WorldWideScience

Sample records for bt protein rhizosecreted

  1. Interactions Between Exogenous Bt Insecticidal Protein and Cotton Terpenoid Aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-jun; GUO Yu-yuan; WU Kong-ming; WANG Wu-gang

    2002-01-01

    The contents of terpenoid aldehydes in Bt transgenic cotton and their non-Bt parental varieties were analyzed by the HPLC method. Statistical analysis of variance showed that Bt insecticidal protein Bt-ICP expression has no negative effect on the synthesis of gossypol, total heliocides and total resistant terpenoids.The results of the combined dosage test of Bt-ICP and gossypoi in vitro showed that there is no interaction between gossypol and Bt-ICP on the mortality of cotton boilworm larvae Helicoverpa armigera (Hubnner). It is indicated that the actions of Bt-ICP and gossypol on cotton bollworm are additive. Therefore, it is advantageous to combine Bt-ICP with cotton terpenoid aldehydes in controlling cotton bollworm.

  2. The effects of high temperature level on square Bt protein concentration of Bt cotton

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; CHEN Yuan; YAO Meng-hao; LI Yuan; WEN Yu-jin; ZHANG Xiang; CHEN De-hua

    2015-01-01

    Higher bol worm survival rates were detected after high temperature presented during square period in Bt cotton. The objective of this study was to investigate the effects of high temperature level on the Bt efifcacy of two different types of Bt cotton cultivars at squaring stage. During the 2011 to 2013 cotton growth seasons, high temperature treatments ranged from 34 to 44°C in climate chambers, and ifeld experiments under high temperature weather with various temperature levels were conducted to investigate the effects of the high temperature level on square Bt protein concentration and nitrogen metabolism. The climate chamber experiments showed that the square insecticidal protein contents reduced after 24 h elevated temperature treatments for both cultivars, whereas signiifcant declines of the square insecticidal protein contents were detected at temperature >38°C, and only slightly numerical reductions were observed when temperature below 38°C. Similar high temperature responses were also observed at the two ifeld experimental sites in 2013. Correspondingly, high temperature below 38°C seems have little effect on the square amino acid concentrations, soluble protein contents, glutam-ic-pyruvic transaminase (GPT) and glutamic-oxalacetic transaminase (GOT) activities as wel as protease and peptidase activities; however, when the temperature was above 38°C, reduced soluble protein contents, enhanced amino acid con-centrations, decreased GPT and GOT activities, bolstered protease and peptidase activities in square were detected. In general, the higher the temperature is (>38°C), the larger the changes for the above compound contents and key enzymes activities of the square protein cycle. The ifndings indicated that the unstable insect resistance of the square was related to high temperature level during square stage.

  3. [Effects of high temperature on Bt protein content and nitrogen metabolic physiology in boll wall of Bt cotton].

    Science.gov (United States)

    Wang, Jun; Abidallah, Eltayib H M A; Hua, Ming-ming; Heng, Li; Lyu, Chun-hua; Chen, De-hua

    2015-10-01

    Bt cotton cultivar Sikang 1 (a conventional cultivar) and Sikang 3 (a hybrid cultivar) from China, and 99B (a conventional cultivar) and Daiza 1 (a hybrid cultivar) from USA were selected as experimental materials, the ball wall Bt protein content and nitrogen metabolic physiology were investigated under different high temperature levels at peak boll stage. The results showed that the Bt protein content of boll wall decreased with the increasing temperature. Compared with the control (32 °C, the boll wall Bt protein content decreased significantly when the temperature was above 38 °C for the conventional cultivars and above 40 °C for the hybrid cultivars. The Bt protein contents of cultivar Sikang 1 and 99B decreased by 53.0% and 69.5% respectively with the temperature at 38 °C, and that of cultivar Sikang 3 and Daiza 1 decreased by 64.8% and 54.1% respectively with the temperature at 40 °C. Greater reductions in the boll wall soluble protein contents and GPT activities, larger increments for the boll wall free amino acid contents and proteinsase activities were also observed when the boll wall Bt protein content was significantly reduced. Therefore, high temperature resulted in the reduction of Bt protein synthesis and increase of the insecticidal protein degradation in the boll wall significantly, which caused the reductions in boll wall Bt protein content and insect resistance.

  4. [Advances in effects of insecticidal crystal proteins released from transgenic Bt crops on soil ecology].

    Science.gov (United States)

    Zhou, Xue-Yong; Liu, Ning; Zhao, Man; Li, He; Zhou, Lang; Tang, Zong-Wen; Cao, Fei; Li, Wei

    2011-05-01

    With the large scale cultivation of transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal crystal proteins in the world, the problem of environmental safety caused by these Bt crops has received extensive attention. These insecticidal crystal proteins can be released into the soil continuously in the growing period of Bt plants. If their accumulation of the insecticidal crystal proteins exceeds consumption by insect larvae and degradation by the environmental factors, these insecticidal crystal proteins could constitute a hazard to non-target insects and soil microbiota. There are three main ways to release insecticidal crystal proteins into soil for Bt plants: root exudates, pollen falling, and crop reside returning. The Bt insecticidal crystal proteins released into soil can be adsorbed rapidly by active soil particles and the absorption equilibrium attained within 1-3 h. The adsorption protects Bt insecticidal crystal proteins against soil microbial degradation or enzyme degradation, which leads to remarkable prolong of the persistence of insecticidal activity. The change of soil microorganism species is an important index for evaluating the effect of Bt plants on soil ecology. The research showed that these insecticidal crystal proteins released by the Bt plant root exudates or Bt organism had no toxicity to the soil earthworms, nematodes, protozoa, bacteria and fungi; however, it could reduce the mycelium length of the arbuscular mycorrhizal fungi (AMF) and restrain AMF to form invasion unit. The influencing degree of Bt protein on soil enzyme activity varied with the releasing modes or growth period of Bt crops. Bt Cry1Ab protein can be taken up from soil by parts of following crops; however, different results were obtained with different commercial kits. To better understand the soil ecological evaluation about the insecticidal crystal proteins released from transgenic Bt crops, this review provides a comprehensive overview about the release

  5. [Advances in safety studies of soil Bt toxin proteins released from transgenic Bt crops].

    Science.gov (United States)

    Bai, Yaoyu; Jiang, Mingxing; Cheng, Jia; Jiang, Yonghou

    2003-11-01

    Commercialized transgenic Bt (Bacillus thuringiensis) crops are permitted for field growth in a large scale, which leads to significant issues of ecological risk assessment in soil ecosystem. In this paper, some general safety problems involving in the soil Bt active toxins released from insect-resistant transgenic Bt crops in the forms of plant residues, root exudates and pollens were reviewed, including their adsorption by soil active-particles, their insecticidal activity, persistence, and biodegradation by soil microbes, and their effects on soil organisms.

  6. High-yield production of a human monoclonal IgG by rhizosecretion in hydroponic tobacco cultures.

    Science.gov (United States)

    Madeira, Luisa M; Szeto, Tim H; Henquet, Maurice; Raven, Nicole; Runions, John; Huddleston, Jon; Garrard, Ian; Drake, Pascal M W; Ma, Julian K-C

    2016-02-01

    Rhizosecretion of recombinant pharmaceuticals from in vitro hydroponic transgenic plant cultures is a simple, low cost, reproducible and controllable production method. Here, we demonstrate the application and adaptation of this manufacturing platform to a human antivitronectin IgG1 monoclonal antibody (mAb) called M12. The rationale for specific growth medium additives was established by phenotypic analysis of root structure and by LC-ESI-MS/MS profiling of the total protein content profile of the hydroponic medium. Through a combination of optimization approaches, mAb yields in hydroponic medium reached 46 μg/mL in 1 week, the highest figure reported for a recombinant mAb in a plant secretion-based system to date. The rhizosecretome was determined to contain 104 proteins, with the mAb heavy and light chains the most abundant. This enabled evaluation of a simple, scalable extraction and purification protocol and demonstration that only minimal processing was necessary prior to protein A affinity chromatography. MALDI-TOF MS revealed that purified mAb contained predominantly complex-type plant N-glycans, in three major glycoforms. The binding of M12 purified from hydroponic medium to vitronectin was comparable to its Chinese hamster ovary (CHO)-derived counterpart. This study demonstrates that in vitro hydroponic cultivation coupled with recombinant protein rhizosecretion can be a practical, low-cost production platform for monoclonal antibodies.

  7. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent

    Energy Technology Data Exchange (ETDEWEB)

    Himanen, Sari J. [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland)], E-mail: sari.himanen@uku.fi; Nerg, Anne-Marja [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland); Nissinen, Anne [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland); MTT Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen (Finland); Stewart, C. Neal [University of Tennessee, Department of Plant Sciences, Knoxville, TN 37996-4561 (United States); Poppy, Guy M. [University of Southampton, School of Biological Sciences, Southampton SO16 7PX (United Kingdom); Holopainen, Jarmo K. [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland)

    2009-01-15

    Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution. - Elevated atmospheric ozone can induce fluctuations in insecticidal protein concentrations in transgenic plants.

  8. Dual mode of action of Bt proteins: protoxin efficacy against resistant insects

    OpenAIRE

    2015-01-01

    Transgenic crops that produce Bacillus thuringiensis (Bt) proteins for pest control are grown extensively, but insect adaptation can reduce their effectiveness. Established mode of action models assert that Bt proteins Cry1Ab and Cry1Ac are produced as inactive protoxins that require conversion to a smaller activated form to exert toxicity. However, contrary to this widely accepted paradigm, we report evidence from seven resistant strains of three major crop pests showing that Cry1Ab and Cry1...

  9. Insecticidal activity of residual Bt protein at the second trophic level

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Measurements were taken of Bt protein expressed in the leaves of transgenic cotton (Gossypium hirsutum) transformed with a synthesized Bt (Bacillus thuringiensis) cry1A gene and its persistent level in larval bodies and faeces of a non-targeted insect pest, beet armyworm (Spodoptera exigua). We performed enzyme linked immunosorbent assays (ELISA) and bioassays using neonate larvae of cotton bollworm (Helicoverpa armigera) to detect the insecticidal activity of residual Bt protein at the second trophic level. The results showed that Bt protein content in functional leaves was different at various developmental stages and was different among plants at the same stage. Even though Bt protein concentration in the larval bodies and faeces decreased 97.5%-99% compared to that found in cotton leaves subsequently fed to beet armyworm larvae, it still had a lethal effect on neonate cotton bollworm larvae. Therefore, Bt protein present at the second trophic level had insecticidal activity. This result is important in understanding and predicting the effect of transgenic plants on nontarget organisms.

  10. Can interactions between Bt proteins be predicted and how should effects on non-target organisms of GM crops with multiple Bt Proteins be assessed?

    NARCIS (Netherlands)

    Schrijver, De A.; Clercq, de P.; Booij, K.; Maagd, de R.A.; Frankenhuyzen, van K.

    2014-01-01

    Genes expressing Bacillus thuringiensis (Bt) toxins have been incorporated into genetically modified (GM) plants to render these resistant to certain insect pests. Of particular interest have been the genes encoding Cry (Crystal) proteins, but also the gene encoding the vegetative insecticidal prote

  11. Dual mode of action of Bt proteins: protoxin efficacy against resistant insects.

    Science.gov (United States)

    Tabashnik, Bruce E; Zhang, Min; Fabrick, Jeffrey A; Wu, Yidong; Gao, Meijing; Huang, Fangneng; Wei, Jizhen; Zhang, Jie; Yelich, Alexander; Unnithan, Gopalan C; Bravo, Alejandra; Soberón, Mario; Carrière, Yves; Li, Xianchun

    2015-10-12

    Transgenic crops that produce Bacillus thuringiensis (Bt) proteins for pest control are grown extensively, but insect adaptation can reduce their effectiveness. Established mode of action models assert that Bt proteins Cry1Ab and Cry1Ac are produced as inactive protoxins that require conversion to a smaller activated form to exert toxicity. However, contrary to this widely accepted paradigm, we report evidence from seven resistant strains of three major crop pests showing that Cry1Ab and Cry1Ac protoxins were generally more potent than the corresponding activated toxins. Moreover, resistance was higher to activated toxins than protoxins in eight of nine cases evaluated in this study. These data and previously reported results support a new model in which protoxins and activated toxins kill insects via different pathways. Recognizing that protoxins can be more potent than activated toxins against resistant insects may help to enhance and sustain the efficacy of transgenic Bt crops.

  12. Biological activity of Bt proteins expressed in different structures of transgenic corn against Spodoptera frugiperda

    Directory of Open Access Journals (Sweden)

    Daniel Bernardi

    2016-06-01

    Full Text Available ABSTRACT: Spodoptera frugiperda (J. E. Smith is the main target pest of Bt corn technologies, such as YieldGard VT PRO(tm (Cry1A.105/Cry2Ab2 and PowerCore(tm (Cry1A.105/Cry2Ab2/Cry1F. In this study, it was evaluated the biological activity of Bt proteins expressed in different plant structures of YieldGard VT PRO(tm and PowerCore(tm corn against S. frugiperda . Complete mortality of S. frugiperda neonates was observed on leaf-disc of both Bt corn technologies. However, the mortality in silks and grains was lower than 50 and 6%, respectively. In addition, more than 49% of the surviving larvae in silks and grains completed the biological cycle. However, all life table parameters were negatively affected in insects that developed in silks and grains of both Bt corn events. In summary, the low biological activity of Bt proteins expressed on silks and grains of YieldGard VT PRO(tm and PowerCore(tm corn can contribute to the resistance evolution in S. frugiperda populations.

  13. Degradation of Cry1Ab Protein Within Transgenic Bt Maize Tissue by Composite Microbial System of MC1

    Institute of Scientific and Technical Information of China (English)

    Meng Yao; Gu Wan-rong; Ye Le-fu; Chen Dong-sheng; Li Jing; Wei Shi

    2014-01-01

    Environmental safety issues involved in transgenic plants have become the concern of researchers, practitioners and policy makers in recent years. Potential differences between Bt maize (ND1324 and ND2353 expressing the insecticidal Cry1Ab protein) and near-isogenic non-Bt varieties (ND1392 and ND223) in their influence on the composite microbial system of MC1 during the fermentation process were studied during 2011-2012. Cry1Ab protein in Bt maize residues didn't affect characteristics of lignocellulose degradation by MC1, pH of fermentation broth decreasing at initial stage and increasing at later stage of degradation. The quality of various volatile products in fermentation broth showed that no significant difference of residues fermentation existed between Bt maize and non-Bt maize. During the fermentation MC1 efficiently degraded maize residues by 83%-88%, and cellulose, hemicelluloses and lignin content decreased by 70%-72%, 72%-75% and 30%-37%, respectively. Besides that, no consistent difference was found between Bt and non-Bt maize residues lignocellulose degradation by MC1 during the fermentation process. MC1 degraded 88%-89% Cry1Ab protein in Bt maize residues, and in the fermentation broth of MC1 and bacteria of MC1 Cry1Ab protein was not detected. DGGE profile analyses revealed that the microbial community drastically changed during 1-3 days and became stable until the 9th day. Though the dominant strains at different fermentation stages had significantly changed, no difference on the dominant strains was observed between Bt and non-Bt maize at different stages. Our study indicated that Cry1Ab protein did not influence the growth characteristic of MC1.

  14. Bt基因和Bt蛋白检测技术研究进展%Research on Progress of the Detection of BT Protein and BT Gene

    Institute of Scientific and Technical Information of China (English)

    汪倩; 向晓玲; 许耀心; 倪晓强; 姜佳燕; 龚云飞

    2012-01-01

    BT protein is a kind of specific insecticidal activity of protein crystallization produced by bacillus. Through the transgenic technology, we switch Bt gene into the crops such as rice and soybean to cultivate a good resistance to insects breed, then without using pesticides and some other harmful substances, the plant diseases and insect pests can be prevented and cured efficiently. However, animal experiment and clinical study found that Bt protein may damage mammalian immune organs and immune cells, and may also influence the genetic structure of the gene pool and genetic diversity of the popula- tion. It also has serious influence on the soil specific organisms function, soil biodiversity, and the soil enzyme activity and so on. What' s more, Bt protein in transgenic rice may enrich in human bodies along the food chain and do potential harm to humans. Therefore, the research on detecting of Bt genc or protein is necessary. So, the research status of Bt gene and pro- tein are briefly reviewed in this paper.%通过转基因技术将可表达杀虫特性蛋白的Bt基因转入大豆、水稻等农作物中,培育出优良的抗虫品种,从而在不使用农药等有害物质的前提下,对病虫害起到高效防治作用。然而动物试验及临床研究发现,Bt蛋白可能导致哺乳动物的免疫器官和免疫细胞损伤,也可能影响基因库的遗传结构及群体遗传多样性,对土壤特异生物类群功能、土壤生物多样性以及土壤酶活性等也有不同程度的影响,且Bt蛋白有可能沿着食物链在人体内富集,对人体形成潜在的危害。因此,开展对Bt基因和Bt蛋白的监控研究是必要的,该文对Bt的相关研究现状作一简要综述。

  15. Is the Cry1Ab protein from Bacillus thuringiensis (Bt) taken up by plants from soils previously planted with Bt corn and by carrot from hydroponic culture?

    Science.gov (United States)

    Icoz, I; Andow, D; Zwahlen, C; Stotzky, G

    2009-07-01

    The uptake of the insecticidal Cry1Ab protein from Bacillus thuringiensis (Bt) by various crops from soils on which Bt corn had previously grown was determined. In 2005, the Cry1Ab protein was detected by Western blot in tissues (leaves plus stems) of basil, carrot, kale, lettuce, okra, parsnip, radish, snap bean, and soybean but not in tissues of beet and spinach and was estimated by enzyme-linked immunosorbent assay (ELISA) to be 0.05 +/- 0.003 ng g(-1) of fresh plant tissue in basil, 0.02 +/- 0.014 ng g(-1) in okra, and 0.34 +/- 0.176 ng g(-1) in snap bean. However, the protein was not detected by ELISA in carrot, kale, lettuce, parsnip, radish, and soybean or in the soils by Western blot. In 2006, the Cry1Ab protein was detected by Western blot in tissues of basil, carrot, kale, radish, snap bean, and soybean from soils on which Bt corn had been grown the previous year and was estimated by ELISA to be 0.02 +/- 0.014 ng g(-1) of fresh plant tissue in basil, 0.19 +/- 0.060 ng g(-1) in carrot, 0.05 +/- 0.018 ng g(-1) in kale, 0.04 +/- 0.022 ng g(-1) in radish, 0.53 +/- 0.170 ng g(-1) in snap bean, and 0.15 +/- 0.071 ng g(-1) in soybean. The Cry1Ab protein was also detected by Western blot in tissues of basil, carrot, kale, radish, and snap bean but not of soybean grown in soil on which Bt corn had not been grown since 2002; the concentration was estimated by ELISA to be 0.03 +/- 0.021 ng g(-1) in basil, 0.02 +/- 0.008 ng g(-1) in carrot, 0.04 +/- 0.017 ng g(-1) in kale, 0.02 +/- 0.012 ng g(-1) in radish, 0.05 +/- 0.004 ng g(-1) in snap bean, and 0.09 +/- 0.015 ng g(-1) in soybean. The protein was detected by Western blot in 2006 in most soils on which Bt corn had or had not been grown since 2002. The Cry1Ab protein was detected by Western blot in leaves plus stems and in roots of carrot after 56 days of growth in sterile hydroponic culture to which purified Cry1Ab protein had been added and was estimated by ELISA to be 0.08 +/- 0.021 and 0.60 +/- 0.148 ng g(-1) of

  16. Rhizosecretion of stele-synthesized glucosinolates and their catabolites requires GTR-mediated import in Arabidopsis

    DEFF Research Database (Denmark)

    Xu, Deyang; Hanschen, Franziska S.; Witzel, Katja;

    2016-01-01

    , combined with the previous observation that GLS are exported from biosynthetic cells, suggest three possible routes of stele-synthesized aliphatic GLS after their synthesis: (i) GTR-dependent import to cells symplastically connected to the cortical cells and the rhizosphere; (ii) GTR-independent transport...... via the xylem to the shoot; and (iii) GTR-dependent import to GLS-degrading myrosin cells at the cortex. The study suggests a previously undiscovered role of the import process in the rhizosecretion of root-synthesized phytochemicals....

  17. High-yield production of a human monoclonal IgG by rhizosecretion in hydroponic tobacco cultures

    NARCIS (Netherlands)

    Madeira, L.M.; Szeto, T.H.; Henquet, Maurice; Raven, Nicole; Runions, John; Huddleston, Jon; Garrard, Ian; Drake, P.M.W.; Ma, Julian K.C.

    2016-01-01

    Rhizosecretion of recombinant pharmaceuticals from in vitro hydroponic transgenic plant cultures is a simple, low cost, reproducible and controllable production method. Here, we demonstrate the application and adaptation of this manufacturing platform to a human antivitronectin IgG1 mo

  18. Impacts of Bt rice expressing Cry1C or Cry2A protein on the performance of nontarget leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae), under laboratory and field conditions.

    Science.gov (United States)

    Lu, Z B; Tian, J C; Wang, W; Xu, H X; Hu, C; Guo, Y Y; Peng, Y F; Ye, G Y

    2014-02-01

    Transgenic rice expressing Bacillus thuringiensis Berliner (Bt) protein can effectively control target insects including stem borers and leaf folders. However, the potential effects of Bt rice on nontarget organisms including nontarget herbivores have not been fully evaluated. In the current study, ecological fitness parameters of the nontarget herbivore, Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae), fed on T1C-19 (Cry1C) or T2A-1 (Cry2A) rice were compared with non-Bt rice (MH63) under laboratory conditions. A 2-yr field trial was also conducted to monitor the population dynamics of N. cincticeps in the Bt and control rice plots using the vacuum-suction machine and yellow sticky card traps. Laboratory results showed that there were no significant differences in some of biological parameters including egg developmental duration, adult fresh weight, adult longevity, and oviposition period when N. cincticeps fed on Bt or non-Bt rice was compared. However, the survival rate of N. cincticeps nymphs fed on T2A-1 Bt rice plants was significantly higher than that on the control. When N. cincticeps fed on T1C-19 Bt rice plants, its nymphal duration was significantly longer and fecundity significantly lower compared with those fed on both T2A-1 Bt and non-Bt rice plants; the preoviposition period of N. cincticeps fed on T1C-19 and T2A-1 Bt rice was also significantly shorter than those on non-Bt rice. Nonetheless, both seasonal density and population dynamics of N. cincticeps adults and nymphs were similar between Bt (T1C-19 and T2A-1) and non-Bt rice plots under field conditions. In conclusion, our results indicate that our two tested Bt rice lines would not lead to higher population of N. cincticeps. Long-term experiments to monitor the population dynamics of N. cincticeps at large scale need to be carried out to confirm the current results.

  19. Evaluation of cytotoxic and antimicrobial effects of two Bt Cry proteins on a GMO safety perspective.

    Science.gov (United States)

    Farias, Davi Felipe; Viana, Martônio Ponte; de Oliveira, Gustavo Ramos; Beneventi, Magda Aparecida; Soares, Bruno Marques; Pessoa, Claudia; Pessoa, Igor Parra; Silva, Luciano Paulino; Vasconcelos, Ilka Maria; de Sá, Maria Fátima Grossi; Carvalho, Ana Fontenele Urano

    2014-01-01

    Studies have contested the innocuousness of Bacillus thuringiensis (Bt) Cry proteins to mammalian cells as well as to mammals microbiota. Thus, this study aimed to evaluate the cytotoxic and antimicrobial effects of two Cry proteins, Cry8Ka5 (a novel mutant protein) and Cry1Ac (a widely distributed protein in GM crops). Evaluation of cyto- and genotoxicity in human lymphocytes was performed as well as hemolytic activity coupled with cellular membrane topography analysis in mammal erythrocytes. Effects of Cry8Ka5 and Cry1Ac upon Artemia sp. nauplii and upon bacteria and yeast growth were assessed. The toxins caused no significant effects on the viability (IC50 > 1,000 µg/mL) or to the cellular DNA integrity of lymphocytes (no effects at 1,000 µg/mL). The Cry8Ka5 and Cry1Ac proteins did not cause severe damage to erythrocytes, neither with hemolysis (IC50 > 1,000 µg/mL) nor with alterations in the membrane. Likewise, the Cry8Ka5 and Cry1Ac proteins presented high LC50 (755.11 and >1,000 µg/mL, resp.) on the brine shrimp lethality assay and showed no growth inhibition of the microorganisms tested (MIC > 1,000 µg/mL). This study contributed with valuable information on the effects of Cry8Ka5 and Cry1Ac proteins on nontarget organisms, which reinforce their potential for safe biotechnological applications.

  20. Prediction on Antigenic Epitope Characteristics of Bt Cry2Ab Protein in Transgenic Crops

    Institute of Scientific and Technical Information of China (English)

    Jierong GAO; Ying HE; Zehong ZOU; Ailin TAO; Yuncan AI

    2012-01-01

    Abstract [Objective] This study aimed to predict the structural characteristics of Bt Cry2Ab protein in transgenic crops with bioinformatic analysis to provide the theoreti- cal clues for design of antibody Cry2Ab. [Method] The amino acid sequence of Cry2Ab protein was searched from NCBI database. The B cell epitopes were pre- dicted with DNAStar. The binding affinity between Cry2Ab protein and MHC-II molecules was analyzed with NetMHCII 2.2 Server to predict the T cell epitopes. [Result] Prediction result suggested the potential B cell epitope of Cry2Ab locating in the region of 208-215. Analysis of the binding affinity between Cry2Ab and MHC-II molecules suggested the regions of 177-185, 299-307 and 255-263 were the po- tential T cell epitopes. Human with HLA-DRB10101 alleles and HLA-DRB10701 al- leles were more sensitive to Cry2Ab protein. [Conclusion] This study facilitates to un- derstand the structural characteristics of Cry2Ab protein and provides a new clue to improve the assessment method for potential allergenicity of genetically modified food.

  1. [Bt transgenic crops for insect-resistance and modification of Bt protein and utilization of stacking strategy].

    Science.gov (United States)

    Li, Chen; Liu, Bolin

    2015-01-01

    Insecticidal protein genes from Bacillus thuringiensis are currently the most widely used insect-resistant genes. They have been transferred to many crops for breeding and production. Among them, cotton, maize, potato and other insect-resistant crops are commercialized, creating considerable economic benefit. In this review, we summarized advances in identifying functional genes and transgenic crops for insect resistance, compared different strategies for enhancing vigor of insecticidal protein and utilizing gene stacking as well as listing valuable groups of stacked genes. In addition, the methods for multiple gene transformation was discussed.

  2. Evaluation of Cytotoxic and Antimicrobial Effects of Two Bt Cry Proteins on a GMO Safety Perspective

    Directory of Open Access Journals (Sweden)

    Davi Felipe Farias

    2014-01-01

    Full Text Available Studies have contested the innocuousness of Bacillus thuringiensis (Bt Cry proteins to mammalian cells as well as to mammals microbiota. Thus, this study aimed to evaluate the cytotoxic and antimicrobial effects of two Cry proteins, Cry8Ka5 (a novel mutant protein and Cry1Ac (a widely distributed protein in GM crops. Evaluation of cyto- and genotoxicity in human lymphocytes was performed as well as hemolytic activity coupled with cellular membrane topography analysis in mammal erythrocytes. Effects of Cry8Ka5 and Cry1Ac upon Artemia sp. nauplii and upon bacteria and yeast growth were assessed. The toxins caused no significant effects on the viability (IC50>1,000 µg/mL or to the cellular DNA integrity of lymphocytes (no effects at 1,000 µg/mL. The Cry8Ka5 and Cry1Ac proteins did not cause severe damage to erythrocytes, neither with hemolysis (IC50>1,000 µg/mL nor with alterations in the membrane. Likewise, the Cry8Ka5 and Cry1Ac proteins presented high LC50 (755.11 and >1,000 µg/mL, resp. on the brine shrimp lethality assay and showed no growth inhibition of the microorganisms tested (MIC>1,000 µg/mL. This study contributed with valuable information on the effects of Cry8Ka5 and Cry1Ac proteins on nontarget organisms, which reinforce their potential for safe biotechnological applications.

  3. Field and laboratory studies on the impact of two Bt rice lines expressing a fusion protein Cry1Ab/1Ac on aquatic organisms.

    Science.gov (United States)

    Wang, Yongmo; Huang, Jiacheng; Hu, Huawei; Li, Jianhong; Liu, Biao; Zhang, Guoan

    2013-06-01

    Genetically modified (GM) rice expressing Bt toxins is at the edge of commercial release in China. However, little information is available concerning the impact of Bt rice on aquatic organisms which are abundant in paddy field. A two-year study was conducted to assess the effects of two GM rice lines expressing a fusion protein Cry1Ab/1Ac (Bt rice) on three groups of zooplankton, rotifers, cladocerans and copepods in field conditions. Multi-factor ANOVA revealed that the population densities of rotifers, cladocerans and copepods in paddy field varied significantly between years and rice developmental stages, but did not differ significantly between Bt and non-Bt rice treatments. In all the field investigations, only one significant difference was found on copepods in the tillering stage of 2009, but the difference was not related to the presence of the Cry toxin. Under open-air conditions, we simulated the farming practice of straw mulch, using Bt rice straw as a food source for the water flea Daphnia hyalina. After one and two months of culture, the density of D. hyalina did not differ between Bt rice treatments and non-Bt rice treatments. A laboratory experiment found that purified Bt toxins Cry1Ab and Cry1Ac had no toxic effect on D. hyalina even in the treatment in which the Bt toxin concentration was as high as 2500ng/ml. Those above results indicate that the two Bt rice lines have no negative effect on the three groups of zooplankton. However, further studies are needed to compare the effects of Bt rice and non-Bt rice on the paddy zooplankton community in the context of integrated pest management which includes the use of pesticides.

  4. Larval development of Spodoptera eridania (Cramer fed on leaves of Bt maize expressing Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 proteins and its non-Bt isoline

    Directory of Open Access Journals (Sweden)

    Orcial Ceolin Bortolotto

    2015-03-01

    Full Text Available This study aimed to evaluate, in controlled laboratory conditions (temperature of 25±2 °C, relative humidity of 60±10%, and 14/10 h L/D photoperiod, the larval development of Spodoptera eridania (Cramer, 1784 (Lepidoptera, Noctuidae fed with leaves of Bt maize expressing Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 insecticide proteins and its non-Bt isoline. Maize leaves triggered 100% of mortality on S. eridania larvae independently of being Bt or non-Bt plants. However, it was observed that in overall Bt maize (expressing a single or pyramided protein slightly affects the larval development of S. eridania, even under reduced leaf consumption. Therefore, these results showed that Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 can affect the larval development of S. eridania, although it is not a target pest of this plant; however, more research is needed to better understand this evidence. Finally, this study confirms that non-Bt maize leaves are unsuitable food source to S. eridania larvae, suggesting that they are not a potential pest in maize fields.

  5. Influence of Dual-Bt Protein Corn on Bollworm, Helicoverpa zea (Boddie), Survivorship on Bollgard II Cotton.

    Science.gov (United States)

    Von Kanel, M B; Gore, J; Catchot, A; Cook, D; Musser, F; Caprio, M

    2016-04-01

    Similar Cry proteins are expressed in both Bt corn, Zea mays L., and cotton, Gossypium hirsutum (L.), commercial production systems. At least one generation of corn earworm, Helicoverpa zea (Boddie), completes development on field corn in the Mid-South before dispersing across the landscape into other crop hosts like cotton. A concern is that Bt corn hybrids may result in selection for H. zea populations with a higher probability of causing damage to Bt cotton. The objective of this study was to determine the susceptibility of H. zea offspring from moths that developed on non-Bt and VT Triple Pro (VT3 PRO) field corn to lyophilized Bollgard II cotton tissue expressing Cry1Ac and Cry2Ab. Offspring of individuals reared on VT3 PRO expressing Cry1A.105 and Cry2Ab had a significantly higher LC50 two out of the three years this study was conducted. Excess larvae were placed on artificial diet and allowed to pupate to determine if there were any inheritable fitness costs associated with parental development on VT3 PRO corn. Offspring resulting from males collected from VT3 PRO had significantly lower pupal weight and longer pupal duration compared with offspring of individuals collected from non-Bt corn. However, offspring from females collected from VT3 PRO were not different from non-Bt offspring. Paternal influence on offspring in insects is not commonly observed, but illustrates the side effects of development on a transgenic plant expressing less than a high dose, 25 times the concentration needed to kill susceptible larvae.

  6. Bacillus thuringiensis (Bt)

    Science.gov (United States)

    2004-01-01

    Bacillus thuringiensis (Bt), a natural bacteria found all over the Earth, has a fairly novel way of getting rid of unwanted insects. Bt forms a protein substance (shown on the right) that is not harmful to humans, birds, fish or other vertebrates. When eaten by insect larvae the protein causes a fatal loss of appetite. For over 25 years agricultural chemical companies have relied heavily upon safe Bt pesticides. New space based research promises to give the insecticide a new dimension in effectiveness and applicability. Researchers from the Consortium for Materials Development in Space along with industrial affiliates such as Abott Labs and Pern State University flew Bt on a Space Shuttle mission in the fall of 1996. Researchers expect that the Shuttle's microgravity environment will reveal new information about the protein that will make it more effective against a wider variety of pests.

  7. Resistance to Bt maize in Mythimna unipuncta (Lepidoptera: Noctuidae) is mediated by alteration in Cry1Ab protein activation.

    Science.gov (United States)

    González-Cabrera, Joel; García, Matías; Hernández-Crespo, Pedro; Farinós, Gema P; Ortego, Félix; Castañera, Pedro

    2013-08-01

    Bt maize cultivars based on the event MON810 (expressing Cry1Ab) have shown high efficacy for controlling corn borers. However, their efficiency for controlling some secondary lepidopteran pests such as Mythimna unipuncta has been questioned, raising concerns about potential outbreaks and its economic consequences. We have selected a resistant strain (MR) of M. unipuncta, which is capable of completing its life cycle on Bt maize and displays a similar performance when feeding on both Bt and non-Bt maize. The proteolytic activation of the protoxin and the binding of active toxin to brush border membrane vesicles were investigated in the resistant and a control strain. A reduction in the activity of proteolytic enzymes, which correlates with impaired capacity of midgut extracts to activate the Cry1Ab protoxin has been observed in the resistant strain. Moreover, resistance in larvae of the MR strain was reverted when treated with Cry1Ab toxin activated with midgut juice from the control strain. All these data indicate that resistance in the MR strain is mediated by alteration of toxin activation rather than to an increase in the proteolytic degradation of the protein. By contrast, binding assays performed with biotin labelled Cry1Ab suggest that binding to midgut receptors does not play a major role in the resistance to Bt maize. Our results emphasize the risk of development of resistance in field populations of M. unipuncta and the need to consider this secondary pest in ongoing resistance management programs to avoid the likely negative agronomic and environmental consequences.

  8. Study on Spatial-temporal Dynamics of Bt Toxic Protein Expression in Insect-resistant Transgenic Cotton and Its Degradation in Soil

    Institute of Scientific and Technical Information of China (English)

    Yiwen ZHANG; Lianrong WANG; Liancheng ZHANG; Jun ZHANG; Xinbo JI; Jinmao WANG

    2012-01-01

    [Ob.jcctive] This study aimed to investigate the spatial-temporal dynamics of Bt toxic protein expression in insect-resistant transgenic cotton and its degradation in soil. [Meth~d] BtcrylAc toxic protein expression in roots, stems and leaves of trans- genic cotton Guoshen GK45 at different developmental stages and the annual aver- age content of BtCrylAc toxin protein in the topsoil, rhizosphere soil and following cotton-growing area were explored and analyzed by using enzyme linked immuno sorbed assay (ELISA). [Result] The content of exogenous BtCrylAc toxin protein de- creased during the growth process of insect-resistant transgenic cotton; to be specif- ic, the content of BtCrylAc toxin protein in cotton stems and leaves decreased more slowly and always maintained a high level, while that in roots decreased rapidly and reached a minimum level to the following plant growth and development stage. BtCrylAc toxin protein was detected in topsoil of both non-transgenic and transgenic cotton-growing areas, and the content of BtCrylAc toxin protein increased in topsoil of following cotton-growing area, which was very low in rhizosphere soil. [Conclusion] Determination of BtcrylAc toxic protein provides scientific basis for the risk assess- ment of the cultivation of genetically modified crops and the safety evaluation of soil ecosystem.

  9. Relationship Between Leaf C/N Ratio and Insecticidal Protein Expression in Bt Cotton as Affected by High Temperature and N Rate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang; LÜ Chun-hua; CHEN Yuan; WANG Gui-xia; CHEN Yuan; CHEN De-hua

    2014-01-01

    Expression of insecticidal protein for transgenic Bacillus thuringiensis (Bt) cotton is unstable and related to nitrogen metabolism. The objective of this study was to investigate the relationship between leaf carbon nitrogen ratio (C/N) and insecticidal efifcacy of two Bt cotton cultivars. C/N ratio and Bt protein content were both measured at peak square period and peak boll period respectively under 5-7 d high temperature and different nitrogen fertilizer rates on the Yangzhou University Farm and the Ludong Cotton Farm, China. All plants were grown in ifeld. The results showed that the C/N ratio enhanced slightly and the Bt protein content remained stable at peak square period, but significant increases for the C/N ratio and decreases markedly for the leaf Bt protein concentration were detected at the peak boll period. The similar patterns at the two growth periods were found for the leaf C/N ratio and Bt protein content by different N fertilizer treatments. When nitrogen rate was from 0 to 600 kg ha-1, the C/N ratio was reduced by 0.017 and 0.006 for Sikang 1 and Sikang 3 at peak square period, compared to the 1.350 to 1.143 reduction for Sikang 1 and Sikang 3 at peak boll period, respectively. Correspondingly, the leaf Bt protein contents were bolstered by 2.6-11.8 and 26.9-36.9% at the two different growth periods, respectively. The results suggested that enhanced C/N ratio by high temperature and nitrogen application may result in the reduction of insectiocidal efifcacy in Bt cotton, especially in peak boll period.

  10. Transfer of Bt-toxin protein gene into maize by high-velocity microprojectile bombardments and regeneration of transgenic plants

    Institute of Scientific and Technical Information of China (English)

    王国英; 杜天兵; 张宏; 谢友菊; 戴景瑞; 米景九; 李太源; 田颖川; 乔利亚; 莽克强

    1995-01-01

    Bt-toxin protein gene was successfully transferred into maize by the microprojectile bombard-ments of cell suspension,embryogenic calli and immature embryos with a Chinese-made particle gun(JQ-700).Although the bombarded embryogenic calli and immature embryos produced less mean transformants per dishthan the cell suspensions,they were the suitable materials for maize transformation because their culture andregeneration have been achieved in most maize cultivars.The evaluation on the resistance of transgenic plantsto corn borer shows the significant difference between them,from highly resistant to susceptible.

  11. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants

    NARCIS (Netherlands)

    Felipe Farias, Davi; Peijnenburg, A.A.C.M.; Grossi-de-Sá, Maria F.; Carvalho, A.F.U.

    2015-01-01

    Insecticidal Cry proteins from Bacillus thuringiensis (Bt) have been exploited in the development of genetically modified (GM) crops for pest control. However, several pests are still difficult to control such as the coleopteran boll weevil Anthonomus grandis. By applying in vitro molecular evolutio

  12. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields.

    Directory of Open Access Journals (Sweden)

    Huilin Yu

    Full Text Available Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA. Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults and sampling dates (before, during, and after flowering. Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.

  13. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields.

    Science.gov (United States)

    Yu, Huilin; Romeis, Jörg; Li, Yunhe; Li, Xiangju; Wu, Kongming

    2014-01-01

    Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.

  14. Microarray detection and qPCR screening of potential biomarkers of Folsomia candida (Collembola: Isotomidae) exposed to Bt proteins (Cry1Ab and Cry1Ac).

    Science.gov (United States)

    Yuan, Yiyang; Krogh, Paul Henning; Bai, Xue; Roelofs, Dick; Chen, Fajun; Zhu-Salzman, Keyan; Liang, Yuyong; Sun, Yucheng; Ge, Feng

    2014-01-01

    The impact of Bt proteins on non-target arthropods is less understood than their effects on target organisms where the mechanism of toxic action is known. Here, we report the effects of two Bt proteins, Cry1Ab and Cry1Ac, on gene expression in the non-target collembolan, Folsomia candida. A customized microarray was used to study gene expression in F. candida specimens that were exposed to Cry1Ab and Cry1Ac. All selected transcripts were subsequently confirmed by qPCR. Eleven transcripts were finally verified, and three of them were annotated. The responses of all eleven transcripts were tested in specimens for both Cry1Ab and Cry1Ac at a series of concentrations. These transcripts were separated into two and three groups for Cry1Ab and Cry1Ac, respectively, depend on their expression levels. However, those eleven transcripts did not respond to the Bt proteins in Bt-rice residues.

  15. Use of Bt-resistant caterpillars to assess the effect of Cry proteins on beneficial natural enemies

    Science.gov (United States)

    A concern related to the use of insect-resistant Bt-transgenic plants is their potential to harm non-target organisms, especially natural enemies of important crop pests. A few studies purporting to show negative effects of Bt plants on non-target organisms had tremendous negative effects on the per...

  16. Impact of water content and temperature on the degradation of Cry1Ac protein in leaves and buds of Bt cotton in the soil.

    Directory of Open Access Journals (Sweden)

    Mei-jun Zhang

    Full Text Available Determining the influence of soil environmental factors on degradation of Cry1Ac protein from Bt cotton residues is vital for assessing the ecological risks of this commercialized transgenic crop. In this study, the degradation of Cry1Ac protein in leaves and in buds of Bt cotton in soil was evaluated under different soil water content and temperature settings in the laboratory. An exponential model and a shift-log model were used to fit the degradation dynamics of Cry1Ac protein and estimate the DT50 and DT90 values. The results showed that Cry1Ac protein in the leaves and buds underwent rapid degradation in the early stage (before day 48, followed by a slow decline in the later stage under different soil water content and temperature. Cry1Ac protein degraded the most rapidly in the early stage at 35°C with 70% soil water holding capacity. The DT50 values were 12.29 d and 10.17 d and the DT90 values were 41.06 d and 33.96 d in the leaves and buds, respectively. Our findings indicated that the soil temperature was a major factor influencing the degradation of Cry1Ac protein from Bt cotton residues. Additionally, the relative higher temperature (25°C and 35°C was found to be more conducive to degradation of Cry1Ac protein in the soil and the greater water content (100%WHC retarded the process. These findings suggested that under appropriate soil temperature and water content, Cry1Ac protein from Bt cotton residues will not persist and accumulate in soil.

  17. Susceptibility of field populations of the fall armyworm (Lepidoptera: Noctuidae) from Florida and Puerto Rico to purified Cry1F protein and corn leaf tissue containing single and pyramided Bt genes

    Science.gov (United States)

    Larval survival of Cry1F-susceptible (FL), -resistant (PR and Cry1F-RR), and -heterozygous (FL x PR and Cry1F-RS) populations of the fall armyworm, Spodoptera frugiperda (J.E. Smith) to purified Cry1F protein and corn leaf tissue of seven Bacillus thuringiensis (Bt) corn hybrids and five non-Bt corn...

  18. No impact of Bt soybean that express Cry1Ac protein on biological traits of Euschistus heros (Hemiptera, Pentatomidae and its egg parasitoid Telenomus podisi (Hymenoptera, Platygastridae

    Directory of Open Access Journals (Sweden)

    Gabriela Vieira Silva

    2014-09-01

    Full Text Available No impact of Bt soybean that express Cry1Ac protein on biological traits of Euschistus heros (Hemiptera, Pentatomidae and its egg parasitoid Telenomus podisi (Hymenoptera, Platygastridae. Biological traits of the stink bug Euschistus heros and its main biological control agent Telenomus podisi were evaluated under controlled environmental conditions (25 ± 2ºC; 60 ± 10% RH; and 14/10 h photoperiod by placing first instar nymphs into Petri dishes with pods originating from two soybean isolines (Bt-soybean MON 87701 × MON 89788, which expresses the Cry1Ac protein, and its near non-Bt isoline A5547 where they remained until the adult stage. Due to gregarious behavior exhibited by first instar nymphs, they were individualized only when at the second instar. Adults were separated by sex and weighed, and pronotum width of each individual was subsequently measured. They were placed into plastic boxes containing soybean grains of the same soybean isoline as food source. Egg viability and female fecundity were assessed in adult individuals. Adult females of T. podisi (up to 24h old were placed with eggs of E. heros from mothers reared on both soybean isolines. Nymphal development time, insect weight, pronotum width, sex ratio, female fecundity, and egg viability (% emergence of Euschistus heros did not differ between treatments. Eggto-adult development time, female longevity, sex ratio, and percentage of parasitized eggs were not impacted by the Bt-soybean (expressing Cry1Ac protein. Results indicate that the Bt-soybean, MON 87701 × MON 89788, has no direct significant impact on the two studied species.

  19. Effect of High Temperature Stress on Bt Insecticidal Protein Content and Nitrogen Metabolism of Square in Bt Cotton%高温胁迫对Bt棉蕾中杀虫蛋白含量及氮代谢的影响

    Institute of Scientific and Technical Information of China (English)

    衡丽; 李亚兵; 胡大鹏; 王桂霞; 吕春花; 张祥; 陈源; 陈德华

    2016-01-01

    为明确高温气候下Bt棉抗虫性下降的原因,以2个不同类型Bt棉品种为材料,2011年于盛蕾期设计38℃高温胁迫3、5和7 d;2012年设计38℃/25℃的昼夜变温胁迫4、7和10 d,研究其对转Bt棉蕾的杀虫蛋白表达量影响及其生理机理。结果表明,持续高温胁迫7 d内,棉蕾中Bt杀虫蛋白含量呈下降趋势,持续胁迫3 d内下降幅度最大,与未胁迫相比,泗抗3号和泗抗1号分别下降18.71%和26.54%;昼夜变温下高温胁迫4 d时蕾中Bt杀虫蛋白表达量无显著变化,当胁迫7 d以上时, Bt杀虫蛋白含量显著下降,泗抗3号和泗抗1号分别比对照下降11.32%和14.18%。持续高温或昼夜变温高温持续胁迫下,棉蕾中游离氨基酸含量和蛋白酶活性都显著增加,可溶性蛋白含量和 GPT 活性都显著下降。相关分析表明,游离氨基酸含量、蛋白酶活性与Bt杀虫蛋白含量呈极显著负相关;可溶性蛋白含量和GPT活性与Bt杀虫蛋白含量呈极显著正相关。分析表明,高温胁迫下蛋白质合成功能下降,分解能力增强导致可溶蛋白含量,包括Bt杀虫蛋白含量下降。常规种泗抗1号的抗虫性和氮代谢受高温的影响较大。%To explore the reason for low insect resistance under high temperature climate in Bt cotton production, we selected two Bt cotton cultivars as experimental material with treatments of 38℃ for three, five and seven days in 2011, and 38℃/25℃ at day /night for four, seven and ten days, respectively at the artificial climate chamber in 2012. The results showed that the Bt insecti-cidal protein contents declined within seven days under 38℃, with the largest reduction occurred within three days. Compared with control, the square Bt insecticidal protein contents decreased by 18.71% and 26.54% for cultivar Sikang 3 (SK-3) and Sikang 1 (SK-1), respectively. Under 38℃/25℃ at day/night, the square Bt insecticidal protein contents had no obvious reduction within

  20. Comparison of three transgenic Bt rice lines for insecticidal protein expression and resistance against a target pest, Chilo suppressalis (Lepidoptera: Crambidae).

    Science.gov (United States)

    Wang, Ya-Nan; Ke, Kai-Qie; Li, Yun-He; Han, Lan-Zhi; Liu, Yan-Min; Hua, Hong-Xia; Peng, Yu-Fa

    2016-02-01

    Two transgenic rice lines (T2A-1 and T1C-19b) expressing cry2A and cry1C genes, respectively, were developed in China, targeting lepidopteran pests including Chilo suppressalis (Walker) (Lepidoptera: Crambidae). The seasonal expression of Cry proteins in different tissues of the rice lines and their resistance to C. suppressalis were assessed in comparison to a Bt rice line expressing a cry1Ab/Ac fusion gene, Huahui 1, which has been granted a biosafety certificate. In general, levels of Cry proteins were T2A-1 > Huahui 1 > T1C-19b among rice lines, and leaf > stem > root among rice tissues. The expression patterns of Cry protein in the rice line plants were similar: higher level at early stages than at later stages with an exception that high Cry1C level in T1C-19b stems at the maturing stage. The bioassay results revealed that the three transgenic rice lines exhibited significantly high resistance against C. suppressalis larvae throughout the rice growing season. According to Cry protein levels in rice tissues, the raw and corrected mortalities of C. suppressalis caused by each Bt rice line were the highest in the seedling and declined through the jointing stage with an exception for T1C-19b providing an excellent performance at the maturing stage. By comparison, T1C-19b exhibited more stable and greater resistance to C. suppressalis larvae than T2A-1, being close to Huahui 1. The results suggest cry1C is an ideal Bt gene for plant transformation for lepidopteran pest control, and T1C-19b is a promising Bt rice line for commercial use for tolerating lepidopteran rice pests.

  1. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil.

    Directory of Open Access Journals (Sweden)

    Daniel Bernardi

    Full Text Available Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda, the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507 represented most of the positive (resistance allele-containing (isofamilies found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A

  2. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil.

    Science.gov (United States)

    Bernardi, Daniel; Salmeron, Eloisa; Horikoshi, Renato Jun; Bernardi, Oderlei; Dourado, Patrick Marques; Carvalho, Renato Assis; Martinelli, Samuel; Head, Graham P; Omoto, Celso

    2015-01-01

    Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105

  3. Expression of Bt Protein in Transgenic Insect-resistant Rice%转基因抗虫水稻中Bt蛋白表达量的研究

    Institute of Scientific and Technical Information of China (English)

    于志晶; 蔡勤安; 林秀峰; 马瑞

    2012-01-01

    [Objective] The aim was to study the expression of Bt protein in transgenic pest-resistant rice. [ Method] Enzyme-linked immu-nosorbent assay (ELISA) was used to measure Bt protein expression in different parts of transgenic pest-resistant rice at same growth stage. [Result] Absolute content of Bt protein expression from high to low was as follows: leaves>immature seeds and glumes>roots>stems in different tissues of transgenic rice in grain-filling stage; Bt protein contents of transgenic rice changed a little in different growth stages (tillering stage, booting stage, and grain-filling stage) ; in general, concentration of Bt protein declined a little in later growth stage, for which, the resistibility would not be influenced too much. [ Conclusion ] The experiment is of great importance for pest prevention and transgenic rice breeding.%[目的]对转基因抗虫水稻中Bt蛋白表达量进行研究.[方法]应用酶联免疫吸附测定法(ELISA)定量检测转基因抗虫水稻生相同生长时期不同部位的Bt蛋自表达量.[结果]转基因水稻灌浆期不同组织中Bt蛋白表达绝对含量的高低顺序为:叶片>未成熟种子及颖壳>根>茎杆;在水稻不同的生长发育(分蘖期、抽穗期和灌浆期)阶段,转基因Bt水稻中Bt蛋白的含量有一些变化;一般在水稻生长后期Bt蛋白的浓度有所下降,但幅度不大,对其抗性不会造成太大影响[结论]该试验对田间害虫的防治以及转基因水稻的育种都具有重要意义.

  4. Impacts of Environmental Factors on Degradation of Cry1Ab Insecticidal Protein in Leaf-Blade Powders of Transgenic Bt Rice

    Institute of Scientific and Technical Information of China (English)

    BAI Yao-yu; JIANG Ming-xing; CHENG Jia-an

    2007-01-01

    The determination of the environmental fate of Bt insecticidal protein released by Bt rice plants in paddy soils is a key issue in its ecological risk assessment. In this study, the impacts of soil water content, pH, and temperature on the degradation of Cry1Ab protein expressed in the leaves of Bt rice KMD2 were studied in the laboratory. Three types of paddy soils were used, i.e., blue clayey paddy soil, pale paddy soil on quaternary red soil, and marine-fluvigenic yellow loamy paddy soil. Ground powders of KMD2 leaf blades were mixed with each type of soil, and degradation dynamics of Cry1Ab were measured using enzyme-linked immunosorbent assay (ELISA). The degradation rate of Cry1Ab was high at the early experimental stage, but slowed down steadily at middle and later stages, which could be described by exponential equations, with the half-life period of degradation determined as 1.8-4.0 d. The soil water content, pH, and temperature could affect the degradation of Cry1Ab, but the effects of soil pH and temperature were relatively greater. In general,Cry 1 Ab degradations were slower under lower soil pH and temperature conditions, especially for marine-fluvigenic yellow loamy paddy soil.

  5. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants

    OpenAIRE

    2015-01-01

    Insecticidal Cry proteins from Bacillus thuringiensis (Bt) have been exploited in the development of genetically modified (GM) crops for pest control. However, several pests are still difficult to control such as the coleopteran boll weevil Anthonomus grandis. By applying in vitro molecular evolution to the cry8Ka1 gene sequence, variants were generated with improved activity against A. grandis. Among them, Cry8Ka5 mutant protein showed coleoptericidal activity 3-fold higher (LC50 2.83 μg/mL)...

  6. Synthetic fusion-protein containing domains of Bt Cry1Ac and Allium sativum lectin (ASAL) conferred enhanced insecticidal activity against major lepidopteran pests.

    Science.gov (United States)

    Tajne, Sunita; Boddupally, Dayakar; Sadumpati, Vijayakumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2014-02-10

    Different transgenic crop plants, developed with δ-endotoxins of Bacillus thuringiensis (Bt) and mannose-specific plant lectins, exhibited significant protection against chewing and sucking insects. In the present study, a synthetic gene (cry-asal) encoding the fusion-protein having 488 amino acids, comprising DI and DII domains from Bt Cry1Ac and Allium sativum agglutinin (ASAL), was cloned and expressed in Escherichia coli. Ligand blot analysis disclosed that the fusion-protein could bind to more number of receptors of brush border membrane vesicle (BBMV) proteins of Helicoverpa armigera. Artificial diet bioassays revealed that 0.025 μg/g and 0.50 μg/g of fusion-protein were sufficient to cause 100% mortality in Pectinophora gossypiella and H. armigera insects, respectively. As compared to Cry1Ac, the fusion-protein showed enhanced (8-fold and 30-fold) insecticidal activity against two major lepidopteran pests. Binding of fusion-protein to the additional receptors in the midgut cells of insects is attributable to its enhanced entomotoxic effect. The synthetic gene, first of its kind, appears promising and might serve as a potential candidate for engineering crop plants against major insect pests.

  7. Bt toxin modification for enhanced efficacy.

    Science.gov (United States)

    Deist, Benjamin R; Rausch, Michael A; Fernandez-Luna, Maria Teresa; Adang, Michael J; Bonning, Bryony C

    2014-10-22

    Insect-specific toxins derived from Bacillus thuringiensis (Bt) provide a valuable resource for pest suppression. Here we review the different strategies that have been employed to enhance toxicity against specific target species including those that have evolved resistance to Bt, or to modify the host range of Bt crystal (Cry) and cytolytic (Cyt) toxins. These strategies include toxin truncation, modification of protease cleavage sites, domain swapping, site-directed mutagenesis, peptide addition, and phage display screens for mutated toxins with enhanced activity. Toxin optimization provides a useful approach to extend the utility of these proteins for suppression of pests that exhibit low susceptibility to native Bt toxins, and to overcome field resistance.

  8. 转Bt毒蛋白基因玉米及其抗虫性研究进展%Transgenic Corn with Bt Toxin Protein Gene and Insect-resistance

    Institute of Scientific and Technical Information of China (English)

    杨春英; 宋建成

    2001-01-01

    本文从转Bt毒蛋白基因玉米的培育及商品化,Bt毒蛋白基因在转基因玉米中的遗传分离与整合、对玉米螟及其它害虫的杀虫效果、对天敌种群数量和玉米病害发生程度的影响、玉米螟对转Bt毒蛋白基因玉米产生抗性及解决措施、应用转Bt毒蛋白基因玉米潜在的生态风险性等方面对国内外最新研究进展进行了综述。%This review briefly focused on the progress at home and overseas in the study of transgenic corn transformed with Bt toxic protein gene,including the breeding and commercial production of transgenic corn transformed with Bt toxic protein gene,genetic segregation and combination of Bt toxin protein in transgenic corn,insecticidal effect on corn borer and other pests,influence on natural enemy population amount and corn disease,corn borer tolerance to Bt toxic protein gene and countermeasures,and the potential ecological risk of transgenic corn transformed with Bt toxic protein gene.

  9. Bt pollen dispersal and Bt kernel mosaics: integrity of non-Bt refugia for lepidopteran resistance management in maize.

    Science.gov (United States)

    Burkness, Eric C; Hutchison, W D

    2012-10-01

    Field trials were conducted at Rosemount, MN in 2009 and 2010, to measure pollen movement from Bt corn to adjacent blocks of non-Bt refuge corn. As the use of Bt corn hybrids continues to increase in the United States, and new insect resistance management (IRM) plans are implemented, it is necessary to measure the efficacy of these IRM plans. In Minnesota, the primary lepidopteran pests of corn include the European corn borer, Ostrinia nubilalis (Hübner) and corn earworm, Helicoverpa zea (Boddie). The primary IRM plan in transgenic corn is the use of hybrids expressing a high dose of insecticidal proteins and an insect refuge containing hybrids not expressing insecticidal proteins that produce susceptible insects. Wind-assisted pollen movement in corn occurs readily, and is the primary method of pollination for corn. The combination of pollen movement and viability determines the potential for cross pollination of refuge corn. In 2009 and 2010, cross pollination occurred with the highest frequency on the north and east sides of Bt corn fields, but was found at some level in all directions. Highest levels of cross pollination (75%) were found within the first four rows (3 m) of non-Bt corn adjacent to Bt corn, and in general decreasing levels of cross pollination were found the further the non-Bt corn was planted from the Bt corn. A mosaic of Bt cross-pollinated kernels was found throughout the ear, but in both years the ear tip had the highest percentage of cross-pollinated kernels; this pattern may be linked to the synchrony of pollen shed and silking between Bt and non-Bt corn hybrids. The dominant wind direction in both years was from WNW. However, in both years, there were also prevailing winds from SSW and WSW. Further studies are needed to quantify Bt levels in cross-pollinated kernels, measure the Bt dose of such kernels and associated lepidopteran pest survival, and measure the impact of Bt pollen on lepidopteran pests, particularly when considering the

  10. Engineering modified Bt toxins to counter insect resistance.

    Science.gov (United States)

    Soberón, Mario; Pardo-López, Liliana; López, Idalia; Gómez, Isabel; Tabashnik, Bruce E; Bravo, Alejandra

    2007-12-07

    The evolution of insect resistance threatens the effectiveness of Bacillus thuringiensis (Bt) toxins that are widely used in sprays and transgenic crops. Resistance to Bt toxins in some insects is linked with mutations that disrupt a toxin-binding cadherin protein. We show that susceptibility to the Bt toxin Cry1Ab was reduced by cadherin gene silencing with RNA interference in Manduca sexta, confirming cadherin's role in Bt toxicity. Native Cry1A toxins required cadherin to form oligomers, but modified Cry1A toxins lacking one alpha-helix did not. The modified toxins killed cadherin-silenced M. sexta and Bt-resistant Pectinophora gossypiella that had cadherin deletion mutations. Our findings suggest that cadherin promotes Bt toxicity by facilitating toxin oligomerization and demonstrate that the modified Bt toxins may be useful against pests resistant to standard Bt toxins.

  11. 转Bt基因水稻种子中Bt蛋白含量测定方法的研究%Protein Content in Bt- Gene Rice Seed

    Institute of Scientific and Technical Information of China (English)

    陈笑芸; 汪小福; 周育; 缪青梅; 方敬; 徐俊锋

    2012-01-01

    采用ELISA技术检测转Bt基因水稻中Bt蛋白的含量,判断水稻样品中是否含有转基因成分.利用研磨、酶标、孵育等技术对样品进行前处理.采用阳性质控物浓度等倍稀释方法,建立标准曲线,相关系数为0.997 4.用一系列不同转基因含量的标准基体材料,分析方法的最低检测限,灵敏度达0.1%.通过对我国进入生产性试验的转Bt基因水稻品系TT51 -1和科丰6号的测试,表明该方法与普通PCR方法真实性和灵敏度一致,可以广泛应用于转Bt基因水稻及其粗加工产品的转基因成分检测.为转基因生物安全监管和安全性评价提供技术支撑.%In this study, the enzyme - linked immunosorbent assay (ELISA) has been develpoed for the detection of Bt protein content in transgenic Bt rice to evaluate the presence of genetically modified ingredients in rice samples. The sample pre -treatment step involved in grinding,enzymatic labeling reaction and incubation process. The standard curve was constructed by dilution of the the positive control material with the same dilution factor, and the correlation coefficient is 0. 997 4. A range of different standards containing of genetically modified ingredients were used to analyze the limit of detection method. The results showed the detection sensitivity is up to 0.1% . Through testing the transgenic Bt rice strain TT51-1 and Kefeng 6 which are putting into the production test in China, the ELISA method developed demonstrated consistency with ordinary PCR methods in both authenticity and sensitivity aspects. Therefore, this ELISA method could be widely applied to detect genetically modified ingredients in transgenic Bt rice or raw commodities, providng technical support for the safety regulation and evalution of genetically modified organisms.

  12. Expression of Cry1Ab protein in a marker-free transgenic Bt rice line and its efficacy in controlling a target pest, Chilo suppressalis (Lepidoptera: Crambidae).

    Science.gov (United States)

    Wang, Yanan; Zhang, Lei; Li, Yunhe; Liu, Yanmin; Han, Lanzhi; Zhu, Zhen; Wang, Feng; Peng, Yufa

    2014-04-01

    A marker-free Bt transgenic rice line, mfb-MH86, was recently developed in China, which contains a cry1Ab gene driven by a ubiquitin promoter. This Bt gene confers resistance to a range of lepidopteran species, including the striped stem borer, Chilo suppressalis (Walker). The expression of Cry1Ab protein in mfb-MH86 leaves, stems and leaf sheaths (hereinafter referred to as stems), and roots was evaluated throughout the rice-growing season using an enzyme-linked immunosorbent assay. In addition, mfb-MH86 resistance to C. suppressalis, a major pest of rice, was evaluated in a laboratory bioassay with field-collected rice stems. Cry1Ab protein levels of mfb-MH86 were highest in leaves (9.71-34.09 μg/g dry weight [DW]), intermediate in stems (7.66-18.51 μg/g DW), and lowest in roots (1.95-13.40 μg/g DW). In all tissues, Cry1Ab levels in mfb-MH86 were higher in seedling and tillering stages than in subsequent growth stages. In the laboratory bioassay, mortality of C. suppressalis after 6 d of feeding on mfb-MH86 stems was 100% throughout the rice-growing season; mortality of C. suppressalis when feeding on stems of the nontransformed isoline, MH86, ranged from 15.0 to 38.3%. The results indicate that Cry1Ab protein levels in mfb-MH86 stems are sufficient to protect plants against C. suppressalis throughout the rice-growing season. Although our results are promising, further comprehensive evaluations of mfb-MH86, including field surveys, will be needed before commercial use.

  13. Purification of the insecticidal Cry2Ad protein from a Bt-isolated BRC-HZP10 strain and toxin assay to the diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    Liao, J Y; Gao, Y Q; Wu, Q Y; Zhu, Y C; You, M S

    2015-07-13

    The present study aims to characterize the Cry2Ad toxin protein isolated from a Bacillus thuringiensis strain, BRC-HZP10, which have a potential insecticidal activity against larvae of the diamondback moth, Plutella xylostella (L.). The crude Bt toxin proteins were isolated and purified by cation exchange chromatography, then equilibrated with 0.2 M NaOH buffer, pH 4.0, followed by ultraviolet detection at 280 nm and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A refined Cry2Ad toxin protein with 88.34% purity was eventually obtained and used for a bioassay by feeding it to P. xylostella. The results showed conspicuous insecticidal activity towards P. xylostella with 50% lethal concentration of 6.84 μg/mL and 95% confidence interval of 5.77-7.91 mg/mL. At a concentration of 16.38 μg/mL, the intake of Cry2Ad protein significantly shortened the oviposition period and larval developmental duration, but significantly reduced the fecundity and egg hatchability of the population compared to those of control (without treatment with Cry2Ad protein) (P protein plays an effective role in controlling the population of P. xylostella.

  14. Research Progress of Maize Transformation with Bt Toxin Protein Gene%转Bt毒蛋白基因玉米的研究进展

    Institute of Scientific and Technical Information of China (English)

    谢树章; 雷开荣; 林清

    2011-01-01

    In this paper, firstly, we review research progress of transgenic maize with insect resistant, classify and summarize main approaches of maize transformation with Bt toxin protein gene and screening of transgenic lines, then the bioassay for insect resistance and evaluation and utilization of genetic stability are introduced,too. Finally, we discuss the technical difficulties and prospect of transgenic maize with insect resistant. We hold that in order to promote better development of maize transformation with Bt toxin protein gene, the key technologies must be further study positively.%此文首先回顾了国内外抗虫转基因玉米研究发展历程,归纳总结了转Bt毒蛋白基因玉米的常用转化方法和转基因玉米转化体的鉴定方法,对转Bt毒蛋白基因玉米后续实验的抗虫性分析鉴定及遗传稳定性评价与利用也进行了介绍.进而探讨了Bt毒蛋白基因在玉米遗传转化上善待解决的问题以及未来的发展方向.认为应加大力度对瓶颈技术进行深入研究,以期转Bt毒蛋白基因玉米能够获得更好的发展.

  15. IT-BT convergence technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    This book explains IT-BT convergence technology as the future technology, which includes a prolog, easy IT-BT convergence technology that has infinite potentials for new value, policy of IT-BT convergence technology showing the potential of smart Korea, IT-BT convergence opening happy future, for the new future of IT powerful nation Korea with IT-BT convergence technology and an epilogue. This book reveals the conception, policy, performance and future of IT-BT convergence technology.

  16. General Research Situation of Resistance of Target Insect to Bt Insecticidal Crystal Protein%目标昆虫对Bt杀虫晶体蛋白抗性的研究概况

    Institute of Scientific and Technical Information of China (English)

    杨宙; 康美花; 陈红萍; 刘建华; 曹丰生

    2012-01-01

    This article summarized the resistance of many target insect species to Bt insecticidal crystal protein, and introduced the mechanism of generating resistance and its hereditary characters.%综述了多种目标昆虫对Bt杀虫晶体蛋白的抗性机制和遗传特性.

  17. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants.

    Science.gov (United States)

    Farias, Davi F; Peijnenburg, Ad A C M; Grossi-de-Sá, Maria F; Carvalho, Ana F U

    2015-01-01

    Insecticidal Cry proteins from Bacillus thuringiensis (Bt) have been exploited in the development of genetically modified (GM) crops for pest control. However, several pests are still difficult to control such as the coleopteran boll weevil Anthonomus grandis. By applying in vitro molecular evolution to the cry8Ka1 gene sequence, variants were generated with improved activity against A. grandis. Among them, Cry8Ka5 mutant protein showed coleoptericidal activity 3-fold higher (LC50 2.83 μg/mL) than that of the original protein (Cry8Ka1). Cry8Ka5 has been used in breeding programs in order to obtain coleopteran-resistant cotton plants. Nevertheless, there is some concern in relation to the food safety of transgenic crops, especially to the heterologously expressed proteins. In this context, our research group has performed risk assessment studies on Cry8Ka5, using the tests recommended by Codex as well as tests that we proposed as alternative and/or complementary approaches. Our results on the risk analysis of Cry8Ka5 taken together with those of other Cry proteins, point out that there is a high degree of certainty on their food safety. It is reasonable to emphasize that most safety studies on Cry proteins have essentially used the Codex approach. However, other methodologies would potentially provide additional information such as studies on the effects of Cry proteins and derived peptides on the indigenous gastrointestinal microbiota and on intestinal epithelial cells of humans. Additionally, emerging technologies such as toxicogenomics potentially will offer sensitive alternatives for some current approaches or methods.

  18. The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Peng Wan

    Full Text Available In some previously reported cases, transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt have suppressed insect pests not only in fields planted with such crops, but also regionally on host plants that do not produce Bt toxins. Here we used 16 years of field data to determine if Bt cotton caused this "halo effect" against pink bollworm (Pectinophora gossypiella in six provinces of the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We found that Bt cotton significantly decreased the population density of pink bollworm on non-Bt cotton, with net decreases of 91% for eggs and 95% for larvae on non-Bt cotton after 11 years of Bt cotton use. Insecticide sprays targeting pink bollworm and cotton bollworm (Helicoverpa armigera decreased by 69%. Previously reported evidence of the early stages of evolution of pink bollworm resistance to Bt cotton in China has raised concerns that if unchecked, such resistance could eventually diminish or eliminate the benefits of Bt cotton. The results reported here suggest that it might be possible to find a percentage of Bt cotton lower than the current level that causes sufficient regional pest suppression and reduces the risk of resistance.

  19. The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China.

    Science.gov (United States)

    Wan, Peng; Huang, Yunxin; Tabashnik, Bruce E; Huang, Minsong; Wu, Kongming

    2012-01-01

    In some previously reported cases, transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have suppressed insect pests not only in fields planted with such crops, but also regionally on host plants that do not produce Bt toxins. Here we used 16 years of field data to determine if Bt cotton caused this "halo effect" against pink bollworm (Pectinophora gossypiella) in six provinces of the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We found that Bt cotton significantly decreased the population density of pink bollworm on non-Bt cotton, with net decreases of 91% for eggs and 95% for larvae on non-Bt cotton after 11 years of Bt cotton use. Insecticide sprays targeting pink bollworm and cotton bollworm (Helicoverpa armigera) decreased by 69%. Previously reported evidence of the early stages of evolution of pink bollworm resistance to Bt cotton in China has raised concerns that if unchecked, such resistance could eventually diminish or eliminate the benefits of Bt cotton. The results reported here suggest that it might be possible to find a percentage of Bt cotton lower than the current level that causes sufficient regional pest suppression and reduces the risk of resistance.

  20. Advances in effects of insecticidal crystal proteins released from transgenic Bt crops on soil ecology%转Bt基因作物释放杀虫晶体蛋白对土壤生态安全的影响

    Institute of Scientific and Technical Information of China (English)

    周学永; 刘宁; 赵曼; 李河; 周浪; 唐宗文; 曹斐; 李巍

    2011-01-01

    With the large scale cultivation of transgenic crops expressing Bacillus thuringiensi.s (Bt) insecticidal crystal proteins in the world, the problem of environmental safety caused by these Bt crops has received extensive attention.These insecticidal crystal proteins can be released into the soil continuously in the growing period of Bt plants.If their accumulation of the insecticidal crystal proteins exceeds consumption by insect larvae and degradation by the environmental factors,these insecticidal crystal proteins could constitute a hazard to non-target insects and soil microbiota.There are three main ways to release insecticidal crystal proteins into soil for Bt plants: root exudates, pollen falling, and crop reside retuming.The Bt insecticidal crystal proteins released into soil can be adsorbed rapidly by active soil particles and the absorption equilibrium attained within l-3 h.The adsorption protects Bt insecticidal crystal proteins against soil microbial degradation or enzyme degradation, which leads to remarkable prolong of the persistence of insecticidal activity.The change of soil microorganism species is an important index for evaluating the effect of Bt plants on soil ecology.The research showed that these insecticidal crystal proteins released by the Bt plant root exudates or Bt organism had no toxicity to the soil earthworms, nematodes, protozoa, bacteria and fungi; however, it could reduce the mycelium length of the arbuscular mycorrhizal fungi (AMF) and restrain AMF to form mvasion unit.The influencing degree of Bt protein on soil enzyme activity varied with the releasing modes or growth period of Bt crops.Bt CryIAb protein can be taken up from soil by parts of following crops; however, different results were obtained with different commercial kits.To better understand the soil ecological evaluation about the insecticidal crystal proteins released from transgenic Bt crops, this review provides a comprehensive overview about the release, adsorption

  1. 转Bt基因玉米叶片中Bt蛋白的表达和分泌研究%Study on Expression and Exudation of Bt Protein in Leaves of Transgenic Insect- resistant Corn

    Institute of Scientific and Technical Information of China (English)

    田晓燕; 赵蕾; 孙红炜; 李凡; 赵辉; 颜世磊; 路兴波

    2012-01-01

    With the transgenic insect - resistant corn Mon810 and its non - transgenic parent as materials , the enzyme - linked immunosorbent assay (ELISA ) method was used to detect the expression and quanti-tate the exudation of Bt protein in corn leaves. The results showed that Bt protein could be detected in tissue and on surface of leaves. The Bt content in tissues showed a rising trend from seedling stage to silking stage with the advances of vegetable growth, and reached the peak at the silking stage and then declined gradually. The variation of Bt exudation on leaf surface had no obvious regularity.%以转Bt玉米Mon810及其亲本非转基因玉米为研究对象,通过酶联免疫吸附测定法(ELISA)定量检测Mon810玉米叶中Bt蛋白表达量和叶表Bt蛋白分泌量,结果表明叶组织和叶表均可检测到Bt蛋白,组织内Bt蛋白量从苗期到抽丝期随着植株营养生长的加快呈上升趋势,至抽丝期达到顶峰,之后逐渐降低;叶表Bt蛋白分泌量变化无明显规律性.

  2. Effect on Stresses of 18°C and Different Relative Humidities on Bt Protein Ex-pression at Squaring Stage in Bt Cotton%蕾期低温及湿度胁迫对Bt棉杀虫蛋白表达量的影响

    Institute of Scientific and Technical Information of China (English)

    陈源; 顾超; 王桂霞; 吕春花; 刘晓飞; 张祥; 陈德华

    2013-01-01

      以Bt基因来源于美国和我国的常规棉花品种DP410B和泗抗1号、杂交种岱杂1号和泗抗3号为材料,应用盆栽试验,探讨蕾期18℃低温及不同相对湿度不同时间胁迫对叶片 Bt 杀虫蛋白表达量的影响.结果表明,蕾期18℃下不同湿度6 h胁迫对叶片Bt蛋白的含量都没有显著影响,但胁迫48 h导致2个不同Bt来源常规品种的叶片Bt杀虫蛋白表达量显著下降,与对照相比,下降6.8%~7.2%,杂交种泗抗3号也明显下降,岱杂1号则未受影响;18℃下高湿度与低湿度胁迫间没有显著影响.因此蕾期长时低温会对Bt棉抗虫性有一定影响,影响程度与品种及类型密切相关.%The objective of this study was to investigate the effect of stresses of 18°C and different relative humidities on the leaf resistance to the insect at squaring stage in Bt cotton. The two conventional cultivars (DP410B and Sikang 1) and two hybrids (Daiza 1 and Sikang 3) from the US and China, respectively, were used. The potted cotton plants were stressed at 18°C and dif-ferent relative humidities (90%, 70%, and 50%) for 6 hours and 48 hours, respectively, then we determined leaf Bt protein con-tents. The results showed that the short period (6 hours) stress of 18°C and different relative humidities obviously had no effect on the leaf Bt protein contents. but the leaf Bt protein contents sharply reduced in the two Bt conventional cultivars after the longer period (48 hours) stress of 18°C and different relative humidities compared with the control, with the reduction from 6.8%to 7.2%. The leaf Bt protein content of hybrid Sikang 3 markedly decreased while that of hybrid Daiza 1 remained unchanged. There was no difference in the effect between the high relative humidity and low relative humidity at 18°C, so the low temperature duration may affect the Bt cotton resistance to insect at squaring stage, which is closely related to cultivars.

  3. Susceptibility of field populations of sugarcane borer from non-Bt and Bt maize plants to five individual Cry toxins

    Institute of Scientific and Technical Information of China (English)

    Fangneng Huang; Mukti N.Ghimire; B.Rogers Leonard; Yu-Cheng Zhu; Graham P.Head

    2012-01-01

    Sugarcane borer,Diatraea saccharalis (F.),is a major target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the US midsouth region.Resistance development in targct pest populations is a major threat to the sustainable use of Bt crops.In our field trials in 2009,a significant number of live borers and plant injury from D.saccharalis were observed in an experimental SmartStaxTM maize line.The objective of this study was to assess the relative susceptibility of two field populations ofD.saccharalis collected from non-Bt and Bt maize plants containing SmartStaxTM traits to five individual Cry proteins.The five Bt proteins included two proteins (Cry1A.105 and Cry2Ab2) that were expressed in SmartStaxTM maize plants and three other common Bt proteins (Cry1Aa,Cry1Ab and Cry1Ac) that were not produced in SmartStaxTM.Larval mortality and growth inhibition on Bt diet of the fourth gcneration after field collections were evaluated 7 days after release of neonates on the diet surface.The laboratory bioassays showed that 50% lethal concentration (LC50) values for Cry1 A.105 and Cry2Ab2 for the population originated from Bt plants were 3.55-and 1.34-fold greater,respectively,than those of the population collected from non-Bt plants.In contrast,relative to the population from non-Bt plants,the LC50 of the population sampled from Bt plants were 3.85-,2.5-and 1.64-fold more sensitive to Cry1Aa,Cry1Ab and Cry1Ac,respectively.The resuits did not provide clear evidence to conclude that the observed field survival of D.saccharalis on Bt plants was associated with increased levels of resistance.

  4. Can pyramids and seed mixtures delay resistance to Bt crops?

    Science.gov (United States)

    The primary strategy for delaying evolution of pest resistance to transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt) entails refuges of plants that do not produce Bt toxins and thus allow survival of susceptible pests. Recent advances include using refuges together...

  5. DECOMPOSITION OF BT COTTON AND NON BT COTTON RESIDUES UNDER VARIED SOIL TYPES

    Directory of Open Access Journals (Sweden)

    Sujata Kumari

    2014-04-01

    Full Text Available Use of the insecticidal cry proteins from the bacterium, Bacillus thuringiensis (Bt in cotton has raised a number of concerns, including the ecological impact on soil ecosystems.Greenhouse study was conducted during the 2011 wet season (March to August at the Institute of Agricultural Sciences of Banaras Hindu University. It was carried out on three different soil orders that includedentisol, inceptisol and alfisol. Bt cotton (var.NCS-138 and its non-transgenic isoline (var.NCS-138 were grown until maturity. A no crop pot was maintained for all the three soil orders. The highest rate of decomposition was found in alluvial soil compared to black and red soils in 50 days after incorporation (DAI. Thereafter the rate of decomposition was slowed downby100 DAI and the constant rate of decomposition was found in 150 DAI. The rate of decomposition was higher in non Bt than Bt crop residues.

  6. Biosafety assessment of transgenic Bt cotton on model animals

    Directory of Open Access Journals (Sweden)

    Sadia Bano

    2016-05-01

    Full Text Available Abstract Background: To know the effects of transgenic crops on soil microorganisms, animals and other expected hazards due to the introduction of GM crops into the environment is critical both scientifically and environmentally. The work was conducted to study the effect of insecticidal Bt protein on Rats and Earthworms. Methods: For this purpose, animals like rat and soil organisms like Earthworm were selected. Rats were selected on the basis of its 95% homology on genomic, cellular and enzymatic level with human while earthworm were preferred on the basis of their direct contact with soil to evaluate the impact of Bt (Cry1AC crop field soil on earthworm, secreted by root exudates of Bt cotton. Several physical, molecular, biochemical and histological analyses were performed on both Rats/Earthworms fed on standard diet (control group as well containing Bt protein (experimental group. Results: Molecular analyses such as immune Dot blot, SDS-PAGE, ELISA and PCR, confirmed the absence of Cry1Ac protein in blood and urine samples of rats, which were fed with Bt protein in their diet. Furthermore, histological studies showed that there was no difference in cellular architecture in liver, heart, kidney and intestine of Bt and non-Bt diet fed rats. To see the effect of Bt on earthworm two different groups were studied, one with transgenic plant field soil supplemented with grinded leaves of cotton and second group with non-Bt field soil. Conclusions: No lethal effects of transgenic Bt protein on the survival of earthworm and rats were observed. Bradford assay, Dipstick assay ELISA demonstrated the absence of Cry1Ac protein in the mid-gut epithelial tissue of earthworm. The results of present study will be helpful in successful deployment and commercial release of genetically modified crop in Pakistan.

  7. E.QUALITY@BT...

    Science.gov (United States)

    Macmillan, Roderick H.

    1996-01-01

    Describes a management system developed by BT Laboratories (United Kingdom) that is based on ISO 9001 using the World Wide Web, a hypermedia system, and part of the Internet. Subject matter is presented as an alphabetical list of linked entries, numerous navigational techniques are available, and searching options function within an index file.…

  8. [Effects of transgenic Bt crops on non-target soil animals].

    Science.gov (United States)

    Yuan, Yi-gang; Ge, Feng

    2010-05-01

    Transgenic Bt crops are widely planted around the world. With the quick development and extension of genetically modified crops, it is needed to make a deep study on the effects of Bt crops on soil ecosystem. This paper reviewed the research progress on the effects of transgenic Bt crops on the population dynamics and community structure of soil animals, e.g., earthworm, nematode, springtail, mite, and beetle, etc. The development history of Bt crops was introduced, the passway the Bt protein comes into soil as well as the residual and degradation of Bt protein in soil were analyzed, and the critical research fields about the ecological risk analysis of transgenic Bt crops on non-target soil animals in the future were approached, which would provide a reference for the research of the effects of transgenic Bt crops on non-target soil animals.

  9. Green algae (Chlorella pyrenoidosa) adsorbs Bacillus thurigiensis (Bt) toxin, Cry1Ca insecticidal protein, without an effect on growth.

    Science.gov (United States)

    Wang, Jiamei; Chen, Xiuping; Li, Yunhe; Su, Changqing; Ding, Jiatong; Peng, Yufa

    2014-08-01

    The effect of purified Cry1Ca insecticidal protein on the growth of Chlorella pyrenoidosa was studied in a three-generation toxicity test. The C. pyrenoidosa medium with a density of 5.4 × 10(5) cells/mL was subcultured for three generations with added Cry1Ca at 0, 10, 100, and 1000 µg/L, and cell numbers were determined daily. To explore the distribution of Cry1Ca in C. pyrenoidosa and the culture medium, Cry1Ca was added at 1000 µg/L to algae with a high density of 4.8 × 10(6) cells/mL, and Cry1Ca content was determined daily in C. pyrenoidosa and the culture medium by enzyme-linked immunosorbent assays. Our results showed that the growth curves of C. pyrenoidosa exposed to 10, 100, and 1000 µg/L of Cry1Ca almost overlapped with that of the blank control, and there were no statistically significant differences among the four treatments from day 0 to day 7, regardless of generation. Moreover, the Cry1Ca content in the culture medium and in C. pyrenoidosa sharply decreased under exposure of 1000 µg/L Cry1Ca with high initial C. pyrenoidosa cell density. The above results demonstrate that Cry1Ca in water can be rapidly adsorbed and degraded by C. pyrenoidosa, but it has no suppressive or stimulative effect on algae growth.

  10. Quality of laboratory studies assessing effects of Bt-proteins on non-target organisms: minimal criteria for acceptability.

    Science.gov (United States)

    De Schrijver, Adinda; Devos, Yann; De Clercq, Patrick; Gathmann, Achim; Romeis, Jörg

    2016-08-01

    The potential risks that genetically modified plants may pose to non-target organisms and the ecosystem services they contribute to are assessed as part of pre-market risk assessments. This paper reviews the early tier studies testing the hypothesis whether exposure to plant-produced Cry34/35Ab1 proteins as a result of cultivation of maize 59122 is harmful to valued non-target organisms, in particular Arthropoda and Annelida. The available studies were assessed for their scientific quality by considering a set of criteria determining their relevance and reliability. As a case-study, this exercise revealed that when not all quality criteria are met, weighing the robustness of the study and its relevance for risk assessment is not obvious. Applying a worst-case expected environmental concentration of bioactive toxins equivalent to that present in the transgenic crop, confirming exposure of the test species to the test substance, and the use of a negative control were identified as minimum criteria to be met to guarantee sufficiently reliable data. This exercise stresses the importance of conducting studies meeting certain quality standards as this minimises the probability of erroneous or inconclusive results and increases confidence in the results and adds certainty to the conclusions drawn.

  11. Development of Bt Rice and Bt Maize in China and Their Efficacy in Target Pest Control

    Science.gov (United States)

    Liu, Qingsong; Hallerman, Eric; Peng, Yufa; Li, Yunhe

    2016-01-01

    Rice and maize are important cereal crops that serve as staple foods, feed, and industrial material in China. Multiple factors constrain the production of both crops, among which insect pests are an important one. Lepidopteran pests cause enormous yield losses for the crops annually. In order to control these pests, China plays an active role in development and application of genetic engineering (GE) to crops, and dozens of GE rice and GE maize lines expressing insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) have been developed. Many lines have entered environmental release, field testing, and preproduction testing, and laboratory and field experiments have shown that most of the Bt rice and Bt maize lines developed in China exhibited effective control of major target lepidopteran pests on rice (Chilo suppressalis, Scirpophaga incertulas, and Cnaphalocrocis medinalis) and maize (Ostrinia furnacalis), demonstrating bright prospects for application. However, none of these Bt lines has yet been commercially planted through this writing in 2016. Challenges and perspectives for development and application of Bt rice and maize in China are discussed. This article provides a general context for colleagues to learn about research and development of Bt crops in China, and may shed light on future work in this field. PMID:27763554

  12. Development of Bt Rice and Bt Maize in China and Their Efficacy in Target Pest Control

    Directory of Open Access Journals (Sweden)

    Qingsong Liu

    2016-10-01

    Full Text Available Rice and maize are important cereal crops that serve as staple foods, feed, and industrial material in China. Multiple factors constrain the production of both crops, among which insect pests are an important one. Lepidopteran pests cause enormous yield losses for the crops annually. In order to control these pests, China plays an active role in development and application of genetic engineering (GE to crops, and dozens of GE rice and GE maize lines expressing insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt have been developed. Many lines have entered environmental release, field testing, and preproduction testing, and laboratory and field experiments have shown that most of the Bt rice and Bt maize lines developed in China exhibited effective control of major target lepidopteran pests on rice (Chilo suppressalis, Scirpophaga incertulas, and Cnaphalocrocis medinalis and maize (Ostrinia furnacalis, demonstrating bright prospects for application. However, none of these Bt lines has yet been commercially planted through this writing in 2016. Challenges and perspectives for development and application of Bt rice and maize in China are discussed. This article provides a general context for colleagues to learn about research and development of Bt crops in China, and may shed light on future work in this field.

  13. A seed mixture increases dominance of resistance to Bt cotton in Helicoverpa zea

    OpenAIRE

    2015-01-01

    Widely grown transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) can benefit agriculture, but adaptation by pests threatens their continued success. Refuges of host plants that do not make Bt toxins can promote survival of susceptible insects and delay evolution of resistance, particularly if resistance is inherited as a recessive trait. However, data have been lacking to compare the dominance of resistance when Bt and non-Bt seeds are planted in random mixtures ...

  14. Nutrition affects insect susceptibility to Bt toxins

    Science.gov (United States)

    Deans, Carrie A.; Behmer, Spencer T.; Tessnow, Ashley E.; Tamez-Guerra, Patricia; Pusztai-Carey, Marianne; Sword, Gregory A.

    2017-01-01

    Pesticide resistance represents a major challenge to global food production. The spread of resistance alleles is the primary explanation for observations of reduced pesticide efficacy over time, but the potential for gene-by-environment interactions (plasticity) to mediate susceptibility has largely been overlooked. Here we show that nutrition is an environmental factor that affects susceptibility to Bt toxins. Protein and carbohydrates are two key macronutrients for insect herbivores, and the polyphagous pest Helicoverpa zea self-selects and performs best on diets that are protein-biased relative to carbohydrates. Despite this, most Bt bioassays employ carbohydrate-biased rearing diets. This study explored the effect of diet protein-carbohydrate content on H. zea susceptibility to Cry1Ac, a common Bt endotoxin. We detected a 100-fold increase in LC50 for larvae on optimal versus carbohydrate-biased diets, and significant diet-mediated variation in survival and performance when challenged with Cry1Ac. Our results suggest that Bt resistance bioassays that use ecologically- and physiologically-mismatched diets over-estimate susceptibility and under-estimate resistance. PMID:28045087

  15. Nutrition affects insect susceptibility to Bt toxins

    Science.gov (United States)

    Deans, Carrie A.; Behmer, Spencer T.; Tessnow, Ashley E.; Tamez-Guerra, Patricia; Pusztai-Carey, Marianne; Sword, Gregory A.

    2017-01-01

    Pesticide resistance represents a major challenge to global food production. The spread of resistance alleles is the primary explanation for observations of reduced pesticide efficacy over time, but the potential for gene-by-environment interactions (plasticity) to mediate susceptibility has largely been overlooked. Here we show that nutrition is an environmental factor that affects susceptibility to Bt toxins. Protein and carbohydrates are two key macronutrients for insect herbivores, and the polyphagous pest Helicoverpa zea self-selects and performs best on diets that are protein-biased relative to carbohydrates. Despite this, most Bt bioassays employ carbohydrate-biased rearing diets. This study explored the effect of diet protein-carbohydrate content on H. zea susceptibility to Cry1Ac, a common Bt endotoxin. We detected a 100-fold increase in LC50 for larvae on optimal versus carbohydrate-biased diets, and significant diet-mediated variation in survival and performance when challenged with Cry1Ac. Our results suggest that Bt resistance bioassays that use ecologically- and physiologically-mismatched diets over-estimate susceptibility and under-estimate resistance.

  16. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac) and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton

    Science.gov (United States)

    Luo, Jun-Yu; Zhang, Shuai; Peng, Jun; Zhu, Xiang-Zhen; Lv, Li-Min; Wang, Chun-Yi; Li, Chun-Hua; Zhou, Zhi-Guo; Cui, Jin-Jie

    2017-01-01

    An increasing area of transgenic Bacillus thuringiensis (Bt) cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW) Helicoverpa armigera (Hübner) in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac) and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]). We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels. PMID:28099508

  17. The Expression of Bt Toxin Protein in Transgenic Plants%Bt毒蛋白在转基因植物中的表达

    Institute of Scientific and Technical Information of China (English)

    魏俊杰

    2012-01-01

    With the promotion of insect-resistant genetically modified crops and large-scale commercial cultivation,Bt toxin in transgenic plants expression is increasingly attracted attention.In this paper,corn,cotton,rice and other insect-resistant transgenic crops expressing the Bt toxin were discussed.%随着抗虫转基因植物的推广和大面积商业化种植,Bt毒蛋白在转基因植物中的表达引起了人们的重视。综述了玉米、棉花、水稻等抗虫转基因植物的Bt毒蛋白表达及其时空变化规律。

  18. Bt crops benefit natural enemies to control non-target pests.

    Science.gov (United States)

    Tian, Jun-Ce; Yao, Ju; Long, Li-Ping; Romeis, Jörg; Shelton, Anthony M

    2015-11-12

    Crops producing insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) control important lepidopteran pests. However, pests such as aphids not susceptible to Cry proteins may require other integrated pest management (IPM) tactics, including biological control. We fed aphids on Bt and non-Bt plants and analyzed the Bt protein residue in aphids and compared the effects of Bt plants and a pyrethroid, lambda-cyhalothrin, on the performance of three natural enemies (predators: Coleomegilla maculata and Eupeodes americanus; parasitoid Aphidius colemani) of the green peach aphid, Myzus persicae. No Bt protein residues in aphids were detected and no significant differences were recorded in the performance of pyrethroid-resistant aphids that fed on Bt broccoli expressing Cry1Ab or Cry1C, or on non-Bt broccoli plants treated or not treated with the pyrethroid. This indicated the aphids were not affected by the Cry proteins or the pyrethroid, thus removing any effect of prey quality. Tri-trophic experiments demonstrated that no C. maculata and E. americanus survived consumption of pyrethroid-treated aphids and that ovipositional behavior of A. colemani was impaired when provided with pyrethroid-treated aphids. In contrast, natural enemies were not affected when fed aphids reared on Bt broccoli, thus demonstrating the safety of these Bt plants for IPM.

  19. Response of the gypsy moth, Lymantria dispar to transgenic poplar, Populus simonii x P. nigra, expressing fusion protein gene of the spider insecticidal peptide and Bt-toxin C-peptide.

    Science.gov (United States)

    Cao, Chuan-Wang; Liu, Gui-Feng; Wang, Zhi-Ying; Yan, Shan-Chun; Ma, Ling; Yang, Chuan-Ping

    2010-01-01

    The response of the Asian gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae) to a fusion gene consisting of the spider, Atrax robustus Simon (Araneae: Hexanthelidae) ω-ACTX-Ar1 sequence coding for an ω-atracotoxin and a sequence coding for the Bt-toxin C-peptide, expressed in transgenic poplar Populus simonii x P. nigra L. (Malphigiales: Salicaceae) was investigated. Individual performance, feeding selection, midgut proteinase activity and nutrition utilization were monitored. The growth and development of L. dispar were significantly affected by continually feeding on the transgenic poplar, with the larval instars displaying significantly shorter developmental times than those fed on nontransgenic poplar, but pupation was delayed. Mortality was higher in populations fed transgenic poplar leaves, than for larvae fed nontransgenic poplar leaves. The cumulative mortality during all stages of larvae fed transgenic leaves was 92% compared to 16.7% of larvae on nontransgenic leaves. The highest mortality observed was 71.7% in the last larval instar stage. A two-choice test showed that fifth-instar larvae preferred to feed on nontransgenic leaves at a ratio of 1:1.4. Feeding on transgenic leaves had highly significant negative effects on relative growth of larvae, and the efficiency of conversion of ingested and digested food. Activity of major midgut proteinases was measured using substrates TAME and BTEE showed significant increases in tryptase and chymotrypsinlike activity (9.2- and 9.0-fold, respectively) in fifth-instar larvae fed on transgenic leaves over control. These results suggest transgenic poplar is resistant to L. dispar, and the mature L. dispar may be weakened by the transgenic plants due to Bt protoxins activated by elevated major midgut proteinase activity. The new transgenic poplar expressing fusion protein genes of Bt and a new spider insecticidal peptide are good candidates for managing gypsy moth.

  20. Advances in genetic engineering of insect-resistant Populus spp. with Bt toxic protein genes%杨树Bt抗虫基因工程研究进展

    Institute of Scientific and Technical Information of China (English)

    张蕾; 崔建国; 王洪魁

    2005-01-01

    本文介绍了苏云金芽孢杆菌(Bt)毒蛋白的杀虫机理和Bt毒蛋白基因的分类;概述了Bt毒蛋白基因在杨树基因工程中的应用现状,探讨了当前杨树Bt抗虫基因工程中存在的主要问题,并展望了杨树抗虫基因工程在杨树遗传改良中的应用前景.

  1. Insect resistance to Bt crops: lessons from the first billion acres.

    Science.gov (United States)

    Tabashnik, Bruce E; Brévault, Thierry; Carrière, Yves

    2013-06-01

    Evolution of resistance in pests can reduce the effectiveness of insecticidal proteins from Bacillus thuringiensis (Bt) produced by transgenic crops. We analyzed results of 77 studies from five continents reporting field monitoring data for resistance to Bt crops, empirical evaluation of factors affecting resistance or both. Although most pest populations remained susceptible, reduced efficacy of Bt crops caused by field-evolved resistance has been reported now for some populations of 5 of 13 major pest species examined, compared with resistant populations of only one pest species in 2005. Field outcomes support theoretical predictions that factors delaying resistance include recessive inheritance of resistance, low initial frequency of resistance alleles, abundant refuges of non-Bt host plants and two-toxin Bt crops deployed separately from one-toxin Bt crops. The results imply that proactive evaluation of the inheritance and initial frequency of resistance are useful for predicting the risk of resistance and improving strategies to sustain the effectiveness of Bt crops.

  2. Impact of Bt-cotton on soil microbiological and biochemical attributes

    Directory of Open Access Journals (Sweden)

    Sanaullah Yasin

    2016-10-01

    Full Text Available Transgenic Bt-cotton produces Bt-toxins (Cry proteins which may accumulate and persist in soil due to their binding ability on soil components. In the present study, the potential impacts of Bt- and non-Bt genotypes of cotton on soil microbial activity, substrate use efficiency, viable microbial population counts, and nutrient dynamics were studied. Two transgenic Bt-cotton genotypes (CIM-602 CIM-599 expressing cry1 Ac gene and two non-Bt cotton genotypes (CIM-573 and CIM-591 were used to evaluate their impact on biological and chemical properties of soil across the four locations in Punjab. Field trials were conducted at four locations (Central Cotton Research Institute-Multan, Naseer Pur, Kot Lal Shah, and Cotton Research Station-Bahawalpur of different agro-ecological zones of Punjab. Rhizosphere soil samples were collected by following standard procedure from these selected locations. Results reveled that Bt-cotton had no adverse effect on microbial population (viable counts and enzymatic activity of rhizosphere soil. Bacterial population was more in Bt-cotton rhizosphere than that of non-Bt cotton rhizosphere at all locations. Phosphatase, dehydrogenase, and oxidative metabolism of rhizosphere soil were more in Bt-cotton genotypes compared with non-Bt cotton genotypes. Cation exchange capacity, total nitrogen, extractable phosphorous, extractable potassium, active carbon, Fe and Zn contents were higher in rhizosphere of Bt-cotton genotypes compared with non-Bt cotton genotypes. It can be concluded from present study that the cultivation of Bt-cotton expressing cry1 Ac had apparently no negative effect on metabolic, microbiological activities, and nutrient dynamics of soils. Further work is needed to investigate the potential impacts of Bt-cotton on ecology of soil-dwelling insects and invertebrates before its recommendation for extensive cultivation.

  3. THE EFFECT OF ARTIFICIAL INOCULATION WITH SELECTED FUSARIUM STRAINS ON NUTRITIONAL QUALITY AN ENSILING PROCESS OF BT MAIZE

    Directory of Open Access Journals (Sweden)

    Ludmila KŘÍŽOVÁ

    2011-01-01

    Full Text Available The objective of the study was to compare the nutritive value and mycotoxin content of maize forage and silage of near isogenic control MONUMENTAL (C and Bt maize (MONSANTO, MON 810 that was either untreated (Bt or artificially inoculated with Fusarium strains (I-Bt. The inoculation was made in the growing crop in milk stage of maturity. Plants were harvested at the soft dough stage of maturity and ensiled in microsilage tubes. The content of forage dry matter (DM was 307.6 g/kg in C, 306.9 g/kg in Bt and 298.0 g/kg in I-Bt. All forages were positive for deoxynivalenol, aflatoxin, fumonisins and zearalenone (P>0.05. Content of DM was the lowest in I-Bt silage (285.5 g/kg and differed significantly from C (296.7 g/kg or Bt (303.7 g/kg, P<0.05. Content of crude protein (CP was the lowest in I-Bt silage (79.0 g/kg and differed significantly from C or Bt (85.7 or 81.9 g/kg, respectively, P<0.05. Silages Bt and I-Bt had lower pH (3.93 and 3.96, respectively than silage C (4.02, P<0.05. Silage I-Bt tended to have a higher degree of proteolysis 9.18 % measured as N-NH3 (% of total N than silages C or Bt (8.64 or 8.9 %, respectively, P>0.05. Lactic acid was predominant product of fermentation in all silages, however silage I-Bt tended to have lower content of lactic acid (20.96 g/kg than C or Bt (24.76 or 23.82 g/kg, P>0.05. I-Bt silage contained lower levels of eoxynivalenol (602 ppb than C or Bt silage (748 and 690 ppb, respectively, P<0.05. Content of fumonisins and zearalenone in C did not differ from I-Bt (P<0.05 but both were lower than in Bt (P<0.05. In conclusion, nutritional value a fermentation parameters of Bt silage were similar to C except of CP content and pH that was lower in Bt (P<0.05. I-Bt silage had lower content of DM, CP and fat than Bt silage (P<0.05. Controversially, concentrations of mycotoxins in I-Bt silage were lower than in Bt.

  4. How to cope with insect resistance to Bt toxins?

    Science.gov (United States)

    Bravo, Alejandra; Soberón, Mario

    2008-10-01

    Transgenic Bt crops producing insecticidal crystalline proteins from Bacillus thuringiensis, so-called Cry toxins, have proved useful in controlling insect pests. However, the future of Bt crops is threatened by the evolution of insect resistance. Understanding how Bt toxins work and how insects become resistant will provide the basis for taking measures to counter resistance. Here we review possible mechanisms of resistance and different strategies to cope with resistance, such as expression of several toxins with different modes of action in the same plant, modified Cry toxins active against resistant insects, and the potential use of Cyt toxins or a fragment of cadherin receptor. These approaches should provide the means to assure the successful use of Bt crops for an extended period of time.

  5. Bt crop effects on functional guilds of non-target arthropods: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    L LaReesa Wolfenbarger

    Full Text Available BACKGROUND: Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt. We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of Bt cotton, maize and potato on the abundance and interactions of arthropod non-target functional guilds. METHODOLOGY/PRINCIPAL FINDINGS: We compared the abundance of predators, parasitoids, omnivores, detritivores and herbivores under scenarios in which neither, only the non-Bt crops, or both Bt and non-Bt crops received insecticide treatments. Predators were less abundant in Bt cotton compared to unsprayed non-Bt controls. As expected, fewer specialist parasitoids of the target pest occurred in Bt maize fields compared to unsprayed non-Bt controls, but no significant reduction was detected for other parasitoids. Numbers of predators and herbivores were higher in Bt crops compared to sprayed non-Bt controls, and type of insecticide influenced the magnitude of the difference. Omnivores and detritivores were more abundant in insecticide-treated controls and for the latter guild this was associated with reductions of their predators in sprayed non-Bt maize. No differences in abundance were found when both Bt and non-Bt crops were sprayed. Predator-to-prey ratios were unchanged by either Bt crops or the use of insecticides; ratios were higher in Bt maize relative to the sprayed non-Bt control. CONCLUSIONS/SIGNIFICANCE: Overall, we find no uniform effects of Bt cotton, maize and potato on the functional guilds of non-target arthropods. Use of and type of insecticides influenced the magnitude and direction of effects; insecticde effects were much larger than those of Bt crops. These meta-analyses underscore the importance of using controls not only to isolate the effects of a Bt crop per se but also to reflect the replacement of existing agricultural practices. Results will

  6. Potential Use of Proteinase Inhibitors, Avidin, and Other Bio-reagents for Synergizing Bt Performance and Delaying Resistance Development to Bt

    Science.gov (United States)

    After being ingested by target insects, the insecticidal proteins from Bacillus thuringiensis (Bt) need to go through a proteolytic process by insect midgut proteinases to become activated. At the same time, Bt can be hydrolyzed and degraded by midgut proteinases to become non-toxic to target insect...

  7. Harmonia axyridis (Coleoptera: Coccinellidae) exhibits no preference between Bt and non-Bt maize fed Spodoptera frugiperda (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Dutra, Carla C; Koch, Robert L; Burkness, Eric C; Meissle, Michael; Romeis, Joerg; Hutchison, William D; Fernandes, Marcos G

    2012-01-01

    A recent shift in managing insect resistance to genetically engineered (GE) maize consists of mixing non-GE seed with GE seed known as "refuge in a bag", which increases the likelihood of predators encountering both prey fed Bt and prey fed non-Bt maize. We therefore conducted laboratory choice-test feeding studies to determine if a predator, Harmonia axyridis, shows any preference between prey fed Bt and non-Bt maize leaves. The prey species was Spodoptera frugiperda, which were fed Bt maize (MON-810), expressing the single Cry1Ab protein, or non-Bt maize. The predators were third instar larvae and female adults of H. axyridis. Individual predators were offered Bt and non-Bt fed prey larvae that had fed for 24, 48 or 72 h. Ten and 15 larvae of each prey type were offered to third instar and adult predators, respectively. Observations of arenas were conducted at 1, 2, 3, 6, 15 and 24 h after the start of the experiment to determine the number and type of prey eaten by each individual predator. Prey larvae that fed on non-Bt leaves were significantly larger than larvae fed Bt leaves. Both predator stages had eaten nearly all the prey by the end of the experiment. However, in all combinations of predator stage and prey age, the number of each prey type consumed did not differ significantly. ELISA measurements confirmed the presence of Cry1Ab in leaf tissue (23-33 µg/g dry weight) and S. frugiperda (2.1-2.2 µg/g), while mean concentrations in H. axyridis were very low (0.01-0.2 µg/g). These results confirm the predatory status of H. axyridis on S. frugiperda and that both H. axyridis adults and larvae show no preference between prey types. The lack of preference between Bt-fed and non-Bt-fed prey should act in favor of insect resistance management strategies using mixtures of GE and non-GE maize seed.

  8. Responses of the cutworm Spodoptera litura (Lepidoptera: Noctuidae) to two Bt corn hybrids expressing Cry1Ab

    Science.gov (United States)

    Yinghua, Shu; Yan, Du; Jin, Chen; Jiaxi, Wei; Jianwu, Wang

    2017-01-01

    To examine the responses of the secondary lepidopteran pest Spodoptera litura to two Bacillus thuringiensis (Bt) corn hybrids [5422Bt1 (Event Bt11), 5422CBCL (MON810)] expressing Cry1Ab, larval bioassays with Cry1Ab toxin, corn leaves or kernels and bagging on corn plants were conducted. The results showed that larvae displayed a similar performance when fed kernels, but not leaves of 5422Bt1, 5422CBCL and their near-isogenic non-Bt corn (5422). Significantly higher Cry1Ab amounts were detected in larvae fed leaves than kernels of both Bt hybrids, with different molecular weights of protein band in plants (72 and 90 kDa for 5422Bt1 and 5422CBCL, respectively), gut contents (65 kDa), feces (50 kDa), which indicated that larvae had lower ingestion, higher degradation and excretion of Cry1Ab when fed kernels not leaves of both Bt hybrids. Significantly higher levels of cadherin-like receptors and alkaline phosphatase transcripts were detected in larvae fed leaves than kernels of two Bt hybrids. Catalase, superoxide dismutase and glutathione-S-transferase activities in larvae fed 5422Bt1 leaves were significantly higher than that of 5422 treatments. Therefore, S. litura had low susceptibility to 5422Bt1 and 5422CBCL when larvae fed kernels not leaves of Bt corn. Additionally, S. litura presented a much stronger tolerance to 5422CBCL than 5422Bt1. PMID:28186125

  9. Food Safety of Bt Cry Proteins from Biotechnology-derived Crops%转基因抗虫作物中苏云金芽孢杆菌Cry蛋白的食品安全问题

    Institute of Scientific and Technical Information of China (English)

    王春玲; Bruce Hammond

    2011-01-01

    苏云金芽孢杆菌(Bt)微生物制剂是农业、林业和饮用水等领域用来控制靶标害虫幼虫的有效工具,至今已经有50余年的使用历史。同时其在美国、欧洲和其他一些国家被广泛用于经过认证的有机农业生产之中。目前已获审批的转基因Bt作物中最常使用的是Cry蛋白。Cry蛋白的作用机制、食品安全性以及致敏性已经经过啮齿类动物、农场动物和人体内试验和生物信息学研究的严格检验。Cry蛋白的杀虫作用只在靶标害虫的碱性消化道内,与中肠上皮细胞的特异蛋白受体结合才能起到杀虫作用,而其他非靶标生物体内(人类、猕猴、小鼠、大鼠和牛等)都被证明没有这种特异蛋白质受体。美国、欧洲和其他国家的管理机构都已经证实了转基因Bt作物和Cry蛋白在农作物和饮用水中残留的安全性。食物加工过程能够最大化地减少转基因作物中功能性Cry蛋白的摄入。转基因抗虫作物有利于降低农药杀虫剂的使用的同时,也能够有效防止玉米中伏马菌毒素的污染。%Bt microbial insecticides have been used to control larval insect pests that feed on agricultural crops, forest and drinking water for over 50 years. They are also widely used in certified organic agricultural food production in the United States, Europe and other countries. Cry proteins are most commonly introduced in registered Bt crops. Mode of action, food safety and allergenicity of Cry protein have been rigorously tested using rodent, farm animals, and human experiment and bioinformatics research tools. The insecticidal function of Cry protein only works in the alkaline environment of the insect gut where specific receptors on the membranes of midgut epithelial cells present. Other non-target organisms (humans, rhesus monkeys, mice, rats and cows etc.) lack these receptors. Regulatory agencies in US, EU and other countries have confirmed the history

  10. Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance.

    Science.gov (United States)

    Ni, Mi; Ma, Wei; Wang, Xiaofang; Gao, Meijing; Dai, Yan; Wei, Xiaoli; Zhang, Lei; Peng, Yonggang; Chen, Shuyuan; Ding, Lingyun; Tian, Yue; Li, Jie; Wang, Haiping; Wang, Xiaolin; Xu, Guowang; Guo, Wangzhen; Yang, Yihua; Wu, Yidong; Heuberger, Shannon; Tabashnik, Bruce E; Zhang, Tianzhen; Zhu, Zhen

    2017-02-15

    Transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are extensively cultivated worldwide. To counter rapidly increasing pest resistance to crops that produce single Bt toxins, transgenic plant 'pyramids' producing two or more Bt toxins that kill the same pest have been widely adopted. However, cross-resistance and antagonism between Bt toxins limit the sustainability of this approach. Here we describe development and testing of the first pyramids of cotton combining protection from a Bt toxin and RNA interference (RNAi). We developed two types of transgenic cotton plants producing double-stranded RNA (dsRNA) from the global lepidopteran pest Helicoverpa armigera designed to interfere with its metabolism of juvenile hormone (JH). We focused on suppression of JH acid methyltransferase (JHAMT), which is crucial for JH synthesis, and JH-binding protein (JHBP), which transports JH to organs. In 2015 and 2016, we tested larvae from a Bt-resistant strain and a related susceptible strain of H. armigera on seven types of cotton: two controls, Bt cotton, two types of RNAi cotton (targeting JHAMT or JHBP) and two pyramids (Bt cotton plus each type of RNAi). Both types of RNAi cotton were effective against Bt-resistant insects. Bt cotton and RNAi acted independently against the susceptible strain. In computer simulations of conditions in northern China, where millions of farmers grow Bt cotton as well as abundant non-transgenic host plants of H. armigera, pyramided cotton combining a Bt toxin and RNAi substantially delayed resistance relative to using Bt cotton alone.

  11. A seed mixture increases dominance of resistance to Bt cotton in Helicoverpa zea.

    Science.gov (United States)

    Brévault, Thierry; Tabashnik, Bruce E; Carrière, Yves

    2015-05-07

    Widely grown transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) can benefit agriculture, but adaptation by pests threatens their continued success. Refuges of host plants that do not make Bt toxins can promote survival of susceptible insects and delay evolution of resistance, particularly if resistance is inherited as a recessive trait. However, data have been lacking to compare the dominance of resistance when Bt and non-Bt seeds are planted in random mixtures versus separate blocks. Here we report results from greenhouse experiments with transgenic cotton producing Bt toxin Cry1Ac and the bollworm, Helicoverpa zea, showing that the dominance of resistance was significantly higher in a seed mixture relative to a block of Bt cotton. The proportion of larvae on non-Bt cotton plants in the seed mixture was also significantly higher than expected under the null hypothesis of random distribution. In simulations based on observed survival, resistance evolved 2- to 4.5-fold faster in the seed mixture relative to separate blocks of Bt and non-Bt cotton. These findings support previous modelling results indicating that block refuges may be more effective than seed mixtures for delaying resistance in pests with mobile larvae and inherently low susceptibility to the toxins in Bt crops.

  12. Effects of Cry1Ab Bt maize straw return on bacterial community of earthworm Eisenia fetida.

    Science.gov (United States)

    Shu, Yinghua; Zhang, Yanyan; Zeng, Huilan; Zhang, Yahui; Wang, Jianwu

    2017-04-01

    The eco-toxicological effects of Bacillus thuringiensis (Bt) maize on earthworm life-history traits were widely studied and the results were controversial, while their effects on earthworm bacterial community have been rarely studied. Here, effects of two hybrids of Bt maize [5422Bt1 (event Bt11) and 5422CBCL (MON810)] straw return on Eisenia fetida bacterial community were investigated by the terminal restriction fragment length polymorphism (T-RFLP) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) combing with DNA sequencing, compared to near-isogenic non-Bt maize (5422). Bt maize straw return had significant effects on soil nutrients, especially for available nitrogen (N). The significant differences were shown in soil bacterial community between Bt and non-Bt maize treatments on the 75(th) and 90(th) d, which was closely correlated with soil available N, P and K rather than Cry1Ab protein. There was no statistically significant difference in the bacterial community of earthworm gut contents between Bt and non-Bt maize treatments. The significant differences in the bacterial community of earthworm casts were found among three maize varieties treatments, which were closely correlated with Cry1Ab protein and N levels. The differentiated bacterial species in earthworm casts mainly belonged to Proteobacteria, including Brevundimonas, Caulobacter, Pseudomonas, Stenotrophomonas, Methylobacterium, Asticcacaulis and Achromobacter etc., which were associated with the mineralization, metabolic process and degradation of plants residues. Therefore, Bt maize straw return caused changes in the bacterial community of E. fetida casts, which was possibly caused by the direct (Cry1Ab protein) and non-expected effects (N levels) of Bt maize straw.

  13. Characterization of NCAM expression and function in BT4C and BT4Cn glioma cells

    DEFF Research Database (Denmark)

    1991-01-01

    -substratum binding assay in which the binding of BT4C and BT4Cn cells to NCAM immobilized to glass was assessed. We found that BT4C cells adhere specifically to NCAM, and that adhesion is inhibited by anti-NCAM Fab'-fragments, while no specific binding of BT4Cn cells to NCAM was observed. The BT4C and BT4Cn cell...

  14. Diminishing returns from increased percent Bt cotton: the case of pink bollworm.

    Science.gov (United States)

    Huang, Yunxin; Wan, Peng; Zhang, Huannan; Huang, Minsong; Li, Zhaohua; Gould, Fred

    2013-01-01

    Regional suppression of pests by transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) has been reported in several cropping systems, but little is known about the functional relationship between the ultimate pest population density and the pervasiveness of Bt crops. Here we address this issue by analyzing 16 years of field data on pink bollworm (Pectinophora gossypiella) population density and percentage of Bt cotton in the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We find that as the percent Bt cotton increased over the years, the cross-year growth rate of pink bollworm from the last generation of one year to the first generation of the next year decreased. However, as the percent Bt cotton increased, the within-year growth rate of pink bollworm from the first to last generation of the same year increased, with a slope approximately opposite to that of the cross-year rates. As a result, we did not find a statistically significant decline in the annual growth rate of pink bollworm as the percent Bt cotton increased over time. Consistent with the data, our modeling analyses predict that the regional average density of pink bollworm declines as the percent Bt cotton increases, but the higher the percent Bt cotton, the slower the decline in pest density. Specifically, we find that 95% Bt cotton is predicted to cause only 3% more reduction in larval density than 80% Bt cotton. The results here suggest that density dependence can act against the decline in pest density and diminish the net effects of Bt cotton on suppression of pink bollworm in the study region. The findings call for more studies of the interactions between pest density-dependence and Bt crops.

  15. Breeding Strategies for Delaying Insect Resistance to Bt Toxic Protein%延缓害虫对Bt毒蛋白耐受性的育种策略

    Institute of Scientific and Technical Information of China (English)

    陈军; 刘友全; 卢孟柱

    2003-01-01

    在分析害虫对转Bt 毒蛋白基因植株产生耐受性的特点、发生机制的基础上,重点探讨了为延缓害虫对Bt毒蛋白耐受性的育种策略:(1)培育双价或多价Bt毒蛋白抗虫品种;(2)寻找能使Bt毒蛋白基因在植物中高效表达的启动子;(3)使用组织特异型或诱导型启动子以减轻对害虫持续的选择压;(4)将Bt毒蛋白基因转入叶绿体基因组以解决原核与真核细胞对遗传密码子偏爱的不同;(5)通过突变等技术改变Bt毒蛋白一级结构,从分子水平延缓害虫产生耐受性.

  16. Feeding behavior of neonate Ostrinia nubilalis (Lepidoptera: Crambidae) on Cry1Ab Bt corn: implications for resistance management.

    Science.gov (United States)

    Razze, J M; Mason, C E; Pizzolato, T D

    2011-06-01

    The European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), is an economically important insect pest of corn, Zea mays L., in the United States and Canada. The development of genetically modified corn expressing genes derived from Bacillus thuringiensis (Bt) that encodes insecticidal crystalline (Cry) proteins has proven to be effective in controlling this insect. To assess the feeding behavior of neonate O. nubilalis on Bt corn, we examined differences in feeding behavior, based on presence of plant material in the gut, between Cry1Ab Bt corn and non-Bt near isoline corn for four intervals over a 48-h period. Feeding experiments revealed that there was significantly less feeding on Bt corn compared with non-Bt near isoline corn. The behavior of neonates on the plant corresponded with the differences in feeding on the two corn lines. The findings also showed that > 50% of the larvae initially left the plant before there was evidence in the gut of feeding regardless of whether the source was Bt or non-Bt corn. A higher quantity of plant material was found in the gut of larvae recovered from leaves of non-Bt compared with Bt corn. At the end of 48 h among the larvae that had left the plant, a greater proportion from Bt corn had plant material in the gut than did those from non-Bt corn.

  17. Modeling evolution of resistance of sugarcane borer (Lepidoptera: Crambidae) to transgenic Bt corn.

    Science.gov (United States)

    Kang, J; Huang, F; Onstad, D W

    2014-08-01

    Diatraea saccharalis (F.) (Lepidoptera: Crambidae) is a target pest of transgenic corn expressing Bacillus thuringiensis (Bt) protein, and the first evidence of resistance by D. saccharalis to Cry1Ab corn was detected in a field population in northeast Louisiana in 2004. We used a model of population dynamics and genetics of D. saccharalis to 1) study the effect of interfield dispersal, the first date that larvae enter diapause for overwintering, toxin mortality, the proportion of non-Bt corn in the corn patch, and the area of a crop patch on Bt resistance evolution; and 2) to identify gaps in empirical knowledge for managing D. saccharalis resistance to Bt corn. Increasing, the proportion of corn refuge did not always improve the durability of Bt corn if the landscape also contained sugarcane, sorghum, or rice. In the landscape, which consisted of 90% corn area, 5% sorghum area, and 5% rice area, the durability of single-protein Bt corn was 40 yr when the proportion of corn refuge was 0.2 but 16 yr when the proportion of corn refuge was 0.5. The Bt resistance evolution was sensitive to a change (from Julian date 260 to 272) in the first date larvae enter diapause for overwintering and moth movement. In the landscapes with Bt corn, non-Bt corn, sugarcane, sorghum, and rice, the evolution of Bt resistance accelerated when larvae entered diapause for overwintering early. Intermediate rates of moth movement delayed evolution of resistance more than either extremely low or high rates. This study suggested that heterogeneity in the agrolandscapes may complicate the strategy for managing Bt resistance in D. saccharalis, and designing a Bt resistance management strategy for D. saccharalis is challenging because of a lack of empirical data about overwintering and moth movement.

  18. Efficacy of genetically modified Bt toxins alone and in combinations against pink bollworm resistant to Cry1Ac and Cry2Ab

    Science.gov (United States)

    Evolution of resistance in pests threatens the long-term success of transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and ...

  19. Comparing gene expression profiles between Bt and non-Bt rice in response to brown planthopper infestation

    Directory of Open Access Journals (Sweden)

    Fang eWang

    2015-12-01

    Full Text Available Bt proteins are the most widely used insecticidal proteins in transgenic crops for improving insect resistance. We previously observed longer nymphal developmental duration and lower fecundity in brown planthopper (BPH fed on Bt rice line KMD2, although Bt insecticidal protein Cry1Ab could rarely concentrate in this non-target rice pest. In the present study, we performed microarray analysis in an effort to detect Bt-independent variation, which might render Bt rice more defensive and/or less nutritious to BPH. We detected 3,834 and 3,273 differentially expressed probe-sets in response to BPH infestation in non-Bt parent Xiushui 11 and Bt rice KMD2, respectively, only 439 of which showed significant differences in expression between rice lines. Our analysis revealed a shift from growth to defense responses in response to BPH infestation, which was also detected in many other studies of plants suffering biotic and abiotic stresses. Chlorophyll biosynthesis and basic metabolism pathways were inhibited in response to infestation. IAA and GA levels decreased as a result of the repression of biosynthesis-related genes or the induction of inactivation-related genes. In accordance with these observations, a number of IAA-, GA-, BR-signaling genes were downregulated in response to BPH. Thus, the growth of rice plants under BPH attack was reduced and defense related hormone signaling like JA, SA and ET were activated. In addition, growth-related hormone signaling pathways, such as GA, BR and auxin signaling pathways, as well as ABA, were also found to be involved in BPH-induced defense. On the other side, 51 probe-sets (represented 50 genes that most likely contribute to the impact of Bt rice on BPH were identified, including three early nodulin genes, four lipid metabolic genes, 14 stress response genes, three TF genes and genes with other functions. Two transcription factor genes, bHLH and MYB, together with lipid transfer protein genes LTPL65 and

  20. Multi-Toxin Resistance Enables Pink Bollworm Survival on Pyramided Bt Cotton.

    Science.gov (United States)

    Fabrick, Jeffrey A; Unnithan, Gopalan C; Yelich, Alex J; DeGain, Ben; Masson, Luke; Zhang, Jie; Carrière, Yves; Tabashnik, Bruce E

    2015-11-12

    Transgenic crops producing Bacillus thuringiensis (Bt) proteins kill key insect pests, providing economic and environmental benefits. However, the evolution of pest resistance threatens the continued success of such Bt crops. To delay or counter resistance, transgenic plant "pyramids" producing two or more Bt proteins that kill the same pest have been adopted extensively. Field populations of the pink bollworm (Pectinophora gossypiella) in the United States have remained susceptible to Bt toxins Cry1Ac and Cry2Ab, but field-evolved practical resistance to Bt cotton producing Cry1Ac has occurred widely in India. Here we used two rounds of laboratory selection to achieve 18,000- to 150,000-fold resistance to Cry2Ab in pink bollworm. Inheritance of resistance to Cry2Ab was recessive, autosomal, conferred primarily by one locus, and independent of Cry1Ac resistance. We created a strain with high resistance to both toxins by crossing the Cry2Ab-resistant strain with a Cry1Ac-resistant strain, followed by one selection with Cry2Ab. This multi-toxin resistant strain survived on field-collected Bt cotton bolls producing both toxins. The results here demonstrate the risk of evolution of resistance to pyramided Bt plants, particularly when toxins are deployed sequentially and refuges are scarce, as seen with Bt cotton and pink bollworm in India.

  1. Nye oplysninger om bl.a. miljømæssig risikovurdering af PAT-protein og glufosinatammonium herbicider. Zea mays (Bt11). Supplerende materiale om Bt11. Modtaget 21-02-2005, deadline 29-03-2005, svar 07-03-2005

    DEFF Research Database (Denmark)

    Strandberg, Morten Tune

    2005-01-01

    Mail: Det tilsendte supplerende materiale om Bt-11 majsen (mail pr. 21-02-2005) omhandler bl.a. eventuelle uønskede konsekvenser ved ulovlig anvendelse af glufosinat ammonium herbicider i forbindelse med dyrkningen. Vi har allerede indraget dette aspekt i forbindelse med den økologiske risikovurd...

  2. The end of a myth—Bt (Cry1Ab) maize does not harm green lacewings

    Science.gov (United States)

    Romeis, Jörg; Meissle, Michael; Naranjo, Steven E.; Li, Yunhe; Bigler, Franz

    2014-01-01

    A concern with Bt-transgenic insect-resistant plants is their potential to harm non-target organisms. Early studies reported that Cry1Ab-producing Bt maize and purified Cry1Ab harmed larvae of the green lacewing, Chrysoperla carnea. Although these effects could not be confirmed in subsequent studies, some authors still refer to them as evidence that Bt maize harms beneficial species. We provide a comprehensive review of the studies evaluating the effects of Bt (Cry1Ab) maize on C. carnea. The evidence indicates that this important predator is not affected by Bt maize or by the produced Cry1Ab protein. We discuss how conceptual models can assist environmental risk assessments, and we emphasize the importance of robust and reproducible studies. PMID:25161661

  3. The end of a myth-Bt (Cry1Ab) maize does not harm green lacewings.

    Science.gov (United States)

    Romeis, Jörg; Meissle, Michael; Naranjo, Steven E; Li, Yunhe; Bigler, Franz

    2014-01-01

    A concern with Bt-transgenic insect-resistant plants is their potential to harm non-target organisms. Early studies reported that Cry1Ab-producing Bt maize and purified Cry1Ab harmed larvae of the green lacewing, Chrysoperla carnea. Although these effects could not be confirmed in subsequent studies, some authors still refer to them as evidence that Bt maize harms beneficial species. We provide a comprehensive review of the studies evaluating the effects of Bt (Cry1Ab) maize on C. carnea. The evidence indicates that this important predator is not affected by Bt maize or by the produced Cry1Ab protein. We discuss how conceptual models can assist environmental risk assessments, and we emphasize the importance of robust and reproducible studies.

  4. Pest trade-offs in technology: reduced damage by caterpillars in Bt cotton benefits aphids.

    Science.gov (United States)

    Hagenbucher, Steffen; Wäckers, Felix L; Wettstein, Felix E; Olson, Dawn M; Ruberson, John R; Romeis, Jörg

    2013-05-07

    The rapid adoption of genetically engineered (GE) plants that express insecticidal Cry proteins derived from Bacillus thuringiensis (Bt) has raised concerns about their potential impact on non-target organisms. This includes the possibility that non-target herbivores develop into pests. Although studies have now reported increased populations of non-target herbivores in Bt cotton, the underlying mechanisms are not fully understood. We propose that lack of herbivore-induced secondary metabolites in Bt cotton represents a mechanism that benefits non-target herbivores. We show that, because of effective suppression of Bt-sensitive lepidopteran herbivores, Bt cotton contains reduced levels of induced terpenoids. We also show that changes in the overall level of these defensive secondary metabolites are associated with improved performance of a Bt-insensitive herbivore, the cotton aphid, under glasshouse conditions. These effects, however, were not as clearly evident under field conditions as aphid populations were not correlated with the amount of terpenoids measured in the plants. Nevertheless, increased aphid numbers were visible in Bt cotton compared with non-Bt cotton on some sampling dates. Identification of this mechanism increases our understanding of how insect-resistant crops impact herbivore communities and helps underpin the sustainable use of GE varieties.

  5. Insecticidal Mechanism of Bt Vegetative Insecticidal Proteins and their Application in GM Crops%新型Bt杀虫蛋白:VIP杀虫的机理与植物转基因应用

    Institute of Scientific and Technical Information of China (English)

    刘辰; 谢柳; 张文飞

    2008-01-01

    苏云金芽孢杆菌(Bacillus thuringiensis,简称 Bt)是目前应用最多的生物杀虫剂.它能够产生多种杀虫因子,其中最主要是杀虫晶体蛋白(insecticidal crystal proteins.ICP)和营养期杀虫蛋(vegetative insecticidal protein,VIP).VIP在Bt营养期生长阶段开始分泌,它们不形成蛋白晶体,和ICP在进化上没有同源性.VIP的杀虫活性很高,达到了纳克级水平,为一类新型杀虫蛋白,被认为是第二代生物杀虫剂.VIP根据蛋白质序列同源性主要分为三类:VIP1、VIP2和VIP3.VIP1和VIP2共同构成二元毒素对鞘翅目萤叶甲科昆虫具有特异性毒杀作用,VIP3对鳞翅目害虫具有很高的杀虫活性.由于VIP对一些可能对ICP产生抗性的害虫具有高效的毒杀作用,而且害虫对ICP和VIP产生交互抗性的几率也很小,因此转VIP植物研究受到了科学家的青睐,并已有不少成功的报道和专利.目前为止,已经利用V1P3构建了转基因水稻、转基因玉米、转基因棉花等多种转基冈作物.

  6. Target and nontarget effects of novel "triple-stacked" Bt-transgenic cotton 1: canopy arthropod communities.

    Science.gov (United States)

    Whitehouse, M E A; Wilson, L J; Davies, A P; Cross, D; Goldsmith, P; Thompson, A; Harden, S; Baker, G

    2014-02-01

    Transgenic cotton varieties (Bollgard II) expressing two proteins (Cry1Ac and Cry2Ab) from Bacillus thuringiensis (Bt) have been widely adopted in Australia to control larvae of Helicoverpa. A triple-stacked Bt-transgenic cotton producing Cry1Ac, Cry2Ab, and Vip3A proteins (Genuity Bollgard III) is being developed to reduce the chance that Helicoverpa will develop resistance to the Bt proteins. Before its introduction, nontarget effects on the agro-ecosystem need to be evaluated under field conditions. By using beatsheet and suction sampling methods, we compared the invertebrate communities of unsprayed non-Bt-cotton, Bollgard II, and Bollgard III in five experiments across three sites in Australia. We found significant differences between invertebrate communities of non-Bt and Bt (Bollgard II and Bollgard III) cotton only in experiments where lepidopteran larval abundance was high. In beatsheet samples where lepidopterans were absent (Bt crops), organisms associated with flowers and bolls in Bt-cotton were more abundant. In suction samples, where Lepidoptera were present (i.e., in non-Bt-cotton), organisms associated with damaged plant tissue and frass were more common. Hence in our study, Bt- and non-Bt-cotton communities only differed when sufficient lepidopteran larvae were present to exert both direct and indirect effects on species assemblages. There was no overall significant difference between Bollgard II and III communities, despite the addition of the Vip gene in Bollgard III. Consequently, the use of Bollgard III in Australian cotton provides additional protection against the development of resistance by Helicoverpa to Bt toxins, while having no additional effect on cotton invertebrate communities.

  7. Quantitative analysis of differential proteins between the susceptible and resistant Trichoplusia ni cells to Bt Cry1Ac toxin%抗Bt Cry1Ac毒素粉纹夜蛾离体细胞与敏感细胞的差异蛋白定量分析

    Institute of Scientific and Technical Information of China (English)

    刘凯于; 吴彦艳; 彭建新; 洪华珠

    2011-01-01

    苏云金芽胞杆菌(Bacillus thuringiensis,Bt)产生的毒素对许多昆虫具有特异性高效毒杀作用[1-2],但是随着Bt杀虫毒素的广泛使用,昆虫对Bt的抗性风险越来越高.这种抗性机制非常复杂[3],而蛋白质组学技术可较全面揭示昆虫细胞抗Bt毒素的分子机制.作者等[4]通过人工选择获得了高水平抗Bt Cry1Ac毒素的粉纹夜蛾细胞系,在此基础上本试验采用双向凝胶电泳技术对BtCry1Ac毒素敏感粉纹夜蛾细胞和抗性选择细胞的差异蛋白质进行了定量分析.

  8. The food and environmental safety of Bt crops.

    Science.gov (United States)

    Koch, Michael S; Ward, Jason M; Levine, Steven L; Baum, James A; Vicini, John L; Hammond, Bruce G

    2015-01-01

    Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms.

  9. The Food and Environmental Safety of Bt Crops

    Directory of Open Access Journals (Sweden)

    Michael Stephen Koch

    2015-04-01

    Full Text Available Bt (Bacillus thuringiensis microbial pesticides have a 50-year history of safe use in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s. Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms.

  10. Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China.

    Science.gov (United States)

    Wan, Peng; Huang, Yunxin; Wu, Huaiheng; Huang, Minsong; Cong, Shengbo; Tabashnik, Bruce E; Wu, Kongming

    2012-01-01

    Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac, the United States and some other countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. The "natural" refuge strategy focuses on cotton bollworm (Helicoverpa armigera), the primary target of Bt cotton in China that attacks many crops, but it does not apply to another major pest, pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we report data showing field-evolved resistance to Cry1Ac by pink bollworm in the Yangtze River Valley of China. Laboratory bioassay data from 51 field-derived strains show that the susceptibility to Cry1Ac was significantly lower during 2008 to 2010 than 2005 to 2007. The percentage of field populations yielding one or more survivors at a diagnostic concentration of Cry1Ac increased from 0% in 2005-2007 to 56% in 2008-2010. However, the median survival at the diagnostic concentration was only 1.6% from 2008 to 2010 and failure of Bt cotton to control pink bollworm has not been reported in China. The early detection of resistance reported here may promote proactive countermeasures, such as a switch to transgenic cotton producing toxins distinct from Cry1A toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.

  11. Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China.

    Directory of Open Access Journals (Sweden)

    Peng Wan

    Full Text Available Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac, the United States and some other countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. The "natural" refuge strategy focuses on cotton bollworm (Helicoverpa armigera, the primary target of Bt cotton in China that attacks many crops, but it does not apply to another major pest, pink bollworm (Pectinophora gossypiella, which feeds almost entirely on cotton in China. Here we report data showing field-evolved resistance to Cry1Ac by pink bollworm in the Yangtze River Valley of China. Laboratory bioassay data from 51 field-derived strains show that the susceptibility to Cry1Ac was significantly lower during 2008 to 2010 than 2005 to 2007. The percentage of field populations yielding one or more survivors at a diagnostic concentration of Cry1Ac increased from 0% in 2005-2007 to 56% in 2008-2010. However, the median survival at the diagnostic concentration was only 1.6% from 2008 to 2010 and failure of Bt cotton to control pink bollworm has not been reported in China. The early detection of resistance reported here may promote proactive countermeasures, such as a switch to transgenic cotton producing toxins distinct from Cry1A toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.

  12. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays.

    NARCIS (Netherlands)

    Kirchberger, S.; Leroch, M.; Huynen, M.A.; Wahl, M.; Neuhaus, H.E.; Tjaden, J.

    2007-01-01

    Physiological studies on the Brittle1 maize mutant have provided circumstantial evidence that ZmBT1 (Zea mays Brittle1 protein) is involved in the ADP-Glc transport into maize endosperm plastids, but up to now, no direct ADP-Glc transport mediated by ZmBT1 has ever been shown. The heterologous synth

  13. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays

    NARCIS (Netherlands)

    Kirchberger, S.; Leroch, M.; Huynen, M.A.; Wahl, M.; Neuhaus, H.E.; Tjaden, J.

    2007-01-01

    Physiological studies on the Brittle1 maize mutant have provided circumstantial evidence that ZmBT1 (Zea mays Brittle1 protein) is involved in the ADP-Glc transport into maize endosperm plastids, but up to now, no direct ADP-Glc transport mediated by ZmBT1 has ever been shown. The heterologous synth

  14. Preparative Purification and Bioassay of Bt Toxin from Cry1Ab Transgenic Rice

    Institute of Scientific and Technical Information of China (English)

    WU Jian-min; YE Qin-fu

    2004-01-01

    A method of extracting and purifying Cry1Ab protein(Bt toxin) from Cry1Ab transgenic rice was established. Most of the Bt toxin present in the tissue of Cry1Ab transgenic rice was extracted effectively with a solution of 50 mmol/LNa2CO3 and NaHCO3. The crude protein containing Bt toxin was obtained after the pretreatment of Cry1Ab transgenic rice with ultra-filtration, ammonium sulfate precipitation and centrifugation. The dialysed crude protein was futher separated on DEAE Sephadex A-50 columns and Sephadex G-150 columns. The protein bound on DEAE Sephadex A-50 gel was eluted with buffer solution B(10 mmol/L trisHCl buffer+1. 0 mmol/L EDTA, pH=8.0) mixed with 0. 1, 0. 3, 0. 5 and 0. 8 mol/L NaCl in a discontinuous gradient elution mode. The peak of the Bt toxin eluted from the columns was identified by ELISA and bioassayed with larvae of tobacco hornworms and silkworms. The purity and the bioactivity of the Bt toxin were determined by means of SDS-PAGE and larvicidal assay, respectively. The purity of the Bt toxin obtained by this method is high, and its insecticidal activity is retained after the toxin is purified.

  15. Characterization of NCAM expression and function in BT4C and BT4Cn glioma cells

    DEFF Research Database (Denmark)

    1991-01-01

    The neural cell adhesion molecule, NCAM, plays an important role in cell-cell adhesion. Therefore, we have studied NCAM expression in the glioma cell lines BT4C and BT4Cn. We demonstrate that the 2 cell lines differ in their metastatic ability; while BT4C cells have a very low capacity...... for producing experimental metastases, that of BT4Cn cells is high. In BT4C cells NCAM is synthesized as 4 polypeptides with Mr's of 190,000, 140,000, 115,000 and 97,000. The 140,000, 115,000 and 97,000 polypeptides are glycosylated and for the 140,000 and 115,000 polypeptides sulfatation is observed......-substratum binding assay in which the binding of BT4C and BT4Cn cells to NCAM immobilized to glass was assessed. We found that BT4C cells adhere specifically to NCAM, and that adhesion is inhibited by anti-NCAM Fab'-fragments, while no specific binding of BT4Cn cells to NCAM was observed. The BT4C and BT4Cn cell...

  16. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans.

    OpenAIRE

    2000-01-01

    The protein toxins produced by Bacillus thuringiensis (Bt) are the most widely used natural insecticides in agriculture. Despite successful and extensive use of these toxins in transgenic crops, little is known about toxicity and resistance pathways in target insects since these organisms are not ideal for molecular genetic studies. To address this limitation and to investigate the potential use of these toxins to control parasitic nematodes, we are studying Bt toxin action and resistance in ...

  17. Pest trade-offs in technology: reduced damage by caterpillars in Bt cotton benefits aphids

    OpenAIRE

    2013-01-01

    The rapid adoption of genetically engineered (GE) plants that express insecticidal Cry proteins derived from Bacillus thuringiensis (Bt) has raised concerns about their potential impact on non-target organisms. This includes the possibility that non-target herbivores develop into pests. Although studies have now reported increased populations of non-target herbivores in Bt cotton, the underlying mechanisms are not fully understood. We propose that lack of herbivore-induced secondary metabolit...

  18. Dependence of dielectric properties on BT particle size in EP/BT composites

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaojun; YANG Zhimin; MAO Changhui; DU Jun

    2006-01-01

    The polymer-ceramic composites of epoxy resin (EP) and barium titanate (BT) were prepared.BT powders of different BT particle sizes from 100 nm to 1 μm were used in the preparation.The dielectric properties, such as dielectric constant, dielectric loss and electrical breakdown strength, of the EP/BT composites were studied.The morphology of the composites was characterized by the means of scanning electron microscopy (SEM).The results show that the dielectric constant of the composites is much higher than the epoxy matrix at frequency range from 1 kHz to 10 MHz, and it is also obviously dependent on the size of BT particles.The electrical breakdown strength of the composites decreases with the increase of the BT content.The dependence of electrical breakdown strength on BT particle sizes was also discussed.

  19. BT799玉米对亚洲玉米螟抗性研究%Resistance of transgenic Bt corn variety BT799 to the Asian corn borer

    Institute of Scientific and Technical Information of China (English)

    王月琴; 何康来; 江帆; 王依冬; 张天涛; 王振营; 白树雄

    2014-01-01

    Objectives] To review the resistance of transgenic Bt corn to target pests which is one of the primarily steps for research and development of insect-resistant, transgenic corn. This review mainly evaluates the resistance of transgenic Cry1Ac gene corn variety BT799 to the Asian corn borer (ACB), Ostrinia furnacalis (Guenée), and measured the quantity of Cry1Ac protein expressed in corn plant tissues. [Methods] Enzyme-linked immunosorbent assays, laboratory bioassay and field studies with artificial infestation were employed in this study. [Results] The expression levels of Cry1Ac protein were 768.0 ng/g (protein/fresh leaves), 1452.8-2978.5 ng/g (protein/dry mass of silk, husk and young kernels). Leaf-feeding rates in field trials indicated that BT799 and CC-2XBT799 were highly resistant to ACB. The survival of ACB larvae feeding on Zhengdan 958K, a single cross hybrid containing BT799, was significantly lower (0-37.5%) than that of larvae that fed on non-Bt Zhengdan 958 (89.9%-100.0%). In addition, larval survival of Cry1Ac-, Cry1Ie-, and Cry1F-selected ACB strains (ACB-AcR, ACB-IeR and ACB-FR) were significantly different when fed on Zhengdan 958K. ACB-IeR had the lowest survival followed by ACB-FR, both of them had significantly lower survival than those that fed on the control Zhengdan 958. However, the survival of ACB-AcR was not significantly different from larvae feeding on the control Zhengdan 958. [Conclusion] These results suggests that the transgenic Bt corn variety BT799 is highly toxic to the ACB and can provide effective control for ACB in the field.%【目的】抗螟性鉴定是转基因抗虫玉米研发的重要一环。本文主要就转基因玉米BT799对亚洲玉米螟的抗性展开评价,同时测定了BT799植株组织中Cry1Ac蛋白的表达量。【方法】采用了酶联免疫吸附测定法(ELISA)、室内生测和田间人工接虫鉴定3种方法。【结果】转基因抗虫玉米BT799组织中Cry1Ac蛋白含量分别为768

  20. Overexpression of a Foreign Bt Gene in Cotton Affects the Low-Molecular-Weight Components in Root Exudates

    Institute of Scientific and Technical Information of China (English)

    YAN Wei-Dong; SHI Wei-Ming; LI Bao-Hai; ZHANG Min

    2007-01-01

    Most research in the past using genetically modified crops (GM crops) has focused on the ecological safety of foreign gene (i.e., the gene flow), gene products (for example, Bt (Bacillus thuringiensis) protein), and the safety of transgenic food for humans. In this study, changes in both the species and amounts of low-molecular-weight components in cotton (Gossypium hirsutum L.) root exudates after foreign Bt gene overexpression were investigated under different nutritional conditions. Transgenic cotton containing Bt (Bt-cotton), supplemented with all the mineral nutrients, secreted more organic acids than the wild-type cotton (WT). When nitrogen was removed from the full-nutrient solution, the amount of organic acids secretion of Bt-cotton was lesser than that of WT. The roots of the transgenic cotton secreted lesser amounts of amino acids and soluble sugars than the WT roots in the full-nutrient solution. Deficiencies of P and K caused a large increase in the total amino acid and soluble sugar secretions of both Bt-cotton and WT, with larger increases observed in Bt-cotton. Because transferring the foreign Bt gene into cotton can result in alterations in the components of the root exudates, with the effect varying depending on the nutritional status, the cultivation of genetically modified crops, such as Bt-cotton, in soil environments should be more carefully assessed, and the possible effects as a result of the alterations in the root exudate components should be considered.

  1. Effects of Bt-transgenic rice cultivation on planktonic communities in paddy fields and adjacent ditches

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongbo, E-mail: liuyb@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Liu, Fang [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wang, Chao [Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380 (China); Quan, Zhanjun [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Li, Junsheng, E-mail: lijsh@creas.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China)

    2016-09-15

    The non-target effects of transgenic plants are issues of concern; however, their impacts in cultivated agricultural fields and adjacent natural aquatic ecosystems are poorly understood. We conducted field experiments during two growing seasons to determine the effects of cultivating Bacillus thuringiensis (Bt)-transgenic rice on the phytoplankton and zooplankton communities in a paddy field and an adjacent ditch. Bt toxin was detected in soil but not in water. Water quality was not significantly different between non-Bt and Bt rice fields, but varied among up-, mid- and downstream locations in the ditch. Cultivation of Bt-transgenic rice had no effects on zooplankton communities. Phytoplankton abundance and biodiversity were not significantly different between transgenic and non-transgenic rice fields in 2013; however, phytoplankton were more abundant in the transgenic rice field than in the non-transgenic rice field in 2014. Water quality and rice type explained 65.9% and 12.8% of this difference in 2014, respectively. Phytoplankton and zooplankton were more abundant in mid- and downstream, than upstream, locations in the ditch, an effect that we attribute to water quality differences. Thus, the release of Bt toxins into field water during the cultivation of transgenic crops had no direct negative effects on plankton community composition, but indirect effects that alter environmental conditions should be taken into account during the processes of management planning and policymaking. - Highlights: • We detect fusion Cry1Ab/1Ac proteins from Bt rice entering into aquatic ecosystems. • Bt-transgenic rice cultivation have no significant effect on zooplankton community. • Bt-transgenic rice cultivation have indirect effect on phytoplankton community. • Water quality explains the difference of plankton communities in adjacent ditches.

  2. Pest management through Bacillus thuringiensis (Bt) in a tea-silkworm ecosystem: status and potential prospects.

    Science.gov (United States)

    Dashora, Kavya; Roy, Somnath; Nagpal, Akanksha; Roy, Sudipta Mukhopadhyay; Flood, Julie; Prasad, Anjali Km; Khetarpal, Ravinder; Neave, Suzanne; Muraleedharan, N

    2017-03-01

    Bacillus thuringiensis (Bt) is a soil bacterium that forms spores containing crystals comprising one or more Cry or Cyt proteins having potential and specific insecticidal activity. Different strains of Bt produce different types of toxins, affecting a narrow taxonomic group of insects. Therefore, it is used in non-chemical pest management, including inherent pest resistance through GM crops. The specificity of action of Bt toxins reduces the concern of adverse effects on non-target species, a concern which remains with chemical insecticides as well. To make use of Bt more sustainable, new strains expressing novel toxins are actively being sought globally. Since Bt is successfully used against many pests including the lepidopteran pests in different crop groups, the insecticidal activity against Samia cynthia (Drury) (Eri silkworm) and Antheraea assamensis Helfer (Muga silkworm) becomes a concern in the state of Assam in India which is a predominantly tea- and silk-producing zone. Though Bt can be used as an effective non-chemical approach for pest management for tea pests in the same geographical region, yet, it may potentially affect the silk industry which depends on silkworm. There is a need to identify the potentially lethal impact (through evaluating their mortality potential) of local Bt strains on key silkworm species in North Eastern India. This will allow the use of existing Bt for which the silkworms have natural resistance. Through this review, the authors aim to highlight recent progress in the use of Bt and its insecticidal toxins in tea pest control and the potential sensitivity for tea- and silk-producing zone of Assam in India.

  3. Effects of transgenic Bt rice on growth, reproduction, and superoxide dismutase activity of Folsomia candida (Collembola: Isotomidae) in laboratory studies.

    Science.gov (United States)

    Bai, Yaoyu; Yan, Ruihong; Ke, Xin; Ye, Gongyin; Huang, Fangneng; Luo, Yongming; Cheng, Jiaan

    2011-12-01

    Transgenic rice expressing Bacillus thuringiensis (Bt) CrylAb protein is expected to be commercialized in China in the near future. The use of Bt rice for controlling insect pests sparks intensive debates regarding its biosafety. Folsomia candida is an euedaphic species and is often used as a "standard" test organism in assessing effects of environmental pollutants on soil organisms. In this study, growth, development, reproduction, and superoxide dismutase activity (SOD) of F. candida were investigated in the laboratory for populations reared on leaf tissue or leaf-soil mixtures of two CrylAb rice lines and a non-Bt rice isoline. Two independent tests were performed: 1) a 35-d test using petri dishes containing yeast diet (positive control) or fresh rice leaf tissue, and 2) a 28-d test in soil-litter microcosms containing yeast or a mixture of soil and rice leaf tissue. Biological parameters measured in both tests were number of progeny production, population growth rate, and SOD activity. For the petri dish test, data measured also included insect body length and number of exuviation. There were no significant differences between the populations reared on Bt and non-Bt rice leaf tissue in all measured parameters in both tests and for both Bt rice lines, suggesting no significant effects of the CrylAb protein in Bt rice on F. candida in the laboratory studies. Results of this study should add additional biosafety proofs for use of Bt rice to manage rice pests in China.

  4. Response of the Gypsy Moth, Lymantria dispar to Transgenic Poplar, Populus simonii x P. nigra, Expressing Fusion Protein Gene of the Spider Insecticidal Peptide and Bt-toxin C-peptide

    OpenAIRE

    Cao, Chuan-Wang; Liu, Gui-Feng; Wang, Zhi-Ying; Yan, Shan-Chun; Ma, Ling; Yang, Chuan-Ping

    2010-01-01

    The response of the Asian gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae) to a fusion gene consisting of the spider, Atrax robustus Simon (Araneae: Hexanthelidae) ω?-ACTX-Ar1 sequence coding for an ω?-atracotoxin and a sequence coding for the Bt-toxin C-peptide, expressed in transgenic poplar Populus simonii x P. nigra L. (Malphigiales: Salicaceae) was investigated. Individual performance, feeding selection, midgut proteinase activity and nutrition utilization were monitored. The...

  5. A comparison of spider communities in Bt and non-Bt rice fields.

    Science.gov (United States)

    Lee, Sue Yeon; Kim, Seung Tae; Jung, Jong Kook; Lee, Joon-Ho

    2014-06-01

    To assess the potential adverse effects of a Bt rice line (Japonica rice cultivar, Nakdong) expressing a synthetic cry1Ac1 gene, C7-1-9-1-B, which was highly active against all larval stages of Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae), we investigated the community structure of spiders in Bt and non-Bt rice fields during the rice-growing season in 2007 and 2008 in Chungcheongnam-do, Korea. Spiders were surveyed with a sweep net and suction device. Suction sampling captured more spiders, measured in terms of species level and abundance, than sweeping. Araneidae and Thomisidae were captured more by sweeping, and certain species were captured only by sweeping. These findings show that both suction and sweep sampling methods should be used because these methods are most likely complementary. In total, 29 species in 23 genera and nine families were identified from the 4,937 spiders collected, and both Bt and non-Bt rice fields showed a typical Korean spider assemblage. The temporal patterns of spider species richness and spider abundance were very similar between Bt and non-Bt rice, although significant differences in species richness were observed on a few occasions. Overall, spider community structure, including diversity, the dominant species, and abundance did not differ between Bt and non-Bt rice. The results of the study indicated that the transgenic Cry1Ac rice lines tested in this study had no adverse effects on the spider community structure of the rice fields.

  6. Delaying corn rootworm resistance to Bt corn.

    Science.gov (United States)

    Tabashnik, Bruce E; Gould, Fred

    2012-06-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect control have been successful, but their efficacy is reduced when pests evolve resistance. To delay pest resistance to Bt crops, the U.S. Environmental Protection Agency (EPA) has required refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Such refuges are expected to be most effective if the Bt plants deliver a dose of toxin high enough to kill nearly all hybrid progeny produced by matings between resistant and susceptible pests. In 2003, the EPA first registered corn, Zea mays L., producing a Bt toxin (Cry3Bb1) that kills western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. The EPA requires minimum refuges of 20% for Cry3Bb1 corn and 5% for corn producing two Bt toxins active against corn rootworms. We conclude that the current refuge requirements are not adequate, because Bt corn hybrids active against corn rootworms do not meet the high-dose standard, and western corn rootworm has rapidly evolved resistance to Cry3Bb1 corn in the laboratory, greenhouse, and field. Accordingly, we recommend increasing the minimum refuge for Bt corn targeting corn rootworms to 50% for plants producing one toxin active against these pests and to 20% for plants producing two toxins active against these pests. Increasing the minimum refuge percentage can help to delay pest resistance, encourage integrated pest management, and promote more sustainable crop protection.

  7. Binding of Bt Cry toxins to lepidopteran midgut aminopeptidase N and the relationship between their interactions with Bt resistance%鳞翅目昆虫氨肽酶N与Bt毒素的结合及其与Bt抗性的关系

    Institute of Scientific and Technical Information of China (English)

    马文静; 韩兰芝; 尹新明; 曹广春; 苏丽娟

    2011-01-01

    随着Bt Cry作物在我国的广泛应用和推广,靶标害虫对其抗性风险已成为Bt Cry作物生态安全研究的重要内容.氨肽酶N(Aminopeptidase N,APN)是位于昆虫中肠刷状缘膜囊泡(Brush Border Membrane Vesicles,BBMV)上Bt Cry毒素重要的受体蛋白之一,它与Bt Cry毒素的结合能力决定了Bt Cry毒素的杀虫活性及昆虫对Bt抗性的产生.本文从APN的结构特征与分类、APN与Bt Cry毒素的结合特异性、结合位点、结合过程中的分子互作机制及APN变异导致昆虫抗性产生几方面系统综述了鳞翅目昆虫中肠Bt Cry受体蛋白-氨肽酶N与Bt Cry 毒素的结合及其与Bt抗性关系的研究进展.%With the wide application and popularization of Bt Cry crop, the resistance of target pests a-gainst Bt Cry crop has become the focus of studies on its ecological safety. Aminopeptidase N (APN) is one of Bt-toxin receptor proteins located in brush border membrane vesicles ( BBMV) of insect midgut. Its binding capability with Bt Cry toxin determines the toxin's insecticidal spectrum and insect Bt resistance. This paper systemically reviews the progress of researches on APN structural characteristics and classfication, the binding feature, binding sites and interactions mechanism of Bt Cry toxin and APN as well as Bt resistance resulting from APN mutations.

  8. The impact of secondary pests on Bacillus thuringiensis (Bt) crops.

    Science.gov (United States)

    Catarino, Rui; Ceddia, Graziano; Areal, Francisco J; Park, Julian

    2015-06-01

    The intensification of agriculture and the development of synthetic insecticides enabled worldwide grain production to more than double in the last third of the 20th century. However, the heavy dependence and, in some cases, overuse of insecticides has been responsible for negative environmental and ecological impacts across the globe, such as a reduction in biodiversity, insect resistance to insecticides, negative effects on nontarget species (e.g. natural enemies) and the development of secondary pests. The use of recombinant DNA technology to develop genetically engineered insect-resistant crops could mitigate many of the negative side effects of insecticides. One such genetic alteration enables crops to express toxic crystalline (Cry) proteins from the soil bacteria Bacillus thuringiensis (Bt). Despite the widespread adoption of Bt crops, there are still a range of unanswered questions concerning longer term agro-ecosystem interactions. For instance, insect species that are not susceptible to the expressed toxin can develop into secondary pests and cause significant damage to the crop. Here, we review the main causes surrounding secondary pest dynamics in Bt crops and the impact of such outbreaks. Regardless of the causes, if nonsusceptible secondary pest populations exceed economic thresholds, insecticide spraying could become the immediate solution at farmers' disposal, and the sustainable use of this genetic modification technology may be in jeopardy. Based on the literature, recommendations for future research are outlined that will help to improve the knowledge of the possible long-term ecological trophic interactions of employing this technology.

  9. Evaluation of Bt Corn with Pyramided Genes on Efficacy and Insect Resistance Management for the Asian Corn Borer in China

    Science.gov (United States)

    Bai, Shuxiong; Wang, Zhenying; He, Kanglai

    2016-01-01

    A Bt corn hybrid (AcIe) with two Bt genes (cry1Ie and cry1Ac) was derived by breeding stack from line expressing Cry1Ie and a line expressing Cry1Ac. Efficacy of this pyramided Bt corn hybrid against the Asian corn borer (ACB), Ostrinia furnacalis, was evaluated. We conducted laboratory bioassays using susceptible and resistant ACB strains fed on artificial diet or fresh plant tissues. We also conducted field trials with artificial infestations of ACB neonates at the V6 and silk stages. The toxin-diet bioassay data indicated that mixtures of Cry1Ac and Cry1Ie proteins had synergistic insecticidal efficacy. The plant tissue bioassay data indicated that Bt corn hybrids expressing either a single toxin (Cry1Ac or Cry1Ie) or two toxins had high efficacy against susceptible ACB. Damage ratings in the field trials indicated that the Bt corn hybrids could effectively protect against 1st and the 2nd generation ACB in China. The hybrid line with two Bt genes showed a higher efficacy against ACB larvae resistant to Cry1Ac or CryIe than the hybrid containing one Bt gene, and the two gene hybrid would have increased potential for managing or delaying the evolution of ACB resistance to Bt corn plants. PMID:28006032

  10. Transgenic Bt Cotton Does Not Disrupt the Top-Down Forces Regulating the Cotton Aphid in Central China

    Science.gov (United States)

    Yao, Yong-Sheng; Han, Peng; Niu, Chang-Ying; Dong, Yong-Cheng; Gao, Xi-Wu; Cui, Jin-Jie; Desneux, Nicolas

    2016-01-01

    Top-down force is referred to arthropod pest management delivered by the organisms from higher trophic levels. In the context of prevalent adoption of transgenic Bt crops that produce insecticidal Cry proteins derived from Bacillus thuringiensis (Bt), it still remains elusive whether the top-down forces are affected by the insect-resistant traits that introduced into the Bt crops. We explored how Bt cotton affect the strength of top-down forces via arthropod natural enemies in regulating a non-target pest species, the cotton aphid Aphis gossypii Glover, using a comparative approach (i.e. Bt cotton vs. conventional cotton) under field conditions. To determine top-down forces, we manipulated predation/parasitism exposure of the aphid to their natural enemies using exclusion cages. We found that the aphid population growth was strongly suppressed by the dominant natural enemies including Coccinellids, spiders and Aphidiines parasitoids. Coccinellids, spiders and the assemblage of other arthropod natural enemies (mainly lacewings and Hemipteran bugs) are similarly abundant in both plots, but with the parasitoid mummies less abundant in Bt cotton plots compared to the conventional cotton plots. However, the lower abundance of parasitoids in Bt cotton plots alone did not translate into differential top-down control on A. gossypii populations compared to conventional ones. Overall, the top-down forces were equally strong in both plots. We conclude that transgenic Bt cotton does not disrupt the top-down forces regulating the cotton aphid in central China. PMID:27870914

  11. Effects of 90-Day Feeding of Transgenic Maize BT799 on the Reproductive System in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Qian-ying Guo

    2015-12-01

    Full Text Available BT799 is a genetically modified (GM maize plant that expresses the Cry1Ac gene from Bacillus thuringiensis (Bt. The Cry1Ac gene was introduced into maize line Zhen58 to encode the Bt crystal protein and thus produce insect-resistant maize BT799. Expression of Bt protein in planta confers resistance to Lepidopteran pests and corn rootworms. The present study was designed to investigate any potential effects of BT799 on the reproductive system of male rats and evaluate the nutritional value of diets containing BT799 maize grain in a 90-day subchronic rodent feeding study. Male Wistar rats were fed with diets containing BT799 maize flours or made from its near isogenic control (Zhen58 at a concentration of 84.7%, nutritionally equal to the standard AIN-93G diet. Another blank control group of male rats were treated with commercial AIN-93G diet. No significant differences in body weight, hematology and serum chemistry results were observed between rats fed with the diets containing transgenic BT799, Zhen58 and the control in this 13-week feeding study. Results of serum hormone levels, sperm parameters and relative organ/body weights indicated no treatment-related side effects on the reproductive system of male rats. In addition, no diet-related changes were found in necropsy and histopathology examinations. Based on results of the current study, we did not find any differences in the parameters tested in our study of the reproductive system of male rats between BT799 and Zhen58 or the control.

  12. FROM Qutn TO Bt COTTON: DEVELOPMENT, ADOPTION AND PROSPECTS. A REVIEW.

    Science.gov (United States)

    Maik, W; Abid, M A; Cheema, H M N; Khan, A A; Iqbal, M Z; Qayyum, A; Hanif, M; Bibi, N; Yuan, S N; Yasmeen, A; Mahmood, A; Ashraf, J

    2015-01-01

    Cotton has unique history of domestication, diversification, and utilization. Globally it is an important cash crop that provides raw material for textile industry. The story of cotton started from human civilization and the climax arrived with the efforts of developing transgenic cotton for various traits. Though conventional breeding brought steady improvement in developing resistance against biotic stresses but recent success story of gene transferfrom Bacillus thuringiensis into cotton showed game changing effects on cotton cultivation. Amongst various families of insecticidal proteins Bt Cry-toxins received more attention because of specificity against receptors on the cell membranes of insect midgut epithelial cells. Rapid Bt cotton adoption by farmers due to its economic and environmental benefits has changed the landscape of cotton cultivation in many countries. But the variable expression of Bt transgene in the newly developed Bt cotton genotypes in tropical environment is questionable. Variability of toxin level in different plant parts at various life stage of plant is an outcome of genotypic interaction with environmental factors. Temporal gene expression of Cry1Ac is also blamed for the epigenetic background in which transgene has been inserted. The presence of genotypes with sub-lethal level of Bt toxin might create resistance in Lepidopteron insects, limiting the use of Bt cotton in future, with the opportunityfor other resistance development strategies to get more attention like gene stacking. Until the farmers get access to more recent technology, best option is to delay the development of resistance by applying Insect Resistance Management (IRM) strategies.

  13. High susceptibility of Bt maize to aphids enhances the performance of parasitoids of lepidopteran pests.

    Directory of Open Access Journals (Sweden)

    Cristina A Faria

    Full Text Available Concerns about possible undesired environmental effects of transgenic crops have prompted numerous evaluations of such crops. So-called Bt crops receive particular attention because they carry bacteria-derived genes coding for insecticidal proteins that might negatively affect non-target arthropods. Here we show a remarkable positive effect of Bt maize on the performance of the corn leaf aphid Rhopalosiphum maidis, which in turn enhanced the performance of parasitic wasps that feed on aphid honeydew. Within five out of six pairs that were evaluated, transgenic maize lines were significantly more susceptible to aphids than their near-isogenic equivalents, with the remaining pair being equally susceptible. The aphids feed from the phloem sieve element content and analyses of this sap in selected maize lines revealed marginally, but significantly higher amino acid levels in Bt maize, which might partially explain the observed increased aphid performance. Larger colony densities of aphids on Bt plants resulted in an increased production of honeydew that can be used as food by beneficial insects. Indeed, Cotesia marginiventris, a parasitoid of lepidopteran pests, lived longer and parasitized more pest caterpillars in the presence of aphid-infested Bt maize than in the presence of aphid-infested isogenic maize. Hence, depending on aphid pest thresholds, the observed increased susceptibility of Bt maize to aphids may be either a welcome or an undesirable side effect.

  14. Impacts of Bt crops on non-target organisms and insecticide use patterns

    Science.gov (United States)

    Bacillus thuringiensis (Bt), a bacterium capable of producing insecticidal proteins is ubiquitous in the environment, and the genes coding for these proteins are now becoming ubiquitous in major crop plants via recombinant DNA technology where they provide host plant resistance to major lepidopteran...

  15. A challenge for the seed mixture refuge strategy in Bt maize: impact of cross-pollination on an ear-feeding pest, corn earworm.

    Directory of Open Access Journals (Sweden)

    Fei Yang

    Full Text Available To counter the threat of insect resistance, Bacillus thuringiensis (Bt maize growers in the U.S. are required to plant structured non-Bt maize refuges. Concerns with refuge compliance led to the introduction of seed mixtures, also called RIB (refuge-in-the-bag, as an alternative approach for implementing refuge for Bt maize products in the U.S. Maize Belt. A major concern in RIB is cross-pollination of maize hybrids that can cause Bt proteins to be present in refuge maize kernels and negatively affect refuge insects. Here we show that a mixed planting of 5% nonBt and 95% Bt maize containing the SmartStax traits expressing Cry1A.105, Cry2Ab2 and Cry1F did not provide an effective refuge for an important above-ground ear-feeding pest, the corn earworm, Helicoverpa zea (Boddie. Cross-pollination in RIB caused a majority (>90% of refuge kernels to express ≥ one Bt protein. The contamination of Bt proteins in the refuge ears reduced neonate-to-adult survivorship of H. zea to only 4.6%, a reduction of 88.1% relative to larvae feeding on ears of pure non-Bt maize plantings. In addition, the limited survivors on refuge ears had lower pupal mass and took longer to develop to adults.

  16. A challenge for the seed mixture refuge strategy in Bt maize: impact of cross-pollination on an ear-feeding pest, corn earworm.

    Science.gov (United States)

    Yang, Fei; Kerns, David L; Head, Graham P; Leonard, B Rogers; Levy, Ronnie; Niu, Ying; Huang, Fangneng

    2014-01-01

    To counter the threat of insect resistance, Bacillus thuringiensis (Bt) maize growers in the U.S. are required to plant structured non-Bt maize refuges. Concerns with refuge compliance led to the introduction of seed mixtures, also called RIB (refuge-in-the-bag), as an alternative approach for implementing refuge for Bt maize products in the U.S. Maize Belt. A major concern in RIB is cross-pollination of maize hybrids that can cause Bt proteins to be present in refuge maize kernels and negatively affect refuge insects. Here we show that a mixed planting of 5% nonBt and 95% Bt maize containing the SmartStax traits expressing Cry1A.105, Cry2Ab2 and Cry1F did not provide an effective refuge for an important above-ground ear-feeding pest, the corn earworm, Helicoverpa zea (Boddie). Cross-pollination in RIB caused a majority (>90%) of refuge kernels to express ≥ one Bt protein. The contamination of Bt proteins in the refuge ears reduced neonate-to-adult survivorship of H. zea to only 4.6%, a reduction of 88.1% relative to larvae feeding on ears of pure non-Bt maize plantings. In addition, the limited survivors on refuge ears had lower pupal mass and took longer to develop to adults.

  17. Cannibalism of Helicoverpa zea (Lepidoptera: Noctuidae) from Bacillus thuringiensis (Bt) transgenic corn versus non-Bt corn.

    Science.gov (United States)

    Chilcutt, Charles F

    2006-06-01

    Because of the importance of cannibalism in population regulation of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in corn, Zea mays L., it is useful to understand the interactions between Bacillus thuringiensis (Bt) transgenic corn and cannibalism. To determine the effects of Bt corn on cannibalism in H. zea, pairs of the same or different instars were taken from Bt or non-Bt corn and placed on artificial diet in proximity. Cannibalism occurred in 91% of pairs and was approximately 7% greater for pairs of larvae reared from Bt transgenic corn (95%) than from non-Bt corn (88%). Also, first instar by first instar pairs had a lower rate of cannibalism than other pairs. Time until cannibalism was not different for larvae from Bt corn versus non-Bt corn. Pupation rate of cannibals and surviving victims was not different for pairs from Bt corn versus non-Bt corn. Finally, cannibalism increased pupation rate of cannibals from both Bt and non-Bt corn by approximately 23 and 12%, respectively, although the increases were not significant. Thus, negative effects of Bt on larvae were compensated by increased cannibalism in comparison with larvae reared on non-Bt corn, which increased larval survival to levels comparable with larvae reared on non-Bt plants.

  18. Tolerance of Bt corn (MON 810) to maize stem borer, Chilo partellus (Lepidoptera: Pyralidae).

    Science.gov (United States)

    Singh, Ramkumar; Channappa, Ravi K; Deeba, Farah; Nagaraj, Nandi J; Sukavaneaswaran, Mohan K; Manjunath, T M

    2005-11-01

    Transgenic corn (MON 810), expressing the Bacillus thuringiensis (Bt) protein, Cry1Ab, was evaluated under greenhouse conditions for its tolerance to the maize stem borer, Chilo partellus. Bt corn (MON 810) provided effective protection against the stem borer even under a high level of larval infestation in the greenhouse. The observed tolerance is examined and discussed in the light of the susceptibility of C. partellus to the Cry1Ab protein in laboratory bioassays. The implications of the tissue concentrations of Cry1Ab in MON 810, and baseline susceptibility recorded in the current study, for insect-resistance management are discussed.

  19. Domains of Bacillus thuringiensis crystal proteins involved in insecticidal activity

    NARCIS (Netherlands)

    Bosch, H.J.; Schipper, B.; Kleij, van der H.; Maagd, de R.A.; Stiekema, W.J.

    1994-01-01

    The expected increase in application of Bacillus thuringiensis (Bt) in crop protection makes it necessary to anticipate the development of Bt-resistant insects. To safeguard the long-term use of Bt-based insecticides, we studied the mode of action of Bt crystal proteins. CryIA(b), CryIC and CryIE ar

  20. Effect of Iranian Bt cotton on life table of Bemisia tabaci (Hemiptera: Alyrodidae) and Cry 1Ab detection in the whitefly honeydew

    OpenAIRE

    2016-01-01

    Transgenic cotton expressing the Cry 1Ab protein of Bacillus thuringiensis developing against Helocoverpa armigera may be affect on secondary pest such as Bemisia tabaci. In this study effects of Bt cotton on demographic parameters of B. tabaci were assessed and the data analyzed using the age specific, two-sex life table parameters. Results showed that getting to the adulthood stage, was faster on non-Bt cotton in comparison with Bt cotton. Also the fecundity was higher on non-Bt cotton than...

  1. Performance and cross-crop resistance of Cry1F-maize selected Spodoptera frugiperda on transgenic Bt cotton: implications for resistance management

    OpenAIRE

    Fei Yang; Kerns, David L.; Sebe Brown; Ryan Kurtz; Tim Dennehy; Bo Braxton; Graham Head; Fangneng Huang

    2016-01-01

    Transgenic crops producing Bacillus thuringiensis (Bt) proteins have become a primary tool in pest management. Due to the intensive use of Bt crops, resistance of the fall armyworm, Spodoptera frugiperda, to Cry1F maize has occurred in Puerto Rico, Brazil, and some areas of the southeastern U.S. The sustainability of Bt crops faces a great challenge because the Cry1F-maize resistant S. frugiperda may also infest other Bt crops in multiple cropping ecosystems. Here we examined the survival and...

  2. Influence of Bt rice plants on nitrogen fixation bacteria and horizontal transfer of the gene for Nitrogenase iron protein%种植转Bt水稻对固氮细菌多样性和固氮酶铁蛋白基因nifH的水平转移的影响

    Institute of Scientific and Technical Information of China (English)

    任少华; 徐斌; 黄晶心; 王婧; 章振亚; 陈艳; 肖明

    2012-01-01

    Enumeration of culturable bacteria colonies on nitrogen fixing medium (NFM) and LB medium conducted by this study revealed statistically significant difference among various soil samples collected from both transgenic Bacillus thuringiensis (Bt) rice fields and non-transgenic Bacillus thuringiensis (Bt) rice field.The transgenic Bt rice had generated impact on the quantities of microorganism communities in soil.Similar results were obtained by measuring shoot lengths after seeds germination.This also suggested that the planting of transgenic Bt rice may affect rice cultivation in the same field.However,such inhibitory effect was often transient in duration.Phylogenetic tree of 16S rDNAs showed a great genetic diversity of our isolated nitrogen fixation bacteria strains,and found that the majority of clones were related to two groups:one group belongs to the classes of Actinobacteria and the other group is Proteobacteria including α-Proteobacteri,more than half of nitrogen fixation bacteria (92%) in the rhizosphere belong to Actinobacteria.The sequences of the 16S rDNAs and the Nitrogenase iron protein coding genes (nifH) of eight nitrogen-fixing bacteria isolated from the transgenic Bt rice soil field were also compared.A lack of phylogenetic congruence of the nifH genes and 16S rDNAs might indicate the occurrence of relatively recent in situ horizontal transfer of the nifH gene,possibly as a direct or indirect consequence of transgenic Bt rice.%通过对具有不同种植年限和不同种植强度的转Bt基因水稻与非转Bt基因水稻土壤中的细菌以及固氮细菌群落结构进行研究,发现转Bt水稻的种植可能会影响土壤中微生物群落的多样性,但是这种影响的可能只是暂时的,通过对测量种植水稻的芽长实验也得出相似的结论.另外,根据16S rDNA基因构建的系统发育进化树揭示了本实验分离的固氮细菌的遗传多样性,发现实验土壤中的固氮细

  3. 烟夜蛾幼虫中肠Bt Cry1Ac毒素受体蛋白cDNA片段的克隆和序列测定%Molecular Cloning and Sequencing of cDNA Fragment Encoding Bt Cry1Ac Toxin Binding Protein from the Midgut of Helicoverpa assulta Guenée Larva

    Institute of Scientific and Technical Information of China (English)

    安世恒; 郭线茹; 罗梅浩; 蒋金炜; 马继盛

    2005-01-01

    利用RT-PCR技术扩增烟夜蛾(Helicoverpa assulta Guenée)幼虫中肠Bt毒素Cry1Ac受体蛋白APN(N-氨基肽酶,aminopeptidase N,APN)基因片段,克隆和测序结果表明,测序得到的812 bp的片段编码270个氨基酸残基,且该片段在阅读框内.通过同源性分析发现,其核苷酸序列与棉铃虫(H. armigera)、澳洲棉铃虫(H. punctigera)、烟芽夜蛾(H. virescens)、舞毒蛾(Lymantria dispar)、小菜蛾(Plutella xylostella)、印度谷螟(Plodia interpunctella)RC688品系和HD198品系、烟草天蛾(Manduca sexta)和家蚕(Bombyx mori)的Cry1Ac受体蛋白基因的同源性分别为97.0%,90.0%,78.0%,63.5%,55.0%,60.3%,61.2%,55.0%和59.0%.推导的烟夜蛾Cry1Ac受体蛋白基因的氨基酸序列与棉铃虫、烟芽夜蛾、斑实夜蛾、舞毒蛾的氨基酸序列同源性分别为95.6%,81.0%,82.7%和55.7%.该片段编码的氨基酸属于氨肽酶家族,与烟夜蛾对Bt Cry1Ac毒素的抗性有关.

  4. DYNAMICS OF EXPRESSION OF Bt INSECTICIDAL PROTEIN GENE IN THE TRANSGENIC RAPESEED AND ITS INSECT- RESISTANCE ACTIVITY%Bt杀虫蛋白基因在转基因油菜中的动态表达与其抗虫性研究

    Institute of Scientific and Technical Information of China (English)

    林良斌; 官春云; 杨焕文; 李永忠; 杨志新

    2001-01-01

    采用ELISA方法检测Bt杀虫基因在转基因油菜植株中的表达。试验结果表明:在第3至第9叶期Bt杀虫蛋白基因在转基因油莱植株中稳定、高效地表达,Bt杀虫蛋白的表达量为170ng/25mg~260ng25/mg鲜叶,占植物可溶性蛋白的0.067%~0.105%,其抗虫效果高达42.5%~80.0%。但从第11叶期后Bt杀虫蛋白表达量显著地降低,只有7ng/25mg~50ng/25mg鲜叶,占植物可溶性蛋白的0.003%~0.02%。%ELISA was adopted to analyze the expression of the insecticidal protein gene Bt in the transgenic rapeseed plants. The results showed that the expression of the protein gene was stable and highly efficient at the 3~9-leaf stage of the plants, with an expressing quantity of 170~260ng per25 mg fresh leaf,accounting for 0.067%~0.105% of the total soluble proteins of the plant and with an insecticidal activity of ashigh as 42.5%~80.0% .From the 11-leaf stage onward,the expressing quantity of Bt dropped sharply, being 7~50 ng per 25 mg fiesh leaf, accounting for 0.003%~0.02% of the total soluble proteins of the plants.

  5. Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy.

    Science.gov (United States)

    Kumar, Suresh; Chandra, Amaresh; Pandey, K C

    2008-09-01

    Introduction of DDT (dichloro-diphenyl-trichloroethane) and following move towards indiscriminate use of synthetic chemical insecticides led to the contamination of water and food sources, poisoning of non-target beneficial insects and development of insect-pests resistant to the chemical insecticides. Increased public concems about the adverse environmental effects of indiscriminate use of chemical insecticides prompted search of altemative methods for insect-pest control. One of the promising alternatives has been the use of biological control agents. There is well-documented history of safe application of Bt (B. thuringiensis, a gram positive soil bacterium) as effective biopesticides and a number of reports of expression of delta-endotoxin gene(s) in crop plants are available. Only a few insecticidal sprays are required on Bt transgenic crops, which not only save cost and time, but also reduce health risks. Insects exhibit remarkable ability to develop resistance to different insecticidal compounds, which raises concern about the unsystematic use of Bt transgenic technology also. Though resistance to Bt products among insect species under field conditions has been rare, laboratory studies show that insects are capable of developing high levels of resistance to one ormore Cry proteins. Now it is generally agreed that 'high-dose/refuge strategy' is the most promising and practical approach to prolong the effectiveness of Bt toxins. Although manybiosafety concerns, ethical and moral issues exist, area under Bt transgenic crops is rapidly increasing and they are cultivated on more than 32 million hectares world over Even after reservation of European Union (EU) for acceptance of geneticaly modified (GM) crops, 6 out of 25 countries have already adopted Bt crops and many otherindustrial countries will adopt Bt transgenic crops in near future. While the modem biotechnology has been recognized to have a great potential for the promotion of human well-being, adoption

  6. Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize.

    Directory of Open Access Journals (Sweden)

    Fangneng Huang

    Full Text Available Evolution of insect resistance to transgenic crops containing Bacillus thuringiensis (Bt genes is a serious threat to the sustainability of this technology. However, field resistance related to the reduced efficacy of Bt maize has not been documented in any lepidopteran pest in the mainland U.S. after 18 years of intensive Bt maize planting. Here we report compelling evidence of field resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith, to Cry1F maize (TC 3507 in the southeastern region of the U.S. An F2 screen showed a surprisingly high (0.293 Cry1F resistance allele frequency in a population collected in 2011 from non-Bt maize in south Florida. Field populations from non-Bt maize in 2012-2013 exhibited 18.8-fold to >85.4-fold resistance to purified Cry1F protein and those collected from unexpectedly damaged Bt maize plants at several locations in Florida and North Carolina had >85.4-fold resistance. In addition, reduced efficacy and control failure of Cry1F maize against natural populations of S. frugiperda were documented in field trials using Cry1F-based and pyramided Bt maize products in south Florida. The Cry1F-resistant S. frugiperda also showed a low level of cross-resistance to Cry1A.105 and related maize products, but not to Cry2Ab2 or Vip3A. The occurrence of Cry1F resistance in the U.S. mainland populations of S. frugiperda likely represents migration of insects from Puerto Rico, indicating the great challenges faced in achieving effective resistance management for long-distance migratory pests like S. frugiperda.

  7. Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize.

    Science.gov (United States)

    Huang, Fangneng; Qureshi, Jawwad A; Meagher, Robert L; Reisig, Dominic D; Head, Graham P; Andow, David A; Ni, Xinzi; Kerns, David; Buntin, G David; Niu, Ying; Yang, Fei; Dangal, Vikash

    2014-01-01

    Evolution of insect resistance to transgenic crops containing Bacillus thuringiensis (Bt) genes is a serious threat to the sustainability of this technology. However, field resistance related to the reduced efficacy of Bt maize has not been documented in any lepidopteran pest in the mainland U.S. after 18 years of intensive Bt maize planting. Here we report compelling evidence of field resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith), to Cry1F maize (TC 3507) in the southeastern region of the U.S. An F2 screen showed a surprisingly high (0.293) Cry1F resistance allele frequency in a population collected in 2011 from non-Bt maize in south Florida. Field populations from non-Bt maize in 2012-2013 exhibited 18.8-fold to >85.4-fold resistance to purified Cry1F protein and those collected from unexpectedly damaged Bt maize plants at several locations in Florida and North Carolina had >85.4-fold resistance. In addition, reduced efficacy and control failure of Cry1F maize against natural populations of S. frugiperda were documented in field trials using Cry1F-based and pyramided Bt maize products in south Florida. The Cry1F-resistant S. frugiperda also showed a low level of cross-resistance to Cry1A.105 and related maize products, but not to Cry2Ab2 or Vip3A. The occurrence of Cry1F resistance in the U.S. mainland populations of S. frugiperda likely represents migration of insects from Puerto Rico, indicating the great challenges faced in achieving effective resistance management for long-distance migratory pests like S. frugiperda.

  8. Daxx Interacts With Phage ΦBT1 Integrase and Inhibits Its Recombination%Daxx与ΦBT1相互作用并抑制其重组活性

    Institute of Scientific and Technical Information of China (English)

    王臻臻; 王然; 李文娟; 薛京伦; 陈金中

    2013-01-01

    The bacterial phage ΦBT1 integrase is a promising tool due to its site-specific transgene character.It enriches the site-specific transgenic tools and provides the possibility for multiple site-specific transgenic manipulations.To improve its safety as a vector of gene therapy,it is necessary to investigate the potential interactions between ΦBT1 and proteins in mammalian host cells.Yeast mating and co-immunoprecipitation assay indicated that a tetrapeptide 433RFAL436 in ΦBT1 integrase was responsible for ΦBT1 and Daxx interaction.It was also demonstrated that over-expression of Daxx could reduce ΦBT1 mediated recombination rate in 293T cells by using ΦBT1 report system.It is the first time to identify a cellular protein interacting with ΦBT1 integrase and inhibiting its recombination efficiency.This result might be useful for improving the ΦBT1 integrase mediated transgene methods and directing the selection of target cells for ΦBT1 integrase.%噬菌体整合酶BT1因其具有可介导转基因位点特异性整合的能力而成为了基因治疗中一种有效的工具,它丰富了转基因载体的选择,并使得多位点特异性整合成为可能.为了能够更加安全有效地利用ΦBT1整合酶作为基因治疗载体,有必要了解ΦBT1整合酶与宿主细胞内蛋白质相互作用的情况.酵母配对实验与免疫共沉淀实验揭示了ΦBT1整合酶中4个氨基酸433RFAL436对整合酶与PML-NBs蛋白Daxx的结合起到了关键作用.通过进一步构建并利用ΦBT1整合酶哺乳动物细胞报告系统,证实过表达Daxx会抑制ΦBT1整合酶在293T细胞中的重组效率.以上结果表明,细胞内的蛋白质可以与ΦBT1整合酶发生相互作用并抑制其重组活性,对于改善ΦBT1整合酶介导的转基因操作以及选择ΦBT1整合酶靶细胞方面具有重要的参考意义.

  9. Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India.

    Science.gov (United States)

    Gujar, G T; Kalia, V; Kumari, A; Singh, B P; Mittal, A; Nair, R; Mohan, M

    2007-07-01

    Transgenic cotton that produces insecticidal proteins from Bacillus thuringiensis (Bt), often referred to as Bt cotton, is widely grown in many countries. Bt cotton with a single cry1A gene and stacked also with cry2A gene has provided satisfactory protection against the damage by the lepidopteran bollworms, especially the cotton bollworm, Helicoverpa armigera (Hübner) which is considered as a key pest. The baseline susceptibility of the larvae of H. armigera to Cry1Ac and other toxins carried out in many countries has provided a basis for monitoring resistance. There is no evidence of development of field-level resistance in H. armigera leading to the failure of Bt cotton crop anywhere in the world, despite the fact that Bt cotton was grown on the largest ever area of 12.1 million hectares in 2006 and its cumulative cultivation over the last 11 years has surpassed the annual cotton area in the world. Nevertheless, the Bt resistance management has become a necessity to sustain Bt cotton and other transgenic crops in view of potential of the target insects to evolve Cry toxin resistance.

  10. Bacillus thuringiensis (Bt for the Control of Insect Pests in Stored Tobacco: A Review

    Directory of Open Access Journals (Sweden)

    Blanc M

    2014-12-01

    Full Text Available Among the insect species causing infestations and serious damages to stored commodities, the cigarette beetle, Lasiodermaserricorne (F. and the tobacco moth, Ephestiaelutella (Hübner are the major pests of both raw and manufactured tobacco. Post-harvest tobacco control is achieved through sanitation, insect monitoring, and fumigation with phosphine. However, insect resistance to phosphine and control failures have been reported, and increasing regulatory pressure is being exerted on fumigants. Biological control agents such as Bacillus thuringiensis (Bt appear to be environmentally sound and potentially viable alternatives to chemical control. Bt is a bacterium that produces insecticidal crystal proteins during the sporulation phase and has been, for more than 40 years, the microorganism of choice for the biocontrol of phytophagous insect pests. It produces insecticidal crystal proteins that display specific activity against certain orders of insects and become active upon ingestion by the insect. Our laboratory has conducted extensive research and worldwide surveys to evaluate the presence of Bt in stored tobacco and has confirmed previous findings indicating that Bt may be considered part of the naturally occurring phylloplanemicroflora. Several Bt strains were isolated from tobacco and characterized by DNA and protein profiling. The insecticidal activity of selected strains and of two commercial products against the larvae of L. serricorne was determined by diet incorporation assays. Moreover, the stability of Bt spores and crystal proteins on cured tobacco leaves was assessed over a storage period of time of 30 months. Cigarette prototypes were made with Bt-treated tobacco. Standard cigarette and smoke evaluations did not show any significant difference between the test and control cigarettes. Although the tested Bt strains and products did not yield satisfactory levels of mortality at the required times and doses, the experimental results

  11. Modeling evolution of resistance of sugarcane borer (Lepidoptera: Crambidae) to transgenic Bt corn

    NARCIS (Netherlands)

    Kang, J.; Huang, F.; Onstad, D. W.

    2014-01-01

    Diatraea saccharalis (F.) (Lepidoptera: Crambidae) is a target pest of transgenic corn expressing Bacillus thuringiensis (Bt) protein, and the first evidence of resistance by D. saccharalis to Cry1Ab corn was detected in a field population in northeast Louisiana in 2004. We used a model of populatio

  12. Incipient resistance of Helicoverpa punctigera to the Cry2Ab Bt toxin in Bollgard II cotton.

    Directory of Open Access Journals (Sweden)

    Sharon Downes

    Full Text Available Combinations of dissimilar insecticidal proteins ("pyramids" within transgenic plants are predicted to delay the evolution of pest resistance for significantly longer than crops expressing a single transgene. Field-evolved resistance to Bacillus thuringiensis (Bt transgenic crops has been reported for first generation, single-toxin varieties and the Cry1 class of proteins. Our five year data set shows a significant exponential increase in the frequency of alleles conferring Cry2Ab resistance in Australian field populations of Helicoverpa punctigera since the adoption of a second generation, two-toxin Bt cotton expressing this insecticidal protein. Furthermore, the frequency of cry2Ab resistance alleles in populations from cropping areas is 8-fold higher than that found for populations from non-cropping regions. This report of field evolved resistance to a protein in a dual-toxin Bt-crop has precisely fulfilled the intended function of monitoring for resistance; namely, to provide an early warning of increases in frequencies that may lead to potential failures of the transgenic technology. Furthermore, it demonstrates that pyramids are not 'bullet proof' and that rapid evolution to Bt toxins in the Cry2 class is possible.

  13. Impact of corn earworm injury on yield of transgenic corn producing Bt toxins in the Carolinas.

    Science.gov (United States)

    Reay-Jones, Francis P F; Reisig, Dominic D

    2014-06-01

    Transgenic corn, Zea mays L., hybrids expressing insecticidal Cry proteins from Bacillus thuringiensis (Bt) and insecticide applications to suppress injury from Helicoverpa zea (Boddie) were evaluated in Florence, SC, and in Plymouth, NC, in 2012 and 2013. Based on kernel area injured, insecticide applications (chlorantraniliprole) every 3-4 d from R1 until H. zea had cycled out of corn reduced injury by 80-93% in Florence and 94-95% in Plymouth. Despite intensive applications of insecticide (13-18 per trial), limited injury still occurred in all treated plots in 2012, except in DKC 68-03 (Genuity VT Double PRO), based on kernels injured (both locations) and proportion of injured ears (Florence only). In 2013, ear injury was low in Plymouth, with no kernel injury in any insecticide-treated plots, except P1498R (non-Bt) and P1498YHR (Optimum Intrasect). Injury in Florence in 2013 did not occur in treated plots of DKC 68-04 (non-Bt), DKC 68-03 (Genuity VT Double PRO), and N785-3111 (Agrisure Viptera). Yields were not significantly affected by insecticide treatment and were not statistically different among near-isolines with and without Bt traits. Yields were not significantly associated with kernel injury based on regression analyses. The value of using Bt corn hybrids to manage H. zea is discussed.

  14. Practice Tests for the TOEFL iBT

    CERN Document Server

    Stirling, Bruce

    2012-01-01

    Practice Tests for the TOEFL iBT contains four TOEFL tests, with answer keys. Perfect for self-study and classrooms. Each TOEFL iBT Practice Test...* reflects the design of the official TOEFL internet-based test* tests academic English-language proficiency expected of university students in the United States, Canada, Australia, New Zealand, Ireland, Scotland and England* provides extra practice before you take the official TOEFL iBT* will help you identify those areas of academic English you need to improve for a higher TOEFL iBT score* will give you an unofficial, TOEFL iBT range score within

  15. Commercial production of transgenic Bt insect-resistant cotton varieties and the resistance management for bollworm (Helicoverpa armigera Hubner)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    There are currently three kinds of transgenic Bt insect-resistant cotton germplasm lines, Shanxi 94-24, Zhongxin 94 and R19, in China. They showed high resistance to the neonate larvae of bollworm (Helicoverpa armigera). Transgenic Bt insect-resistant cotton varieties or hybrids have been bred using the three kinds of germplasm lines as parents. Our researches reveal that there exist different expressions in resistant level at different developmental stages in the three categories of germplasm lines. When neonate larvae are fed with leaves of cotton plant at the seeding stage with less than 10 leaves on the main stem, the mortality of the neonate larvae is 100%, but the resistance level will decline at later season. When Bt gene has been transferred to the cotton genome, it can be steadily transferred to the progeny, the level of resistance to bollworm keeps fundamentally uniform. Such insects as tobacco budworm (Heliothis virencens) in laboratory directive selection are very apt to produce resistance to the Bt insecticidal crystal protein. From the present crop system of cotton region in the Yangtze and Yellow River Valleys, and the expression characteristic of transgenic Bt resistant cotton, we suggest that the resistance to toxin protein in bollworm is not apt to be produced if the transgenic Bt insect-resistant cotton varieties are released and grown in the regions except in the Xinjiang cotton region. The managing strategies to delay or retard the resistance are discussed.

  16. Natural enemies delay insect resistance to Bt crops.

    Science.gov (United States)

    Liu, Xiaoxia; Chen, Mao; Collins, Hilda L; Onstad, David W; Roush, Richard T; Zhang, Qingwen; Earle, Elizabeth D; Shelton, Anthony M

    2014-01-01

    We investigated whether development of resistance to a Bt crop in the presence of a natural enemy would be slower than without the natural enemy and whether biological control, in conjunction with a Bt crop, could effectively suppress the pest population. Additionally, we investigated whether insecticide-sprayed refuges of non-Bt crops would delay or accelerate resistance to the Bt crop. We used a system of Bt broccoli expressing Cry1Ac, a population of the pest Plutella xylostella with a low frequency of individuals resistant to Cry1Ac and the insecticide spinosad, and a natural enemy, Coleomegilla maculata, to conduct experiments over multiple generations. The results demonstrated that after 6 generations P. xylostella populations were very low in the treatment containing C. maculata and unsprayed non-Bt refuge plants. Furthermore, resistance to Bt plants evolved significantly slower in this treatment. In contrast, Bt plants with no refuge were completely defoliated in treatments without C. maculata after 4-5 generations. In the treatment containing sprayed non-Bt refuge plants and C. maculata, the P. xylostella population was low, although the speed of resistance selection to Cry1Ac was significantly increased. These data demonstrate that natural enemies can delay resistance to Bt plants and have significant implications for integrated pest management (IPM) with Bt crops.

  17. Natural enemies delay insect resistance to Bt crops.

    Directory of Open Access Journals (Sweden)

    Xiaoxia Liu

    Full Text Available We investigated whether development of resistance to a Bt crop in the presence of a natural enemy would be slower than without the natural enemy and whether biological control, in conjunction with a Bt crop, could effectively suppress the pest population. Additionally, we investigated whether insecticide-sprayed refuges of non-Bt crops would delay or accelerate resistance to the Bt crop. We used a system of Bt broccoli expressing Cry1Ac, a population of the pest Plutella xylostella with a low frequency of individuals resistant to Cry1Ac and the insecticide spinosad, and a natural enemy, Coleomegilla maculata, to conduct experiments over multiple generations. The results demonstrated that after 6 generations P. xylostella populations were very low in the treatment containing C. maculata and unsprayed non-Bt refuge plants. Furthermore, resistance to Bt plants evolved significantly slower in this treatment. In contrast, Bt plants with no refuge were completely defoliated in treatments without C. maculata after 4-5 generations. In the treatment containing sprayed non-Bt refuge plants and C. maculata, the P. xylostella population was low, although the speed of resistance selection to Cry1Ac was significantly increased. These data demonstrate that natural enemies can delay resistance to Bt plants and have significant implications for integrated pest management (IPM with Bt crops.

  18. BT's adoption of customer centric design.

    Science.gov (United States)

    Chamberlain, Mark; Esquivel, Jacqueline; Miller, Fiona; Patmore, Jeff

    2015-01-01

    Between 2005 and 2010 BT underwent a major transformation from a company with a special section devoted to 'older and disabled consumers' to a company with an inclusive design strategy. The mainstreaming of these issues responded to a demand for better, more user-friendly communications products and growing awareness of the importance of previously marginalised consumer groups. It also took place alongside the development and publication of BS7000-6, a guide to inclusive design management. Based on several product design case studies, this paper reflects on how and why this transformation was seen as necessary for future success, and how the transformation was achieved. The evolution of BT's approach has continued since, but this paper looks back in time, and documents the transformation up to 2010 and reflects the state of the company in 2010 rather than at the time of publication.

  19. 捷波朗BT8010

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    捷波朗最新发布的蓝牙耳机产品BT8010采用了独特的双听筒设计,支持电话簿和均衡器等个性化功能、OLED显示屏对比度良好,“Jog Wheel缓动轮”设计大大提高了产品的操作感受。

  20. Bt resistance in Australian insect pest species.

    Science.gov (United States)

    Downes, Sharon; Walsh, Tom; Tay, Wee Tek

    2016-06-01

    Bt cotton was initially deployed in Australia in the mid-1990s to control the polyphagous pest Helicoverpa armigera (Hübner) which was intractably resistant to synthetic chemistries. A conservative strategy was enforced and resistance to first generation single toxin technology was managed. A decade later, shortly after the release of dual toxin cotton, high baseline frequencies of alleles conferring resistance to one of its components prompted a reassessment of the thinking behind the potential risks to this technology. Several reviews detail the characteristics of this resistance and the nuances of deploying first and second generation Bt cotton in Australia. Here we explore recent advances and future possibilities to estimate Bt resistance in Australian pest species and define what we see as the critical data for enabling effective pre-emptive strategies. We also foreshadow the imminent deployment of three toxin (Cry1Ac, Cry2Ab, Vip3A) Bollgard 3 cotton, and examine aspects of resistance to its novel component, Vip3A, that we believe may impact on its stewardship.

  1. A critical assessment of the effects of Bt transgenic plants on parasitoids.

    Directory of Open Access Journals (Sweden)

    Mao Chen

    Full Text Available The ecological safety of transgenic insecticidal plants expressing crystal proteins (Cry toxins from the bacterium Bacillus thuringiensis (Bt continues to be debated. Much of the debate has focused on nontarget organisms, especially predators and parasitoids that help control populations of pest insects in many crops. Although many studies have been conducted on predators, few reports have examined parasitoids but some of them have reported negative impacts. None of the previous reports were able to clearly characterize the cause of the negative impact. In order to provide a critical assessment, we used a novel paradigm consisting of a strain of the insect pest, Plutella xylostella (herbivore, resistant to Cry1C and allowed it to feed on Bt plants and then become parasitized by Diadegma insulare, an important endoparasitoid of P. xylostella. Our results indicated that the parasitoid was exposed to a biologically active form of the Cy1C protein while in the host but was not harmed by such exposure. Parallel studies conducted with several commonly used insecticides indicated they significantly reduced parasitism rates on strains of P. xylostella resistant to these insecticides. These results provide the first clear evidence of the lack of hazard to a parasitoid by a Bt plant, compared to traditional insecticides, and describe a test to rigorously evaluate the risks Bt plants pose to predators and parasitoids.

  2. Detection and monitoring of insect resistance to transgenic Bt crops

    Institute of Scientific and Technical Information of China (English)

    FANGNENG HUANG

    2006-01-01

    Transgenic crops expressing Bacillus thuringiensis (Bt) endotoxins have become one of the most important tools for managing corn and cotton insect pests in the US and other countries. The widespread adoption of transgenic Bt crops could place a high degree of selection pressure on the target insect populations and accelerate development of resistance, raising concerns about the long-term durability of Bt plants as an effective pest management tool. Conservation of Bt susceptibility in insects has become one of the most active research areas in modern agriculture. One of the key factors for a successful Bt resistance management plan is to have a cost-effective monitoring system that can provide information on: (i) the initial Bt resistance allele frequencies at low levels in field insect populations; and (ii) early shifts in Bt resistance allele frequencies so that proactive measures for managing resistance can be deployed well before field control failures. Developing such a monitoring program has been difficult because: (i) resistance traits that occur at very low frequencies are hard to detect; (ii) many factors affect the sensitivity and accuracy of a Bt resistance monitoring program; and (iii) monitoring resistance is costly. Several novel methods for detecting Bt resistance alleles developed during the last decade have made a cost-effective monitoring system possible. Future studies should focus on how to improve and standardize the methodologies for insect sampling and Bt resistance detection.

  3. Exposure and nontarget effects of transgenic Bt corn debris in streams.

    Science.gov (United States)

    Jensen, Peter D; Dively, Galen P; Swan, Christopher M; Lamp, William O

    2010-04-01

    Corn (Zea mays L.) transformed with a gene from the bacterium Bacillus thuringiensis (Bt) comprises 49% of all corn in the United States. The input of senesced corn tissue expressing the Bt gene may impact stream-inhabiting invertebrates that process plant debris, especially trichopteran species related to the target group of lepidopteran pests. Our goal was to assess risk associated with transgenic corn debris entering streams. First, we show the input of corn tissue after harvest was extended over months in a stream. Second, using laboratory bioassays based on European corn borer [Ostrinia nubilalis (Hübner)], we found no bioactivity of Cry1Ab protein in senesced corn tissue after 2 wk of exposure to terrestrial or aquatic environments. Third, we show that Bt near-isolines modify growth and survivorship of some species of invertebrates. Of the four nontarget invertebrate species fed Bt near-isolines, growth of two closely related trichopterans was not negatively affected, whereas a tipulid crane fly exhibited reduced growth rates, and an isopod exhibited reduced growth and survivorship on the Cry1Ab near-isoline but not on the stacked Cry1Ab + Cry3Bb1 near-isoline. Because of lack of evidence of bioactivity of Bt after 2 wk and because of lack of nontarget effects on the stacked near-isoline, we suggest that tissue-mediated differences, and not the presence of the Cry1Ab protein, caused the different responses among the species. Overall, our results provide evidence that adverse effects to aquatic nontarget shredders involve complex interactions arising from plant genetics and environment that cannot be ascribed to the presence of Cry1Ab proteins.

  4. Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops.

    Science.gov (United States)

    Jin, Lin; Zhang, Haonan; Lu, Yanhui; Yang, Yihua; Wu, Kongming; Tabashnik, Bruce E; Wu, Yidong

    2015-02-01

    The 'natural refuge strategy" for delaying insect resistance to transgenic cotton that produces insecticidal proteins from Bacillus thuringiensis (Bt) relies on refuges of host plants other than cotton that do not make Bt toxins. We tested this widely adopted strategy by comparing predictions from modeling with data from a four-year field study of cotton bollworm (Helicoverpa armigera) resistance to transgenic cotton producing Bt toxin Cry1Ac in six provinces of northern China. Bioassay data revealed that the percentage of resistant insects increased from 0.93% in 2010 to 5.5% in 2013. Modeling predicted that the percentage of resistant insects would exceed 98% in 2013 without natural refuges, but would increase to only 1.1% if natural refuges were as effective as non-Bt cotton refuges. Therefore, the results imply that natural refuges delayed resistance, but were not as effective as an equivalent area of non-Bt cotton refuges. The percentage of resistant insects with nonrecessive inheritance of resistance increased from 37% in 2010 to 84% in 2013. Switching to Bt cotton producing two or more toxins and integrating other control tactics could slow further increases in resistance.

  5. Consequences for Protaphorura armata (Collembola: Onychiuridae) following exposure to genetically modified Bacillus thuringiensis (Bt) maize and non-Bt maize

    Energy Technology Data Exchange (ETDEWEB)

    Heckmann, Lars-Henrik [National Environmental Research Institute, Department of Terrestrial Ecology, Vejlsovej 25, PO Box 314, DK-8600 Silkeborg (Denmark); Griffiths, Bryan S. [Scottish Crop Research Institute, Department of Soil Plant Dynamics, Invergowrie, Dundee DD2 5DA (United Kingdom); Caul, Sandra [Scottish Crop Research Institute, Department of Soil Plant Dynamics, Invergowrie, Dundee DD2 5DA (United Kingdom); Thompson, Jacqueline [Scottish Crop Research Institute, Department of Soil Plant Dynamics, Invergowrie, Dundee DD2 5DA (United Kingdom); Pusztai-Carey, Marianne [Case Western Reserve University, Cleveland, OH 44106 (United States); Moar, William J. [Auburn University, Department of Entomology and Plant Pathology, Auburn, AL 36849 (United States); Andersen, Mathias N. [Danish Institute of Agricultural Sciences, Research Centre Foulum, PO Box 50, DK-8830 Tjele (Denmark); Krogh, Paul Henning [National Environmental Research Institute, Department of Terrestrial Ecology, Vejlsovej 25, PO Box 314, DK-8600 Silkeborg (Denmark)]. E-mail: phk@dmu.dk

    2006-07-15

    Studies on the effect of genetically modified Bacillus thuringiensis (Bt) crops on true soil dwelling non-target arthropods are scarce. The objective of this study was to assess the influence of a 4-week exposure to two Bt maize varieties (Cry1Ab) Cascade and MEB307 on the collembolan Protaphorura armata. For comparison three non-Bt maize varieties, Rivaldo (isogenic to Cascade), Monumental (isogenic to MEB307) and DK242, and two control diets based on baker's yeast (uncontaminated and contaminated with Bt toxin Cry1Ab) were also tested. Due to a lower C:N ratio, individuals reared on yeast performed significantly better in all of the measured endpoints than those reared on maize. P. armata performed equally well when reared on two Bt and three non-Bt maize varieties. Although there were no negative effects of Bt maize in this experiment, we recommend future studies on Bt crops to focus on species interactions in long-term, multi-species experiments. - Protaphorura armata performed equally well when reared on two Bt and three non-Bt maize varieties.

  6. Dispersal and movement behavior of neonate European corn borer (Lepidoptera: Crambidae) on non-Bt and transgenic Bt corn.

    Science.gov (United States)

    Goldstein, Jessica A; Mason, Charles E; Pesek, John

    2010-04-01

    Neonate movement and dispersal behavior of the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), were investigated under controlled conditions on Bacillus thuringiensis (Bt) and non-Bt corn, Zea mays L., to assess plant abandonment, dispersal from their natal plant, and silking behavior after Bt and non-Bt preexposure. With continuous airflow, neonates on a Bt corn plant for 24 h abandoned that plant 1.78 times more frequently than neonates on a non-Bt corn plant. Indirect evidence indicated that at least one third of the neonates were capable of ballooning within 24 h. In the greenhouse, some neonates were recovered after 24 h from plants 76 and 152 cm away that likely ballooned from their natal plant. After 1 h of preexposure on a Bt corn leaf, neonates placed on a new corn leaf and observed for 10 min began silking off of a new Bt leaf significantly sooner than a new non-Bt leaf. Results suggest that neonates are unable to detect Bt in the corn within 10 min but that they can detect it within the first hour.

  7. TOEFL strategies a complete guide to the iBT

    CERN Document Server

    Stirling, Bruce

    2016-01-01

    TOEFL students all ask: How can I get a high TOEFL iBT score? Answer: Learn argument scoring strategies. Why? Because the TOEFL iBT recycles opinion-based and fact-based arguments for testing purposes from start to finish. In other words, the TOEFL iBT is all arguments. That's right, all arguments. If you want a high score, you need essential argument scoring strategies. That is what TOEFL STRATEGIES A COMPLETE GUIDE gives you, and more!

  8. The development and status of Bt rice in China.

    Science.gov (United States)

    Li, Yunhe; Hallerman, Eric M; Liu, Qingsong; Wu, Kongming; Peng, Yufa

    2016-03-01

    Multiple lines of transgenic rice expressing insecticidal genes from the bacterium Bacillus thuringiensis (Bt) have been developed in China, posing the prospect of increases in production with decreased application of pesticides. We explore the issues facing adoption of Bt rice for commercial production in China. A body of safety assessment work on Bt rice has shown that Bt rice poses a negligible risk to the environment and that Bt rice products are as safe as non-Bt control rice products as food. China has a relatively well-developed regulatory system for risk assessment and management of genetically modified (GM) plants; however, decision-making regarding approval of commercial production has become politicized, and two Bt rice lines that otherwise were ready have not been allowed to enter the Chinese agricultural system. We predict that Chinese farmers would value the prospect of increased yield with decreased use of pesticide and would readily adopt production of Bt rice. That Bt rice lines may not be commercialized in the near future we attribute to social pressures, largely due to the low level of understanding and acceptance of GM crops by Chinese consumers. Hence, enhancing communication of GM crop science-related issues to the public is an important, unmet need. While the dynamics of each issue are particular to China, they typify those in many countries where adoption of GM crops has been not been rapid; hence, the assessment of these dynamics might inform resolution of these issues in other countries.

  9. TMD factorization and evolution at large $b_T$

    Energy Technology Data Exchange (ETDEWEB)

    Collins, John [Pennsylvania State Univ., University Park, PA (United States); Rogers, Ted [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States)

    2015-07-20

    In using transverse-momentum-dependent (TMD) parton densities and fragmentation functions, important non-perturbative information is at large transverse position $b_T$. This concerns both the TMD functions and their evolution. Fits to high energy data tend to predict too rapid evolution when extrapolated to low energies where larger values of $b_T$ dominate. I summarize a new analysis of the issues. It results in a proposal for much weaker $b_T$ dependence at large $b_T$ for the evolution kernel, while preserving the accuracy of the existing fits. The results are particularly important for using transverse-spin-dependent functions like the Sivers function.

  10. Two BT-VSA Solvable Models

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Variable separation approach that is based on Backlund transformation (BT-VSA) is extended to solve the (3+1)-dimensional Jimbo-Miwa equation and the (1+1)-dimensional Drinfel'd-Sokolov-Wilson equation. New ex act solutions, which include some low-dimensional functions, are obtained. One of the low-dimensional function is arbitrary and another must satisfy a Riccati equation. Some new localized excitations can be derived from (2+1)-dimensional localized excitations and for simplification, we omit those in this letter.

  11. Testing pollen of single and stacked insect-resistant Bt-maize on in vitro reared honey bee larvae.

    Science.gov (United States)

    Hendriksma, Harmen P; Härtel, Stephan; Steffan-Dewenter, Ingolf

    2011-01-01

    The ecologically and economic important honey bee (Apis mellifera) is a key non-target arthropod species in environmental risk assessment (ERA) of genetically modified (GM) crops. Honey bee larvae are directly exposed to transgenic products by the consumption of GM pollen. But most ERA studies only consider responses of adult bees, although Bt-proteins primarily affect the larval phases of target organisms. We adopted an in vitro larvae rearing system, to assess lethal and sublethal effects of Bt-pollen consumption in a standardized eco-toxicological bioassay. The effects of pollen from two Bt-maize cultivars, one expressing a single and the other a total of three Bt-proteins, on the survival and prepupae weight of honey bee larvae were analyzed. The control treatments included pollen from three non-transgenic maize varieties and of Heliconia rostrata. Three days old larvae were fed the realistic exposure dose of 2 mg pollen within the semi-artificial diet. The larvae were monitored over 120 h, until the prepupal stage, where larvae terminate feeding and growing. Neither single nor stacked Bt-maize pollen showed an adverse effect on larval survival and the prepupal weight. In contrast, feeding of H. rostrata pollen caused significant toxic effects. The results of this study indicate that pollen of the tested Bt-varieties does not harm the development of in vitro reared A. mellifera larvae. To sustain the ecosystem service of pollination, Bt-impact on A. mellifera should always be a crucial part of regulatory biosafety assessments. We suggest that our approach of feeding GM pollen on in vitro reared honey bee larvae is well suited of becoming a standard bioassay in regulatory risk assessments schemes of GM crops.

  12. Testing pollen of single and stacked insect-resistant Bt-maize on in vitro reared honey bee larvae.

    Directory of Open Access Journals (Sweden)

    Harmen P Hendriksma

    Full Text Available The ecologically and economic important honey bee (Apis mellifera is a key non-target arthropod species in environmental risk assessment (ERA of genetically modified (GM crops. Honey bee larvae are directly exposed to transgenic products by the consumption of GM pollen. But most ERA studies only consider responses of adult bees, although Bt-proteins primarily affect the larval phases of target organisms. We adopted an in vitro larvae rearing system, to assess lethal and sublethal effects of Bt-pollen consumption in a standardized eco-toxicological bioassay. The effects of pollen from two Bt-maize cultivars, one expressing a single and the other a total of three Bt-proteins, on the survival and prepupae weight of honey bee larvae were analyzed. The control treatments included pollen from three non-transgenic maize varieties and of Heliconia rostrata. Three days old larvae were fed the realistic exposure dose of 2 mg pollen within the semi-artificial diet. The larvae were monitored over 120 h, until the prepupal stage, where larvae terminate feeding and growing. Neither single nor stacked Bt-maize pollen showed an adverse effect on larval survival and the prepupal weight. In contrast, feeding of H. rostrata pollen caused significant toxic effects. The results of this study indicate that pollen of the tested Bt-varieties does not harm the development of in vitro reared A. mellifera larvae. To sustain the ecosystem service of pollination, Bt-impact on A. mellifera should always be a crucial part of regulatory biosafety assessments. We suggest that our approach of feeding GM pollen on in vitro reared honey bee larvae is well suited of becoming a standard bioassay in regulatory risk assessments schemes of GM crops.

  13. Does Bt maize cultivation affect the non-target insect community in the agro ecosystem?

    Directory of Open Access Journals (Sweden)

    Daniela Chaves Resende

    2016-03-01

    Full Text Available ABSTRACT The cultivation of genetically modified crops in Brazil has led to the need to assess the impacts of this technology on non-target species. Under field conditions, the potential effect on insect biodiversity was evaluated by comparing a homogeneous corn field with conventional and transgenic maize, expressing different Bt proteins in seven counties of Minas Gerais, Brazil. The richness pattern of non-target insect species, secondary pests and natural enemies were observed. The results do not support the hypothesis that Bt protein affects insect biodiversity. The richness and diversity data of insects studied were dependent on the location and other factors, such as the use of insecticides, which may be a major factor where they are used.

  14. Ingestion of Bt corn pollen containing Cry1Ab/2Aj or Cry1Ac does not harm Propylea japonica larvae.

    Science.gov (United States)

    Liu, Yanmin; Liu, Qingsong; Wang, Yanan; Chen, Xiuping; Song, Xinyuan; Romeis, Jörg; Li, Yunhe; Peng, Yufa

    2016-03-23

    Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) is a prevalent pollen consumer in corn fields and is therefore exposed to insecticidal proteins contained in the pollen of insect-resistant transgenic corn cultivars expressing Cry proteins derived from Bacillus thuringiensis (Bt). In the present study, the potential effect of Cry1Ab/2Aj- or Cry1Ac-containing transgenic Bt corn pollen on the fitness of P. japonica larvae was evaluated. The results show that the larval developmental time was significantly shorter when P. japonica larvae were fed pollen from Bt corn cultivars rather than control pollen but that pupation rate, eclosion rate, and adult fresh weight were not significantly affected. In the feeding experiments, the stability of the Cry proteins in the food sources was confirmed. When Bt corn pollen passed through the gut of P. japonica, 23% of Cry1Ab/2Aj was digested. The results demonstrate that consumption of Bt corn pollen containing Cry1Ab/2Aj or Cry1Ac has no detrimental effect on P. japonica larvae; the shortened developmental time of larvae that consumed these proteins was likely attributable to unknown differences in the nutritional composition between the Bt-transgenic and control corn pollen.

  15. Effects of Bt-maize material on the life cycle of the land snail Cantareus aspersus

    DEFF Research Database (Denmark)

    Kramarz, Paulina; de Vaufleury, Annette; Gimbert, Frédéric

    2009-01-01

    Insect resistant Bt-maize (MON 810) expresses active Cry1Ab endotoxin derived from Bacillus thuringiensis (Bt). Snails constitute non-target soil species potentially exposed to Bt-toxin through consumption of plant material and soil in fields where transgenic plants have been grown. We studied...... the effect of the Cry1Ab toxin on survival, growth and egg hatchability of the snail Cantareus aspersus. From the age of 4 to 88 weeks, snails were fed either powdered Bt-maize or non-Bt-maize and exposed to soil samples collected after harvesting either the Bt-maize or non-Bt-maize. We applied four...... treatments: non-Bt soil + non-Bt-maize (MM); Bt soil + Bt-maize (BB), non-Bt soil + Bt-maize (MB), Bt soil + non-Bt-maize (BM). Eggs laid by snails not exposed to Bt-toxin were also exposed to the two types of soils (Bt and non-Bt soil). At the end of growth (47 weeks of exposure), snails exposed to Bt...

  16. Consumption of Bt Maize Pollen Containing Cry1Ie Does Not Negatively Affect Propylea japonica (Thunberg (Coleoptera: Coccinellidae

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2017-03-01

    Full Text Available Propylea japonica (Thunberg (Coleoptera: Coccinellidae are prevalent predators and pollen feeders in East Asian maize fields. They are therefore indirectly (via prey and directly (via pollen exposed to Cry proteins within Bt-transgenic maize fields. The effects of Cry1Ie-producing transgenic maize pollen on the fitness of P. japonica was assessed using two dietary-exposure experiments in the laboratory. In the first experiment, survival, larval developmental time, adult fresh weight, and fecundity did not differ between ladybirds consuming Bt or non-Bt maize pollen. In the second experiment, none of the tested lethal and sublethal parameters of P. japonica were negatively affected when fed a rapeseed pollen-based diet containing Cry1Ie protein at 200 μg/g dry weight of diet. In contrast, the larval developmental time, adult fresh weight, and fecundity of P. japonica were significantly adversely affected when fed diet containing the positive control compound E-64. In both experiments, the bioactivity of the Cry1Ie protein in the food sources was confirmed by bioassays with a Cry1Ie-sensitive lepidopteran species. These results indicated that P. japonica are not affected by the consumption of Cry1Ie-expressing maize pollen and are not sensitive to the Cry1Ie protein, suggesting that the growing of Bt maize expressing Cry1Ie protein will pose a negligible risk to P. japonica.

  17. Consumption of Bt Maize Pollen Containing Cry1Ie Does Not Negatively Affect Propylea japonica (Thunberg) (Coleoptera: Coccinellidae)

    Science.gov (United States)

    Li, Yonghui; Liu, Yanmin; Yin, Xinming; Romeis, Jörg; Song, Xinyuan; Chen, Xiuping; Geng, Lili; Peng, Yufa; Li, Yunhe

    2017-01-01

    Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) are prevalent predators and pollen feeders in East Asian maize fields. They are therefore indirectly (via prey) and directly (via pollen) exposed to Cry proteins within Bt-transgenic maize fields. The effects of Cry1Ie-producing transgenic maize pollen on the fitness of P. japonica was assessed using two dietary-exposure experiments in the laboratory. In the first experiment, survival, larval developmental time, adult fresh weight, and fecundity did not differ between ladybirds consuming Bt or non-Bt maize pollen. In the second experiment, none of the tested lethal and sublethal parameters of P. japonica were negatively affected when fed a rapeseed pollen-based diet containing Cry1Ie protein at 200 μg/g dry weight of diet. In contrast, the larval developmental time, adult fresh weight, and fecundity of P. japonica were significantly adversely affected when fed diet containing the positive control compound E-64. In both experiments, the bioactivity of the Cry1Ie protein in the food sources was confirmed by bioassays with a Cry1Ie-sensitive lepidopteran species. These results indicated that P. japonica are not affected by the consumption of Cry1Ie-expressing maize pollen and are not sensitive to the Cry1Ie protein, suggesting that the growing of Bt maize expressing Cry1Ie protein will pose a negligible risk to P. japonica. PMID:28300767

  18. Cotton bollworm resistance to Bt transgenic cotton: A case analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Cotton bollworm (Helicoverpa armigera) is one of the most serious insect pests of cotton. Transgenic cotton expressing Cry toxins derived from a soil bacterium, Bacillus thuringiensis (Bt), has been produced to target this pest. Bt cotton has been widely planted around the world, and this has resulted in efficient control of bollworm populations with reduced use of synthetic insecticides. However, evolution of resistance by this pest threatens the continued success of Bt cotton. To date, no field populations of bollworm have evolved significant levels of resistance; however, several laboratory-selected Cry-resistant strains of H. armigera have been obtained, which suggests that bollworm has the capacity to evolve resistance to Bt. The development of resistance to Bt is of great concern, and there is a vast body of research in this area aimed at ensuring the continued success of Bt cotton. Here, we review studies on the evolution of Bt resistance in H. armigera, focusing on the biochemical and molecular basis of Bt resistance. We also discuss resistance management strategies, and monitoring programs implemented in China, Australia, and India.

  19. Mis-splicing of the ABCC2 gene linked with Bt toxin resistance in Helicoverpa armigera.

    Science.gov (United States)

    Xiao, Yutao; Zhang, Tao; Liu, Chenxi; Heckel, David G; Li, Xianchun; Tabashnik, Bruce E; Wu, Kongming

    2014-08-26

    Toxins from the bacterium Bacillus thuringiensis (Bt) are used widely for insect control in sprays and transgenic plants, but their efficacy is reduced when pests evolve resistance. Previous work showed that mutations in a gene encoding the transporter protein ABCC2 are linked with resistance to Bt toxins Cry1Ab, Cry1Ac or both in four species of Lepidoptera. Here we compared the ABCC2 gene of Helicoverpa armigera (HaABCC2) between susceptible strains and a laboratory-selected strain with >1,000-fold resistance to Cry1Ac relative its susceptible parent strain. We discovered a 73-base pair (bp) insertion in the cDNA of the resistant strain that generates a premature stop codon expected to yield a truncated ABCC2 protein. Sequencing of genomic DNA revealed that this insertion is an intron that is not spliced out because of a 6-bp deletion at its splicing site. Analysis of progeny from crosses revealed tight genetic linkage between HaABCC2 and resistance to Cry1Ac. These results provide the first evidence that mis-splicing of a gene encoding an ABCC2 protein confers resistance to a Bt toxin.

  20. A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae.

    Directory of Open Access Journals (Sweden)

    Jian J Duan

    Full Text Available BACKGROUND: Honey bees (Apis mellifera L. are the most important pollinators of many agricultural crops worldwide and are a key test species used in the tiered safety assessment of genetically engineered insect-resistant crops. There is concern that widespread planting of these transgenic crops could harm honey bee populations. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a meta-analysis of 25 studies that independently assessed potential effects of Bt Cry proteins on honey bee survival (or mortality. Our results show that Bt Cry proteins used in genetically modified crops commercialized for control of lepidopteran and coleopteran pests do not negatively affect the survival of either honey bee larvae or adults in laboratory settings. CONCLUSIONS/SIGNIFICANCE: Although the additional stresses that honey bees face in the field could, in principle, modify their susceptibility to Cry proteins or lead to indirect effects, our findings support safety assessments that have not detected any direct negative effects of Bt crops for this vital insect pollinator.

  1. Call for Papers--Bt Research (ISSN 1925-1939)

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Bt Research (ISSN 1925-1939) is a new launched, open access and peer-reviewed journal that disseminates significant creative reviews and opinions or innovative research work in the area of Bacillus thuringiensis, including the isolation and identification of novel Bt strains, identification of novel Bt toxic genes and their functions, the insecticidal mechanism Bt toxics, Bt genetic engineering, transgenic Bt plants, the resistance mechanism of target-insect to Bt toxins, and the development of novel experimental methods and techniques for Bt Research.

  2. Cross-resistance and interactions between Bt toxins Cry1Ac and Cry2Ab against the cotton bollworm.

    Science.gov (United States)

    Wei, Jizhen; Guo, Yuyuan; Liang, Gemei; Wu, Kongming; Zhang, Jie; Tabashnik, Bruce E; Li, Xianchun

    2015-01-14

    To delay evolution of pest resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt), the "pyramid" strategy uses plants that produce two or more toxins that kill the same pest. We conducted laboratory diet experiments with the cotton bollworm, Helicoverpa armigera, to evaluate cross-resistance and interactions between two toxins in pyramided Bt cotton (Cry1Ac and Cry2Ab). Selection with Cry1Ac for 125 generations produced 1000-fold resistance to Cry1Ac and 6.8-fold cross-resistance to Cry2Ab. Selection with Cry2Ab for 29 generations caused 5.6-fold resistance to Cry2Ab and 61-fold cross-resistance to Cry1Ac. Without exposure to Bt toxins, resistance to both toxins decreased. For each of the four resistant strains examined, 67 to 100% of the combinations of Cry1Ac and Cry2Ab tested yielded higher than expected mortality, reflecting synergism between these two toxins. Results showing minor cross-resistance to Cry2Ab caused by selection with Cry1Ac and synergism between these two toxins against resistant insects suggest that plants producing both toxins could prolong the efficacy of Bt cotton against this pest in China. Including toxins against which no cross-resistance occurs and integrating Bt cotton with other control tactics could also increase the sustainability of management strategies.

  3. Generation of marker-free Bt transgenic indica rice and evaluation of its yellow stem borer resistance.

    Science.gov (United States)

    Kumar, S; Arul, L; Talwar, D

    2010-01-01

    We report on generation of marker-free (‘clean DNA’) transgenic rice (Oryza sativa), carrying minimal gene-expression-cassettes of the genes of interest, and evaluation of its resistance to yellow stem borer Scirpophaga incertulas (Lepidoptera: Pyralidae). The transgenic indica rice harbours a translational fusion of 2 different Bacillus thuringiensis (Bt) genes, namely cry1B-1Aa, driven by the green-tissue-specific phosphoenol pyruvate carboxylase (PEPC) promoter. Mature seed-derived calli of an elite indica rice cultivar Pusa Basmati-1 were co-bombarded with gene-expression-cassettes (clean DNA fragments) of the Bt gene and the marker hpt gene, to generate marker-free transgenic rice plants. The clean DNA fragments for bombardment were obtained by restriction digestion and gel extraction. Through biolistic transformation, 67 independent transformants were generated. Transformation frequency reached 3.3%, and 81% of the transgenic plants were co-transformants. Stable integration of the Bt gene was confirmed, and the insert copy number was determined by Southern analysis. Western analysis and ELISA revealed a high level of Bt protein expression in transgenic plants. Progeny analysis confirmed stable inheritance of the Bt gene according to the Mendelian (3:1) ratio. Insect bioassays revealed complete protection of transgenic plants from yellow stem borer infestation. PCR analysis of T2 progeny plants resulted in the recovery of up to 4% marker-free transgenic rice plants.

  4. Tradeoff between reproduction and resistance evolution to Bt-toxin in Helicoverpa armigera: regulated by vitellogenin gene expression.

    Science.gov (United States)

    Zhang, W N; Xiao, H J; Liang, G M; Guo, Y Y; Wu, K M

    2014-08-01

    Evolution of resistance to insecticides usually has fitness tradeoffs associated with adaptation to the stress. The basic regulation mechanism of tradeoff between reproduction and resistance evolution to Bacillus thuringiensis (Bt) toxin in the cotton bollworm, Helicoverpa armigera (Ha), based on the vitellogenin (Vg) gene expression was analyzed here. The full-length cDNA of the Vg gene HaVg (JX504706) was cloned and identified. HaVg has 5704 base pairs (bp) with an open reading frame (ORF) of 5265 bp, which encoded 1756 amino acid protein with a predicted molecular mass of 197.28 kDa and a proposed isoelectric point of 8.74. Sequence alignment analysis indicated that the amino acid sequence of HaVg contained all of the conserved domains detected in the Vgs of the other insects and had a high similarity with the Vgs of the Lepidoptera insects, especially Noctuidae. The resistance level to Cry1Ac Bt toxin and relative HaVg mRNA expression levels among the following four groups: Cry1Ac-susceptible strain (96S), Cry1Ac-resistant strain fed on artificial diet with Bt toxin for 135 generations (BtR stands for the Cry1Ac Bt resistance), progeny of the Cry1Ac-resistant strain with a non-Bt-toxin artificial diet for 38 generations (CK1) and the direct descendants of the 135th-generation resistant larvae which were fed on an artificial diet without the Cry1Ac protein (CK2) were analyzed. Compared with the 96S strain, the resistance ratios of the BtR strain, the CK1 strain and the CK2 strain were 2917.15-, 2.15- and 2037.67-fold, respectively. The maximum relative HaVg mRNA expression levels of the BtR strain were approximately 50% less than that of the 96S strain, and the coming of maximum expression was delayed for approximately 4 days. The overall trend of the HaVg mRNA expression levels in the CK1 strain was similar to that in the 96S strain, and the overall trend of the HaVg mRNA expression levels in the CK2 strain was similar to that in the BtR strain. Our results

  5. Bt crops producing Cry1Ac, Cry2Ab and Cry1F do not harm the green lacewing, Chrysoperla rufilabris.

    Directory of Open Access Journals (Sweden)

    Jun-Ce Tian

    Full Text Available The biological control function provided by natural enemies is regarded as a protection goal that should not be harmed by the application of any new pest management tool. Plants producing Cry proteins from the bacterium, Bacillus thuringiensis (Bt, have become a major tactic for controlling pest Lepidoptera on cotton and maize and risk assessment studies are needed to ensure they do not harm important natural enemies. However, using Cry protein susceptible hosts as prey often compromises such studies. To avoid this problem we utilized pest Lepidoptera, cabbage looper (Trichoplusia ni and fall armyworm (Spodoptera frugiperda, that were resistant to Cry1Ac produced in Bt broccoli (T. ni, Cry1Ac/Cry2Ab produced in Bt cotton (T. ni, and Cry1F produced in Bt maize (S. frugiperda. Larvae of these species were fed Bt plants or non-Bt plants and then exposed to predaceous larvae of the green lacewing Chrysoperla rufilabris. Fitness parameters (larval survival, development time, fecundity and egg hatch of C. rufilabris were assessed over two generations. There were no differences in any of the fitness parameters regardless if C. rufilabris consumed prey (T. ni or S. frugiperda that had consumed Bt or non-Bt plants. Additional studies confirmed that the prey contained bioactive Cry proteins when they were consumed by the predator. These studies confirm that Cry1Ac, Cry2Ab and Cry1F do not pose a hazard to the important predator C. rufilabris. This study also demonstrates the power of using resistant hosts when assessing the risk of genetically modified plants on non-target organisms.

  6. Similar genetic basis of resistance to Bt toxin Cry1Ac in Boll-selected and diet-selected strains of pink bollworm.

    Science.gov (United States)

    Fabrick, Jeffrey A; Tabashnik, Bruce E

    2012-01-01

    Genetically engineered cotton and corn plants producing insecticidal Bacillus thuringiensis (Bt) toxins kill some key insect pests. Yet, evolution of resistance by pests threatens long-term insect control by these transgenic Bt crops. We compared the genetic basis of resistance to Bt toxin Cry1Ac in two independently derived, laboratory-selected strains of a major cotton pest, the pink bollworm (Pectinophora gossypiella [Saunders]). The Arizona pooled resistant strain (AZP-R) was started with pink bollworm from 10 field populations and selected with Cry1Ac in diet. The Bt4R resistant strain was started with a long-term susceptible laboratory strain and selected first with Bt cotton bolls and later with Cry1Ac in diet. Previous work showed that AZP-R had three recessive mutations (r1, r2, and r3) in the pink bollworm cadherin gene (PgCad1) linked with resistance to Cry1Ac and Bt cotton producing Cry1Ac. Here we report that inheritance of resistance to a diagnostic concentration of Cry1Ac was recessive in Bt4R. In interstrain complementation tests for allelism, F(1) progeny from crosses between AZP-R and Bt4R were resistant to Cry1Ac, indicating a shared resistance locus in the two strains. Molecular analysis of the Bt4R cadherin gene identified a novel 15-bp deletion (r4) predicted to cause the loss of five amino acids upstream of the Cry1Ac-binding region of the cadherin protein. Four recessive mutations in PgCad1 are now implicated in resistance in five different strains, showing that mutations in cadherin are the primary mechanism of resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona.

  7. Similar genetic basis of resistance to Bt toxin Cry1Ac in Boll-selected and diet-selected strains of pink bollworm.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Fabrick

    Full Text Available Genetically engineered cotton and corn plants producing insecticidal Bacillus thuringiensis (Bt toxins kill some key insect pests. Yet, evolution of resistance by pests threatens long-term insect control by these transgenic Bt crops. We compared the genetic basis of resistance to Bt toxin Cry1Ac in two independently derived, laboratory-selected strains of a major cotton pest, the pink bollworm (Pectinophora gossypiella [Saunders]. The Arizona pooled resistant strain (AZP-R was started with pink bollworm from 10 field populations and selected with Cry1Ac in diet. The Bt4R resistant strain was started with a long-term susceptible laboratory strain and selected first with Bt cotton bolls and later with Cry1Ac in diet. Previous work showed that AZP-R had three recessive mutations (r1, r2, and r3 in the pink bollworm cadherin gene (PgCad1 linked with resistance to Cry1Ac and Bt cotton producing Cry1Ac. Here we report that inheritance of resistance to a diagnostic concentration of Cry1Ac was recessive in Bt4R. In interstrain complementation tests for allelism, F(1 progeny from crosses between AZP-R and Bt4R were resistant to Cry1Ac, indicating a shared resistance locus in the two strains. Molecular analysis of the Bt4R cadherin gene identified a novel 15-bp deletion (r4 predicted to cause the loss of five amino acids upstream of the Cry1Ac-binding region of the cadherin protein. Four recessive mutations in PgCad1 are now implicated in resistance in five different strains, showing that mutations in cadherin are the primary mechanism of resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona.

  8. Evolution, ecology and management of resistance in Helicoverpa spp. to Bt cotton in Australia.

    Science.gov (United States)

    Downes, Sharon; Mahon, Rod

    2012-07-01

    Prior to the widespread adoption of two-gene Bt cotton (Bollgard II®) in Australia, the frequency of resistance alleles to one of the deployed proteins (Cry2Ab) was at least 0.001 in the pests targeted namely, Helicoverpa armigera and Helicoverpa punctigera. In the 7 years hence, there has been a statistically significant increase in the frequency of alleles conferring Cry2Ab resistance in field populations of H. punctigera. This paper reviews the history of deploying Bt cotton in Australia, the characteristics of the isolated Cry2Ab resistance that likely impact on resistance evolution, aspects of the efficacy of Bollgard IIχ, and the behavioural ecology of Helicoverpa spp. larvae as it pertains to resistance management. It also presents up-to-date frequencies of resistant alleles for H. punctigera and reviews the same information for H. armigera. This is followed by a discussion of current resistance management strategies. The consequences of the imminent release of a third generation product that utilizes the novel vegetative insecticidal protein Vip3A are then considered. The area planted to Bt-crops is anticipated to continue to rise worldwide and many biotechnical companies intend to add Vip3A to existing products; therefore the information reviewed herein for Australia is likely to be pertinent to other situations.

  9. Bt maize and integrated pest management--a European perspective.

    Science.gov (United States)

    Meissle, Michael; Romeis, Jörg; Bigler, Franz

    2011-09-01

    The European corn borer (Ostrinia nubilalis), the Mediterranean corn borer (Sesamia nonagrioides) and the western corn rootworm (Diabrotica virgifera virgifera) are the main arthropod pests in European maize production. Practised pest control includes chemical control, biological control and cultural control such as ploughing and crop rotation. A pest control option that is available since 1996 is maize varieties that are genetically engineered (GE) to produce insecticidal compounds. GE maize varieties available today express one or several genes from Bacillus thuringiensis (Bt) that target corn borers or corn rootworms. Incentives to growing Bt maize are simplified farm operations, high pest control efficiency, improved grain quality and ecological benefits. Limitations include the risk of resistance evolution in target pest populations, risk of secondary pest outbreaks and increased administration to comply with licence agreements. Growers willing to plant Bt maize in the European Union (EU) often face the problem that authorisation is denied. Only one Bt maize transformation event (MON810) is currently authorised for commercial cultivation, and some national authorities have banned cultivation. Spain is the only EU member state where Bt maize adoption levels are currently delivering farm income gains near full potential levels. In an integrated pest management (IPM) context, Bt maize can be regarded as a preventive (host plant resistance) or a responsive pest control measure. In any case, Bt maize is a highly specific tool that efficiently controls the main pests and allows combination with other preventive or responsive measures to solve other agricultural problems including those with secondary pests.

  10. Binding and Oligomerization of Modified and Native Bt Toxins in Resistant and Susceptible Pink Bollworm.

    Directory of Open Access Journals (Sweden)

    Josue Ocelotl

    Full Text Available Insecticidal proteins from Bacillus thuringiensis (Bt are used extensively in sprays and transgenic crops for pest control, but their efficacy is reduced when pests evolve resistance. Better understanding of the mode of action of Bt toxins and the mechanisms of insect resistance is needed to enhance the durability of these important alternatives to conventional insecticides. Mode of action models agree that binding of Bt toxins to midgut proteins such as cadherin is essential for toxicity, but some details remain unresolved, such as the role of toxin oligomers. In this study, we evaluated how Bt toxin Cry1Ac and its genetically engineered counterpart Cry1AcMod interact with brush border membrane vesicles (BBMV from resistant and susceptible larvae of Pectinophora gossypiella (pink bollworm, a global pest of cotton. Compared with Cry1Ac, Cry1AcMod lacks 56 amino acids at the amino-terminus including helix α-1; previous work showed that Cry1AcMod formed oligomers in vitro without cadherin and killed P. gossypiella larvae harboring cadherin mutations linked with >1000-fold resistance to Cry1Ac. Here we found that resistance to Cry1Ac was associated with reduced oligomer formation and insertion. In contrast, Cry1AcMod formed oligomers in BBMV from resistant larvae. These results confirm the role of cadherin in oligomerization of Cry1Ac in susceptible larvae and imply that forming oligomers without cadherin promotes toxicity of Cry1AcMod against resistant P. gossypiella larvae that have cadherin mutations.

  11. Biological characteristics of black armyworm Spodoptera cosmioides on genetically modified soybean and corn crops that express insecticide Cry proteins

    Directory of Open Access Journals (Sweden)

    Gabriela Vieira Silva

    2016-09-01

    Full Text Available ABSTRACT This study aimed to evaluate the development and reproduction of the black armyworm, Spodoptera cosmioides when larvae fed on leaves of Bt-corn hybrids, expressing a single Cry1F and also Cry1F, Cry1A.105 and Cry2Ab2 in pyramided corn and their non-Bt-isoline (hybrid 2B688, as well as on leaves of two soybean isolines expressing the Cry1Ac protein and its non-Bt isoline (A5547-227. We also assessed the effect of these Bt and non-Bt plants on the leaf consumption rate of S. cosmioides larvae. This pest was unable to develop when fed on any of the corn isolines (Bt and non-Bt. When both 1st and 3rd instar larvae were fed on corn leaf, mortality was 100% in both Bt and non-Bt corn. In contrast, when corn leaves were offered to 5th instar larvae, there were survivors. Defoliation and leaf consumption was higher with non-Bt corn than with both of the Bt corn isolines. There was no negative effect of Bt soybean leaves on the development and reproduction of S. cosmioides with respect to all evaluated parameters. Our study indicates that both Bt and non-Bt corn adversely affect the development of S. cosmioides while Bt soybean did not affect its biology, suggesting that this lepidopteran has major potential to become an important pest in Bt soybean crops.

  12. Research Progress on Biosafety of Transgenic Bt Cotton%转 Bt 基因抗虫棉的生物安全性研究进展

    Institute of Scientific and Technical Information of China (English)

    王立国; 李菲; 刘勤红; 柳展基; 刘任重

    2014-01-01

    作为一种生物技术产品,转Bt基因抗虫棉的生物安全性一直是人们关注和争论的焦点。世界上许多棉花主产国通过严格的试验从基因漂移、靶标害虫对Bt蛋白的抗性产生及治理对策、抗虫棉种植对非靶标昆虫及土壤生态系统的影响以及转Bt基因抗虫棉产品的食品安全性等方面进行了大量研究。迄今为止,尚未发现有关生物安全方面的问题。由于对棉铃虫等鳞翅目害虫的有效控制及其所产生的经济和生态效益,转Bt基因抗虫棉已经为越来越多的人们所接受,对维持世界棉花的可持续发展产生了不可替代的作用。%As a biotech product , the biosafety of transgenic Bt cotton is always the focus of attention and controversy .The leading cotton producing countries in the world have conducted extensive researches from the aspects of gene flow , resistance of target insects to Bt protein and its countermeasures , the impacts of Bt cotton on non-target insects and soil ecosystem , as well as the food safety of Bt cotton products.So far, there was no potential hazard .As a result of its effective control of Lepidopteran insects and the economic and ecological benefits, the transgenic Bt cotton have been widely accepted ,and it has been playing an irreplaceable role in maintaining the sustainable development of global cotton production .

  13. Can other host species of cotton bollworm be non-Bt refuges to prolong the effectiveness of Bt-cotton?

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The potential ecological risks of Bacillus thurigiensis (Bt) insecticides and Bt-crops have caused increasing concern since their commercial release in the field,among which pests' resistance to Bt-crops is the major ecological risk. Refuge tactic, which can produce sensitive populations, has proved to be a key and sound resistance management strategy in USA and Australia; however, no tactics have been performed in China where Bt-cotton is mostly planted with other host crops of cotton bollworm.Genetic variation and gene flow among different host populations of the cotton bollworm Helicoverpa armigera were analyzed using PCR fingerprinting method. The results show that maize and castor-oil plant, as well as cotton can take effect as refuges to prevent resistance of cotton bollworm to Bt-cotton, while peanut and sesame are not as suitable for planting with Bt-cotton as refuges in the field as low gene flow was detected among populations on peanut, sesame and Bt cotton.

  14. Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to bt cotton in India.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Fabrick

    Full Text Available Evolution of resistance by insect pests can reduce the benefits of insecticidal proteins from Bacillus thuringiensis (Bt that are used extensively in sprays and transgenic crops. Despite considerable knowledge of the genes conferring insect resistance to Bt toxins in laboratory-selected strains and in field populations exposed to Bt sprays, understanding of the genetic basis of field-evolved resistance to Bt crops remains limited. In particular, previous work has not identified the genes conferring resistance in any cases where field-evolved resistance has reduced the efficacy of a Bt crop. Here we report that mutations in a gene encoding a cadherin protein that binds Bt toxin Cry1Ac are associated with field-evolved resistance of pink bollworm (Pectinophora gossypiella in India to Cry1Ac produced by transgenic cotton. We conducted laboratory bioassays that confirmed previously reported resistance to Cry1Ac in pink bollworm from the state of Gujarat, where Bt cotton producing Cry1Ac has been grown extensively. Analysis of DNA from 436 pink bollworm from seven populations in India detected none of the four cadherin resistance alleles previously reported to be linked with resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona. However, DNA sequencing of pink bollworm derived from resistant and susceptible field populations in India revealed eight novel, severely disrupted cadherin alleles associated with resistance to Cry1Ac. For these eight alleles, analysis of complementary DNA (cDNA revealed a total of 19 transcript isoforms, each containing a premature stop codon, a deletion of at least 99 base pairs, or both. Seven of the eight disrupted alleles each produced two or more different transcript isoforms, which implicates alternative splicing of messenger RNA (mRNA. This represents the first example of alternative splicing associated with field-evolved resistance that reduced the efficacy of a Bt crop.

  15. Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to bt cotton in India.

    Science.gov (United States)

    Fabrick, Jeffrey A; Ponnuraj, Jeyakumar; Singh, Amar; Tanwar, Raj K; Unnithan, Gopalan C; Yelich, Alex J; Li, Xianchun; Carrière, Yves; Tabashnik, Bruce E

    2014-01-01

    Evolution of resistance by insect pests can reduce the benefits of insecticidal proteins from Bacillus thuringiensis (Bt) that are used extensively in sprays and transgenic crops. Despite considerable knowledge of the genes conferring insect resistance to Bt toxins in laboratory-selected strains and in field populations exposed to Bt sprays, understanding of the genetic basis of field-evolved resistance to Bt crops remains limited. In particular, previous work has not identified the genes conferring resistance in any cases where field-evolved resistance has reduced the efficacy of a Bt crop. Here we report that mutations in a gene encoding a cadherin protein that binds Bt toxin Cry1Ac are associated with field-evolved resistance of pink bollworm (Pectinophora gossypiella) in India to Cry1Ac produced by transgenic cotton. We conducted laboratory bioassays that confirmed previously reported resistance to Cry1Ac in pink bollworm from the state of Gujarat, where Bt cotton producing Cry1Ac has been grown extensively. Analysis of DNA from 436 pink bollworm from seven populations in India detected none of the four cadherin resistance alleles previously reported to be linked with resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona. However, DNA sequencing of pink bollworm derived from resistant and susceptible field populations in India revealed eight novel, severely disrupted cadherin alleles associated with resistance to Cry1Ac. For these eight alleles, analysis of complementary DNA (cDNA) revealed a total of 19 transcript isoforms, each containing a premature stop codon, a deletion of at least 99 base pairs, or both. Seven of the eight disrupted alleles each produced two or more different transcript isoforms, which implicates alternative splicing of messenger RNA (mRNA). This represents the first example of alternative splicing associated with field-evolved resistance that reduced the efficacy of a Bt crop.

  16. Performance and cross-crop resistance of Cry1F-maize selected Spodoptera frugiperda on transgenic Bt cotton: implications for resistance management.

    Science.gov (United States)

    Yang, Fei; Kerns, David L; Brown, Sebe; Kurtz, Ryan; Dennehy, Tim; Braxton, Bo; Head, Graham; Huang, Fangneng

    2016-06-15

    Transgenic crops producing Bacillus thuringiensis (Bt) proteins have become a primary tool in pest management. Due to the intensive use of Bt crops, resistance of the fall armyworm, Spodoptera frugiperda, to Cry1F maize has occurred in Puerto Rico, Brazil, and some areas of the southeastern U.S. The sustainability of Bt crops faces a great challenge because the Cry1F-maize resistant S. frugiperda may also infest other Bt crops in multiple cropping ecosystems. Here we examined the survival and plant injury of a S. frugiperda population selected with Cry1F maize on three single-gene and five pyramided Bt cotton products. Larvae of Cry1F-susceptible (SS), -heterozygous (RS), and -resistant (RR) genotypes of S. frugiperda were all susceptible to the pyramided cotton containing Cry1Ac/Cry2Ab, Cry1Ac/Cry1F/Vip3A, Cry1Ab/Cry2Ae, or Cry1Ab/Cry2Ae/Vip3A, and the single-gene Cry2Ae cotton. Pyramided cotton containing Cry1Ac/Cry1F was effective against SS and RS, but not for RR. These findings show that the Cry1F-maize selected S. frugiperda can cause cross-crop resistance to other Bt crops expressing similar insecticidal proteins. Resistance management and pest management programs that utilize diversify mortality factors must be implemented to ensure the sustainability of Bt crops. This is especially important in areas where resistance to single-gene Bt crops is already widespread.

  17. Suppressing resistance to Bt cotton with sterile insect releases.

    Science.gov (United States)

    Tabashnik, Bruce E; Sisterson, Mark S; Ellsworth, Peter C; Dennehy, Timothy J; Antilla, Larry; Liesner, Leighton; Whitlow, Mike; Staten, Robert T; Fabrick, Jeffrey A; Unnithan, Gopalan C; Yelich, Alex J; Ellers-Kirk, Christa; Harpold, Virginia S; Li, Xianchun; Carrière, Yves

    2010-12-01

    Genetically engineered crops that produce insecticidal toxins from Bacillus thuringiensis (Bt) are grown widely for pest control. However, insect adaptation can reduce the toxins' efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to provide susceptible insects to mate with resistant insects. Variable farmer compliance is one of the limitations of this approach. Here we report the benefits of an alternative strategy where sterile insects are released to mate with resistant insects and refuges are scarce or absent. Computer simulations show that this approach works in principle against pests with recessive or dominant inheritance of resistance. During a large-scale, four-year field deployment of this strategy in Arizona, resistance of pink bollworm (Pectinophora gossypiella) to Bt cotton did not increase. A multitactic eradication program that included the release of sterile moths reduced pink bollworm abundance by >99%, while eliminating insecticide sprays against this key invasive pest.

  18. Response of last instar Helicoverpa armigera larvae to Bt toxin ingestion: changes in the development and in the CYP6AE14, CYP6B2 and CYP9A12 gene expression.

    Directory of Open Access Journals (Sweden)

    Pilar Muñoz

    Full Text Available Bt crops are able to produce Cry proteins, which were originally present in Bacillus thuringiensis bacteria. Although Bt maize is very efficient against corn borers, Spanish crops are also attacked by the earworm H. armigera, which is less susceptible to Bt maize. Many mechanisms could be involved in this low susceptibility to the toxin, including the insect's metabolic resistance to toxins due to cytochrome P450 monooxygenases. This paper examines the response of last instar H. armigera larvae to feeding on a diet with Bt and non-Bt maize leaves in larval development and in the gene expression of three P450 cytochromes: CYP6AE14, CYP6B2 and CYP9A12. Larvae fed on sublethal amounts of the Bt toxin showed reduced food ingestion and reduced growth and weight, preventing most of them from achieving the critical weight and pupating; additionally, after feeding for one day on the Bt diet the larvae showed a slight increase in juvenile hormone II in the hemolymp. Larvae fed on the non-Bt diet showed the highest CYP6AE14, CYP6B2 and CYP9A12 expression one day after feeding on the non-Bt diet, and just two days later the expression decreased abruptly, a finding probably related to the developmental programme of the last instar. Moreover, although the response of P450 genes to plant allelochemicals and xenobiotics has been related in general to overexpression in the resistant insect, or induction of the genes when feeding takes place, the expression of the three genes studied was suppressed in the larvae feeding on the Bt toxin. The unexpected inhibitory effect of the Cry1Ab toxin in the P450 genes of H. armigera larvae should be thoroughly studied to determine whether this response is somehow related to the low susceptibility of the species to the Bt toxin.

  19. Consumption of Bt maize pollen expressing Cry1Ab or Cry3Bb1 does not harm adult green Lacewings, Chrysoperla carnea (Neuroptera: Chrysopidae.

    Directory of Open Access Journals (Sweden)

    Yunhe Li

    Full Text Available Adults of the common green lacewing, Chrysoperla carnea (Stephens (Neuroptera: Chrysopidae, are prevalent pollen-consumers in maize fields. They are therefore exposed to insecticidal proteins expressed in the pollen of insect-resistant, genetically engineered maize varieties expressing Cry proteins derived from Bacillus thuringiensis (Bt. Laboratory experiments were conducted to evaluate the impact of Cry3Bb1 or Cry1Ab-expressing transgenic maize (MON 88017, Event Bt176 pollen on fitness parameters of adult C. carnea. Adults were fed pollen from Bt maize varieties or their corresponding near isolines together with sucrose solution for 28 days. Survival, pre-oviposition period, fecundity, fertility and dry weight were not different between Bt or non-Bt maize pollen treatments. In order to ensure that adults of C. carnea are not sensitive to the tested toxins independent from the plant background and to add certainty to the hazard assessment, adult C. carnea were fed with artificial diet containing purified Cry3Bb1 or Cry1Ab at about a 10 times higher concentration than in maize pollen. Artificial diet containing Galanthus nivalis agglutinin (GNA was included as a positive control. No differences were found in any life-table parameter between Cry protein containing diet treatments and control diet. However, the pre-oviposition period, daily and total fecundity and dry weight of C. carnea were significantly negatively affected by GNA-feeding. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources as well as the uptake by C. carnea was confirmed. These results show that adults of C. carnea are not affected by Bt maize pollen and are not sensitive to Cry1Ab and Cry3Bb1 at concentrations exceeding the levels in pollen. Consequently, Bt maize pollen consumption will pose a negligible risk to adult C. carnea.

  20. Developing Analytic Rating Guides for "TOEFL iBT"® Integrated Speaking Tasks. "TOEFL iBT"® Research Report, TOEFL iBT-20. ETS Research Report. RR-13-13

    Science.gov (United States)

    Jamieson, Joan; Poonpon, Kornwipa

    2013-01-01

    Research and development of a new type of scoring rubric for the integrated speaking tasks of "TOEFL iBT"® are described. These "analytic rating guides" could be helpful if tasks modeled after those in TOEFL iBT were used for formative assessment, a purpose which is different from TOEFL iBT's primary use for admission…

  1. Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance.

    Science.gov (United States)

    Tabashnik, Bruce E; Huang, Fangneng; Ghimire, Mukti N; Leonard, B Rogers; Siegfried, Blair D; Rangasamy, Murugesan; Yang, Yajun; Wu, Yidong; Gahan, Linda J; Heckel, David G; Bravo, Alejandra; Soberón, Mario

    2011-10-09

    Transgenic crops that produce Bacillus thuringiensis (Bt) toxins are grown widely for pest control, but insect adaptation can reduce their efficacy. The genetically modified Bt toxins Cry1AbMod and Cry1AcMod were designed to counter insect resistance to native Bt toxins Cry1Ab and Cry1Ac. Previous results suggested that the modified toxins would be effective only if resistance was linked with mutations in genes encoding toxin-binding cadherin proteins. Here we report evidence from five major crop pests refuting this hypothesis. Relative to native toxins, the potency of modified toxins was >350-fold higher against resistant strains of Plutella xylostella and Ostrinia nubilalis in which resistance was not linked with cadherin mutations. Conversely, the modified toxins provided little or no advantage against some resistant strains of three other pests with altered cadherin. Independent of the presence of cadherin mutations, the relative potency of the modified toxins was generally higher against the most resistant strains.

  2. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    Science.gov (United States)

    Chen, Wenbo; Liu, Chenxi; Xiao, Yutao; Zhang, Dandan; Zhang, Yongdong; Li, Xianchun; Tabashnik, Bruce E; Wu, Kongming

    2015-01-01

    Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50) of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f) was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects.

  3. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Wenbo Chen

    Full Text Available Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry proteins from the bacterium Bacillus thuringiensis (Bt in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50 of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects.

  4. Ingestion of Bt rice pollen does not reduce the survival or hypopharyngeal gland development of Apis mellifera adults.

    Science.gov (United States)

    Wang, Yuanyuan; Dai, Pingli; Chen, Xiuping; Romeis, Jörg; Shi, Jianrong; Peng, Yufa; Li, Yunhe

    2016-10-07

    Because of its ecological and economic importance, the honey bee Apis mellifera is commonly used to assess the environmental risk of insect-resistant, genetically modified plants. In the current laboratory study, feeding-exposure experiments were used to determine whether pollen from transgenic rice harms A. mellifera worker bee. In one experiment, the survival and mean acinus diameter of hypopharyngeal glands of adult bees were similar when bees were fed on pollen from Bt rice lines or from a non-Bt rice line, but bee survival was significantly reduced when they received pollen that was mixed with potassium arsenate as a positive control. In a second experiment, bee survival and hypopharyngeal gland development were not reduced when adult bees were fed on non-Bt pollen and a sucrose solution supplemented with Cry2A at 400 µg/g, Cry1C at 50 µg/g, or bovine serum albumin (BSA) at 400 µg/g diet, but bee survival and hypopharyngeal gland development were reduced when the diet was supplemented with soybean trypsin inhibitor (SBTI) as a positive control. In both experiments, the uptake of Cry proteins by adult bees was confirmed. Overall, the results indicate that the planting of Bt rice lines expressing Cry2A or Cry1C protein poses a negligible risk to A. mellifera worker bees. This article is protected by copyright. All rights reserved.

  5. Spodoptera frugiperda (J.E. Smith) with field-evolved resistance to Bt maize are susceptible to Bt pesticides.

    Science.gov (United States)

    Jakka, S R K; Knight, V R; Jurat-Fuentes, J L

    2014-10-01

    Field-evolved resistance to maize event TC1507 expressing the Cry1Fa toxin from Bacillus thuringiensis (Bt) was detected in populations of Spodoptera frugiperda from Puerto Rico. We tested for cross-resistance to purified Cry1A toxins and commercial Bt pesticides in susceptible (Benzon) and TC1507-resistant (456) strains of S. frugiperda. Larvae from the 456 strain exhibited cross-resistance to Cry1Ab and Cry1Ac toxins, while no differences in susceptibility to XenTari WG and DiPel ES pesticides were detected. These data support cross-resistance to toxins that share binding sites with Cry1Fa and no cross-resistance to Bt pesticides in S. frugiperda with field-evolved resistance to Bt maize.

  6. Monitoring and adaptive resistance management in Australia for Bt-cotton: current status and future challenges.

    Science.gov (United States)

    Downes, Sharon; Mahon, Rod; Olsen, Karen

    2007-07-01

    In the mid-1990 s the Australian Cotton industry adopted an insect-resistant variety of cotton (Ingard) which expresses the Bt toxin Cry1Ac that is specific to a group of insects including the target Helicoverpa armigera. A conservative resistance management plan (RMP), that restricted the area planted to Ingard, was implemented to preserve the efficacy of Cry1Ac until two-gene transgenic cotton was available. In 2004/05 Bollgard II replaced Ingard as the transgenic cotton available in Australia. It improves on Ingard by incorporating an additional insecticidal protein (Cry2Ab). If an appropriate refuge is grown, there is no restriction on the area planted to Bollgard II. In 2004/05 and 2005/06 the Bollgard II acreage represented approximately 80 of the total area planted to cotton in Australia. The sensitivity of field-collected populations of H. armigera to Bt products was assayed before and subsequent to the widespread deployment of Ingard cotton. In 2002 screens against Cry2Ab were developed in preparation for replacement of Ingard with Bollgard II. There have been no reported field failures of Bollgard II due to resistance. However, while alleles that confer resistance to H. armigera in the field are rare for Cry1Ac, they are surprisingly common for Cry2Ab. We present an overview of the current approach adopted in Australia to monitor and adaptively manage resistance to Bt-cotton in field populations of H. armigera and discuss the implications of our findings to date. We also highlight future challenges for resistance management in Australia, many of which extend to other Bt-crop and pest systems.

  7. Comparative diversity of arthropods on Bt maize and non-Bt maize in two different cropping systems in South Africa.

    Science.gov (United States)

    Truter, J; Van Hamburg, H; Van Den Berg, J

    2014-02-01

    The biodiversity of an agroecosystem is not only important for its intrinsic value but also because it influences ecological functions that are vital for crop production in sustainable agricultural systems and the surrounding environment. A concern about genetically modified (GM) crops is the potential negative impact that such crops could have on diversity and abundance of nontarget organisms, and subsequently on ecosystem functions. Therefore, it is essential to assess the potential environmental risk of the release of a GM crop and to study its effect on species assemblages within that ecosystem. Assessment of the impact of Bt maize on the environment is hampered by the lack of basic checklists of species present in maize agroecosystems. The aims of the study were to compile a checklist of arthropods that occur on maize in South Africa and to compare the diversity and abundance of arthropods and functional groups on Bt maize and non-Bt maize. Collections of arthropods were carried out during two growing seasons on Bt maize and non-Bt maize plants at two localities. Three maize fields were sampled per locality during each season. Twenty plants, each of Bt maize and non-Bt maize, were randomly selected from the fields at each site. The arthropods collected during this study were classified to morphospecies level and grouped into the following functional groups: detritivores, herbivores, predators, and parasitoids. Based on feeding strategy, herbivores and predators were further divided into sucking herbivores or predators (piercing-sucking mouthparts) and chewing herbivores or predators (chewing mouthparts). A total of 8,771 arthropod individuals, comprising 288 morphospecies and presenting 20 orders, were collected. Results from this short-term study indicated that abundance and diversity of arthropods in maize and the different functional guilds were not significantly affected by Bt maize, either in terms of diversity or abundance.

  8. Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori.

    Science.gov (United States)

    Atsumi, Shogo; Miyamoto, Kazuhisa; Yamamoto, Kimiko; Narukawa, Junko; Kawai, Sawako; Sezutsu, Hideki; Kobayashi, Isao; Uchino, Keiro; Tamura, Toshiki; Mita, Kazuei; Kadono-Okuda, Keiko; Wada, Sanae; Kanda, Kohzo; Goldsmith, Marian R; Noda, Hiroaki

    2012-06-19

    Bt toxins derived from the arthropod bacterial pathogen Bacillus thuringiensis are widely used for insect control as insecticides or in transgenic crops. Bt resistance has been found in field populations of several lepidopteran pests and in laboratory strains selected with Bt toxin. Widespread planting of crops expressing Bt toxins has raised concerns about the potential increase of resistance mutations in targeted insects. By using Bombyx mori as a model, we identified a candidate gene for a recessive form of resistance to Cry1Ab toxin on chromosome 15 by positional cloning. BGIBMGA007792-93, which encodes an ATP-binding cassette transporter similar to human multidrug resistance protein 4 and orthologous to genes associated with recessive resistance to Cry1Ac in Heliothis virescens and two other lepidopteran species, was expressed in the midgut. Sequences of 10 susceptible and seven resistant silkworm strains revealed a common tyrosine insertion in an outer loop of the predicted transmembrane structure of resistant alleles. We confirmed the role of this ATP-binding cassette transporter gene in Bt resistance by converting a resistant silkworm strain into a susceptible one by using germline transformation. This study represents a direct demonstration of Bt resistance gene function in insects with the use of transgenesis.

  9. Ocorrência do ácaro fitófago Catarhinus tricholaenae Keifer (Acari: Diptilomiopidae em cultivares de milho Bt Occurrence of the phytophagous mite Catarhinus tricholaenae Keifer (Acari: Diptilomiopidae on Bt corn cultivars

    Directory of Open Access Journals (Sweden)

    Marcos Antônio Matiello Fadini

    2012-09-01

    Full Text Available O objetivo deste trabalho foi avaliar a ocorrência do microácaro-da-face-inferior-das-folhas-de-milho Catarhinus tricholaenae Keifer (Acari: Diptilomiopidae em cultivares transgênicas de milho, contendo as proteínas Cry1F e Cry 1 A(b e milho não Bt. Durante o período de junho de 2010 a janeiro de 2011, foram coletadas, quinzenalmente, cinco amostras aleatórias de quatro folhas em talhões de milho Bt, contendo a proteína Cry 1F e Cry 1 A(b, e de milho não Bt em áreas experimentais da Embrapa Milho e Sorgo, em Sete Lagoas, MG. As amostras de folhas foram vistoriadas por 15 minutos na região da nervura central, em busca de adultos de C. tricholaenae. Foram registrados 2.930 indivíduos de C. tricholaenae, sendo que 1.114 no milho Bt Cry 1F, 753 em Cry 1 A(b e 1063 indivíduos em folhas das cultivares não Bt. As maiores abundâncias populacionais médias ocorreram nos meses de novembro e dezembro. Os fatores estágio fenológico das plantas e precipitação afetaram positivamente a abundância de C. tricholaenae. A abundância média do período de coleta de C. tricholaenae foi reduzida pela cultivar de milho contendo a proteína Cry 1 A(b. Esse é o primeiro registro de ácaros sobre cultivares de milho transgênico no Brasil.The objective of this study was to evaluate the occurrence of "microácaro-da-face-inferior-das-folhas-de-milho" Catarhinus tricholaenae Keifer (Acari: Diptilomiopidae on transgenic cultivars of corn containing proteins Cry1F and Cry 1 A (b and non-Bt corn. During the period from June 2010 to January 2011 were collected, every two weeks, five random samples of four leaves in plots of Bt corn containing the protein Cry 1F and Cry 1 A (b and non-Bt corn in the experimental area of Embrapa Corn and Sorghum, Sete Lagoas, MG. The leaf samples were examined for 15 minutes in the central region of leaf in search of adult C. tricholaenae. We recorded 2930 individuals of C. tricholaenae, 1114 on Bt Cry 1F, 752 on Cry 1 A

  10. 家蚕类钙粘蛋白BtR-175基因敲除突变体创制和抗性检测%Creation of Bombyx mori Cadherin BtR-175 Knockout Mutant and Investigation of Its Resistance Against Bacterial Infection

    Institute of Scientific and Technical Information of China (English)

    程廷才; 林平; 付剑锋; 蒋亮; 马三垣; 夏庆友

    2016-01-01

    家蚕类钙粘蛋白BtR-175不仅是苏云金芽孢杆菌(Bacillus thuringiensis)晶体毒素蛋白的受体蛋白,也是黑胸败血芽孢杆菌(Bacillus bombysepticus)晶体毒素蛋白的受体分子.为建立对黑胸败血芽孢杆菌具有抵抗能力的家蚕品系,采用CRISPR/Cas9介导的基因组编辑技术,设计引导RNA (gRNA)对家蚕BtR-175基因进行精确定点编辑,对蚕卵显微注射重组质粒pUC57-hA4-Cas9和T-U6-BtR-175后,筛选获得2个碱基插入导致蛋白质翻译提前终止的BtR-175基因敲除突变体,命名为△BtR-175.4龄起蚕经口添食黑胸败血芽孢杆菌,结果△BtR-175突变体家蚕的死亡率为34.4%±5.8%,野生型家蚕的死亡率为57.8%±8.4%,表明△BtR-175对黑胸败血芽孢杆菌的侵染抵抗性显著提高.饲养试验显示△BtR-175突变体和野生型家蚕的茧层量没有显著性差异.该突变体有望进一步培育为家蚕抗性育种素材.%Bombyx moii cadherin-like protein (BtR-175) functions as not only a receptor protein of Bacillus thuringiensis toxin,but also a receptor of Bacillus bombysepticus crystal toxin.To enhance disease resistance of the silkworm to B.bombysepticus,CRISPR/cas9 technology was used to accurately edit BtR-175 by designing gRNAs.By micro-injecting pUC57-hA4-Cas9 and T-U6-BtR-175 into silkworm eggs,a BtR-175 knockout mutant named △BtR-175 was obtained with two bases inserted which led to premature termination of the target protein.In the 4th instar,by feeding B.bombysepticus,the mortality of △BtR-175 mutant and wild-type silkworm were 34.4%+5.8% and 57.8%±8.4%,respectively,suggesting that △BtR-175 significantly improved the disease resistance against B.bombysepticus.An investigation of economic traits showed no significant difference in cocoon weight between △BtR-175 and wild-type silkworm.Therefore,this mutant could be further developed into breeding material with resistance against bacterial infection.

  11. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management

    Science.gov (United States)

    Horikoshi, Renato J.; Bernardi, Daniel; Bernardi, Oderlei; Malaquias, José B.; Okuma, Daniela M.; Miraldo, Leonardo L.; Amaral, Fernando S. de A. e; Omoto, Celso

    2016-01-01

    The resistance of fall armyworm (FAW), Spodoptera frugiperda, has been characterized to some Cry and Vip3A proteins of Bacillus thuringiensis (Bt) expressed in transgenic maize in Brazil. Here we evaluated the effective dominance of resistance based on the survival of neonates from selected Bt-resistant, heterozygous, and susceptible (Sus) strains of FAW on different Bt maize and cotton varieties. High survival of strains resistant to the Cry1F (HX-R), Cry1A.105/Cry2Ab (VT-R) and Cry1A.105/Cry2Ab/Cry1F (PW-R) proteins was detected on Herculex, YieldGard VT PRO and PowerCore maize. Our Vip3A-resistant strain (Vip-R) exhibited high survival on Herculex, Agrisure Viptera and Agrisure Viptera 3 maize. However, the heterozygous from HX-R × Sus, VT-R × Sus, PW-R × Sus and Vip-R × Sus had complete mortality on YieldGard VT PRO, PowerCore, Agrisure Viptera, and Agrisure Viptera 3, whereas the HX-R × Sus and Vip-R × Sus strains survived on Herculex maize. On Bt cotton, the HX-R, VT-R and PW-R strains exhibited high survival on Bollgard II. All resistant strains survived on WideStrike, but only PW-R and Vip-R × Sus survived on TwinLink. Our study provides useful data to aid in the understanding of the effectiveness of the refuge strategy for Insect Resistance Management of Bt plants. PMID:27721425

  12. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management.

    Science.gov (United States)

    Horikoshi, Renato J; Bernardi, Daniel; Bernardi, Oderlei; Malaquias, José B; Okuma, Daniela M; Miraldo, Leonardo L; Amaral, Fernando S de A E; Omoto, Celso

    2016-10-10

    The resistance of fall armyworm (FAW), Spodoptera frugiperda, has been characterized to some Cry and Vip3A proteins of Bacillus thuringiensis (Bt) expressed in transgenic maize in Brazil. Here we evaluated the effective dominance of resistance based on the survival of neonates from selected Bt-resistant, heterozygous, and susceptible (Sus) strains of FAW on different Bt maize and cotton varieties. High survival of strains resistant to the Cry1F (HX-R), Cry1A.105/Cry2Ab (VT-R) and Cry1A.105/Cry2Ab/Cry1F (PW-R) proteins was detected on Herculex, YieldGard VT PRO and PowerCore maize. Our Vip3A-resistant strain (Vip-R) exhibited high survival on Herculex, Agrisure Viptera and Agrisure Viptera 3 maize. However, the heterozygous from HX-R × Sus, VT-R × Sus, PW-R × Sus and Vip-R × Sus had complete mortality on YieldGard VT PRO, PowerCore, Agrisure Viptera, and Agrisure Viptera 3, whereas the HX-R × Sus and Vip-R × Sus strains survived on Herculex maize. On Bt cotton, the HX-R, VT-R and PW-R strains exhibited high survival on Bollgard II. All resistant strains survived on WideStrike, but only PW-R and Vip-R × Sus survived on TwinLink. Our study provides useful data to aid in the understanding of the effectiveness of the refuge strategy for Insect Resistance Management of Bt plants.

  13. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management

    Science.gov (United States)

    Horikoshi, Renato J.; Bernardi, Daniel; Bernardi, Oderlei; Malaquias, José B.; Okuma, Daniela M.; Miraldo, Leonardo L.; Amaral, Fernando S. De A. E.; Omoto, Celso

    2016-10-01

    The resistance of fall armyworm (FAW), Spodoptera frugiperda, has been characterized to some Cry and Vip3A proteins of Bacillus thuringiensis (Bt) expressed in transgenic maize in Brazil. Here we evaluated the effective dominance of resistance based on the survival of neonates from selected Bt-resistant, heterozygous, and susceptible (Sus) strains of FAW on different Bt maize and cotton varieties. High survival of strains resistant to the Cry1F (HX-R), Cry1A.105/Cry2Ab (VT-R) and Cry1A.105/Cry2Ab/Cry1F (PW-R) proteins was detected on Herculex, YieldGard VT PRO and PowerCore maize. Our Vip3A-resistant strain (Vip-R) exhibited high survival on Herculex, Agrisure Viptera and Agrisure Viptera 3 maize. However, the heterozygous from HX-R × Sus, VT-R × Sus, PW-R × Sus and Vip-R × Sus had complete mortality on YieldGard VT PRO, PowerCore, Agrisure Viptera, and Agrisure Viptera 3, whereas the HX-R × Sus and Vip-R × Sus strains survived on Herculex maize. On Bt cotton, the HX-R, VT-R and PW-R strains exhibited high survival on Bollgard II. All resistant strains survived on WideStrike, but only PW-R and Vip-R × Sus survived on TwinLink. Our study provides useful data to aid in the understanding of the effectiveness of the refuge strategy for Insect Resistance Management of Bt plants.

  14. Feeding and dispersal behavior of the cotton leafworm, Alabama argillacea (Hübner) (Lepidoptera: Noctuidae), on Bt and non-Bt cotton: implications for evolution and resistance management.

    Science.gov (United States)

    Ramalho, Francisco S; Pachú, Jéssica K S; Lira, Aline C S; Malaquias, José B; Zanuncio, José C; Fernandes, Francisco S

    2014-01-01

    The host acceptance of neonate Alabama argillacea (Hübner) (Lepidoptera: Noctuidae) larvae to Bt cotton plants exerts a strong influence on the potential risk that this pest will develop resistance to Bt cotton. This will also determine the efficiency of management strategies to prevent its resistance such as the "refuge-in-the-bag" strategy. In this study, we assessed the acceptance of neonate A. argillacea larvae to Bt and non-Bt cotton plants at different temperatures during the first 24 h after hatching. Two cotton cultivars were used in the study, one a Bt DP 404 BG (Bollgard) cultivar, and the other, an untransformed isoline, DP 4049 cultivar. There was a greater acceptance by live neonate A. argillacea larvae for the non-Bt cotton plants compared with the Bt cotton plants, especially in the time interval between 18 and 24 h. The percentages of neonate A. argillacea larvae found on Bt or non-Bt plants were lower when exposed to temperatures of 31 and 34 °C. The low acceptance of A. argillacea larvae for Bt cotton plants at high temperatures stimulated the dispersion of A. argillacea larvae. Our results support the hypothesis that the dispersion and/or feeding behavior of neonate A. argillacea larvae is different between Bt and non-Bt cotton. The presence of the Cry1Ac toxin in Bt cotton plants, and its probable detection by the A. argillacea larvae tasting or eating it, increases the probability of dispersion from the plant where the larvae began. These findings may help to understand how the A. argillacea larvae detect the Cry1Ac toxin in Bt cotton and how the toxin affects the dispersion behavior of the larvae over time. Therefore, our results are extremely important for the management of resistance in populations of A. argillacea on Bt cotton.

  15. Cis-mediated down-regulation of a trypsin gene associated with Bt resistance in cotton bollworm.

    Science.gov (United States)

    Liu, Chenxi; Xiao, Yutao; Li, Xianchun; Oppert, Brenda; Tabashnik, Bruce E; Wu, Kongming

    2014-11-27

    Transgenic plants producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are useful for pest control, but their efficacy is reduced when pests evolve resistance. Here we examined the mechanism of resistance to Bt toxin Cry1Ac in the laboratory-selected LF5 strain of the cotton bollworm, Helicoverpa armigera. This strain had 110-fold resistance to Cry1Ac protoxin and 39-fold resistance to Cry1Ac activated toxin. Evaluation of five trypsin genes revealed 99% reduced transcription of one trypsin gene (HaTryR) was associated with resistance. Silencing of this gene with RNA interference in susceptible larvae increased their survival on diets containing Cry1Ac. Bioassays of progeny from crosses revealed that resistance to Cry1Ac was genetically linked with HaTryR. We identified mutations in the promoter region of HaTryR in the resistant strain. In transfected insect cell lines, transcription was lower when driven by the resistant promoter compared with the susceptible promoter, implicating cis-mediated down-regulation of HaTryR transcription as a mechanism of resistance. The results suggest that H. armigera can adapt to Bt toxin Cry1Ac by decreased expression of trypsin. Because trypsin activation of protoxin is a critical step in toxicity, transgenic plants with activated toxins rather than protoxins might increase the durability of Bt crops.

  16. Distribution and Metabolism of Bt-Cry1Ac Toxin in Tissues and Organs of the Cotton Bollworm, Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Zhuoya Zhao

    2016-07-01

    Full Text Available Crystal (Cry proteins derived from Bacillus thuringiensis (Bt have been widely used in transgenic crops due to their toxicity against insect pests. However, the distribution and metabolism of these toxins in insect tissues and organs have remained obscure because the target insects do not ingest much toxin. In this study, several Cry1Ac-resistant strains of Helicoverpa armigera, fed artificial diets containing high doses of Cry1Ac toxin, were used to investigate the distribution and metabolism of Cry1Ac in their bodies. Cry1Ac was only detected in larvae, not in pupae or adults. Also, Cry1Ac passed through the midgut into other tissues, such as the hemolymph and fat body, but did not reach the larval integument. Metabolic tests revealed that Cry1Ac degraded most rapidly in the fat body, followed by the hemolymph, peritrophic membrane and its contents. The toxin was metabolized slowly in the midgut, but was degraded in all locations within 48 h. These findings will improve understanding of the functional mechanism of Bt toxins in target insects and the biotransfer and the bioaccumulation of Bt toxins in arthropod food webs in the Bt crop ecosystem.

  17. Distribution and Metabolism of Bt-Cry1Ac Toxin in Tissues and Organs of the Cotton Bollworm, Helicoverpa armigera.

    Science.gov (United States)

    Zhao, Zhuoya; Li, Yunhe; Xiao, Yutao; Ali, Abid; Dhiloo, Khalid Hussain; Chen, Wenbo; Wu, Kongming

    2016-01-01

    Crystal (Cry) proteins derived from Bacillus thuringiensis (Bt) have been widely used in transgenic crops due to their toxicity against insect pests. However, the distribution and metabolism of these toxins in insect tissues and organs have remained obscure because the target insects do not ingest much toxin. In this study, several Cry1Ac-resistant strains of Helicoverpa armigera, fed artificial diets containing high doses of Cry1Ac toxin, were used to investigate the distribution and metabolism of Cry1Ac in their bodies. Cry1Ac was only detected in larvae, not in pupae or adults. Also, Cry1Ac passed through the midgut into other tissues, such as the hemolymph and fat body, but did not reach the larval integument. Metabolic tests revealed that Cry1Ac degraded most rapidly in the fat body, followed by the hemolymph, peritrophic membrane and its contents. The toxin was metabolized slowly in the midgut, but was degraded in all locations within 48 h. These findings will improve understanding of the functional mechanism of Bt toxins in target insects and the biotransfer and the bioaccumulation of Bt toxins in arthropod food webs in the Bt crop ecosystem.

  18. Effects of Exogenous Jasmonic Acid on Concentrations of Direct-Defense Chemicals and Expression of Related Genes in Bt(Bacillus thuringiensis)Corn(Zea mays)

    Institute of Scientific and Technical Information of China (English)

    FENG Yuan-jiao; WANG Jian-wu; LUO Shi-ming

    2007-01-01

    Bt corn is one of the top three large-scale commercialized transgenic crops around the world.It is increasingly clear that the complementary durable approaches for pest control,which combine the endogenous defense of the crop with the introduced foreign genes,are promising alternative strategies for pest resistance management and the next generation of insect-resistant transgenic crops.In the present study,we tested the inducible effects of exogenous jasmonic acid(JA) on direct-defense chemical content,Bt protein concentration,and related gene expression in the leaves of Bt corn cultivar 34B24 and non-Bt cultivar 34B23 by chemical analysis,ELISA,and RT-PCR.The results show that the expression of LOX,PR-2αMPI,and PR-1 genes in the treated leaf(the first leaf)was promoted by exogenous JA both in 34B24 and 34B23.As compared with the control,the concentration of DIMBOA in the treated leaf was significantly increased by 63 and 18% for 34B24 and 34B23,respectively.The total phenolic acid was also increased by 24 and 12% for both 34B24 and 34B23.The Bt protein content of 34B24 in the treated leaf was increased by 13% but decreased significantly by 27% in the second leaf.The induced response of 34B24 was in a systemic way and was much stronger than that of 34B23.Those findings indicated that there is a synergistic interaction between Bt gene and internally induced chemical defense system triggered by externally applied JA in Bt corn.

  19. Transgenic Bacillus thuringiensis (Bt) rice is safer to aquatic ecosystems than its non-transgenic counterpart.

    Science.gov (United States)

    Li, Guangsheng; Wang, Yongmo; Liu, Biao; Zhang, Guoan

    2014-01-01

    Rice lines genetically modified with the crystal toxin genes from Bacillus thuringiensis (Bt) have experienced rapid development, with biosafety certificates for two Bt rice lines issued in 2009. There has still been no commercial release of these lines yet due to public concerns about human health and environmental risks. Some studies confirmed that Bt rice was as safe as conventional rice to non-target organisms when pesticides were not applied, however, pesticides are still required in Bt rice to control non-lepidopteran pests. In this study, we assessed the environmental effects of two Bt rice lines expressing either the cry1Ab/1Ac or cry2A genes, respectively, by using zooplanktons as indicator species under normal field management practices using pesticides when required. In the whole rice growing season, non-Bt rice was sprayed 5 times while Bt rice was sprayed 2 times, which ensured both rice achieved a normal yield. Field investigations showed that rice type (Bt and non-Bt) significantly influenced zooplankton abundance and diversity, which were up to 95% and 80% lower in non-Bt rice fields than Bt rice fields. Laboratory rearing showed that water from non-Bt rice fields was significantly less suitable for the survival and reproduction of Daphnia magna and Paramecium caudatum in comparison with water from Bt rice fields. Higher pesticide residues were detected in the water from non-Bt than Bt rice fields, accounting for the bad performance of zooplankton in non-Bt field water. Our results demonstrate that Bt rice is safer to aquatic ecosystems than non-Bt rice, and its commercialization will be beneficial for biodiversity restoration in rice-based ecosystems.

  20. Transgenic Bacillus thuringiensis (Bt rice is safer to aquatic ecosystems than its non-transgenic counterpart.

    Directory of Open Access Journals (Sweden)

    Guangsheng Li

    Full Text Available Rice lines genetically modified with the crystal toxin genes from Bacillus thuringiensis (Bt have experienced rapid development, with biosafety certificates for two Bt rice lines issued in 2009. There has still been no commercial release of these lines yet due to public concerns about human health and environmental risks. Some studies confirmed that Bt rice was as safe as conventional rice to non-target organisms when pesticides were not applied, however, pesticides are still required in Bt rice to control non-lepidopteran pests. In this study, we assessed the environmental effects of two Bt rice lines expressing either the cry1Ab/1Ac or cry2A genes, respectively, by using zooplanktons as indicator species under normal field management practices using pesticides when required. In the whole rice growing season, non-Bt rice was sprayed 5 times while Bt rice was sprayed 2 times, which ensured both rice achieved a normal yield. Field investigations showed that rice type (Bt and non-Bt significantly influenced zooplankton abundance and diversity, which were up to 95% and 80% lower in non-Bt rice fields than Bt rice fields. Laboratory rearing showed that water from non-Bt rice fields was significantly less suitable for the survival and reproduction of Daphnia magna and Paramecium caudatum in comparison with water from Bt rice fields. Higher pesticide residues were detected in the water from non-Bt than Bt rice fields, accounting for the bad performance of zooplankton in non-Bt field water. Our results demonstrate that Bt rice is safer to aquatic ecosystems than non-Bt rice, and its commercialization will be beneficial for biodiversity restoration in rice-based ecosystems.

  1. Bt transgenic crops do not have favorable effects on resistant insects

    Directory of Open Access Journals (Sweden)

    Bruce E. Tabashnik

    2004-02-01

    Full Text Available hypothesized that insecticidal Bacillus thuringiensis (Bt toxins produced by transgenic crops could have nutritionally favorable effects that increase the fitness of resistant insects eating such crops. This idea was based on increased pupal weight of resistant larvae of diamondback moth, Plutella xylostella (L., fed leaf discs treated externally with a Bt toxin. We summarize evidence from diamondback moth and other pests showing that the Bt toxins in transgenic crops do not enhance performance of resistant insects. Aside from a few notable exceptions in which performance of resistant insects did not differ between Bt and non-Bt crops, Bt crops had adverse affects on resistant insects.

  2. Scoring Strategies for the TOEFL iBT A Complete Guide

    CERN Document Server

    Stirling, Bruce

    2012-01-01

    TOEFL students all ask: How can I get a high TOEFL iBT score? Answer: Learn argument scoring strategies. Why? Because the TOEFL iBT recycles opinion-based and fact-based arguments for testing purposes from start to finish. In other words, the TOEFL iBT is all arguments. That's right, all arguments. If you want a high score, you need essential argument scoring strategies. That is what Scoring Strategies for the TOEFL iBT gives you, and more!. TEST-PROVEN STRATEGIES. Learn essential TOEFL iBT scoring strategies developed in American university classrooms and proven successful on the TOEFL iBT. R

  3. Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea.

    Science.gov (United States)

    Welch, Kara L; Unnithan, Gopalan C; Degain, Ben A; Wei, Jizhen; Zhang, Jie; Li, Xianchun; Tabashnik, Bruce E; Carrière, Yves

    2015-11-01

    To delay evolution of resistance by insect pests, farmers are rapidly increasing their use of transgenic crops producing two or more Bacillus thuringiensis (Bt) toxins that kill the same pest. A key condition favoring durability of these "pyramided" crops is the absence of cross-resistance between toxins. Here we evaluated cross-resistance in the major lepidopteran pest Helicoverpa zea (Boddie) to Bt toxins used in pyramids. In the laboratory, we selected a strain of this pest with Bt toxin Cry1Ac followed by selection with MVP II, a formulation containing a hybrid protoxin that is identical to Cry1Ac in the active portion of the toxin and 98.5% identical overall. We calculated the resistance ratio as the EC50 (concentration causing mortality or failure to develop beyond the first instar of 50% of larvae) for the laboratory-selected strain divided by the EC50 for its field-derived parent strain that was not selected in the laboratory. The resistance ratio was 20.0-33.9 (mean=27.0) for MVP II, 57.0 for Cry1Ac, 51.3 for Cry1A.105, 22.4 for Cry1Ab, 3.3 for Cry2Ab, 1.8 for Cry1Fa, and 1.6 for Vip3Aa. Resistance ratios were 2.9 for DiPel ES and 2.0 for Agree VG, which are commercial Bt spray formulations containing Cry1Ac, other Bt toxins, and Bt spores. By the conservative criterion of non-overlap of 95% fiducial limits, the EC50 was significantly higher for the selected strain than its parent strain for MVP II, Cry1Ac, Cry1A.105, Cry1Ab, Cry2Ab and DiPel ES. For Cry1Fa, Vip3Aa, and Agree VG, significantly lower susceptibility to a high concentration indicated low cross-resistance. The resistance ratio for toxins other than Cry1Ac was associated with their amino acid sequence similarity to Cry1Ac in domain II. Resistance to Cry1Ac and the observed cross-resistance to other Bt toxins could accelerate evolution of H. zea resistance to currently registered Bt sprays and pyramided Bt crops.

  4. Isolation of Gossypol and Analysis of Phytochemicals in Seed Extract of Bt and Non-Bt Varieties of Cotton

    Directory of Open Access Journals (Sweden)

    R.Chandrashekar

    2013-05-01

    Full Text Available The purpose of this study was to isolate the gossypol (Phenolic compound and screening of phytochemical constituents from seed extract. During this study gossypol was extracted from cotton seeds and cotton seed cake using different organic solvents like acetone, ethanol, methanol, pet ether, chloroform and hot water and screened for phytochemical constituents. Analysis revealed the presence of phenols, glycosides, flavonoids, and steroids. Specific tests were conducted for each group of the phytochemicals. Among the extracts tested polar solvents like acetone, ethanol, methanol extracts showed more phytochemicals than others followed by pet ether, hot water, chloroform. The phytochemicals like saponins, flavonoids, tri-terpenoids, and tannins were not found in seed extract, specifically showed phenols with more quantity in polar solvent extract like acetone, ethanol and methanol cardiac glycosides and steroids are observed in both polar and non-polar solvent of seed extracts. Similar kind of compounds are present in Bt and non-Bt but the appearance of test coloration of seed extracts predicted as is slightly darker for Bt variety. This could be due to more amount of the component may be present in Bt cotton seed extract than non-Bt cotton seed extract. The compound Gossypol was detected in extracts by applying Chromatographic technique as well as chemical tests with antimony chloride (SbCl3, and stannic chloride (SnCl3 and leadacetate (Pb(CH3COO2 . Spectrophotometric techniques were also employed for quantitative analysis by measuring absorbance of samples at wavelength of 290nm.

  5. Hepatic gene mutations induced in Big Blue rats by both the potent rat liver azo-carcinogen 6BT and its reported noncarcinogenic analogue 5BT.

    Science.gov (United States)

    Fletcher, K; Soames, A R; Tinwell, H; Lefevre, P A; Ashby, J

    1999-01-01

    The potent rat liver carcinogen 6-p-dimethylaminophenylazobenzthiazole (6BT) and its reported noncarcinogenic analogue 5-p-dimethylaminophenylazobenzthiazole (5BT; evaluated for carcinogenicity under the similar limited bioassay conditions used for 6BT) have been studied in order to seek an explanation for their different carcinogenic activities. Both compounds act as DNA-damaging agents to the rat liver, and both have now been shown to induce lacI (-) gene mutations in the liver of Big Blue(trade mark) transgenic rats. Both compounds were mutagenic following ten daily gavage doses or following administration in diet for 10 days. Neither chemical induced cell proliferation in the liver following repeat gavage administrations. In contrast, dietary administration of 6BT, and to a lesser extent of 5BT, induced hepatic cell proliferation. The carcinogen 6BT, but not the noncarcinogen 5BT, caused proliferation of oval stem cells in the livers by both routes of administration. It is possible that mutations induced in oval cells by 6BT are responsible for its potent carcinogenicity, and that the comparative absence of these cells in 5BT-treated livers may account for the carcinogenic inactivity of 5BT. Equally, the proliferation of the oval cells may reflect changes in liver homeostasis associated with the liver toxicity observed at the dose level of 6BT used (which was, nonetheless, the dose level used in the positive cancer bioassays). It is concluded that the new data presented cannot explain the differing carcinogenic activities of 5BT and 6BT, and that the reported noncarcinogen 5BT may also be carcinogenic when adequately assessed for this activity.

  6. A comprehensive assessment of the effects of Bt cotton on Coleomegilla maculata demonstrates no detrimental effects by Cry1Ac and Cry2Ab.

    Directory of Open Access Journals (Sweden)

    Yunhe Li

    Full Text Available The ladybird beetle, Coleomegilla maculata (DeGeer, is a common and abundant predator in many cropping systems. Its larvae and adults are predaceous, feeding on aphids, thrips, lepidopteran larvae and plant tissues, such as pollen. Therefore, this species is exposed to insecticidal proteins expressed in insect-resistant, genetically engineered cotton expressing Cry proteins derived from Bacillus thuringiensis (Bt. A tritrophic bioassay was conduced to evaluate the potential impact of Cry2Ab- and Cry1Ac-expressing cotton on fitness parameters of C. maculata using Bt-susceptible and -resistant larvae of Trichoplusia ni as prey. Coleomegilla maculata survival, development time, adult weight and fecundity were not different when they were fed with resistant T. ni larvae reared on either Bt or control cotton. To ensure that C. maculata were not sensitive to the tested Cry toxins independent from the plant background and to add certainty to the hazard assessment, C. maculata larvae were fed artificial diet incorporated with Cry2Ab, Cry1Ac or both at >10 times higher concentrations than in cotton tissue. Artificial diet containing E-64 was included as a positive control. No differences were detected in any life-table parameters between Cry protein-containing diet treatments and the control diet. In contrast, larvae of C. maculata fed the E-64 could not develop to the pupal stage and the 7-d larval weight was significantly negatively affected. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources were confirmed by ELISA and sensitive-insect bioassays. Our results show that C. maculata is not affected by Bt cotton and is not sensitive to Cry2Ab and Cry1Ac at concentrations exceeding the levels in Bt cotton, thus demonstrating that Bt cotton will pose a negligible risk to C. maculata. More importantly, this study demonstrates a comprehensive system for assessing the risk of genetically modified plants on non

  7. Effects of Resistance to Bt Cotton on Diapause in the Pink Bollworm, Pectinophora gossypiella

    Science.gov (United States)

    Carrière, Yves; Ellers-Kirk, Christa; Biggs, Robert W.; Sims, Maria A.; Dennehy, Timothy J.; Tabashnik, Bruce E.

    2007-01-01

    Fitness costs associated with resistance to Bacillus thuringiensis (Bt) crops are expected to delay the evolution of resistance. In a previous study where pink bollworm, Pectinophora gossypiella (Lepidoptera: Gelechiidae), larvae overwintered in outdoor insectaries, individuals from Bt-resistant strains had lower survival than individuals from Bt-susceptible strains or F1 progeny from crosses between resistant and susceptible adults. To investigate the physiological basis of such recessive cost, diapause duration was experimentally manipulated in the laboratory. Compared to a Bt-susceptible strain and F1 progeny, we hypothesized that Bt-resistant strains could exhibit a lower propensity or intensity of diapause, faster weight loss during overwintering, lower initial weight of diapausing larvae, and reduced longevity of moths emerging from diapause. Results were as expected for initial weight of diapausing larvae and longevity of overwintered male moths or female moths remaining in diapause for a short period. However, a higher diapause induction and intensity and slower weight loss occurred in F1 progeny and Bt-resistant strains than in a Bt-susceptible strain. Moreover, F1 progeny had greater overwintering survival than the Bt-resistant and Bt-susceptible strains, and F1 female moths had the greatest longevity after sustaining long diapausing periods. All of these unexpected results may be explained by pleiotropic effects of resistance to Bt cotton that increased the strength of diapause in the F1 progeny and Bt-resistant strains. Incomplete resistance was reflected in disadvantages suffered by Bt-resistant individuals feeding on a Bt diet instead of a non-Bt diet, including lower diapause propensity, lower diapause intensity and reduced longevity of overwintered male moths. While this study suggests that the evolution of resistance to Bt cotton and feeding on a Bt diet in Bt-resistant individuals have pervasive effects on several traits associated with diapause

  8. Breeding and Characterization of a New Rice Restorer Line Containing Bt Gene

    Institute of Scientific and Technical Information of China (English)

    GAO Fang-yuan; LU Xian-jun; HE Shu-lin; CHEN Xiao-juan; LU Dai-hua; SUN Shu-xia; LI Zhi-hua; LIU Guang-chun; ZHANG Yi-zheng; REN Guang-jun

    2009-01-01

    Bt5198, a new rice restorer line containing Bt gene, was developed from the cross and backcross of the elite restorer line Chenghui 177 with Bt Minghui 63, a transgenic Bt restorer line. The inbred lines were evaluated using PCR amplification, test paper evaluation, insect resistance evaluation in both the laboratory and paddy fields, nursery evaluation of rice blast resistance and pedigree selection of agronomic traits. Larval mortalities on Bt5198 and Bt Minghui 63 were 100% when rice culms were inoculated with the eggs of the striped stem borer (SSB) in the laboratory. Bt5198 was highly resistant against SSB and the yellow stem borer (YSB) under field conditions. The F1 hybrids derived from Bt5198 and four cytoplasmic male sterile (CMS) lines were also highly resistant to SSB and YSB and had a significant heterosis. Two-year evaluation of rice blast resistance confirmed that the resistance levels of Bt5198 to leaf blast and neck blast were similar to those of Chenghui 177 and significantly better than those of Bt Minghui 63. Seed germination ability and pollen yield of Bt5198 were similar with Chenghui 177, suggesting that the introduction of the Bt gene into the new restorer line had no significant effects on seed vitality or the yield of seed production. To identify the presence of the Bt gene, it was effective to combine test paper examination with the evaluation of insect-resistance, both in the laboratory and under field conditions.

  9. Non-recessive Bt toxin resistance conferred by an intracellular cadherin mutation in field-selected populations of cotton bollworm.

    Science.gov (United States)

    Zhang, Haonan; Wu, Shuwen; Yang, Yihua; Tabashnik, Bruce E; Wu, Yidong

    2012-01-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins.

  10. Non-recessive Bt toxin resistance conferred by an intracellular cadherin mutation in field-selected populations of cotton bollworm.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins.

  11. Apparent digestibility coefficients and consumption of corn silage with and without Bt gene in sheep

    Directory of Open Access Journals (Sweden)

    Camila Memari Trava

    2012-12-01

    Full Text Available Corn silage is the most important preserved food for ruminants. The transgenic corn was inserted into the genetic code Bt gene (Bacillus thuringiensis that expresses a toxic protein to caterpillars pests of maize, reducing production costs. To evaluate the varieties of plant corn silage DKB and AG with or without the Bt gene on the voluntary intake of DM (g/day and apparent digestibility coefficients (CDA of nutrients in sheep, the experiment was conducted at the Institute of Animal Science Nova Odessa-SP. Were used 20 sheep and the experimental design was randomized blocks in scheme factorial type 2x2 (two varieties of plant corn to silage, with the presence or absence of Bt gene, with five animals per treatment. These animals were housed in metabolism cages, with collector and separator feces and urine for 21 days, comprising 8 days for diet adaptation and 7 days for determination of intake, followed by 6 days of collection of feces, to measure DMI (g/day, CDA DM, CP and NDF. Samples of feed offered, leftovers and feces were identified and placed in a circulating air oven maintained at 55°C to constant weight. The analyses were performed in Bromatological Analysis Laboratory of the Institute of Animal Science. To CTMS (g/day was interaction effect (p<0.05 than in the variety AG (779.36 was greater than DKB (637.52, because the DM content of the sheet AG (31.09 was superior to DKB (29.17. The AG (779.36 was higher than your counterpart isogenic without the gene (575.15 p<0.05. The DKB without the gene (637.52 did not differ (p>0.05 from your counterpart DKBBt with the gene (590.78. The lowest total DM intake in g/day was observed for varieties with Bt gene insertion (genetically modified organism - GMO and a possible explanation is the higher value of NDF in the silages of variety with the Bt gene in relation to their isogenic counterparts without the gene. The CDA, DM and NDF no had interaction effect between varieties factors and GMO (p>0

  12. Bacillus thuringiensis crystal proteins that target nematodes

    OpenAIRE

    Wei, Jun-Zhi; Hale, Kristina; Carta, Lynn; Platzer, Edward; Wong, Cynthie; Fang, Su-Chiung; Aroian, Raffi V.

    2003-01-01

    Bacillus thuringiensis (Bt) crystal proteins are pore-forming toxins used as insecticides around the world. Previously, the extent to which these proteins might also target the invertebrate phylum Nematoda has been mostly ignored. We have expressed seven different crystal toxin proteins from two largely unstudied Bt crystal protein subfamilies. By assaying their toxicity on diverse free-living nematode species, we demonstrate that four of these crystal proteins are active against multiple nem...

  13. Bioactivity of vip3A Protein from Bacillus thuringiensis Isolates and Cloning of Vip3A-LS1 Gene from Bt LS1%苏云金杆菌营养期蛋白杀虫活性及Vip3A-LS1基因克隆

    Institute of Scientific and Technical Information of China (English)

    陆秀君; 郝会海; 宋萍; 杜克久; 李国勋

    2007-01-01

    对营养期高活性杀虫菌株进行筛选,得到高效菌株Bt LS1,对其营养期杀虫蛋白活性及发酵特性进行了系统研究,克隆了该菌株的vip3A新基因.测定了31株vip3A基因阳性菌株营养期杀虫蛋白的活性,发现Bt LS1和Bt LS8菌株对甜菜夜蛾Spodoptera exigua生长的抑制作用明显高于其他菌株.进一步研究表明,Bt LS1菌株营养期杀虫蛋白对初孵和2龄甜菜夜蛾幼虫的体重增长抑制率分别为95.3% ±2.1%和90.7% ±6.6%;对棉铃虫Helicoverpa armigera初孵幼虫的校正死亡率为22.1%,对2龄幼虫的体重增长抑制率为78.7% ±6.6%.发酵液中以胞内可溶性物质为主.设计vip3A全长基因特异引物PCR扩增,插入质粒pBluescript SK(+),克隆测序证实该菌株中存在vip3A新基因,命名为Vip3A-LS1,GenBank登录号为DQ016968.按该序列推断的蛋白与同类蛋白的8个氨基酸之间存在差异.

  14. Susceptibility of Ostrinia furnacalis to Bacillus thuringiensis and Bt Corn Under Long-Term Laboratory Selection

    Institute of Scientific and Technical Information of China (English)

    WEN Li-ping; HE Kang-lai; WANG Zhen-ying; ZHOU Da-rong; BAI Shu-xiong

    2005-01-01

    The susceptibility of the Asian corn borer, Ostrinia furnacalis to Bacillus thuringiensis (Bt) formulation and Bt corn was evaluated using insect bioassays for 6 years. Four strains of O. furnacalis were developed by laboratory selection from the laboratory strain reared on a non-agar semi-artificial diet. The RR-1 strain was exposed to a commercial formulation of B. thuringiensis subsp. kurstaki (Btk) incorporated into the artificial diet, the RR-2 strain was exposed to Bt corn (MON810)tissue incorporated into the diet, and the SS-1 and SS-2 strains were reared on the standard diet with or without non-Bt corn tissues material. Decreasing susceptibility of O. furnacalis to Bt and to Bt corn were found in each selected strain although the ED50 and larval weight fluctuated from generation to generation. The resistance of Bt-exposed strain (RR-1)to Btk increased 48-fold by generation 39; the Bt corn-exposed strain (RR-2) increased its resistance 37-fold to Btk by generation 24. No larvae of SS-1 survived when they were exposed to the leaves of Bt corn, Bt1 1 and MON810. However,2-54% of the RR-1 (generation 46) and RR-2 (generation 20) larvae survived a 3 day-exposure to the leaves of Bt1 1 and MON810. The survival of both selected strains on Bt corn silk increased by 10-69%, and the larval weights after many generations selection were increased by 15-22% compared with the unselected susceptible strain. The young larvae were much more susceptible to Bt than older larvae. The highest mortality occurred when the larvae were exposed to Bt at the neonate stage. All of the results suggested that ACB could not only develop resistance to Bt preparation but also to Bt corn. Bt had significant effects on the growth and development of Asian corn borer than on the larval mortality. In order to maintain the long-term effectiveness of Bt pesticide and Bt corn, the resistance management should pay much attention to the larvae that may have opportunities to grow and developed on non-Bt

  15. Temporal and Spatial Expression of Bt Toxin in Transgenic Restorer Line and Its F1 Hybrids%转基因水稻恢复系及其F1代Bt蛋白的时空表达分析

    Institute of Scientific and Technical Information of China (English)

    汪秀峰; 叶芬; 李莉; 陆徐忠; 倪大虎; 王德正; 麦霄黎; 王淑云; 杨剑波

    2014-01-01

    本研究以抗虫水稻恢复系9311(Bt)及其杂交种F1(Bt)为研究材料,以非转基因的9311为阴性对照,利用ELISA方法研究9311(Bt)及F1(Bt)各生育时期可溶性总蛋白和Bt蛋白的时空变化规律,为转Bt基因抗虫水稻的安全监管提供科学依据。结果表明:外源基因的导入没有引起水稻组织中可溶性总蛋白含量的明显变化;9311(Bt)的Bt蛋白表达量在整个生长周期的各个部位均高于相应的F1(Bt)植株;同一植株不同组织器官中Bt蛋白表达量为:叶片跃胚乳跃颖壳及茎秆跃根;同一植株不同发育期叶片Bt蛋白的测定结果整体表现为:营养生长阶段跃生殖生长阶段跃成熟衰老阶段。研究结果为转Bt基因抗虫水稻适宜检测时期的选择提供了一定的参考。%In this study, the research materials were insect-resistant rice restorer line 9311(Bt) and its F1 Hybrids, and the negative control was non-GMO 9311. By using ELISA method, we studied the expression of soluble protein and Bt toxic protein in plants. The experimental results provided a scientific basis for the safety supervision of transgenic Bt rice. In general, with the transfer of the exogenous Bt gene, the content of soluble protein of rice did not change significantly. In different periods of growth stages and different tissues, the content of Bt toxic protein of insect-resistant restorer line 9311(Bt) was much higher than that of F1(Bt) hybrids. In different tissues of transgenic rice, the concentration of Bt protein expression was as follows:leaves跃endosperms跃glumes and stems跃roots. In different growth stages, Bt protein contents of leaves were as follows:the vegetative growth stage跃the reproductive growth stage跃the mature stage. The result of the research provided a certain reference for appropriate detection period of Bt-transgenic insect-resistant rice.

  16. Regulatory considerations surrounding the deployment of Bt-expressing cowpea in Africa: report of the deliberations of an expert panel.

    Science.gov (United States)

    Huesing, Joseph; Romeis, Jörg; Ellstrand, Norman; Raybould, Alan; Hellmich, Richard; Wolt, Jeff; Ehlers, Jeff; Dabiré, Clémentine; Fatokun, Christian; Hokanson, Karen; Ishiyaku, Mohammad F; Margam, Venu; Obokoh, Nompumelelo; Mignouna, Jacob; Nangayo, Francis; Ouedraogo, Jeremy; Pasquet, Rémy; Pittendrigh, Barry; Schaal, Barbara; Stein, Jeff; Tamò, Manuele; Murdock, Larry

    2011-01-01

    Cowpea (Vigna unguiculata spp unguiculata) is adapted to the drier agro-ecological zones of West Africa where it is a major source of dietary protein and widely used as a fodder crop. Improving the productivity of cowpea can enhance food availability and security in West Africa. Insect predation--predominately from the legume pod borer (Maruca vitrata), flower thrips (Megalurothrips sjostedti) and a complex of pod-sucking bugs (e.g., Clavigralla spp)--is a major yield-limiting factor in West African cowpea production. Dramatic increases in yield are shown when M. vitrata is controlled with insecticides. However, availability, costs, and safety considerations limit pesticides as a viable option for boosting cowpea production. Development of Bt-cowpea through genetic modification (GM) to control the legume pod borer is a promising approach to cowpea improvement. Cowpea expressing the lepidopteran-active Cry1Ab protein from Bacillus thuringiensis is being developed as a first generation Bt-cowpea crop for West Africa. Appropriate stewardship of Bt-cowpea to assure its sustainability under West African conditions is critical to its successful development. A first step in this process is an environmental risk assessment to determine the likelihood and magnitude of adverse effects of the Cry1Ab protein on key environmental protection goals in West Africa. Here we describe the results of an expert panel convened in 2009 to develop the problem formulation phase for Bt-cowpea and to address specific issues around gene flow, non-target arthropods, and insect resistance management.

  17. SNS ønsker kommentarer om oplysninger fra Syngenta Seeds vedr forurening med Bt10 i Bt11-majsen ændrer konklusionerne i risikovurderingen. Zea mays (Bt11) . Supplerende informationer om Bt11 - evt. konsekvenser for tidligere vurderinger. Modtaget 04-05-2005, deadline 06-06-2005, svar 24-05-2005

    DEFF Research Database (Denmark)

    Kjellsson, Gøsta

    2012-01-01

    "Vedr. oplysningerne om iblanding af Bt-10 majsen i Bt-11 viser det tilsendte materiale, at Syngenta har undersøgt og fået bekræftet at undersøgelserne til grundlag for risikovurderingen blev foretaget på Bt-11 majs. DMU ser derfor ingen grund til at ændre konklusionerne i den tidligere risikovur...

  18. A Highly Active Endo-Levanase BT1760 of a Dominant Mammalian Gut Commensal Bacteroides thetaiotaomicron Cleaves Not Only Various Bacterial Levans, but Also Levan of Timothy Grass

    Science.gov (United States)

    Vija, Heiki; Aasamets, Anneli; Viigand, Katrin

    2017-01-01

    Bacteroides thetaiotaomicron, an abundant commensal of the human gut, degrades numerous complex carbohydrates. Recently, it was reported to grow on a β-2,6-linked polyfructan levan produced by Zymomonas mobilis degrading the polymer into fructooligosaccharides (FOS) with a cell surface bound endo-levanase BT1760. The FOS are consumed by B. thetaiotaomicron, but also by other gut bacteria, including health-promoting bifidobacteria and lactobacilli. Here we characterize biochemical properties of BT1760, including the activity of BT1760 on six bacterial levans synthesized by the levansucrase Lsc3 of Pseudomonas syringae pv. tomato, its mutant Asp300Asn, levansucrases of Zymomonas mobilis, Erwinia herbicola, Halomonas smyrnensis as well as on levan isolated from timothy grass. For the first time a plant levan is shown as a perfect substrate for an endo-fructanase of a human gut bacterium. BT1760 degraded levans to FOS with degree of polymerization from 2 to 13. At optimal reaction conditions up to 1 g of FOS were produced per 1 mg of BT1760 protein. Low molecular weight (prebiotic fiber for B. thetaiotaomicron and contribute to short-chain fatty acids synthesis by gut microbiota. In the genome of Bacteroides xylanisolvens of human origin a putative levan degradation locus was disclosed. PMID:28103254

  19. Influences of elevated CO2 and pest damage on the allocation of plant defense compounds in Bt-transgenic cotton and enzymatic activity of cotton aphid

    Institute of Scientific and Technical Information of China (English)

    Gang Wu; Fa-Jun Chen; Neng-Wen Xiao; Feng Ge

    2011-01-01

    Plant allocation to defensive compounds by elevated CO2-grown nontransgenic and transgenic Bt cotton in response to infestation by cotton aphid,Aphis gossypii (Glover) in open-top chambers under elevated CO2 were studied.The results showed that significantly lower foliar nitrogen concentration and Bt toxin protein occurred in transgenic Bt cotton with and without cotton aphid infestation under elevated CO2.However,significantly higher carbon/nitrogen ratio,condensed tannin and gossypol were observed in transgenic Bt cotton "GK-12" and non-transgenic Bt cotton ‘Simian-3' under elevated CO2.The CO2 level and cotton variety significantly influenced the foliar nitrogen,condensed tannin and gossypol concentrations in the plant leaves after feeding by A.gossypii.The interaction between CO2 level × infestation time (24 h,48 h and 72 h)showed a significant increase in cotton condensed tannin concentrations,while the interaction between CO2 level × cotton variety significantly decreased the true choline esterase (TChE) concentration in the body ofA.gossypi.This study exemplified the complexities of predicting how transgenic and non-transgenic plants will allocate defensive compounds in response to herbivorous insects under differing climatic conditions.Plant defensive compound allocation patterns and aphid enzyme changes observed in this study appear to be broadly applicable across a range of plant and herbivorous insect interactions as CO2 atmosphere rises.

  20. Genetic markers for western corn rootworm resistance to Bt toxin.

    Science.gov (United States)

    Flagel, Lex E; Swarup, Shilpa; Chen, Mao; Bauer, Christopher; Wanjugi, Humphrey; Carroll, Matthew; Hill, Patrick; Tuscan, Meghan; Bansal, Raman; Flannagan, Ronald; Clark, Thomas L; Michel, Andrew P; Head, Graham P; Goldman, Barry S

    2015-01-07

    Western corn rootworm (WCR) is a major maize (Zea mays L.) pest leading to annual economic losses of more than 1 billion dollars in the United States. Transgenic maize expressing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely used for the management of WCR. However, cultivation of Bt-expressing maize places intense selection pressure on pest populations to evolve resistance. Instances of resistance to Bt toxins have been reported in WCR. Developing genetic markers for resistance will help in characterizing the extent of existing issues, predicting where future field failures may occur, improving insect resistance management strategies, and in designing and sustainably implementing forthcoming WCR control products. Here, we discover and validate genetic markers in WCR that are associated with resistance to the Cry3Bb1 Bt toxin. A field-derived WCR population known to be resistant to the Cry3Bb1 Bt toxin was used to generate a genetic map and to identify a genomic region associated with Cry3Bb1 resistance. Our results indicate that resistance is inherited in a nearly recessive manner and associated with a single autosomal linkage group. Markers tightly linked with resistance were validated using WCR populations collected from Cry3Bb1 maize fields showing significant WCR damage from across the US Corn Belt. Two markers were found to be correlated with both diet (R2 = 0.14) and plant (R2 = 0.23) bioassays for resistance. These results will assist in assessing resistance risk for different WCR populations, and can be used to improve insect resistance management strategies.

  1. Cloning of Bt cry Genes by Rapid Screening of DNA Libraries with PCR-RFLP

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhong-yi; WU Xian; ZHANG Jie; SONG Fu-ping; GUAN Yu; HUANG Da-fang

    2003-01-01

    Bacillus thuringiensis (Bt) strain C002 contains crylAa, cry2Ab, cry1Ca insecticidal crystal genes and an unkown gene cryX, among which crylCa is located in a 6 -9 kb EcoR Ⅰ fragment of the chromosomal DNA. The total DNA and the plasmids DNA libraries of C002 were constructed in Bt-E. coli shuttle plasmid pHT315 by inserting 6 - 9 kb chromosomal and plasmid DNA fragments prepared respectively with EcoR Ⅰ complete and Sau3A Ⅰ partial digestion. On the basis of every 50 transformants pooled together from 5 - 10 tubes, the pools containing about 2 000 transformants from the plasmids DNA library and 400 transformants from the total DNA library were rapidly screened by PCR-RFLP. Clones containing crylAa, cryX, crylCa, and cry2Ab were isolated and named as pHT-1Aa, pHT-X, pHT-1Ca and pHT-2Ab respectively. Restriction analysis indicated that pHT-1Aa, pHT-1Ca and pHT-2Ab had the typical physical map of the homologous cry genes. Furthermore, each plasmid was transferred into Bt acrystalliferous strain cryB- by eletroporation. SDS-PAGE result showed that transformant of pHT-1Ca expressed 130 kDa protein and bioassay result proved its high toxicity against Spodotera exigua 1st instar larvae with 100% corrected motality.

  2. Using resistant prey demonstrates that Bt plants producing Cry1Ac, Cry2Ab, and Cry1F have no negative effects on Geocoris punctipes and Orius insidiosus.

    Science.gov (United States)

    Tian, Jun-Ce; Long, Li-Ping; Wang, Xiang-Ping; Naranjo, Steven E; Romeis, Jörg; Hellmich, Richard L; Wang, Ping; Shelton, Anthony M

    2014-02-01

    Geocoris punctipes (Say) and Orius insidiosus (Say) are generalist predators found in a wide range of crops, including cotton (Gossypium hirsutum L.) and maize (Zea mays L.), where they provide important biological control services by feeding on an array of pests, including eggs and small larvae of caterpillars. A high percentage of cotton and maize in the United States and several other countries are transgenic cultivars that produce one or more of the insecticidal Cry proteins of Bacillus thuringiensis Berliner (Bt). Here we quantify effects of three Cry proteins on the life history of these predators over two generations when they are exposed to these Cry proteins indirectly through their prey. To eliminate the confounding prey quality effects that can be introduced by Bt-susceptible prey, we used Cry1Ac/Cry2Ab-resistant Trichoplusia ni (Hübner) and Cry1 F-resistant Spodoptera frugiperda (J.E. Smith) in a series of tri-trophic studies. Survival, development, adult mass, fecundity, and fertility were similar when predators consumed larvae feeding on Cry1Ac/Cry2Ab cotton or Cry1 F maize compared with prey feeding on isogenic or near-isogenic cotton or maize. Repeated exposure of the same initial cohort over a second generation also resulted in no differences in life-history traits when feeding on non-Bt- or Bt-fed prey. Enzyme-linked immunosorbent assay showed that predators were exposed to Bt Cry proteins from their prey and that these proteins became increasingly diluted as they moved up the food chain. Results show a clear lack of effect of three common and widespread Cry proteins on these two important predator species. The use of resistant insects to eliminate prey quality effects provides a robust and meaningful assessment of exposure and hazard.

  3. Identification of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells

    Directory of Open Access Journals (Sweden)

    Nadarajah Vishna

    2010-11-01

    Full Text Available Abstract Background Bacillus thuringiensis (Bt, an ubiquitous gram-positive spore-forming bacterium forms parasporal proteins during the stationary phase of its growth. Recent findings of selective human cancer cell-killing activity in non-insecticidal Bt isolates resulted in a new category of Bt parasporal protein called parasporin. However, little is known about the receptor molecules that bind parasporins and the mechanism of anti-cancer activity. A Malaysian Bt isolate, designated Bt18 produces parasporal protein that exhibit preferential cytotoxic activity for human leukaemic T cells (CEM-SS but is non-cytotoxic to normal T cells or other cancer cell lines such as human cervical cancer (HeLa, human breast cancer (MCF-7 and colon cancer (HT-29 suggesting properties similar to parasporin. In this study we aim to identify the binding protein for Bt18 in human leukaemic T cells. Methods Bt18 parasporal protein was separated using Mono Q anion exchange column attached to a HPLC system and antibody was raised against the purified 68-kDa parasporal protein. Receptor binding assay was used to detect the binding protein for Bt18 parasporal protein in CEM-SS cells and the identified protein was sent for N-terminal sequencing. NCBI protein BLAST was used to analyse the protein sequence. Double immunofluorescence staining techniques was applied to localise Bt18 and binding protein on CEM-SS cell. Results Anion exchange separation of Bt18 parasporal protein yielded a 68-kDa parasporal protein with specific cytotoxic activity. Polyclonal IgG (anti-Bt18 for the 68-kDa parasporal protein was successfully raised and purified. Receptor binding assay showed that Bt18 parasporal protein bound to a 36-kDa protein from the CEM-SS cells lysate. N-terminal amino acid sequence of the 36-kDa protein was GKVKVGVNGFGRIGG. NCBI protein BLAST revealed that the binding protein was Glyceraldehyde-3-phosphate dehydrogenase (GAPDH. Double immunofluorescence staining showed

  4. Agrobacterium-meditated Genetic Transformation of an Upland Cotton (Gossypium hirsutum cv Coker 310) Using a Novel Bt Gene Cry 2Ac

    Institute of Scientific and Technical Information of China (English)

    THIRUVENGADAM V; RASHMI J A; UDYASURIAN V; BALASUBRAMANIAN P; RAVEENDRAN T S

    2008-01-01

    @@ The development of transgenic cotton varieties resistant to bollworms has been a major success of applying plant genetic engineering technology to agriculture,evidenced by phenomenal increase in the cultivable area under (B.thuringiensis) Bt cotton in recent years worldwide.Of late,there are reports of insects developing resistance against the most commonly used Bt toxin CrylAc.Hence,there is an urgent need to broaden the source of resistance by employing new genes in order to reduce the chances of insects developing Bt resistance.Keeping this objective in view,cotton (Gossypium hirsuturn cv Coker 310) plants expressing a novel insecticidal crystal protein Cry2Ac were developed in the present study.

  5. Test Takers' Attitudes about the TOEFL iBT[TM]. TOEFL iBT Research Report. RR-10-2

    Science.gov (United States)

    Stricker, Lawrence J.; Attali, Yigal

    2010-01-01

    The principal aims of this study, a conceptual replication of an earlier investigation of the TOEFL[R] computer-based test, or TOEFL CBT, in Buenos Aires, Cairo, and Frankfurt, were to assess test takers' reported acceptance of the TOEFL Internet-based test, or TOEFL iBT[TM], and its associations with possible determinants of this acceptance and…

  6. Calculation and Analysis of B/T (Burning and/or Transmutation Rate of Minor Actinides and Plutonium Performed by Fast B/T Reactor

    Directory of Open Access Journals (Sweden)

    Marsodi

    2006-01-01

    Full Text Available Calculation and analysis of B/T (Burning and/or Transmutation rate of MA (minor actinides and Pu (Plutonium has been performed in fast B/T reactor. The study was based on the assumption that the spectrum shift of neutron flux to higher side of neutron energy had a potential significance for designing the fast B/T reactor and a remarkable effect for increasing the B/T rate of MA and/or Pu. The spectrum shifts of neutron have been performed by change MOX to metallic fuel. Blending fraction of MA and or Pu in B/T fuel and the volume ratio of fuel to coolant in the reactor core were also considered. Here, the performance of fast B/T reactor was evaluated theoretically based on the calculation results of the neutronics and burn-up analysis. In this study, the B/T rate of MA and/or Pu increased by increasing the blending fraction of MA and or Pu and by changing the F/C ratio. According to the results, the total B/T rate, i.e. [B/T rate]MA + [B/T rate]Pu, could be kept nearly constant under the critical condition, if the sum of the MA and Pu inventory in the core is nearly constant. The effect of loading structure was examined for inner or outer loading of concentric geometry and for homogeneous loading. Homogeneous loading of B/T fuel was the good structure for obtaining the higher B/T rate, rather than inner or outer loading

  7. Susceptibility of legume pod borer (LPB), Maruca vitrata to delta-endotoxins of Bacillus thuringiensis (Bt) in Taiwan.

    Science.gov (United States)

    Srinivasan, R

    2008-01-01

    Baseline susceptibility of legume pod borer (LPB) to the insecticidal crystal proteins (ICPs) from Bacillus thuringiensis, viz, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca and Cry2Aa was assessed in Taiwan. Insect bioassays were performed by incorporating the Bt delta-endotoxins into the LPB artificial diet. The efficacy of different Bt delta-endotoxins against second instar larvae of LPB showed that the toxin Cry1Ab was the most potent toxin (LC(50) 0.207ppm), followed by Cry1Ca, Cry1Aa, Cry2Aa and Cry1Ac in descending order, with LC(50)s 0.477ppm, 0.812ppm, 1.058ppm and 1.666ppm, respectively. Hence, Cry1Ab and/or Cry1Ca toxins would provide effective control of early larval stages of LPB.

  8. FUM Gene Expression Profile and Fumonisin Production by Fusarium verticillioides Inoculated in Bt and Non-Bt Maize

    Science.gov (United States)

    Rocha, Liliana O.; Barroso, Vinícius M.; Andrade, Ludmila J.; Pereira, Gustavo H. A.; Ferreira-Castro, Fabiane L.; Duarte, Aildson P.; Michelotto, Marcos D.; Correa, Benedito

    2016-01-01

    This study aimed to determine the levels of fumonisins produced by Fusarium verticillioides and FUM gene expression on Bt (Bacillus thuringiensis) and non-Bt maize, post harvest, during different periods of incubation. Transgenic hybrids 30F35 YG, 2B710 Hx and their isogenic (30F35 and 2B710) were collected from the field and a subset of 30 samples selected for the experiments. Maize samples were sterilized by gamma radiation at a dose of 20 kGy. Samples were then inoculated with F. verticillioides and analyzed under controlled conditions of temperature and relative humidity for fumonisin B1 and B2 (FB1 and FB2) production and FUM1, FUM3, FUM6, FUM7, FUM8, FUM13, FUM14, FUM15, and FUM19 expression. 2B710 Hx and 30F35 YG kernel samples were virtually intact when compared to the non-Bt hybrids that came from the field. Statistical analysis showed that FB1 production was significantly lower in 30F35 YG and 2B710 Hx than in the 30F35 and 2B710 hybrids (P 0.05). The kernel injuries observed in the non-Bt samples have possibly facilitated F. verticillioides penetration and promoted FB1 production under controlled conditions. FUM genes were expressed by F. verticillioides in all of the samples. However, there was indication of lower expression of a few FUM genes in the Bt hybrids; and a weak association between FB1 production and the relative expression of some of the FUM genes were observed in the 30F35 YG hybrid. PMID:26779158

  9. FUM gene expression profile and fumonisin production by Fusarium verticillioides inoculated in Bt and non-Bt maize

    Directory of Open Access Journals (Sweden)

    Liliana Oliveira Rocha

    2016-01-01

    Full Text Available This study aimed to determine the levels of fumonisins produced by F. verticillioides and FUM gene expression on Bt (Bacillus thuringiensis and non-Bt maize, post harvest, during different periods of incubation. Transgenic hybrids 30F35 YG, 2B710 Hx and their isogenic (30F35 and 2B710 were collected from the field and a subset of 30 samples selected for the experiments. Maize samples were sterilized by gamma radiation at a dose of 20 kGy. Samples were then inoculated with Fusarium verticillioides and analysed under controlled conditions of temperature and relative humidity for fumonisin B1 and B2 (FB¬1 and FB2 production and FUM1, FUM3, FUM6, FUM7, FUM8, FUM13, FUM14, FUM15 and FUM19 expression. 2B710 Hx and 30F35 YG kernel samples were virtually intact when compared to the non-Bt hybrids that came from the field. Statistical analysis showed that FB¬1 production was significantly lower in 30F35 YG and 2B710 Hx than in the 30F35 and 2B710 hybrids (P 0.05. The kernel injuries observed in the non-Bt samples have possibly facilitated F. verticillioides penetration and promoted FB1 production under controlled conditions. FUM genes were expressed by F. verticillioides in all of the samples. However, there was indication of lower expression of a few FUM genes in the Bt hybrids; and a weak association between FB1 production and the relative expression of some of the FUM genes were observed in the 30F35 YG hybrid.

  10. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    Science.gov (United States)

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  11. Investigating the Value of Section Scores for the "TOEFL iBT"® Test. "TOEFL iBT"® Research Report. TOEFL iBT-21. ETS Research Report RR-13-35

    Science.gov (United States)

    Sawaki, Yasuyo; Sinharay, Sandip

    2013-01-01

    This study investigates the value of reporting the reading, listening, speaking, and writing section scores for the "TOEFL iBT"® test, focusing on 4 related aspects of the psychometric quality of the TOEFL iBT section scores: reliability of the section scores, dimensionality of the test, presence of distinct score profiles, and the…

  12. Discourse Characteristics of Writing and Speaking Task Types on the "TOEFL iBT"® Test: A Lexico-Grammatical Analysis. "TOEFL iBT"® Research Report. TOEFL iBT-19. Research Report. RR-13-04

    Science.gov (United States)

    Biber, Douglas; Gray, Bethany

    2013-01-01

    One of the major innovations of the "TOEFL iBT"® test is the incorporation of integrated tasks complementing the independent tasks to which examinees respond. In addition, examinees must produce discourse in both modes (speech and writing). The validity argument for the TOEFL iBT includes the claim that examinees vary their discourse in…

  13. Decrease in catalase activity of Folsomia candida fed a Bt rice diet

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Yiyang, E-mail: yuanyy@ioz.ac.cn [State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Ke Xin, E-mail: xinke@sibs.ac.cn [Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China); Chen Fajun, E-mail: fajunchen@njau.edu.cn [College of Plant Protection, Department of Entomology, Nanjing Agricultural University, Nanjing 210095 (China); Krogh, Paul Henning, E-mail: phk@dmu.dk [Department of Bioscience, University of Aarhus, P.O. Box 314, Vejlsoevej 25, DK-8600 Silkeborg (Denmark); Ge Feng, E-mail: gef@ioz.ac.cn [State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101 (China)

    2011-12-15

    Here we report the effects of three Bt-rice varieties and their non-Bt conventional isolines on biological traits including survival, reproduction, and the activities of three antioxidant enzymes superoxide dismutase, catalase and peroxidase, in the Collembolan, Folsomia candida. The reproduction was significantly lower when fed Kemingdao and Huahui1 than those feeding on their non-GM near-isogenic varieties Xiushui and Minghui63 respectively, this can be explained by the differences of plant compositions depended on variety of rice. The catalase activity of F. candida was significantly lower when fed the Bt-rice variety Kemingdao compared to the near-isogenic non-Bt-rice variety Xiushui. This suggests that some Bt-rice varieties may impose environmental stress to collembolans. We emphasize that changes in activity of antioxidant enzymes of non-target organisms are important in understanding the ecological consequences for organisms inhabiting transgenic Bt-rice plantations. - Highlights: > We examine the effects of Bt-rice on Folsomia candida with laboratory test. > The reproduction of F. candida was decreased by two Bt-rice varieties. > Decreased reproduction caused by the differences of varieties or C/N ratio of rice. > The catalase activity was decreased by Bt-rice Kemingdao. > Some Bt-rice may impose environmental stress on NTOs. - The catalase of the collembolan (Folsomia candida) was decreased when fed Bt-rice, Kemingdao.

  14. Modeling the invasion of recessive Bt-resistant insects: an impact on transgenic plants.

    Science.gov (United States)

    Medvinsky, Alexander B; Morozov, Andrew Y; Velkov, Vassili V; Li, Bai-Lian; Sokolov, Mikhail S; Malchow, Horst

    2004-11-07

    There is a growing public concern on ecological and evolutionary consequence of the use of genetically modified organisms. We study the impact of Bt-resistant pests on genetically modified Bt crops. We develop and analyse a conceptual reaction-diffusion model of the Bt crop-Bt-susceptible insects-Bt-resistant insects to simulate the invasion of Bt-resistant insects. We show by means of computer simulations that there is a key parameter, which we define as the growth number that characterizes the insects' fitness. We also show that the Bt-resistant insect invasion can lead to inhomogeneity in plant and insect spatial distributions. The plant biomass is found to be essentially dependent on the duration of the Bt-resistant insect reproduction period. There are two types of this dependence. One of them exhibits, respectively, higher plant biomass in comparison with another. The ambiguity in the response of the Bt crop-Bt-susceptible insects system to the invasion of Bt-resistant insects can lead to serious complications in attempts to regulate the dynamics of the system.

  15. Dominant inheritance of field-evolved resistance to Bt corn in Busseolafusca.

    Science.gov (United States)

    Campagne, Pascal; Kruger, Marlene; Pasquet, Rémy; Le Ru, Bruno; Van den Berg, Johnnie

    2013-01-01

    Transgenic crops expressing Bacillus thuringiensis (Bt) toxins have been adopted worldwide, notably in developing countries. In spite of their success in controlling target pests while allowing a substantial reduction of insecticide use, the sustainable control of these pest populations is threatened by the evolution of resistance. The implementation of the "high dose/refuge" strategy for managing insect resistance in transgenic crops aims at delaying the evolution of resistance to Bt crops in pest populations by promoting survival of susceptible insects. However, a crucial condition for the "high dose/refuge" strategy to be efficient is that the inheritance of resistance should be functionally recessive. Busseolafusca developed high levels of resistance to the Bt toxin Cry 1Ab expressed in Bt corn in South Africa. To test whether the inheritance of B. fusca resistance to the Bt toxin could be considered recessive we performed controlled crosses with this pest and evaluated its survival on Bt and non-Bt corn. Results show that resistance of B. fusca to Bt corn is dominant, which refutes the hypothesis of recessive inheritance. Survival on Bt corn was not lower than on non-Bt corn for both resistant larvae and the F1 progeny from resistant × susceptible parents. Hence, resistance management strategies of B. fusca to Bt corn must address non-recessive resistance.

  16. The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea.

    Science.gov (United States)

    Liu, Yong-Bo; Darmency, Henry; Stewart, C Neal; Wei, Wei; Tang, Zhi-Xi; Ma, Ke-Ping

    2015-06-01

    This study aims to investigate the relative plant growth and reproduction of insect-resistant and susceptible plants following the introgression of an insect-resistance Bt-transgene from Brassica napus, oilseed rape, to wild Brassica juncea. The second backcrossed generation (BC2) from a single backcross family was grown in pure and mixed stands of Bt-transgenic and non-transgenic siblings under two insect treatments. Various proportions of Bt-transgenic plants were employed in mixed stands to study the interaction between resistant and susceptible plants. In the pure stands, Bt-transgenic BC2 plants performed better than non-transgenic plants with or without insect treatments. In mixed stands, Bt-transgenic BC2 plants produced fewer seeds than their non-Bt counterparts at low proportions of Bt-transgenic BC2 plants in the absence of insects. Reproductive allocation of non-transgenic plants marginally increased with increasing proportions of Bt-transgenic plants under herbivore pressure, which resulted in increased total biomass and seed production per stand. The results showed that the growth of non-transgenic plants was protected by Bt-transgenic plants under herbivore pressure. The Bt-transgene might not be advantageous in mixed stands of backcrossed hybrids; thus transgene introgression would not be facilitated when herbivorous insects are not present. However, a relatively large initial population of Bt-transgenic plants might result in transgene persistence when target herbivores are present.

  17. Dominant inheritance of field-evolved resistance to Bt corn in Busseolafusca.

    Directory of Open Access Journals (Sweden)

    Pascal Campagne

    Full Text Available Transgenic crops expressing Bacillus thuringiensis (Bt toxins have been adopted worldwide, notably in developing countries. In spite of their success in controlling target pests while allowing a substantial reduction of insecticide use, the sustainable control of these pest populations is threatened by the evolution of resistance. The implementation of the "high dose/refuge" strategy for managing insect resistance in transgenic crops aims at delaying the evolution of resistance to Bt crops in pest populations by promoting survival of susceptible insects. However, a crucial condition for the "high dose/refuge" strategy to be efficient is that the inheritance of resistance should be functionally recessive. Busseolafusca developed high levels of resistance to the Bt toxin Cry 1Ab expressed in Bt corn in South Africa. To test whether the inheritance of B. fusca resistance to the Bt toxin could be considered recessive we performed controlled crosses with this pest and evaluated its survival on Bt and non-Bt corn. Results show that resistance of B. fusca to Bt corn is dominant, which refutes the hypothesis of recessive inheritance. Survival on Bt corn was not lower than on non-Bt corn for both resistant larvae and the F1 progeny from resistant × susceptible parents. Hence, resistance management strategies of B. fusca to Bt corn must address non-recessive resistance.

  18. Effects of transgenic Bt cotton on soil fertility and biology under field conditions in subtropical inceptisol.

    Science.gov (United States)

    Singh, Raman Jeet; Ahlawat, I P S; Singh, Surender

    2013-01-01

    Although there is large-scale adoption of Bt cotton by the farmers because of immediate financial gain, there is concern that Bt crops release Bt toxins into the soil environment which reduces soil chemical and biological activities. However, the majorities of such studies were mainly performed under pot experiments, relatively little research has examined the direct and indirect effects of associated cover crop of peanut with fertilization by combined application of organic and inorganic sources of nitrogen under field conditions. We compared soil chemical and biological parameters of Bt cotton with pure crop of peanut to arrive on a valid conclusion. Significantly higher dehydrogenase enzyme activity and KMnO(4)-N content of soil were observed in Bt cotton with cover crop of peanut over pure Bt cotton followed by pure peanut at all the crop growth stages. However, higher microbial population was maintained by pure peanut over intercropped Bt cotton, but these differences were related to the presence of high amount of KMnO(4)-N content of soil. By growing cover crop of peanut between Bt cotton rows, bacteria, fungi, and actinomycetes population increased by 60%, 14%, and 10%, respectively, over Bt cotton alone. Bt cotton fertilized by combined application of urea and farm yard manure (FYM) maintained higher dehydrogenase enzyme activity, KMnO(4)-N content of soil and microbial population over urea alone. Significant positive correlations were observed for dry matter accumulation, dehydrogenase enzyme activity, KMnO(4)-N content, and microbial population of soil of Bt cotton, which indicates no harmful effects of Bt cotton on soil biological parameters and associated cover crop. Our results suggest that inclusion of cover crop of peanut and FYM in Bt cotton enhanced soil chemical and biological parameters which can mask any negative effect of the Bt toxin on microbial activity and thus on enzymatic activities.

  19. Optimizing pyramided transgenic Bt crops for sustainable pest management.

    Science.gov (United States)

    Carrière, Yves; Crickmore, Neil; Tabashnik, Bruce E

    2015-02-01

    Transgenic crop pyramids producing two or more Bacillus thuringiensis (Bt) toxins that kill the same insect pest have been widely used to delay evolution of pest resistance. To assess the potential of pyramids to achieve this goal, we analyze data from 38 studies that report effects of ten Bt toxins used in transgenic crops against 15 insect pests. We find that compared with optimal low levels of insect survival, survival on currently used pyramids is often higher for both susceptible insects and insects resistant to one of the toxins in the pyramid. Furthermore, we find that cross-resistance and antagonism between toxins used in pyramids are common, and that these problems are associated with the similarity of the amino acid sequences of domains II and III of the toxins, respectively. This analysis should assist in future pyramid design and the development of sustainable resistance management strategies.

  20. Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions: Implications for resistance management.

    Science.gov (United States)

    Burkness, Eric C; Dively, Galen; Patton, Terry; Morey, Amy C; Hutchison, William D

    2010-01-01

    Sweet corn, Zea mays L., transformed to express a novel vegetative insecticidal protein, Vip3A (event MIR162, Syngenta Seeds, Inc..), produced by the bacterium, Bacillus thuringiensis (Bt), was evaluated over four field seasons in Maryland and two field seasons in Minnesota for efficacy against the corn earworm, Helicoverpa zea (Boddie). Hybrids expressing the Vip3A protein and pyramided in hybrids also expressing the Cry1Ab Bt protein (event Bt11, ATTRIBUTE(®), Syngenta Seeds, Inc.) were compared to hybrids expressing only Cry1Ab or to genetically similar non-Bt hybrids each year. In addition to H. zea efficacy, results for Ostrinia nubilalis (Hübner) and Spodoptera frugiperda (J.E. Smith) are presented. Over all years and locations, the non-Bt hybrids, without insecticide protection, averaged between 43 and 100% ears infested with a range of 0.24 to 1.74 H. zea larvae per ear. By comparison, in the pyramided Vip3A x Cry1Ab hybrids, no larvae were found and only minimal kernel damage (likely due to other insect pests) was recorded. Hybrids expressing only Cry1Ab incurred a moderate level of H. zea feeding damage, with surviving larvae mostly limited to the first or second instar as a result of previously documented growth inhibition from Cry1Ab. These results suggest that the Vip3A protein, pyramided with Cry1Ab, appears to provide the first "high-dose" under field conditions and will be valuable for ongoing resistance management.

  1. Yamaha BT1100 Bull Dog 斗牛

    Institute of Scientific and Technical Information of China (English)

    李鹏飞; 卓鹏(摄影)

    2010-01-01

    提到雅马哈的重型街车大家首先想到的是XJR1300、FZ1000等,今天我们要说的是被大家所忽略的BT1100 Bull Dog,Bull Dong翻译成中文大概意思是斗牛犬,所以俗称斗牛犬。

  2. Demographic responses of Daphnia magna fed transgenic Bt-maize

    OpenAIRE

    2009-01-01

    The food/feed quality of a variety of genetically modified (GM) maize expressing Cry1Ab Bt-toxin was tested over the life-cycle of Daphnia magna, an arthropod commonly used as model organism in ecotoxicological studies. Demographic responses were compared between animals fed GM or unmodified (UM) near isogenic maize, with and without the addition of predator smell. Age-specific data on survival and birth rates were integrated and analysed using life tables and Leslie matrices. Survival, fecun...

  3. The impact of common smut(Ustilago maydis) on aflatoxin and fumonisin in transgenic Bt and non-Bt maize (Zea mays)

    Science.gov (United States)

    Corn infected with Ustilago maydis (common smut), produces galls that are valued food in certain cultures, but may be contaminated with mycotoxins. Field studies conducted in Elizabeth, Mississippi used near-isogenic Bt and non-Bt corn hybrids. The levels of aflatoxin and fumonisin were determined ...

  4. Spatio-Temporal Variation in Landscape Composition May Speed Resistance Evolution of Pests to Bt Crops

    Science.gov (United States)

    Ives, Anthony R.; Paull, Cate; Hulthen, Andrew; Downes, Sharon; Andow, David A.; Haygood, Ralph; Zalucki, Myron P.; Schellhorn, Nancy A.

    2017-01-01

    Transgenic crops that express insecticide genes from Bacillus thuringiensis (Bt) are used worldwide against moth and beetle pests. Because these engineered plants can kill over 95% of susceptible larvae, they can rapidly select for resistance. Here, we use a model for a pyramid two-toxin Bt crop to explore the consequences of spatio-temporal variation in the area of Bt crop and non-Bt refuge habitat. We show that variability over time in the proportion of suitable non-Bt breeding habitat, Q, or in the total area of Bt and suitable non-Bt habitat, K, can increase the overall rate of resistance evolution by causing short-term surges of intense selection. These surges can be exacerbated when temporal variation in Q and/or K cause high larval densities in refuges that increase density-dependent mortality; this will give resistant larvae in Bt fields a relative advantage over susceptible larvae that largely depend on refuges. We address the effects of spatio-temporal variation in a management setting for two bollworm pests of cotton, Helicoverpa armigera and H. punctigera, and field data on landscape crop distributions from Australia. Even a small proportion of Bt fields available to egg-laying females when refuges are sparse may result in high exposure to Bt for just a single generation per year and cause a surge in selection. Therefore, rapid resistance evolution can occur when Bt crops are rare rather than common in the landscape. These results highlight the need to understand spatio-temporal fluctuations in the landscape composition of Bt crops and non-Bt habitats in order to design effective resistance management strategies. PMID:28046073

  5. Assessment of Populus Wood Chemistry Following the Introduction of a Bt Toxin Gene

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M. F.; Tuskan, G. A.; Payne, P.; Tschaplinski, T. J.; Meilan, R.

    2006-01-01

    Unintended changes in plant physiology, anatomy and metabolism as a result of genetic engineering are a concern as more transgenic plants are commercially deployed in the ecosystem. We compared the cell wall chemical composition of three Populus lines (Populus trichocarpa Torr. and A. Gray x Populus deltoides Bartr. ex Marsh., Populus trichocarpa x Populus nigra L. and Populus deltoides x Populus nigra) genetically modified to express the Cry3A or Cry3B2 protein of Bacillus thuringiensis (Bt) with the cellwall chemistry of non-transformed isogenic control lines. Three genetically modified clones, each represented by 10 independent transgenic lines, were analyzed by pyrolysis molecular beam mass spectrometry, gas chromatography/mass spectrometry and traditional wet chemical analytical methods to assess changes in cell wall composition. Based on the outcome of these techniques, there were no comprehensive differences in chemical composition between the transgenic and control lines for any of the studied clones.

  6. Assessment of Populus wood chemistry following the introduction of a Bt toxin gene

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, Timothy J [ORNL; Davis, M F [National Energy Renewable Laboratory; Tuskan, Gerald A [ORNL; Payne, M M [Boise Cascade LLC; Meilan, R [Purdue University

    2006-01-01

    Unintended changes in plant physiology, anatomy and metabolism as a result of genetic engineering are a concern as more transgenic plants are commercially deployed in the ecosystem. We compared the cell wall chemical composition of three Populus lines (Populus trichocarpa Torr. & A. Gray x Populus trichocarpa Bartr. ex Marsh., Populus trichocarpa x Populus nigra L. and Populus deltoides x Populus nigra) genetically modified to express the Cry3A or Cry3B2 protein of Bacillus thuringiensis (Bt) with the cell wall chemistry of non-transformed isogenic control lines. Three genetically modified clones, each represented by 10 independent transgenic lines, were analyzed by pyrolysis molecular beam mass spectrometry, gas chromatography/mass spectrometry and traditional wet chemical analytical methods to assess changes in cell wall composition. Based on the outcome of these techniques, there were no comprehensive differences in chemical composition between the transgenic and control lines for any of the studied clones.

  7. Photothermal effects of multi-walled carbon nanotubes on the viability of BT-474 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Hung-Tao [Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan (China); Wang, Tsung-Pao [Department of Medical Science, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan (China); Lee, Chi-Young [Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan (China); Tai, Nyan-Hwa, E-mail: nhtai@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan (China); Chang, Hwan-You, E-mail: hychang@mx.nthu.edu.tw [Department of Medical Science, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan (China)

    2013-03-01

    Functionalized multi-walled carbon nanotubes (f-MWCNTs) were conjugated to an antibody of BT-474 cancer cells (f-MWCNTs-ab), and the photothermal effect of the f-MWCNTs-ab for BT-474 cancer cell destruction was demonstrated. After near-infrared irradiation, the f-MWCNTs-ab were more capable of killing cancer cells and possessed higher cell specificity than f-MWCNTs. Quantitative results showed that the viability of the cancer cells was affected by the concentration of the f-MWCNTs-ab solution, irradiation time, and settling time after irradiation. The membrane impermeable fluorescence dye ethidium bromide was used to detect cell viability after near-infrared irradiation, and the results agreed with those obtained from the Alamar Blue cell viability assay. The EtBr fluorescence results suggest that the cell membrane, attached to f-MWCNTs-ab, was damaged after irradiation, which led to cell death and necrosis. Using confocal microscopy, a few f-MWCNTs-ab were detected in the cell, indicating the endocytosis effect. The results not only explain the improved efficiency of thermotherapy but also indicate that necrosis may result from protein denaturation attributing to the heated f-MWCNTs-ab in the cell. Highlights: Black-Right-Pointing-Pointer f-MWCNTs conjugated with anti-HER2 antibody by chemical method. Black-Right-Pointing-Pointer Kill breast cancer cells by using low dose f-MWCNTs-ab due to photothermal effect. Black-Right-Pointing-Pointer Use EtBr fluorescent to prove that the cell membrane was broken by heated f-MWCNTs. Black-Right-Pointing-Pointer Few f-MWCNTs-ab were detected in the cell indicating the endocytosis effect. Black-Right-Pointing-Pointer Necrosis may result from protein denaturation due to contact with the heated CNTs.

  8. Bt transgenic crops do not have favorable effects on resistant insects.

    Science.gov (United States)

    Tabashnik, Bruce E; Carrière, Yves

    2004-01-01

    Sayyed et al. (Ecology Letters (2003) 6: 167-169) hypothesized that insecticidal Bacillus thuringiensis (Bt) toxins produced by transgenic crops could have nutritionally favorable effects that increase the fitness of resistant insects eating such crops. This idea was based on increased pupal weight of resistant larvae of diamondback moth, Plutella xylostella (L.), fed leaf discs treated externally with a Bt toxin. We summarize evidence from diamondback moth and other pests showing that the Bt toxins in transgenic crops do not enhance performance of resistant insects. Aside from a few notable exceptions in which performance of resistant insects did not differ between Bt and non-Bt crops, Bt crops had adverse affects on resistant insects.

  9. Modified accumulation of selected heavy metals in Bt transgenic rice

    Institute of Scientific and Technical Information of China (English)

    WANG Haiyan; HUANG Jianzhong; YE Qingfu; WU Dianxing; CHEN Ziyuan

    2009-01-01

    Safety assessment of genetically modified crops generally does not take into account the potential hazard of altered patterns of heavy metal accumulation in plants.A pot experiment was conducted under greenhouse conditions to evaluate the impact of heavy metal amendments on the accumulation of Cd,Cu,Pb and Zn in a Bt transgenic rice Ke-Ming-Dao (KMD) and its wild-type Xiushui 11 (Xs11).In control soils,significant difference was only found in contents of Cu (p < 0.01) and Pb (p < 0.05) in straw between KMD and Xs11.At three levels of Cd amendments (5,10,and 20 mg/kg),the Cd contents in grain and straw of KMD were significantly higher than those of Xs11,and all grain Cd contents were significantly higher than the international criteria (0.2-0.4 mg/kg) as specified by the Codex Alimentarius Commission (CAC).These results implied that it may be unsafe for growing Bt transgenic rice in heavily Cd-polluted areas.No significant difference in Zn was found between the two varieties with the exception of roots at Zn amendment level of 600 mg/kg,while Pb contents in KMD were much higher in the straw at the lead amendment level of 1000 mg/kg and in the root at 250 mg Pb/kg.Data on the heavy metal accumulation patterns for the genetically modified rice may be used for the selection of growing areas as well as for plant residue management for Bt rice.

  10. Introducing Bt Gene Into Maize With Ovary Injection

    Institute of Scientific and Technical Information of China (English)

    丁群星; 谢友菊; 戴景瑞; 米景九; 李太元; 田颖川; 乔利亚; 莽克强; 刘宝兰; 王音; 冯平章

    1994-01-01

    It is reported here that Bt toxin gene has been successfully transferred into maize inbred line by ovary injection for the first time both at home and abroad. One transgenic plant (To) has been confirmed by Southern blotting and PCR test, and 71 progenies (T1) from T0 have been obtained through self-pollination. Of these 71 progenies, seven plants demonstrated positive results in the PCR test; four were used to feed Asian corn borer, and certain effect of insect-resistance was observed. The experiments on the ovary injection in Hainan Province have also been repeated, thus providing new chance to the application of genetic engineering to the maize improvement.

  11. Maintenance of residual activity of Bt toxin by using natural and synthetic dyes: a novel approach for sustainable mosquito vector control.

    Science.gov (United States)

    Chandrashekhar, Patil; Rahul, Suryawanshi; Hemant, Borase; Chandrakant, Narkhede; Bipinchandra, Salunke; Satish, Patil

    2015-01-01

    Mosquito control protein from Bacillus thuringiensis gets inactivated with exposure to sunlight. To address this issue, the potential of synthetic and natural dye was investigated as sunlight protectants. Bt SV2 in absence of dyes when exposed to sunlight showed reduced effectiveness against the fourth instars of mosquito larvae. Whereas acriflavin, congo red and violacein were able to maintain 86.4%, 91.6% and 82.2% mosquito larvicidal efficacy of Bt SV2 against IVth instars larvae of Anopheles stephensi Meigen after exposure to sunlight. Similarly, beetroot dye, acriflavin, congo red and violacein maintained 98.4%, 97.1%, 90.8% and 70.7% larvicidal activities against Aedes aegypti Linnaeus after sunlight exposure. Prodigiosin was found to be the best photo-protectant by simultaneously protecting and enhancing Bt activity by 6.16% and 22.16% against A. stephensi and A. aegypti, respectively. Combination of dyes with Bt formulations can be a good strategy for mosquito control programmes in tropical and sub-tropical regions.

  12. PRICING OF BT COTTON SEEDS IN INDIA: THE DEBATE BEHIND

    Directory of Open Access Journals (Sweden)

    Anchal ARORA

    2014-11-01

    Full Text Available In 2006 the state government of Andhra Pradesh reduced the Bt cotton seed prices from Indian Rs1600 to Rs750 in order to make the technology affordable and accessible to small and marginal farmers in the state and also to prevent the monopolistic market structure in the seed market. The drastic reduction in seed prices, on the other hand could affect the profitability of seed providing companies and curb their incentives to innovate in future. Recent literature has also examined the impact of price controls on diffusion of technology, revenue and profitability of seed providers. It suggests that price controls have positively impacted the diffusion of technology in India, and were also successful in increasing the revenue of seed providers in the short run. However, the impact of price controls on profitability would depend on cost conditions. In the light of the above discussion, this article attempts to discuss the debate behind price controls and draws certain policy implications pertaining to pricing of Bt seeds, which has an international policy relevance.

  13. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China.

    Science.gov (United States)

    Zhang, Haonan; Yin, Wei; Zhao, Jing; Jin, Lin; Yang, Yihua; Wu, Shuwen; Tabashnik, Bruce E; Wu, Yidong

    2011-01-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera), in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.

  14. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera, in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.

  15. Transgenic Bt rice does not challenge host preference of the target pest of rice leaffolder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae.

    Directory of Open Access Journals (Sweden)

    Xiao Sun

    Full Text Available BACKGROUND: Transgenic Bt rice line T2A-1 expresses a synthesized cry2A gene that shows high resistance to Lepidoptera pests, including Cnaphalocrocis medinalis (Guenée (Lepidoptera: Pyralidae. Plant volatile orientation cues and the physical characteristics of the leaf surface play key roles in host location or host-plant acceptance of phytophagous insects. These volatile compounds and physical traits may become altered in Bt rice and it is not known whether this influences the behavior of C. medinalis when searching for oviposition sites. RESULTS: The results of electronic nose analysis showed that the Radar map of Bt rice cultivars was analogous to the non- Bt rice cultivars at each growing stage. PCA analysis was able to partly discriminate between some of the Bt vs. non-Bt rice sensors, but could not to separate Bt cultivars from non-Bt cultivars. The total ion chromatogram between Bt and non-Bt rice cultivars at the seedling, booting and tillering stages were similar and 25 main compounds were identified by GC-MS. For most compounds, there was no significant difference in compound quantities between Bt and non-Bt rice cultivars at equivalent growth stages. The densities of the tubercle papicles and the trichomes on the upper and lower surfaces were statistically equal in Bt and non-Bt rice. The target pest, C. medinalis, was attracted to host rice plants, but it could not distinguish between the transgenic and the isogenic rice lines. CONCLUSIONS: There were no significant differences between the Bt rice line, T2A-1 and the non-Bt rice for volatiles produced or in its physical characteristics and there were no negative impacts on C. medinalis oviposition behavior. These results add to the mounting evidence that Bt rice has no negative impact on the target insect oviposition behavior.

  16. Cross-pollination of nontransgenic corn ears with transgenic Bt corn: efficacy against lepidopteran pests and implications for resistance management.

    Science.gov (United States)

    Burkness, E C; O'Rourke, P K; Hutchison, W D

    2011-10-01

    The efficacy of nontransgenic sweet corn, Zea mays L., hybrids cross-pollinated by Bacillus thuringiensis (Bt) sweet corn hybrids expressing Cry1Ab toxin was evaluated in both field and laboratory studies in Minnesota in 2000. Non-Bt and Bt hybrids (maternal plants) were cross-pollinated with pollen from both non-Bt and Bt hybrids (paternal plants) to create four crosses. Subsequent crosses were evaluated for efficacy in the field against European corn borer, Ostrinia nubilalis (Hübner), and corn earworm, Helicoverpa zea (Boddie), and in laboratory bioassays against O. nubilalis. Field studies indicated that crosses with maternal Bt plants led to low levels of survival for both O. nubilalis and H. zea compared with the non-Bt x non-Bt cross. However, the cross between non-Bt ears and Bt pollen led to survival rates of 43 and 63% for O. nubilalis and H. zea larvae, respectively. This intermediate level of survival also was reflected in the number of kernels damaged. Laboratory bioassays for O. nubilalis, further confirmed field results with larval survival on kernels from the cross between non-Bt ears and Bt pollen reaching 60% compared with non-Bt crossed with non-Bt. These results suggest that non-Bt refuge plants, when planted in proximity to Bt plants, and cross-pollinated, can result in sublethal exposure of O. nubilalis and H. zea larvae to Bt and may undermine the high-dose/refuge resistance management strategy for corn hybrids expressing Cry1Ab.

  17. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods.

    Science.gov (United States)

    Guo, Yanyan; Feng, Yanjie; Ge, Yang; Tetreau, Guillaume; Chen, Xiaowen; Dong, Xuehui; Shi, Wangpeng

    2014-01-01

    Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt) provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée), and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs) is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The "sampling dates" had a significant effect on these indices, but no clear tendencies related to "Bt corn" or "sampling dates X corn variety" interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs.

  18. Draft Genome Sequence of Pseudomonas azotifigens Strain DSM 17556T (6H33bT), a Nitrogen Fixer Strain Isolated from a Compost Pile.

    Science.gov (United States)

    Busquets, Antonio; Peña, Arantxa; Gomila, Margarita; Mulet, Magdalena; Mayol, Joan; García-Valdés, Elena; Bennasar, Antonio; Huntemann, Marcel; Han, James; Chen, I-Min; Mavromatis, Konstantinos; Markowitz, Victor; Palaniappan, Krishnaveni; Ivanova, Natalia; Schaumberg, Andrew; Pati, Amrita; Reddy, T B K; Nordberg, Henrik; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos; Lalucat, Jorge

    2013-10-31

    Pseudomonas azotifigens strain 6H33b(T) is a nitrogen fixer isolated from a hyperthermal compost pile in 2005 by Hatayama and collaborators. Here we report the draft genome, which has an estimated size of 5.0 Mb, exhibits an average G+C content of 66.73%, and is predicted to encode 4,536 protein-coding genes and 100 RNA genes.

  19. Strong oviposition preference for Bt over non-Bt maize in Spodoptera frugiperda and its implications for the evolution of resistance

    Science.gov (United States)

    2014-01-01

    Background Transgenic crops expressing Bt toxins have substantial benefits for growers in terms of reduced synthetic insecticide inputs, area-wide pest management and yield. This valuable technology depends upon delaying the evolution of resistance. The ‘high dose/refuge strategy’, in which a refuge of non-Bt plants is planted in close proximity to the Bt crop, is the foundation of most existing resistance management. Most theoretical analyses of the high dose/refuge strategy assume random oviposition across refugia and Bt crops. Results In this study we examined oviposition and survival of Spodoptera frugiperda across conventional and Bt maize and explored the impact of oviposition behavior on the evolution of resistance in simulation models. Over six growing seasons oviposition rates per plant were higher in Bt crops than in refugia. The Cry1F Bt maize variety retained largely undamaged leaves, and oviposition preference was correlated with the level of feeding damage in the refuge. In simulation models, damage-avoiding oviposition accelerated the evolution of resistance and either led to requirements for larger refugia or undermined resistance management altogether. Since larval densities affected oviposition preferences, pest population dynamics affected resistance evolution: larger refugia were weakly beneficial for resistance management if they increased pest population sizes and the concomitant degree of leaf damage. Conclusions Damaged host plants have reduced attractiveness to many insect pests, and crops expressing Bt toxins are generally less damaged than conventional counterparts. Resistance management strategies should take account of this behavior, as it has the potential to undermine the effectiveness of existing practice, especially in the tropics where many pests are polyvoltinous. Efforts to bring down total pest population sizes and/or increase the attractiveness of damaged conventional plants will have substantial benefits for slowing the

  20. Effects of feeding Bt maize to sows during gestation and lactation on maternal and offspring immunity and fate of transgenic material.

    Directory of Open Access Journals (Sweden)

    Stefan G Buzoianu

    Full Text Available BACKGROUND: We aimed to determine the effect of feeding transgenic maize to sows during gestation and lactation on maternal and offspring immunity and to assess the fate of transgenic material. METHODOLOGY/PRINCIPAL FINDINGS: On the day of insemination, sows were assigned to one of two treatments (n = 12/treatment; 1 non-Bt control maize diet or 2 Bt-MON810 maize diet, which were fed for ~143 days throughout gestation and lactation. Immune function was assessed by leukocyte phenotyping, haematology and Cry1Ab-specific antibody presence in blood on days 0, 28 and 110 of gestation and at the end of lactation. Peripheral-blood mononuclear cell cytokine production was investigated on days 28 and 110 of gestation. Haematological analysis was performed on offspring at birth (n = 12/treatment. Presence of the cry1Ab transgene was assessed in sows' blood and faeces on day 110 of gestation and in blood and tissues of offspring at birth. Cry1Ab protein presence was assessed in sows' blood during gestation and lactation and in tissues of offspring at birth. Blood monocyte count and percentage were higher (P<0.05, while granulocyte percentage was lower (P<0.05 in Bt maize-fed sows on day 110 of gestation. Leukocyte count and granulocyte count and percentage were lower (P<0.05, while lymphocyte percentage was higher (P<0.05 in offspring of Bt maize-fed sows. Bt maize-fed sows had a lower percentage of monocytes on day 28 of lactation and of CD4(+CD8(+ lymphocytes on day 110 of gestation, day 28 of lactation and overall (P<0.05. Cytokine production was similar between treatments. Transgenic material or Cry1Ab-specific antibodies were not detected in sows or offspring. CONCLUSIONS/SIGNIFICANCE: Treatment differences observed following feeding of Bt maize to sows did not indicate inflammation or allergy and are unlikely to be of major importance. These results provide additional data for Bt maize safety assessment.

  1. Early Detection and Mitigation of Resistance to Bt Maize by Western Corn Rootworm (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Andow, David A; Pueppke, Steven G; Schaafsma, Arthur W; Gassmann, Aaron J; Sappington, Thomas W; Meinke, Lance J; Mitchell, Paul D; Hurley, Terrance M; Hellmich, Richard L; Porter, R Pat

    2016-02-01

    Transgenic Bt maize that produces less than a high-dose has been widely adopted and presents considerable insect resistance management (IRM) challenges. Western corn rootworm, Diabrotica virgifera virgifera LeConte, has rapidly evolved resistance to Bt maize in the field, leading to local loss of efficacy for some corn rootworm Bt maize events. Documenting and responding to this resistance has been complicated by a lack of rapid diagnostic bioassays and by regulatory triggers that hinder timely and effective management responses. These failures are of great concern to the scientific and agricultural community. Specific challenges posed by western corn rootworm resistance to Bt maize, and more general concerns around Bt crops that produce less than a high-dose of Bt toxin, have caused uncertainty around current IRM protocols. More than 15 years of experience with IRM has shown that high-dose and refuge-based IRM is not applicable to Bt crops that produce less than a high-dose. Adaptive IRM approaches and pro-active, integrated IRM-pest management strategies are needed and should be in place before release of new technologies that produce less than a high-dose. We suggest changes in IRM strategies to preserve the utility of corn rootworm Bt maize by 1) targeting local resistance management earlier in the sequence of responses to resistance and 2) developing area-wide criteria to address widespread economic losses. We also favor consideration of policies and programs to counteract economic forces that are contributing to rapid resistance evolution.

  2. Resistance allele frequency to bt cotton in field populations of helicoverpa armigera (Lepidoptera: Noctuidae) in China.

    Science.gov (United States)

    Liu, Fengyi; Xu, Zhiping; Chang, Juhua; Chen, Jin; Meng, Fengxia; Zhu, Yu Cheng; Shen, Jinliang

    2008-06-01

    Resistance evolution in target insects to Bacillus thurningiensis (Bt) cotton, Gossypium hirsutum L., is a main threat to Bt cotton technology. An increasing trend of population density of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) has been observed since 2001 in Qiuxian County (Hebei, China), where Bt cotton has been planted dominantly since 1998. This region was selected in 2006 and 2007 for estimating frequency of gene alleles conferring resistance to Bt cotton by screening the F1 progeny from single-pair cross between field-collected male and laboratory female of the Bt-resistant strain of H. armigera (F1 screen). F1 offspring from each single-pair line were screened for resistance alleles based on larval growth, development, and survival on Bt cotton leaves for 5 d. Two-year results indicated that approximately equal to 20% of field-collected males carried resistance alleles. The conservative estimate of the resistance allele frequency was 0.094 (95% CI, 0.044-0.145) for 2006 and 0.107 (95% CI, 0.055-0.159) for 2007. This is the first report of resistance allele frequency increase to such a high level in the field in China. Long-term adoption of Bt sprays, dominant planting of single-toxin-producing Bt cotton, and lack of conventional cotton refuge system might accelerate the resistance evolution in the region.

  3. DNA screening reveals pink bollworm resistance to Bt cotton remains rare after a decade of exposure.

    Science.gov (United States)

    Tabashnik, Bruce E; Fabrick, Jeffrey A; Henderson, Scottie; Biggs, Robert W; Yafuso, Christine M; Nyboer, Megan E; Manhardt, Nancy M; Coughlin, Laura A; Sollome, James; Carrière, Yves; Dennehy, Timothy J; Morin, Shai

    2006-10-01

    Transgenic crops producing toxins from the bacterium Bacillus thuringiensis (Bt) kill insect pests and can reduce reliance on insecticide sprays. Although Bt cotton (Gossypium hirsutum L.) and Bt corn (Zea mays L.) covered 26 million ha worldwide in 2005, their success could be cut short by evolution of pest resistance. Monitoring the early phases of pest resistance to Bt crops is crucial, but it has been extremely difficult because bioassays usually cannot detect heterozygotes harboring one allele for resistance. We report here monitoring of resistance to Bt cotton with DNA-based screening, which detects single resistance alleles in heterozygotes. We used polymerase chain reaction primers that specifically amplify three mutant alleles of a cadherin gene linked with resistance to Bt cotton in pink bollworm, Pectinophora gossypiella (Saunders), a major pest. We screened DNA of 5,571 insects derived from 59 cotton fields in Arizona, California, and Texas during 2001-2005. No resistance alleles were detected despite a decade of exposure to Bt cotton. In conjunction with data from bioassays and field efficacy tests, the results reported here contradict predictions of rapid pest resistance to Bt crops.

  4. Delta's Key to the TOEFL iBT[R]: Advanced Skill Practice. Revised Edition

    Science.gov (United States)

    Gallagher, Nancy

    2012-01-01

    Delta's Key to the TOEFL iBT: Advanced Skill Practice is a revised and updated edition of Delta's Key to the Next Generation TOEFL Test. Since the introduction of the TOEFL iBT in 2005, there have been significant changes to some of the test questions, particularly the integrated writing and integrated speaking tasks. The new 2011 edition of…

  5. Introgression of Bt Genes in Novel Germplasm and Contribution to Indian Cotton Economy

    Institute of Scientific and Technical Information of China (English)

    VIDYASAGAR; Parchuri

    2008-01-01

    Emergence of transgenic Bt-cotton technology has opened up a new chapter in Indian cotton production in 21st century.The cry1Ac gene of Monsanto derived from American Upland Coker-312 background was not directly suitable for varied cotton growing situations in India.Delivery of Bt-gene

  6. Data of evolutionary structure change: 1BT8B-1UNFX [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1BT8B-1UNFX 1BT8 1UNF B X ---AVYTLPELPYDYSALEPYISGEIMELHHDKHHKAYV...EEEEEEEEEGGG EEEEEEE EEE EEE HHHH HHHHHHHHHH EEHHHHHHHHHHHHHH EVID> 1UNF X 1UNFX VN...d>2.942183017730713 5.374790191650391 ...> TRP CA 395 ASP CA 318 ASP CA 362 1UNF

  7. Approaches for enhancing the insecticidal activity of Bacillus thuringiensis Cry toxins: application of synergistic factors and genetic improvement of crystal protein%增强Bt Cry毒素杀虫作用的重要途径:增效因子的利用及晶体蛋白的遗传改良

    Institute of Scientific and Technical Information of China (English)

    张丽丽; 梁革梅; 曹广春; 高希武; 郭予元

    2010-01-01

    Bt Cry毒素广泛应用于害虫防治,但存在杀虫谱窄、活性低、靶标害虫易产生抗性等缺点.为了弥补这些不足,采取适当措施增强Cry毒素的杀虫作用十分必要.本文围绕Cry毒素的作用机理,论述了利用丝氨酸蛋白酶抑制剂、几丁质酶、增效蛋白、钙粘蛋白片段和Cyt毒素等增效因子提高Cry毒素的杀虫活性,延缓昆虫抗性的研究进展;探讨了利用基因定点突变、蛋白融合和杂交以及晶体蛋白末端小片段的去除等分子技术手段对毒素蛋白进行遗传改良,改善Cry毒素的杀虫性能,扩大其杀虫范围.

  8. The natural refuge policy for Bt cotton (Gossypium L. in Pakistan – a situation analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Sajjad Ali

    2013-07-01

    Full Text Available Bt cotton (event Cry1Ac was formally commercialized in Pakistan in 2010. However, there has been an increasing trend of planting unauthorized Bt cotton germplasm in farmers' fields since 2003 with a high rate of adoption in the core cotton areas especially in the province Punjab. The transgenic cotton technology has provided the growers with substantial economic benefits and has reduced their dependence on pesticides for pest control, especially against Helicoverpa armigera (Hubner. However, keeping in view the capacity of this insect to develop resistance against novel chemical formulations, it is easily speculated that Bt toxin, too, is no exception. Refuge crop policy for mono transgenic crop events has helped in delaying the rate of resistance evolution in the target pests. Thus, in Pakistan, where planting of structured refuge crops along Bt cotton fields is not mandatory, the effectiveness and durability of Bt cotton technology may decrease due to a number of factors which are discussed in this review.

  9. Bt cotton and employment effects for female agricultural laborers in Pakistan.

    Science.gov (United States)

    Kouser, Shahzad; Abedullah; Qaim, Matin

    2017-01-25

    The literature about economic and social impacts of Bt cotton adoption on farm households in developing countries is growing. Yet, there is still uncertainty about wider implications of this technology for rural development, including effects for landless rural laborers. Bt-related yield advantages may lead to intensified production and higher demand for labor. Building on farm survey data collected in Pakistan and using double-hurdle regression models, we analyze employment effects of Bt cotton adoption. Model estimates show that Bt adoption has increased the demand for hired labor by 55%. Manual harvesting, which is common in Pakistan, is a labor-intensive activity primarily carried out by female laborers. Accordingly, gender disaggregation shows that the employment-generating effects are particularly strong for women, who often belong to the most disadvantaged groups of rural societies. These results suggest that Bt technology can contribute to additional employment income for the poor and to more equitable rural development.

  10. Field-evolved insect resistance to Bt crops: definition, theory, and data.

    Science.gov (United States)

    Tabashnik, Bruce E; Van Rensburg, J B J; Carrière, Yves

    2009-12-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect pest control have been successful, but their efficacy is reduced when pests evolve resistance. Here we review the definition of field-evolved resistance, the relationship between resistance and field control problems, the theory underlying strategies for delaying resistance, and resistance monitoring methods. We also analyze resistance monitoring data from five continents reported in 41 studies that evaluate responses of field populations of 11 lepidopteran pests to four Bt toxins produced by Bt corn and cotton. After more than a decade since initial commercialization of Bt crops, most target pest populations remain susceptible, whereas field-evolved resistance has been documented in some populations of three noctuid moth species: Spodoptera frugiperda (J. E. Smith) to Cry1F in Bt corn in Puerto Rico, Busseola fusca (Fuller) to CrylAb in Bt corn in South Africa, and Helicoverpa zea (Boddie) to CrylAc and Cry2Ab in Bt cotton in the southeastern United States. Field outcomes are consistent with predictions from theory, suggesting that factors delaying resistance include recessive inheritance of resistance, abundant refuges of non-Bt host plants, and two-toxin Bt crops deployed separately from one-toxin Bt crops. The insights gained from systematic analyses of resistance monitoring data may help to enhance the durability of transgenic insecticidal crops. We recommend continued use of the longstanding definition of resistance cited here and encourage discussions about which regulatory actions, if any, should be triggered by specific data on the magnitude, distribution, and impact of field-evolved resistance.

  11. Persistence of Bt Bacillus thuringiensis Cry1Aa toxin in various soils determined by physicochemical reactions

    Science.gov (United States)

    Helassa, N.; Noinville, S.; Déjardin, P.; Janot, J. M.; Quiquampoix, H.; Staunton, S.

    2009-04-01

    Insecticidal Cry proteins from the soil bacterium, Bacillus thuringiensis (Bt) are produced by a class of genetically modified (GM) crops, and released into soils through root exudates and upon decomposition of residues. In contrast to the protoxin produced by the Bacillus, the protein produced in GM crops does not require activation in insect midguts and thereby potentially looses some of its species specificity. Although gene transfer and resistance emergence phenomena are well documented, the fate of these toxins in soil has not yet been clearly elucidated. Cry proteins, in common with other proteins, are adsorbed on soils and soil components. Adsorption on soil, and the reversibility of this adsorption is an important aspect of the environmental behaviour of these toxins. The orientation of the molecule and conformational changes on surfaces may modify the toxicity and confer some protection against microbial degradation. Adsorption will have important consequences for both the risk of exposition of non target species and the acquisition of resistance by target species. We have adopted different approaches to investigate the fate of Cry1Aa in soils and model minerals. In each series of experiments we endeavoured to maintain the protein in a monomeric form (pH above 6.5 and a high ionic strength imposed with 150 mM NaCl). The adsorption and the desorbability of the Cry1Aa Bt insecticidal protein were measured on two different homoionic clays: montmorillonite and kaolinite. Adsorption isotherms obtained followed a low affinity interaction for both clays and could be fitted using the Langmuir equation. Binding of the toxin decreased as the pH increased from 6.5 (close to the isoelectric point) to 9. Maximum adsorption was about 40 times greater on montmorillonite (1.71 g g-1) than on kaolinite (0.04 g g-1) in line with the contrasting respective specific surface areas of the minerals. Finally, some of the adsorbed toxin was desorbed by water and more, about 36

  12. Emergence and Abundance of Western Corn Rootworm (Coleoptera: Chrysomelidae) in Bt Cornfields With Structured and Seed Blend Refuges.

    Science.gov (United States)

    Hughson, Sarah A; Spencer, Joseph L

    2015-02-01

    To slow evolution of western corn rootworm (Diabrotica virgifera virgifera LeConte) resistance to Bt (Bacillus thuringiensis Berliner) corn hybrids, non-Bt "refuges" must be planted within or adjacent to Bt cornfields, allowing susceptible insects to develop without exposure to Bt toxins. Bt-susceptible adults from refuges are expected to find and mate with resistant adults that have emerged from Bt corn, reducing the likelihood that Bt-resistant offspring are produced. The spatial and temporal distribution of adults in four refuge treatments (20, 5, and 0% structured refuges and 5% seed blend) and adjacent soybean fields was compared from 2010 to 2012. Adult emergence (adults/trap/day) from refuge corn in structured refuge treatments was greater than that from Bt corn, except during the post-pollination period of corn phenology when emergence from refuge and Bt plants was often the same. Abundance of free-moving adults was greatest in and near refuge rows in structured refuge treatments during vegetative and pollination periods. By post-pollination, adult abundance became evenly distributed. In contrast, adult abundance in 5% seed blends and 0% refuges was evenly distributed, or nearly so, across plots throughout the season. The persistent concentration of adults in refuge rows suggests that structured refuge configurations may not facilitate the expected mixing of adults from refuge and Bt corn. Seed blends produce uniform distributions of adults across the field that may facilitate mating between Bt and refuge adults and ultimately delay the evolution of Bt resistance.

  13. Susceptibility and aversion of Spodoptera frugiperda to Cry1F Bt maize and considerations for insect resistance management

    Science.gov (United States)

    Bacillus thuringiensis (Bt) maize was developed primarily for North American pests such as European corn borer (Ostrinia nubilalis Hubner). However, most Bt maize products also are cultivated outside of North America, where the primary pests are different and often have lower susceptibility to Bt to...

  14. Early detection of field-evolved resistance to Bt cotton in China: cotton bollworm and pink bollworm.

    Science.gov (United States)

    Tabashnik, Bruce E; Wu, Kongming; Wu, Yidong

    2012-07-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some major insect pests, but pests can evolve resistance and thereby reduce the effectiveness of such Bt crops. The main approach for slowing pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to cotton producing Bt toxin Cry1Ac, several countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. This strategy is designed for cotton bollworm (Helicoverpa armigera), which attacks many crops and is the primary target of Bt cotton in China, but it does not apply to pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we review evidence of field-evolved resistance to Cry1Ac by cotton bollworm in northern China and by pink bollworm in the Yangtze River Valley of China. For both pests, results of laboratory diet bioassays reveal significantly decreased susceptibility of field populations to Cry1Ac, yet field control failures of Bt cotton have not been reported. The early detection of resistance summarized here may spur countermeasures such as planting Bt cotton that produces two or more distinct toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.

  15. Soil Microbial and Faunal Community Responses to Bt-Maize and Insecticide in Two Soils

    DEFF Research Database (Denmark)

    Griffiths, B. S.; Caul, S.; Thompson, J.

    2006-01-01

    measured parameters was that of soil type and there were no effects of Bt trait or insecticide on plant growth. The Bt trait resulted in more soil nematodes and protozoa (amoebae), whereas insecticide application increased plant Bt concentration and altered nematode community structure. The only...

  16. Effects of Bt transgenic crops on soil ecosystems: a review of a ten-year research in China

    Institute of Scientific and Technical Information of China (English)

    Wenke LIU

    2009-01-01

    Bacillus thuringiensis (Bt) transgenic cotton is the unique Bt transgenic crop planted on a large scale in China, and its commercialized varieties and hectareage had increased rapidly in China during the past decade (1997-2006) with broad geographic distribution for the economic, environmental, and health benefits. In 2004, the planting area of Bt transgenic cotton in China ranked first worldwide with up to 370 × 106hm2. In addition, Bt transgenic rice varieties in field tests have been close to approval for commercialization. However, ecological risks, a complex issue of Bt transgenic crops on soil ecosystem is urgently faced in China due to more than 60 varieties transferred single or bivalent Bt genes grown under diverse geographic regions. Two main pathways, biomass incorporation and root exudates, are involved in the effects of Bt transgenic crops on soil ecosystems. In this paper, the research results in recent years in China involved in the effects of Bt transgenic crops (Bt transgenic cottons and rice) on soil ecosystems were summarized with special attentions paid to the release and persistence of Bt toxins, and the toxicology to microorganisms, as well as the change of soil biochemical properties in soils where Bt transgenic crops were planted or incubated with their biomass. In addition, the complexity and current research defaults of ecological risk evaluation of Bt transgenic crops in China were highlighted.

  17. A high-throughput liquid bead array-based screening technology for Bt presence in GMO manipulation.

    Science.gov (United States)

    Fu, Wei; Wang, Huiyu; Wang, Chenguang; Mei, Lin; Lin, Xiangmei; Han, Xueqing; Zhu, Shuifang

    2016-03-15

    The number of species and planting areas of genetically modified organisms (GMOs) has been rapidly developed during the past ten years. For the purpose of GMO inspection, quarantine and manipulation, we have now devised a high-throughput Bt-based GMOs screening method based on the liquid bead array. This novel method is based on the direct competitive recognition between biotinylated antibodies and beads-coupled antigens, searching for Bt presence in samples if it contains Bt Cry1 Aa, Bt Cry1 Ab, Bt Cry1 Ac, Bt Cry1 Ah, Bt Cry1 B, Bt Cry1 C, Bt Cry1 F, Bt Cry2 A, Bt Cry3 or Bt Cry9 C. Our method has a wide GMO species coverage so that more than 90% of the whole commercialized GMO species can be identified throughout the world. Under our optimization, specificity, sensitivity, repeatability and availability validation, the method shows a high specificity and 10-50 ng/mL sensitivity of quantification. We then assessed more than 1800 samples in the field and food market to prove capacity of our method in performing a high throughput screening work for GMO manipulation. Our method offers an applicant platform for further inspection and research on GMO plants.

  18. Effects of Transgenic Bt Maize on Soil Nutrient Content%转 Bt 基因玉米对土壤养分含量的影响

    Institute of Scientific and Technical Information of China (English)

    景小鹏; 李建东; 周旭梅; 景希强

    2015-01-01

    The transgenic Bt maize Dan BT01 was used as the subjects to study on the effects of transgenic Bt maize on farmland nutrition in different growth periods of seedling stage,jointing stage,huge bellbottom stage, tasseling stage,silking stage and mature stage under field condition.The results showed that oil organic matter content at the tasseling stage and mature stage,total phosphorus content at the silking stage,slowly available potassium concentrations at the huge bellbottom stage and mature stage of transgenic Bt maize were significant-ly higher than the non-transgenic maize,and there was no significant difference of the oil organic matter con-tent,total nitrogen,total phosphorus content and slowly available potassium concentrations at the other growth stages.transgenic Bt maize’s the nitrogen content of the soil hydrolase at the huge bellbottom stage was signif-icantly higher than the non-transgenic maize,at tasseling and silking stage was significantly lower than the non-transgenic maize.Soil nitrate content of transgenic Bt maize at jointing and tasseling is significantly lower than non-transgenic maize,at maturity has significantly increased.Transgenic Bt maize’s soil ammonium ni-trogen in the the huge bellbottom and tasseling stage is significantly lower than non-transgenic maize.From the jointing stage,in addition to the available phosphorus content of the grain-filling stage,non-genetically modi-fied corn available P and K content was significantly higher than transgenic Bt maize.%试验以转 Bt 基因玉米丹 BT01为研究对象,研究了在大田种植条件下转 Bt 基因玉米对苗期、拔节期、大喇叭口期、抽雄期、灌浆期和成熟期土壤养分含量的影响。结果表明,转 Bt 基因玉米抽雄期和成熟期土壤有机质含量,灌浆期全磷含量,大喇叭口期和成熟期缓效钾含量显著高于非转基因玉米,其余生育时期与非转基因玉米的土壤有机质、全氮、

  19. Aphid honeydew quality as a food source for parasitoids is maintained in Bt cotton.

    Science.gov (United States)

    Hagenbucher, Steffen; Wäckers, Felix L; Romeis, Jörg

    2014-01-01

    Bt-transgenic cotton has proven to be highly efficient in controlling key lepidopteran pests. One concern with the deployment of Bt cotton varieties is the potential proliferation of non-target pests. We previously showed that Bt cotton contained lower concentrations of insecticidal terpenoids as a result of reduced caterpillar damage, which benefited the aphid Aphis gossypii. It is thus important that non-target herbivores are under biological control in Bt cotton fields. The induction or lack of induction of terpenoids could also influence the quality of aphid honeydew, an important food source for beneficial insects. We therefore screened A. gossypii honeydew for cotton terpenoids, that are induced by caterpillars but not the aphids. We then tested the influence of induced insect-resistance of cotton on honeydew nutritional quality for the aphid parasitoid Lysiphlebus testaceipes and the whitefly parasitoid Eretmocerus eremicus. We detected the cotton terpenoids gossypol and hemigossypolone in A. gossypii honeydew. Although a feeding assay demonstrated that gossypol reduced the longevity of both parasitoid species in a non-linear, dose-dependent manner, the honeydew was capable of sustaining parasitoid longevity and reproduction. The level of caterpillar damage to Bt and non-Bt cotton had no impact on the quality of honeydew for the parasitoids.These results indicate that the nutritional quality of honeydew is maintained in Bt cotton and is not influenced by induced insect resistance.

  20. Aphid honeydew quality as a food source for parasitoids is maintained in Bt cotton.

    Directory of Open Access Journals (Sweden)

    Steffen Hagenbucher

    Full Text Available Bt-transgenic cotton has proven to be highly efficient in controlling key lepidopteran pests. One concern with the deployment of Bt cotton varieties is the potential proliferation of non-target pests. We previously showed that Bt cotton contained lower concentrations of insecticidal terpenoids as a result of reduced caterpillar damage, which benefited the aphid Aphis gossypii. It is thus important that non-target herbivores are under biological control in Bt cotton fields. The induction or lack of induction of terpenoids could also influence the quality of aphid honeydew, an important food source for beneficial insects. We therefore screened A. gossypii honeydew for cotton terpenoids, that are induced by caterpillars but not the aphids. We then tested the influence of induced insect-resistance of cotton on honeydew nutritional quality for the aphid parasitoid Lysiphlebus testaceipes and the whitefly parasitoid Eretmocerus eremicus. We detected the cotton terpenoids gossypol and hemigossypolone in A. gossypii honeydew. Although a feeding assay demonstrated that gossypol reduced the longevity of both parasitoid species in a non-linear, dose-dependent manner, the honeydew was capable of sustaining parasitoid longevity and reproduction. The level of caterpillar damage to Bt and non-Bt cotton had no impact on the quality of honeydew for the parasitoids.These results indicate that the nutritional quality of honeydew is maintained in Bt cotton and is not influenced by induced insect resistance.

  1. Allelic-specific expression in relation to Bombyx mori resistance to Bt toxin.

    Science.gov (United States)

    Chen, Yazhou; Li, Muwang; Islam, Iftakher; You, Lang; Wang, Yueqiang; Li, Zhiqian; Ling, Lin; Zeng, Baosheng; Xu, Jun; Huang, Yongping; Tan, Anjiang

    2014-11-01

    Understanding the mechanism of Bt resistance is one of the key elements of the effective application of Bt in pest control. The lepidopteran model insect, the silkworm, demonstrates qualities that make it an ideal species to use in achieving this understanding. We screened 45 strains of silkworm (Bombyx mori) using a Cry1Ab toxin variant. The sensitivity levels of the strains varied over a wide range. A resistant strain (P50) and a phylogenetically related susceptible strain (Dazao) were selected to profile the expressions of 12 Bt resistance-related genes. The SNPs in these genes were detected based on EST analysis and were validated by allelic-specific PCR. A comparison of allelic-specific expression between P50 and Dazao showed that the transcript levels of heterozygous genes containing two alleles rather than an imbalanced allelic expression contribute more to the resistance of P50 against Bt. The responses of the allelic-specific expression to Bt in hybrid larvae were then investigated. The results showed that the gene expression pattern of an ATP-binding cassette transporter C2 (ABCC2) and an aminopeptidase N (APN3), changed in an allelic-specific manner, with the increase of the resistant allele expression correlated with larval survival. The results suggest that a trans-regulatory mechanism in ABCC2 and APN3 allelic-specific expression is involved in the insect's response to the Bt toxin. The potential role of allelic-specific gene regulation in insect resistance to Bt toxins is discussed.

  2. New Coll-HA/BT composite materials for hard tissue engineering.

    Science.gov (United States)

    Zanfir, Andrei Vlad; Voicu, Georgeta; Busuioc, Cristina; Jinga, Sorin Ion; Albu, Madalina Georgiana; Iordache, Florin

    2016-05-01

    The integration of ceramic powders in composite materials for bone scaffolds can improve the osseointegration process. This work was aimed to the synthesis and characterization of new collagen-hydroxyapatite/barium titanate (Coll-HA/BT) composite materials starting from barium titanate (BT) nanopowder, hydroxyapatite (HA) nanopowder and collagen (Coll) gel. BT nanopowder was produced by combining two wet-chemical approaches, sol-gel and hydrothermal methods. The resulting materials were characterized in terms of phase composition and microstructure by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Moreover, the biocompatibility and bioactivity of the composite materials were assessed by in vitro tests. The synthesized BT particles exhibit an average size of around 35 nm and a spherical morphology, with a pseudo-cubic or tetragonal symmetry. The diffraction spectra of Coll-HA and Coll-HA/BT composite materials indicate a pronounced interaction between Col and the mineral phases, meaning a good mineralization of Col fibres. As well, the in vitro tests highlight excellent osteoinductive properties for all biological samples, especially for Coll-HA/BT composite materials, fact that can be attributed to the ferromagnetic properties of BT.

  3. Mobility of adsorbed Cry1Aa insecticidal toxin from Bacillus thuringiensis (Bt) on montmorillonite measured by fluorescence recovery after photobleaching (FRAP)

    Science.gov (United States)

    Helassa, Nordine; Daudin, Gabrielle; Noinville, Sylvie; Janot, Jean-Marc; Déjardin, Philippe; Staunton, Siobhán; Quiquampoix, Hervé

    2010-06-01

    The insecticidal toxins produced by genetically modified Bt crops are introduced into soil through root exudates and tissue decomposition and adsorb readily on soil components, especially on clays. This immobilisation and the consequent concentration of the toxins in "hot spots" could increase the exposure of soil organisms. Whereas the effects on non-target organisms are well documented, few studies consider the migration of the toxin in soil. In this study, the residual mobility of Bt Cry1Aa insecticidal toxin adsorbed on montmorillonite was assessed using fluorescence recovery after photobleaching (FRAP). This technique, which is usually used to study dynamics of cytoplasmic and membrane molecules in live cells, was applied for the first time to a protein adsorbed on a finely divided swelling clay mineral, montmorillonite. No mobility of adsorbed toxin was observed at any pH and at different degrees of surface saturation.

  4. The effects of transgenic Bt insect-resistant crops on non-target organisms%转Bt基因抗虫作物对非靶标生物的影响

    Institute of Scientific and Technical Information of China (English)

    叶恭银; 陈洋; 田俊策; 彭于发

    2011-01-01

    迄今为止,已经获得了大量的抗虫转Bt基因作物.尽管这些作物中表达的Bt蛋白只是针对靶标害虫起到杀虫效果,但是抗虫转Bt基因作物是否会对非靶标生物产生影响一直存在争议.本文就抗虫转Bt基因作物对节肢动物群落、非靶标植食性昆虫、天敌和有益昆虫的影响进行了综述.综合评价认为,现有的抗虫转Bt基因作物对非靶标生物是安全的.%To date, many crop plants have been genetically modified through recombinant genes responsible for expressing Bt insecticidal proteins. Although the mechanism of Bt insecticidal protein targets specific pests, debates persist regarding the potential effects of transgenic Bt insect-resistant crops on non-target organisms (NT-Os). In this review, we briefly introduce how risk assessment of the effects of Bt crops on NTOs evaluated, and summarize the data and results with respect to the effects of Bt crops on the communities of NTOs, non-target pests, natural enemies and beneficial insects. In general, transgenic crops containing Bt genes with insect-resistance had no significant adverse effects on NTOs, which is therefore regarded as safe.

  5. Loading and Light Degradation Characteristics of Bt Toxin on Nanogoethite: A Potential Material for Controlling the Environmental Risk of Bt Toxin

    Directory of Open Access Journals (Sweden)

    Xueyong Zhou

    2015-01-01

    Full Text Available Transgenic Bt-modified crops release toxins into soil through root exudates and upon decomposition of residues. The fate of these toxins in soil has not been yet clearly elucidated. Nanogoethite was found to have a different influence on the lifetime and insecticidal activity of Bt toxin. The aim of this study was to elucidate the adsorption characteristics of Bt toxin on nanogoethite and its activity changes before and after adsorption. The adsorption of toxin on nanogoethite reached equilibrium within 5 h, and the adsorption isotherm of Bt toxin on nanogoethite conformed to the Langmuir equation (R2>0.9690. In the range of pH from 6.0 to 8.0, larger adsorption occurred at lower pH value. The toxin adsorption decreased with the temperature between 10 and 50°C. The results of FTIR, XRD, and SEM indicated that toxin did not influence the structure of nanogoethite and the adsorption of toxin only on the surface of nanogoethite. The LC50 value for bound toxin was higher than that of free toxin, and the nanogoethite greatly accelerated the degradation of toxin by ultraviolet irradiation. The above results suggested that nanogoethite is a potential material for controlling the environmental risk of toxin released by Bt transgenic plants.

  6. Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize.

    Science.gov (United States)

    Sousa, Fernanda F; Mendes, Simone M; Santos-Amaya, Oscar F; Araújo, Octávio G; Oliveira, Eugenio E; Pereira, Eliseu J G

    2016-01-01

    Exposure to Bacillus thuringiensis (Bt) toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm Spodoptera frugiperda, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50-70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in these populations

  7. Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize

    Science.gov (United States)

    Sousa, Fernanda F.; Mendes, Simone M.; Santos-Amaya, Oscar F.; Araújo, Octávio G.; Oliveira, Eugenio E.

    2016-01-01

    Exposure to Bacillus thuringiensis (Bt) toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm Spodoptera frugiperda, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50–70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in these populations

  8. Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize.

    Directory of Open Access Journals (Sweden)

    Fernanda F Sousa

    Full Text Available Exposure to Bacillus thuringiensis (Bt toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm Spodoptera frugiperda, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50-70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in

  9. Introgression of Bt Genes in Novel Germplasm and Contribution to Indian Cotton Economy

    Institute of Scientific and Technical Information of China (English)

    VIDYASAGAR Parchuri

    2008-01-01

    @@ Emergence of transgenic Bt-cotton technology has opened up a new chapter in Indian cotton production in 21st century.The crylAc gene of Monsanto derived from American Upland Coker-312 background was not directly suitable for varied cotton growing situations in India.Delivery of Bt-gene technology to Indian farming systems should be superimposed on hybrid technology,fiber quality,and superior agronomic adaptation.Protection offered by this alien Bt-gene against major serious pest Helicoverpa armigera,by preventing annual losses ranging from 15~35 percent,automaticaly contributed to higher yield.

  10. Risk assessment of Bt crops on the non-target plant-associated insects and soil organisms.

    Science.gov (United States)

    Yaqoob, Amina; Shahid, Ahmad Ali; Samiullah, Tahir Rehman; Rao, Abdul Qayyum; Khan, Muhammad Azmat Ullah; Tahir, Sana; Mirza, Safdar Ali; Husnain, Tayyab

    2016-06-01

    Transgenic plants containing Bacillus thuringiensis (Bt) genes are being cultivated worldwide to express toxic insecticidal proteins. However, the commercial utilisation of Bt crops greatly highlights biosafety issues worldwide. Therefore, assessing the risks caused by genetically modified crops prior to their commercial cultivation is a critical issue to be addressed. In agricultural biotechnology, the goal of safety assessment is not just to identify the safety of a genetically modified (GM) plant, rather to demonstrate its impact on the ecosystem. Various experimental studies have been made worldwide during the last 20 years to investigate the risks and fears associated with non-target organisms (NTOs). The NTOs include beneficial insects, natural pest controllers, rhizobacteria, growth promoting microbes, pollinators, soil dwellers, aquatic and terrestrial vertebrates, mammals and humans. To highlight all the possible risks associated with different GM events, information has been gathered from a total of 76 articles, regarding non-target plant and soil inhabiting organisms, and summarised in the form of the current review article. No significant harmful impact has been reported in any case study related to approved GM events, although critical risk assessments are still needed before commercialisation of these crops. © 2016 Society of Chemical Industry.

  11. Study of effects of Bt maize (Zea mays) events on Lepidoptera Ostrinia nubilalis, Sesamia nonagrioidesin southwestern France.

    Science.gov (United States)

    Folcher, L; Eychenne, N; Weissenberger, A; Jarry, M; Regnault-Roger, C; Delos, M

    2006-01-01

    Crops of maize (Zea mays L.) were conducted in southwestern France with GMO (Genetic Modified Organism) vs isogenetic varieties in order to verify the control of European Corn Borer (ECB) Ostrinia nubilalis (Hübner) and the Corn Stalk Borer (CBS) Sesamia nonagrioides (Lefevbre) by GMO in field conditions. The bioassays were carried out in 1998 and 1999 before moratorium, then in 2005. Experiments involved respectively 18, 12 and 19 fields cultivated with Furio/Furio cb (GMO), Cecilia/ Elgina (GMO) and PR33P66/PR33P67 (GMO) varieties. These transgenic events expressed Cry1A(b) protein (Bt maize). Plants were noted for insect infestation assessment (number of larvae in stalks and ears per plant). Statistical tests used t-test on couple of plots. Results showed a significant difference in the density of both ECB and CBS between control and the two transgenic events. The two transgenic events acted differently. The control of the two Bt events on the two pests were differentiated and discussed. These experiments underlined the importance of field evaluation for testing real effects of transgenic events on crop according the environmental context.

  12. Effects of Bacillus thuringiensis (Bt) corn on soil Folsomia fimetaria, Folsomia candida (Collembola), Hypoaspis aculeifer (Acarina) and Enchytraeus crypticus (Oligochaeta)

    DEFF Research Database (Denmark)

    Ke, X.; Krogh, P. H.

    The effects of the Cry1Ab toxin from Bacillus thuringiensis (corn variety Cascade Bt MON810 and DeKalb variety 618 Bt) were studied on survival and reproduction of the soil collembolan Folsomia fimetaria, Folsomia candida, the collembolan predator mite Hypoaspis aculeifer and enchytraeids....... There was a weak significant reduction by 30% on the reproduction of F. fimetaria fed Bt corn in Petri dishes for 21 days. Likewise there was a weak significant reduction by 40% of the reproduction of H. aculeifer by Bt corn in amounts corresponding to 20 g plant material kg-1 soil in the two species soil......-litter microcosm systems. There were no effects of Bt corn materials on the reproduction of F. fimetaria and E. crypticus in the single species soil-litter microcosms. No effects of Bt corn materials on mortality of all the 4 species were observed in all treatments. The tendency of effects of the Bt corn...

  13. Bt Maize Seed Mixtures for Helicoverpa zea (Lepidoptera: Noctuidae): Larval Movement, Development, and Survival on Non-transgenic Maize.

    Science.gov (United States)

    Burkness, Eric C; Cira, T M; Moser, S E; Hutchison, W D

    2015-12-01

    In 2012 and 2013, field trials were conducted near Rosemount, MN, to assess the movement and development of Helicoverpa zea (Boddie) larvae on non-Bt refuge corn plants within a seed mixture of non-Bt and Bt corn. The Bt corn hybrid expressed three Bt toxins-Cry1Ab, Cry1F, and Vip3A. As the use of seed mixtures for insect resistance management (IRM) continues to be implemented, it is necessary to further characterize how this IRM approach impacts resistance development in ear-feeding Lepidopteran pests. The potential for Bt pollen movement and cross pollination of the non-Bt ears in a seed mixture may lead to Bt toxin exposure to larvae developing on those refuge ears. Larval movement and development by H. zea, feeding on non-Bt refuge plants adjacent to either transgenic Bt or non-Bt plants, were measured to investigate the potential for unintended Bt exposure. Non-Bt plants were infested with H. zea eggs and subplots were destructively sampled twice per week within each treatment to assess larval development, location, and kernel injury. Results indicate that H. zea larval movement between plants is relatively low, ranging from 2-16% of larvae, and occurs mainly after reaching the second instar. Refuge plants in seed mixtures did not produce equivalent numbers of H. zea larvae, kernel injury, and larval development differed as compared with a pure stand of non-Bt plants. This suggests that there may be costs to larvae developing on refuge plants within seed mixtures and additional studies are warranted to define potential impacts.

  14. Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins.

    Science.gov (United States)

    Monnerat, Rose; Martins, Erica; Macedo, Cristina; Queiroz, Paulo; Praça, Lilian; Soares, Carlos Marcelo; Moreira, Helio; Grisi, Isabella; Silva, Joseane; Soberon, Mario; Bravo, Alejandra

    2015-01-01

    Brazil ranked second only to the United States in hectares planted to genetically modified crops in 2013. Recently corn producers in the Cerrado region reported that the control of Spodoptera frugiperda with Bt corn expressing Cry1Fa has decreased, forcing them to use chemicals to reduce the damage caused by this insect pest. A colony of S. frugiperda was established from individuals collected in 2013 from Cry1Fa corn plants (SfBt) in Brazil and shown to have at least more than ten-fold higher resistance levels compared with a susceptible colony (Sflab). Laboratory assays on corn leaves showed that in contrast to SfLab population, the SfBt larvae were able to survive by feeding on Cry1Fa corn leaves. The SfBt population was maintained without selection for eight generations and shown to maintain high levels of resistance to Cry1Fa toxin. SfBt showed higher cross-resistance to Cry1Aa than to Cry1Ab or Cry1Ac toxins. As previously reported, Cry1A toxins competed the binding of Cry1Fa to brush border membrane vesicles (BBMV) from SfLab insects, explaining cross-resistance to Cry1A toxins. In contrast Cry2A toxins did not compete Cry1Fa binding to SfLab-BBMV and no cross-resistance to Cry2A was observed, although Cry2A toxins show low toxicity to S. frugiperda. Bioassays with Cry1AbMod and Cry1AcMod show that they are highly active against both the SfLab and the SfBt populations. The bioassay data reported here show that insects collected from Cry1Fa corn in the Cerrado region were resistant to Cry1Fa suggesting that resistance contributed to field failures of Cry1Fa corn to control S. frugiperda.

  15. Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins.

    Directory of Open Access Journals (Sweden)

    Rose Monnerat

    Full Text Available Brazil ranked second only to the United States in hectares planted to genetically modified crops in 2013. Recently corn producers in the Cerrado region reported that the control of Spodoptera frugiperda with Bt corn expressing Cry1Fa has decreased, forcing them to use chemicals to reduce the damage caused by this insect pest. A colony of S. frugiperda was established from individuals collected in 2013 from Cry1Fa corn plants (SfBt in Brazil and shown to have at least more than ten-fold higher resistance levels compared with a susceptible colony (Sflab. Laboratory assays on corn leaves showed that in contrast to SfLab population, the SfBt larvae were able to survive by feeding on Cry1Fa corn leaves. The SfBt population was maintained without selection for eight generations and shown to maintain high levels of resistance to Cry1Fa toxin. SfBt showed higher cross-resistance to Cry1Aa than to Cry1Ab or Cry1Ac toxins. As previously reported, Cry1A toxins competed the binding of Cry1Fa to brush border membrane vesicles (BBMV from SfLab insects, explaining cross-resistance to Cry1A toxins. In contrast Cry2A toxins did not compete Cry1Fa binding to SfLab-BBMV and no cross-resistance to Cry2A was observed, although Cry2A toxins show low toxicity to S. frugiperda. Bioassays with Cry1AbMod and Cry1AcMod show that they are highly active against both the SfLab and the SfBt populations. The bioassay data reported here show that insects collected from Cry1Fa corn in the Cerrado region were resistant to Cry1Fa suggesting that resistance contributed to field failures of Cry1Fa corn to control S. frugiperda.

  16. Impact of Bt crops on non-target organisms – 3 systematic reviews

    Science.gov (United States)

    The cultivation of genetically modified (GM) crops producing Cry toxins, originating from the bacterium Bacillus thuringiensis (Bt), has raised environmental concerns over their sustainable use and consequences for biodiversity and ecosystem services in agricultural land. During the last two decades...

  17. Natural refuge crops, buildup of resistance, and zero-refuge strategy for Bt cotton in China

    Institute of Scientific and Technical Information of China (English)

    ROZELLE; Scott; WILEN; James

    2010-01-01

    In the context of genetically modified crops expressing the Bacillus thuringiensis (Bt) toxin, a ‘refuge’ refers to a crop of the same or a related species that is planted nearby to enable growth and reproduction of the target pest without the selection pres- sure imposed by the Bt toxin. The goal of this study is to discuss the role of natural refuge crops in slowing down the buildup of resistance of cotton bollworm (CBW), and to evaluate China’s no-refuge policy for Bt cotton. We describe in detail the dif- ferent factors that China should consider in relation to the refuge policy. Drawing on a review of scientific data, economic analyses of other cases, and a simulation exercise using a bio-economic model, we show that in the case of Bt cotton in China, the no-refuge policy is defensible.

  18. Test Takers' Writing Activities during the "TOEFL iBT"® Writing Tasks: A Stimulated Recall Study. "TOEFL iBT"® Research Report. TOEFL iBT-25. ETS Research Report No. RR-15-04

    Science.gov (United States)

    Barkaoui, Khaled

    2015-01-01

    This study aimed to describe the writing activities that test takers engage in when responding to the writing tasks in the "TOEFL iBT"[superscript R] test and to examine the effects of task type and test-taker English language proficiency (ELP) and keyboarding skills on the frequency and distribution of these activities. Each of 22 test…

  19. Stakeholders' Beliefs about the "TOEFL iBT"® Test as a Measure of Academic Language Ability. "TOEFL iBT"® Research Report. TOEFL iBT-22. ETS Research Report. RR-14-42

    Science.gov (United States)

    Malone, Margaret E.; Montee, Megan

    2014-01-01

    The "TOEFL iBT"® test presents test takers with tasks meant to simulate the tasks required of students in English-medium universities. Research establishing the validity argument for the test provides evidence for score interpretation and the use of the test for university admissions and placement. Now that the test has been operational…

  20. A decade of Bt cotton in Chinese fields: Assessing the direct effects and indirect externalities of Bt cotton adoption in China

    Institute of Scientific and Technical Information of China (English)

    Scott; ROZELLE; Carl; PRAY

    2010-01-01

    The objective of this study is to examine whether or not the gains from reduced spraying for bollworms are being sustained more than one decade after the initial adoption in 2007. Based on farm-level data collected by the authors in 1999–2007 in 16 villages from 4 provinces, this study shows that insecticides applied for controlling bollworms have declined. This analysis supports Chinese policy makers’ decision to not require refuges of non-Bt cotton fields. It also suggests that past studies may have underestimated the benefits from adopting Bt technology.

  1. Research on Chip's Deform in Cryonic Cutting BT20 Titanium Alloy%BT20钛合金低温切屑变形的研究

    Institute of Scientific and Technical Information of China (English)

    魏树国; 马光锋; 钱宇强

    2005-01-01

    金属切屑变形过程的研究,对切削加工技术的发展有很大的影响.BT20钛合金是典型的难加工材料,针对切削加工性差的原因采用低温切削改善其切削加工性,试验证明低温切削是改善BT20钛合金切屑变形的有效加工方法.

  2. Adoption of Bt Cotton: Threats and Challenges Adopción de Algodón Bt: Desafíos y Amenazas

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal Bilal

    2012-09-01

    Full Text Available Adopting new technology always involves advantages and risks; Bt cotton (Gossypium hirsutum L. is a new technology well known in developed countries for its many advantages, such as reduced pesticide application, better insect pest control, and higher lint yield. However, its success in developing countries is still a question mark. Global adoption of Bt cotton has risen dramatically from 0.76 million ha when introduced in 1996 to 7.85 million ha in the 2005 cotton-growing season where 54% of the cotton crops in the USA, 76% in China, and 80% in Australia were grown with single or multiple Bt genes. Bollworms are serious cotton pests causing 30-40% yield reduction in Pakistan and 20-66% potential crop losses in India. The major advances shown in this review include: (1 Evolution of Bt cotton may prove to be a green revolution to enhance cotton yield; (2 adoption of Bt cotton by farmers is increasing due to its beneficial environmental effects by reducing pesticide application: however, a high seed price has compelled farmers to use illegal non-approved Bt causing huge damage to crops because of low tolerance to insect pests; and (3 some factors responsible for changes in the efficiency of the Bt gene and Bt cotton yield include internal phenology (genetics, atmospheric changes (CO2 concentration, nutrition, insect pests, boll distribution pattern, disease and nematodes, removal of fruiting branch and/or floral bud, introduction of Bt gene, and terpenoids and tannin production in the plant body.La adopción de nueva tecnología siempre involucra ventajas y riesgos; algodón Bt (Gossypium hirsutum L. es una nueva tecnología bien conocida en países desarrollados por muchas ventajas como reducida aplicación de pesticidas, mejor control de insectos plaga, y mayor producción de fibra, pero su éxito en países en desarrollo aún conlleva dudas. La adopción global de algodón Bt ha aumentado dramáticamente de 0,76 millones de hectáreas en su

  3. Protein

    Science.gov (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  4. Determining the major Bt refuge crops for cotton bollworm in North China.

    Science.gov (United States)

    Ye, Le-Fu; Fu, Xue; Ouyang, Fang; Xie, Bao-Yu; Ge, Feng

    2015-12-01

    Evaluation of the effectiveness of refuge strategies involved in cotton bollworm Bt resistance management would be aided by technologies that allow monitoring and quantification of key factors that affect the process under field conditions. We hypothesized that characterization of stable carbon and nitrogen isotopes in adult bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) moths may aid in determining the larval host that they developed upon. We found moths reared from larvae fed on peanut, soybean or cotton, respectively, could be differentiated using isotopic analyses that also corresponded to their respective larval host origins. These techniques were then used to classify feral second-generation bollworm moths caught in Bt cotton (Gossypium hirsutum) fields into different populations based on their isotopic signatures. In 2006-2007 feral moths captured in Bt cotton fields predominantly correlated with the peanut (Arachis hypogea) having served as their larval host, indicating this is the most important refuge crop for Bt-susceptible bollworm individuals (providing 58%-64% individuals) during independent moth peaks for the second generation in North China. The remaining feral moths correlated with soybean (Glycine max) (0-10%); other C3 plant (20%-22%) and non-C3 plant (12%-14%) host types also provided some Bt-sensitive moths. Field observations showed that peanut constitutes the primary refuge crop contributing to sustaining Bt-susceptible moths dispersing into cotton in North China. These results suggest that peanut may be a more effective refuge to sustain Bt-susceptible bollworm individuals and reduce the risk of development of a Bt-resistant biotype.

  5. Competitive release and outbreaks of non-target pests associated with transgenic Bt cotton.

    Science.gov (United States)

    Zeilinger, Adam R; Olson, Dawn M; Andow, David A

    2016-06-01

    The adoption of transgenic Bt cotton has, in some cases, led to environmental and economic benefits through reduced insecticide use. However, the distribution of these benefits and associated risks among cotton growers and cotton-growing regions has been uneven due in part to outbreaks of non-target or secondary pests, thereby requiring the continued use of synthetic insecticides. In the southeastern USA, Bt cotton adoption has resulted in increased abundance of and damage from stink bug pests, Euschistus servus and Nezara viridula (Heteroptera: Pentatomidae). While the impact of increased stink bug abundance has been well-documented, the causes have remained unclear. We hypothesize that release from competition with Bt-susceptible target pests may drive stink bug outbreaks in Bt cotton. We first examined the evidence for competitive release of stink bugs through meta-analysis of previous studies. We then experimentally tested if herbivory by Bt-susceptible Helicoverpa zea increases stink bug leaving rates and deters oviposition on non-Bt cotton. Consistent with previous studies, we found differences in leaving rates only for E servus, but we found that both species strongly avoided ovipositing on H. zea-damaged plants. Considering all available evidence, competitive release of stink bug populations in Bt cotton likely contributes to outbreaks, though the relative importance of competitive release remains an open question. Ecological risk assessments of Bt crops and other transgenic insecticidal crops would benefit from greater understanding of the ecological mechanisms underlying non-target pest outbreaks and greater attention to indirect ecological effects more broadly.

  6. Development of Insect-Resistant Hybrid Rice by Introgressing the Bt Gene from Bt Rice Huahui 1 into II-32A/B, a Widely Used Cytogenic Male Sterile System

    Institute of Scientific and Technical Information of China (English)

    LAI Yun-song; HUANG Hai-qing; XU Meng-yun; WANG Liang-chao; ZHANG Xiao-bo; ZHANG Ji-wen; TU Ju-min

    2014-01-01

    Huahui 1 is an elite transgenic male sterile restorer line of wild rice abortive-type that expresses a Bacillus thuringiensis (Bt)δ-endotoxin and provides effective and economic control of lepidopteran insects. To exploit Huahui 1 to develop a new Bt rice, the insertion site of the Bt gene was determined by thermal asymmetric interlaced PCR (TAIL-PCR). Bt was located in the promoter region of LOC.Os10g10360, approximately 5.35 Mb from the telomere of the short arm of chromosome 10. For the ifrst time, a Bt cytoplasmic male sterile (CMS) system was developed by introgressing Bt from Huahui 1. The recipient CMS system used consisted of Indonesia paddy rice-type II-32B (maintainer line) and II-32A (male sterile line). Marker-assisted selection was used to increase selection efifciency in the backcrossing program. In BC5F1, the Bt plant 85015-8 was selected for further analyses, as it had the highest SSR marker homozygosity. In addition, the linkage drag of the foreign Bt gene in 85015-8 was minimized to 8.01-11.46 Mb. The foreign Bt gene was then delivered from 85015-8 into II-32A. The resultant Bt II-32A and Bt II-32B lines were both resistant to lepidopteran in ifeld trials, and agronomic traits were not disturbed. The maintainability of II-32B, and the male sterility and general combining ability of II-32A, were not affected by the Bt introgression. This study demonstrates a simple and fast approach to develop Bt hybrid rice.

  7. The design and implementation of insect resistance management programs for Bt crops.

    Science.gov (United States)

    Head, Graham P; Greenplate, John

    2012-01-01

    Cotton and corn plants with insect resistance traits introduced through biotechnological methods and derived from the bacterium Bacillus thuringiensis (Bt) have been widely adopted since they were first introduced in 1996. Because of concerns about resistance evolving to these Bt crops, they have been released with associated IRM programs that employ multiple components and reflect the input of academic, industrial and regulatory experts. This paper summarizes the current status of Bt crop technologies in cotton and corn, the principles of IRM for Bt crops and what they mean for the design of IRM programs. It describes how these IRM programs have been implemented and some of the key factors affecting successful implementation. Finally, it suggests how they may evolve to properly steward these traits in different geographies around the world. The limited number of reported cases of resistance after more than 15 years of intensive global use of Bt crops suggest that this exercise has been broadly successful. Where resistance issues have been observed, they have been associated with first generation technologies and incomplete or compromised IRM programs (i.e., inadequate structured refuge). Next generation technologies with multiple pyramided modes of action, together with the implementation of IRM strategies that are more dependent upon manufacturing and less dependent upon grower behavior, such as seed mixes, should further enhance IRM programs for Bt crops.

  8. Sustained susceptibility of pink bollworm to Bt cotton in the United States.

    Science.gov (United States)

    Tabashnik, Bruce E; Morin, Shai; Unnithan, Gopalan C; Yelich, Alex J; Ellers-Kirk, Christa; Harpold, Virginia S; Sisterson, Mark S; Ellsworth, Peter C; Dennehy, Timothy J; Antilla, Larry; Liesner, Leighton; Whitlow, Mike; Staten, Robert T; Fabrick, Jeffrey A; Li, Xianchun; Carrière, Yves

    2012-01-01

    Evolution of resistance by pests can reduce the benefits of transgenic crops that produce toxins from Bacillus thuringiensis (Bt) for insect control. One of the world's most important cotton pests, pink bollworm (Pectinophora gossypiella), has been targeted for control by transgenic cotton producing Bt toxin Cry1Ac in several countries for more than a decade. In China, the frequency of resistance to Cry1Ac has increased, but control failures have not been reported. In western India, pink bollworm resistance to Cry1Ac has caused widespread control failures of Bt cotton. By contrast, in the state of Arizona in the southwestern United States, monitoring data from bioassays and DNA screening demonstrate sustained susceptibility to Cry1Ac for 16 y. From 1996-2005, the main factors that delayed resistance in Arizona appear to be abundant refuges of non-Bt cotton, recessive inheritance of resistance, fitness costs associated with resistance and incomplete resistance. From 2006-2011, refuge abundance was greatly reduced in Arizona, while mass releases of sterile pink bollworm moths were made to delay resistance as part of a multi-tactic eradication program. Sustained susceptibility of pink bollworm to Bt cotton in Arizona has provided a cornerstone for the pink bollworm eradication program and for integrated pest management in cotton. Reduced insecticide use against pink bollworm and other cotton pests has yielded economic benefits for growers, as well as broad environmental and health benefits. We encourage increased efforts to combine Bt crops with other tactics in integrated pest management programs.

  9. An Empirical Assessment of Transgene Flow from a Bt Transgenic Poplar Plantation.

    Science.gov (United States)

    Hu, Jianjun; Zhang, Jin; Chen, Xingling; Lv, Jinhui; Jia, Huixia; Zhao, Shutang; Lu, Mengzhu

    2017-01-01

    To assess the possible impact of transgenic poplar plantations on the ecosystem, we analyzed the frequency and distance of gene flow from a mature male transgenic Populus nigra plantation carrying the Bacillus thuringiensis toxin gene (Bt poplar) and the survival of Bt poplar seeds. The resultant Bt poplar seeds occurred at a frequency of ~0.15% at 0 m to ~0.02% at 500 m from the Bt poplar plantation. The germination of Bt poplar seeds diminished within three weeks in the field (germination rate from 68% to 0%) compared to 48% after three weeks of storage at 4°C. The survival rate of seedlings in the field was 0% without any treatment but increased to 1.7% under the addition of four treatments (cleaning and trimming, watering, weeding, and covering with plastic film to maintain moisture) after being seeded in the field for eight weeks. The results of this study indicate that gene flow originating from the Bt poplar plantation occurred at an extremely low level through pollen or seeds under natural conditions. This study provides first-hand field data on the extent of transgene flow in poplar plantations and offers guidance for the risk assessment of transgenic poplar plantations.

  10. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée, and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The "sampling dates" had a significant effect on these indices, but no clear tendencies related to "Bt corn" or "sampling dates X corn variety" interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs.

  11. Effects of Bt-cry1Ah corn pollen on larvae of Apis mellifera ligustica%转Bt-cry1Ah基因玉米花粉对意大利蜜蜂幼虫的影响

    Institute of Scientific and Technical Information of China (English)

    代平礼; 周玮; 张杰; 郎志宏; 周婷; 王强; 崔红娟; 姜玮瑜; 吴艳艳

    2012-01-01

    The cry1Ah gene, which displays high toxicity against Lepidopteran larvae, was one of the novel insecticidal genes cloned from Bacillus thuringiensis isolate BT8. Cry1Ah protein have higher toxicity to the Asian corn borer ( Ostrinia furnacalis( Guen6e) ) than any other cry1A genes. The crylAh gene was therefore a candidate gene for insect resistant transgenic corn research. Pollen is a significant component of the diet of honeybees. Thus the honeybee may serve as one of the key species to be tested for the potential adverse effects of transgenic crops and assessment of impacts on honeybees is an essential part of the risk assessment process for Bt cry1Ah gene corn. The effects of dietary transgenic Bt corn pollen on honeybee worker larvae of Apis mellifera ligustica Spinola was examined. We measured cap rate, emergence rate, and immature stage after 4-6-day-old larvae were fed either crylAh corn pollen, regular corn pollen, mixed bee pollen and a control. There were no significant differences in all the parameters measured between bees fed these diets. These results suggest that transgenic Bt corn pollen does not pose a threat to honeybee larval development.%新型杀虫蛋白基因crylAh基因是中国农业科学院植物保护研究所从Bt菌株BT8中鉴定克隆的,其编码蛋白对鳞翅目害虫具有强毒力,尤其对亚洲玉米螟Ostrinia furnacalis(Guenée)的毒力强于目前使用的cry1A类基因.转cry1Ah基因抗虫玉米具有很好的应用前景.花粉是蜜蜂重要的食物来源,蜜蜂是转基因植物安全性评价的关键测试生物.因此,开展转crylAh基因玉米对蜜蜂的安全性研究很有必要.给意大利蜜蜂Apis mellifera ligustica Spinola蜂群中4~6日龄幼虫饲喂转基因玉米花粉、常规玉米花粉、杂花粉,哺育蜂饲喂为对照.转基因玉米花粉对意大利蜜蜂封盖率、出房率和发育历期没有显著影响.表明转cry1Ah基因玉米花粉对意大利蜜蜂幼虫的存活和发育没有不良影响.

  12. Extracellular peptidase hunting for improvement of protein production in plant cells and roots

    Directory of Open Access Journals (Sweden)

    Jérôme eLallemand

    2015-02-01

    Full Text Available Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion, in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA and human serum immunoglobulins G (hIgGs. Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing.

  13. Criterion-Related Validity of the TOEFL iBT Listening Section. TOEFL iBT Research Report. RR-09-02

    Science.gov (United States)

    Sawaki, Yasuyo; Nissan, Susan

    2009-01-01

    The study investigated the criterion-related validity of the "Test of English as a Foreign Language"[TM] Internet-based test (TOEFL[R] iBT) Listening section by examining its relationship to a criterion measure designed to reflect language-use tasks that university students encounter in everyday academic life: listening to academic lectures. The…

  14. Bistand til risikovurdering Supplerende oplysninger fra Syngenta Seeds om overvågningsplanen (evt. ændret risikovurdering). Zea mays (Bt11). Supplerende materiale om Bt11

    DEFF Research Database (Denmark)

    Kjellsson, Gøsta; Strandberg, Morten Tune; Damgaard, Christian

    2005-01-01

    "Mail: Den supplerende information om Bt-11 majsen (C/F/96/05-10) der er modtaget d. 02-03-2005, indeholder en ny udgave af den generelle overvågningsplan med enkelte ændringer (forbedringer) i forhold til forrige udgave (kommenteret 24-02-2005). Vi har ikke fundet nogen nye oplysninger der ændre...

  15. Does Content Knowledge Affect TOEFL iBT[TM] Reading Performance? A Confirmatory Approach to Differential Item Functioning. TOEFL iBT Research Report. RR-09-29

    Science.gov (United States)

    Liu, Ou Lydia; Schedl, Mary; Malloy, Jeanne; Kong, Nan

    2009-01-01

    The TOEFL iBT[TM] has increased the length of the reading passages in the reading section compared to the passages on the TOEFL[R] computer-based test (CBT) to better approximate academic reading in North American universities, resulting in a reduced number of passages in the reading test. A concern arising from this change is whether the decrease…

  16. In situ degrability of dry matter of sheep fed with corn silage with or without Bt gene

    Directory of Open Access Journals (Sweden)

    Camila Memari Trava

    2012-12-01

    Full Text Available Silage corn is a food widely used, composing the bulk of feed for ruminants, because its present high nutritional value. Since the release by CNTBio seeds of modified genetically corn, many of it began to use transgenic silage corn, which was inserted into genetic code the Bt (Bacillus thuringiensis gene that expresses a toxic protein to caterpillar pests of corn, so occurs the reduction of production costs and pesticide use. Due to rapid expansion of transgenic maize and your wide use in animal feed by producers, the aim of this study was to evaluate the degrability in situ in animal rumen, in order to estimate the nutritional value of silage corn with and without the Bt gene. The experiment was conducted at the Institute of Animal Science Nova Odessa-SP. Were used four rumen fistulated sheep housed in individual pens for 56 days, including four periods. The animals were fed with silage with two varieties of plant corn to silage - DKB and AG, and their isogenic counterparts with the Bt gene, comprising four treatments. The degradability determination of dry matter (DM digestibility of silage corn treatments was determined by means of nylon bag in situ. After removal, the bags were washed and incubated, then placed in forced-circulation at 55°C to constant weight to determine the DM concentration. Data from in situ degradation of DM was adjusted in the mathematical model proposed by Ørskov and McDonald (1979. For the degradability of DM, the fraction “a” showed the interaction (p <0.05, where the variety DKB do not showed difference (p> 0.05 for the gene insertion. For AG, showed a slight decrease (p <0.05 when compared to its isogenic counterpart with the gene (35.68% and 37.85% respectively, means that the Bt gene reduced the solubility of DM of this fraction for AG range. The fact of the variety AG with and without the gene have suffered lower solubility of DM when compared the DKB with and without the gene is due to the fact of being

  17. Status of resistance to Bt maize in Spodoptera frugiperda: lessons from Puerto Rico.

    Science.gov (United States)

    Storer, Nicholas P; Kubiszak, Mary E; Ed King, J; Thompson, Gary D; Santos, Antonio Cesar

    2012-07-01

    In 2006, reports of potential Spodoptera frugiperda resistance to TC1507 maize in Puerto Rico were received. Subsequent investigation confirmed that pest populations collected from several sites in Puerto Rico were largely unaffected by the Cry1F protein in bioassays, with resistance ratios likely in excess of 1000. Since then, we have continued monitoring populations in Puerto Rico and in southern areas of the mainland US. The majority of the collections from Puerto Rico continue to show high levels of Cry1F resistance whereas populations collected from the southern US mainland continue to show full susceptibility to Cry1F and TC1507 maize. It does not appear that resistant populations have spread to any measurable extent from Puerto Rico to mainland US, nor that local selection pressure from Cry1F-expressing maize or cotton production in the southern US has caused a measurable change in population susceptibility. Lessons learned from Puerto Rico are being applied in other parts of the Americas where TC1507 maize is grown and additional steps being taken to protect the long-term durability of Cry1F in maize in areas where similar selection pressure may be expected. Tactics include using locally-adapted germplasm that contain native Spodoptera resistance, a robust education program to teach end-users about the potential for resistance to develop appropriate crop stewardship, resistance monitoring, and the use of insecticides under high S. frugiperda pressure. Perhaps most importantly, pyramided trait products that produce two or more different Bt proteins are being introduced to further delay resistance development to Cry1F.

  18. Soil microflora and enzyme activities in rhizosphere of Transgenic Bt cotton hybrid under different intercropping systems and plant protection schedules

    Science.gov (United States)

    Biradar, D. P.; Alagawadi, A. R.; Basavanneppa, M. A.; Udikeri, S. S.

    2012-04-01

    Field experiments were conducted over three rainy seasons of 2005-06 to 2007-08 on a Vertisol at Dharwad, Karnataka, India to study the effect of intercropping and plant protection schedules on productivity, soil microflora and enzyme activities in the rhizosphere of transgenic Bt cotton hybrid. The experiment consisted of four intercropping systems namely, Bt cotton + okra, Bt cotton + chilli, Bt cotton + onion + chilli and Bt cotton + redgram with four plant protection schedules (zero protection, protection for Bt cotton, protection for intercrop and protection for both crops). Observations on microbial populations and enzyme activities were recorded at 45, 90, 135 and 185 (at harvest) days after sowing (DAS). Averaged over years, Bt cotton + okra intercropping had significantly higher total productivity than Bt cotton + chilli and Bt cotton + redgram intercropping system and was similar to Bt cotton + chilli + onion intercropping system. With respect to plant protection schedules for bollworms, protection for both cotton and intercrops recorded significantly higher yield than the rest of the treatments. Population of total bacteria, fungi, actinomycetes, P-solubilizers, free-living N2 fixers as well as urease, phosphatase and dehydrogenase enzyme activities increased up to 135 days of crop growth followed by a decline. Among the intercropping systems, Bt cotton + chilli recorded significantly higher population of microorganisms and enzyme activities than other cropping systems. While Bt cotton with okra as intercrop recorded the least population of total bacteria and free-living N2 fixers as well as urease activity. Intercropping with redgram resulted in the least population of actinomycetes, fungi and P-solubilizers, whereas Bt cotton with chilli and onion recorded least activities of dehydrogenase and phosphatase. Among the plant protection schedules, zero protection recorded maximum population of microorganisms and enzyme activities. This was followed by the

  19. Effects of Elevated Carbon Dioxide on the Growth and Foliar Chemistry of Transgenic Bt Cotton

    Institute of Scientific and Technical Information of China (English)

    Gang Wu; Fa-Jun Chen; Feng Ge; Yu-Cheng Sun

    2007-01-01

    A field study was carried out to quantify plant growth and the foliar chemistry of transgenic Bacillus thuringiensis (Bt)cotton (cv. GK-12) exposed to ambient CO2 and elevated (double-ambient) CO2 for different lengths of time (1, 2 and 3 months) in 2004 and 2005. The results indicated that CO2 levels significantly affected plant height, leaf area per plant and leaf chemistry of transgenic Bt cotton. Significantly, higher plant height and leaf area per plant were observed after cotton plants that were grown in elevated CO2 were compared with plants grown in ambient CO2 for 1, 2 and 3 months in the investigation. Simultaneously, significant interaction between CO2 level x investigating year was observed in leaf area per plant. Moreover, foliar total amino acids were increased by 14%, 13%, 11% and 12%, 14%, 10% in transgenic Bt cotton after exposed to elevated CO2 for 1, 2 or 3 months compared with ambient CO2 in 2004 and 2005, respectively. Condensed tannin occurrence increased by 17%, 11%, 9% in 2004 and 12%, 11%, 9% in 2005 in transgenic Bt cotton after being exposed to elevated CO2 for 1, 2 or 3 months compared with ambient CO2 for the same time. However, Bt toxin decreased by 3.0%,2.9%, 3.1% and 2.4%, 2.5%, 2.9% in transgenic Bt cotton after exposed to elevated CO2 for 1, 2 or 3months compared with ambient CO2 for same time in 2004 and 2005, respectively. Furthermore, there was prominent interaction on the foliar total amino acids between the CO2 level and the time of cotton plant being exposed to elevated CO2. It is presumed that elevated CO2 can alter the plant growth and hence ultimately the phenotype allocation to foliar chemistical components of transgenic Bt cotton, which may in turn, affect the plant-herbivore interactions.

  20. Field-evolved resistance to Bt maize by western corn rootworm: predictions from the laboratory and effects in the field.

    Science.gov (United States)

    Gassmann, Aaron J

    2012-07-01

    Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) provide an effective management tool for many key insect pests. However, pest species have repeatedly demonstrated their ability to adapt to management practices. Results from laboratory selection experiments illustrate the capacity of pest species to evolve Bt resistance. Furthermore, resistance has been documented to Bt sprays in the field and greenhouse, and more recently, by some pests to Bt crops in the field. In 2009, fields were discovered in Iowa (USA) with populations of western corn rootworm, Diabrotica virgifera virgifera LeConte, that had evolved resistance to maize that produces the Bt toxin Cry3Bb1. Fields with resistant insects in 2009 had been planted to Cry3Bb1 maize for at least three consecutive years and as many as 6years. Computer simulation models predicted that the western corn rootworm might evolve resistance to Bt maize in as few as 3years. Laboratory and field data for interactions between western corn rootworm and Bt maize indicate that currently commercialized products are not high-dose events, which increases the risk of resistance evolution because non-recessive resistance traits may enhance survival on Bt maize. Furthermore, genetic analysis of laboratory strains of western corn rootworm has found non-recessive inheritance of resistance. Field studies conducted in two fields identified as harboring Cry3Bb1-resistant western corn rootworm found that survival of western corn rootworm did not differ between Cry3Bb1 maize and non-Bt maize and that root injury to Cry3Bb1 maize was higher than injury to other types of Bt maize or to maize roots protected with a soil insecticide. These first cases of field-evolved resistance to Bt maize by western corn rootworm provide an early warning and point to the need to apply better integrated pest management practices when using Bt maize to manage western corn rootworm.

  1. Test Review: Test of English as a Foreign Language[TM]--Internet-Based Test (TOEFL iBT[R])

    Science.gov (United States)

    Alderson, J. Charles

    2009-01-01

    In this article, the author reviews the TOEFL iBT which is the latest version of the TOEFL, whose history stretches back to 1961. The TOEFL iBT was introduced in the USA, Canada, France, Germany and Italy in late 2005. Currently the TOEFL test is offered in two testing formats: (1) Internet-based testing (iBT); and (2) paper-based testing (PBT).…

  2. Evaluation of potato tuber moth (Lepidoptera: Gelechiidae) resistance in tubers of Bt-cry5 transgenic potato lines.

    Science.gov (United States)

    Mohammed, A; Douches, D S; Pett, W; Grafius, E; Coombs, J; Liswidowati; Li, W; Madkour, M A

    2000-04-01

    The potato tuber moth, Phthorimaea operculella (Zeller), in tropical and subtropical countries, is the most destructive pest of potato, Solanum tuberosum L. The larvae attack foliage and tubers in the field and in storage. The purpose of this study was to evaluate the efficacy of a Bt-cry5 transgene to control the potato tuber moth in tuber tissues. Tuber bioassays using stored (11-12 mo old) and newly harvested tubers of Bt-cry5-Lemhi Russet and Bt-cry5-Atlantic potato lines showed up to 100% mortality of 1st instars. Mortality was lowest in the newly harvested tubers of Bt-cry5-Atlantic lines (47.1-67.6%). Potato tuber moth mortality was 100% in the Bt-cry5-Spunta lines that were transformed with Bt-cry5 gene controlled by the CaMV 35S promoter (pBIML5 vector) and in 2 of 3 lines transformed with Bt-cry5 gene controlled by the Gelvin super promoter (pBIML1 vector). The transgenic Spunta lines expressing Bt-cry5 controlled by the patatin promoter (pBMIL2 vector) showed the lowest tuber moth mortality (25.6 and 31.1%). The Bt-cry5 transgenic lines with high tuber expression of B. thuringiensis have value in an integrated pest management system to control potato tuber moth.

  3. Field and storage testing Bt potatoes for resistance to potato tuberworm (Lepidoptera: Gelichiidae).

    Science.gov (United States)

    Douches, D S; Pett, W; Santos, F; Coombs, J; Grafius, E; Li, W; Metry, E A; el-Din, T Nasr; Madkour, M

    2004-08-01

    Potato tuberworm, Phthorimaea operculella (Zeller), is the most serious insect pest of potatoes worldwide. The introduction of the Bacillus thuringiensis (Bt) toxin gene through genetic engineering offers host plant resistance for the management of potato tuberworm. We report on the field and storage studies to evaluate Bt-cry5 potato lines for resistance to potato tuberworm in Egypt under natural infestations and their agronomic performance in both Egypt and Michigan. From 1997 to 2001, field experiments were conducted at the International Potato Center (CIP) Research Station, Kafr El-Zyat, Egypt, and/or Agricultural Genetic Engineering Institute (AGERI), Giza, Egypt, to evaluate resistance to tuberworm. A total of 27 Bt-transgenic potato lines from six different Bt constructs were evaluated over a 5-yr period. After harvest and evaluation of the agronomic trials, storage evaluation of potato tuberworm damage was done at the CIP Research Station. The 1997 field trial was the first field test of genetically engineered crops in Egypt. Field tests to assess potato tuberworm resistance in Egypt were able to differentiate between the Bt-transgenic lines and the nontransgenic lines/cultivars in 1999, 2000, and 2001. The Bt-cry5-Spunta lines (Spunta-G2, Spunta-G3, and Spunta-6a3) were the most resistant lines in field with 99-100% of tubers free of damage. In the 2001 storage study, these lines were also over 90% free of tuberworm damage after 3 mo. NYL235-4.13, which combines glandular trichomes with the Bt-cry5/gus fusion construct, also had a high percentage of clean tubers in the field studies. In agronomic field trials in Michigan from 1997 to 2001, the Bt-transgenic lines in most instances performed similar to the nontransgenic line in the agronomic trials; however, in Egypt (1998-1999), the yields were less than one-half of those in Michigan. Expression of the Bt-cry5 gene in the potato tuber and foliage will provide the seed producer and grower a tool in which to

  4. Influence of Composition on Properties of BNT-BT Lead-Free Piezoceramics

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-BaTiO3(BNT-BT) were prepared by the conventional piezoelectric ceramic preparation technique (free air atmosphere sintering). The influence of BaTiO3 additive amount and La2O3 additive amount on the properties of BNT-BT lead-free piezoceramics were investigated. The results show that the dielectric constant(ε) and piezoelectric strain constant(d33) of materials start increasing and then decreasing while BaTiO3 additive amount increasing, the ε and d33 of materials have maximum value (ε=1650, d33=120 PC·N-1) while x(BaTiO3)=0.06 mol. The ε and d33 of materials start increasing and then decreasing while La2O3 additive amount increasing, the ε and d33 of materials have maximum value (ε=1684, d33=153 PC·N-1) while w(La2O3)=0.3%. The influence of La2O3 additive amount on the microstructure of BNT-BT piezoelectric ceramics was analysed by SEM(scanning electron microscope). The influence mechanism of La2O3 additive amount on the properties of BNT-BT piezoelectric ceramics was discussed. The BNT-BT ceramics with optimum comprehensive properties were obtained.

  5. The Research of Bt and OC Gene Cotransformation in Tobacco Chloroplast

    Institute of Scientific and Technical Information of China (English)

    SU Ning; YANG Bo; MENG Kun; LI Yi-nü; SUN Meng; SUN Bing-yao; SHEN Gui-fang

    2002-01-01

    The Bt Cry IA (C) chloroplast expression cassette and OC chloroplast expression cassette were constructed. The Bt expression cassette contained the 3.5 kb wild type Bt Cry IA (C) gene under the control of the strong light-induced psbA promoter and terminator from rice (Oryza sativa. L) chloroplast, the gene:trnH-psbA-trnk from tobacco (Nicotiana tabacum. L) as the homologous fragment. The OC chloroplast expression cassette contained the OC gene under the control of 16S promoter and terminator from tobacco, the tobacco gene: psbA-ORF512 as homologous fragment. The two cassettes both had the aadA gene expression cassette as the selectable marker. Leaves of tobacco were cotransformed with the particle bombardment method. After selection by spectinomycin, the transformants were obtained. The integration of Bt and OC gene were confirmed by Southern-blotting analysis, and Western-blotting analysis. Proteinase inhibitor assays showed that the Bt and OC gene had expressed. Bioassays showed that the transgenic tobacco had a significant resistance to the larvae of cotton bollworm ( helicoverpa zea ).

  6. Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R(1) in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis.

    Science.gov (United States)

    Dorsch, J A; Candas, M; Griko, N B; Maaty, W S A; Midboe, E G; Vadlamudi, R K; Bulla, L A

    2002-09-01

    Many subspecies of the soil bacterium Bacillus thuringiensis produce various parasporal crystal proteins, also known as Cry toxins, that exhibit insecticidal activity upon binding to specific receptors in the midgut of susceptible insects. One such receptor, BT-R(1) (210 kDa), is a cadherin located in the midgut epithelium of the tobacco hornworm, Manduca sexta. It has a high binding affinity (K(d) approximately 1nM) for the Cry1A toxins of B. thuringiensis. Truncation analysis of BT-R(1) revealed that the only fragment capable of binding the Cry1A toxins of B. thuringiensis was a contiguous 169-amino acid sequence adjacent to the membrane-proximal extracellular domain. The purified toxin-binding fragment acted as an antagonist to Cry1Ab toxin by blocking the binding of toxin to the tobacco hornworm midgut and inhibiting insecticidal action. Exogenous Cry1Ab toxin bound to intact COS-7 cells expressing BT-R(1) cDNA, subsequently killing the cells. Recruitment of BT-R(1) by B. thuringiensis indicates that the bacterium interacts with a specific cell adhesion molecule during its pathogenesis. Apparently, Cry toxins, like other bacterial toxins, attack epithelial barriers by targeting cell adhesion molecules within susceptible insect hosts.

  7. Photosynthetic Characteristics of Transgenic Bt (Cry1Ab/Ac) Rice Under Ozone Free Air Controlled Enrichment Conditions%开放式臭氧浓度升高条件下转Bt(Cry1Ab/Ac)基因水稻的光合特性

    Institute of Scientific and Technical Information of China (English)

    李春华; 朱建国; 刘标; 曾青; 罗克菊; 唐昊冶; 刘钢; 张国安

    2012-01-01

    prolonged elevated O3 exposure. The downtrend of stomatal conductance and transpiration was also consistent with Pn. As for the chlorophyll fluorescence kinetics parameters, the maximal photochemical efficiency of PS II, actual photochemical efficiency of PS II and photochemical quenching all descended by elevated O3 concentration while non-photochemical quenching and fraction of light absorbed in PS II which was dissipated in the PS II antenna in varied ranges companied with Pn enhanced. The content of chlorophyll and carotenoid of the two varieties also declined, the same with the total soluble protein content in SY63. However, the alteration of TSP content in Bt-SY63 was in perfectly opposite to the SY63's, there was no remarkable decrease in ribulose-l,5-bisphosphate carboxylas/oxygenase contents in Bt-SY63. [Conclusion] Photosynthetic parameters had presented to be changed in leaves of the genetic modified rice and the traditional plant under the O3-FACE conditions, with a larger amplitude for Bt-SY63 compared to SY63. In conclusion, the results suggested that Bt-SY63 was more sensitive to elevated O3 concentration than SY63 coupled with great volatility.

  8. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae.

    Directory of Open Access Journals (Sweden)

    Chandrashekhar D Patil

    2014-06-01

    Full Text Available We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi.Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay.LC50 values of water, ethanol, ethyl acetate and hexane extracts for Ae. aegypti were 211.73±21.49, 241.64±19.92, 358.07±32.43, 401.03±36.19 and 232.56±26.00, 298.54±21.78, 366.50±30.59, 387.19±31.82 for 4(th instar of An. stephensi, respectively. The water extract displayed lowest LC50 value followed by ethanol, ethyl acetate and hexane. Owing to the comparatively better activity of water extract, its efficacy was further evaluated for mosquito larvicidal activity, which exhibited LC50 values of 133.95±12.79, 167.65±11.34 against 2(nd and 3(rd instars of Ae. aegypti and 145.48±11.76, 188.10±12.92 against 2(nd and 3(rd instars of An. stephensi, respectively. Crude protein from the water extract was precipitated using acetone and tested against 2(nd, 3(rd and 4(th instars of Ae. aegypti and An. stephensi. It revealed further decrease in LC50 values as 105.72±25.84, 138.23±23.18, 126.19±25.65, 134.04±04 and 137.88±17.59, 154.25±16.98 for 2(nd, 3(rd and 4(th instars of Ae. aegypti and An. stephensi, respectively.Leaves extracts of Go. hirsutum (Bt is potential mosquito larvicide and can be used as a potent alternative to chemical insecticides in integrated pest management.

  9. Degradation and detection of transgenic Bacillus thuringiensis DNA and proteins in flour of three genetically modified rice events submitted to a set of thermal processes.

    Science.gov (United States)

    Wang, Xiaofu; Chen, Xiaoyun; Xu, Junfeng; Dai, Chen; Shen, Wenbiao

    2015-10-01

    This study aimed to investigate the degradation of three transgenic Bacillus thuringiensis (Bt) genes (Cry1Ab, Cry1Ac, and Cry1Ab/Ac) and the corresponding encoded Bt proteins in KMD1, KF6, and TT51-1 rice powder, respectively, following autoclaving, cooking, baking, or microwaving. Exogenous Bt genes were more stable than the endogenous sucrose phosphate synthase (SPS) gene, and short DNA fragments were detected more frequently than long DNA fragments in both the Bt and SPS genes. Autoclaving, cooking (boiling in water, 30 min), and baking (200 °C, 30 min) induced the most severe Bt protein degradation effects, and Cry1Ab protein was more stable than Cry1Ac and Cry1Ab/Ac protein, which was further confirmed by baking samples at 180 °C for different periods of time. Microwaving induced mild degradation of the Bt and SPS genes, and Bt proteins, whereas baking (180 °C, 15 min), cooking and autoclaving led to further degradation, and baking (200 °C, 30 min) induced the most severe degradation. The findings of the study indicated that degradation of the Bt genes and proteins somewhat correlated with the treatment intensity. Polymerase chain reaction, enzyme-linked immunosorbent assay, and lateral flow tests were used to detect the corresponding transgenic components. Strategies for detecting transgenic ingredients in highly processed foods are discussed.

  10. Purification of Aminopeptidase N Protein and Differences in cDNAs Encoding APN1 Between Susceptible and Resistant Helicoverpa armigera Strains to Bacillus thuringiensis Toxins

    Institute of Scientific and Technical Information of China (English)

    LIANG Ge-mei; WANG Gui-rong; XU Guang; WU Kong-ming; GUO Yu-yuan

    2004-01-01

    The brush border membrane vesicles (BBMVs) in midgut of Helicoverpa armigera were successfully separated, and most of the Aminopeptidase N (APN) activities in BBMV were preserved. The 3-[(3-chlor-amidopropyl) dimethylammonio]-l-propane-sulphonate (CHAPS)can enhance the dissolution of BBMV, and phosphatidylinositol-specific phosopholipase C (PI-PLC) can cleave the APN from midgut membrane. The APN was primarily purified using a Mono-Q column. The results of immunoblotting showed that the 120 and 170 kDa proteins in the BBMV could bind CrylAc, and 120kDa APN was a glycosylphosphalidylinositol(GPI)anchored protein. Two Bt-resistant strains (Bt-P, Bt-M) were obtained after being selected for more than five years in laboratory using Bt insecticides and Bt transgenic cotton incorporated into diet separately. The resistance of Bt-P and Bt-M were 1 083.3and 48.7 times that of susceptible strain. The genes encoding APN1 in midgut of susceptible and resistant H.armigera were cloned by PCR and RACE techniques. The inferred amino acid sequences of APN1 possessed the common character of APN family in insects. In comparison with APN1 in susceptible strain, three nucleotide mutations were observed in the APN1 of Bt-M strain and resulted in two amino acid replace in the putative protein sequences, and eight nucleotide mutations were observed in Bt-P strain and resulted in five amino acid replace.

  11. 华北地区棉铃虫对转Bt基因抗虫棉抗性适应的模拟模型%A simulation model for adaptation of cotton bollworm to transgenic Bt cotton in northern China

    Institute of Scientific and Technical Information of China (English)

    茹李军; 赵建周; 芮昌辉

    2002-01-01

    通过对华北地区耕作制度和生态系统的了解,在充分考虑种群遗传学、生物学和人为操纵因子等三大因素的基础上,建立了一个预测棉铃虫对转Bt基因抗虫棉抗性适应的模拟模型.在华北地区典型的耕作制度下,如果所有棉田均为Bt棉,则Bt棉的预期寿命为7年;如果只有春播棉为Bt棉(约占棉田总面积的70%),则其寿命为10年.模型的灵敏度分析表明,Bt棉的使用寿命随抗性基因的显性度、初始抗性频率、Bt棉所占比例等因素的增长而迅速缩短.当Bt棉表达的杀虫蛋白量恰好全部杀死敏感基因型(GsGs)个体时,Bt棉的预期寿命最短.由于国外采用的"高剂量/庇护所"抗性治理策略不适用于棉铃虫及华北棉区的耕作制度,我国需要加强对其它抗性治理措施(如转双基因抗虫棉)的研究与应用.%The commercial use of transgenic cotton expressing an insecticidal protein gene from Bacillus thuringiensis (Bt) began in 1998 in northern China. Resistance management is a major concern for the sustainable use of Bt cotton. With our understanding of the cropping and ecological system in northern China,we developed a simulation model to forecast adaptation of the cotton bollworm,Helicoverpa armigera ables of reproductive fitness on different host plants,dominance of resistance alleles,expression level of Bt toxin in cotton and use of insecticides in Bt cotton fields were included in the model. In the typical cropping system of northern China,the expected life of Bt cotton are seven years if all cotton is Bt cotton,and ten years if only spring planted cotton (about 70% total cotton area) is Bt cotton in northern China besed on the model. The life expectancy decreases quickly with increases in initial frequency of resistance allele,dominance of the resistance gene,and the percent area of Bt cotton planted. The results also showed that supplemental control is essential on Bt cotton when the expression of Bt

  12. Plant Fitness Assessment for Wild Relatives of Insect Resistant Bt-Crops

    Directory of Open Access Journals (Sweden)

    D. K. Letourneau

    2012-01-01

    Full Text Available When field tests of transgenic plants are precluded by practical containment concerns, manipulative experiments can detect potential consequences of crop-wild gene flow. Using topical sprays of bacterial Bacillus thuringiensis larvicide (Bt and larval additions, we measured fitness effects of reduced herbivory on Brassica rapa (wild mustard and Raphanus sativus (wild radish. These species represent different life histories among the potential recipients of Bt transgenes from Bt cole crops in the US and Asia, for which rare spontaneous crosses are expected under high exposure. Protected wild radish and wild mustard seedlings had approximately half the herbivore damage of exposed plants and 55% lower seedling mortality, resulting in 27% greater reproductive success, 14-day longer life-spans, and 118% more seeds, on average. Seed addition experiments in microcosms and in situ indicated that wild radish was more likely to spread than wild mustard in coastal grasslands.

  13. Bt Cotton in China: Are Secondary Insect Infestations Offsetting the Benefits in Farmer Fields?

    Institute of Scientific and Technical Information of China (English)

    WANG Zi-jun; LIN Hai; HUANG Ji-kun; HU Rui-fa; Scott Rozelle; Carl Pray

    2009-01-01

    The area sown to Bt cotton has expanded rapidly in China since 1997. It has effectively controlled the bollworm. However, in recent years, concern has surfaced about the emergence of secondary insect pests, particular mirids, in Bt cotton fields. This study measures the patterns of insecticide use based on farm-level from 1999 to 2006, the analysis demonstrates a rise in insecticide use to control mirids between 2001 and 2004, secondary insect infestations is largely related to the rise of mirids, but this rising did not continue in more than half of sample villages studied in 2004-2006. Moreover, the increase in insecticide use for the control of secondary insects is far smaller than the reduction in total insecticide use due to Bt cotton adoption. Further econometric analyses show that rise and fall of mirids is largely related to local temperature and rainfall.

  14. Effect of temperature on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Temperature is one of the key parameters for BT20 titanium alloy cylindrical workpiece manufactured by vacuum hot bulge forming. A two-dimensional nonlinear thermo-mechanical coupled FE model was established. Numerical simulation of vacuum hot bulge forming process of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC Marc. The effects of temperature on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece were analyzed by numerical simulation.The simulated results show that the Y-direction displacement and the equivalent plastic strain of the workpiece increase with increasing bulge temperature. The residual stress decreases with increasing bulge temperature. The optimal temperature range of BT20 titanium alloy during vacuum hot bulge forming is 750-850 ℃. The corresponding experiments were carried out. The simulated results agreed well with the experimental results.

  15. Genetically engineered plants, endangered species, and risk: a temporal and spatial exposure assessment for Karner blue butterfly larvae and Bt maize pollen.

    Science.gov (United States)

    Peterson, Robert K D; Meyer, Steven J; Wolf, Amy T; Wolt, Jeffrey D; Davis, Paula M

    2006-06-01

    Genetically engineered maize (Zea mays) containing insecticidal endotoxin proteins from Bacillus thuringiensis (Bt) delta-endotoxin proteins has been adopted widely in the Midwestern United States. The proteins are toxic to several lepidopteran species and because a variety of maize tissues, including pollen, may express the endotoxins, the probability of exposure to nontarget species, including endangered species, needs to be understood. The objective of this study was to assess the potential temporal and spatial exposure of endangered Karner blue butterfly larvae (Lycaeides melissa samuelis) to Bt maize pollen in Wisconsin using probabilistic exposure techniques and geographic information systems analysis. Based on degree-day modeling of butterfly phenology and maize pollen shed, there is some potential for temporal exposure of larvae to maize pollen. However, in the majority of years and locations, maize pollen shed most likely will occur after the majority of larval feeding on wild lupine (Lupinus perennis). The spatial analysis indicates that some Karner blue butterfly populations occur in close proximity to maize fields, but in the vast majority of cases the butterfly's host plant and maize fields are separated by more than 500 m. A small number of potential or existing Karner blue butterfly sites are located near maize fields, including sites in two of the four counties where temporal overlap is most likely. The exposure assessment indicates that these two counties should receive the highest priority to determine if Karner blue butterfly larvae are actually at risk and then, if needed, to reduce or prevent exposure.

  16. Integration and inheritance stability of foreign Bt toxin gene in the bivalent insectresistant transgenic cotton plants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Genetic and expressional stability of Bt toxin gene is crucial for the breeding of insect-resistant transgenic cotton varieties and their commercialization. Genomic Southern blot analysis of R3, R4 and R5 generations of bivalent transgenic insect-resistant cotton plants was done in order to determine the integration, the copy number and the inheritance stability of Bt toxin gene in the transgenic cotton plants. The results indicated that there was a 4.7 kb positive band in the Southern blot when the genomic DNA of the bivalent transgenic insect-resistant cotton plants and the positive control (the plasmid) were digested with HindⅢ respectively. This result proved that the Bt toxin gene had been integrated into the genome of the cotton in full length.There is only one Xho I restriction site in the Bt toxin gene.Southern blot analysis indicated that many copies of Bt toxin gene had been integrated into the genome of the cotton when the genomic DNA of transgenic plants was digested with Xho I. Among them, there were four copies (about 17.7, 8,5.5 and 4.7 kb in size) existing in all the tested plants of R3,R4 and R5 generations. The preliminary conclusion was that there were more than four copies of Bt toxin gene integrated into the genome of the cotton, among them, more than one copy can express and inherit steadily. This result provides a scientific basis for the breeding of the bivalent insect-resistant transgenic cotton plants and its commercialization.``

  17. Field-evolved resistance to Bt maize by western corn rootworm.

    Directory of Open Access Journals (Sweden)

    Aaron J Gassmann

    Full Text Available BACKGROUND: Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae. METHODOLOGY/PRINCIPAL FINDINGS: We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins. CONCLUSIONS/SIGNIFICANCE: This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary.

  18. Consequences for Protaphorura armata (Collembola: Onychiuridae) following exposure to genetically modified Bacillus thuringiensis (Bt) maize and non-Bt maize

    DEFF Research Database (Denmark)

    Heckmann, L.-H.; Griffiths, B. S.; Caul, S.

    2006-01-01

    armata. For comparison three non-Bt maize varieties, Rivaldo (isogenic to Cascade), Monumental (isogenic to MEB307) and DK242, and two control diets based on baker's yeast (uncontaminated and contaminated with Bt toxin Cry1Ab) were also tested. Due to a lower C:N ratio, individuals reared on yeast...

  19. A New Developed GIHS-BT-SFIM Fusion Method Based On Edge and Class Data

    Directory of Open Access Journals (Sweden)

    S. Dehnavi

    2013-09-01

    Full Text Available The objective of image fusion (or sometimes pan sharpening is to produce a single image containing the best aspects of the source images. Some desirable aspects are high spatial resolution and high spectral resolution. With the development of space borne imaging sensors, a unified image fusion approach suitable for all employed imaging sources becomes necessary. Among various image fusion methods, intensity-hue-saturation (IHS and Brovey Transforms (BT can quickly merge huge amounts of imagery. However they often face color distortion problems with fused images. The SFIM fusion is one of the most frequently employed approaches in practice to control the tradeoff between the spatial and spectral information. In addition it preserves more spectral information but suffer more spatial information loss. Its effectiveness is heavily depends on the filter design. In this work, two modifications were tested to improve the spectral quality of the images and also investigating class-based fusion results. First, a Generalized Intensity-Hue-Saturation (GIHS, Brovey Transform (BT and smoothing-filter based intensity modulation (SFIM approach was implemented. This kind of algorithm has shown computational advantages among other fusion methods like wavelet, and can be extended to different number of bands as in literature discussed. The used IHS-BT-SFIM algorithm incorporates IHS, IHS-BT, BT, BT-SFIM and SFIM methods by two adjustable parameters. Second, a method was proposed to plus edge information in previous GIHS_BT_SFIM and edge enhancement by panchromatic image. Adding panchromatic data to images had no much improvement. Third, an edge adaptive GIHS_BT_SFIM was proposed to enforce fidelity away from the edges. Using MS image off edges has shown spectral improvement in some fusion methods. Fourth, a class based fusion was tested, which tests different coefficients for each method due to its class. The best parameters for vegetated areas was k1 = 0.6, k2

  20. Decrease in catalase activity of Folsomia candida fed a Bt rice diet

    DEFF Research Database (Denmark)

    Yuan, Yiyang; Ke, Xin; Chen, Fajun;

    2011-01-01

    Here we report the effects of three Bt-rice varieties and their non-Bt conventional isolines on biological traits including survival, reproduction, and the activities of three antioxidant enzymes superoxide dismutase, catalase and peroxidase, in the Collembolan, Folsomia candida. The reproduction...... was significantly lower when fed Kemingdao and Huahui1 than those feeding on their non-GM near-isogenic varieties Xiushui and Minghui63 respectively, this can be explained by the differences of plant compositions depended on variety of rice. The catalase activity of F. candida was significantly lower when fed...

  1. Efeito de milho Bt sobre a entomofauna não alvo Side-effect of maize Bt on non-target arthropods

    Directory of Open Access Journals (Sweden)

    Filomena Martins

    2008-12-01

    Full Text Available Com o objectivo de verificar o impacte de milho Bt na fauna auxiliar de artrópodes, cultivaram-se, durante três anos (2002-2004, duas variedades de milho geneticamente modificadas (Compa CB e Elgina e as suas isogénicas (Dracma e Cecília. Os ensaios foram realizados no Núcleo de Ensaios e de Controlo do Escaroupim, no Ribatejo. As amostragens de artrópodes auxiliares foram realizadas quinzenalmente, durante o ciclo vegetativo da cultura, em quatro talhões, usando o método de aspiração. Não se encontraram diferenças na fauna auxiliar existente, entre as cultivares Bt e as suas isogénicas. Os artrópodes auxiliares mais abundantes, em qualquer dos anos e cultivares, foram os antocorídeos. Os himenópteros foram o segundo grupo mais representado, seguido das aranhas.In order to study the impact of transgenic maize on beneficial arthropods, two varieties of maize Bt (Compa CB and Elgina and the normal ones (Dracma and Cecília were sown. The trials were carried out, in Escaroupim, Ribatejo, from 2002 to 2004. The surveys were done by using a cordless hand vacuum machine, every 15 days, during the growing season. The results showed no significant differences between arthropods caught in maize Bt and the normal one. The beneficials with the highest numbers caught during the three years were Anthocoridae, Hymenoptera and Aranea were the first, second and third most representative groups of beneficial arthropods during the three years.

  2. Effects of Bt-transgenic crops on soil earthworms: A review%转Bt基因作物对蚯蚓影响研究进展

    Institute of Scientific and Technical Information of China (English)

    张艳艳; 舒迎花; 王建武

    2012-01-01

    转苏云金杆菌杀虫蛋白(Bt)基因作物的商品化种植可能对土壤生态系统产生不利影响是近10年来颇有争议的问题.转Bt基因作物可通过多种方式向土壤中释放苏云金杆菌杀虫蛋白即Bt蛋白,从而引起土壤生物和生态系统基本功能的变化;蚯蚓可加快动植物残体的降解,促进有机质的分解和矿化,与其他土壤生物相比,蚯蚓对某些污染物更敏感.本文从研究中用到的蚯蚓种类、采用的实验方式、研究的科学问题等方面综述了转Bt基因作物对土壤动物蚯蚓影响的研究进展,并对转Bt基因作物对土壤动物蚯蚓影响研究的发展趋势进行了展望,旨在为转Bt基因作物对非靶标土壤动物的影响提供参考,进而为全面评价转Bt基因作物对土壤生态系统的影响提供依据.%Whether the commercial planting of Bacillus thuringiensis (Bt) transgenic crops could have potential adverse effects on soil ecosystem is a controversial issue over the past decade. The Bt larvicidal protein from Bt-transgenic crops can enter into the soil in various ways, leading to the changes, in soil organisms and in the essential functions of soil ecosystem. Soil earthworm can accelerate the degradation of animal- and crop residues, and promote the decomposition and mineralization of soil organic matter. As compared with other soil organisms, soil earthworm is more sensitive to some pollutants. In the present paper, the research progress in the effects of Bt-trans-genic crops on the non-target soil animal earthworm was summarized from the aspects of the earthworm species and the methods applied in related experiments as well as the problems explored in related studies, and the future research trend was prospected. The aim of this review was to provide a reference for the study of the effects of Bt -transgenic crops on non-target soil animals, and to offer the basis for the comprehensive evaluation of Bt-transgenic crops on soil

  3. Effects of External Chemical Regulation on Bt Transgenic Cotton Plants under Combined Stress of High Temperature and Water Deficit

    Institute of Scientific and Technical Information of China (English)

    ZHOU Gui-sheng; ZHANG Wang-ding; TONG Chen; LIN Yan; AN Lin-lin; LIU Gui-juan

    2011-01-01

    [Objective] The study aimed to find a possible way to combat or alleviate the negative effects caused by high temperature and water deficit at the growth stage of peak boll-setting.[Method] With Bt transgenic cotton GK22 as the test cultivar,a potted experiment was carried out to investigate the effects of the regulation of external substances(the water solutions of pix,urea and their mixture) on the physiological parameters,insecticidal protein content,yield and yield component of cotton plants in artificial climate chambers treated with high temperature and water deficit.[Result] The application of external pix,urea or their mixture was effective in stabilizing the physiological parameters of cotton plants,insecticidal protein content,yield and yield components.Compared with the exclusive application of pix and urea,the mixture of pix and urea played the most effective role in stabilizing the content of chlorophyll,soluble sugar and insecticidal protein,alleviating the increase of the content of free amino acids and proline,and increasing boll number per plant,boll weight and seed cotton yield.[Conclusion] The water solutions of pix,urea or their mixtures can be used to combat or alleviate the stress of high temperature and water deficit if they are sprayed onto cotton plants prior to stress occurrence.

  4. Bt-maize event MON 88017 expressing Cry3Bb1 does not cause harm to non-target organisms.

    Science.gov (United States)

    Devos, Yann; De Schrijver, Adinda; De Clercq, Patrick; Kiss, József; Romeis, Jörg

    2012-12-01

    This review paper explores whether the cultivation of the genetically modified Bt-maize transformation event MON 88017, expressing the insecticidal Cry3Bb1 protein against corn rootworms (Coleoptera: Chrysomelidae), causes adverse effects to non-target organisms (NTOs) and the ecological and anthropocentric functions they provide. Available data do not reveal adverse effects of Cry3Bb1 on various NTOs that are representative of potentially exposed taxonomic and functional groups, confirming that the insecticidal activity of the Cry3Bb1 protein is limited to species belonging to the coleopteran family of Chrysomelidae. The potential risk to non-target chrysomelid larvae ingesting maize MON 88017 pollen deposited on host plants is minimal, as their abundance in maize fields and the likelihood of encountering harmful amounts of pollen in and around maize MON 88017 fields are low. Non-target adult chrysomelids, which may occasionally feed on maize MON 88017 plants, are not expected to be affected due to the low activity of the Cry3Bb1 protein on adults. Impacts on NTOs caused by potential unintended changes in maize MON 88017 are not expected to occur, as no differences in composition, phenotypic characteristics and plant-NTO interactions were observed between maize MON 88017 and its near-isogenic line.

  5. Delta's Key to the Next Generation TOEFL[R] Test: Essential Grammar for the iBT

    Science.gov (United States)

    Gallagher, Nancy

    2012-01-01

    Although the TOEFL iBT does not have a discrete grammar section, knowledge of English sentence structure is important throughout the test. Essential Grammar for the iBT reviews the skills that are fundamental to success on tests. Content includes noun and verb forms, clauses, agreement, parallel structure, punctuation, and much more. The book may…

  6. A Study of the Use of the "TOEFL iBT"® Test Speaking and Listening Scores for International Teaching Assistant Screening. "TOEFL iBT"® Research Report. TOEFL iBT-27. ETS Research Report. RR-16-18

    Science.gov (United States)

    Wagner, Elvis

    2016-01-01

    Although the speaking section of the "TOEFL iBT"® test is used by many universities to determine if international teaching assistants (ITAs) have the oral proficiency necessary to be classroom instructors, relatively few studies have investigated the validity of using TOEFL iBT scores for ITA screening. The primary purpose of this study…

  7. Subcellular Localization of Cadmium in Chlorella vulgaris Beijerinck Strain Bt-09

    Directory of Open Access Journals (Sweden)

    P.B. Lintongan

    2004-06-01

    Full Text Available Growth response curves of Chlorella vulgaris Beijerinck strain Bt-09 to sublethal concentrations of cadmium were evaluated. The growth responses of this microalgal isolate was determined through analysis of chlorophyll a levels. Cadmium was effectively taken up by the cells as determined by Flame Atomic Absorption Spectrophotometry (F-AAS. Subcellular fractionation was undertaken to locate sites that accumulate cadmium.

  8. Sixteen Years of Bt Maize in the EU Hotspot: Why Has Resistance Not Evolved?

    Science.gov (United States)

    Castañera, Pedro; Farinós, Gema P.; Ortego, Félix; Andow, David A.

    2016-01-01

    The majority of Bt maize production in the European Union (EU) is concentrated in northeast Spain, which is Europe’s only hotspot where resistance might evolve, and the main target pest, Sesamia nonagrioides, has been exposed to Cry1Ab maize continuously since 1998. The cropping system in northeast Spain has some similar characteristics to those that probably led to rapid resistance failures in two other target noctuid maize pests. These include repeated cultivation of Bt maize in the same fields, low use of refuges, recurring exposure of larvae to non-high dose concentrations of Cry1Ab toxin during the first years of cultivation, low migratory potential, and production concentrated in an irrigated region with few alternative hosts. Available data reveal no evidence of resistance in S. nonagrioides after 16 years of use. We explore the possible reasons for this resistance management success using evolutionary models to consider factors expected to accelerate resistance, and those expected to delay resistance. Low initial adoption rates and the EU policy decision to replace Event 176 with MON 810 Bt maize were key to delaying resistance evolution. Model results suggest that if refuge compliance continues at the present 90%, Bt maize might be used sustainably in northeast Spain for at least 20 more years before resistance might occur. However, obtaining good estimates of the present R allele frequency and level of local assortative mating are crucial to reduce uncertainty about the future success of resistance management. PMID:27144535

  9. Chinese-version Bt Cotton: How to Get the Benefits from IPR

    Institute of Scientific and Technical Information of China (English)

    X.J. Fang

    2007-01-01

    @@ Chinese scientists started to fully synthesize the Bacillus thuringiensis (Bt) Cry1A gene in 1991. By the end of 1992, Biotechnology Research Institute of Chinese Academy of Agricultural Sciences (BRI-CAAS) successfully synthesized the full size of GFM Cry1A gene, which was a fusion gene of Cry1A(b) and Cry1A(c).

  10. IMPACT OF BT ( BACILLUS THURINGIENSIS ) CROPS ON BAT ACTIVITY IN SOUTH TEXAS AGROECOSYSTEMS

    Science.gov (United States)

    The widespread adoption of transgenic insecticidal crops raises concerns that nontarget species may be harmed and food webs disrupted. The goal of this research is to determine how transgenic Bt (Bacillus thuringiensis) crops impact the activity of Brazilian freetailed bats (Tada...

  11. Soil microbes and fauna under Bt maize or an isogenic control, with and without additional insecticide

    DEFF Research Database (Denmark)

    Griffiths, B. S.; Birch, A. N. E.; Caul, S.;

    The experiment described is a component of the EU-funded project entitled 'Soil ecological and economic evaluation of genetically modified crops' (ECOGEN, www.ecogen.dk). The overall project has an emphasis on maize genetically modified to express the Bacillus thuringiensis toxin (Bt maize...

  12. Tritrophic choice experiments with Bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae

    NARCIS (Netherlands)

    Schuler, T.H.; Potting, R.P.J.; Denholm, I.; Clark, S.J.; Clark, A.J.; Stewart, C.N.; Poppy, G.M.

    2003-01-01

    Parasitoids are important natural enemies of many pest species and are used extensively in biological and integrated control programmes. Crop plants transformed to express toxin genes derived from Bacillus thuringiensis (Bt) provide high levels of resistance to certain pest species, which is likely

  13. TOEFL iBT Speaking Test Scores as Indicators of Oral Communicative Language Proficiency

    Science.gov (United States)

    Bridgeman, Brent; Powers, Donald; Stone, Elizabeth; Mollaun, Pamela

    2012-01-01

    Scores assigned by trained raters and by an automated scoring system (SpeechRater[TM]) on the speaking section of the TOEFL iBT[TM] were validated against a communicative competence criterion. Specifically, a sample of 555 undergraduate students listened to speech samples from 184 examinees who took the Test of English as a Foreign Language…

  14. Validating TOEFL[R] iBT Speaking and Setting Score Requirements for ITA Screening

    Science.gov (United States)

    Xi, Xiaoming

    2007-01-01

    Although the primary use of the speaking section of the Test of English as a Foreign Language Internet-based test (TOEFL[R] iBT Speaking) is to inform admissions decisions at English medium universities, it may also be useful as an initial screening measure for international teaching assistants (ITAs). This study provides criterion-related…

  15. Relationship of TOEFL iBT[R] Scores to Academic Performance: Some Evidence from American Universities

    Science.gov (United States)

    Cho, Yeonsuk; Bridgeman, Brent

    2012-01-01

    This study examined the relationship between scores on the TOEFL Internet-Based Test (TOEFL iBT[R]) and academic performance in higher education, defined here in terms of grade point average (GPA). The academic records for 2594 undergraduate and graduate students were collected from 10 universities in the United States. The data consisted of…

  16. Construct Validity in TOEFL iBT Speaking Tasks: Insights from Natural Language Processing

    Science.gov (United States)

    Kyle, Kristopher; Crossley, Scott A.; McNamara, Danielle S.

    2016-01-01

    This study explores the construct validity of speaking tasks included in the TOEFL iBT (e.g., integrated and independent speaking tasks). Specifically, advanced natural language processing (NLP) tools, MANOVA difference statistics, and discriminant function analyses (DFA) are used to assess the degree to which and in what ways responses to these…

  17. Screening for corn rootworm (Coleoptera: Chrysomelidae) resistance to transgenic Bt corn in North Dakota

    Science.gov (United States)

    Western (WCR), Diabrotica virgifera virgifera LeConte, and northern corn rootworms (NCR), D. barberi Smith & Lawrence, are major economic pests of corn in much of the U.S. Corn Belt. Western corn rootworm resistance to transgenic corn expressing Bt (Bacillus thuringiensis) endotoxins has been confi...

  18. Understanding successful resistance management: The European corn borer and Bt corn in the United States

    Science.gov (United States)

    European corn borer, Ostrinia nubilalis Hubner (Lepidoptera: Crambidae) has been a major pest of corn and other crops in North America since its accidental introduction nearly a hundred years ago. Wide adoption of transgenic corn that expresses toxins from Bacillus thuringiensis, referred to as Bt c...

  19. The Utility of the Lambert Function W[a exp(a - bt)] in Chemical Kinetics

    Science.gov (United States)

    Williams, Brian Wesley

    2010-01-01

    The mathematical Lambert function W[a exp(a - bt)] is used to find integrated rate laws for several examples, including simple enzyme and Lindemann-Christiansen-Hinshelwood (LCH) unimolecular decay kinetics. The results derived here for the well-known LCH mechanism as well as for a dimer-monomer reaction mechanism appear to be novel. A nonlinear…

  20. Sixteen Years of Bt Maize in the EU Hotspot: Why Has Resistance Not Evolved?

    Directory of Open Access Journals (Sweden)

    Pedro Castañera

    Full Text Available The majority of Bt maize production in the European Union (EU is concentrated in northeast Spain, which is Europe's only hotspot where resistance might evolve, and the main target pest, Sesamia nonagrioides, has been exposed to Cry1Ab maize continuously since 1998. The cropping system in northeast Spain has some similar characteristics to those that probably led to rapid resistance failures in two other target noctuid maize pests. These include repeated cultivation of Bt maize in the same fields, low use of refuges, recurring exposure of larvae to non-high dose concentrations of Cry1Ab toxin during the first years of cultivation, low migratory potential, and production concentrated in an irrigated region with few alternative hosts. Available data reveal no evidence of resistance in S. nonagrioides after 16 years of use. We explore the possible reasons for this resistance management success using evolutionary models to consider factors expected to accelerate resistance, and those expected to delay resistance. Low initial adoption rates and the EU policy decision to replace Event 176 with MON 810 Bt maize were key to delaying resistance evolution. Model results suggest that if refuge compliance continues at the present 90%, Bt maize might be used sustainably in northeast Spain for at least 20 more years before resistance might occur. However, obtaining good estimates of the present R allele frequency and level of local assortative mating are crucial to reduce uncertainty about the future success of resistance management.

  1. The Reflexive Producer: The Influence of Farmer Knowledge upon the Use of Bt Corn

    Science.gov (United States)

    Kaup, Brent Z.

    2008-01-01

    This paper examines the influence of farmer knowledge upon decision making processes. Drawing upon the sociological debates around the ideas of reflexive modernity and biotechnology as well as from classic adoption and diffusion studies, I explore the influences upon farmers' use of "Bacillus thuringiensis" (Bt) corn. Utilizing survey data…

  2. Construction of High-performance Bivalent (Bt + cpti) Expression Vector and its Expression Analysis%高效双价(Bt + cpti)表达载体的构建及其表达分析

    Institute of Scientific and Technical Information of China (English)

    薛计雄; 张锐; 张桦; 孙国清; 孟志刚; 周焘; 郭三堆

    2013-01-01

      In this study, the Bt and cpti gene were modified on the base of existing vector and expression vector. Soybean trypsin inhibitor SKTI signal peptide sequence was added at 5′ end of cpti, KDEL signal peptide sequence was added at its 3′ end, and at Bt 5′ end chloroplast targeting peptides was added, and then a bivalent expression vector PGBIC( K). B. 4A with signal peptides and a control vector PGBIC. B. 4A without signal peptides were constructed. Through pollen tube pathway mediated by agro-bacterium Gossypium hirsutum Y18 was transformed. The result of southern blot showed that the exogenous gene had been integrated into the receptor with genome different copies. By ELISA, it was found that the protein expression was increase by 1 ~ 8 times in 5 positive strains. In the insecticidal tests, the modified binary vector transgenic plants1 / 4-1showed higher resistance to the bollworm because of the accumulation of protein. This study provided a new method to obtain the higher resistance of bivalent transgenic cotton, and basis to improve the accumulation of other foreign protein in genetic engineering.%  以已有的中间载体和表达载体为基础,对 Bt、cpti 基因进行了修饰。在 cpti 基因的5′端增加了大豆胰蛋白酶抑制剂 SKTI 信号肽序列,在3′端增加了内质网滞留信号肽 KDEL 序列,然后在 Bt 基因的5′端增加了叶绿体靶向肽序列,构建了带有信号肽的双价表达载体 PGBIC ( K). B.4A 和不含信号肽的对照载体PGBIC. B.4A。通过农杆菌介导的喷花法转化陆地棉 Y18,Southern 杂交结果显示,外源基因已经整合到了受体植物基因组中;ELISA 结果显示,所获得的5株阳性株蛋白表达量分别提高了1~8倍不等。在杀虫实验中,修饰的双价载体的转基因植株1/4-1由于蛋白表达量的积累而显示了较高的棉铃虫抗性。为获得更高抗性的双价转基因抗虫棉提供了一种新的方法,并为基因工程中提高

  3. Western corn rootworm and Bt maize: challenges of pest resistance in the field.

    Science.gov (United States)

    Gassmann, Aaron J; Petzold-Maxwell, Jennifer L; Keweshan, Ryan S; Dunbar, Mike W

    2012-01-01

    Crops genetically engineered to produce insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) manage many key insect pests while reducing the use of conventional insecticides. One of the primary pests targeted by Bt maize in the United States is the western corn rootworm, Diabrotica virgifera virgifera LeConte. Beginning in 2009, populations of western corn rootworm were identified in Iowa, USA that imposed severe root injury to Cry3Bb1 maize. Subsequent laboratory bioassays revealed that these populations were resistant to Cry3Bb1 maize, with survival on Cry3Bb1 maize that was three times higher than populations not associated with such injury. Here we report the results of research that began in 2010 when western corn rootworm were sampled from 14 fields in Iowa, half of which had root injury to Cry3Bb1 maize of greater than 1 node. Of these samples, sufficient eggs were collected to conduct bioassays on seven populations. Laboratory bioassays revealed that these 2010 populations had survival on Cry3Bb1 maize that was 11 times higher and significantly greater than that of control populations, which were brought into the laboratory prior to the commercialization of Bt maize for control of corn rootworm. Additionally, the developmental delays observed for control populations on Cry3Bb1 maize were greatly diminished for 2010 populations. All 2010 populations evaluated in bioassays came from fields with a history of continuous maize production and between 3 and 7 y of Cry3Bb1 maize cultivation. Resistance to Cry34/35Ab1 maize was not detected and there was no correlation between survival on Cry3Bb1 maize and Cry34/35Ab1 maize, suggesting a lack of cross resistance between these Bt toxins. Effectively dealing with the challenge of field-evolved resistance to Bt maize by western corn rootworm will require better adherence to the principles of integrated pest management.

  4. Fitness costs associated with field-evolved resistance to Bt maize in Spodoptera frugiperda (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Jakka, S R K; Knight, V R; Jurat-Fuentes, J L

    2014-02-01

    Increasing adoption of transgenic crops expressing cry toxin genes from Bacillus thuringiensis (Bt crops) represents an augmented risk for development of insect resistance. While fitness costs can greatly influence the rate of resistance evolution, most available data related to Bt resistance have been obtained from laboratory-selected insect strains. In this article, we test the existence of fitness costs associated with high levels of field-evolved resistance to Bt maize event TC1507 in a strain of Spodoptera frugiperda (JE Smith) originated from maize fields in Puerto Rico. Fitness costs in resistant S. frugiperda were evaluated by comparing biological performance to susceptible insects when reared on meridic diet, maize or soybean leaf tissue, or cotton reproductive tissues. Parameters monitored included larval survival, larval and pupal weights, developmental time (larval and pupal), adult longevity, reproductive traits (fecundity and fertility), and sex ratio. We found that all monitored parameters were influenced to a similar extent by the host, independently of susceptibility to Bt maize. The only parameter that significantly differed between strains for all hosts was a longer larval developmental period in resistant S. frugiperda, which resulted in emergence asynchrony between susceptible and resistant adults. To test the relevance of fitness costs in resistant S. frugiperda, we performed a selection experiment to monitor the stability of resistance in a heterogeneous strain through 12 generations of rearing on meridic diet. Our data demonstrate lack of fitness costs relevant to stability of field-evolved resistance to Bt maize and help explain reported stability of field-evolved resistance in Puerto Rican populations of S. frugiperda.

  5. Efficacy of genetically modified Bt toxins alone and in combinations against pink bollworm resistant to Cry1Ac and Cry2Ab.

    Directory of Open Access Journals (Sweden)

    Bruce E Tabashnik

    Full Text Available Evolution of resistance in pests threatens the long-term efficacy of insecticidal proteins from Bacillus thuringiensis (Bt used in sprays and transgenic crops. Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and Cry1Ac in some pests, including pink bollworm (Pectinophora gossypiella. Here we report that Cry1AbMod and Cry1AcMod were also effective against a laboratory-selected strain of pink bollworm resistant to Cry2Ab as well as to Cry1Ab and Cry1Ac. Resistance ratios based on the concentration of toxin killing 50% of larvae for the resistant strain relative to a susceptible strain were 210 for Cry2Ab, 270 for Cry1Ab, and 310 for Cry1Ac, but only 1.6 for Cry1AbMod and 2.1 for Cry1AcMod. To evaluate the interactions among toxins, we tested combinations of Cry1AbMod, Cry1Ac, and Cry2Ab. For both the resistant and susceptible strains, the net results across all concentrations tested showed slight but significant synergism between Cry1AbMod and Cry2Ab, whereas the other combinations of toxins did not show consistent synergism or antagonism. The results suggest that the modified toxins might be useful for controlling populations of pink bollworm resistant to Cry1Ac, Cry2Ab, or both.

  6. 分泌抗Bt Cry1Ac蛋白单克隆抗体杂交瘤细胞株的建立%The Establishment of Hybridoma Cell Line Secreting Specific Monoclonal Antibodies Against Bt Cry1Ac

    Institute of Scientific and Technical Information of China (English)

    乔艳红; 张维; 林敏; 张杰; 潘家荣

    2005-01-01

    从苏云金芽孢杆菌HD-73中提取Bt Cry1Ac蛋白,电镜观察Bt Cry1Ac蛋白为标准的菱形.用SP2/0-Ag14骨髓瘤细胞与经该Bt Cry1Ac蛋白免疫的BALB/c小鼠的脾细胞融合,经3次克隆化,筛出两株稳定分泌Bt Cry1Ac单克隆的杂交瘤细胞株1C3、2F3.两株细胞均具有抗Bt Cry1Ac特异性,与Bt Cry1Ab和Bt Cry2A无明显的交叉反应,经亚型鉴定均为IgG1.腹水滴度均为1∶1024000.

  7. Effects of transgenic Bt (Cry1Ab/Cry1Ac) rice on the population development of Plodia interpunctella%转Bt基因稻谷对印度谷螟生长发育的影响

    Institute of Scientific and Technical Information of China (English)

    蒋海燕; 王振华; 华红霞; 高艮亮; 蔡万伦; 杨长举

    2011-01-01

    The effect of the transgenic Bt rice CrylAb/ CrylAc gene on the feeding of Plodia interpunctella ( Hlibner)on stored rice was investigated. Population parameters of P. Interpunctella were investigated after adding different ratios (70% , 50% , 30% , 10% ) of transgenic Bt rice flour into a conventional artificial diet at 30°C. And RH75%. The content of Bt protein in 3rd instar larva and the transgenic Bt rice grain was measured using the ELISA method. The results show that significant mortality of 1" instar larva was observed 72 h after feeding on Bt rice flour. Larval mortality rates and development time increased significantly as the content of transgenic Bt rice flour in the artificial diet increased. For research purposes, 2. 35 u.g/g was the optimal sub-lethal dose of Cryl Ab/Cryl Ac protein for P. Interpunctella.%为建立仓储阶段转Bt水稻安全性评价中靶标害虫抗性汰选研究体系,配制了含不同比例(70%,50%,30%,10%)转Bt基因(Cry1Ab/Cry IAbc)明辉63水稻谷粉(简称Bt谷粉)的人工饲料饲喂印度谷螟Plodiainterpunctella (Hübner),测定其对1~3龄幼虫在72 h内的急性毒力,及对印度谷螟种群生长发育的影响,并采用ELISA法检测转基因稻谷和末龄幼虫体内Bt蛋白含量.结果发现:4种比例人工饲料对幼虫的毒力作用均发生在取食48 h后,72 h后剂量效应明显.含Bt水稻较高比例的饲料对印度谷螟发育的负面效应明显:幼虫死亡率高,发育历期延长.Bt蛋白在幼虫体内含量与对应饲料中的含量基本成正比.综合考虑,将Bt杀虫蛋白含量2.35 μg/g作为转Bt基因稻谷对印度谷螟的亚致死剂量最为合适.

  8. Distribuição espacial de Aphis gossypii (Glover (Hemiptera, Aphididae e Bemisia tabaci (Gennadius biótipo B (Hemiptera, Aleyrodidae em algodoeiro Bt e não-Bt Spatial distribution of Aphis gossypii (Glover (Hemiptera, Aphididae and Bemisia tabaci (Gennadius biotype B (Hemiptera, Aleyrodidae on Bt and non-Bt cotton

    Directory of Open Access Journals (Sweden)

    Tatiana Rojas Rodrigues

    2010-03-01

    Full Text Available Distribuição espacial de Aphis gossypii (Glover (Hemiptera, Aphididae e Bemisia tabaci (Gennadius biótipo B (Hemiptera, Aleyrodidae em algodoeiro Bt e não-Bt. O estudo da distribuição espacial de adultos de Bemisia tabaci e de Aphis gossypii nas culturas do algodoeiro Bt e não-Bt é fundamental para a otimização de técnicas de amostragens, além de revelar diferenças de comportamento de espécies não-alvo dessa tecnologia Bt entre as duas cultivares. Nesse sentido, o experimento buscou investigar o padrão da distribuição espacial dessas espécies de insetos no algodoeiro convencional não-Bt e no cultivar Bt. As avaliações ocorreram em dois campos de 5.000 m² cada, nos quais se realizou 14 avaliações com contagem de adultos da mosca-branca e colônias de pulgões. Foram calculados os índices de agregação (razão variância/média, índice de Morisita e Expoente k da Distribuição Binomial Negativa e realizados os testes ajustes das classes numéricas de indivíduos encontradas e esperadas às distribuições teóricas de freqüência (Poisson, Binomial Negativa e Binomial Positiva. Todas as análises mostraram que, em ambas as cultivares, a distribuição espacial de B. tabaci ajustou-se a distribuição binomial negativa durante todo o período analisado, indicando que a cultivar transgênica não influenciou o padrão de distribuição agregada desse inseto. Já com relação às análises para A. gossypii, os índices de agregação apontaram distribuição agregada nas duas cultivares, mas as distribuições de freqüência permitiram concluir a ocorrência de distribuição agregada apenas no algodoeiro convencional, pois não houve nenhum ajuste para os dados na cultivar Bt. Isso indica que o algodão Bt alterou o padrão normal de dispersão dos pulgões no cultivo.The study of spatial distribution of the adults of Bemisia tabaci and the colonies of Aphis gossypii on Bt and non-Bt cotton crop is fundamental for

  9. Assessment of potential adjuvanticity of Cry proteins

    DEFF Research Database (Denmark)

    Joshi, Saurabh S; Barnett, Brian; Doerrer, Nancy G

    2016-01-01

    the potential immuno-adjuvant effects of Cry proteins. These studies had limitations in study design. The studies used animal models with extremely high doses of Cry proteins, which when given using the ig route were co-administered with an adjuvant. Although the presumption exists that Cry proteins may have......, the history of safe use of Cry proteins in foods, safety of the Bt donor organisms, and pre-market weight-of-evidence-based safety assessments for GM crops....

  10. Effect of Transgenic Bt Cotton on Abundance of Cotton Spider Mites and Total Phenolic Content of Leaves and their Relationship

    Directory of Open Access Journals (Sweden)

    Yanfang Pei

    2012-12-01

    Full Text Available The differences of the total phenolic content in leaves and percentage of cotton plants infested with cotton spider mites between in transgenic Bt (Ezamian No. 24F1 and in non-transgenic Bt cotton (Ek 9 parental line of Ezamian No. 24F1 plots with and without spraying acaricides were systematically investigated in Tai Lake farm, Hubei Province, China, over the period 26 May and 11 September 2011. In acaricide treated plots, transgenic Bt cotton does not result in a change of the abundance of cotton spider mites compared to that in non-transgenic Bt cotton, however, without acaricide treated plots, transgenic Bt cotton significantly increases the abundance of cotton spider mites compared to those of non-transgenic Bt cotton. The number of eggs, larva-nymph-adults, egg-larvanymph- adults and the plant damage index are independent of the total phenolic content in leaves. The results are also discussed in relation to integrated pest management. It was very necessary for nontarget cotton spider mites of transgenic Bt cotton fields to control in wetland agricultural area.

  11. Analysis of the BT project design and management%浅析BT项目公司设计管理

    Institute of Scientific and Technical Information of China (English)

    董梅

    2012-01-01

      BT (Build-Transfer) as a new type of financing construction mode, in recent years, some of our engineering construction projects Chiang Kai-shek gradually the development of applications. Design management as an important part of management in the BT model, a direct impact on the BT project investment control and project implementation effect. From the BT project design and management in the BT project implementation, the importance of management objectives, organizational structure, the implementation of the BT project design management.%  BT(Build-Transfer,建设一移交)作为一种新型融资建设模式,近年来在我国一些工程建设项目中正逐步得到发展应用。设计管理作为BT模式下管理的重要组成部分,直接影响BT项目的投资控制及项目实施效果。本文从BT项目公司设计管理在BT项目实施中的重要性、管理的目标、组织架构、实施等方面分析了BT项目公司如何进行设计管理。

  12. Effect of insertion of Bt gene in corn and different fumonisin content on growth performance of weaned piglets

    Directory of Open Access Journals (Sweden)

    Filippo Rossi

    2011-04-01

    Full Text Available The objective of this study was to compare the effect of Bt corn and isogenic corn on the growth of weaned piglets. One hundred twenty-eight weaned piglets weighing 8.8 ±1.27 kg live weight were randomly assigned to 4 groups of 32 animals each (16 castrated males and 16 females. Bt corn (line MON810 and isogenic corn were produced at two farms located in the Lodi and Venezia provinces (northern Italy. Bt corn had the same chemical composition as the isogenic corn but a lower content of fumonisin B1 (FB1. The experimental period (35 days was divided into two phases: 0-14 d and 15-35 d. There was no significant difference in average daily gain (ADG among groups during the first feeding phase. Compared to animals fed isogenic corn, the piglets fed Bt maize gained more weight during the second feeding phase (Bt: 464.1 g/d, isogenic: 429.1 g/d; P < 0.05. Also, the ADG over the entire trial was higher in piglets fed Bt corn versus piglets fed isogenic corn (Bt: 396.4 g/d, isogenic: 374.1 g/d; P < 0.05. The ADG of the whole period decreased linearly (P<0.05 with respect to FB1 content of diet. Final weight was higher in piglets fed the diet containing Bt corn (Bt: 22.68 kg, isogenic: 21.83 kg; P < 0.05. No differences in feed intake and in the feed:gain ratio were observed, however a linear response between FB1 and feed:gain ratio in first 14 days of the experiment was detected.

  13. Effects of Pyramided Bt Corn and Blended Refuges on Western Corn Rootworm and Northern Corn Rootworm (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Keweshan, Ryan S; Head, Graham P; Gassmann, Aaron J

    2015-04-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, and the northern corn rootworm, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae), are major pests of corn (Zea mays L). Several transgenic corn events producing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) kill corn rootworm larvae and reduce injury to corn roots. However, planting of Bt corn imposes selection on rootworm populations to evolve Bt resistance. The refuge strategy and pyramiding of multiple Bt toxins can delay resistance to Bt crops. In this study, we assessed the impact of four treatments--1) non-Bt corn, 2) Cry3Bb1 corn, 3) corn pyramided with Cry3Bb1 and Cry34/35Ab1, and 4) pyramided corn with a blended refuge--on survival, time of adult emergence, and size of western and northern corn rootworm. All treatments with Bt corn led to significant reductions in the number of adults that emerged per plot. However, at one location, we identified Cry3Bb1-resistant western corn rootworm. In some cases Bt treatments reduced size of adults and delayed time of adult emergence, with effects most pronounced for pyramided corn. For both species, the number of adults that emerged from pyramided corn with a blended refuge was significantly lower than expected, based solely on emergence from pure stands of pyramided corn and non-Bt corn. The results of this study indicate that pyramided corn with a blended refuge substantially reduces survival of both western and northern corn rootworm, and as such, should be a useful tool within the context of a broader integrated pest management strategy.

  14. Effect of insertion of Bt gene in corn and different fumonisin content on growth performance of weaned piglets

    Directory of Open Access Journals (Sweden)

    Filippo Rossi

    2010-05-01

    Full Text Available The objective of this study was to compare the effect of Bt corn and isogenic corn on the growth of weaned piglets. One hundred and twenty-eight weaned piglets weighing 8.8±1.27 kg live weight were randomly assigned to 4 groups of 32 animals each (16 castrated males and 16 females. Bt corn (line MON810 and isogenic corn were produced at two farms located in the provinces of Lodi and Venice (northern Italy. The Bt corn had the same chemical composition as the isogenic corn but a lower content of fumonisin B1 (FB1. The experimental period (35 days was in 2 phases, 0-14 d and 15-35 d. There was no significant difference in average daily gain (ADG among groups during the first feeding phase. Compared to animals fed isogenic corn, the piglets fed Bt maize gained more weight during the second feeding phase (Bt: 464.1 g/d, isogenic: 429.1 g/d; P<0.05. Also, the ADG over the entire trial was higher in piglets fed Bt corn versus piglets fed isogenic corn (Bt: 396.4 g/d, isogenic: 374.1 g/d; P<0.05. The ADG of the whole period decreased linearly (P<0.05 with respect to the FB1 content of the diet. Final weight was higher in piglets fed the diet containing Bt corn (Bt: 22.68 kg, isogenic: 21.83 kg; P<0.05. No differences in feed intake and in the feed:gain ratio were observed, although a linear response between FB1 and feed:gain ratio in first 14 days of the experiment was detected.

  15. Progress of the BT-EdF-CEA project. The lithium polymer battery; Avancees du projet BT-EdF-CEA. Batterie lithium polymere

    Energy Technology Data Exchange (ETDEWEB)

    Marginedes, D.; Majastre, H. [Bollore Technologies, 29 - Quimper (France); Baudry, P.; Lascaud, S. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Bloch, D.; Lebrun, N. [CEA Grenoble, CEREM, 38 (France)

    1996-12-31

    The lithium-polymer energy storage technology requires the production of thin films of huge surface. The BT-EdF-CEA consortium has studied the various manufacturing techniques of these films and their assembly. The process was chosen according to its productivity, low expensiveness, ecological impact and energy performances with capacities reaching 40 Ah. This paper explains: the objectives and specifications of the project, the advantage of the consortium and the role of the different partners, the results (coating, dry extrusion and battery element manufacturing techniques), and the electrochemical performances of the elements. (J.S.)

  16. Frequency of alleles conferring resistance to the Bt toxins Cry1Ac and Cry2Ab in Australian populations of Helicoverpa armigera (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Mahon, R J; Olsen, K M; Downes, S; Addison, S

    2007-12-01

    Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is an important lepidopteran pest of cotton (Gossypium spp.) in Australia and the Old World. From 2002, F2 screens were used to examine the frequency of resistance alleles in Australian populations of H. armigera to Bacillus thuringiensis (Bt) CrylAc and Cry2Ab, the two insecticidal proteins present in the transgenic cotton Bollgard II. At that time, Ingard (expressing Cry1Ac) cotton had been grown in Australia for seven seasons, and Bollgard II was about to be commercially released. The principal objective of our study was to determine whether sustained exposure caused an elevated frequency of alleles conferring resistance to Cry1Ac in a species with a track record of evolving resistance to conventional insecticides. No major alleles conferring resistance to Cry1Ac were found. The frequency of resistance alleles for Cry1Ac was <0.0003, with a 95% credibility interval between 0 and 0.0009. In contrast, alleles conferring resistance to Cry2Ab were found at a frequency of 0.0033 (0.0017, 0.0055). The first isolation of this allele was found before the widespread deployment of Bollgard II. For both toxins the experiment-wise detection probability was 94.4%. Our results suggest that alleles conferring resistance to Cry1Ac are rare and that a relatively high baseline frequency of alleles conferring resistance to Cry2Ab existed before the introduction of Bt cotton containing this toxin.

  17. Ubi1 intron-mediated enhancement of the expression of Bt cry1Ah gene in transgenic maize (Zea mays L.)

    Institute of Scientific and Technical Information of China (English)

    WANG YueBing; LANG Zhihong; ZHANG Jie; HE KangLai; SONG FuPing; HUANG DaFang

    2008-01-01

    The cry1Ah gone was one of novel insecticidal genes cloned from Bacillus thuringiensis isolate BT8. Two plant expression vectors containing cry1Ah gone were constructed. The first intron of maize ubiqutin1 gone was inserted between the maize Ubiquitin promoter and cry1Ah gone in one of the plant expressing vectors (pUUOAH). The two vectors were introduced into maize immature embryonic calli by microprojectile bombardment, and the reproductively plants were acquired. PCR and Southern blot analysis showed that foreign genes had been integrated into maize genome and inherited to the next generation stably. The ELISA assay to T1 and T2 generation plants showed that the expression of Cry1Ah protein in the construct containing the ubi1 intron (pUUOAH) was 20% higher than that of the intronless construct (pUOAH). Bioassay results showed that the transgenic maize harboring cry1Ah gone had high resistance to the Asian corn borers and the insecticidal activity of the transgenic maize containing the ubi1 intron was higher than that of the intronless construct. These results indicated that the maize ubil intron can enhance the expression of the Bt cry1Ah gone in transgenic maize efficiently

  18. Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in Helicoverpa armigera utilizing the CRISPR/Cas9 system.

    Science.gov (United States)

    Wang, Jing; Zhang, Haonan; Wang, Huidong; Zhao, Shan; Zuo, Yayun; Yang, Yihua; Wu, Yidong

    2016-09-01

    Cadherins have been identified as receptors of Bacillus thuringiensis (Bt) Cry1A toxins in several lepidopteran insects including the cotton bollworm, Helicoverpa armigera. Disruption of the cadherin gene HaCad has been genetically linked to resistance to Bt toxin Cry1Ac in H. armigera. By using the CRISPR/Cas9 genome editing system (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9), HaCad from the Cry1Ac-susceptible SCD strain of H. armigera was successfully knocked out. A single positive CRISPR event with a frame shift deletion of 4 nucleotides was identified and made homozygous to create a knockout line named SCD-Cad. Western blotting confirmed that HaCad was no longer expressed in the SCD-Cad line while an intact HaCad of 210 kDa was present in the parental SCD strain. Insecticide bioassays were used to show that SCD-Cad exhibited 549-fold resistance to Cry1Ac compared with SCD, but no significant change in susceptibility to Cry2Ab. Our results not only provide strong reverse genetics evidence for HaCad as a functional receptor of Cry1Ac, but also demonstrate that the CRISPR/Cas9 technique can act as a powerful and efficient genome editing tool to study gene function in a global agricultural pest, H. armigera.

  19. No effect of Bt Cry1Ie toxin on bacterial diversity in the midgut of the Chinese honey bees, Apis cerana cerana (Hymenoptera, Apidae)

    Science.gov (United States)

    Jia, Hui-Ru; Dai, Ping-Li; Geng, Li-Li; Jack, Cameron J.; Li, Yun-He; Wu, Yan-Yan; Diao, Qing-Yun; Ellis, James D.

    2017-01-01

    Cry1Ie protein derived from Bacillus thuringiensis (Bt) has been proposed as a promising candidate for the development of a new Bt-maize variety to control maize pests in China. We studied the response of the midgut bacterial community of Apis cerana cerana to Cry1Ie toxin under laboratory conditions. Newly emerged bees were fed one of the following treatments for 15 and 30 days: three concentrations of Cry1Ie toxin (20 ng/mL, 200 ng/mL, and 20 μg/mL) in sugar syrup, pure sugar syrup as a negative control and 48 ng/mL imidacloprid as a positive control. The relative abundance of 16S rRNA genes was measured by Quantitative Polymerase Chain Reaction and no apparent differences were found among treatments for any of these counts at any time point. Furthermore, the midgut bacterial structure and compositions were determined using high-throughput sequencing targeting the V3-V4 regions of the 16S rDNA. All core honey bee intestinal bacterial genera such as Lactobacillus, Bifidobacterium, Snodgrassella, and Gilliamella were detected, and no significant changes were found in the species diversity and richness for any bacterial taxa among treatments at different time points. These results suggest that Cry1Ie toxin may not affect gut bacterial communities of Chinese honey bees. PMID:28139751

  20. A mathematical model of exposure of non-target Lepidoptera to Bt-maize pollen expressing Cry1Ab within Europe.

    Science.gov (United States)

    Perry, J N; Devos, Y; Arpaia, S; Bartsch, D; Gathmann, A; Hails, R S; Kiss, J; Lheureux, K; Manachini, B; Mestdagh, S; Neemann, G; Ortego, F; Schiemann, J; Sweet, J B

    2010-05-01

    Genetically modified (GM) maize MON810 expresses a Cry1Ab insecticidal protein, derived from Bacillus thuringiensis (Bt), toxic to lepidopteran target pests such as Ostrinia nubilalis. An environmental risk to non-target Lepidoptera from this GM crop is exposure to harmful amounts of Bt-containing pollen deposited on host plants in or near MON810 fields. An 11-parameter mathematical model analysed exposure of larvae of three non-target species: the butterflies Inachis io (L.), Vanessa atalanta (L.) and moth Plutella xylostella (L.), in 11 representative maize cultivation regions in four European countries. A mortality-dose relationship was integrated with a dose-distance relationship to estimate mortality both within the maize MON810 crop and within the field margin at varying distances from the crop edge. Mortality estimates were adjusted to allow for physical effects; the lack of temporal coincidence between the susceptible larval stage concerned and the period over which maize MON810 pollen is shed; and seven further parameters concerned with maize agronomy and host-plant ecology. Sublethal effects were estimated and allowance made for aggregated pollen deposition. Estimated environmental impact was low: in all regions, the calculated mortality rate for worst-case scenarios was less than one individual in every 1572 for the butterflies and one in 392 for the moth.

  1. Bibliometric review of international research on insect-resistant transgenic Bt rice%基于 WOS 文献计量的转 Bt 基因抗虫水稻研究国际动态分析

    Institute of Scientific and Technical Information of China (English)

    刘雨芳

    2016-01-01

    【目的】分析转 Bt 基因抗虫水稻研究国际科研 SCI 文献,客观地呈现转 Bt 基因抗虫水稻的国际研究现状与发展趋势。【方法】利用 Web of ScienceTM 核心合集数据库,采用文献计量学的方法,对2003—2015年转 Bt 基因抗虫水稻研究文献进行科学统计分析。【结果】在 Web of ScienceTM 核心合集中共检索到2003—2015年转 Bt 基因抗虫水稻文献291篇,被引频次3475次,291篇文献来源于1057位作者,分属41个国家的270个机构,来源出版物137个。涵盖了农学、昆虫学、植物科学等36个研究方向。【结论】转 Bt 基因抗虫水稻研究呈现增强趋势,在转 Bt 基因抗虫水稻研究领域,中国处于国际领先地位。%Objectives] To analyze the current state of research on Bt transgenic rice globally and provide references for future research.[Methods] Bibliometric methods were used to analyze articles published in the Web of Science database on Bt transgenic rice between 2003 and 2015. [Results] A total of 291 articles that had been cited 3 475 times were published in 137 journals by 1 057 authors from 270 institutes in 41 countries. Research on Bt transgenic rice includes 36 topics, such as Agriculture, Entomology, plant science, etc. [Conclusion] The amount of research conducted on Bt transgenic rice is increasing. Many Bt rice lines have been developed in China in recent years and China is playing a leading role in research in this field.

  2. Spatial Distribution of Eggs of Alabama argillacea Hübner and Heliothis virescens Fabricius (Lepidoptera: Noctuidae on Bt and non-BtCotton

    Directory of Open Access Journals (Sweden)

    TATIANA R. RODRIGUES

    2015-12-01

    Full Text Available ABSTRACT Among the options to control Alabama argillacea (Hübner, 1818 and Heliothis virescens (Fabricius, 1781 on cotton, insecticide spraying and biological control have been extensively used. The GM'Bt' cotton has been introduced as an extremely viable alternative, but it is yet not known how transgenic plants affect populations of organisms that are interrelated in an agroecosystem. For this reason, it is important to know how the spatial arrangement of pests and beneficial insect are affected, which may call for changes in the methods used for sampling these species. This study was conducted with the goal to investigate the pattern of spatial distribution of eggs of A. argillacea and H. virescens in DeltaOpalTM (non-Bt and DP90BTMBt cotton cultivars. Data were collected during the agricultural year 2006/2007 in two areas of 5,000 m2, located in in the district of Nova América, Caarapó municipality. In each sampling area, comprising 100 plots of 50 m2, 15 evaluations were performed on two plants per plot. The sampling consisted in counting the eggs. The aggregation index (variance/mean ratio, Morisita index and exponent k of the negative binomial distribution and chi-square fit of the observed and expected values to the theoretical frequency distribution (Poisson, Binomial and Negative Binomial Positive, showed that in both cultivars, the eggs of these species are distributed according to the aggregate distribution model, fitting the pattern of negative binomial distribution.

  3. BT-14钛合金舱口外盖白斑问题%White Spots of Some BT-14 Titanium Alloy Hatch

    Institute of Scientific and Technical Information of China (English)

    周传忠; 俞川; 郭文龙; 范小龙; 于雷

    2013-01-01

    BT-14 titanium alloy plate is the structure material of some hatch product. By the inspection before welding, the titanium alloy surface presences some white spots. The white spots surface pattern, microstructure as well as mechanical property were analyzed. The influence of the white spots organization on titanium plate us⁃ability was studies with emphasis, and precaution in the production follow-up was put forword.%  BT-14钛板为某产品舱口盖结构用材料,焊前检查时,发现钛板表面有数量不等的白色圆状斑点。文章从白斑的外观形貌、微观组织以及力学性能等方面进行分析,重点研究了白斑组织对钛板使用性能的影响,并提出后续生产中的预防措施。

  4. Resistance of Bt-maize (MON810) against the stem borers Busseola fusca (Fuller) and Chilo partellus (Swinhoe) and its yield performance in Kenya.

    Science.gov (United States)

    Tefera, Tadele; Mugo, Stephen; Mwimali, Murenga; Anani, Bruce; Tende, Regina; Beyene, Yoseph; Gichuki, Simon; Oikeh, Sylvester O; Nang'ayo, Francis; Okeno, James; Njeru, Evans; Pillay, Kiru; Meisel, Barbara; Prasanna, B M

    2016-11-01

    A study was conducted to assess the performance of maize hybrids with Bt event MON810 (Bt-hybrids) against the maize stem borer Busseola fusca (Fuller) in a biosafety greenhouse (BGH) and against the spotted stem borer Chilo partellus (Swinhoe) under confined field trials (CFT) in Kenya for three seasons during 2013-2014. The study comprised 14 non-commercialized hybrids (seven pairs of near-isogenic Bt and non-Bt hybrids) and four non-Bt commercial hybrids. Each plant was artificially infested twice with 10 first instar larvae. In CFT, plants were infested with C. partellus 14 and 24 days after planting; in BGH, plants were infested with B. fusca 21 and 31 days after planting. In CFT, the seven Bt hybrids significantly differed from their non-Bt counterparts for leaf damage, number of exit holes, percent tunnel length, and grain yield. When averaged over three seasons, Bt-hybrids gave the highest grain yield (9.7 t ha(-1)), followed by non-Bt hybrids (6.9 t ha(-1)) and commercial checks (6 t ha(-1)). Bt-hybrids had the least number of exit holes and percent tunnel length in all the seasons as compared to the non-Bt hybrids and commercial checks. In BGH trials, Bt-hybrids consistently suffered less leaf damage than their non-Bt near isolines. The study demonstrated that MON810 was effective in controlling B. fusca and C. partellus. Bt-maize, therefore, has great potential to reduce the risk of maize grain losses in Africa due to stem borers, and will enable the smallholder farmers to produce high-quality grain with increased yield, reduced insecticide inputs, and improved food security.

  5. Exploratory Studies With BT-11: A Proposed Orally Active Therapeutic for Crohn's Disease.

    Science.gov (United States)

    Bissel, Philippe; Boes, Katie; Hinckley, Jonathan; Jortner, Bernard S; Magnin-Bissel, Geraldine; Werre, Stephen R; Ehrich, Marion; Carbo, Adria; Philipson, Casandra; Hontecillas, Raquel; Philipson, Noah; Gandour, Richard D; Bassaganya-Riera, Josep

    2016-09-01

    Lanthionine synthetase cyclase-like receptor 2 (LANCL2) is a novel therapeutic target for Crohn's disease (CD). BT-11 is a small molecule that binds LANCL2, is orally active, and has demonstrated therapeutic efficacy in 3 validated mouse models of colitis at doses as low as 8 mg/kg/d. Exploratory experiments evaluated BT-11 in male Harlan Sprague Dawley rats with a single oral dose of 500 mg/kg and 80 mg/kg/d for 14 days (n = 10 rats dosed/group). Treated and control rats were observed for behavioral detriments, and blood and tissues were collected for clinical pathology and histopathological examination. A functional observational battery demonstrated no differences between treated and control groups over multiple times of observation for quantal, categorical, and continuous end points, including posture, in cage activity, approach, response to touch, weight, grip strength, body temperature, and time on a rotarod. Histopathological examination of the brain, kidney, liver, adrenal gland, testes, stomach, small and large intestines, duodenum, pancreas, heart, lungs, spleen, thymus, and rib found no significant differences between the groups. Plasma enzymes associated with liver function were transiently elevated 2 to 4 days after the 500 mg/kg single dose but returned to normal values by 8 days and were not observed at any time in rats given 80 mg/kg/d for 14 days. One hour after oral administration of a single dose of 80 mg/kg, BT-11 had a maximal concentration of 21 ng/mL; the half-life was 3 hours. These experimental results demonstrated that BT-11 is well tolerated in rats, and, with further testing, may hold promise as an orally active therapeutic for CD.

  6. Toxicity of seven Bacillus thuringiensis Cry proteins against Cylas puncticollis and Cylas brunneus (Coleoptera: Brentidae) using a novel artificial diet.

    Science.gov (United States)

    Ekobu, Moses; Solera, Maureen; Kyamanywa, Samuel; Mwanga, Robert O M; Odongo, Benson; Ghislain, Marc; Moar, William J

    2010-08-01

    "Sweetpotato weevils" Cylas puncticollis (Boheman) and Cylas brunneus F. (Coleoptera: Brentidae) are the most important biological threat to sweetpotato, Ipomoea batatas L. (Lam), productivity in sub-Saharan Africa. Sweetpotato weevil control is difficult due to their cryptic feeding behavior. Expression of Cylas-active Bacillus thuringiensis (Bt) Cry proteins in sweetpotato could provide an effective control strategy. Unfortunately, Bt Cry proteins with relatively high toxicity against Cylas spp. have not been identified, partly because no published methodology for screening Bt Cry proteins against Cylas spp. in artificial diet exists. Therefore, the initial aim of this study was to develop an artificial diet for conducting bioassays with Cylas spp. and then to determine Bt Cry protein efficacy against C. puncticollis and C. brunneus by using this artificial diet. Five diets varying in their composition were evaluated. The highest survival rates for sweetpotato weevil larvae were observed for diet E that contained the highest amount of sweetpotato powder and supported weevil development from first instar to adulthood, similar to sweetpotato storage roots. Seven coleopteran-active Bt Cry proteins were incorporated into diet E and toxicity data were generated against neonate C. puncticollis and second-instar C. brunneus. All Bt Cry proteins tested had toxicity greater than the untreated control. Cry7Aa1, ET33/34, and Cry3Ca1 had LC50 values below 1 microg/g diet against both species. This study demonstrates the feasibility of using an artificial diet bioassay for screening Bt Cry proteins against sweetpotato weevil larvae and identifies candidate Bt Cry proteins for use in transforming sweetpotato varieties potentially conferring field resistance against these pests.

  7. Plant growth regulation of Bt-cotton through Bacillus species.

    Science.gov (United States)

    Pindi, Pavan Kumar; Sultana, Tasleem; Vootla, Praveen Kumar

    2014-06-01

    Deccan plateau in India periodically experiences droughts due to irregular rain fall and the soil in many parts of the region is considered to be poor for farming. Plant growth promoting rhizobacteria are originally defined as root-colonizing bacteria, i.e., Bacillus that cause either plant growth promotion or biological control of plant diseases. The study aims at the isolation of novel Bacillus species and to assess the biotechnological potential of the novel species as a biofertilizer, with respect to their plant growth promoting properties as efficient phosphate-solubilizing bacteria. Seven different strains of Bacillus were isolated from cotton rhizosphere soil near boys' hostel of Palamuru University which belongs to Deccan plateau. Among seven isolated strains, Bacillus strain-7 has shown maximum support for good growth of eight cotton cultivars. This bacterial species is named Bacillus sp. PU-7 based on the phenotypic and phylogenetic analysis. Among eight cotton cultivars, Mahyco has shown high levels of IAA, proteins, chlorophyll, sugars and low level of proline. Efficacy of novel Bacillus sp. PU-7 with Mahyco cultivar has been checked experimentally at field level in four different cotton grown agricultural soils. The strains supported plant growth in almost all the cases, especially in the deep black soil, with a clear evidence of maximum plant growth by increased levels of phytohormone production and biochemical analysis, followed by shallow black soil. Hence, it is inferred that the novel isolate can be used as bioinoculant in the cotton fields.

  8. Qualitative and event-specific real-time PCR detection methods for Bt brinjal event EE-1.

    Science.gov (United States)

    Randhawa, Gurinder Jit; Sharma, Ruchi; Singh, Monika

    2012-01-01

    Bt brinjal event EE-1 with cry1Ac gene, expressing insecticidal protein against fruit and shoot borer, is the first genetically modified food crop in the pipeline for commercialization in India. Qualitative polymerase chain reaction (PCR) along with event-specific conventional as well as real-time PCR methods to characterize the event EE-1 is reported. A multiplex (pentaplex) PCR system simultaneously amplifying cry1Ac transgene, Cauliflower Mosaic Virus (CaMV) 35S promoter, nopaline synthase (nos) terminator, aminoglycoside adenyltransferase (aadA) marker gene, and a taxon-specific beta-fructosidase gene in event EE-1 has been developed. Furthermore, construct-specific PCR, targeting the approximate 1.8 kb region of inserted gene construct comprising the region of CaMV 35S promoter and cry1Ac gene has also been developed. The LOD of developed EE-1 specific conventional PCR assay is 0.01%. The method performance of the reported real-time PCR assay was consistent with the acceptance criteria of Codex Alimentarius Commission ALINORM 10/33/23, with the LOD and LOQ values of 0.05%. The developed detection methods would not only facilitate effective regulatory compliance for identification of genetic traits, risk assessment, management, and postrelease monitoring, but also address consumer concerns and resolution of legal disputes.

  9. Complete genome sequence of Enterobacter sp. IIT-BT 08: A potential microbial strain for high rate hydrogen production.

    Science.gov (United States)

    Khanna, Namita; Ghosh, Ananta Kumar; Huntemann, Marcel; Deshpande, Shweta; Han, James; Chen, Amy; Kyrpides, Nikos; Mavrommatis, Kostas; Szeto, Ernest; Markowitz, Victor; Ivanova, Natalia; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Nolan, Matt; Woyke, Tanja; Teshima, Hazuki; Chertkov, Olga; Daligault, Hajnalka; Davenport, Karen; Gu, Wei; Munk, Christine; Zhang, Xiaojing; Bruce, David; Detter, Chris; Xu, Yan; Quintana, Beverly; Reitenga, Krista; Kunde, Yulia; Green, Lance; Erkkila, Tracy; Han, Cliff; Brambilla, Evelyne-Marie; Lang, Elke; Klenk, Hans-Peter; Goodwin, Lynne; Chain, Patrick; Das, Debabrata

    2013-12-20

    Enterobacter sp. IIT-BT 08 belongs to Phylum: Proteobacteria, Class: Gammaproteobacteria, Order: Enterobacteriales, Family: Enterobacteriaceae. The organism was isolated from the leaves of a local plant near the Kharagpur railway station, Kharagpur, West Bengal, India. It has been extensively studied for fermentative hydrogen production because of its high hydrogen yield. For further enhancement of hydrogen production by strain development, complete genome sequence analysis was carried out. Sequence analysis revealed that the genome was linear, 4.67 Mbp long and had a GC content of 56.01%. The genome properties encode 4,393 protein-coding and 179 RNA genes. Additionally, a putative pathway of hydrogen production was suggested based on the presence of formate hydrogen lyase complex and other related genes identified in the genome. Thus, in the present study we describe the specific properties of the organism and the generation, annotation and analysis of its genome sequence as well as discuss the putative pathway of hydrogen production by this organism.

  10. Studies on Rapid Quantitative Analysis of Bt Toxin by Using Envirologix Kits in Transgenic Rice

    Institute of Scientific and Technical Information of China (English)

    XIE Xiao-bo; SHU Qing-yao

    2002-01-01

    Investigations were done on the usefulness of Envirologix Cry1Ab/Cry1Ac Plate kits for quantitative analysis of Bt toxin content in transgenic rice grains. Two transgenic rice lines: Kemingdao 1 (KMD1) and Kemingdao 2 (KMD2), transformed with a cry1Ab gene, and their parental variety, cv.Xiushui 11, were used as positive and negative samples. Results showed that the correlation coefficients as high as 0. 985 - 0. 998, significant at probability level of 0.05 or 0.01, were obtained for linear regression equations by using the appended calibrators of the kits. No significant differences were detected for values of same rice sample obtained from different trials or by using different lots of the product (kit). The detectable Bt toxin content by this method could be as low as 0.5 ng/g. The Envirologix Kit could be useful for rapid quantitative detection of Bt toxin in rice grains because of its preciseness, simplicity and time saving.

  11. Variation induced by DNA rearrangement in a transgenic Bt+CpTI cotton strain

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the development of transgenic Bt + CpTI cotton cultivars, one male and female sterile mutant has been found in a homozygous T4 strain in our laboratory. The mutant plant, as well as its leaves, buds and flowers, is only 1/2-1/3 as large as that of the wild transgenic Bt + CpTI bivalant cotton plants. Cytological observation found that the chromosome number of the mutant is 2n = 52; however, there are 4 - 8 univalents observed in meiosis Ⅰ of pollen mother cells. Laboratory bioassay indicated that the mutant was highly resistant to bollworm as the wild plants. PCR amplification revealed that Bt and CpTI genes in the mutant were still intactly inserted. However, small deletion of flanked area had been observed in the mutant by Southern blotting analysis. So it is proposed that the mutant phenotype might result from either the DNA deletion or T-DNA trans-ferring in plant genome. No such report has been presented that the rearrangement of chromosome structure in a homo-zygous transgenic line occurred. Further analysis is ongoing.

  12. 3D Finite Element Numerical Simulation of Residual Stresses on Electron Beam Welded BT20 Plates

    Institute of Scientific and Technical Information of China (English)

    Lixing HUO; Furong CHEN; Yufeng ZHANG; Li ZHANG; Fangjun LIU; Gang CHEN

    2004-01-01

    A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical and thermo-mechanical properties of the material has been considered. The welding temperature field, the distributions of residual stresses in aswelded (AW) and electron beam local post-weld heat treatment (EBLPWHT) conditions have been successfully simulated.The results show that: (1) In the weld center, the maximum magnitude of residual tensile stresses of BT20 thin plates of Ti alloy is equal to 60%~ 70% of its yield strength σs. (2) The residual tensile stresses in weld center can be even decreased after EBLPWHT and the longitudinal tensile stresses are decreased about 50% compared to joints in AW conditions. (3)The numerical calculating results of residual stresses by using FEM are basically in agreement with the experimental results.Combined with numerical calculating results, the effects of electron beam welding and EBLPWHT on the distribution of welding residual stresses in thin plates of BT20 have been analyzed in detail.

  13. AUTOPILOT-BT: a system for knowledge and model based mechanical ventilation.

    Science.gov (United States)

    Lozano, S; Möller, K; Brendle, A; Gottlieb, D; Schumann, S; Stahl, C A; Guttmann, J

    2008-01-01

    A closed-loop system (AUTOPILOT-BT) for the control of mechanical ventilation was designed to: 1) autonomously achieve goals specified by the clinician, 2) optimize the ventilator settings with respect to the underlying disease and 3) automatically adapt to the individual properties and specific disease status of the patient. The current realization focuses on arterial oxygen saturation (SpO(2)), end-tidal CO(2) pressure (P(et)CO(2)), and positive end-expiratory pressure (PEEP) maximizing respiratory system compliance (C(rs)). The "AUTOPILOT-BT" incorporates two different knowledge sources: a fuzzy logic control reflecting expert knowledge and a mathematical model based system that provides individualized patient specific information. A first evaluation test with respect to desired end-tidal-CO(2)-level was accomplished using an experimental setup to simulate three different metabolic CO(2) production rates by means of a physical lung simulator. The outcome of ventilator settings made by the "AUTOPILOT-BT" system was compared to those produced by clinicians. The model based control system proved to be superior to the clinicians as well as to a pure fuzzy logic based control with respect to precision and required settling time into the optimal ventilation state.

  14. Improved 1, 2, 4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins.

    Science.gov (United States)

    Lu, Xinyao; He, Shuying; Zong, Hong; Song, Jian; Chen, Wen; Zhuge, Bin

    2016-09-01

    1, 2, 4-Butanetriol (BT) is a high-value non-natural chemical and has important applications in polymers, medical production and military industry. In the constructed BT biosynthesis pathway from xylose in Escherichia coli, the xylose dehydrogenase (Xdh) and the benzoylformate decarboxylase (MdlC) are heterologous enzymes and the activity of MdlC is the key limiting factor for BT production. In this study, six chaperone protein systems were introduced into the engineered E. coli harboring the recombinant BT pathway. The chaperone GroES-GroEL was beneficial to Xdh activity but had a negative effect on MdlC activity and BT titer. The plasmid pTf16 containing the tig gene (trigger factor) was beneficial to Xdh and MdlC activities and improved the BT titer from 0.42 to 0.56 g/l from 20 g/l xylose. However, co-expression of trigger factor and GroES-GroEL simultaneously reduced the activity of MdlC and had no effect on the BT production. The plasmid pKJE7 harboring dnaK-dnaJ-grpE showed significant negative effects on these enzyme activities and cell growth, leading to completely restrained the BT production. Similarly, co-expression of DnaKJ-GrpPE and GroES-GroEL simultaneously reduced Xdh and MdlC activities and decreased the BT titer by 45.2 %. The BT production of the engineered E. coli harboring pTf16 was further improved to the highest level at 1.01 g/l under pH control (pH 7). This work showed the potential application of chaperone proteins in microorganism engineering to get high production of target compounds as an effective and valuable tool.

  15. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton) Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae.

    OpenAIRE

    Patil, Chandrashekhar D; Hemant P Borase; Salunkhe, Rahul B; Rahul K Suryawanshi; Narkhade, Chandrakant P; Salunke, Bipinchandra K.; Satish V Patil

    2014-01-01

    Background: We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton) using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi. Methods: Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt) plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay. Results: LC50 values of water, etha...

  16. Delta's Key to the Next Generation TOEFL[R] Test: Six Practice Tests for the iBT

    Science.gov (United States)

    Gallagher, Nancy

    2012-01-01

    Six Practice Tests for the iBT gives students plenty of practice as they prepare for the Internet-based TOEFL (iBT) or the new form of the institutional TOEFL (ITP). This new book/audio set contains a concise description of the TOEFL and the types of questions in each section, as well as six full-length tests that have not been published before.…

  17. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells.

    Science.gov (United States)

    Seo, Hye-Sook; Jo, Jae Kyung; Ku, Jin Mo; Choi, Han-Seok; Choi, Youn Kyung; Woo, Jong-Kyu; Kim, Hyo In; Kang, Soo-Yeon; Lee, Kang Min; Nam, Koong Won; Park, Namkyu; Jang, Bo-Hyoung; Shin, Yong Cheol; Ko, Seong-Gyu

    2015-10-23

    Phytoestrogen intake is known to be beneficial to decrease breast cancer incidence and progression. But its molecular mechanisms of action are still unknown. The present study aimed to examine the effect of apigenin on proliferation and apoptosis in HER2-expressing breast cancer cells. In our experiments, apigenin inhibited the proliferation of BT-474 cells in a dose- and time-dependent manner. Apigenin also inhibited clonogenic survival (anchorage-dependent and -independent) of BT-474 cells in a dose-dependent manner. These growth inhibitions were accompanied with an increase in sub-G0/G1 apoptotic populations. Apigenin-induced extrinsic a caspase-dependent apoptosis up-regulating the levels of cleaved caspase-8 and cleaved caspase-3, and inducing the cleavage of poly (ADP-ribose) polymerase (PARP). Whereas, apigenin did not induce apoptosis via intrinsic mitochondrial apoptosis pathway since this compound did not decrease mitochondrial membrane potential without affecting the levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX). Apigenin reduced the expression of phospho-JAK1, phospho-JAK2 and phospho-STAT3 and decreased signal transducer and activator of transcription 3 (STAT3) dependent luciferase reporter gene activity in BT-474 cells. Apigenin inhibited CoCl2-induced VEGF secretion and decreased the nuclear translocation of STAT3. Our study indicates that apigenin induces apoptosis through inhibition of STAT3 signalling and could serve as a useful compound to prevent or treat HER2-overexpressing breast cancer.

  18. Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions.

    Science.gov (United States)

    Cui, Jinjie; Luo, Junyu; Van Der Werf, Wopke; Ma, Yan; Xia, Jingyuan

    2011-04-01

    Transgenic cotton (Cossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects, the CrylAc gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in conferring resistance to cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was studied in laboratory and field experiments. In each experiment, performance of Bt+CpTI cotton was compared with Bt cotton and to a conventional nontransgenic variety. Larval survival was lower on both types of transgenic variety, compared with the conventional cotton. Survival of first-, second-, and third-stage larvae was lower on Bt+CpTI cotton than on Bt cotton. Plant structures differed in level of resistance, and these differences were similar on Bt and Bt + CpTI cotton. Likewise, seasonal trends in level of resistance in different plant structures were similar in Bt and Bt+CpTI cotton. Both types of transgenic cotton interfered with development of sixth-stage larvae to adults, and no offspring was produced by H. armigera that fed on Bt or Bt+CpTI cotton from the sixth stage onward. First-, second-, and third-stage larvae spent significantly less time feeding on transgenic cotton than on conventional cotton, and the reduction in feeding time was significantly greater on Bt+CpTI cotton than on Bt cotton. Food conversion efficiency was lower on transgenic varieties than on conventional cotton, but there was no significant difference between Bt and Bt+CpTI cotton. In 3-yr field experimentation, bollworm densities were greatly suppressed on transgenic as compared with conventional cotton, but no significant differences between Bt and Bt+CpTI cotton were found. Overall, the results from laboratory work indicate that introduction of the CpTI gene in Bt cotton raises some components of resistance in cotton against H. armigera, but enhanced control of H. armigera under field

  19. Impacto do algodoeiro Bt na dinâmica populacional do pulgão-do-algodoeiro em casa de vegetação Impact of Bt cotton on the population dynamics of the cotton aphid in greenhouse

    Directory of Open Access Journals (Sweden)

    Edison Ryoiti Sujii

    2008-10-01

    Full Text Available O objetivo deste trabalho foi desenvolver um protocolo experimental para avaliar o impacto do algodoeiro Bt na bionomia e na escolha de plantas para colonização pelo pulgão-do-algodoeiro (Aphis gossypii. A bionomia do pulgão foi avaliada em casa de vegetação com insetos criados em gaiolas individuais com plantas de algodão Bt, da variedade DP 404 BG (Bollgard, ou sua isolinha não transformada DP 4049. Gaiolas contendo vasos com plantas de algodoeiro Bt e não-Bt foram usadas como arena de escolha, para a avaliação de preferência de adultos alados. O período pré-reprodutivo e reprodutivo, a longevidade, a curva de sobrevivência, a produção de prole total e diária por fêmea e a curva acumulada de produção de prole da população não apresentaram diferenças significativas. Não foi observada diferença na escolha de plantas para colonização por indivíduos alados, o que indica taxas equivalentes de colonização nas populações iniciais. O algodoeiro Bt não afeta a dinâmica populacional de A. gossypii e não aumenta seu potencial de risco como praga.The objective of this work was to develop an experimental protocol to assess the impact of Bt cotton on bionomics and on plant choice for Aphis gossypii colonization. The bionomics of the cotton aphid was assessed in greenhouse with insects reared in individual cages containing Bt cotton plants of the variety DP 404 BG (Bollgard or its nontransformed isoline DP 4049. Cages with Bt cotton and non-Bt cotton were used as choosing arena for evaluation of winged adults preference. There was no significant difference for pre-reproduction period (immature phase, reproduction period, longevity, survivorship curve total and daily production of offspring by female, and curve of accumulated production of offspring by the population. There was no preference of colonization for any plant by winged adults, which indicates equivalent rates of colonization of the initial populations. Bt

  20. Purification and Characterization of a Novel Cold Shock Protein-Like Bacteriocin Synthesized by Bacillus thuringiensis

    Science.gov (United States)

    Huang, Tianpei; Zhang, Xiaojuan; Pan, Jieru; Su, Xiaoyu; Jin, Xin; Guan, Xiong

    2016-01-01

    Bacillus thuringiensis (Bt), one of the most successful biopesticides, may expand its potential by producing bacteriocins (thuricins). The aim of this study was to investigate the antimicrobial potential of a novel Bt bacteriocin, thuricin BtCspB, produced by Bt BRC-ZYR2. The results showed that this bacteriocin has a high similarity with cold-shock protein B (CspB). BtCspB lost its activity after proteinase K treatment; however it was active at 60 °C for 30 min and was stable in the pH range 5–7. The partial loss of activity after the treatments of lipase II and catalase were likely due to the change in BtCspB structure and the partial degradation of BtCspB, respectively. The loss of activity at high temperatures and the activity variation at different pHs were not due to degradation or large conformational change. BtCspB did not inhibit four probiotics. It was only active against B. cereus strains 0938 and ATCC 10987 with MIC values of 3.125 μg/mL and 0.781 μg/mL, and MBC values of 12.5 μg/mL and 6.25 μg/mL, respectively. Taken together, these results provide new insights into a novel cold shock protein-like bacteriocin, BtCspB, which displayed promise for its use in food preservation and treatment of B. cereus-associated diseases. PMID:27762322

  1. Limites du riz Bt dans le contexte entomologique de la riziculture en Afrique sub-saharienne et à Madagascar (synthèse bibliographique

    Directory of Open Access Journals (Sweden)

    Silvie, P.

    2013-01-01

    Full Text Available Limitations of Bt rice in the entomological rice cropping context in sub-Saharan Africa and Madagascar. A review. In sub-Saharan African countries and Madagascar, rice crops host many insect species, which have been inventoried and studied for almost 40 years. Management of these rice pests using synthetic chemical pesticides is not common practice. In Asia, genetically modified rice varieties (Bt rice resistant to some insects were engineered in the 1990s. In 2009, two Bt rice varieties were authorized to be marketed in China. Bt rice is not grown in African countries. We therefore decided to analyze the published literature on Bt rice and to compare the findings with the current insect pest situation in African rice fields. The activity spectrum and the efficacy of Bt toxins represent the first limitation encountered in the use of currently available Bt rice varieties. For instance, the effect of Bt toxins against Diptera (Diopsidae species is unknown, since these species only occur in Africa. On the African continent and in Madagascar, it would be essential to enhance or promote taxonomic, biological and ecological knowledge concerning rice pests and to more accurately measure the impact of various insect species on crop yields. The broad range of rice insect pests, including insect vectors of disease, the risk of target insects developing resistance to Bt toxins and the lack of economic assessments suggest that, with the current state of knowledge in Africa, it would be inappropriate to introduce currently available Bt rice varieties there.

  2. BT20钛合金激光焊技术研究%Research on Laser Fabrication Weldability of BT20 Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    Shuili Gong; Li Chen; Wei Yao

    2004-01-01

    By using CO2 laser beam and YAG laser beam, the butt welding of BT20 titanium alloy sheet with 2.5 mm thickness is carried out. It is found that the geometry of welded joint is different because of different laser beam models. The stable welding process and welding quality are guaranteed by using suitable welding parameters. On the condition of butt welding without welding wire, the welded defect such as undercut on the weld face is generated because of the heat physics properties of BT20 titanium alloy and the high energy density laser beam, which affects the mechanical properties of welded joint seriously, especially the fatigue strength and the fracture toughness. Using the active fluxes in the welding procedure, or making use of laser welding technique with filler wire, revolving scanning beam could be a good method to solve undercut and improve the mechanical properties of laser welded joint.%针对2.5 mm厚BT20钛合金进行了CO2激光焊和YAG激光焊研究,结果表明:由于激光特性不同,形成的焊缝几何特征不同,当焊接工艺适当,可保证焊接过程的稳定性和焊接接头的质量.在激光自熔焊时主要的焊缝缺陷是咬边,这是由于钛合金物理性能和激光高能束流焊特性所致.这种咬边缺陷不利于焊接接头性能,尤其是接头的疲劳性能和断裂韧性.采用活性剂和填丝焊,以及激光旋扫焊可以改善焊缝咬边缺陷,提高钛合金激光焊接头的力学性能.

  3. Cellular penetration and nuclear importation properties of {sup 111}In-labeled and {sup 123}I-labeled HIV-1 tat peptide immunoconjugates in BT-474 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cornelissen, Bart [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3M2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Hu, Meiduo [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3M2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); McLarty, Kristin [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3M2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Costantini, Dan [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3M2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Reilly, Raymond M. [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3M2 (Canada) and Department of Medical Imaging, University of Toronto, Toronto, ON, M5S 3M2 (Canada) and Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada) and Toronto General Research Institute, University Health Network, Toronto, ON, M5S 3M2 (Canada)]. E-mail: raymond.reilly@utoronto.ca

    2007-01-15

    Introduction: Our objective was to compare the cell penetration and nuclear importation properties of {sup 111}In-labeled and {sup 123}I-labeled immunoconjugates (ICs) composed of 16-mer peptides (GRKKRRQRRRPPQGYG) derived from HIV-1 transactivator of transcription (tat) protein and anti-mouse IgG (mIgG) in BT-474 breast cancer (BC) cells. Methods: [{sup 111}In]tat ICs were constructed by site-specific conjugation of tat peptides to NaIO{sub 4} {sup -}-oxidized carbohydrates in the Fc domain of diethylenetriaminepentaacetic-acid-modified anti-mIgG antibodies. Immunoreactivity against mIgG was assessed in a competition assay. The kinetics of the accumulation of [{sup 111}In]anti-mIgG-tat IC and [{sup 123}I]anti-mIgG-tat ICs in BT-474 cells and the elimination of radioactivity from cells, cytoplasm or nuclei were determined. The effects of excess tat peptides or NH{sub 4}Cl (an inhibitor of endosomal acidification) on cellular uptake and nuclear importation of [{sup 111}In]anti-mIgG-tat were measured. Results: [{sup 111}In]anti-mIgG-tat was >97% radiochemically pure and exhibited preserved immunoreactivity with mIgG epitopes. [{sup 123}I]Anti-mIgG-tat penetrated BT-474 cells more rapidly than [{sup 111}In]anti-mIgG-tat ICs and achieved a 1.5-fold to a 2-fold higher uptake in cells and nuclei. Cell penetration and nuclear uptake of [{sup 111}In]anti-mIgG-tat were inhibited by excess tat peptides and NH{sub 4}Cl. Elimination of radioactivity from BT-474 cells and nuclei was more rapid and complete for {sup 123}I-labeled than for {sup 111}In-labeled anti-mIgG-tat ICs. Conclusion: Tat peptides derived from HIV-1 tat protein promoted the penetration and nuclear uptake of radioactivity following the incubation of {sup 111}In-labeled and {sup 123}I-labeled anti-mIgG antibodies with BT-474 human BC cells. {sup 111}In-labeled tat ICs are feasible for inserting radionuclides into cancer cells with potential for targeting intracellular and, particularly, nuclear epitopes for

  4. Bt-maize (MON810 and non-GM soybean meal in diets for Atlantic salmon (Salmo salar L. juveniles--impact on survival, growth performance, development, digestive function, and transcriptional expression of intestinal immune and stress responses.

    Directory of Open Access Journals (Sweden)

    Jinni Gu

    Full Text Available Responses in Atlantic salmon (Salmo salar L. juveniles (fry fed diets containing genetically modified maize (Bt-maize, MON810 expressing Cry1Ab protein from first-feeding were investigated during a 99-day feeding trial. Four experimental diets were made; each diet contained ∼20% maize, either Bt-maize or its near-isogenic maternal line (non-GM maize. One pair was fishmeal-based while the other pair included standard (extracted soybean meal (SBM; 16.7% inclusion level, with the intention of investigating responses to the maize varieties in healthy fish as well as in immunologically challenged fish with SBM-induced distal intestinal inflammation, respectively. Three replicate tanks of fry (0.17±0.01 g; initial mean weight ± SEM were fed one of the four diets and samples were taken on days 15, 36, 48 and 99. Survival, growth performance, whole body composition, digestive function, morphology of intestine, liver and skeleton, and mRNA expression of some immune and stress response parameters in the distal intestine were evaluated. After 99 days of feeding, survival was enhanced and the intended SBM-induced inflammatory response in the distal intestine of the two groups of SBM-fed fish was absent, indicating that the juvenile salmon were tolerant to SBM. Mortality, growth performance and body composition were similar in fish fed the two maize varieties. The Bt-maize fed fish, however, displayed minor but significantly decreased digestive enzyme activities of leucine aminopeptidase and maltase, as well as decreased concentration of gut bile salts, but significantly increased amylase activity at some sampling points. Histomorphological, radiographic and mRNA expression evaluations did not reveal any biologically relevant effects of Bt-maize in the gastrointestinal tract, liver or skeleton. The results suggest that the Cry1Ab protein or other compositional differences in GM Bt-maize may cause minor alterations in intestinal responses in juvenile

  5. Lithium/polymer batteries. Safety approach of the BT-EDF-CEA project; Accumulateurs lithium/polymere. Demarche securite du projet BT-EDF-CEA

    Energy Technology Data Exchange (ETDEWEB)

    Lascaud, S.; Baudry, P. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H. [Bollore Technologies, 29 - Quimper (France); Bloch, D. [CEAGrenoble, CEREM, 38 (France)

    1996-12-31

    The BT-EdF-CEA consortium for the development and the performance improvement of lithium/polymer batteries has carried out a safety analysis of the industrial risk and the risk for users linked with this new technology. The process chosen for the manufacturing of lithium/polymer batteries does not generate any particular risk of personnel or environmental contamination. Security tests have permitted to observe and analyze the behaviour of 4 Ah elements during thermal shocks, perforation and crushing, and during external short-circuit on 20 Ah elements. These tests demonstrate the great thermal stability and the excellent behaviour of batteries in the case of partial destruction. (J.S.) 2 refs.

  6. Cloning of the Bacillus thuringiensis serovar sotto chitinase (Schi gene and characterization of its protein

    Directory of Open Access Journals (Sweden)

    Wan-Fang Zhong

    2005-12-01

    Full Text Available Chitinase plays a positive role in the pathogenicity of Bacillus thuringiensis to insect pests. We used touchdown PCR to clone the chitinase (Schi gene from Bacillus thuringiensis serovar sotto (Bt sotto chromosomal DNA. Our DNA sequencing analysis revealed that the Bt sotto Schi gene consists of an open reading frame (ORF of 2067 nucleotides with codes for the chitinase precursor. We also found that the putative promoter consensus sequences (the -35 and -10 regions of the Bt soto Schi gene are identical to those of the chiA71 gene from Bt Pakistani, the chiA74 gene from Bt kenyae and the ichi gene from Bt israelensis. The Schi chitinase precursor is 688 amino acids long with an estimated molecular mass of 75.75 kDa and a theoretical isoelectric point of 5.74, and contains four domains, which are, in sequence, a signal peptide, an N-terminal catalytic domain, a fibronectin type III like domain and a C-terminal chitin-binding domain. Sequence comparison and the evolutionary relationship of the Bt sotto Schi chitinase to other chitinase and chitinase-like proteins are also discussed.

  7. Laboratory and field validation of a Cry1Ab protein quantitation method for water.

    Science.gov (United States)

    Strain, Katherine E; Whiting, Sara A; Lydy, Michael J

    2014-10-01

    The widespread planting of crops expressing insecticidal proteins derived from the soil bacterium Bacillus thuringiensis (Bt) has given rise to concerns regarding potential exposure to non-target species. These proteins are released from the plant throughout the growing season into soil and surface runoff and may enter adjacent waterways as runoff, erosion, aerial deposition of particulates, or plant debris. It is crucial to be able to accurately quantify Bt protein concentrations in the environment to aid in risk analyses and decision making. Enzyme-linked immunosorbent assay (ELISA) is commonly used for quantitation of Bt proteins in the environment; however, there are no published methods detailing and validating the extraction and quantitation of Bt proteins in water. The objective of the current study was to optimize the extraction of a Bt protein, Cry1Ab, from three water matrices and validate the ELISA method for specificity, precision, accuracy, stability, and sensitivity. Recovery of the Cry1Ab protein was matrix-dependent and ranged from 40 to 88% in the validated matrices, with an overall method detection limit of 2.1 ng/L. Precision among two plates and within a single plate was confirmed with a coefficient of variation less than 20%. The ELISA method was verified in field and laboratory samples, demonstrating the utility of the validated method. The implementation of a validated extraction and quantitation protocol adds consistency and reliability to field-collected data regarding transgenic products.

  8. Comparison of BT Settl Model Spectra in NIR to Brown Dwarfs and Massive Exoplanets

    Science.gov (United States)

    Popinchalk, Mark; Buzard, Cam; Alam, Munazza; Camnasio, Sara; Cruz, Kelle L.; Faherty, Jacqueline K.; Rice, Emily L.

    2017-01-01

    Brown dwarfs and giant exoplanets are difficult to observe, which hampers our understanding of their properties. Model spectra, such as the BT Settl model grid, can provide an opportunity to augment and validate our understanding of these faint objects by serving to contrast and complement our analysis of their observed spectra. We present work from an upcoming paper that leverages this opportunity. The near infrared (NIR) wavelength region is favorable for analysis of low mass brown dwarfs and high mass gaseous companions, in particular the K band (1.97 - 2.40 µm) due to its relatively high resolution and high signal-to-noise ratio wavelength range for spectra of planetary companions. We present a method to analyze two regions of the K band spectral structure (2.03 - 2.10 µm and 2.215 - 2.290 µm), and apply it to a sample of objects with field gravity, low gravity, and planetary mass as well as the BT Settl model grid for a similar range of effective temperatures and surface gravities. A correlation between spectral structure and effective temperature is found for the shorter wavelength region and there is evidence of gravity dependence for the longer wavelength range. This work suggests that the K band has the potential to be an indicator for brown dwarf and exoplanet surface gravity and effective temperature. We also present preliminary analysis from another upcoming paper. We examine equivalent widths of K I absorption lines at 1.1693 µm, 1.1773 µm, 1.2436 µm and 1.2525 µm in a selection of L dwarfs to explore their physical properties by comparing them to equivalent measurements in the BT Settl model grid.

  9. Overcoming barriers to trust in agricultural biotechnology projects: a case study of Bt cowpea in Nigeria

    Directory of Open Access Journals (Sweden)

    Ezezika Obidimma C

    2012-11-01

    Full Text Available Abstract Background Nigeria, Africa’s most populous country, has been the world’s largest cowpea importer since 2004. The country is currently in the early phases of confined field trials for two genetically modified crops: Bacillus thuringiensis (Bt cowpea and nutritionally enhanced cassava (“BioCassava Plus”. Using the bio-safety guidelines process as a backdrop, we evaluate the role of trust in the operation of the Cowpea Productivity Improvement Project, which is an international agricultural biotechnology public-private partnership (PPP aimed at providing pest-resistant cowpea varieties to Nigerian farmers. Methods We reviewed the published literature and collected data through direct observations and semi-structured, face-to-face interviews. Data were analyzed based on emergent themes to create a comprehensive narrative on how trust is understood and built among the partners and with the community. Results Our findings highlight the importance of respecting mandates and eliminating conflicts of interest; holding community engagement initiatives early on; having on-going internal discussion and planning; and serving a locally-defined need. These four lessons could prove helpful to other agricultural biotechnology initiatives in which partners may face similar trust-related challenges. Conclusions Overcoming challenges to building trust requires concerted effort throughout all stages of project implementation. Currently, plans are being made to backcross the cowpea strain into a local variety in Nigeria. The development and adoption of the Bt cowpea seed hinges on the adoption of a National Biosafety Law in Nigeria. For countries that have decided to adopt biotech crops, the Nigerian cowpea experiment can be used as a model for other West African nations, and is actually applied as such in Ghana and Burkina Faso, interested in developing a Bt cowpea.

  10. Effect of Bt-176 maize pollen on first instar larvae of the Peacock butterfly (Inachis io) (Lepidoptera; Nymphalidae).

    Science.gov (United States)

    Felke, Martin; Langenbruch, Gustav-Adolf; Feiertag, Simon; Kassa, Adane

    2010-01-01

    More than 10 years after registration of the first Bt maize cultivar in Europe, there still exists a remarkable lack of data on effects on Lepidoptera which would be necessary for a complete and comprehensive environmental risk assessment. So far only very few European butterfly species have been tested in this aspect. In our study the effect of transgenic Bacillus thuringiensis (Bt) maize pollen (event Bt-176) on the development and survival of neonate larvae of the Peacock butterfly, Inachis io (L.) was for the first time shown. The results of our study suggest that the Peacock butterfly may serve as a model organism for assessing potential side effects of new developed transgenic Bt crops on non-target butterflies in a GMO environmental risk assessment. The study was done under laboratory conditions by exposing larvae of the Peacock butterfly to various pollen doses of transgenic maize event Bt-176 (cv. PACTOL CB) or the conventional isogenic maize (cv. PACTOL) using a no-choice test. Larvae feeding for 48 h on nettle plants (Urtica dioica) that were contaminated with higher pollen concentrations from Bt-176 maize (205 and 388 applied pollen.cm⁻²) suffered a significantly higher mortality rate (68 and 85% respectively) compared to larvae feeding on leaves with no pollen (11%), or feeding on leaves with pollen from conventional maize (6 to 25%). At lower Bt maize pollen doses (23-104 applied pollen.cm⁻²),mortality ranged from 11-25% and there were no apparent differences among treatments. The corresponding LC₅₀-and LC₉₀-values for neonate larvae of the Peacock butterfly were 187 and 448 applied pollen grains.cm⁻² of Bt-176, respectively.Weight of larvae surviving consumption of Bt-176 maize pollen declined between 10 and 81% with increased pollen doses (r = -0.95). The highest weight reduction (81%) corresponded to the highest pollen concentration (388 pollen grains applied.cm⁻²). Ingestion of pollen from the conventional maize hybrid did not

  11. Exploring discrepancies in the TOEFL iBT scores of repeat test takers

    OpenAIRE

    2011-01-01

    Students choosing to study abroad either independently or as a component of a local degree must first demonstrate their language proficiency by achieving the required score of their destination institution in a TOEFL iBT or IELTS examination. With such high stakes, many candidates opt to repeat the test a number of times before the submission date in the hope that one of the tests will yield a sufficiently high score. This study analyzed the test results of twenty-five students who, toward th...

  12. Capabilities development and platform strategy in integrated solutions: the case of BT global services

    OpenAIRE

    Sato, Carlos E Y

    2009-01-01

    Incumbent telecommunications operators such as BT, Deutsche Telekom and France Telecom in Europe have been suffering increasing competition which is threatening revenues from traditional voice services. Smaller operators (e.g. C&W and Colt), Internet-based firms (e.g. Google and Yahoo), cable TV firms (e.g NTL: Telewest) and satellite TV firms (e.g. Sky) are among the competitors in an increasing convergent market. In order to survive and grow in this competitive environment, the incumbent te...

  13. Measurement of B(t --> Wb)/B(t--> Wq) at the collider detector at fermilab.

    Science.gov (United States)

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Casarsa, M; Carlsmith, D; Carosi, R; Carron, S; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chuang, S; Chung, K; Chung, W-H; Chung, Y S; Cijliak, M; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Cruz, A; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; de Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R D; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T; Kamon, T; Kang, J; Unel, M Karagoz; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, L; Miller, R; Miller, J S; Mills, C; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P A Movilla; Muelmenstaedt, J; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Nelson, T; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Osterberg, K; Pagliarone, C; Palencia, E

    2005-09-01

    We present a measurement of the ratio of top-quark branching fractions R = B(t --> Wb)/B(t --> Wq), where q can be a b, s, or a d quark, using lepton-plus-jets and dilepton data sets with an integrated luminosity of approximately 162 pb(-1) collected with the Collider Detector at Fermilab during Run II of the Tevatron. The measurement is derived from the relative numbers of tt events with different multiplicity of identified secondary vertices. We set a lower limit of R > 0.61 at 95% confidence level.

  14. Selection and genotype analysis of Bt isolates with high virulence against Athetis lepigone (Möschler)%对二点委夜蛾高毒力苏云金芽胞杆菌的筛选及其基因型分析

    Institute of Scientific and Technical Information of China (English)

    杨云鹤; 宋萍; 王振营; 董志平; 王勤英

    2014-01-01

    【目的】获得对二点委夜蛾Athetis lepigone(Möschler)高毒力的苏云金芽胞杆菌(Bt)菌株,寻找对该虫具有特异杀虫活性的蛋白毒素,探索 Bt 菌株或其杀虫基因应用于二点委夜蛾防治的可行性。【方法】通过生物测定方法比较了36株苏云金芽胞杆菌和一株恶臭假单胞工程菌PHB-cry1Ab对二点委夜蛾幼虫的杀虫活性,同时利用PCR-RFLP方法对这些菌株的基因型进行了分析。【结果】不同Bt菌株对二点委夜蛾幼虫的杀虫活性差别很大,杀虫活性高的菌株都含有 cry1Ac 基因。饲毒72 h 后含单基因的Bt HD-73菌株(cry1Ac)对二点委夜蛾2龄幼虫的毒力(LC50值为188.51μg/g)明显高于含多基因的Bt SC-40菌株(cry1Ac,cry2Ac,cry1I,vip3A)的毒力(LC50值为418.13μg/g)。含有vip3A基因的Bt SC-40和Bt HD-1营养期上清液对二点委夜蛾2龄幼虫表现出一定的杀虫活性(72 h死亡率分别达到42.5%和57.4%),而无vip3A基因的Bt HD-73营养期上清液未表现出明显的杀虫活性。【结论】由cry1Ac基因编码的Cry1Ac蛋白对二点委夜蛾幼虫具有特异杀虫活性,Vip3A蛋白对二点委夜蛾幼虫可能也有一定的杀虫活性。%[Objectives] To obtain Bt strains and insecticidal proteins with high insecticidal activity against Athetis lepigone (Möschler). [Methods] The insecticidal activities of 36 Bt strains and an engineered Pseudomonas putida with a cry1Ab gene were evaluated on second instar larvae of A. lepigone by bioassay. PCR-RFLP analysis was performed to verify the genotypes of all Bt isolates. [Results] The bioassay results indicated obvious differences in the insecticidal activities of the different Bt isolates tested. The results also revealed that the Bt strains with high insecticidal activity all contained the cry1Ac gene. Furthermore, the results of a comparison of the toxicities of Bt SC-40 (cry1Ac, cry2Ac, cry1I, vip3A) and Bt HD-73

  15. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer.

    Science.gov (United States)

    Guo, Ruqing; Sun, Shucun; Liu, Biao

    2016-09-15

    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.

  16. Susceptibility and aversion of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1F Bt maize and considerations for insect resistance management.

    Science.gov (United States)

    Binning, Rachel R; Coats, Joel; Kong, Xiaoxiao; Hellmich, Richard L

    2014-02-01

    Bacillus thuringiensis (Bt) maize was developed primarily for North American pests such as European corn borer (Ostrinia nubilalis (Hübner)). However, most Bt maize products are also cultivated outside of North America, where the primary pests may be different and may have lower susceptibility to Bt toxins. Fall armyworm (Spodoptera frugiperda JE Smith) is an important pest and primary target of Bt maize in Central and South America. S. frugiperda susceptibility to Cry1F (expressed in event TC1507) is an example of a pest-by-toxin interaction that does not meet the high-dose definition. In this study, the behavioral and toxic response of S. frugiperda to Cry1F maize was investigated by measuring the percentage of time naive third instars spent feeding during a 3-min exposure. S. frugiperda also were exposed as third instars to Cry1F maize for 14 d to measure weight gain and survival. S. frugiperda demonstrated an initial, postingestive aversive response to Cry1F maize, and few larvae survived the 14 d exposure. The role of susceptibility and avoidance are discussed in the context of global IRM refuge strategy development for Bt products.

  17. Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance, and cross-resistance to other transgenic events.

    Science.gov (United States)

    Santos-Amaya, Oscar F; Rodrigues, João V C; Souza, Thadeu C; Tavares, Clébson S; Campos, Silverio O; Guedes, Raul N C; Pereira, Eliseu J G

    2015-12-17

    Transgenic crop "pyramids" producing two or more Bacillus thuringiensis (Bt) toxins active against the same pest are used to delay evolution of resistance in insect pest populations. Laboratory and greenhouse experiments were performed with fall armyworm, Spodoptera frugiperda, to characterize resistance to Bt maize producing Cry1A.105 and Cry2Ab and test some assumptions of the "pyramid" resistance management strategy. Selection of a field-derived strain of S. frugiperda already resistant to Cry1F maize with Cry1A.105 + Cry2Ab maize for ten generations produced resistance that allowed the larvae to colonize and complete the life cycle on these Bt maize plants. Greenhouse experiments revealed that the resistance was completely recessive (Dx = 0), incomplete, autosomal, and without maternal effects or cross-resistance to the Vip3Aa20 toxin produced in other Bt maize events. This profile of resistance supports some of the assumptions of the pyramid strategy for resistance management. However, laboratory experiments with purified Bt toxin and plant leaf tissue showed that resistance to Cry1A.105 + Cry2Ab2 maize further increased resistance to Cry1Fa, which indicates that populations of fall armyworm have high potential for developing resistance to some currently available pyramided maize used against this pest, especially where resistance to Cry1Fa was reported in the field.

  18. Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance, and cross-resistance to other transgenic events

    Science.gov (United States)

    Santos-Amaya, Oscar F.; Rodrigues, João V. C.; Souza, Thadeu C.; Tavares, Clébson S.; Campos, Silverio O.; Guedes, Raul N.C.; Pereira, Eliseu J.G.

    2015-01-01

    Transgenic crop “pyramids” producing two or more Bacillus thuringiensis (Bt) toxins active against the same pest are used to delay evolution of resistance in insect pest populations. Laboratory and greenhouse experiments were performed with fall armyworm, Spodoptera frugiperda, to characterize resistance to Bt maize producing Cry1A.105 and Cry2Ab and test some assumptions of the “pyramid” resistance management strategy. Selection of a field-derived strain of S. frugiperda already resistant to Cry1F maize with Cry1A.105 + Cry2Ab maize for ten generations produced resistance that allowed the larvae to colonize and complete the life cycle on these Bt maize plants. Greenhouse experiments revealed that the resistance was completely recessive (Dx = 0), incomplete, autosomal, and without maternal effects or cross-resistance to the Vip3Aa20 toxin produced in other Bt maize events. This profile of resistance supports some of the assumptions of the pyramid strategy for resistance management. However, laboratory experiments with purified Bt toxin and plant leaf tissue showed that resistance to Cry1A.105 + Cry2Ab2 maize further increased resistance to Cry1Fa, which indicates that populations of fall armyworm have high potential for developing resistance to some currently available pyramided maize used against this pest, especially where resistance to Cry1Fa was reported in the field. PMID:26675246

  19. Scientific Opinion updating the risk assessment conclusions and risk management recommendations on the genetically modified insect resistant maize Bt11

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Genetically Modified Organisms (GMO

    2012-12-01

    Full Text Available Following a request from the European Commission, the Panel on Genetically Modified Organisms of the European Food Safety Authority (EFSA GMO Panel compiled its previous risk assessment conclusions and risk management recommendations on the genetically modified insect resistant maize Bt11, and considered their validity in the light of new relevant scientific publications published from 2005 onwards. Following a search of the scientific literature published between 2005 and October 2012, the EFSA GMO Panel identified 287 peer-reviewed publications containing evidence specific to the risk assessment and/or management of maize Bt11, of which 270 publications were previously discussed and cited in relevant GM maize-related applications and/or the numerous EFSA GMO Panel scientific outputs. From the remaining 17 publications, three were relevant for the food and feed safety assessment, and 14 for the environmental risk assessment and/or risk management of maize Bt11. None of these publications reported new information that would invalidate the previous conclusions on the safety of maize Bt11 made by the EFSA GMO Panel. Therefore, the EFSA GMO Panel considers that its previous risk assessment conclusions on maize Bt11, as well as its previous recommendations on risk mitigation measures and monitoring, remain valid and applicable.

  20. Effect of Ground Leaves from Transgenic Bt Cotton on Soil Microbial Activity%转Bt基因棉粉碎叶还土对土壤微生物活性的影响

    Institute of Scientific and Technical Information of China (English)

    张美俊; 段云; 杨武德; 冯美臣; 肖璐洁

    2013-01-01

    Using the simulation lab experiment,the effects of transgenic Bt cotton tissue on soil ecology system,especially on soil microbial activity were investigated.The results showed that when added the grounded residue of Bt transgenic cotton into the soil,the population of soil bacteria and fungi at cultivated middle stages were increased significantly compared with conventional cotton,but no effect on the population of soil actinomycetes was observed.It could be the difference in composition of transgenic Bt cotton or degradation product besides Bt protein resulting the difference.Transgenic Bt cotton treatments also significantly increased soil microbial biomass carbon and decreased basal respiration and microbial metabolic quotients at cultivated middle stage,which indicated that soil microbial community improved the potential utilization of carbon substrate.%为评价转Bt基因棉残体还田的生态效应,采用室内模拟试验方法,研究了转Bt基因棉粉碎叶还土后对土壤微生物活性的影响.结果表明,转Bt基因棉粉碎叶还土后在腐解中期可显著增加土壤细菌、真菌数量,对放线菌无明显影响.转Bt基因棉粉碎叶物质组成或Bt蛋白外的降解产物等方面的不同可能是对土壤微生物影响更为主要的原因.转Bt基因棉粉碎叶还土腐解中期显著提高土壤微生物生物量碳,但土壤基础呼吸和代谢商显著降低,表明转Bt基因棉粉碎叶还土土壤微生物对能源碳的利用效率提高了.

  1. Increased mortality is predicted of Inachis io larvae caused by Bt-maize pollen in European farmland

    DEFF Research Database (Denmark)

    Holst, Niels; Lang, Andreas; Lövei, Gabor L

    2013-01-01

    be deposited on various plants growing in the landscape, leading to inadvertent ingestion of toxic pollen with plant biomass consumed by these butterfly larvae. To examine the possible effect of this coincidence, we focused our study on the protected butterfly Inachis io and two regions of Europe. Using...... climatic records, maize and butterfly phenology data, we built a simulation model of the butterfly's annual life cycle, overlaid with the phenology of maize pollen deposition on the leaves of the food plant Urtica dioica, and linked these with the dose–response curve of I. io larvae to Bt-maize pollen...... (event MON810). The simulations indicated that in Northern Europe, where I. io is univoltine, Bt-maize pollen would not be present on the food plant at the same time as the I. io larvae. However, in Central and Southern Europe, where I. io is bivoltine, Bt-maize pollen and the second generation I. io...

  2. Responses by earthworms to reduced tillage in herbicide tolerant maize and Bt maize cropping systems

    DEFF Research Database (Denmark)

    Krogh, P. H.; Griffiths, B.; Demsar, D.

    2007-01-01

    Genetically modified crops (GM) may affect earthworms either directly through the plant, its root exudates and litter, or indirectly through the agricultural management changes that are associated with GM plant production. In order to investigate such possible effects we established two field...... studies of Bt corn and a glufosinate ammonium tolerant corn and included a reduced tillage treatment (RT) and a conventional tillage treatment (CT) as examples of a likely concomitant change in the agricultural practise. At a French study site at Varois, (Bourgogne), a field grown with the Bt......-toxin producing transgenic maize line MON810 was studied for 1 year. At a Danish study site, Foulum (Jutland), one year of Bt corn was followed by 2 years of herbicide tolerant corn. At the French study site the most prominent effects observed were due to the tillage method where RT significantly reduced...

  3. A conformational switch in the active site of BT_2972, a methyltransferase from an antibiotic resistant pathogen B. thetaiotaomicron.

    Directory of Open Access Journals (Sweden)

    Veerendra Kumar

    Full Text Available Methylation is one of the most common biochemical reactions involved in cellular and metabolic functions and is catalysed by the action of methyltransferases. Bacteroides thetaiotaomicron is an antibiotic-resistant bacterium that confers resistance through methylation, and as yet, there is no report on the structure of methyltransferases from this bacterium. Here, we report the crystal structure of an AdoMet-dependent methyltransferase, BT_2972 and its complex with AdoMet and AdoHcy for B. thetaiotaomicron VPI-5482 strain along with isothermal titration calorimetric assessment of the binding affinities. Comparison of the apo and complexed BT_2972 structures reveals a significant conformational change between open and closed forms of the active site that presumably regulates the association with cofactors and may aid interaction with substrate. Together, our analysis suggests that BT_2972 is a small molecule methyltransferase and might catalyze two O-methylation reaction steps involved in the ubiquinone biosynthesis pathway.

  4. Synthesis and characterizations of BNT-BT-KNN ceramics for energy storage applications

    Science.gov (United States)

    Chandrasekhar, M.; Kumar, P.

    2016-09-01

    Dielectric, ferroelectric and piezoelectric properties of the (0.94-x) Bi0.5Na0.5TiO3-0.06BaTiO3-xK0.5Na0.5NbO3/BNT-BT-KNN ceramics with x = 0.02 and 0.05 (2KNN and 5KNN) were studied in detail. Dielectric study and temperature-dependent polarization hysteresis loops indicated a ferroelectric-to-antiferroelectric transition at depolarization temperature (Td). The low Td in both the ceramic samples suggested the dominant antiferroelectric ordering at room temperature (RT), which was also confirmed by RT polarization and strain hysteresis loops studies. Antiferroelectric-to-paraelectric phase transition temperature (Tm) was nearly same for both systems. The 5KNN ceramic samples showed the relaxor behaviour. The values of the dielectric constant, Td, and maximum strain percentage increased, whereas the coercive field and remnant polarization decreased with the increase of the KNN percentage in the BNT-BT-KNN system. High-energy storage density ∼0.5 J/cm3 at RT hinted about the suitability of the 5KNN system for energy storage applications.

  5. 用PCR检测熟食中的转基因Bt-玉米

    Institute of Scientific and Technical Information of China (English)

    刘瑞征

    2002-01-01

    用8种已知并已发表的PCR(聚合酶链反应)引物组进行比较,用以测定熟食中转基因Bt"极产"玉米"event 176"的zein(玉米醇溶蛋白--译注)基因,crylA(b)基因,bla基因、bar基因和35S cauliflower mosaic virus promoter(花椰菜马赛克病毒启动区--译注).以转基因爆玉米花、粟粉粥、酥饼作样品.粟粥粉和酥饼用含有不同百分率(100%,1%,0.1%,w/w)的转基因玉米粉制作.在不同熟化时间从样品提取的DNA,其平均DNA碎片长度逐渐下降,但仍能通过PCR扩增.试验的几种引物组,以Cry 03/04表现最好,可以检测出仅含0.1%Bt-玉米DNA的熟食中的转基因DNA.

  6. Insect Resistance Management in Bt Maize: Wild Host Plants of Stem Borers Do Not Serve as Refuges in Africa.

    Science.gov (United States)

    Van den Berg, J

    2017-02-01

    Resistance evolution by target pests threatens the sustainability of Bt maize in Africa where insect resistance management (IRM) strategies are faced by unique challenges. The assumptions, on which current IRM strategies for stem borers are based, are not all valid for African maize stem borer species. The high dose-refuge strategy which is used to delay resistance evolution relies heavily on the presence of appropriate refuges (non-Bt plants) where pests are not under selection pressure and where sufficient numbers of Bt-susceptible individuals are produced to mate with possible survivors on the Bt maize crop. Misidentification of stem borer species and inaccurate reporting on wild host plant diversity over the past six decades created the perception that grasses will contribute to IRM strategies for these pests in Africa. Desired characteristics of refuge plants are that they should be good pest hosts, implying that larval survival is high and that it produces sufficient numbers of high-quality moths. Refuge plants should also have large cover abundance in areas where Bt maize is planted. While wild host plants may suffice in IRM strategies for polyphagous pests, this is not the case with stenophagous pests. This review discusses data of ecological studies and stem borer surveys conducted over the past decade and shows that wild host plants are unsuitable for development and survival of sufficient numbers of stem borer individuals. These grasses rather act as dead-end-trap plants and do not comply with refuge requirements of producing 500 susceptible individuals for every one resistant individual that survives on Bt maize.

  7. Evaluation of Impact of Pollen Grains from Bt, Bt/CpTI Transgenic Cotton and Bt Corn Plants on the Growth and Development of the Mulberry Silkworm, Bombyx mori Linnaeus (Lepidoptera: Bombycidae)

    Institute of Scientific and Technical Information of China (English)

    LI Wen-dong; YE Gong-yin; WU Kong-ming; WANG Xiao-qi; GUO Yu-yuan

    2002-01-01

    The δ-endotoxin genes of Bacillus thuringiensis (Bt) and proteinase inhibitor (PI) genes aretwo kinds of genes popularly used for developing transgenic plants resistant to insect pests. To clarify whetherthere is any risk concerning the effects of pollens from these transgenic crops on non-target insects with eco-nomic importance, such as the effects on the growth and development as well as cocoon quality of the silk-worm, Bombyx mori Linnaeus, a series of feeding experiments were conducted, using pollens from transgeniccotton or corn containing crylAc, cry1A+-CpTI or crylAb genes, compared with pollens from non-transgenicnormal cotton and corn as well as the non-pollen treatment. In contrast to the latter ones, pollens from trans-genic plants showed no significant adverse effects on larval mortality, cocoon weight, pupa weight, cocoonshell weight, pupation rate, emergence rate and fecundity of the silkworm after neonates were fed with thepollens for 72 h. In addition, no dosage effects of pollens were found. Though the duration of 1st instar larvaewas prolonged in the case of feeding with transgenic pollens as compared with those of the non-pollen treat-ment, but they were not significantly different from those fed with pollens from non-transgenic cotton or corn.Meanwhile, the body weight of the 3rd instar molters fed with transgenic pollens was obviously different fromthose for non-pollen treatment, and was all significantly heavier than that of the controls. Consequently, it isconsidered that the adverse effect of pollens from transgenic insect-resistant cotton and corn on the growth anddevelopment of the silkworm is negligible.

  8. Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria.

    Science.gov (United States)

    Chakroun, Maissa; Banyuls, Núria; Bel, Yolanda; Escriche, Baltasar; Ferré, Juan

    2016-06-01

    Entomopathogenic bacteria produce insecticidal proteins that accumulate in inclusion bodies or parasporal crystals (such as the Cry and Cyt proteins) as well as insecticidal proteins that are secreted into the culture medium. Among the latter are the Vip proteins, which are divided into four families according to their amino acid identity. The Vip1 and Vip2 proteins act as binary toxins and are toxic to some members of the Coleoptera and Hemiptera. The Vip1 component is thought to bind to receptors in the membrane of the insect midgut, and the Vip2 component enters the cell, where it displays its ADP-ribosyltransferase activity against actin, preventing microfilament formation. Vip3 has no sequence similarity to Vip1 or Vip2 and is toxic to a wide variety of members of the Lepidoptera. Its mode of action has been shown to resemble that of the Cry proteins in terms of proteolytic activation, binding to the midgut epithelial membrane, and pore formation, although Vip3A proteins do not share binding sites with Cry proteins. The latter property makes them good candidates to be combined with Cry proteins in transgenic plants (Bacillus thuringiensis-treated crops [Bt crops]) to prevent or delay insect resistance and to broaden the insecticidal spectrum. There are commercially grown varieties of Bt cotton and Bt maize that express the Vip3Aa protein in combination with Cry proteins. For the most recently reported Vip4 family, no target insects have been found yet.

  9. 蛋白改造提高苏云金杆菌杀虫活力的研究进展%Advances in Enhancing the Toxicity of Bacillus thuringiensis with Protein Modification

    Institute of Scientific and Technical Information of China (English)

    王发祥; 刘永乐; 丁学知; 夏立秋

    2009-01-01

    苏云金杆菌(Bt)已被广泛应用于农林害虫防治,但传统制剂仍然存在很大局限性,利用蛋白质工程对其改造能有效的克服这些缺点.主要概述了近年来利用结构域转换和定点突变技术改造Bt Cry蛋白并增强其杀虫活性的研究进展.%Bacillus thuringiensis( Bt) has been widely used as a biopesticide in agriculture, forestry and mosquito control, but wild Bt strains still have many disadvantages, which can be resolved by protein engineering of the Bt 8-endotoxins. In this review, the recent progress in enhancing the toxicity or broadening insecticidal spectrum of Bacillus thuringiensis by technologies such as swapping domains and site-directed mutagenesis, were summarized.

  10. Assessment of 2-(4-morpholinyl) benzothiazole (24MoBT) and N-cyclohexyl-2-benzothiazolamine (NCBA) as traffic tracers in metropolitan cities of China and India

    Science.gov (United States)

    Pan, Suhong; Sun, Yali; Zhang, Gan; Li, Jun; Xie, Qilai; Chakraborty, Paromita

    2012-09-01

    2-(4-Morpholinyl) benzothiazole (24MoBT) and N-cyclohexyl-2-benzothiazolamine (NCBA), which are present in automobile tires, are impurities of the vulcanisation accelerators OBS and CBS, respectively, as defined by the Japan Industrial Standard. To assess 24MoBT and NCBA as markers to trace the usage patterns of OBS and CBS in developing countries, urban dusts were collected from five representative cities of China and India for the analysis of 24MoBT and NCBA. The concentrations in these dust samples were found to be within the range of 3.40-151 ng g-1 for 24MoBT and nd-56.9 ng g-1 for NCBA. The higher levels of 24MoBT may indicate that the traditional accelerator OBS is still used in vehicle tires, whereas the relatively lower contents of NCBA are mainly related to the lesser use of CBS tires. The individual fractions of 24MoBT and NCBA in BTs (24MoBT + NCBA) are compared among cities, and the results show that the fraction sequence is consistent with the number of vehicles and the cities' economic development. This study indicates not only that 24MoBT is presently more suitable for tracing tire wear emissions than NCBA in China but also that there is a potential to assess the impact of traffic sources on urban environments using BTs.

  11. Non Target Effect of Cry1 Ab and Cry Ab x Cry3 Bb1 Bt Transgenic Maize on Orius Insidiosus (Hemiptera: Anthocoridae) Abundance

    Science.gov (United States)

    Non-target effects of Cry1Ab x CP4 EPSPS and Cry1Ab + Cry3Bb1 x CP4 EPSPS Bt transgenic new maize hybrids on insidious flower bugs [Orius insidiosus (Say)] was studied in Nebraska (Mead, C lay Center, and Concord) during 2007 and 2008. The Bt effect was compared to CP4 EPSPS maize (isoline), convent...

  12. Expression of the neutral protease gene from a thermophilic Bacillus sp BT1 strain in Bacillus subtilis and its natural host : Identification of a functional promoter

    NARCIS (Netherlands)

    Vecerek, B; Venema, G

    2000-01-01

    The expression of the neutral protease gene (npr) from the thermophilic Bacillus sp. BT1 strain was studied in its natural host and in mesophilic Bacillus subtilis. In the thermophilic BT1 strain, the transcription of the protease gene is initiated from its own promoter, just 5' to the gene. In cont

  13. Comparison of fumonisin contamination using HPLC and ELISA methods in Bt and near-isogenic maize hybrids infested with European corn borer or Western bean cutworm

    Science.gov (United States)

    Field trials were conducted (2007 to 2010) to compare grain fumonisin levels among non-Bt maize hybrids and Bt hybrids with transgenic protection against European corn borer and Western bean cutworm (WBC). High-performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA) w...

  14. The Extent to Which TOEFL iBT Speaking Scores Are Associated with Performance on Oral Language Tasks and Oral Ability Components for Japanese University Students

    Science.gov (United States)

    Ockey, Gary J.; Koyama, Dennis; Setoguchi, Eric; Sun, Angela

    2015-01-01

    The purpose of this study was to determine the extent to which performance on the TOEFL iBT speaking section is associated with other indicators of Japanese university students' abilities to communicate orally in an academic English environment and to determine which components of oral ability for these tasks are best assessed by TOEFL iBT. To…

  15. The Extent to Which TOEFL iBT Speaking Scores Are Associated with Performance on Oral Language Tasks and Oral Ability Components for Japanese University Students

    Science.gov (United States)

    Ockey, Gary J.; Koyama, Dennis; Setoguchi, Eric; Sun, Angela

    2015-01-01

    The purpose of this study was to determine the extent to which performance on the TOEFL iBT speaking section is associated with other indicators of Japanese university students' abilities to communicate orally in an academic English environment and to determine which components of oral ability for these tasks are best assessed by TOEFL iBT.…

  16. Changes in Growth and Development and Main Enzyme Activities in Midgut of Cnaphalocrocis medinalis Intermittently Treated With Low Amount of Bt Rice Leaves over Generations%稻纵卷叶螟经 Bt 水稻低强度处理多代后幼虫生长发育和中肠主要酶活性的变化

    Institute of Scientific and Technical Information of China (English)

    吴志红; 杨亚军; 徐红星; 郑许松; 田俊策; 鲁艳辉; 吕仲贤

    2015-01-01

    return to or remain the levels of the untreated C .medinalis as the treated generations increased.These indices for the treated 3rd generation C .medinalis were lower than those of untreated C .medinalis .The total proteinase activities in C .medinalis larvae midgut juice fed on Bt rice leaves were lower than those in untreated C .medinalis ,but the total proteinase activities followed an increasing trend with the increasing generations,and the similar trend was observed in the chymotrypsin-like enzyme activity of C .medinalis .While the activities of trypsin in the treated C . medinalis were higher than that in untreated C .medinalis and increased as treated generations increased,and the similar trend was observed in the aminopeptidase activity of C .medinalis .These results indicated that C .medinalis has potential adaptive ability under exposure to low amount of Cry2A protein.

  17. cDNAs for a chymotrypsinogen-like protein from two strains of Plodia interpunctella.

    Science.gov (United States)

    Zhu, Y C; Oppert, B; Kramer, K J; McGaughey, W H; Dowdy, A K

    1997-12-01

    Gut proteinases are involved in the solubilization and activation of insecticidal toxins produced by Bacillus thuringiensis and may also be involved in resistance development. Approximately threefold lower chymotrypsin-like enzyme activity was observed in a Bt(entomocidus)-resistant strain of the Indianmeal moth, Plodia interpunctella, than that in the Bt-susceptible strain. Because chymotrypsin-like proteinases are involved in Bt protoxin activation in P. interpunctella, we compared cDNA sequences, mRNA expression levels, and genomic DNA for chymotrypsin-like enzymes in Bt-susceptible and Bt-resistant strains of P. interpunctella. To isolate cDNA coding for chymotrypsinogen-like proteinases, a probe was developed using polymerase chain reaction (PCR) amplification of a cDNA library from the Bt-susceptible strain using a vector primer and a degenerate primer corresponding to a conserved sequence in the active site of serine proteinases. This probe was used to screen cDNA libraries from resistant and susceptible strains. Predicted amino acid sequences from cDNA clones of each strain share similarity with sequences of chymotrypsin-like proteinases and are most similar to a chymotrypsin-like proteinase from the tobacco hornworm, Manduca sexta. cDNAs for putative chymotrypsinogen-like proteins, from both Bt-susceptible and Bt-resistant strains of P. interpunctella share an identical open reading frame of 846 nucleotides. The encoded proteins contain amino acid sequence motifs of serine proteinase active sites, disulfide-bridge cysteine residues, and both zymogen activation and signal peptides. A difference between these cDNAs was observed only in the untranslated region where a substitution of guanine for adenine occurred in the Bt-resistant strain. Southern and Northern blotting analyses indicated that there are no major differences in chymotrypsinogen-like genomic organization and mRNA expression in the two strains. These data suggest that chymotrypsinogen

  18. Linking English-Language Test Scores onto the Common European Framework of Reference: An Application of Standard-Setting Methodology. TOEFL iBT Research Report TOEFL iBt-06. ETS RR-08-34

    Science.gov (United States)

    Tannenbaum, Richard J.; Wylie, E. Caroline

    2008-01-01

    The Common European Framework of Reference (CEFR) describes language proficiency in reading, writing, speaking, and listening on a 6-level scale. In this study, English-language experts from across Europe linked CEFR levels to scores on three tests: the TOEFL® iBT test, the TOEIC® assessment, and the TOEIC "Bridge"™ test.…

  19. Studies on the Primary Toxic Factor of Bt9816C Culture Supernatant%Bt9816C培养上清中杀虫活性成分的研究

    Institute of Scientific and Technical Information of China (English)

    蔡峻; 关彬; 陈月华; 任改新

    2004-01-01

    Bt9816C的培养上清对棉铃虫和甜菜夜蛾具有很高的杀虫活性.热敏实验表明β-外毒素和Zwittermicin A不是其主要杀虫活性成分.Bt9816C的无晶体株保留有卵磷酯酶C和溶血素活性,但是不再具有vip3A基因,其培养上清也丧失了杀虫活性.SDS-PAGE结果显示Bt9816C培养上清中有Vip3A蛋白特征大小的89 kD的蛋白,而其无晶体株正好缺失了该蛋白.以上结果表明Bt9816C培养上清中主要的杀虫活性成分是Vip3A蛋白.

  20. Investigating the Criterion-Related Validity of the TOEFL® Speaking Scores for ITA Screening and Setting Standards for ITAS. TOEFL iBT Research Report. TOEFL iBT-03. ETS RR-08-02

    Science.gov (United States)

    Xi, Xiaoming

    2008-01-01

    Although the primary use of the speaking section of the Test of English as a Foreign Language™ Internet-based test (TOEFL® iBT Speaking test) is to inform admissions decisions at English medium universities, it may also be useful as an initial screening measure for international teaching assistants (ITAs). This study provides criterion-related…

  1. Is There Any Interaction between Background Knowledge and Language Proficiency That Affects "TOEFL iBT"® Reading Performance? TOEFL iBT® Research Report. TOEFL iBT-18. ETS Research Report RR-12-22

    Science.gov (United States)

    Hill, Yao Zhang; Liu, Ou Lydia

    2012-01-01

    This study investigated the effect of the interaction between test takers' background knowledge and language proficiency on their performance on the "TOEFL iBT"® reading section. Test takers with the target content background knowledge (the focal groups) and those without (the reference groups) were identified for each of the 5 selected…

  2. Factor Structure of the TOEFL Internet-Based Test across Subgroups. TOEFL iBT Research Report. TOEFL iBT-07. ETS Research Report. RR-08-66

    Science.gov (United States)

    Stricker, Lawrence J.; Rock, Donald A.

    2008-01-01

    This study assessed the invariance in the factor structure of the "Test of English as a Foreign Language"™ Internet-based test (TOEFL® iBT) across subgroups of test takers who differed in native language and exposure to the English language. The subgroups were defined by (a) Indo-European and Non-Indo-European language family, (b)…

  3. Analyzing and Comparing Reading Stimulus Materials across the "TOEFL"® Family of Assessments. "TOEFL iBT"® Research Report. TOEFL iBT-26. ETS Research Report No. RR-15-08

    Science.gov (United States)

    Chen, Jing; Sheehan, Kathleen M.

    2015-01-01

    The "TOEFL"® family of assessments includes the "TOEFL"® Primary"™, "TOEFL Junior"®, and "TOEFL iBT"® tests. The linguistic complexity of stimulus passages in the reading sections of the TOEFL family of assessments is expected to differ across the test levels. This study evaluates the linguistic…

  4. Do "TOEFL iBT"® Scores Reflect Improvement in English-Language Proficiency? Extending the TOEFL iBT Validity Argument. Research Report. ETS RR-14-09

    Science.gov (United States)

    Ling, Guangming; Powers, Donald E.; Adler, Rachel M.

    2014-01-01

    One fundamental way to determine the validity of standardized English-language test scores is to investigate the extent to which they reflect anticipated learning effects in different English-language programs. In this study, we investigated the extent to which the "TOEFL iBT"® practice test reflects the learning effects of students at…

  5. How Do Raters from India Perform in Scoring the TOEFL iBT[TM] Speaking Section and What Kind of Training Helps? TOEFL iBT[TM] Research Report. RR-09-31

    Science.gov (United States)

    Xi, Xiaoming; Mollaun, Pam

    2009-01-01

    This study investigated the scoring of the Test of English as a Foreign Language[TM] Internet-based Test (TOEFL iBT[TM]) Speaking section by bilingual or multilingual speakers of English and 1 or more Indian languages. We explored the extent to which raters from India, after being trained and certified, were able to score the Speaking section for…

  6. EFFECT AND RESIDUAL OF BIOCIDE BtA FOR THE CONTROL OF COWPEA APHID%高效生物杀虫剂BtA防治豇豆蚜虫试验及其残留分析

    Institute of Scientific and Technical Information of China (English)

    林抗美; 胡奇勇

    2003-01-01

    应用高效生物杀虫剂BtA和4种常用化学农药对豇豆蚜虫(Cowpea aphid)进行田间防治药效对比试验,结果表明BtA 800倍液对豇豆蚜虫有很好的防治效果.药后3d、5d、12d的虫口减退率平均可达85.96%、92.98%、91.22%,明显高于其它4种化学农药.而且具有低毒、持效期长等特点,经BtA 600倍液处理的豇豆产品,在药后3d的残留量仅为0.00127ppm,因此BtA是防治豇豆蚜虫的高效药剂之一.

  7. Analysis of the Phase Transitions in BNT-BT Lead-Free Ceramics Around Morphotropic Phase Boundary by Mechanical and Dielectric Spectroscopies

    Directory of Open Access Journals (Sweden)

    Silva P.S.

    2016-03-01

    Full Text Available In this work, the syntheses and characterization by mechanical and dielectric spectroscopies of (1-x Bi0.5Na0.5TiO3-xBaTiO3 (BNT-100xBT, with x = 0.05, 0.06 and 0.07, lead-free piezoelectric ceramics is reported. Ceramic samples of BNT-BT have been prepared by mixed-oxide method and then conventionally sintered. X-ray diffraction patterns of sintered samples, indicated for BNT-7BT the presence of tetragonal (P4mm complex perovskite structure, whereas for BNT-5BT and BNT-6BT the samples exhibit a mixture of tetragonal (P4mm and rhombohedral (R3c crystalline phases, which reveal the presence of a morphotropic phase boundary (MPB in the BNT-BT system. Measurements of internal friction, Q-1, and the storage modulus, E’, as a function of temperature at various frequencies were carried out in a Dynamic Mechanical Analyzer (DMA, in the temperature range from 0ºC to 600ºC. Dielectric profiles are recorded in the frequency range from 1kHz to 100kHz and the temperature range from room temperature to 475ºC. Mechanical loss spectra obtained for investigated compositions of BNT-BT samples showed different frequency-independent anomalies. Two main anomalies for BNT-5BT and BNT-6BT, observed around 100ºC and 430ºC were associated with the ferroelectric-antiferroelectric and antiferroelectricparaelectric phase transitions, respectively. The results obtained from mechanical loss measurements were supported by dielectric relaxation spectra. For BNT-7BT, outside the MPB, four different frequency-independent processes were observed.

  8. Effects of Bt-corn expressing Cry1F on the survival and fecundity of the parasitoid Macrocentrus cingulum%转cry1F基因玉米花粉对腰带长体茧蜂存活和繁殖的影响

    Institute of Scientific and Technical Information of China (English)

    白树雄; 张洪刚; 葛星; 王振营

    2011-01-01

    Bt corn pollen or non-Bt corn pollen. CrylF protein was not detected in M. cingulum wasps that fed on suspensions of Bt corn pollen. It is concluded that Bt corn pollen did not adversely affect M. cingulum.