open strings have geometrically invariant ends to which charge can be attached, thereby obtaining, in addition to gravity, Yang-Mills gauge interactions. Recently a new kind of string theory was discovered--the heterotic string, which is a chiral hybrid of the closed superstring and the closed bosonic string, and which produces by an internal dynamical mechanism gauge interactions of a totally specified kind. Although this theory is found in an attempt to produce a superstring theory which would yield a low energy E/sub 8/xE/sub 8/ supersymmetric, anomaly free, gauge theory, as suggested by the anomaly cancellation mechanism of Green and Schwarz, it fits naturally into the general framework of consistent string theories
Highly excited strings I: Generating function
Directory of Open Access Journals (Sweden)
Dimitri P. Skliros
2017-03-01
Full Text Available This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES. In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators in general toroidal compactifications E=RD−1,1×TDcr−D (with generic constant Kähler and complex structure target space moduli, background Kaluza–Klein (KK gauge fields and torsion. We adopt a novel approach that does not rely on a “reverse engineering” method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string duality in string theory.
Continuous phase transition and critical behaviors of 3D black hole with torsion
International Nuclear Information System (INIS)
Ma, Meng-Sen; Liu, Fang; Zhao, Ren
2014-01-01
We study the phase transition and the critical behavior of the BTZ black hole with torsion obtained in (1 + 2)-dimensional Poincaré gauge theory. According to Ehrenfest’s classification, when the parameters in the theory are arranged properly, the BTZ black hole with torsion may possess the second-order phase transition which is also a smaller mass/larger mass black hole phase transition. Nevertheless, the critical behavior is different from the one in the van der Waals liquid/gas system. We also calculated the critical exponents of the relevant thermodynamic quantities, which are the same as the ones obtained in the Hořava-Lifshitz black hole and the Born–Infeld black hole. (paper)
Chronology protection in string theory
International Nuclear Information System (INIS)
Dyson, Lisa
2004-01-01
Many solutions of General Relativity appear to allow the possibility of time travel. This was initially a fascinating discovery, but geometries of this type violate causality, a basic physical law which is believed to be fundamental. Although string theory is a proposed fundamental theory of quantum gravity, geometries with closed timelike curves have resurfaced as solutions to its low energy equations of motion. In this paper, we will study the class of solutions to low energy effective supergravity theories related to the BMPV black hole and the rotating wave-D1-D5-brane system. Time travel appears to be possible in these geometries. We will attempt to build the causality violating regions and propose that stringy effects prohibit their construction. The proposed chronology protection agent for these geometries mirrors a mechanism string theory employs to resolve a class of naked singularities. (author)
Relativistic classical strings. II
International Nuclear Information System (INIS)
Galvao, C.A.P.
1985-01-01
The interactions of strings with electromagnetic and gravitational fields are extensively discussed. Some concepts of differential geometry are reviewed. Strings in Kaluza-Klein manifolds are studied. (L.C.) [pt
Indian Academy of Sciences (India)
strongly motivate a detailed search for inflation within string theory, although it has ... between string theory and observations provides a strong incentive for ..... sonably be expected to arise for any system having very many degrees of freedom.
International Nuclear Information System (INIS)
Chudnovsky, E.; Vilenkin, A.
1988-01-01
If light superconducting strings were formed in the early Universe, then it is very likely that now they exist in abundance in the interstellar plasma and in stars. The dynamics of such strings can be dominated by friction, so that they are ''frozen'' into the plasma. Turbulence of the plasma twists and stretches the strings, forming a stochastic string network. Such networks must generate particles and magnetic fields, and may play an important role in the physics of stars and of the Galaxy
Conlon, Joseph
2016-01-01
Is string theory a fraud or one of the great scientific advances? Why do so many physicists work on string theory if it cannot be tested? This book provides insight into why such a theory, with little direct experimental support, plays such a prominent role in theoretical physics. The book gives a modern and accurate account of string theory and science, explaining what string theory is, why it is regarded as so promising, and why it is hard to test.
Introduction to string theory and string compactifications
International Nuclear Information System (INIS)
GarcIa-Compean, Hugo
2005-01-01
Basics of some topics on perturbative and non-perturbative string theory are reviewed. After a mathematical survey of the Standard Model of particle physics and GUTs, the bosonic string kinematics for the free case and with interaction is described. The effective action of the bosonic string and the spectrum is also discussed. T-duality in closed and open strings and the definition of D-brane are surveyed. Five perturbative superstring theories and their spectra is briefly outlined. Calabi-Yau three-fold compactifications of heterotic strings and their relation to some four-dimensional physics are given. Finally, non-perturbative issues like S-duality, M-theory and F-theory are also reviewed
International Nuclear Information System (INIS)
Ambjoern, J.
1987-08-01
The theory of strings is the theory of random surfaces. I review the present attempts to regularize the world sheet of the string by triangulation. The corresponding statistical theory of triangulated random surfaces has a surprising rich structure, but the connection to conventional string theory seems non-trivial. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Cardona, Biel [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Gomis, Joaquim [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Department of Physics, Faculty of Science, Chulalongkorn University,Bangkok 10330 (Thailand); Pons, Josep M. [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain)
2016-07-11
We construct the canonical action of a Carroll string doing the Carroll limit of a canonical relativistic string. We also study the Killing symmetries of the Carroll string, which close under an infinite dimensional algebra. The tensionless limit and the Carroll p-brane action are also discussed.
The series of String-Math conferences has developed into a central event on the interface between mathematics and physics related to string theory, quantum field theory and neighboring subjects. The conference will take place from July 24-28 in the main building of Hamburg university. The String-Math conference is organised by the University of Hamburg jointly with DESY Hamburg.
Strings - Links between conformal field theory, gauge theory and gravity
International Nuclear Information System (INIS)
Troost, J.
2009-05-01
String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity
Effects of the image universe on cosmic strings
International Nuclear Information System (INIS)
Vachaspati, T.; Rees, M.
1990-01-01
We investigate some of the cosmological effects of the gravitational attraction of straight cosmic strings that arises due to the conical geometry of the string. Although this effect is second order in Newton's gravitational constant, its effects in the early universe can be significant. We find that the image masses responsible for this second order attraction effectively 'fill up' the volume deficit due to the conical geometry of a static straight string. A moving string also experiences a frictional force due to the images and this provides a mechanism for energy dissipation. The energy loss due to the image effect is comparable to the energy loss in gravitational radiation for strings on the size of the horizon scale but is probably not important when compared to the energy loss due to loop production. The image effect can also become important when a string comes close to a black hole. Our analysis of these effects is newtonian. (orig.)
International Nuclear Information System (INIS)
Vishniac, E.T.
1987-01-01
We examine the compatibility of inflation with the cosmic string theory for galaxy formation. There is a general conflict between having sufficient string tension to effect galaxy formation, and reheating after inflation to a high enough temperature that strings may form in a thermal phase transition. To escape this conflict, we propose a class of models where the inflation is coupled to the string-producing field. The strings are formed late in inflation as the inflaton rolls towards its zero-temperature value. A large subset of these models have a novel large-scale distribution of galaxies that is fractal, displays biasing without dynamics or feedback mechanisms, and contains voids. (orig.)
International Nuclear Information System (INIS)
Hosomichi, Kazuo
2008-01-01
We study FZZT-branes and open string amplitudes in (p, q) minimal string theory. We focus on the simplest boundary changing operators in two-matrix models, and identify the corresponding operators in worldsheet theory through the comparison of amplitudes. Along the way, we find a novel linear relation among FZZT boundary states in minimal string theory. We also show that the boundary ground ring is realized on physical open string operators in a very simple manner, and discuss its use for perturbative computation of higher open string amplitudes.
From Rindler horizon to mini black holes at LHC
Energy Technology Data Exchange (ETDEWEB)
Ghaffary, Tooraj [Islamic Azad University, Department of Science, Shiraz Branch, Shiraz (Iran, Islamic Republic of)
2017-02-15
Recently researchers (A. Sepehri et al., Astrophys. Space Sci. 344, 79 (2013)) have considered the signature of superstring balls near mini black holes at LHC and calculate the information loss for these types of strings. Motivated by their work, we consider the evolution of events in high energy experiments from lower energies for which the Rindler horizon is formed to higher energies in which mini black holes and string balls are emerged. Extending the Gottesman and Preskill method to string theory, we find the information loss for excited strings ''string balls'' in mini black holes at LHC and calculate the information transformation from the collapsing matter to the state of outgoing Hawking radiation for strings. We come to the conclusion that information transformation for high energy strings is complete. Then the thermal distribution of excited strings near mini black holes at LHC is calculated. In order to obtain the total string cross section near black holes produced in proton-proton collision, we multiply the black hole production cross section by the thermal distribution of strings. It is observed that many high energy excited strings are produced near the event horizon of TeV black holes. These excited strings evaporate to standard model particles like Higgs boson and top quark at Hagedorn temperature. We derive the production cross section for these particles due to string ball decay at LHC and consider their decay to light particles like bottom quarks and gluons. (orig.)
International Nuclear Information System (INIS)
Krishnan, Chethan
2011-01-01
Recent developments suggest that the near-region of rotating black holes behaves like a CFT. To understand this better, I propose to study quantum fields in this region. An instructive approach for this might be to put a large black hole in AdS and to think of the entire geometry as a toy model for the 'near-region'. Quantum field theory on rotating black holes in AdS can be well-defined (unlike in flat space), if fields are quantized in the co-rotating-with-the-horizon frame. First, some generalities of constructing Hartle-Hawking Green functions in this approach are discussed. Then as a specific example where the details are easy to handle, I turn to 2+1 dimensions (BTZ), write down the Green functions explicitly starting with the co-rotating frame, and observe some structural similarities they have with the Kerr-CFT scattering amplitudes. Finally, in BTZ, there is also an alternate construction for the Green functions: we can start from the covering AdS 3 space and use the method of images. Using a 19th century integral formula, I show the equality between the boundary correlators arising via the two constructions.
Energy Technology Data Exchange (ETDEWEB)
Lawrence, Albion
2001-07-25
We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order {alpha}' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting.
International Nuclear Information System (INIS)
Lawrence, Albion
2001-01-01
We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order α' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting
Electric magnetic duality in string theory
International Nuclear Information System (INIS)
Sen, A.
1992-07-01
The electric-magnetic duality transformation in four dimensional heterotic string theory discussed by Shapere, Trivedi and Wilczek is shown to be an exact symmetry of the equations of motion of low energy effective field theory even after including the scalar and the vector fields, arising due to compactification, in the effective field theory. Using this duality transformation we construct rotating black hole solutions in the effective field theory carrying both electric and magnetic charges. The spectrum of extremal magnetically charged black holes turn out to be similar to that of electrically charged elementary string excitations lying on the leading Regge trajectory. We also discuss the possibility that the duality symmetry is an exact symmetry of the full string theory under which electrically charged elementary string excitations get exchanged with magnetically charged soliton like solutions. This proposal might be made concrete following the suggestion of Dabholkar et. al. that fundamental strings may be regarded as soliton like classical solutions in the effective field theory. (author). 20 refs
International Nuclear Information System (INIS)
Freund, P.G.O.
1988-01-01
According to the author nobody has succeeded as yet in extracting any new numbers from string theory. This paper discusses how if one cannot get new numbers from string theory, maybe one can get new strings out of number theory. Number theory is generally regarded as the purest form of mathematics. So how can it conceivably make contact with physics which aims at describing nature? The author discusses how the connecting link of these two disciplines is provided by the compact Riemann surfaces. These appear as world sheets of interacting strings. For instance, string-string scattering at the three-loop level involves the four external strings attaching themselves to a genus three compact surface
Tomova, R. L.; Petrova, P. K.; Stoycheva-Topalova, R. T.
2010-11-01
Organic light-emitting diodes (OLEDs) with improved performances are fabricated using a thin (1 nm) yellow-emitting layer of 5,6,11,12-tetraphenylnaphthacene (Rubrene) inserted at different position in green emitting electroluminescent (EL) layer of bis-(2-(2-hydroxyphenyl) benzothiazole)zinc (Zn(BTz)2) in configuration: ITO/PVK:TPD/ Zn(BTz)2 (x nm)/ Rubrene (1 nm)/ Zn(BTz)2 (75-x nm)/Al, where PVK:TPD is a hole transporting layer of N, N'-bis(3-methylphenyl)-N, N'-diphenylbenzidine (TPD) incorporated in poly(N-vinylcarbazole) (PVK) matrix and Al is a cathode. EL spectra predominantly influenced by Rubrene emission when the doping layer is close to (PVK:TPD)/ Zn(BTz)2 (x→ 0-15 nm) and to Zn(BTz)2/Al (x→ 70-75 nm) interfaces and shift toward emission of Zn(BTz)2 increasing the distance of Rubrene from both interfaces (x→35 nm). The same dependence of the EL efficiency on the position of the doping Rubrene layer in the OLED structure was found.
Energy Technology Data Exchange (ETDEWEB)
Tomova, R L; Petrova, P K; Stoycheva-Topalova, R T, E-mail: reni@clf.bas.b [Institute of optical materials and technologies ' Acad. J. Malinowski' , Bulgarian Academy of Sciences, ' Acad. G. Bonchev' str. bl. 109, 1113 Sofia (Bulgaria)
2010-11-01
Organic light-emitting diodes (OLEDs) with improved performances are fabricated using a thin (1 nm) yellow-emitting layer of 5,6,11,12-tetraphenylnaphthacene (Rubrene) inserted at different position in green emitting electroluminescent (EL) layer of bis-(2-(2-hydroxyphenyl) benzothiazole)zinc (Zn(BTz){sub 2}) in configuration: ITO/PVK:TPD/ Zn(BTz){sub 2} (x nm)/ Rubrene (1 nm)/ Zn(BTz){sub 2} (75-x nm)/Al, where PVK:TPD is a hole transporting layer of N, N'-bis(3-methylphenyl)-N, N'-diphenylbenzidine (TPD) incorporated in poly(N-vinylcarbazole) (PVK) matrix and Al is a cathode. EL spectra predominantly influenced by Rubrene emission when the doping layer is close to (PVK:TPD)/ Zn(BTz){sub 2} (x{yields} 0-15 nm) and to Zn(BTz){sub 2}/Al (x{yields} 70-75 nm) interfaces and shift toward emission of Zn(BTz){sub 2} increasing the distance of Rubrene from both interfaces (x{yields}35 nm). The same dependence of the EL efficiency on the position of the doping Rubrene layer in the OLED structure was found.
Cosmic strings in unified gauge theories
International Nuclear Information System (INIS)
Everett, A.E.
1981-01-01
Some spontaneously broken gauge theories can give rise to stringlike vacuum structures (vortices). It has been pointed out by Vilenkin that in grand unified theories these can be sufficiently massive to have cosmological implications, e.g., in explaining the formation of galaxies. The circumstances in which such structures occur are examined. They do not occur in the simplest grand unified theories, but can occur in some more elaborate models which have been proposed. The cross section for the scattering of elementary particles by strings is estimated. This is used to evaluate the effect of collisions on the dynamics of a collapsing circular string, with particular attention to the question of whether energy dissipation by collision can reduce the rate of formation of black holes by collapsed strings, which may be unacceptably large in models where strings occur. It is found that the effect of collisions is not important in the case of grand unified strings, although it can be important for lighter strings
Restoring unitarity in the Banados-Teitelboim-Zanelli black hole
International Nuclear Information System (INIS)
Solodukhin, Sergey N.
2005-01-01
Whether or not a system is unitary can be seen from the way it, if perturbed, relaxes back to equilibrium. The relaxation of a semiclassical black hole can be described in terms of a correlation function which exponentially decays with time. In the momentum space it is represented by an infinite set of complex poles to be identified with the quasinormal modes. This behavior is in sharp contrast to the relaxation in unitary theory in finite volume: the correlation function of the perturbation in this case is a quasiperiodic function of time and, in general, is expected to show the Poincare recurrences. In this paper I demonstrate how restore unitarity in the Banados-Teitelboim-Zanelli (BTZ) black hole, the simplest example of an eternal black hole in finite volume. I start with reviewing the relaxation in the semiclassical BTZ black hole and how this relaxation is mirrored in the boundary conformal field theory as suggested by the anti-de Sitter/conformal field theory correspondence. I analyze the sum over SL(2,Z) images of the BTZ space-time and suggest that it does not produce a quasiperiodic relaxation, as one might have hoped, but results in a correlation function which decays by power law. I develop an earlier suggestion and consider a nonsemiclassical deformation of the BTZ space-time that has the structure of a wormhole connecting two asymptotic regions semiclassically separated by a horizon. The small deformation parameter λ is supposed to have a nonperturbative origin to capture the finite N behavior of the boundary theory. The discrete spectrum of perturbation in the modified space-time is computed and is shown to determine the expected unitary behavior: the corresponding time evolution is quasiperiodic with a hierarchy of large time scales ln1/λ and 1/λ interpreted, respectively, as the Heisenberg and Poincare time scales in the system
BRST invariant mixed string vertex for the bosonic string
International Nuclear Information System (INIS)
Clarizia, A.; Pezzella, F.
1987-09-01
We construct a BRST invariant (N+M)-string vertex including both open and closed string states. When we saturate it with N open string and M closed string physical states it reproduces their corresponding scattering amplitude. As a particular case we obtain BRST invariant vertex for the open-closed string transition. (orig.)
Open-closed string correspondence in open string field theory
International Nuclear Information System (INIS)
Baumgartl, M.; Sachs, I.
2008-01-01
We address the problem of describing different closed string backgrounds in background independent open string field theory: A shift in the closed string background corresponds to a collective excitation of open strings. As an illustration we apply the formalism to the case where the closed string background is a group manifold. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Strings, texture, and inflation
International Nuclear Information System (INIS)
Hodges, H.M.; Primack, J.R.
1991-01-01
We examine mechanisms, several of which are proposed here, to generate structure formation, or to just add large-scale features, through either gauged or global cosmic strings or global texture, within the framework of inflation. We first explore the possibility that strings or texture form if there is no coupling between the topological theory and the inflaton or spacetime curvature, via (1) quantum creation, and (2) a sufficiently high reheat temperature. In addition, we examine the prospects for the inflaton field itself to generate strings or texture. Then, models with the string/texture field coupled to the curvature, and an equivalent model with coupling to the inflaton field, are considered in detail. The requirement that inflationary density fluctuations are not so large as to conflict with observations leads to a number of constraints on model parameters. We find that strings of relevance for structure formation can form in the absence of coupling to the inflaton or curvature through the process of quantum creation, but only if the strings are strongly type I, or if they are global strings. If formed after reheating, naturalness suggests that gauged cosmic strings correspond to a type-I superconductor. Similarly, gauged strings formed during inflation via conformal coupling ξ=1/6 to the spacetime curvature (in a model suggested by Yokoyama in order to evade the millisecond pulsar constraint on cosmic strings) are expected to be strongly type I
International Nuclear Information System (INIS)
Neveu, A.
1986-01-01
There exist several string models. In the first lecture, the simplest one, the open bosonic string, which turns out to live most naturally in 26 dimensions will be described in some detail. In the second lecture, the closed bosonic strings, and the open and closed 10-dimensional strings (superstrings) are reviewed. In the third lecture, various compactification schemes which have been proposed to deal with the extra space dimensions, from 4 to 10 or 26 are dealt with; in particular, the Frenkel-Kac construction which builds non-Abelian internal symmetry groups out of the compactified dimensions, and the resulting heterotic string are described. Finally, in the fourth lecture, the important problem of the second quantization of string theories, and of the underlying gauge invariance which is responsible for the possibility of dealing, in a consistent fashion, with interacting high-spin states without negative metric is addressed. 41 references, 8 figures
International Nuclear Information System (INIS)
Vega, H.J. de
1990-01-01
One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)
Gadde, Abhijit; Haghighat, Babak; Kim, Joonho; Kim, Seok; Lockhart, Guglielmo; Vafa, Cumrun
2018-02-01
We consider bound states of strings which arise in 6d (1,0) SCFTs that are realized in F-theory in terms of linear chains of spheres with negative self-intersections 1,2, and 4. These include the strings associated to N small E 8 instantons, as well as the ones associated to M5 branes probing A and D type singularities in M-theory or D5 branes probing ADE singularities in Type IIB string theory. We find that these bound states of strings admit (0,4) supersymmetric quiver descriptions and show how one can compute their elliptic genera.
International Nuclear Information System (INIS)
Cohen-Tannoudji, G.
1990-01-01
This paper is devoted to a review of the connections between quantumchromodynamics (QCD) and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality
Thermodynamics of quantum strings
Morgan, M J
1994-01-01
A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)
Interpolating string field theories
International Nuclear Information System (INIS)
Zwiebach, B.
1992-01-01
This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles
International Nuclear Information System (INIS)
Becker, Katrin; Becker, Melanie; Krause, Axel
2006-01-01
We show that all three conditions for the cosmological relevance of heterotic cosmic strings, the right tension, stability and a production mechanism at the end of inflation, can be met in the strongly coupled M-theory regime. Whereas cosmic strings generated from weakly coupled heterotic strings have the well-known problems posed by Witten in 1985, we show that strings arising from M5-branes wrapped around 4-cycles (divisors) of a Calabi-Yau in heterotic M-theory compactifications solve these problems in an elegant fashion
International Nuclear Information System (INIS)
Turok, N.; Bhattacharjee, P.
1984-01-01
The evolution of a network of strings produced at a grand-unification phase transition in an expanding universe is discussed, with particular reference to the processes of energy exchange between the strings and the rest of the universe. This is supported by numerical calculations simulating the behavior of strings in an expanding universe. It is found that in order that the energy density of the strings does not come to dominate the total energy density there must be an efficient mechanism for energy loss: the only plausible one being the production of closed loops and their subsequent decay via gravitational radiation
International Nuclear Information System (INIS)
Cohen-Tannoudji, G.
1989-01-01
This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)
Counting States of Near-Extremal Black Holes
International Nuclear Information System (INIS)
Horowitz, G.T.; Strominger, A.
1996-01-01
A six-dimensional black string is considered and its Bekenstein-Hawking entropy computed. It is shown that to leading order above extremality this entropy precisely counts the number of string states with the given energy and charges. This identification implies that Hawking decay of the near-extremal black string can be analyzed in string perturbation theory and is perturbatively unitary. copyright 1996 The American Physical Society
Null Geodesics and Strong Field Gravitational Lensing in a String Cloud Background
International Nuclear Information System (INIS)
Iftikhar, Sehrish; Sharif, M.
2015-01-01
This paper is devoted to studying two interesting issues of a black hole with string cloud background. Firstly, we investigate null geodesics and find unstable orbital motion of particles. Secondly, we calculate deflection angle in strong field limit. We then find positions, magnifications, and observables of relativistic images for supermassive black hole at the galactic center. We conclude that string parameter highly affects the lensing process and results turn out to be quite different from the Schwarzschild black hole
The quantum structure of black holes
International Nuclear Information System (INIS)
Mathur, Samir D
2006-01-01
We give an elementary review of black holes in string theory. We discuss black hole entropy from string microstates and Hawking radiation from these states. We then review the structure of two-charge microstates and explore how 'fractionation' can lead to quantum effects over macroscopic length scales of the order of the horizon radius. (topical review)
Log corrections to entropy of three dimensional black holes with soft hair
Grumiller, Daniel; Perez, Alfredo; Tempo, David; Troncoso, Ricardo
2017-08-01
We calculate log corrections to the entropy of three-dimensional black holes with "soft hairy" boundary conditions. Their thermodynamics possesses some special features that preclude a naive direct evaluation of these corrections, so we follow two different approaches. The first one exploits that the BTZ black hole belongs to the spectrum of Brown-Henneaux as well as soft hairy boundary conditions, so that the respective log corrections are related through a suitable change of the thermodynamic ensemble. In the second approach the analogue of modular invariance is considered for dual theories with anisotropic scaling of Lifshitz type with dynamical exponent z at the boundary. On the gravity side such scalings arise for KdV-type boundary conditions, which provide a specific 1-parameter family of multi-trace deformations of the usual AdS3/CFT2 setup, with Brown-Henneaux corresponding to z = 1 and soft hairy boundary conditions to the limiting case z → 0+. Both approaches agree in the case of BTZ black holes for any non-negative z. Finally, for soft hairy boundary conditions we show that not only the leading term, but also the log corrections to the entropy of black flowers endowed with affine û (1) soft hair charges exclusively depend on the zero modes and hence coincide with the ones for BTZ black holes.
Semilocal and electroweak strings
Achucarro, A; Vachaspati, T
We review a class of non-topological defects in the standard electroweak model, and their implications. Starting with the semilocal string, which provides a counterexample to many well-known properties of topological vortices, we discuss electroweak strings and their stability with and without
DEFF Research Database (Denmark)
Schäfer, Mirko; Greiner, Martin
2011-01-01
to chaotic strings. Inhomogeneous coupling weights as well as small-world perturbations of the ring-network structure are discussed. It is found that certain combinations of coupling and network disorder preserve the empirical relationship between chaotic strings and the weak and strong sector...
International Nuclear Information System (INIS)
Jensen, B.
1993-06-01
The author presents a global solution of Einstein's equations which represents a rotating cosmic string with a finite coreradius. The importance of pressure for the generation of closed timelike curves outside the coreregion of such strings is clearly displayed in this model due to the simplicity of the source. 10 refs
Derandomizing from random strings
Buhrman, H.; Fortnow, L.; Koucký, M.; Loff, B.
2010-01-01
In this paper we show that BPP is truth-table reducible to the set of Kolmogorov random strings R(K). It was previously known that PSPACE, and hence BPP is Turing-reducible to R(K). The earlier proof relied on the adaptivity of the Turing-reduction to find a Kolmogorov-random string of polynomial
Unification of string dualities
International Nuclear Information System (INIS)
Sen, A.
1997-01-01
We argue that all conjectured dualities involving various string, M- and F-theory compactifications can be 'derived' from the conjectured duality between type I and SO(32) heterotic string theory, T-dualities and the definition of M-and F-theories. (orig.)
Optimal Packed String Matching
DEFF Research Database (Denmark)
Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany
2011-01-01
In the packed string matching problem, each machine word accommodates – characters, thus an n-character text occupies n/– memory words. We extend the Crochemore-Perrin constantspace O(n)-time string matching algorithm to run in optimal O(n/–) time and even in real-time, achieving a factor – speed...
CERN. Geneva. Audiovisual Unit
2002-01-01
I will present a simple and non-technical overview of string theory, aimed for non-experts who like to get some idea what string theory is about. Besides introductory material, I intend to cover also some of the more recent developments.
DEFF Research Database (Denmark)
Barendregt, Wolmet; Börjesson, Peter; Eriksson, Eva
2017-01-01
In this paper, we present the forced collaborative interaction game StringForce. StringForce is developed for a special education context to support training of collaboration skills, using readily available technologies and avoiding the creation of a "mobile bubble". In order to play String......Force two or four physically collocated tablets are required. These tablets are connected to form one large shared game area. The game can only be played by collaborating. StringForce extends previous work, both technologically and regarding social-emotional training. We believe String......Force to be an interesting demo for the IDC community, as it intertwines several relevant research fields, such as mobile interaction and collaborative gaming in the special education context....
2015-01-01
Welcome to String-Math 2015 at Sanya. The conference will be opened in December 31, 2015- January 4, 2016. String theory plays a central role in theoretical physics as a candidate for the quantum theory unifying gravity with other interactions. It has profound connections with broad branches of modern mathematics ever since the birth. In the last decades, the prosperous interaction, built upon the joint efforts from both mathematicians and physicists, has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side. The interplay is two-fold. The mathematics has provided powerful tools to fulfill the physical interconnection of ideas and clarify physical structures to understand the nature of string theory. On the other hand, ideas from string theory and quantum field theory have been a source of sign...
International Nuclear Information System (INIS)
Ishibashi, Nobuyuki; Onogi, Tetsuya
1989-01-01
Consistency conditions of open string theories, which can be a powerful tool in open string model building, are proposed. By making use of these conditions and assuming a simple prescription for the Chan-Paton factors, open string theories in several backgrounds are studied. We show that 1. there exist a large number of consistent bosonic open string theories on Z 2 orbifolds, 2. SO(32) type I superstring is the unique consistent model among fermionic string theories on the ten-dimensional flat Minkowski space, and 3. with our prescription for the Chan-Paton factors, there exist no consistent open superstring theories on (six-dimensional Minkowski space-time) x (Z 2 orbifold). (orig.)
String Theory Methods for Condensed Matter Physics
Nastase, Horatiu
2017-09-01
Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger
A reduced covariant string model for the extrinsic string
International Nuclear Information System (INIS)
Botelho, L.C.L.
1989-01-01
It is studied a reduced covariant string model for the extrinsic string by using Polyakov's path integral formalism. On the basis of this reduced model it is suggested that the extrinsic string has its critical dimension given by 13. Additionally, it is calculated in a simple way Poliakov's renormalization group law for the string rigidity coupling constants. (A.C.A.S.) [pt
International Nuclear Information System (INIS)
Kaku, M.
1987-01-01
In this article, the authors summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. They also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group they call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU(N). The geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory
Duality relation between charged elastic strings and superconducting cosmic strings
International Nuclear Information System (INIS)
Carter, B.
1989-01-01
The mechanical properties of macroscopic electromagnetically coupled string models in a flat or curved background are treated using a covariant formalism allowing the construction of a duality transformation that relates the category of uniform ''electric'' string models, constructed as the (nonconducting) charged generalisation of ordinary uncoupled (violin type) elastic strings, to a category of ''magnetic'' string models comprising recently discussed varieties of ''superconducting cosmic strings''. (orig.)
Black branes as piezoelectrics.
Armas, Jay; Gath, Jakob; Obers, Niels A
2012-12-14
We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.
International Nuclear Information System (INIS)
Horowitz, G.T.; Ross, S.F.
1997-01-01
It is shown that there are large static black holes for which all curvature invariants are small near the event horizon, yet any object which falls in experiences enormous tidal forces outside the horizon. These black holes are charged and near extremality, and exist in a wide class of theories including string theory. The implications for cosmic censorship and the black hole information puzzle are discussed. copyright 1997 The American Physical Society
Black holes in a cubic Galileon universe
Energy Technology Data Exchange (ETDEWEB)
Babichev, E.; Charmousis, C.; Lehébel, A.; Moskalets, T., E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: antoine.lehebel@th.u-psud.fr, E-mail: tetiana.moskalets@th.u-psud.fr [Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)
2016-09-01
We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two of these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.
International Nuclear Information System (INIS)
Jevicki, A.; Ninomiya, M.
1985-01-01
We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)
Superconducting cosmic strings
International Nuclear Information System (INIS)
Chudnovsky, E.M.; Field, G.B.; Spergel, D.N.; Vilenkin, A.
1986-01-01
Superconducting loops of string formed in the early Universe, if they are relatively light, can be an important source of relativistic particles in the Galaxy. They can be observed as sources of synchrotron radiation at centimeter wavelengths. We propose a string model for two recently discovered radio sources, the ''thread'' in the galactic center and the source G357.7-0.1, and predict that the filaments in these sources should move at relativistic speeds. We also consider superheavy superconducting strings, and the possibility that they be observed as extragalactic radio sources
Energy Technology Data Exchange (ETDEWEB)
Witten, Edward
2015-10-21
The Strings 2014 meeting was held at Princeton University June 23-27, 2014, co-sponsored by Princeton University and the Institute for Advanced Study. The goal of the meeting was to provide a stimulating and up-to-date overview of research in string theory and its relations to other areas of physics and mathematics, ranging from geometry to quantum field theory, condensed matter physics, and more. This brief report lists committee members and speakers but contains no scientific information. Note that the talks at Strings 2014 were videotaped and are available on the conference website: http://physics.princeton.edustrings2014/Talk_titles.shtml.
A disintegrating cosmic string
International Nuclear Information System (INIS)
Griffiths, J B; Docherty, P
2002-01-01
We present a simple sandwich gravitational wave of the Robinson-Trautman family. This is interpreted as representing a shock wave with a spherical wavefront which propagates into a Minkowski background minus a wedge (i.e. the background contains a cosmic string). The deficit angle (the tension) of the string decreases through the gravitational wave, which then ceases. This leaves an expanding spherical region of Minkowski space behind it. The decay of the cosmic string over a finite interval of retarded time may be considered to generate the gravitational wave. (letter to the editor)
International Nuclear Information System (INIS)
Klimenko, S.V.; Kochin, V.N.; Plyushchaj, M.S.; Pron'ko, G.P.; Razumov, A.V.; Samarin, A.V.
1985-01-01
Partial solutions to classical equations of three-string motion are considered. Simplest solutions, when three-string center moving with high velocity, are co nsidered. Single-mode solutions are studied. Explicit form of their parametrization is obtained and three-string dynamics visualization is made. Means of graphic packet ''Atom'' were used for visualization. A set of processes for graphic representation of multiparametric functions is developed. Peculiarity of these processes is a wide class of functions, which are represented by parametric, coordinate and functional isolines
Baby universes in string theory
International Nuclear Information System (INIS)
Dijkgraaf, Robbert; Gopakumar, Rajesh; Ooguri, Hirosi; Vafa, Cumrun
2006-01-01
We argue that the holographic description of four-dimensional Bogomol'nyi-Prasad-Sommerfield black holes naturally includes multicenter solutions. This suggests that the holographic dual to the gauge theory is not a single AdS 2 xS 2 but a coherent ensemble of them. We verify this in a particular class of examples, where the two-dimensional Yang-Mills theory gives a holographic description of the black holes obtained by branes wrapping Calabi-Yau cycles. Using the free fermionic formulation, we show that O(e -N ) nonperturbative effects entangle the two Fermi surfaces. In an Euclidean description, the wave function of the multicenter black holes gets mapped to the Hartle-Hawking wave function of baby universes. This provides a concrete realization, within string theory, of effects that can be interpreted as the creation of baby universes. We find that, at least in the case we study, the baby universes do not lead to a loss of quantum coherence, in accord with general arguments
Exceptional groups from open strings
International Nuclear Information System (INIS)
Gaberdiel, M.R.; Zwiebach, B.
1998-01-01
We consider type IIB theory compactified on a two-sphere in the presence of mutually non-local 7-branes. The BPS states associated with the gauge vectors of exceptional groups are seen to arise from open strings connecting the 7-branes, and multi-pronged open strings capable of ending on more than two 7-branes. These multi-pronged strings are built from open string junctions that arise naturally when strings cross 7-branes. The different string configurations can be multiplied as traditional open strings, and are shown to generate the structure of exceptional groups. (orig.)
Cosmic strings and cosmic structure
International Nuclear Information System (INIS)
Albrecht, A.; Brandenberger, R.; Turok, N.
1987-01-01
The paper concerns the application of the theory of cosmic strings to explain the structure of the Universe. The formation of cosmic strings in the early Universe is outlined, along with the Big Bang theory, Grand Unified theories, and the first three minutes after the Big Bang. A description is given of the shaping of the Universe by cosmic strings, including the evolution of the string. The possibility for direct observation of cosmic strings is discussed. (U.K.)
International conference on string theory
2017-01-01
The Strings 2017 conference is part of the "Strings" series of annual conferences, that bring the entire string theory community together. It will include reviews of major developments in the field, and specialized talks on specific topics. There will also be several public lectures given by conference participants, a pre-Strings school at the Technion, and a post-Strings workshop at the Weizmann Institute.
RTN Winter School on Strings, Supergravity and Gauge Theories (3/5)
CERN. Geneva
2006-01-01
9.30-10.30 B. Pioline Black Hole Degeneracies, Topological Strings and Quantum Attractor Flow (2/4) 10.30-11.30 S. Minwalla Large N Thermal Phase Transitions (2/4) 12.15-13.15 B. Craps Big Bang Models in String Theory (3/4) 14.00 CERN presentation and visit Organiser(s): CERN and Neuchâtel UniversityMore information: http://www.unine.ch/phys/string/rtn-school/index.php
Katz, Sheldon; Klemm, Albrecht; Morrison, David R
2015-01-01
This volume contains the proceedings of the conference String-Math 2012, which was held July 16-21, 2012, at the Hausdorff Center for Mathematics, Universitat Bonn. This was the second in a series of annual large meetings devoted to the interface of mathematics and string theory. These meetings have rapidly become the flagship conferences in the field. Topics include super Riemann surfaces and their super moduli, generalized moonshine and K3 surfaces, the latest developments in supersymmetric and topological field theory, localization techniques, applications to knot theory, and many more. The contributors include many leaders in the field, such as Sergio Cecotti, Matthias Gaberdiel, Rahul Pandharipande, Albert Schwarz, Anne Taormina, Johannes Walcher, Katrin Wendland, and Edward Witten. This book will be essential reading for researchers and students in this area and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.
Hydroball string sensing system
International Nuclear Information System (INIS)
Hurwitz, M.J.; Ekeroth, D.E.; Squarer, D.
1991-01-01
This patent describes a hydroball string sensing system for a nuclear reactor having a core containing a fluid at a fluid pressure. It comprises a tube connectable to the nuclear reactor so that the fluid can flow within the tube at a fluid pressure that is substantially the same as the fluid pressure of the nuclear reactor core; a hydroball string including - a string member having objects positioned therealong with a specified spacing, the object including a plurality of hydroballs, and bullet members positioned at opposing ends of the string member; first sensor means, positioned outside a first segment of the tube, for sensing one of the objects being positioned within the first segment, and for providing a sensing signal responsive to the sensing of the first sensing means
International Nuclear Information System (INIS)
Espriu, D.
2003-01-01
QCD can be described in a certain kinematical regime by an effective string theory. This string must couple to background chiral fields in a chirally invariant manner, thus taking into account the true chirally non-invariant QCD vacuum. By requiring conformal symmetry of the string and the unitarity constraint on chiral fields we reconstruct the equations of motion for the latter ones. These provide a consistent background for the propagation of the string. By further requiring locality of the effective action we recover the Lagrangian of non-linear sigma model of pion interactions. The prediction is unambiguous and parameter-free. The estimated chiral structural constants of Gasser and Leutwyler fit very well the phenomenological values. (author)
International Nuclear Information System (INIS)
Ramond, P.
1987-01-01
We review the construction of the free equations of motion for open and closed strings in 26 dimensions, using the methods of the Florida Group. Differing from previous treatments, we argue that the constraint L 0 -anti L 0 =0 should not be imposed on all the fields of the closed string in the gauge invariant formalism; we show that it can be incorporated in the gauge invariant formalism at the price of being unable to extract the equations of motion from a Langrangian. We then describe our purely algebraic method to introduce interactions, which works equally well for open and closed strings. Quartic interactions are absent except in the Physical Gauge. Finally, we speculate on the role of the measure of the open string path functional. (orig.)
2008-01-01
String Theory supporters argue that the universe we live in has eleven dimensions, out of which three spacial dimensions and a temporal one, which define the void and the space-time environment we experience daily.
Nonrelativistic closed string theory
International Nuclear Information System (INIS)
Gomis, Jaume; Ooguri, Hirosi
2001-01-01
We construct a Galilean invariant nongravitational closed string theory whose excitations satisfy a nonrelativistic dispersion relation. This theory can be obtained by taking a consistent low energy limit of any of the conventional string theories, including the heterotic string. We give a finite first order worldsheet Hamiltonian for this theory and show that this string theory has a sensible perturbative expansion, interesting high energy behavior of scattering amplitudes and a Hagedorn transition of the thermal ensemble. The strong coupling duals of the Galilean superstring theories are considered and are shown to be described by an eleven-dimensional Galilean invariant theory of light membrane fluctuations. A new class of Galilean invariant nongravitational theories of light-brane excitations are obtained. We exhibit dual formulations of the strong coupling limits of these Galilean invariant theories and show that they exhibit many of the conventional dualities of M theory in a nonrelativistic setting
String theory compactifications
Graña, Mariana
2017-01-01
The lectures in this book provide graduate students and non-specialist researchers with a concise introduction to the concepts and formalism required to reduce the ten-dimensional string theories to the observable four-dimensional space-time - a procedure called string compactification. The text starts with a very brief introduction to string theory, first working out its massless spectrum and showing how the condition on the number of dimensions arises. It then dwells on the different possible internal manifolds, from the simplest to the most relevant phenomenologically, thereby showing that the most elegant description is through an extension of ordinary Riemannian geometry termed generalized geometry, which was first introduced by Hitchin. Last but not least, the authors review open problems in string phenomenology, such as the embedding of the Standard Model and obtaining de Sitter solutions.
Statistical Hair on Black Holes
International Nuclear Information System (INIS)
Strominger, A.
1996-01-01
The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Schellekens, A.N.
1989-01-01
In this paper an elementary introduction to the principles of four-dimensional string construction will be given. Although the emphasis is on lattice constructions, almost all results have further, and often quite straightforward generalizations to other constructions. Since heterotic strings look phenomenologically more promising than type-II theories the authors only consider the former, although everything can easily be generalized to type-II theories. Some additional aspects of lattice constructions are discussed, and an extensive review can be found
Confusing the heterotic string
International Nuclear Information System (INIS)
Benett, D.L.; Mizrachi, L.
1986-01-01
A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E 8 's of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E 8 only, thereby removing the shadow world from the original model. (orig.)
Confusing the heterotic string
Benett, D.; Brene, N.; Mizrachi, Leah; Nielsen, H. B.
1986-10-01
A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E 8's of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E 8 only, thereby removing the shadow world from the original model.
Confusing the heterotic string
Energy Technology Data Exchange (ETDEWEB)
Benett, D.L.; Brene, N.; Nielsen, H.B.; Mizrachi, L.
1986-10-02
A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E/sub 8/'s of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E/sub 8/ only, thereby removing the shadow world from the original model.
International Nuclear Information System (INIS)
Thorn, C.B.
1988-01-01
Several topics are discussed in string theory presented as three lectures to the Spring School on Superstrings at the ICTP at Trieste, Italy, in April, 1988. The first lecture is devoted to some general aspects of conformal invariance and duality. The second sketches methods for carrying out perturbative calculations in string field theory. The final lecture presents an alternative lattice approach to a nonperturbative formulation of the sum over world surfaces. 35 refs., 12 figs
International Nuclear Information System (INIS)
Gervais, J.L.; Neveu, A.
1980-01-01
Recent works of the authors on string interpretation of the Wilson loop operators in QCD are reviewed in a self-contained fashion. Although most of the results habe already appeared in print, some new material is presented in renormalization of the Wilson loop operator and on the use of light-cone expansion to derive a linear string-like equation in light-cone formalism. (orig.)
Dijkgraaf, R; Verlinde, Herman L
1997-01-01
Via compactification on a circle, the matrix model of M-theory proposed by Banks et al suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.
Manipulating Strings in Python
Directory of Open Access Journals (Sweden)
William J. Turkel
2012-07-01
Full Text Available This lesson is a brief introduction to string manipulation techniques in Python. Knowing how to manipulate strings plays a crucial role in most text processing tasks. If you’d like to experiment with the following lessons, you can write and execute short programs as we’ve been doing, or you can open up a Python shell / Terminal to try them out on the command line.
The physics and mathematics of microstates in string theory: And a monstrous Farey tail
de Lange, P.
2016-01-01
A dissertation that delves into physical and mathematical aspects of string theory. In the first part of this work, microscopic properties string theoretic black holes are investigated. The second part is concerned with the moonshine phenomenon. The theory of generalized umbral moonshine is
Sectors of solutions in three-dimensional gravity and black holes
International Nuclear Information System (INIS)
Fjelstad, Jens; Hwang, Stephen
2002-01-01
We examine the connection between three-dimensional gravity with negative cosmological constant and two-dimensional CFT via the Chern-Simons formulation. A set of generalized spectral flow transformations are shown to yield new sectors of solutions. One implication is that the microscopic calculation of the entropy of the Banados-Teitelboim-Zanelli (BTZ) black hole is corrected by a multiplicative factor with the result that it saturates the Bekenstein-Hawking expression
Sectors of solutions in three-dimensional gravity and black holes
Energy Technology Data Exchange (ETDEWEB)
Fjelstad, Jens E-mail: jens.fjelstad@kau.se; Hwang, Stephen E-mail: stephen.hwang@kau.se
2002-04-29
We examine the connection between three-dimensional gravity with negative cosmological constant and two-dimensional CFT via the Chern-Simons formulation. A set of generalized spectral flow transformations are shown to yield new sectors of solutions. One implication is that the microscopic calculation of the entropy of the Banados-Teitelboim-Zanelli (BTZ) black hole is corrected by a multiplicative factor with the result that it saturates the Bekenstein-Hawking expression.
Deterministic indexing for packed strings
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li; Skjoldjensen, Frederik Rye
2017-01-01
Given a string S of length n, the classic string indexing problem is to preprocess S into a compact data structure that supports efficient subsequent pattern queries. In the deterministic variant the goal is to solve the string indexing problem without any randomization (at preprocessing time...... or query time). In the packed variant the strings are stored with several character in a single word, giving us the opportunity to read multiple characters simultaneously. Our main result is a new string index in the deterministic and packed setting. Given a packed string S of length n over an alphabet σ...
Casali, Eduardo; Tourkine, Piotr
2018-03-01
Twistor string models have been known for more than a decade now but have come back under the spotlight recently with the advent of the scattering equation formalism which has greatly generalized the scope of these models. A striking ubiquitous feature of these models has always been that, contrary to usual string theory, they do not admit vibrational modes and thus describe only conventional field theory. In this paper we report on the surprising discovery of a whole new sector of one of these theories which we call "twisted strings," when spacetime has compact directions. We find that the spectrum is enhanced from a finite number of states to an infinite number of interacting higher spin massive states. We describe both bosonic and world sheet supersymmetric models, their spectra and scattering amplitudes. These models have distinctive features of both string and field theory, for example they are invariant under stringy T-duality but have the high energy behavior typical of field theory. Therefore they describe a new kind of field theories in target space, sitting on their own halfway between string and field theory.
Strings and fundamental physics
International Nuclear Information System (INIS)
Baumgartl, Marco; Brunner, Ilka; Haack, Michael
2012-01-01
The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)
Strings and fundamental physics
Energy Technology Data Exchange (ETDEWEB)
Baumgartl, Marco [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Brunner, Ilka; Haack, Michael (eds.) [Muenchen Univ. (Germany). Fakultaet fuer Physik
2012-07-01
The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)
Perspectives on string phenomenology
Kane, Gordon; Kumar, Piyush
2015-01-01
The remarkable recent discovery of the Higgs boson at the CERN Large Hadron Collider completed the Standard Model of particle physics and has paved the way for understanding the physics which may lie beyond it. String/M theory has emerged as a broad framework for describing a plethora of diverse physical systems, which includes condensed matter systems, gravitational systems as well as elementary particle physics interactions. If string/M theory is to be considered as a candidate theory of Nature, it must contain an effectively four-dimensional universe among its solutions that is indistinguishable from our own. In these solutions, the extra dimensions of string/M Theory are “compactified” on tiny scales which are often comparable to the Planck length. String phenomenology is the branch of string/M theory that studies such solutions, relates their properties to data, and aims to answer many of the outstanding questions of particle physics beyond the Standard Model. This book contains perspectives on stri...
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2014-01-01
We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
The enhancon mechanism in string theory
International Nuclear Information System (INIS)
Jarv, Laur
2002-01-01
The enhancon mechanism is a specific phenomenon in string theory which resolves a certain naked spacetime singularity arising in the supergravity description related to N = 2 supersymmetric pure gauge theory. After reviewing the problem of singularities in general relativity as well as in string theory, and discussing the prototypical enhancon example constructed by wrapping D6-branes on a K3 surface, the thesis presents three generalisations to this static spherically symmetric case pertaining to large N SU(N) gauge theory. First we will use orientifolds to show how the enhancon mechanism also works in similar situations related to SO(2N+1), USp(2N) and SO(2N) gauge theories. Second we will wrap D-brane distributions on K3 to obtain the enhancon in oblate, toroidal and prolate shapes. Third we will study a rotating enhancon configuration and consider its implications for the black hole entropy and the second law of thermodynamics. (author)
Stationary black holes with stringy hair
Boos, Jens; Frolov, Valeri P.
2018-01-01
We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.
Interacting-string picture of the fermionic string
International Nuclear Information System (INIS)
Mandelstam, S.
1986-01-01
This report gives a review of the interacting-string picture of the Bose string. In the present lecture, the author outlines a similar treatment of the Fermionic string. The quantization of the free Fermionic string is carried out to the degrees of freedom x, representing the displacement of the string. Also presented are Grassman degrees of freedom S distributed along the string. The report pictures the fermionic string as a string of dipoles. The general picture of the interaction of such strings by joining and splitting is the same as for the Bose string. The author does not at present have the simplest formula for fermion string scattering amplitudes. A less detailed treatment is given than for the Bose string. The report sets up the functional-integration formalism, derives the analog mode, and indicates in general, terms how the conformal transformation to the z-plane may be performed. The paper concludes by stating without proof the formula for the N-article tree amplitude in the manifestly supersymmetric formalism
String field theory solution for any open string background
Czech Academy of Sciences Publication Activity Database
Erler, T.; Maccaferri, Carlo
2014-01-01
Roč. 10, Oct (2014), 1-37 ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : tachyon condensation * string field theory * conformal field models in string theory * bosonic strings Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014
Are Stopped Strings Preferred in Sad Music?
David Huron; Caitlyn Trevor
2017-01-01
String instruments may be played either with open strings (where the string vibrates between the bridge and a hard wooden nut) or with stopped strings (where the string vibrates between the bridge and a performer's finger pressed against the fingerboard). Compared with open strings, stopped strings permit the use of vibrato and exhibit a darker timbre. Inspired by research on the timbre of sad speech, we test whether there is a tendency to use stopped strings in nominally sad music. Specifica...
Strings for quantumchromodynamics
International Nuclear Information System (INIS)
Schomerus, V.
2007-04-01
During the last decade, intriguing dualities between gauge and string theory have been found and explored. they provide a novel window on strongly couplde gauge physics, including QCD-like models. Based on a short historical review of modern string theory, we explain how so-called AdS/CFT dualities emerged at the end of the 1990s. Some of their concrete implications and remarkable recent progress are then illustrated for the simplest example, namely the multicolor limit of N=4 SYM theory in four dimensions. We end with a few comments on existing extensions to more realistic models and applications, in particular to the sQGP. This text is meant as a non-technical introduction to gauge/string dualities for (particle) physicists. (orig.)
Kiritsis, E; Nitti, F
2014-01-01
We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.
Strings for quantumchromodynamics
Energy Technology Data Exchange (ETDEWEB)
Schomerus, V.
2007-04-15
During the last decade, intriguing dualities between gauge and string theory have been found and explored. they provide a novel window on strongly couplde gauge physics, including QCD-like models. Based on a short historical review of modern string theory, we explain how so-called AdS/CFT dualities emerged at the end of the 1990s. Some of their concrete implications and remarkable recent progress are then illustrated for the simplest example, namely the multicolor limit of N=4 SYM theory in four dimensions. We end with a few comments on existing extensions to more realistic models and applications, in particular to the sQGP. This text is meant as a non-technical introduction to gauge/string dualities for (particle) physicists. (orig.)
Entropy of the Kerr–Sen black hole
Indian Academy of Sciences (India)
We study the entropy of Kerr–Sen black hole of heterotic string theory beyond semiclas- ... differentials of black hole entropy, from the first law of thermodynamics with three param- eters. ..... Finally, note that the third term in the expansion.
Quark potential of spontaneous strings
International Nuclear Information System (INIS)
German, G.; Kleinert, H.
1989-01-01
The authors present some recent developments in string models with an extrinsic curvature term in action. Particular emphasis is placed upon the static quark potential and on the thermal deconfinement properties of spontaneous strings
Cosmic strings and galaxy formation
International Nuclear Information System (INIS)
Bertschinger, E.
1989-01-01
Cosmic strings have become increasingly popular candidates as seeds for the formation of structure in the universe. This scenario, remains a serious cosmogonical model despite close scrutiny. In constrast, magnetic monopoles and domain walls - relic topological defects as are cosmic strings - are disastrous for cosmology if they are left over from the early universe. The production of heavy cosmic strings is speculative, as it depends on the details of ultrahigh energy physics. Fortunately, speculation about cosmic strings is not entirely idle because, if they exist and are heavy enough to seed galaxy formation, cosmic strings can be detected astronomically. Failure to detect cosmic strings would impose some constraints on grand unified theories (GUTs); their discovery would have exciting consequences for high energy physics and cosmology. This article reviews the basic physics of nonsuperconducting cosmic strings, highlighting the field theory aspects, and provides a progress report on calculations of structure formation with cosmic strings
From fractals to wormholes via string theory
International Nuclear Information System (INIS)
Felce, A.G.
1992-01-01
The thesis is in two parts. The first part is devoted to a study of the definition of mass for soliton solutions in string theory. In the context of the low-energy effective field theory, there are three distinct quantities from which one can extract the mass of a soliton: the ADM mass, the static action and the kinetic energy. The three corresponding masses are carefully defined and shown to be equal for a representative class of string solitons, the so-called 'black fivebranes'. Along the way a potential confusion in the definition of the action is cleared up, and it is shown that the kinetic energy of a moving soliton is given in terms of a surface integral at spacelike infinity. This result for the kinetic energy is used to motivate a conjecture about the exact value of soliton masses in string theory: That in conformal field theory the kinetic mass is realized as the norm of the (1,1) deformation induced by the collective coordinate. Such deformations are usually treated as unphysical because they appear to be pure gauge and have zero norm. In a soliton conformal field theory, a finite number of these gauge transformations become physical because of a subtlety involving the boundary at spatial infinity. Some proposals for concrete exploration of this phenomenon are discussed. The second part of the thesis concerns the connection between string theory and an important problem in condensed matter physics. It has recently been shown that the dissipative Hofstadter model (dissipative quantum mechanics of an electron subject to uniform magnetic field and periodic potential in two dimensions) exhibit critical behavior on a network of lines in the dissipation/magnetic field plane. Apart from their obvious condensed matter interest, the corresponding critical theories represent non-trivial solutions of open string field theory containing a tachyon and gauge field background. A detailed account of their properties would be interesting from several points of view
New class of accelerating black hole solutions
International Nuclear Information System (INIS)
Camps, Joan; Emparan, Roberto
2010-01-01
We construct several new families of vacuum solutions that describe black holes in uniformly accelerated motion. They generalize the C metric to the case where the energy density and tension of the strings that pull (or push) on the black holes are independent parameters. These strings create large curvatures near their axis and when they have infinite length they modify the asymptotic properties of the spacetime, but we discuss how these features can be dealt with physically, in particular, in terms of 'wiggly cosmic strings'. We comment on possible extensions and extract lessons for the problem of finding higher-dimensional accelerating black hole solutions.
DEFF Research Database (Denmark)
Szklarczyk, Damian; Franceschini, Andrea; Wyder, Stefan
2015-01-01
, and the available data exhibit notable differences in terms of quality and completeness. The STRING database (http://string-db.org) aims to provide a critical assessment and integration of protein-protein interactions, including direct (physical) as well as indirect (functional) associations. The new version 10...... into families at various levels of phylogenetic resolution. Further improvements in version 10.0 include a completely redesigned prediction pipeline for inferring protein-protein associations from co-expression data, an API interface for the R computing environment and improved statistical analysis...
International Nuclear Information System (INIS)
Arnowitt, R.; Bryan, R.; Duff, M.J.; Nanopoulos, D.; Pope, C.N.
1990-01-01
Does string theory provide us with a consistent quantum theory of gravity? Is it that Holy Grail of elementary particle physics, a Theory of Everything with embraces all the forces and particles of Nature? Even if it is, can we extract concrete predictions about our low-energy world that can be tested experimentally at the SSC and other particle accelerators? What does it have to say about the origin of the Universe and the thorny problem of the cosmological constant? Are superstring theories unique, or might the eleven-dimensional supermembrane prove equally consistent? These are just some of the question posed and debated at Strings '89
International Nuclear Information System (INIS)
Randjbar-Daemi, S.; Strathdee, J.
1987-10-01
These notes are based on a set of six introductory lectures given jointly by the authors. After developing the canonical methods we discuss the covariant quantization of the bosonic as well as the fermionic string. Conformal field theory methods are also introduced and used to calculate the anomaly coefficient, c, as well as the critical dimensions for bosonic and superstrings. We briefly sketch the BRS quantization and then offer an elementary derivation of the anomaly in the ghost number current. Finally, we address the one-loop partition function of the bosonic string and the question of SL(2,Z) invariance. (author). 15 refs
Matrix string partition function
Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre
1998-01-01
We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.
The spectra of supersymmetric states in string theory
Cheng, M.C.N.
2008-01-01
In this thesis we study the spectra of supersymmetric states in string theory compactifications with eight and sixteen supercharges, with special focus placed on the quantum states of black holes and the phenomenon of wall-crossing in these theories. A self-contained introduction to the relevant
Numerical study of cosmic censorship in string theory
International Nuclear Information System (INIS)
Gutperle, Michael; Kraus, Per
2004-01-01
Recently Hertog, Horowitz, and Maeda have argued that cosmic censorship can be generically violated in string theory in anti-de Sitter spacetime by considering a collapsing bubble of a scalar field whose mass saturates the Breitenlohner-Freedman bound. We study this system numerically, and find that black holes form rather than naked singularities, implying that cosmic censorship is upheld. (author)
Numerical study of cosmic censorship in string theory
Energy Technology Data Exchange (ETDEWEB)
Gutperle, Michael E-mail: gutperle@physics.ucla.edu; Kraus, Per
2004-04-01
Recently Hertog, Horowitz, and Maeda have argued that cosmic censorship can be generically violated in string theory in anti-de Sitter spacetime by considering a collapsing bubble of a scalar field whose mass saturates the Breitenlohner-Freedman bound. We study this system numerically, and find that black holes form rather than naked singularities, implying that cosmic censorship is upheld. (author)
Deriving the four-string and open-closed string interactions from geometric string field theory
International Nuclear Information System (INIS)
Kaku, M.
1990-01-01
One of the questions concerning the covariant open string field theory is why there are two distinct BRST theories and why the four-string interaction appears in one version but not the other. The authors solve this mystery by showing that both theories are gauge-fixed versions of a higher gauge theory, called the geometric string field theory, with a new field, a string verbein e μσ νρ , which allows us to gauge the string length and σ parametrization. By fixing the gauge, the authors can derive the endpoint gauge (the covariantized light cone gauge), the midpoint gauge of Witten, or the interpolating gauge with arbitrary string length. The authors show explicitly that the four-string interaction is a gauge artifact of the geometric theory (the counterpart of the four-fermion instantaneous Coulomb term of QED). By choosing the interpolating gauge, they produce a new class of four-string interactions which smoothly interpolate between the endpoint gauge and the midpoint gauge (where it vanishes). Similarly, they can extract the closed string as a bound state of the open string, which appears in the endpoint gauge but vanishes in the midpoint gauge. Thus, the four-string and open-closed string interactions do not have to be added to the action as long as the string vierbein is included
Stringy origin of 4d black hole microstates
International Nuclear Information System (INIS)
Bianchi, M.; Morales, J.F.; Pieri, L.
2016-01-01
We derive a precise dictionary between micro-state geometries and open string condensates for a large class of excitations of four dimensional BPS black holes realised in terms of D3-branes intersecting on a six-torus. The complete multipole expansion of the supergravity solutions at weak coupling is extracted from string amplitudes involving one massless closed string and multiple open strings insertions on disks with mixed boundary conditions.
Stringy origin of 4d black hole microstates
Energy Technology Data Exchange (ETDEWEB)
Bianchi, M. [Dipartimento di Fisica, Università di Roma Tor Vergata,Via della Ricerca Scientifica, I-00133 Roma (Italy); Morales, J.F. [I.N.F.N. - Sezione di Roma 2,Via della Ricerca Scientifica, I-00133 Roma (Italy); Dipartimento di Fisica, Università di Roma Tor Vergata,Via della Ricerca Scientifica, I-00133 Roma (Italy); Pieri, L. [Dipartimento di Fisica, Università di Roma Tor Vergata,Via della Ricerca Scientifica, I-00133 Roma (Italy)
2016-06-01
We derive a precise dictionary between micro-state geometries and open string condensates for a large class of excitations of four dimensional BPS black holes realised in terms of D3-branes intersecting on a six-torus. The complete multipole expansion of the supergravity solutions at weak coupling is extracted from string amplitudes involving one massless closed string and multiple open strings insertions on disks with mixed boundary conditions.
Racetrack inflation and cosmic strings
Energy Technology Data Exchange (ETDEWEB)
Brax, P. [CEA-Saclay, Gif sur Yvette (France). CEA/DSM/SPhT, Unite de Recherche Associee au CNRS, Service de Physique Theorique; Bruck, C. van de [Sheffield Univ. (United Kingdom). Dept. of Applied Mathematics; Davis, A.C.; Davis, S.C. [Cambridge Univ. (United Kingdom). DAMTP, Centre for Mathematical Sciences; Jeannerot, R. [Instituut-Lorentz for Theoretical Physics, Leiden (Netherlands); Postma, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands)
2008-05-15
We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)
String theory in four dimensions
International Nuclear Information System (INIS)
Dine, M.
1988-01-01
A representative sample of current ideas about how one might develop a string phenomenology is presented. Some of the obstacles which lie in between string theory and contact with experiment are described. It is hoped that this volume will provide the reader with ways of thinking about string theory in four dimensions and provide tools for asking questions about string theory and ordinary physics. 102 refs
DEFF Research Database (Denmark)
Szklarczyk, Damian; Franceschini, Andrea; Kuhn, Michael
2011-01-01
present an update on the online database resource Search Tool for the Retrieval of Interacting Genes (STRING); it provides uniquely comprehensive coverage and ease of access to both experimental as well as predicted interaction information. Interactions in STRING are provided with a confidence score...... models, extensive data updates and strongly improved connectivity and integration with third-party resources. Version 9.0 of STRING covers more than 1100 completely sequenced organisms; the resource can be reached at http://string-db.org....
Instability of colliding metastable strings
Energy Technology Data Exchange (ETDEWEB)
Hiramatsu, Takashi [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Eto, Minoru [Yamagata Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research
2013-04-15
We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.
Cosmic strings and galaxy formation
Bertschinger, Edmund
1989-01-01
The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.
Instability of colliding metastable strings
International Nuclear Information System (INIS)
Hiramatsu, Takashi; Kobayashi, Tatsuo; Ookouchi, Yutaka; Kyoto Univ.
2013-04-01
We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.
Racetrack inflation and cosmic strings
International Nuclear Information System (INIS)
Brax, P.; Postma, M.
2008-05-01
We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)
Thermodynamic and classical instability of AdS black holes in fourth-order gravity
International Nuclear Information System (INIS)
Myung, Yun Soo; Moon, Taeyoon
2014-01-01
We study thermodynamic and classical instability of AdS black holes in fourth-order gravity. These include the BTZ black hole in new massive gravity, Schwarzschild-AdS black hole, and higher-dimensional AdS black holes in fourth-order gravity. All thermodynamic quantities which are computed using the Abbot-Deser-Tekin method are used to study thermodynamic instability of AdS black holes. On the other hand, we investigate the s-mode Gregory-Laflamme instability of the massive graviton propagating around the AdS black holes. We establish the connection between the thermodynamic instability and the GL instability of AdS black holes in fourth-order gravity. This shows that the Gubser-Mitra conjecture holds for AdS black holes found from fourth-order gravity
A Lifshitz black hole in four dimensional R2 gravity
International Nuclear Information System (INIS)
Cai Ronggen; Liu Yan; Sun Yawen
2009-01-01
We consider a higher derivative gravity theory in four dimensions with a negative cosmological constant and show that vacuum solutions of both Lifshitz type and Schroedinger type with arbitrary dynamical exponent z exist in this system. Then we find an analytic black hole solution which asymptotes to the vacuum Lifshitz solution with z = 3/2 at a specific value of the coupling constant. We analyze the thermodynamic behavior of this black hole and find that the black hole has zero entropy while non-zero temperature, which is very similar to the case of BTZ black holes in new massive gravity at a specific coupling. In addition, we find that the three dimensional Lifshitz black hole recently found by E. Ayon-Beato et al. has a negative entropy and mass when the Newton constant is taken to be positive.
String theory and quark confinement
International Nuclear Information System (INIS)
Polyakov, A.M.
1998-01-01
This article is based on a talk given at the ''Strings '97'' conference. It discusses the search for the universality class of confining strings. The key ingredients include the loop equations, the zigzag symmetry, the non-linear renormalization group. Some new tests for the equivalence between gauge fields and strings are proposed. (orig.)
String theory in four dimensions
1988-01-01
``String Theory in Four Dimensions'' contains a representative collection of papers dealing with various aspects of string phenomenology, including compactifications on smooth manifolds and more general conformal field theories. Together with the lucid introduction by M. Dine, this material gives the reader a good working knowledge of our present ideas for connecting string theory to nature.
RTN Winter School on Strings, Supergravity and Gauge Theories (4/5)
CERN. Geneva
2006-01-01
9.30-10.30 A. Dabholkar Black Holes Entropy and Microstate Counting (4/4) 10.30-11.30 M. Grana Flux Compactifications and Generalized Geometry (3/4) 12.15-13.15 B. Pioline Black Hole Degeneracies, Topological Strings and Quantum Attractor Flow (3/4) 14.00-15.00 S. Minwalla Large N Thermal Phase Transitions (3/4) 15.00-16.00 B. Craps Big Bang Models in String Theory (4/4) 16.30 Workgroups Organiser(s): CERN and Neuchâtel UniversityMore information: http://www.unine.ch/phys/string/rtn-school/index.php
Indian Academy of Sciences (India)
Abstract. A Kerr metric describing a rotating black hole is obtained on the three brane in a five-dimensional Randall-Sundrum brane world by considering a rotating five-dimensional black string in the bulk. We examine the causal structure of this space-time through the geodesic equations.
SUPERCOLLIDER: String test success
International Nuclear Information System (INIS)
Anon.
1992-01-01
On 14 August at the Superconducting Supercollider (SSC) Laboratory in Ellis County, Texas, the Accelerator Systems String Test (ASST) successfully met its objective by operating a half-cell of five collider dipole magnets, one quadrupole magnet, and two spool pieces at the design current of 6500 amperes
2007-01-01
"How can the nature of basic particles be defined beyond the mechanisms presiding over their creation? Besides the standard model of particle physics - resulting from the postulations of quantum mechanics - contemporary science has pinned its hopes on the totally new unifying notion provided by the highly mathematical string theory."(2 pages)
Directory of Open Access Journals (Sweden)
Marco A.C. Kneipp
2016-12-01
Full Text Available We consider a Yang–Mills–Higgs theory with the gauge group SU(3 broken to its center Z3 by two scalar fields in the adjoint representation and obtain new Z3 strings asymptotic configurations with the gauge field and magnetic field in the direction of the step operators.
On exceptional instanton strings
Del Zotto, M.; Lockhart, G.
According to a recent classification of 6d (1, 0) theories within F-theory there are only six “pure” 6d gauge theories which have a UV superconformal fixed point. The corresponding gauge groups are SU(3), SO(8), F4, E6, E7, and E8. These exceptional models have BPS strings which are also instantons
String perturbation theory diverges
International Nuclear Information System (INIS)
Gross, D.J.; Periwal, V.
1988-01-01
We prove that perturbation theory for the bosonic string diverges for arbitrary values of the coupling constant and is not Borel summable. This divergence is independent of the existence of the infinities that occur in the theory due to the presence of tachyons and dilaton tadpoles. We discuss the physical implications of such a divergence
International Nuclear Information System (INIS)
Akama, Keiichi
1988-01-01
Starting with the space-time action of the transversally extended string, we derive its world-sheet action, which is that of a gravitational and gauge theory with matter fields on the world-sheet, with additional effects of the second fundamental quantity. (author)
Geodesically complete BTZ-type solutions of 2 + 1 Born–Infeld gravity
International Nuclear Information System (INIS)
Bazeia, D; Losano, L; Olmo, Gonzalo J; Rubiera-Garcia, D
2017-01-01
We study Born–Infeld gravity coupled to a static, non-rotating electric field in 2 + 1 dimensions and find exact analytical solutions. Two families of such solutions represent geodesically complete, and hence nonsingular, spacetimes. Another family represents a point-like charge with a singularity at the center. Despite the absence of rotation, these solutions resemble the charged, rotating BTZ solution of general relativity but with a richer structure in terms of horizons. The nonsingular character of the first two families turn out to be attached to the emergence of a wormhole structure on their innermost region. This seems to be a generic prediction of extensions of general relativity formulated in metric-affine (or Palatini) spaces, where metric and connection are regarded as independent degrees of freedom. (paper)
Macroscopic fundamental strings in cosmology
Energy Technology Data Exchange (ETDEWEB)
Aharonov, Y; Englert, F; Orloff, J
1987-12-24
We show that, when D greater than or equal to 4, theories of closed strings of closed strings in D, non-compact space-time dimensions exhibit a phase transition. The high-temperature phase is characterized by a condensate of arbitrarily long strings with Hausdorff dimension two (area filling curves). We suggest that this stringy phase is the ancestor of the adiabatic era. Fundamental strings could then both drive the inflation and seed, in a way reminiscent of the cosmic string mechanism, the large structures in the universe.
Strings draw theorists together
Energy Technology Data Exchange (ETDEWEB)
Green, Michael [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge (United Kingdom)
2000-03-01
Theorists are confident that they are closer than ever to finding a quantum theory that unites gravity with the three other fundamental forces in nature. Many of the leading figures in the world of string theory met at the California Institute of Technology in January to discuss recent progress in the field and to reflect on the state of the theory. The enthusiastic mood of the gathering was based on the fact that string theory provides an elegant framework for a unified theory of all the forces and particles in nature, and also gives a consistent quantum-mechanical description of general relativity. String theory, and more precisely superstring theory, describes the assortment of elementary particles such as quarks and leptons, and the gauge bosons responsible for mediating forces in a unified manner as different modes of vibration of a single extended string. This version of the theory also embodies supersymmetry a conjectured symmetry that unifies fermions and bosons. Furthermore, the fact that the string has a fundamental length scale - the ''string length'' - apparently cures the short-distance problems of uniting general relativity with quantum theory. The main problem with the early formulations of superstring theory was that they emphasized the ''perturbative'' point of view, an approximation that describes string-like quantum-mechanical particles moving through classical (that is non quantum-mechanical) space-time. However, very general arguments require that any quantum theory of gravity should also describe space-time geometry in a quantum-mechanical manner. The classical geometry of space-time should then emerge as an approximate description at distance scales much larger than the so-called Planck scale of 10{sup -33} m. This requires an understanding of the theory beyond the perturbative approximation. It is the quest for this more fundamental description of string theory that has provided the main challenge for
Gravitational effects of global strings
International Nuclear Information System (INIS)
Aryal, M.; Everett, A.E.
1986-01-01
We have obtained the gravitational field, in the weak-field approximation, of cosmic strings formed in a phase transition in which a global symmetry is broken (global strings). The effect of this field on light rays passing a global string is found, and the resulting formation of double images and production of discontinuities in the microwave background temperature compared with the corresponding results for gauge strings. There are some differences in the case of global strings, reflecting the fact that the space surrounding such strings is not purely conical. However, the differences between gauge and global strings with masses suitable to explain galaxy formation are small, and the task of distinguishing them observationally appears difficult at best
Device for balancing parallel strings
Mashikian, Matthew S.
1985-01-01
A battery plant is described which features magnetic circuit means in association with each of the battery strings in the battery plant for balancing the electrical current flow through the battery strings by equalizing the voltage across each of the battery strings. Each of the magnetic circuit means generally comprises means for sensing the electrical current flow through one of the battery strings, and a saturable reactor having a main winding connected electrically in series with the battery string, a bias winding connected to a source of alternating current and a control winding connected to a variable source of direct current controlled by the sensing means. Each of the battery strings is formed by a plurality of batteries connected electrically in series, and these battery strings are connected electrically in parallel across common bus conductors.
Energy Technology Data Exchange (ETDEWEB)
Riordan, M. [Stanford University and the University of California, Santa Cruz (United States)]. E-mail: mriordan@ucsc.edu
2007-02-15
In the last few decades, however, physical theory has drifted away from the professional norms advocated by Newton and other enlightenment philosophers. A vast outpouring of hypotheses has occurred under the umbrella of what is widely called string theory. But string theory is not really a 'theory' at all - at least not in the strict sense that scientists generally use the term. It is instead a dense, weedy thicket of hypotheses and conjectures badly in need of pruning. That pruning, however, can come only from observation and experiment, to which string theory (a phrase I will grudgingly continue using) is largely inaccessible. String theory was invented in the 1970s in the wake of the Standard Model of particle physics. Encouraged by the success of gauge theories of the strong, weak and electromagnetic forces, theorists tried to extend similar ideas to energy and distance scales that are orders of magnitude beyond what can be readily observed or measured. The normal, healthy intercourse between theory and experiment - which had led to the Standard Model - has broken down, and fundamental physics now finds itself in a state of crisis. So it is refreshing to hear from a theorist - one who was deeply involved with string theory and championed it in his previous book, Three Roads to Quantum Gravity - that all is not well in this closeted realm. Smolin argues from the outset that viable hypotheses must lead to observable consequences by which they can be tested and judged. String theory by its very nature does not allow for such probing, according to Smolin, and therefore it must be considered as an unprovable conjecture. Towards the end of his book, Smolin suggests other directions fundamental physics can take, particularly in the realm of quantum gravity, to resolve its crisis and reconnect with the observable world. From my perspective, he leans a bit too heavily towards highly speculative ideas such as doubly special relativity, modified Newtonian
The string soundscape at gravitational wave detectors
Garcia Garcia, Isabel; Krippendorf, Sven; March-Russell, John
2018-04-01
We argue that gravitational wave signals due to collisions of ultra-relativistic bubble walls may be common in string theory. This occurs due to a process of post-inflationary vacuum decay via quantum tunnelling. Though we study a specific string construction involving warped throats, we argue that our conclusions are more general. Many such transitions could have occurred in the post-inflationary Universe, as a large number of throats with exponentially different mass scales can be present in the string landscape, leading to several signals of widely different frequencies - a soundscape connected to the landscape of vacua. Detectors such as aLIGO/VIRGO, LISA, and pulsar timing observations with SKA and EPTA have the sensitivity to detect such signals. A distribution of primordial black holes is also a likely consequence, though reliable estimates of masses and their abundance require dedicated numerical simulations, as do the fine details of the gravitational wave spectrum due to the unusual nature of the transition.
Real topological string amplitudes
Energy Technology Data Exchange (ETDEWEB)
Narain, K.S. [The Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, Trieste, 34151 (Italy); Piazzalunga, N. [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794-3636 (United States); International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy); Tanzini, A. [International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy)
2017-03-15
We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G{sub χ}, at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g{sup ′}=−χ+1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F{sub g}.
International Nuclear Information System (INIS)
Stefanski, B. Jr.
2004-01-01
We find classical open string solutions in the AdS 5 x S 5 /Z 2 orientifold with angular momenta along the five-sphere. The energy of these solutions has an expansion in integral powers of λ with sigma-model corrections suppressed by inverse powers of J - the total angular momentum. This gives a prediction for the exact anomalous dimensions of operators in the large N limit of an N = 2 Sp, Super-Yang-Mills theory with matter. We also find a simple map between open and closed string solutions. This gives a prediction for an all-loop planar relationship between the anomalous dimensions of single-trace and two-quark operators in the dual gauge theory. (author)
New Supersymmetric String Compactifications
Energy Technology Data Exchange (ETDEWEB)
Kachru, Shamit
2002-11-25
We describe a new class of supersymmetric string compactifications to 4d Minkowski space. These solutions involve type II strings propagating on (orientifolds of) non Calabi-Yau spaces in the presence of background NS and RR fluxes. The simplest examples have descriptions as cosets, generalizing the three-dimensional nilmanifold. They can also be thought of as twisted tori. We derive a formula for the (super)potential governing the light fields, which is generated by the fluxes and certain ''twists'' in the geometry. Detailed consideration of an example also gives strong evidence that in some cases, these exotic geometries are related by smooth transitions to standard Calabi-Yau or G2 compactifications of M-theory.
International Nuclear Information System (INIS)
Gross, D.J.
1985-01-01
String theories offer a way of realizing the potential of supersymmetry, Kaluza-Klein and much more. They represent a radical departure from ordinary quantum field theory, but in the direction of increased symmetry and structure. They are based on an enormous increase in the number of degrees of freedom, since in addition to fermionic coordinates and extra dimensions, the basic entities are extended one dimensional objects instead of points. Correspondingly the symmetry group is greatly enlarged, in a way that we are only beginning to comprehend. At the very least this extended symmetry contains the largest group of symmetries that can be contemplated within the framework of point field theories-those of ten-dimensional supergravity and super Yang-Mills theory. Types of string theories and the phenomenology to be expected from them are reviewed
Diaz, Victor Alfonzo; Giusti, Andrea
2018-03-01
The aim of this paper is to present a simple generalization of bosonic string theory in the framework of the theory of fractional variational problems. Specifically, we present a fractional extension of the Polyakov action, for which we compute the general form of the equations of motion and discuss the connection between the new fractional action and a generalization the Nambu-Goto action. Consequently, we analyze the symmetries of the modified Polyakov action and try to fix the gauge, following the classical procedures. Then we solve the equations of motion in a simplified setting. Finally, we present a Hamiltonian description of the classical fractional bosonic string and introduce the fractional light-cone gauge. It is important to remark that, throughout the whole paper, we thoroughly discuss how to recover the known results as an "integer" limit of the presented model.
Goedel universe from string theory
Energy Technology Data Exchange (ETDEWEB)
Li, Shou-Long; Wei, Hao [Beijing Institute of Technology, School of Physics, Beijing (China); Feng, Xing-Hui; Lue, H. [Beijing Normal University, Department of Physics, Center for Advanced Quantum Studies, Beijing (China)
2017-05-15
The Goedel universe is a direct product of a line and a three-dimensional spacetime we call G{sub α}. In this paper, we show that the Goedel metrics can arise as exact solutions in Einstein-Maxwell-Axion, Einstein-Proca-Axion, or Freedman-Schwarz gauged supergravity theories. The last option allows us to embed the Goedel universe in string theory. The ten-dimensional spacetime is a direct product of a line and the nine-dimensional one of an S{sup 3} x S{sup 3} bundle over G{sub α}, and it can be interpreted as some decoupling limit of the rotating D1/D5/D5 intersection. For some appropriate parameter choice, the nine-dimensional metric becomes an AdS{sub 3} x S{sup 3} bundle over squashed 3-sphere. We also study the properties of the Goedel black holes that are constructed from the double Wick rotations of the Goedel metrics. (orig.)
International Nuclear Information System (INIS)
Volovich, I.V.
1987-01-01
The hypothesis of the possible p-adic structure of spacetime is considered. The p-adic Veneziano amplitude is proposed and the main properties of the p-adic string theory are discussed. The analogous questions on the Galois field are also discussed. In this case the Jacobi sum plays the role of the Veneziano amplitude which can be expressed by means of the I-adic cohomology of the Fermat curves. The corresponding vertex operator is given. (author)
Exactly soluble dynamics of (p,q) string near macroscopic fundamental strings
International Nuclear Information System (INIS)
Bak, Dongsu; Rey, Soojong; Yee, Houng
2004-01-01
We study dynamics of type-IIB bound-state of a Dirichlet string and n fundamental strings in the background of N fundamental strings. Because of supergravity potential, the bound-state string is pulled to the background fundamental strings, whose motion is described by open string rolling radion field. The string coupling can be made controllably weak and, in the limit 1 2 st n 2 st N, the bound-state energy involved is small compared to the string scale. We thus propose rolling dynamics of open string radion in this system as an exactly solvable analog for rolling dynamics of open string tachyon in decaying D-brane. The dynamics bears a novel feature that the worldsheet electric field increases monotonically to the critical value as the bound-state string falls into the background string. Close to the background string, D string constituent inside the bound-state string decouples from fundamental string constituents. (author)
The theta-structure in string theories - 1: bosonic strings
International Nuclear Information System (INIS)
Li Miao.
1985-09-01
We explored the theta-structures in bosonic string theories which are similar to those in gauge field theories. The theta-structure of string is due to the multiply connected spatial compact subspace of space-time. The work of this paper shows that there is an energy band E(theta) in the string theory and one may move the tachyon out in theory by choosing some proper theta parameters. (author)
An invariant string propagator
International Nuclear Information System (INIS)
Cohen, A.; Moore, G.; Nelson, P.; Polchinski, J.
1986-01-01
The authors show that the Polyakov path integral is used to define off-shell quantities in string theory. The path integral of Polyakov gives an elegant description of strings and their interactions. However, its use has been limited to obtaining the Koba-Nielsen expressions for S-matrix elements. It is not yet clear what quantities make sense in string theory. This study shows that the path integral can be used to define off-shell quantities as well. In particular it defines a natural n-point function in loop space as the sum of all world surfaces bounded by n specific spacetime curves. The reader is referred for more detail. The report first outlines general evaluation then discusses the additional features added by boundaries. Locally, the three gauge freedoms ξ/sup a/ and δphi can be used to take g/sub ab/ (σ) to the unit matrix. Globally, this is not quite possible. In general the researchers choose a family of fiducial metrics g/sub ab/ (σ,tau), depending on a finite number of Teichmuller parameters tau, and every metric is gauge equivalent to one of these
Thermodynamical string fragmentation
Energy Technology Data Exchange (ETDEWEB)
Fischer, Nadine [Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, Lund, SE-223 62 (Sweden); School of Physics and Astronomy, Monash University,Wellington Road, Clayton, VIC-3800 (Australia); Sjöstrand, Torbjörn [Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, Lund, SE-223 62 (Sweden)
2017-01-31
The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.
International Nuclear Information System (INIS)
Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.
1996-01-01
We study in detail the structure of Grand Unified Theories derived as the low-energy limit of orbifold four-dimensional strings. To this aim, new techniques for building level-two symmetric orbifold theories are presented. New classes of GUTs in the context of symmetric orbifolds are then constructed. The method of permutation modding is further explored and SO(10) GUTs with both 45- or 54-plets are obtained. SU(5) models are also found through this method. It is shown that, in the context of symmetric orbifold SO(10) GUTs, only a single GUT Higgs, either a 54 or a 45, can be present and it always resides in an order-two untwisted sector. Very restrictive results also hold in the case of SU(5). General properties and selection rules for string GUTs are described. Some of these selection rules forbid the presence of some particular GUT-Higgs couplings which are sometimes used in SUSY-GUT model building. Some semi-realistic string GUT examples are presented and their properties briefly discussed. (orig.)
Fingerprints in Compressed Strings
DEFF Research Database (Denmark)
Bille, Philip; Cording, Patrick Hagge; Gørtz, Inge Li
2013-01-01
The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has been used in many string algorithms. In this paper we show how to construct a data structure for a string S of size N compressed by a context-free grammar of size n that answers fingerprint queries...... derivative that captures LZ78 compression and its variations) we get O(loglogN) query time. Hence, our data structures has the same time and space complexity as for random access in SLPs. We utilize the fingerprint data structures to solve the longest common extension problem in query time O(logNlogℓ) and O....... That is, given indices i and j, the answer to a query is the fingerprint of the substring S[i,j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(logN) query time, and for Linear SLPs (an SLP...
How to simulate global cosmic strings with large string tension
Energy Technology Data Exchange (ETDEWEB)
Klaer, Vincent B.; Moore, Guy D., E-mail: vklaer@theorie.ikp.physik.tu-darmstadt.de, E-mail: guy.moore@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, Darmstadt, D-64289 Germany (Germany)
2017-10-01
Global string networks may be relevant in axion production in the early Universe, as well as other cosmological scenarios. Such networks contain a large hierarchy of scales between the string core scale and the Hubble scale, ln( f {sub a} / H ) ∼ 70, which influences the network dynamics by giving the strings large tensions T ≅ π f {sub a} {sup 2} ln( f {sub a} / H ). We present a new numerical approach to simulate such global string networks, capturing the tension without an exponentially large lattice.
Maximal unbordered factors of random strings
DEFF Research Database (Denmark)
Cording, Patrick Hagge; Knudsen, Mathias Bæk Tejs
2016-01-01
A border of a string is a non-empty prefix of the string that is also a suffix of the string, and a string is unbordered if it has no border. Loptev, Kucherov, and Starikovskaya [CPM 2015] conjectured the following: If we pick a string of length n from a fixed alphabet uniformly at random...
International Nuclear Information System (INIS)
Schaefer, Mirko
2011-01-01
The main topic of this thesis is the investigation of dynamical properties of coupled Tchebycheff map networks. The results give insights into the chaotic string model and its network generalization from a dynamical point of view. As a first approach, discrete symmetry transformations of the model are studied. These transformations are formulated in a general way in order to be also applicable to similar dynamics on bipartite network structures. The dynamics is studied numerically via Lyapunov measures, spatial correlations, and ergodic properties. It is shown that the zeros of the interaction energy are distinguished only with respect to this specific observable, but not by a more general dynamical principle. The original chaotic string model is defined on a one-dimensional lattice (ring-network) as the underlying network topology. This thesis studies a modification of the model based on the introduction of tunable disorder. The effects of inhomogeneous coupling weights as well as small-world perturbations of the ring-network structure on the interaction energy are discussed. Synchronization properties of the chaotic string model and its network generalization are studied in later chapters of this thesis. The analysis is based on the master stability formalism, which relates the stability of the synchronized state to the spectral properties of the network. Apart from complete synchronization, where the dynamics at all nodes of the network coincide, also two-cluster synchronization on bipartite networks is studied. For both types of synchronization it is shown that depending on the type of coupling the synchronized dynamics can display chaotic as well as periodic or quasi-periodic behaviour. The semi-analytical calculations reveal that the respective synchronized states are often stable for a wide range of coupling values even for the ring-network, although the respective basins of attraction may inhabit only a small fraction of the phase space. To provide
Quantum backreaction in string theory
International Nuclear Information System (INIS)
Evnin, O.
2012-01-01
There are situations in string theory when a finite number of string quanta induce a significant backreaction upon the background and render the perturbation theory infrared-divergent. The simplest example is D0-brane recoil under an impact by closed strings. A more physically interesting case is backreaction on the evolution of a totally compact universe due to closed string gas. Such situations necessitate qualitative amendments to the traditional formulation of string theory in a fixed classical background. In this contribution to the proceedings of the XVII European Workshop on String Theory in Padua, I review solved problems and current investigations in relation to this kind of quantum backreaction effects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Fast Searching in Packed Strings
DEFF Research Database (Denmark)
Bille, Philip
2009-01-01
Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth-Morris-Pratt algorithm [SIAM J. Comput., 1977] solves the string matching problem in linear time which is optimal if we can only read one character at the time....... However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation. Let m...... word-RAM with logarithmic word size we present an algorithm using time O(n/log(sigma) n + m + occ) Here occ is the number of occurrences of P in Q. For m = o(n) this improves the O(n) bound...
Comparing double string theory actions
International Nuclear Information System (INIS)
De Angelis, L.; Gionti, S.J.G.; Marotta, R.; Pezzella, F.
2014-01-01
Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed
Comparing double string theory actions
Energy Technology Data Exchange (ETDEWEB)
De Angelis, L. [Dipartimento di Fisica, Università degli Studi “Federico II” di Napoli,Complesso Universitario Monte S. Angelo ed. 6, via Cintia, 80126 Napoli (Italy); Gionti, S.J.G. [Specola Vaticana, Vatican City, V-00120, Vatican City State and Vatican Observatory Research Group, Steward Observatory, The University Of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721 (United States); Marotta, R.; Pezzella, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126 Napoli (Italy)
2014-04-28
Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed.
Regularized strings with extrinsic curvature
International Nuclear Information System (INIS)
Ambjoern, J.; Durhuus, B.
1987-07-01
We analyze models of discretized string theories, where the path integral over world sheet variables is regularized by summing over triangulated surfaces. The inclusion of curvature in the action is a necessity for the scaling of the string tension. We discuss the physical properties of models with extrinsic curvature terms in the action and show that the string tension vanishes at the critical point where the bare extrinsic curvature coupling tends to infinity. Similar results are derived for models with intrinsic curvature. (orig.)
Classical theory of radiating strings
Copeland, Edmund J.; Haws, D.; Hindmarsh, M.
1990-01-01
The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.
Cosmic string induced CMB maps
International Nuclear Information System (INIS)
Landriau, M.; Shellard, E. P. S.
2011-01-01
We compute maps of CMB temperature fluctuations seeded by cosmic strings using high resolution simulations of cosmic strings in a Friedmann-Robertson-Walker universe. We create full-sky, 18 deg. and 3 deg. CMB maps, including the relevant string contribution at each resolution from before recombination to today. We extract the angular power spectrum from these maps, demonstrating the importance of recombination effects. We briefly discuss the probability density function of the pixel temperatures, their skewness, and kurtosis.
Introduction to strings and superstrings
International Nuclear Information System (INIS)
Traubenberg, M.R. de.
1988-01-01
We discuss the main features on the formulation of string theory that, in a primitive level, describe the hadronic phenomenon of duality. We also study an extension of the models of closed and strings with spin. Then, by using supersymmetry, it is formulated the theory of superstrings and heterotic strings with the aim of unify the fundamental interactions and matter. (M.W.O.) [pt
Experimenting with string musical instruments
LoPresto, Michael C.
2012-03-01
What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.
A cardy formula for three-point coefficients or how the black hole got its spots
Energy Technology Data Exchange (ETDEWEB)
Kraus, Per [Department of Physics and Astronomy, University of California,Los Angeles, CA 90095 (United States); Maloney, Alexander [Physics Department, McGill University,Montréal, QC H3A 2T8 (Canada)
2017-05-31
Modular covariance of torus one-point functions constrains the three point function coefficients of a two dimensional CFT. This leads to an asymptotic formula for the average value of light-heavy-heavy three point coefficients, generalizing Cardy’s formula for the high energy density of states. The derivation uses certain asymptotic properties of one-point conformal blocks on the torus. Our asymptotic formula matches a dual AdS{sub 3} computation of one point functions in a black hole background. This is evidence that the BTZ black hole geometry emerges upon course-graining over a suitable family of heavy microstates.
A rotating hairy AdS3 black hole with the metric having only one Killing vector field
International Nuclear Information System (INIS)
Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo
2015-01-01
We perturbatively construct a three-dimensional rotating AdS black hole with a real scalar hair. We choose the mass of a scalar field slightly above the Breitenlohner-Freedman bound and impose a general boundary condition for the bulk scalar field at AdS infinity. We first show that rotating BTZ black holes are unstable against scalar field perturbations under our more general boundary condition. Next we construct a rotating hairy black hole perturbatively with respect to a small amplitude ϵ of the scalar field, up to O(ϵ 4 ). Our hairy black hole is stationary and exhibits no dissipation, but the lumps of the non-linearly perturbed geometry break axial symmetry, thus providing the first example of a rotating black hole whose metric admits only one Killing vector field. Furthermore, we numerically show that the entropy of our hairy black hole is larger than that of the BTZ black hole with the same energy and the angular momentum. We briefly discuss if our rotating hairy black hole in lumpy geometry could be the endpoint of the instability.
String breaking with Wilson loops?
Kratochvila, S; Kratochvila, Slavo; Forcrand, Philippe de
2003-01-01
A convincing, uncontroversial observation of string breaking, when the static potential is extracted from Wilson loops only, is still missing. This failure can be understood if the overlap of the Wilson loop with the broken string is exponentially small. In that case, the broken string ground state will only be seen if the Wilson loop is long enough. Our preliminary results show string breaking in the context of the 3d SU(2) adjoint static potential, using the L\\"uscher-Weisz exponential variance reduction approach. As a by-product, we measure the fundamental SU(2) static potential with improved accuracy and see clear deviations from Casimir scaling.
Schomerus, Volker
2017-01-01
Since its conception in the 1960s, string theory has been hailed as one of the most promising routes we have to unify quantum mechanics and general relativity. This book provides a concise introduction to string theory explaining central concepts, mathematical tools and covering recent developments in physics including compactifications and gauge/string dualities. With string theory being a multidisciplinary field interfacing with high energy physics, mathematics and quantum field theory, this book is ideal for both students with no previous knowledge of the field and scholars from other disciplines who are looking for an introduction to basic concepts.
Open problems in string cosmology
International Nuclear Information System (INIS)
Toumbas, N.
2010-01-01
Some of the open problems in string cosmology are highlighted within the context of the recently constructed thermal and quantum superstring cosmological solutions. Emphasis is given on the high temperature cosmological regime, where it is argued that thermal string vacua in the presence of gravito-magnetic fluxes can be used to bypass the Hagedorn instabilities of string gas cosmology. This article is based on a talk given at the workshop on ''Cosmology and Strings'', Corfu, September 6-13, 2009. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Lin, Chien-Hung
2017-05-01
We generalize the string-net construction to multiple flavors of strings, each of which is labeled by the elements of an Abelian group Gi. The same flavor of strings can branch, while different flavors of strings can cross one another and thus they form intersecting string nets. We systematically construct the exactly soluble lattice Hamiltonians and the ground-state wave functions for the intersecting string-net condensed phases. We analyze the braiding statistics of the low-energy quasiparticle excitations and find that our model can realize all the topological phases as the string-net model with group G =∏iGi . In this respect, our construction provides various ways of building lattice models which realize topological order G , corresponding to different partitions of G and thus different flavors of string nets. In fact, our construction concretely demonstrates the Künneth formula by constructing various lattice models with the same topological order. As an example, we construct the G =Z2×Z2×Z2 string-net model which realizes a non-Abelian topological phase by properly intersecting three copies of toric codes.
Haouzi, Nathan; Kozçaz, Can
2017-01-01
Starting from type IIB string theory on an $ADE$ singularity, the (2,0) little string arises when one takes the string coupling $g_s$ to 0. In this setup, we give a unified description of the codimension-two defects of the little string, for any simple Lie algebra ${\\mathfrak{g}}$. Geometrically, these are D5 branes wrapping 2-cycles of the singularity. Equivalently, the defects are specified by a certain set of weights of $^L {\\mathfrak{g}}$, the Langlands dual of ${\\mathfrak{g}}$. As a firs...
Kiritsis, Elias
2007-01-01
This book is the essential new introduction to modern string theory, by one of the world's authorities on the subject. Concise, clearly presented, and up-to-date, String Theory in a Nutshell brings together the best understood and most important aspects of a theory that has been evolving since the early 1980s. A core model of physics that substitutes one-dimensional extended ""strings"" for zero-dimensional point-like particles (as in quantum field theory), string theory has been the leading candidate for a theory that would successfully unify all fundamental forces of nature, includin
Splitting strings on integrable backgrounds
Energy Technology Data Exchange (ETDEWEB)
Vicedo, Benoit
2011-05-15
We use integrability to construct the general classical splitting string solution on R x S{sup 3}. Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet {sigma}-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL{sub 2}(C). (orig.)
High-energy collisions of particles, strings, and branes
Veneziano, Gabriele
2015-01-01
This chapter summarizes some 25 years of work on the transplanckian-energy collisions of particles, strings, and branes, seen as a theoretical laboratory for understanding how gravity and quantum mechanics can be consistently combined in string theory. The ultimate aim of the exercise is to understand whether and how a consistent quantization of gravity can solve some longstanding paradoxes, such as the apparent loss of information in the production and decay of black holes at a semiclassical level. Considerable progress has been made in understanding the emergence of General Relativity expectations and in evaluating several kinds of quantum string corrections to them in the weak-gravity regime while keeping unitarity manifest. While some progress has also been made in the strong-gravity/gravitational collapse domain, full control of how unitarity works in that regime is still lacking.
Strings and superstrings. Electron linear colliders
International Nuclear Information System (INIS)
Alessandrini, V.; Bambade, P.; Binetruy, P.; Kounnas, C.; Le Duff, J.; Schwimmer, A.
1989-01-01
Basic string theory; strings in interaction; construction of strings and superstrings in arbitrary space-time dimensions; compactification and phenomenology; linear e+e- colliders; and the Stanford linear collider were discussed [fr
Strings, Branes and Symmetries
International Nuclear Information System (INIS)
Westerberg, A.
1997-01-01
Recent dramatic progress in the understanding of the non-perturbative structure of superstring theory shows that extended objects of various kinds, collectively referred to as p-branes, are an integral part of the theory. In this thesis, comprising an introductory text and seven appended research papers, we study various aspects of p-branes with relevance for superstring theory. The first part of the introductory text is a brief review of string theory focussing on the role of p-branes. In particular, we consider the so-called D-branes which currently are attracting a considerable amount of attention. The purpose of this part is mainly to put into context the results of paper 4, 5 and 6 concerning action functionals describing the low-energy dynamics of D-branes. The discussion of perturbative string theory given in this part of the introduction is also intended to provide some background to paper 2 which contains an application of the Reggeon-sewing approach to the construction of string vertices. The second part covers a rather different subject, namely higher-dimensional loop algebras and their cohomology, with the aim of facilitating the reading of papers 1, 3 and 7. The relation to p-branes is to be found in paper 1 where we introduce a certain higher-dimensional generalization of the loop algebra and discuss its potential applicability as a symmetry algebra for p-branes. Papers 3 and 7 are mathematically oriented out-growths of this paper addressing the issue of realizing algebras of this kind, known in physics as current algebras, in terms of pseudo differential operators (PSDOs). The main result of paper 3 is a proof of the equivalence between certain Lie-algebra cocycles on the space of second-quantizable PSDOs
Gorbatov, Elie
In the first part of the dissertation we study noncommutative field theories at finite temperature. We find evidence for winding states and observe the existence of a transition to a new phase where there is a reduction of the degrees of freedom in the non-planar sector of the theory. We emphasize that such a transition is generic and insensitive to the particulars of the UV definition of the theory. In the second part we investigate some aspects of M-theory compactifications on orbifolds. The heterotic E8 x E 8 string compactified on T4/ ZN has gauge group G x G˜ with massless states in the twisted sector charged under both factors. In the dual M-theory description on T4/ ZN x S1/Z 2 the two groups do not communicate with each other since they reside on the boundary of the eleven dimensional spacetime. This leads to a conundrum for the twisted states of the perturbative heterotic string for there does not seem to be local degrees of freedom which carry charges under both G and G˜. We propose a resolution of this apparent paradox by nonperturbative states in M-theory. In support of our argument we review the consideration of six-dimensional gauge couplings and verify the local anomaly cancellation. In order to understand the dynamical properties of these states we deform the orbifold geometry, find an equivalent string theory background, and brane engineer the low energy six-dimensional field theories. In the process we encounter many exotic and surprising phenomena which are intrinsically M-theoretic and completely invisible to the perturbative observer.
Energy Technology Data Exchange (ETDEWEB)
Siciliano, E.R.
1998-05-12
Data and supporting documentation were compiled and analyzed for 26 cases of gas grab samples taken during waste-tank core sampling activities between September 1, 1995 and December 31, 1997. These cases were tested against specific criteria to reduce uncertainties associated with in-tank sampling location and conditions. Of the 26 possible cases, 16 qualified as drill-string grab samples most likely to represent recently released waste gases. The data from these 16 ``confirmed`` cases were adjusted to remove non-waste gas contributions from core-sampling activities (argon or nitrogen purge), the atmospheric background, and laboratory sampler preparation (helium). The procedure for subtracting atmospheric, laboratory, and argon purge gases was unambiguous. No reliable method for determining the exact amount of nitrogen purge gas was established. Thus, the final set of ``Adjusted`` drill string gas data for the 6 nitrogen-purged cases had a greater degree of uncertainty than the final results for the 10 argon-purged cases. Including the appropriate amounts of uncertainty, this final set of data was added to the set of high-quality results from the Retained Gas Sampler (RGS), and good agreement was found for the N{sub 2}, H{sub 2}, and N{sub 2}O mole fractions sampled from common tanks. These results indicate that under favorable sampling conditions, Drill-String (DS) grab samples can provide reasonably accurate information about the dominant species of released gas. One conclusion from this set of total gas data is that the distribution of the H{sub 2} mole fractions is bimodal in shape, with an upper bound of 78%.
Directory of Open Access Journals (Sweden)
Amin Boumenir
2008-07-01
Full Text Available We investigate the existence and representation of transmutations, also known as transformation operators, for strings. Using measure theory and functional analytic methods we prove their existence and study their representation. We show that in general they are not close to unity since their representation does not involve a Volterra operator but rather the eigenvalue parameter. We also obtain conditions under which the transmutation is either a bounded or a compact operator. Explicit examples show that they cannot be reduced to Volterra type operators.
International Nuclear Information System (INIS)
Kachru, Shamit; McAllister, Liam; Sundrum, Raman
2007-01-01
We study sequestering, a prerequisite for flavor-blind supersymmetry breaking in several high-scale mediation mechanisms, in compactifications of type IIB string theory. We find that although sequestering is typically absent in unwarped backgrounds, strongly warped compactifications do readily sequester. The AdS/CFT dual description in terms of conformal sequestering plays an important role in our analysis, and we establish how sequestering works both on the gravity side and on the gauge theory side. We pay special attention to subtle compactification effects that can disrupt sequestering. Our result is a step toward realizing an appealing pattern of soft terms in a KKLT compactification
Energy Technology Data Exchange (ETDEWEB)
Shakhobalov, A B; Galiopa, A A; Ponomarev, G V; Ushakov, A M
1981-04-28
A drilling string lifter is suggested which includes a rotating tower installed on a fixed base, hydraulic cylinder and pipe-clamping assembly connected through a chain gear to the drive motor. In order to simplify the design of the hydraulic lifter, the drive motor is installed on a fixed base so that the axis of the outlet shaft of the drive motor coincides with the axis of rotation of the tower. In addition, the axis of rotation of the tower is made in the form of a tubular element, and the outlet shaft of the drive motor is ranged between the tubular element.
International Nuclear Information System (INIS)
Ip, A.K.; Koyanagi, K.; Tarasuk, W.R.
1976-01-01
A method of fabricating rodded fuels suitable for use in pressure tube type reactors and in pressure vessel type reactors is described. Fuel rods are secured as an inner and an outer sub-assembly, each rod attached between mounting rings secured to the rod ends. The two sub-assemblies are telescoped together and positioned by spaced thimbles located between them to provide precise positioning while permittng differential axial movement between the sub-assemblies. Such sub-assemblies are particularly suited for mounting as bundle strings. The method provides particular advantages in the assembly of annular-section fuel pins, which includes booster fuel containing enriched fuel material. (LL)
Principal Killing strings in higher-dimensional Kerr-NUT-(A)dS spacetimes
Boos, Jens; Frolov, Valeri P.
2018-04-01
We construct special solutions of the Nambu-Goto equations for stationary strings in a general Kerr-NUT-(A)dS spacetime in any number of dimensions. This construction is based on the existence of explicit and hidden symmetries generated by the principal tensor which exists for these metrics. The characteristic property of these string configurations, which we call "principal Killing strings," is that they are stretched out from "infinity" to the horizon of the Kerr-NUT-(A)dS black hole and remain regular at the latter. We also demonstrate that principal Killing strings extract angular momentum from higher-dimensional rotating black holes and interpret this as the action of an asymptotic torque.
Energy Technology Data Exchange (ETDEWEB)
Dyer, C C; Oattes, L M; Starkman, G D
1988-01-01
The authors find that vacuum string solutions cannot be embedded in an FRW model in the spirit of the swiss cheese model for inhomogeneities. Since all standard lensing calculations rely implicitly on the Swiss Cheese model, this result indicates that the previous lensing results for the vacuum string may be in error.
Tadpole resummations in string theory
International Nuclear Information System (INIS)
Kitazawa, Noriaki
2008-01-01
While R-R tadpoles should be canceled for consistency, string models with broken supersymmetry generally have uncanceled NS-NS tadpoles. Their presence signals that the background does not solve the field equations, so that these models are in 'wrong' vacua. In this Letter we investigate, with reference to some prototype examples, whether the true values of physical quantities can be recovered resumming the NS-NS tadpoles, hence by an approach that is related to the analysis based on String Field Theory by open-closed duality. We show that, indeed, the positive classical vacuum energy of a Dp-brane of the bosonic string is exactly canceled by the negative contribution arising from tree-level tadpole resummation, in complete agreement with Sen's conjecture on open-string tachyon condensation and with the consequent analysis based on String Field Theory. We also show that the vanishing classical vacuum energy of the SO(8192) unoriented bosonic open-string theory does not receive any tree-level corrections from the tadpole resummation. This result is consistent with the fact that this (unstable) configuration is free from tadpoles of massless closed-string modes, although there is a tadpole of the closed string tachyon. The application of this method to superstring models with broken supersymmetry is also discussed
International Nuclear Information System (INIS)
Iyer, Ramakrishnan; Johnson, Clifford V; Pennington, Jeffrey S
2011-01-01
We uncover a remarkable role that an infinite hierarchy of nonlinear differential equations plays in organizing and connecting certain c-hat <1 string theories non-perturbatively. We are able to embed the type 0A and 0B (A, A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We observe that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A, D) minimal string backgrounds. We explain how these and several string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context.
2001-01-01
String 2 is a series of superconducting magnets that are prototypes of those which will be installed in the LHC. It was cooled down to 1.9 Kelvin on September 14th. On Thursday last week, the dipoles of String 2 were successfully taken to nominal current, 11850 A.
International Nuclear Information System (INIS)
Mandelstam, S.
1986-06-01
Work on the derivation of an explicit perturbation series for string and superstring amplitudes is reviewed. The light-cone approach is emphasized, but some work on the Polyakov approach is also mentioned, and the two methods are compared. The calculation of the measure factor is outlined in the interacting-string picture
String-localized quantum fields
International Nuclear Information System (INIS)
Mund, Jens; Santos, Jose Amancio dos; Silva, Cristhiano Duarte; Oliveira, Erichardson de
2009-01-01
Full text. The principles of physics admit (unobservable) quantum fields which are localized not on points, but on strings in the sense of Mandelstam: a string emanates from a point in Minkowski space and extends to infinity in some space-like direction. This type of localization might permit the construction of new models, for various reasons: (a) in general, weaker localization implies better UV behaviour. Therefore, the class of renormalizable interactions in the string-localized has a chance to be larger than in the point-localized case; (b) for certain particle types, there are no point-localized (free) quantum fields - for example Anyons in d = 2 + 1, and Wigner's massless 'infinite spin' particles. For the latter, free string-localized quantum fields have been constructed; (c) in contrast to the point-localized case, string-localization admits covariant vector/tensor potentials for fotons and gravitons in a Hilbert space representation with positive energy. We shall present free string-localized quantum fields for various particle types, and some ideas about the perturbative construction of interacting string-localized fields. A central point will be an analogue of gauge theories, completely within a Hilbert space and without ghosts, trading gauge dependence with dependence on the direction of the localization string. In order to discuss renormalizability (item (a)), methods from microlocal analysis (wave front set and scaling degree) are needed. (author)
Schaffer, Karl
2012-01-01
The use of traditional string figures by the Dr. Schaffer and Mr. Stern Dance Ensemble led to experimentation with polyhedral string constructions. This article presents a series of polyhedra made with six loops of three colors which sequence through all the Platonic Solids.
Symmetry breaking in string theory
International Nuclear Information System (INIS)
Potting, R.
1998-01-01
A mechanism for a spontaneous breakdown of CPT symmetry appears in string theory, with possible implications for particle models. A realistic string theory might exhibit CPT violation at levels detectable in current or future experiments. A possible new mechanism for baryogenesis in the early Universe is also discussed
Ng, Chiu-king
2010-01-01
When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed…
String theory : physics or metaphysics?
Veneziano, Gabriele
2010-01-01
I will give arguments for why the enormous progress made during the last century on understanding elementary particles and their fundamental interactions suggests strings as the truly elementary constituents of Nature. I will then address the issue of whether the string paradigm can in principle be falsified or whether it should be considered as mere metaphysics.
Differential formulation in string theories
International Nuclear Information System (INIS)
Guzzo, M.M.
1987-01-01
The equations of gauge invariance motion for theories of boson open strings and Neveu-Schwarz and Ramond superstring are derived. A construction for string theories using differential formalism, is introduced. The importance of BRST charge for constructing such theories and the necessity of introduction of auxiliary fields are verified. (M.C.K.) [pt
Deformations of topological open strings
Hofman, C.; Ma, Whee Ky
Deformations of topological open string theories are described, with an emphasis on their algebraic structure. They are encoded in the mixed bulk-boundary correlators. They constitute the Hochschild complex of the open string algebra - the complex of multilinear maps on the boundary Hilbert space.
Towards optimal packed string matching
DEFF Research Database (Denmark)
Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany
2014-01-01
-size string-matching instruction wssm is available in contemporary commodity processors. The other word-size maximum-suffix instruction wslm is only required during the pattern pre-processing. Benchmarks show that our solution can be efficiently implemented, unlike some prior theoretical packed string...
Experimenting with String Musical Instruments
LoPresto, Michael C.
2012-01-01
What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…
Progress in string theory research
2016-01-01
At the first look, the String Theory seems just an interesting and non-trivial application of the quantum mechanics and the special relativity to vibrating strings. By itself, the quantization of relativistic strings does not call the attention of the particle physicist as a significant paradigm shift. However, when the string quantization is performed by applying the standard rules of the perturbative Quantum Field Theory, one discovers that the strings in certain states have the same physical properties as the gravity in the flat space-time. Chapter one of this book reviews the construction of the thermal bosonic string and D-brane in the framework of the Thermo Field Dynamics (TFD). It briefly recalls the wellknown light-cone quantization of the bosonic string in the conformal gauge in flat space-time, and gives a bird’s eye view of the fundamental concepts of the TFD. Chapter two examines a visual model inspired by string theory, on the system of interacting anyons. Chapter three investigate the late-ti...
Gauge invariance of string fields
International Nuclear Information System (INIS)
Banks, T.; Peskin, M.E.
1985-10-01
Some work done to understand the appearance of gauge bosons and gravitons in string theories is reported. An action has been constructed for free (bosonic) string field theory which is invariant under an infinite set of gauge transformations which include Yang-Mills transformations and general coordinate transformations as special cases. 15 refs., 1 tab
Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes
International Nuclear Information System (INIS)
Unver, O.; Gurtug, O.
2010-01-01
Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence, the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.
String dualities and superpotential
International Nuclear Information System (INIS)
Ha, Tae-Won
2010-09-01
The main objective of this thesis is the computation of the superpotential induced by D5- branes in the type IIB string theory and by five-branes in the heterotic string theory. Both superpotentials have the same functional form which is the chain integral of the holomorphic three-form. Using relative (co)homology we can unify the flux and brane superpotential. The chain integral can be seen as an example of the Abel-Jacobi map. We discuss many structures such as mixed Hodge structure which allows for the computation of Picard-Fuchs differential equations crucial for explicit computations. We blow up the Calabi-Yau threefold along the submanifold wrapped by the brane to obtain geometrically more appropriate configuration. The resulting geometry is non-Calabi-Yau and we have a canonically given divisor. This blown-up geometry makes it possible to restrict our attention to complex structure deformations. However, the direct computation is yet very difficult, thus the main tool for computation will be the lift of the brane configuration to a F-theory compactification. In F-theory, since complex structure, brane and, if present, bundlemoduli are all contained in the complex structure moduli space of the elliptic Calabi-Yau fourfold, the computation can be dramatically simplified. The heterotic/F-theory duality is extended to include the blow-up geometry and thereby used to give the blow-up geometry amore physical meaning. (orig.)
String dualities and superpotential
Energy Technology Data Exchange (ETDEWEB)
Ha, Tae-Won
2010-09-15
The main objective of this thesis is the computation of the superpotential induced by D5- branes in the type IIB string theory and by five-branes in the heterotic string theory. Both superpotentials have the same functional form which is the chain integral of the holomorphic three-form. Using relative (co)homology we can unify the flux and brane superpotential. The chain integral can be seen as an example of the Abel-Jacobi map. We discuss many structures such as mixed Hodge structure which allows for the computation of Picard-Fuchs differential equations crucial for explicit computations. We blow up the Calabi-Yau threefold along the submanifold wrapped by the brane to obtain geometrically more appropriate configuration. The resulting geometry is non-Calabi-Yau and we have a canonically given divisor. This blown-up geometry makes it possible to restrict our attention to complex structure deformations. However, the direct computation is yet very difficult, thus the main tool for computation will be the lift of the brane configuration to a F-theory compactification. In F-theory, since complex structure, brane and, if present, bundlemoduli are all contained in the complex structure moduli space of the elliptic Calabi-Yau fourfold, the computation can be dramatically simplified. The heterotic/F-theory duality is extended to include the blow-up geometry and thereby used to give the blow-up geometry amore physical meaning. (orig.)
International Nuclear Information System (INIS)
Anchordoqui, Luis; Nawata, Satoshi; Goldberg, Haim; Nunez, Carlos
2007-01-01
We explore the cosmological content of Salam-Sezgin six-dimensional supergravity, and find a solution to the field equations in qualitative agreement with observation of distant supernovae, primordial nucleosynthesis abundances, and recent measurements of the cosmic microwave background. The carrier of the acceleration in the present de Sitter epoch is a quintessence field slowly rolling down its exponential potential. Intrinsic to this model is a second modulus which is automatically stabilized and acts as a source of cold dark matter, with a mass proportional to an exponential function of the quintessence field (hence realizing varying mass particle models within a string context). However, any attempt to saturate the present cold dark matter component in this manner leads to unacceptable deviations from cosmological data--a numerical study reveals that this source can account for up to about 7% of the total cold dark matter budget. We also show that (1) the model will support a de Sitter energy in agreement with observation at the expense of a miniscule breaking of supersymmetry in the compact space; (2) variations in the fine structure constant are controlled by the stabilized modulus and are negligible; (3) ''fifth'' forces are carried by the stabilized modulus and are short range; (4) the long time behavior of the model in four dimensions is that of a Robertson-Walker universe with a constant expansion rate (w=-1/3). Finally, we present a string theory background by lifting our six-dimensional cosmological solution to ten dimensions
Poisson hierarchy of discrete strings
International Nuclear Information System (INIS)
Ioannidou, Theodora; Niemi, Antti J.
2016-01-01
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Basic Concepts of String Theory
Blumenhagen, Ralph; Theisen, Stefan
2013-01-01
The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.
Strings, conformal fields and topology
International Nuclear Information System (INIS)
Kaku, Michio
1991-01-01
String Theory has advanced at an astonishing pace in the last few years, and this book aims to acquaint the reader with the most active topics of research in the field. Building on the foundations laid in his Introduction to Superstrings, Professor Kaku discusses such topics as the classification of conformal string theories, knot theory, the Yang-Baxter relation, quantum groups, the non-polynominal closed string field theory, matrix models, and topological field theory. Several chapters review the fundamentals of string theory, making the presentation of the material self-contained while keeping overlap with the earlier book to a minimum. The book conveys the vitality of current research in string theory and places readers at its forefront. (orig.) With 40 figs. in 50 parts
Poisson hierarchy of discrete strings
Energy Technology Data Exchange (ETDEWEB)
Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)
2016-01-28
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Basic concepts of string theory
International Nuclear Information System (INIS)
Blumenhagen, Ralph
2013-01-01
The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.
CERN. Geneva
2002-01-01
A theory with such mathematical beauty cannot be wrong: this is one of the main arguments in favour of string theory, which unifies all known physical theories of fundamental interactions in a single coherent description of the universe. But no one has ever observed strings, not even indirectly, nor the space of extra dimensions where they live. However there are good reasons to believe that the 'hidden' dimensions of string theory may be much larger than what we thought in the past and that they may be within experimental reach in the near future - together with the strings themselves. In my talk, I will give an elementary introduction of string theory and describe the main experimental predictions.Organiser(s): Jasper Kirkby / EP DivisionNote: Tea & coffee will be served at 16.00 hrs.
Is the universe really made of tiny rubber bands? a kid's exploration of string theory
Lane, Shaun-Michael
2014-01-01
This book explores the fascinating world of string theory and quantum physics from a kid’s perspective. Originally published as an interactive text, it soon became an international best seller on Apple’s iBooks store and has been number one in the category of string theory on iTunes for the past two years. It is now available for the first time in print form. Fully illustrated and annotated. This is the black and white version.
RTN Winter School on Strings, Supergravity and Gauge Theories (5/5)
CERN. Geneva
2006-01-01
9.30-10.30 B. Pioline Black Hole Degeneracies, Topological Strings and Quantum Attractor Flow (4/4) 10.30-11.30 M. Grana Flux Compactifications and Generalized Geometry (4/4) 12.15-13.15 S. Minwalla Large N Thermal Phase Transitions (4/4) Organiser(s): CERN and Neuchâtel UniversityMore information: http://www.unine.ch/phys/string/rtn-school/index.php
Entanglement Entropy of AdS Black Holes
Directory of Open Access Journals (Sweden)
Maurizio Melis
2010-11-01
Full Text Available We review recent progress in understanding the entanglement entropy of gravitational configurations for anti-de Sitter gravity in two and three spacetime dimensions using the AdS/CFT correspondence. We derive simple expressions for the entanglement entropy of two- and three-dimensional black holes. In both cases, the leading term of the entanglement entropy in the large black hole mass expansion reproduces exactly the Bekenstein-Hawking entropy, whereas the subleading term behaves logarithmically. In particular, for the BTZ black hole the leading term of the entanglement entropy can be obtained from the large temperature expansion of the partition function of a broad class of 2D CFTs on the torus.
Oriented open-closed string theory revisited
International Nuclear Information System (INIS)
Zwiebach, B.
1998-01-01
String theory on D-brane backgrounds is open-closed string theory. Given the relevance of this fact, we give details and elaborate upon our earlier construction of oriented open-closed string field theory. In order to incorporate explicitly closed strings, the classical sector of this theory is open strings with a homotopy associative A ∞ algebraic structure. We build a suitable Batalin-Vilkovisky algebra on moduli spaces of bordered Ricmann surfaces, the construction of which involves a few subtleties arising from the open string punctures and cyclicity conditions. All vertices coupling open and closed strings through disks are described explicitly. Subalgebras of the algebra of surfaces with boundaries are used to discuss symmetries of classical open string theory induced by the closed string sector, and to write classical open string field theory on general closed string backgrounds. We give a preliminary analysis of the ghost-dilaton theorem. copyright 1998 Academic Press, Inc
A string theory which isn't about strings
Lee, Kanghoon; Rey, Soo-Jong; Rosabal, J. A.
2017-11-01
Quantization of closed string proceeds with a suitable choice of worldsheet vacuum. A priori, the vacuum may be chosen independently for left-moving and right-moving sectors. We construct ab initio quantized bosonic string theory with left-right asymmetric worldsheet vacuum and explore its consequences and implications. We critically examine the validity of new vacuum and carry out first-quantization using standard operator formalism. Remarkably, the string spectrum consists only of a finite number of degrees of freedom: string gravity (massless spin-two, Kalb-Ramond and dilaton fields) and two massive spin-two Fierz-Pauli fields. The massive spin-two fields have negative norm, opposite mass-squared, and provides a Lee-Wick type extension of string gravity. We compute two physical observables: tree-level scattering amplitudes and one-loop cosmological constant. Scattering amplitude of four dilatons is shown to be a rational function of kinematic invariants, and in D = 26 factorizes into contributions of massless spin-two and a pair of massive spin-two fields. The string one loop partition function is shown to perfectly agree with one loop Feynman diagram of string gravity and two massive spin-two fields. In particular, it does not exhibit modular invariance. We critically compare our construction with recent studies and contrast differences.
Conformal techniques in string theory and string field theory
International Nuclear Information System (INIS)
Giddings, S.B.
1987-01-01
The application of some conformal and Riemann surface techniques to string theory and string field theory is described. First a brief review of Riemann surface techniques and of the Polyakov approach to string theory is presented. This is followed by a discussion of some features of string field theory and of its Feynman rules. Specifically, it is shown that the Feynman diagrams for Witten's string field theory respect modular invariance, and in particular give a triangulation of moduli space. The Polyakov formalism is then used to derive the Feynman rules that should follow from this theory upon gauge-fixing. It should also be possible to apply this derivation to deduce the Feynman rules for other gauge-fixed string field theories. Following this, Riemann surface techniques are turned to the problem of proving the equivalence of the Polyakov and light-cone formalisms. It is first shown that the light-cone diagrams triangulate moduli space. Then the Polyakov measure is worked out for these diagrams, and shown to equal that deduced from the light-cone gauge fixed formalism. Also presented is a short description of the comparison of physical states in the two formalisms. The equivalence of the two formalisms in particular constitutes a proof of the unitarity of the Polyakov framework for the closed bosonic string
Caged black holes: Black holes in compactified spacetimes. I. Theory
International Nuclear Information System (INIS)
Kol, Barak; Sorkin, Evgeny; Piran, Tsvi
2004-01-01
In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes
Looking for the invisible universe - Black matter, black energy, black holes
International Nuclear Information System (INIS)
Elbaz, David
2016-01-01
As the discovery of the expansion of the universe and of black holes put the study of cosmology into question again because it now refers to invisible things such as black holes, black energy and black matter, the author proposes an other view on the universe within such a context. He first discusses these three enigmas of black matter, black energy and black holes. In a second part, he addresses, discusses and comments five illusions: the Uranian illusion (questions of the existence of an anti-world, of black matter temperature), the Mercurian illusion (quantum gravity, the string theory), the Martian illusion (a patchwork universe, the illusion of the infinite), the cosmic Maya (the John Wheeler's cup, the holographic universe), and the narcissistic illusion
Is it really naked? On cosmic censorship in string theory
International Nuclear Information System (INIS)
Frolov, Andrei V.
2004-01-01
We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counterexample to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the 'no black hole' argument breaks
String model of elementary particles
International Nuclear Information System (INIS)
Kikkawa, Keiji
1975-01-01
Recent development of the models of elementary particles is described. The principal features of elementary particle physics can be expressed by quark model, mass spectrum, the Regge behavior of scattering amplitude, and duality. Venezians showed in 1968 that the B function can express these features. From the analysis of mass spectrum, the string model was introduced. The quantization of the string is performed with the same procedure as the ordinary quantum mechanics. The motion of the string is determined by the Nambu-Goto action integral, and the Schroedinger equation is obtained. Mass spectrum from the string model was same as that from the duality model such as Veneziano model. The interaction between strings can be introduced, and the Lagrangian can be formulated. The relation between the string model and the duality model has been studied. The string model is the first theory of non-local field, and the further development is attractive. The relation between this model and the quark model is still not clear. (Kato, T.)
String bit models for superstring
International Nuclear Information System (INIS)
Bergman, O.; Thorn, C.B.
1995-01-01
The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D - 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D - 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring
String bit models for superstring
Energy Technology Data Exchange (ETDEWEB)
Bergman, O.; Thorn, C.B.
1995-12-31
The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D {minus} 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D {minus} 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring.
Fermions on the electroweak string
Moreno, J M; Quirós, Mariano; Moreno, J M; Oaknin, D H; Quiros, M
1995-01-01
We construct a simple class of exact solutions of the electroweak theory including the naked Z--string and fermion fields. It consists in the Z--string configuration (\\phi,Z_\\theta), the {\\it time} and z components of the neutral gauge bosons (Z_{0,3},A_{0,3}) and a fermion condensate (lepton or quark) zero mode. The Z--string is not altered (no feed back from the rest of fields on the Z--string) while fermion condensates are zero modes of the Dirac equation in the presence of the Z--string background (no feed back from the {\\it time} and z components of the neutral gauge bosons on the fermion fields). For the case of the n--vortex Z--string the number of zero modes found for charged leptons and quarks is (according to previous results by Jackiw and Rossi) equal to |n|, while for (massless) neutrinos is |n|-1. The presence of fermion fields in its core make the obtained configuration a superconducting string, but their presence (as well as that of Z_{0,3},A_{0,3}) does not enhance the stability of the Z--stri...
Fingerprints in compressed strings
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li; Cording, Patrick Hagge
2017-01-01
In this paper we show how to construct a data structure for a string S of size N compressed into a context-free grammar of size n that supports efficient Karp–Rabin fingerprint queries to any substring of S. That is, given indices i and j, the answer to a query is the fingerprint of the substring S......[i,j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(logN) query time, and for Linear SLPs (an SLP derivative that captures LZ78 compression and its variations) we get O(loglogN) query time...
International Nuclear Information System (INIS)
Bonara, L.; Cotta-Ramusino, P.; Rinaldi, M.
1987-01-01
It is well-known that type I and heterotic superstring theories have a zero mass spectrum which correspond to the field content of N=1 supergravity theory coupled to supersymmetric Yang-Mills theory in 10-D. The authors study the field theory ''per se'', in the hope that simple consistency requirements will determine the theory completely once one knows the field content inherited from string theory. The simplest consistency requirements are: N=1 supersymmetry; and absence of chiral anomalies. This is what the authors discuss in this paper here leaving undetermined the question of the range of validity of the resulting field theory. As is known, a model of N=1 supergravity (SUGRA) coupled to supersymmetric Yang-Mills (SYM) theory was known in the form given by Chapline and Manton. The coupling of SUGRA to SYM was determined by the definition of the ''field strength'' 3-form H in this paper
Dynamical evolution of cosmic strings
International Nuclear Information System (INIS)
Bouchet, F.R.
1988-01-01
The author have studied by means of numerical simulations the dynamical evolution of a network of cosmic strings, both in the radiation and matter era. Our basic conclusion is that a scaling solution exists, i.e., the string energy density evolves as t -2 . This means that the process by which long strings dump their energy into closed loops (which can gravitationally radiate away) is efficient enough to prevent the string domination over other forms of energy. This conclusion does not depend on the initial string energy density, nor on the various numerical parameters. On the other hand, the generated spectrum of loop sizes does depend on the value of our numerical lower cutoff (i.e., the minimum length of loop we allow to be chopped off the network). Furthermore, the network evolution is very different from what was assumed before), namely the creation of a few horizon sized loops per horizon volume and per hubble time, which subsequently fragment into about 10 smaller daughter loops. Rather, many tiny loops are directly cut from the network of infinite strings, and it appears that the only fundamental scale (the horizon) has been lost. This is probably because a fundamental ingredient had been overlooked, namely the kinks. These kinks are created in pairs at each intercommutation, and very rapidly, the long strings appear to be very kinky. Thus the number of long strings per horizon is still of the order of a few, but their total length is fairly large. Furthermore, a large number of kinks favors the formation of small loops, and their sizes might well be governed by the kink density along the long strings. Finally, we computed the two-point correlation function of the loops and found significant differences from the work of Turok
Casimir energy of a nonuniform string
Hadasz, L.; Lambiase, G.; Nesterenko, V. V.
2000-07-01
The Casimir energy of a nonuniform string built up from two pieces with different speeds of sound is calculated. A standard procedure of subtracting the energy of an infinite uniform string is applied, the subtraction being interpreted as the renormalization of the string tension. It is shown that in the case of a homogeneous string this method is completely equivalent to zeta renormalization.
Test particle trajectories near cosmic strings
Indian Academy of Sciences (India)
We present a detailed analysis of the motion of test particle in the gravitational ﬁeld of cosmic strings in different situations using the Hamilton–Jacobi (H–J) formalism. We have discussed the trajectories near static cosmic string, cosmic string in Brans–Dicke theory and cosmic string in dilaton gravity.
String Formatting Considered Harmful for Novice Programmers
Hughes, Michael C.; Jadud, Matthew C.; Rodrigo, Ma. Mercedes T.
2010-01-01
In Java, "System.out.printf" and "String.format" consume a specialised kind of string commonly known as a format string. In our study of first-year students at the Ateneo de Manila University, we discovered that format strings present a substantial challenge for novice programmers. Focusing on their first laboratory we found…
M-strings, Elliptic Genera and N=4 String Amplitudes
Hohenegger, Stefan
2014-01-01
We study mass-deformed N=2 gauge theories from various points of view. Their partition functions can be computed via three dual approaches: firstly, (p,q)-brane webs in type II string theory using Nekrasov's instanton calculus, secondly, the (refined) topological string using the topological vertex formalism and thirdly, M theory via the elliptic genus of certain M-strings configurations. We argue for a large class of theories that these approaches yield the same gauge theory partition function which we study in detail. To make their modular properties more tangible, we consider a fourth approach by connecting the partition function to the equivariant elliptic genus of R^4 through a (singular) theta-transform. This form appears naturally as a specific class of one-loop scattering amplitudes in type II string theory on T^2, which we calculate explicitly.
International Nuclear Information System (INIS)
Di Vecchia, P.; Sciuto, S.; Nakayama, R.; Petersen, J.L.; Sidenius, J.R.
1986-11-01
The BRST-invariant N-Reggeon vertex (for the bosonic string) previously given by us in the operator formulation is considered in more detail. In particular we present a direct derivation from the string path integral. Several crucial symmetry properties found a posteriori before, become a priori clearer in this formulation. A number of delicate points related to zero modes, cut off procedures and normal ordering prescriptions are treated in some detail. The old technique of letting the string field acquire a small dimension ε/2 → 0 + is found especially elegant. (orig.)
Plucked Strings and the Harpsichord
GIORDANO, N.; WINANS, J. P.
1999-07-01
The excitation of a harpsichord string when it is set into motion, i.e., plucked, by a plectrum is studied. We find that the amplitude of the resulting string vibration is approximately independent of the velocity with which the key is depressed. This result is in accord with conventional wisdom, but at odds with a recent theoretical model. A more realistic theoretical treatment of the plucking process is then described, and shown to be consistent with our measurements. The experiments reveal several other interesting aspects of the plectrum-string interaction.
Worldsheet geometries of ambitwistor string
Energy Technology Data Exchange (ETDEWEB)
Ohmori, Kantaro [Department of Physics, the University of Tokyo,Hongo, Bunkyo-ku, Tokyo 133-0022 (Japan)
2015-06-12
Mason and Skinner proposed the ambitwistor string theory which directly reproduces the formulas for the amplitudes of massless particles proposed by Cachazo, He and Yuan. In this paper we discuss geometries of the moduli space of worldsheets associated to the bosonic or the RNS ambitwistor string. Further, we investigate the factorization properties of the amplitudes when an internal momentum is near on-shell in the abstract CFT language. Along the way, we propose the existence of the ambitwistor strings with three or four fermionic worldsheet currents.
Spin chain for quantum strings
International Nuclear Information System (INIS)
Beisert, N.
2005-01-01
We review and compare the integrable structures in N=4 gauge theory and string theory on AdS 5 x S 5 . Recently, Bethe ansaetze for gauge theory/weak coupling and string theory/strong coupling were proposed to describe scaling dimensions in the su(2) subsector. Here we investigate the Bethe equations for quantum string theory, naively extrapolated to weak coupling. Excitingly, we find a spin chain Hamiltonian similar, but not equal, to the gauge theory dilatation operator. (Abstract Copyright [2005], Wiley Periodicals, Inc.)
Geometry, topology, and string theory
Energy Technology Data Exchange (ETDEWEB)
Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)
2003-01-01
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
Geometry, topology, and string theory
International Nuclear Information System (INIS)
Varadarajan, Uday
2003-01-01
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated
Quantum aspects of black hole entropy
Indian Academy of Sciences (India)
Four dimensional supersymmetric extremal black holes in string-based ... elements in the construction of black holes are our concepts of space and time. They are, thus, almost by definition, the most perfect macroscopic objects there are in ... Appealing to the Cardy formula for the asymptotic degeneracy of these states, one.
String cosmology modern string theory concepts from the cosmic structure
2009-01-01
The field of string cosmology has matured considerably over the past few years, attracting many new adherents to this multidisciplinary Field. This book fills a critical gap by bringing together strains of current research into one single volume. The resulting collection of selected articles presents the latest, ongoing results from renowned experts currently working in the field. This offers the possibility for practitioners to become conversant with many different aspects of string cosmology
String cosmology. Large-field inflation in string theory
International Nuclear Information System (INIS)
Westphal, Alexander
2014-09-01
This is a short review of string cosmology. We wish to connect string-scale physics as closely as possible to observables accessible to current or near-future experiments. Our possible best hope to do so is a description of inflation in string theory. The energy scale of inflation can be as high as that of Grand Unification (GUT). If this is the case, this is the closest we can possibly get in energy scales to string-scale physics. Hence, GUT-scale inflation may be our best candidate phenomenon to preserve traces of string-scale dynamics. Our chance to look for such traces is the primordial gravitational wave, or tensor mode signal produced during inflation. For GUT-scale inflation this is strong enough to be potentially visible as a B-mode polarization of the cosmic microwave background (CMB). Moreover, a GUT-scale inflation model has a trans-Planckian excursion of the inflaton scalar field during the observable amount of inflation. Such large-field models of inflation have a clear need for symmetry protection against quantum corrections. This makes them ideal candidates for a description in a candidate fundamental theory like string theory. At the same time the need of large-field inflation models for UV completion makes them particularly susceptible to preserve imprints of their string-scale dynamics in the inflationary observables, the spectral index n s and the fractional tensor mode power r. Hence, we focus this review on axion monodromy inflation as a mechanism of large-field inflation in string theory.
Hagedorn temperature and physics of black holes
International Nuclear Information System (INIS)
Zakharov, V.I.; Mertens, Thomas G.; Verschelde, Henri
2016-01-01
A mini-review devoted to some implications of the Hagedorn temperature for black hole physics. The existence of a limiting temperature is a generic feature of string models. The Hagedorn temperature was introduced first in the context of hadronic physics. Nowadays, the emphasis is shifted to fundamental strings which might be a necessary ingredient to obtain a consistent theory of black holes. The point is that, in field theory, the local temperature close to the horizon could be arbitrarily high, and this observation is difficult to reconcile with the finiteness of the entropy of black holes. After preliminary remarks, we review our recent attempt to evaluate the entropy of large black holes in terms of fundamental strings. We also speculate on implications for dynamics of large-N_c gauge theories arising within holographic models
Charting the Landscape of Supercritical String Theory
International Nuclear Information System (INIS)
Hellerman, Simeon; Swanson, Ian
2007-01-01
Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories
RTN Winter School on Strings, Supergravity and Gauge Theories (1/5)
CERN. Geneva
2006-01-01
9.30-10.30 A. Dabholkar Black Holes Entropy and Microstate Counting (1/4) 10.30-11.30 M. Grana Flux Compactifications and Generalized Geometry (1/4) 12.15-13.15 B. Craps Big Bang Models in String Theory (1/4) 14.30-15.30 A. Dabholkar Black Holes Entropy and Microstate Counting (2/4) 15.30-16.30 S. Minwalla Large N Thermal Phase Transitions (1/4) 17.00 Discussion Organiser(s): CERN and Neuchâtel UniversityMore information: http://www.unine.ch/phys/string/rtn-school/index.php
String and Sticky Tape Experiments.
Edge, R. D., Ed.
1979-01-01
Explains how to demonstrate the fundamentals of one dimensional kinematics such as Newton's third law of motion, and collision between bodies, using simple materials of marbles, strings, sticky tape, drinking straws, and rubber bands. (GA)
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, A.V.
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru
String moduli inflation. An overview
Energy Technology Data Exchange (ETDEWEB)
Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quevedo, Fernando [Cambridge Univ. (United Kingdom). DAMTP/CMS; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)
2011-06-15
We present an overview of inflationary models derived from string theory focusing mostly on closed string moduli as inflatons. After a detailed discussion of the {eta}-problem and different approaches to address it, we describe possible ways to obtain a de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary directions and present some of the most promising scenarios where the inflatons are either the real or the imaginary part of Kaehler moduli. We pay particular attention on extracting potential observable implications, showing how most of the scenarios predict negligible gravitational waves and could therefore be ruled out by the Planck satellite. We conclude by briefly mentioning some open challenges in string cosmology beyond deriving just inflation. (orig.)
Spin chains and string theory.
Kruczenski, Martin
2004-10-15
Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.
Pattern recognition and string matching
Cheng, Xiuzhen
2002-01-01
The research and development of pattern recognition have proven to be of importance in science, technology, and human activity. Many useful concepts and tools from different disciplines have been employed in pattern recognition. Among them is string matching, which receives much theoretical and practical attention. String matching is also an important topic in combinatorial optimization. This book is devoted to recent advances in pattern recognition and string matching. It consists of twenty eight chapters written by different authors, addressing a broad range of topics such as those from classifica tion, matching, mining, feature selection, and applications. Each chapter is self-contained, and presents either novel methodological approaches or applications of existing theories and techniques. The aim, intent, and motivation for publishing this book is to pro vide a reference tool for the increasing number of readers who depend upon pattern recognition or string matching in some way. This includes student...
String moduli inflation. An overview
International Nuclear Information System (INIS)
Cicoli, Michele; Quevedo, Fernando
2011-06-01
We present an overview of inflationary models derived from string theory focusing mostly on closed string moduli as inflatons. After a detailed discussion of the η-problem and different approaches to address it, we describe possible ways to obtain a de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary directions and present some of the most promising scenarios where the inflatons are either the real or the imaginary part of Kaehler moduli. We pay particular attention on extracting potential observable implications, showing how most of the scenarios predict negligible gravitational waves and could therefore be ruled out by the Planck satellite. We conclude by briefly mentioning some open challenges in string cosmology beyond deriving just inflation. (orig.)
String Formation Beyond Leading Colour
Christiansen, Jesper R.
2015-08-03
We present a new model for the hadronisation of multi-parton systems, in which colour correlations beyond leading $N_C$ are allowed to influence the formation of confining potentials (strings). The multiplet structure of $SU(3)$ is combined with a minimisation of the string potential energy, to decide between which partons strings should form, allowing also for "baryonic" configurations (e.g., two colours can combine coherently to form an anticolour). In $e^+e^-$collisions, modifications to the leading-colour picture are small, suppressed by both colour and kinematics factors. But in $pp$ collisions, multi-parton interactions increase the number of possible subleading connections, counteracting their naive $1/N_C^2$ suppression. Moreover, those that reduce the overall string lengths are kinematically favoured. The model, which we have implemented in the PYTHIA 8 generator, is capable of reaching agreement not only with the important $\\left(n_\\mathrm{charged})$ distribution but also with measured rates (and ra...
Paths toward understanding black holes
Mayerson, D.R.
2015-01-01
This work can be summarized as trying to understand aspects of black holes, gravity, and geometry, in the context of supergravity and string theory in high-energy theoretical physics. The two parts of this thesis have been written with entirely different audiences in mind. The first part consists of
Strings in the abelized picture
International Nuclear Information System (INIS)
Embacher, F.
1990-01-01
The transformation properties of the bosonic string variables under the recently discovered abelizing operator are exhibited. The intimate relation of this operator to the light-cone gauge condition is illustrated for the classical string. As an application of the formalism, the derivation of the BRST cohomology by the method of Freemann and Olive is carried over to the abelized picture, where it takes a particularly simple from. (orig.)
International Nuclear Information System (INIS)
Pope, C.N.; Stelle, K.S.
1991-08-01
We study the spectrum of W 3 strings. In particular, we show that for appropriately chosen space-time signature, one of the scalar fields is singled out be the spin-3 constraint and is ''frozen'': no creation operators from it can appear in physical states and the corresponding momentum must assume a specific fixed value. The remaining theory is unitary and resembles an ordinary string theory in d contains 26 with anomalies cancelled by appropriate background charges. (author). 8 refs
Cooldown of superconducting magnet strings
International Nuclear Information System (INIS)
Yuecel, A.; Carcagno, R.H.
1995-01-01
A numerical model for the cooldown of the superconducting magnet strings in the Accelerator System String Test (ASST) Facility at the Superconducting Super Collider (SSC) Laboratory is presented. Numerical results are compared with experimental data from the ASST test runs. Agreement between the numerical predictions and experiments is very good over the entire range from room temperature to liquid helium temperatures. The model can be readily adapted to predict the cooldown and warmup behavior of other superconducting magnets or cold masses
Strings in the abelized picture
International Nuclear Information System (INIS)
Embacher, F.
1990-01-01
The transformation properties of the bosonic string variables under the recently discovered abelizing operator are exhibited. The intimate relation of this operator to the light-cone gauge condition is illustrated for the classical string. As an application of the formalism, the derivation of the BRST cohomology by the method of Freeman and Olive is carried over to the abelized picture, where it takes a particulary simple form. 14 refs. (Author)
An introduction to string theory
West, Peter C
1989-01-01
These notes are based on lectures given by Michael Green during Part III of the Mathematics Tripos (the Certificate for Advanced Study in Mathematics) in the Spring of 2003. The course provided an introduction to string theory, focussing on the Bosonic string, but treating the superstring as well. A background in quantum field theory and general relativity is assumed. Some background in particle physics, group theory and conformal field theory is useful, though not essential. A number of appe...
On Field Theory of Open Strings, Tachyon Condensation and Closed Strings
Shatashvili, Samson L.
2001-01-01
I review the physical properties of different vacua in the background independent open string field theory. Talk presented at Strings 2001, Mumbai, India, http://theory.theory.tifr.res.in/strings/Proceedings/#sha-s.
Stationary Configurations and Geodesic Description of Supersymmetric Black Holes
Käppeli, Jürg
2003-01-01
This thesis contains a detailed study of various properties of supersymmetric black holes. In chapter I an overview over some of the fascinating aspects of black hole physics is provided. In particular, the string theory approach to black hole entropy is discussed. One of the consequences of the
Fast searching in packed strings
DEFF Research Database (Denmark)
Bille, Philip
2011-01-01
Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth–Morris–Pratt algorithm [SIAM J. Comput. 6 (2) (1977) 323–350] solves the string matching problem in linear time which is optimal if we can only read one character...... at the time. However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation....... Let m⩽n be the lengths P and Q, respectively, and let σ denote the size of the alphabet. On a standard unit-cost word-RAM with logarithmic word size we present an algorithm using timeO(nlogσn+m+occ). Here occ is the number of occurrences of P in Q. For m=o(n) this improves the O(n) bound of the Knuth...
Experimental observation of Bethe strings
Wang, Zhe; Wu, Jianda; Yang, Wang; Bera, Anup Kumar; Kamenskyi, Dmytro; Islam, A. T. M. Nazmul; Xu, Shenglong; Law, Joseph Matthew; Lake, Bella; Wu, Congjun; Loidl, Alois
2018-02-01
Almost a century ago, string states—complex bound states of magnetic excitations—were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz. Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe’s result is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general.
Dynamics of strings between walls
International Nuclear Information System (INIS)
Eto, Minoru; Fujimori, Toshiaki; Nagashima, Takayuki; Nitta, Muneto; Ohashi, Keisuke; Sakai, Norisuke
2009-01-01
Configurations of vortex strings stretched between or ending on domain walls were previously found to be 1/4 Bogomol'nyi-Prasad-Sommerfield (BPS) states in N=2 supersymmetric gauge theories in 3+1 dimensions. Among zero modes of string positions, the center of mass of strings in each region between two adjacent domain walls is shown to be non-normalizable whereas the rests are normalizable. We study dynamics of vortex strings stretched between separated domain walls by using two methods, the moduli space (geodesic) approximation of full 1/4 BPS states and the charged particle approximation for string end points in the wall effective action. In the first method we explicitly obtain the effective Lagrangian in the strong coupling limit, which is written in terms of hypergeometric functions, and find the 90 deg. scattering for head-on collision. In the second method the domain wall effective action is assumed to be U(1) N gauge theory, and we find a good agreement between two methods for well-separated strings.
International Nuclear Information System (INIS)
Thorlacius, L.
1989-01-01
Open string vacuum configurations are described in terms of a one-dimensional field theory on the worldsheet boundary. The one-dimensional path integral has direct physical interpretation as a source term for closed string fields. This means that the vacuum divergences (Mobius infinities) of the path integral must be renormalized correctly. The author shows that reparametrization invariance Ward identities, apart from specifying the equations of motion of spacetime background gauge fields, also serve to fix the renormalization scheme of the vacuum divergences. He argues that vacuum configurations of open strings correspond to Caldeira-Leggett models of dissipative quantum mechanics (DQM) evaluated at a delocalization critical point. This connection reveals that critical DQM will manifest reparametrization invariance (inherited from the conformal invariance of string theory) rather than just scale invariance. This connection should open up new ways of constructing analytic and approximate solutions of open string theory (in particular, topological solitons such as monopoles and instantons). Type I superstring theory gives rise to a supersymmetric boundary field theory. Bose-Fermi cancellation eliminates vacuum divergences but the one-loop beta function remains the same as in the bosonic theory. Reparametrization invariance Ward identities dictate a boundary state normalization which yields consistent string-loop corrections to spacetime equations of motion, in both the periodic and anti-periodic fermion sectors
Chern-Simons couplings for dielectric F-strings in matrix string theory
International Nuclear Information System (INIS)
Brecher, Dominic; Janssen, Bert; Lozano, Yolanda
2002-01-01
We compute the non-abelian couplings in the Chern-Simons action for a set of coinciding fundamental strings in both the type IIA and type IIB Matrix string theories. Starting from Matrix theory in a weakly curved background, we construct the linear couplings of closed string fields to type IIA Matrix strings. Further dualities give a type IIB Matrix string theory and a type IIA theory of Matrix strings with winding. (Abstract Copyright[2002], Wiley Periodicals, Inc.)
New expressions for string loop amplitudes leading to an ultra-simple conception of string dynamics
International Nuclear Information System (INIS)
Chan Hongmo; Tsou Sheungtsun; Bordes, J.; Nellen, L.
1990-11-01
New expressions are derived for string loop amplitudes as overlap integrals of string wave functionals. They are shown to take the form of exchange terms coming from the Bose-Einstein symmetrisation between string segments. One is thus led to the ultra-simple conception that string theory is basically free, and that 'string interactions' are due merely to the fact that strings are composite objects with Bose-Einstein segments as constituents. (author)
International Nuclear Information System (INIS)
Deser, S.
1987-01-01
We obtain the Einstein action plus quadratic curvature corrections generated by closed bosonic, heterotic and supersymmetric strings by matching the four-graviton amplitude (to first order in the slope parameter and fourth power of momenta) with an effective local gravitational action. The resulting corrections are first shown to be of the Gauss-Bonnet form. It is then noted that, by the very nature of the slope expansion, the field-redefinition theorem applies. Consequently, only the curvature-squared term is determined, while squares of its contractions are explicitly seen not to contribute. This latter property has a generalization to all orders which implies that the effective gravitational action is unavoidably ghost-free. The properties of solutions to these corrected theories are then examined. First neglecting dilatons, we find the explicit 'Schwarzschild' metrics. Both asymptotically flat and de Sitter solutions are present. The latter are however shown to be unstable. The former have horizons and singularities which are respectively smaller and less violent than in Einstein gravity; the correct sign of the slope parameter also ensures absence of naked singularities. When dilatons are included, the cosmological vacua are gratifyingly excluded. (orig.)
On topological string theory with Calabi-Yau backgrounds
Energy Technology Data Exchange (ETDEWEB)
Haghighat, Babak
2010-06-15
String theory represents a unifying framework for quantum field theory as well as for general relativity combining them into a theory of quantum gravity. The topological string is a subsector of the full string theory capturing physical amplitudes which only depend on the topology of the compactification manifold. Starting with a review of the physical applications of topological string theory we go on to give a detailed description of its theoretical framework and mathematical principles. Having this way provided the grounding for concrete calculations we proceed to solve the theory on three major types of Calabi-Yau manifolds, namely Grassmannian Calabi-Yau manifolds, local Calabi-Yau manifolds, and K3 fibrations. Our method of solution is the integration of the holomorphic anomaly equations and fixing the holomorphic ambiguity by physical boundary conditions. We determine the correct parameterization of the ambiguity and new boundary conditions at various singularity loci in moduli space. Among the main results of this thesis are the tables of degeneracies of BPS states in the appendices and the veri cation of the correct microscopic entropy interpretation for five dimensional extremal black holes arising from compactifications on Grassmannian Calabi-Yau manifolds. (orig.)
On topological string theory with Calabi-Yau backgrounds
Energy Technology Data Exchange (ETDEWEB)
Haghighat, Babak
2009-10-29
String theory represents a unifying framework for quantum field theory as well as for general relativity combining them into a theory of quantum gravity. The topological string is a subsector of the full string theory capturing physical amplitudes which only depend on the topology of the compactification manifold. Starting with a review of the physical applications of topological string theory we go on to give a detailed description of its theoretical framework and mathematical principles. Having this way provided the grounding for concrete calculations we proceed to solve the theory on three major types of Calabi-Yau manifolds, namely Grassmannian Calabi-Yau manifolds, local Calabi-Yau manifolds, and K3 fibrations. Our method of solution is the integration of the holomorphic anomaly equations and fixing the holomorphic ambiguity by physical boundary conditions. We determine the correct parameterization of the ambiguity and new boundary conditions at various singularity loci in moduli space. Among the main results of this thesis are the tables of degeneracies of BPS states in the appendices and the verification of the correct microscopic entropy interpretation for five dimensional extremal black holes arising from compactifications on Grassmannian Calabi-Yau manifolds. (orig.)
On topological string theory with Calabi-Yau backgrounds
International Nuclear Information System (INIS)
Haghighat, Babak
2009-01-01
String theory represents a unifying framework for quantum field theory as well as for general relativity combining them into a theory of quantum gravity. The topological string is a subsector of the full string theory capturing physical amplitudes which only depend on the topology of the compactification manifold. Starting with a review of the physical applications of topological string theory we go on to give a detailed description of its theoretical framework and mathematical principles. Having this way provided the grounding for concrete calculations we proceed to solve the theory on three major types of Calabi-Yau manifolds, namely Grassmannian Calabi-Yau manifolds, local Calabi-Yau manifolds, and K3 fibrations. Our method of solution is the integration of the holomorphic anomaly equations and fixing the holomorphic ambiguity by physical boundary conditions. We determine the correct parameterization of the ambiguity and new boundary conditions at various singularity loci in moduli space. Among the main results of this thesis are the tables of degeneracies of BPS states in the appendices and the verification of the correct microscopic entropy interpretation for five dimensional extremal black holes arising from compactifications on Grassmannian Calabi-Yau manifolds. (orig.)
On topological string theory with Calabi-Yau backgrounds
International Nuclear Information System (INIS)
Haghighat, Babak
2010-06-01
String theory represents a unifying framework for quantum field theory as well as for general relativity combining them into a theory of quantum gravity. The topological string is a subsector of the full string theory capturing physical amplitudes which only depend on the topology of the compactification manifold. Starting with a review of the physical applications of topological string theory we go on to give a detailed description of its theoretical framework and mathematical principles. Having this way provided the grounding for concrete calculations we proceed to solve the theory on three major types of Calabi-Yau manifolds, namely Grassmannian Calabi-Yau manifolds, local Calabi-Yau manifolds, and K3 fibrations. Our method of solution is the integration of the holomorphic anomaly equations and fixing the holomorphic ambiguity by physical boundary conditions. We determine the correct parameterization of the ambiguity and new boundary conditions at various singularity loci in moduli space. Among the main results of this thesis are the tables of degeneracies of BPS states in the appendices and the veri cation of the correct microscopic entropy interpretation for five dimensional extremal black holes arising from compactifications on Grassmannian Calabi-Yau manifolds. (orig.)
Functional integral approach to string theories
International Nuclear Information System (INIS)
Sakita, B.
1987-01-01
Fermionic string theory can be made supersymmetric: the superstring. It contains among others mass zero gauge fields of spin 1 and 2. The recent revival of interests in string field theories is due to the recognition of the compactified superstring theory as a viable theory of grandunification of all interactions, especially after Green and Schwarz's discovery of the gauge and gravitational anomaly cancellation in 0(32) superstring theory. New developments include string phenomenology, general discussions of compactification, new models, especially the heterotic string. These are either applications or extensions of string field theories. Although these are very exciting developments, the author limits his attention to the basics of the bosonic string theory
The black hole interior and a curious sum rule
International Nuclear Information System (INIS)
Giveon, Amit; Itzhaki, Nissan; Troost, Jan
2014-01-01
We analyze the Euclidean geometry near non-extremal NS5-branes in string theory, including regions beyond the horizon and beyond the singularity of the black brane. The various regions have an exact description in string theory, in terms of cigar, trumpet and negative level minimal model conformal field theories. We study the worldsheet elliptic genera of these three superconformal theories, and show that their sum vanishes. We speculate on the significance of this curious sum rule for black hole physics
The black hole interior and a curious sum rule
Energy Technology Data Exchange (ETDEWEB)
Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel); Troost, Jan [Laboratoire de Physique Théorique,Unité Mixte du CRNS et de l’École Normale Supérieure,associée à l’Université Pierre et Marie Curie 6,UMR 8549 École Normale Supérieure,24 Rue Lhomond Paris 75005 (France)
2014-03-12
We analyze the Euclidean geometry near non-extremal NS5-branes in string theory, including regions beyond the horizon and beyond the singularity of the black brane. The various regions have an exact description in string theory, in terms of cigar, trumpet and negative level minimal model conformal field theories. We study the worldsheet elliptic genera of these three superconformal theories, and show that their sum vanishes. We speculate on the significance of this curious sum rule for black hole physics.
Higher spin black holes with soft hair
Energy Technology Data Exchange (ETDEWEB)
Grumiller, Daniel [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Pérez, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Prohazka, Stefan [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Tempo, David; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)
2016-10-21
We construct a new set of boundary conditions for higher spin gravity, inspired by a recent “soft Heisenberg hair”-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin-N, many of which resemble the spin-2 results: the generators of the asymptotic W{sub 3} algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call “higher spin black flowers”, are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W-algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.
International Nuclear Information System (INIS)
Anninos, Dionysios; Li Wei; Padi, Megha; Song Wei; Strominger, Andrew
2009-01-01
Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -l -2 and positive Newton constant G admits an AdS 3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μl = 1. However we show herein that for every value of μl ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,R) x U(1)-invariant warped AdS 3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μl = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μl > 3, there are known warped black hole solutions which are asymptotic to warped AdS 3 . We show that these black holes are discrete quotients of warped AdS 3 just as BTZ black holes are discrete quotients of ordinary AdS 3 . Moreover new solutions of this type, relevant to any theory with warped AdS 3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μl > 3, the warped AdS 3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c R -formula and c L -formula.
String Resonances at Hadron Colliders
Anchordoqui, Luis A; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lust, Dieter; Stojkovic, Dejan; Taylor, Tomasz R
2014-01-01
[Abridged] We consider extensions of the standard model based on open strings ending on D-branes. Assuming that the fundamental string mass scale M_s is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (3000 fb^{-1}) with \\sqrt{s} = 14 TeV, and at potential future pp colliders, HE-LHC and VLHC, operating at \\sqrt{s} = 33 and 100 TeV, respectively. In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and \\gamma + jet are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV), lowest massive Regge exc...
Differential geometry in string models
International Nuclear Information System (INIS)
Alvarez, O.
1986-01-01
In this article the author reviews the differential geometric approach to the quantization of strings. A seminal paper demonstrates the connection between the trace anomaly and the critical dimension. The role played by the Faddeev-Popov ghosts has been instrumental in much of the subsequent work on the quantization of strings. This paper discusses the differential geometry of two dimensional surfaces and its importance in the quantization of strings. The path integral quantization approach to strings will be carefully analyzed to determine the correct effective measure for string theories. The choice of measure for the path integral is determined by differential geometric considerations. Once the measure is determined, the manifest diffeomorphism invariance of the theory will have to be broken by using the Faddeev-Popov ansatz. The gauge fixed theory is studied in detail with emphasis on the role of conformal and gravitational anomalies. In the analysis, the path integral formulation of the gauge fixed theory requires summing over all the distinct complex structures on the manifold
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, Andrei V
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)
Topological strings from quantum mechanics
International Nuclear Information System (INIS)
Grassi, Alba; Marino, Marcos; Hatsuda, Yasuyuki
2014-12-01
We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized θ function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P 2 , local P 1 x P 1 and local F 1 . In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Physically, our results provide a Fermi gas picture of topological strings on toric Calabi-Yau manifolds, which is fully non-perturbative and background independent. They also suggest the existence of an underlying theory of M2 branes behind this formulation. Mathematically, our results lead to precise, surprising conjectures relating the spectral theory of functional difference operators to enumerative geometry.
Meson widths from string worldsheet instantons
International Nuclear Information System (INIS)
Faulkner, Thomas; Liu, Hong
2009-01-01
We show that open strings living on a D-brane which lies outside an AdS black hole can tunnel into the black hole through worldsheet instantons. These instantons have a simple interpretation in terms of thermal quarks in the dual Yang-Mills (YM) theory. As an application we calculate the width of a meson in a strongly coupled quark-gluon plasma which is described holographically as a massless mode on a D7 brane in AdS 5 xS 5 . While the width of the meson is zero to all orders in the 1/√(λ) expansion with λ the 't Hooft coupling, it receives non-perturbative contributions in 1/√(λ) from worldsheet instantons. We find that the width increases quadratically with momentum at large momentum and comment on potential phenomenological implications of this enhancement for heavy ion collisions. We also comment on how this non-perturbative effect has important consequences for the phase structure of the YM theory obtained in the classical gravity limit
An exact bosonization rule for c = 1 noncritical string theory
International Nuclear Information System (INIS)
Ishibashi, Nobuyuki; Yamaguchi, Atsushi
2007-01-01
We construct a string field theory for c = 1 noncritical strings using the loop variables as the string field. We show how one can express the nonrelativistic free fermions which describes the theory, in terms of these string fields
Energy Technology Data Exchange (ETDEWEB)
Carlip, S [Department of Physics, University of California, Davis, CA 95616 (United States)
2006-10-21
, it could easily be missed-but these are minor drawbacks. Readers will find clear answers to many 'frequently asked questions.' Are D-branes really necessary? Polchinski begins with T-duality for the closed string, and shows that the extension to open strings requires the existence of D-branes. How does string theory incorporate gravity? The two standard answers are that string theory contains a massless spin two 'graviton' and that consistent string propagation in a curved background requires that the background metric satisfy the Einstein field equations; Polchinski links the two, showing that the background metric can be viewed as a coherent state of the spin two excitations. Volume II, Superstring Theory and Beyond, extends Volume I to superstring theory, and then proceeds to treat a range of more advanced subjects: effective actions for branes, dualities and equivalences among string theories, M theory, stringy black holes, compactifications and four-dimensional field theories, and the like. The tone of this volume changes a bit-it is not as self-contained, and reads less like a textbook and more like an extended review article. I suspect, for example, that few students without a strong background in field theory will follow the discussion of anomalies in chapter 12. The change can be largely attributed to the content: the superstring is inherently more difficult than the bosonic string, and the newer material is not as deeply understood. But there are a few weaknesses in presentation as well: for instance, a discussion in chapter 11 of the relationship between symmetries and constraints omits any explanation of how one decides whether a transformation generates a symmetry or a constraint. Any two-volume book on string theory is necessarily incomplete. In his introduction, Polchinski cites the lack of a more thorough treatment of compactifications on curved manifolds. I would personally have liked to see more about noncritical strings and
Classical hair in string theory. II. Explicit calculations
International Nuclear Information System (INIS)
Larsen, F.
1997-01-01
For pt.I see ibid., vol.475, p.627-44, 1996. After emphasizing the importance of obtaining a space-time understanding of black hole entropy, we further elaborate our program to identify the degrees of freedom of black holes with classical space-time degrees of freedom. The Cvetic-Youm dyonic black holes are discussed in some detail as an example. In this example hair degrees of freedom transforming as an effective string can be identified explicitly. We discuss issues concerning charge quantization, identification of winding, and tension renormalization that arise in counting the associated degrees of freedom. The possibility of other forms of hair in this example, and the prospects for making contact with D-brane ideas, are briefly considered. (orig.)
O(6,22) BPS configurations of the heterotic string
International Nuclear Information System (INIS)
Behrndt, K.; Kallosh, R.
1996-01-01
We present a static multicenter magnetic solution of toroidally compactified heterotic string theory, which is T-duality covariant. The space-time geometry depends on the mass M and on the O(6,22) norm N of the magnetic charges. For a different range of parameters the (M,N) solution includes (1) two-independent-positive-parameter extremal magnetic black holes with a nonsingular geometry in a stringy frame (a=1 black holes included), (2) a=√3 extremal black holes, and (3) singular massive and massless magnetic white holes (repulsons). The electric multicenter solution is also given in an O(6,22)-symmetric form. copyright 1996 The American Physical Society
Algorithms and Data Structures for Strings, Points and Integers
DEFF Research Database (Denmark)
Vind, Søren Juhl
a string under a compression scheme that can achieve better than entropy compression. We also give improved results for the substring concatenation problem, and an extension of our structure can be used as a black box to get an improved solution to the previously studied dynamic text static pattern problem....... Compressed Pattern Matching. In the streaming model, input data flows past a client one item at a time, but is far too large for the client to store. The annotated streaming model extends the model by introducing a powerful but untrusted annotator (representing “the cloud”) that can annotate input elements...... with additional information, sent as one-way communication to the client. We generalize the annotated streaming model to be able to solve problems on strings and present a data structure that allows us to trade off client space and annotation size. This lets us exploit the power of the annotator. In compressed...
Cooperative strings and glassy interfaces.
Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A
2015-07-07
We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam-Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel-Fulcher-Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer.
Vector superconductivity in cosmic strings
International Nuclear Information System (INIS)
Dvali, G.R.; Mahajan, S.M.
1992-03-01
We argue that in most realistic cases, the usual Witten-type bosonic superconductivity of the cosmic string is automatically (independent of the existence of superconducting currents) accompanied by the condensation of charged gauge vector bosons in the core giving rise to a new vector type superconductivity. The value of the charged vector condensate is related with the charged scalar expectation value, and vanishes only if the latter goes to zero. The mechanism for the proposed vector superconductivity, differing fundamentally from those in the literature, is delineated using the simplest realistic example of the two Higgs doublet standard model interacting with the extra cosmic string. It is shown that for a wide range of parameters, for which the string becomes scalarly superconducting, W boson condensates (the sources of vector superconductivity) are necessarily excited. (author). 14 refs
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.; Nefediev, A.V.
1997-01-01
The QCD-motivated constituent string model is extended to consider the baryon. The system of three quarks propagating in the confining background field is studied in the Wilson loop approach, and the effective action is obtained. The resulting Lagrangian at large interquark distances corresponds to the Mercedes Benz string configuration. Assuming the quarks to be heavy enough to allow the adiabatic separation of quark and string junction motion and using the hyperspherical expansion for the quark subsystem we write out and solve the classical equation of motion for the junction. We quantize the motion of the junction and demonstrate that the account of these modes leads to the effective swelling of baryon in comparison with standard potential picture. The effects of finite gluonic correlation length which do not affect the excited states but appear to be substantial for the baryonic ground state, reducing the swelling considerably is discussed
Noncompact symmetries in string theory
International Nuclear Information System (INIS)
Maharana, J.; Schwarz, J.H.
1993-01-01
Noncompact groups, similar to those that appeared in various supergravity theories in the 1970's have been turning up in recent studies of string theory. First it was discovered that moduli spaces of toroidal compactification are given by noncompact groups modded out by their maximal compact subgroups and discrete duality groups. Then it was found that many other moduli spaces have analogous descriptions. More recently, noncompact group symmetries have turned up in effective actions used to study string cosmology and other classical configurations. This paper explores these noncompact groups in the case of toroidal compactification both from the viewpoint of low-energy effective field theory, using the method of dimensional reduction, and from the viewpoint of the string theory world-sheet. The conclusion is that all these symmetries are intimately related. In particular, we find that Chern-Simons terms in the three-form field strength H μνρ play a crucial role. (orig.)
Introduction to strings and superstrings
International Nuclear Information System (INIS)
Rausch de Traubenberg, M.
1988-01-01
The string theory is applied in the construction of a theory which allows the coupling of the four fundamental interactions and matter. The original model of the string theory describes the hadronic phenomenon of duality. The model extension, which describes the closed strings and those with a spin, is studied. The supersymmetry and the supersymmetric partner concepts are considered, in order to obtain a superstrings theory. The supersymmetry allows the formulation of a ''supertheory'', including matter, fields and gravitation. In order to explain the mass of the observable particles, the mechanism of symmetry breaking must be taken into account. The scalar state concept, originated from the supersymmetry breaking, is analyzed. This ''supertheory'' is not entirely accepted by the scientific world [fr
DEFF Research Database (Denmark)
Franceschini, A.; Simonovic, M.; Roth, A.
2013-01-01
for certain model organisms and functional systems. Currently, protein interactions and associations are annotated at various levels of detail in online resources, ranging from raw data repositories to highly formalized pathway databases. For many applications, a global view of all the available interaction...... data is desirable, including lower-quality data and/or computational predictions. The STRING database (http://string-db.org/) aims to provide such a global perspective for as many organisms as feasible. Known and predicted associations are scored and integrated, resulting in comprehensive protein...... networks covering >1100 organisms. Here, we describe the update to version 9.1 of STRING, introducing several improvements: (i) we extend the automated mining of scientific texts for interaction information, to now also include full-text articles; (ii) we entirely re-designed the algorithm for transferring...
International Nuclear Information System (INIS)
Lebedev, Oleg; Ramos-Sanchez, Saul
2009-12-01
We study the possibility of constructing the NMSSM from the heterotic string. String derived NMSSMs are much more rare than MSSMs due to the extra requirement that there exist a light singlet which couples to the Higgs pairs. They share the common feature that the singlet self-interactions are typically suppressed, leading to either the ''decoupling'' or to the Peccei-Quinn limit of the NMSSM. In the latter case, the spectrum contains a light pseudoscalar which may be relevant to the MSSM fine-tuning problem.We provide a Z 6 heterotic orbifold example of the NMSSM with approximate Peccei-Quinn symmetry, whose origin lies in the string selection rules combined with our choice of the vacuum configuration. (orig.)
Quantum Black Holes as Holograms in AdS Braneworlds
Emparan, R; Kaloper, Nemanja; Emparan, Roberto; Fabbri, Alessandro; Kaloper, Nemanja
2002-01-01
We propose a new approach for using the AdS/CFT correspondence to study quantum black hole physics. The black holes on a brane in an AdS$_{D+1}$ braneworld that solve the classical bulk equations are interpreted as duals of {\\it quantum-corrected} $D$-dimensional black holes, rather than classical ones, of a conformal field theory coupled to gravity. We check this explicitly in D=3 and D=4. In D=3 we reinterpret the existing exact solutions on a flat membrane as states of the dual 2+1 CFT. We show that states with a sufficiently large mass really are 2+1 black holes where the quantum corrections dress the classical conical singularity with a horizon and censor it from the outside. On a negatively curved membrane, we reinterpret the classical bulk solutions as quantum-corrected BTZ black holes. In D=4 we argue that the bulk solution for the brane black hole should include a radiation component in order to describe a quantum-corrected black hole in the 3+1 dual. Hawking radiation of the conformal field is then ...
International Nuclear Information System (INIS)
Nakatsu, Toshio.
1994-07-01
The analogue of the string equation which specifies the partition function of c=1 string with a compactification radius β is an element of Z ≥1 is described in the framework of Toda lattice hierarchy. (author)
Metastable cosmic strings in realistic models
International Nuclear Information System (INIS)
Holman, R.
1992-01-01
The stability of the electroweak Z-string is investigated at high temperatures. The results show that, while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. Phenomenologically viable models based on the gauge group SU(2) L x SU(2) R x U(1) B-L are then considered, and it is shown that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. It is also shown that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed
Covariant amplitudes in Polyakov string theory
International Nuclear Information System (INIS)
Aoyama, H.; Dhar, A.; Namazie, M.A.
1986-01-01
A manifestly Lorentz-covariant and reparametrization-invariant procedure for computing string amplitudes using Polyakov's formulation is described. Both bosonic and superstring theories are dealt with. The computation of string amplitudes is greatly facilitated by this formalism. (orig.)
Cosmic string induced peculiar velocities
International Nuclear Information System (INIS)
van Dalen, A.; Schramm, D.N.
1987-02-01
We calculate analytically the probability distribution for peculiar velocities on scales from 10h -1 to 60h -1 Mpc with cosmic string loops as the dominant source of primordial gravitational perturbations. We consider a range of parameters βGμ appropriate for both hot (HDM) and cold (CDM) dark matter scenarios. An Ω = 1 CDM Universe is assumed with the loops randomly placed on a smooth background. It is shown how the effects can be estimated of loops breaking up and being born with a spectrum of sizes. It is found that to obtain large scale streaming velocities of at least 400 km/s it is necessary that either a large value for βGμ or the effect of loop fissioning and production details be considerable. Specifically, for optimal CDM string parameters Gμ = 10 -6 , β = 9, h = .5, and scales of 60h -1 Mpc, the parent size spectrum must be 36 times larger than the evolved daughter spectrum to achieve peculiar velocities of at least 400 km/s with a probability of 63%. With this scenario the microwave background dipole will be less than 800 km/s with only a 10% probability. The string induced velocity spectrum is relatively flat out to scales of about 2t/sub eq//a/sub eq/ and then drops off rather quickly. The flatness is a signature of string models of galaxy formation. With HDM a larger value of βGμ is necessary for galaxy formation since accretion on small scales starts later. Hence, with HDM, the peculiar velocity spectrum will be larger on large scales and the flat region will extend to larger scales. If large scale peculiar velocities greater than 400 km/s are real then it is concluded that strings plus CDM have difficulties. The advantages of strings plus HDM in this regard will be explored in greater detail in a later paper. 27 refs., 4 figs., 1 tab
Jejjala, Vishnumohan
2002-01-01
This Thesis explores aspects of superstring theory on orbifold spaces and applies some of the intuition gleaned from the study of the non-commutative geometry of space-time to understanding the fractional quantum Hall effect. The moduli space of vacua of marginal and relevant deformations of N = 4 super-Yang-Mills gauge theory in four dimensions is interpreted in terms of non-commutative geometry. A formalism for thinking about the algebraic geometry of the moduli space is developed. Within this framework, the representation theory of the algebras studied provides a natural exposition of D-brane fractionation. The non-commutative moduli space of deformations preserving N = 1 supersymmetry is examined in detail through various examples. In string theory, by the AdS/CFT correspondence, deformations of the N = 4 field theory are dual to the near-horizon geometries of D-branes on orbifolds of AdS5 x S 5. The physics of D-branes on the dual AdS backgrounds is explored. Quivers encapsulate the matter content of supersymmetric field theories on the worldvolumes of D-branes at orbifold singularities. New techniques for constructing quivers are presented here. When N is a normal subgroup of a finite group G, the quiver corresponding to fixed points of the orbifold M/G is computed from a G/N action on the quiver corresponding to M/G . These techniques prove useful for constructing non-Abelian quivers and for examining discrete torsion orbifolds. Quivers obtained through our constructions contain interesting low-energy phenomenology. The matter content on a brane at an isolated singularity of the Delta27 orbifold embeds the Standard Model. The symmetries of the quiver require exactly three generations of fields in the particle spectrum. Lepton masses are suppressed relative to quark masses because lepton Yukawa couplings do not appear in the superpotential. Lepton masses are generated through the Kahler potential and are related to the supersymmetry breaking scale. The model
DEFF Research Database (Denmark)
Langkjær, Michael Alexander
2012-01-01
Pop musicians performing in black stage costume take advantage of cultural traditions relating to matters black. Stylistically, black is a paradoxical color: although a symbol of melancholy, pessimism, and renunciation, black also expresses minimalist modernity and signifies exclusivity (as is hi...
Warped models in string theory
International Nuclear Information System (INIS)
Acharya, B.S.; Benini, F.; Valandro, R.
2006-12-01
Warped models, originating with the ideas of Randall and Sundrum, provide a fascinating extension of the standard model with interesting consequences for the LHC. We investigate in detail how string theory realises such models, with emphasis on fermion localisation and the computation of Yukawa couplings. We find, in contrast to the 5d models, that fermions can be localised anywhere in the extra dimension, and that there are new mechanisms to generate exponential hierarchies amongst the Yukawa couplings. We also suggest a way to distinguish these string theory models with data from the LHC. (author)
Heterotic strings on homogeneous spaces
International Nuclear Information System (INIS)
Israel, D.; Kounnas, C.; Orlando, D.; Petropoulos, P.M.
2005-01-01
We construct heterotic string backgrounds corresponding to families of homogeneous spaces as exact conformal field theories. They contain left cosets of compact groups by their maximal tori supported by NS-NS 2-forms and gauge field fluxes. We give the general formalism and modular-invariant partition functions, then we consider some examples such as SU(2)/U(1)∝S 2 (already described in a previous paper) and the SU(3)/U(1) 2 flag space. As an application we construct new supersymmetric string vacua with magnetic fluxes and a linear dilaton. (Abstract Copyright [2005], Wiley Periodicals, Inc.)
Precise Analysis of String Expressions
DEFF Research Database (Denmark)
Christensen, Aske Simon; Møller, Anders; Schwartzbach, Michael Ignatieff
2003-01-01
We perform static analysis of Java programs to answer a simple question: which values may occur as results of string expressions? The answers are summarized for each expression by a regular language that is guaranteed to contain all possible values. We present several applications of this analysis...... are automatically produced. We present extensive benchmarks demonstrating that the analysis is efficient and produces results of useful precision......., including statically checking the syntax of dynamically generated expressions, such as SQL queries. Our analysis constructs flow graphs from class files and generates a context-free grammar with a nonterminal for each string expression. The language of this grammar is then widened into a regular language...
New twistor string theories revisited
International Nuclear Information System (INIS)
Broedel, Johannes; Wurm, Bernhard
2009-01-01
A gauged version of Berkovits twistor string theory featuring the particle content of N=8 supergravity was suggested by Abou-Zeid, Hull and Mason. The equations of motion for a particular multiplet in the modified theory are examined on the level of basic twistor fields and thereby shown to imply the vanishing of the negative helicity graviton on-shell. Additionally, the restrictions emerging from the equation of motion for the new gauge field B-bar reveal the chiral nature of interactions in theories constructed in this manner. Moreover, a particular amplitude in Berkovits open string theory is shown to be in agreement with the corresponding result in Einstein gravity.
Introduction to field theory of strings
International Nuclear Information System (INIS)
Kikkawa, K.
1987-01-01
The field theory of bosonic string is reviewed. First, theory is treated in a light-cone gauge. After a brief survey of the first quantized theory of free string, the second quantization is discussed. All possible interactions of strings are introduced based on a smoothness condition of work sheets swept out by strings. Perturbation theory is developed. Finally a possible way to the manifest covariant formalism is discussed
Twenty-five questions for string theorists
Energy Technology Data Exchange (ETDEWEB)
Binetruy, Pierre; /Orsay, LPT; Kane, G.L.; /Michigan U., MCTP; Lykken, Joseph D.; /Fermilab; Nelson, Brent D.; /Pennsylvania U.
2005-09-01
In an effort to promote communication between the formal and phenomenological branches of the high-energy theory community, we provide a description of some important issues in supersymmetric and string phenomenology. We describe each within the context of string constructions, illustrating them with specific examples where applicable. Each topic culminates in a set of questions that we believe are amenable to direct consideration by string theorists, and whose answers we think could help connect string theory and phenomenology.
Hosotani model in closed string theory
International Nuclear Information System (INIS)
Shiraishi, Kiyoshi.
1988-11-01
Hosotani mechanism in the closed string theory with current algebra symmetry is described by the (old covariant) operator method. We compare the gauge symmetry breaking mechanism in a string theory which has SU(2) symmetry with the one in an equivalent compactified closed string theory. We also investigate the difference between Hosotani mechanism and Higgs mechanism in closed string theories by calculation of a fourpoint amplitude of 'Higgs' bosons at tree level. (author)
Phases of Kaluza-Klein Black Holes
DEFF Research Database (Denmark)
Harmark, Troels; Obers, N. A.
2005-01-01
We review the latest progress in understanding the phase structure of static and neutral Kaluza-Klein black holes, i.e. static and neutral solutions of pure gravity with an event horizon that asymptote to a d-dimensional Minkowski-space times a circle. We start by reviewing the (mu,n) phase diagram...... and the split-up of the phase structure into solutions with an internal SO(d-1) symmetry and solutions with Kaluza-Klein bubbles. We then discuss the uniform black string, non-uniform black string and localized black hole phases, and how those three phases are connected, involving issues such as classical...... instability and horizon-topology changing transitions. Finally, we review the bubble-black hole sequences, their place in the phase structure and interesting aspects such as the continuously infinite non-uniqueness of solutions for a given mass and relative tension....
Kerr black holes are not fragile
Energy Technology Data Exchange (ETDEWEB)
McInnes, Brett, E-mail: matmcinn@nus.edu.sg [Centro de Estudios Cientificos (CECs), Valdivia (Chile); National University of Singapore (Singapore)
2012-04-21
Certain AdS black holes are 'fragile', in the sense that, if they are deformed excessively, they become unstable to a fundamental non-perturbative stringy effect analogous to Schwinger pair-production [of branes]. Near-extremal topologically spherical AdS-Kerr black holes, which are natural candidates for string-theoretic models of the very rapidly rotating black holes that have actually been observed to exist, do represent a very drastic deformation of the AdS-Schwarzschild geometry. One therefore has strong reason to fear that these objects might be 'fragile', which in turn could mean that asymptotically flat rapidly rotating black holes might be fragile in string theory. Here we show that this does not happen: despite the severe deformation implied by near-extremal angular momenta, brane pair-production around topologically spherical AdS-Kerr-Newman black holes is always suppressed.
Hollow micro string based calorimeter device
DEFF Research Database (Denmark)
2014-01-01
positions so as to form a free released double clamped string in-between said two longitudinally distanced positions said micro-channel string comprising a microfluidic channel having a closed cross section and extending in the longitudinal direction of the hollow string, acoustical means adapted...