Wang, Hao; Zhang, Fengge; Guan, Tao; Yu, Siyang
2017-09-01
A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.
Integrated-Circuit Controller For Brushless dc Motor
Le, Dong Tuan
1994-01-01
Generic circuit performs commutation-logic and power-switching functions for control of brushless dc motor. Controller includes commutation-logic and associated control circuitry, power supply, and inverters containing power transistors. Major advantages of controller are size, weight, and power consumption can be made less than other brushless-dc-motor controllers.
Application brushless machines with combine excitation for a hybrid car and an electric car
GANDZHA S.A.; KIESSH I.E.
2015-01-01
This article shows advantages of application the brushless machines with combined excitation (excitation from permanent magnets and excitation winding) for the hybrid car and the electric car. This type of electric machine is compared with a typical brushless motor and an induction motor. The main advantage is the decrease of the dimensions of electric machine and the reduction of the price for an electronic control system. It is shown the design and the principle of operation of the electric...
Application brushless machines with combine excitation for a hybrid car and an electric car
Gandzha S.A.
2015-08-01
Full Text Available This article shows advantages of application the brushless machines with combined excitation (excitation from permanent magnets and excitation winding for the hybrid car and the electric car. This type of electric machine is compared with a typical brushless motor and an induction motor. The main advantage is the decrease of the dimensions of electric machine and the reduction of the price for an electronic control system. It is shown the design and the principle of operation of the electric machine. The machine was modeled using Solidworks program for creating design and Maxwell program for the magnetic field analysis. The result of tests is shown as well.
Reversible thyristor converters of brushless synchronous compensators
А.М.Galynovskiy
2013-12-01
Full Text Available Behavior of models of three-phase-to-single-phase rotary reversible thyristor converters of brushless synchronous compensators in a circuit simulation system is analyzed. It is shown that combined control mode of opposite-connected thyristors may result in the exciter armature winding short circuits both at the thyristor feed-forward and lagging current delay angles. It must be taken into consideration when developing brushless compensator excitation systems.
Influence of Voltage Dips on the Operation of Brushless Exciter System of Synchronous Machines
Fedotov A.
2016-06-01
Full Text Available This paper presents a mathematical model with continuous variables for brushless exciter system of synchronous machines, containing the thyristor elements. Discrete Laplace transform is used for transition from a mathematical model of a system with variable structure in continuous variables to equation finite difference with permanent structure. Then inverse transition is made to a mathematical model in continuous variables with permanent structure.
Four quadrant control circuit for a brushless three-phase dc motor
Nola, Frank J. (Inventor)
1987-01-01
A control circuit is provided for a brushless three-phase dc motor which affords four quadrant control from a single command. The control circuit probes acceleration of the motor in both clockwise and counterclockwise directions and braking and generation in both clockwise and counterclockwise directions. In addition to turning on individual transistors of the transistor pairs connected to the phase windings of the motor for 120 deg periods while the other transistor of that pair is off, the control circuit also provides, in a future mode of operation, turning the two transistors of each pair on and off alternately at a phase modulation frequency during such a 120 deg period. A feedback signal is derived which is proportional to the motor current and which has a polarity consistent with the command signal, such that negative feedback results.
Yingchao Zhang
2012-09-01
Full Text Available In this paper, a novel doubly excited brushless generator (DEBG with outer radial laminated magnetic barrier rotor (RLMB-rotor for wind power application was designed and analyzed. The DEBG has 10 rotor pole numbers with outer rotor. Its performance is investigated using the 2D transient finite element method. The magnetic fields, torque capability, end winding voltage characteristics, radial magnetic force and energy efficiency were analyzed. All studies in this paper show that the simplicity, reliability, high efficiency and low vibration and noise of the DEBG with outer rotor are attractive for variable speed constant frequency (VSCF wind power generation system.
A.M. Galynovskiy
2013-10-01
Full Text Available Designing features for valve-engine transducers of brushless synchronous and asynchronized machines are described. Global analysis of research results on the transducer models in a MicroCap circuit simulation system is made, recommendations on the simulation system application in both scientific research and educational process given.
Three Dimensional Flow Field Study of the Improve Scheme for a Brushless Exciter with Ｒotating Parts
LU Yi-ping
2017-06-01
Full Text Available To study deeply the influence of the frame ring plate increased between rectifier wheel and rotor on the size of eddy current of fluid field of brushless exciter，the fluid field of complete brushless exciter model is established. Based on the computational fluid dynamics ( CFD principles ，the finite volume method is adopted to simulate and analyze the three dimensional turbulent flow field in the computational domain. The distribution character of the fluid field for the brushless exciter is obtained under rated speed，after increasing the frame ring plate between rectifier wheel and rotor. The results show increased the frame ring plate between rectifier wheel and rotor can decrease effectively the size of eddy current in the air region between rectifier wheel and rotor. Compared with the result of running scheme，the air volume flow rate of the scheme has increased 13. 89% and the result is accuracy. It provides theoretical basis for further optimizing the air ducts structure of the brushless exciter .
Tachometers Derived From a Brushless DC Motor
Howard, David E.; Smith, Dennis A.
2007-01-01
The upper part of the figure illustrates the major functional blocks of a direction-sensitive analog tachometer circuit based on the use of an unexcited two-phase brushless dc motor as a rotation transducer. The primary advantages of this circuit over many older tachometer circuits include the following: Its output inherently varies linearly with the rate of rotation of the shaft. Unlike some tachometer circuits that rely on differentiation of voltages with respect to time, this circuit relies on integration, which results in signals that are less noisy. There is no need for an additional shaft-angle sensor, nor is there any need to supply electrical excitation to a shaft-angle sensor. There is no need for mechanical brushes (which tend to act as sources of electrical noise). The underlying concept and electrical design are relatively simple. This circuit processes the back-electromagnetic force (back-emf) outputs of the two motor phases into a voltage directly proportional to the instantaneous rate (sign magnitude) of rotation of the shaft. The processing in this circuit effects a straightforward combination of mathematical operations leading to a final operation based on the well-known trigonometric identity (sin x)2 + (cos x)2 = 1 for any value of x. The principle of operation of this circuit is closely related to that of the tachometer circuit described in Tachometer Derived From Brushless Shaft-Angle Resolver (MFS-28845), NASA Tech Briefs, Vol. 19, No. 3 (March 1995), page 39. However, the present circuit is simpler in some respects because there is no need for sinusoidal excitation of shaftangle- resolver windings.
Uno, Kazuyuki; Akitsu, Tetsuya; Nakamura, Kenshi; Jitsuno, Takahisa
2013-04-01
We developed a modified driver circuit composed of a capacitance and a spark gap, called a direct-drive circuit, for a longitudinally excited gas laser. The direct-drive circuit uses a large discharge impedance caused by a long discharge length of the longitudinal excitation scheme and eliminates the buffer capacitance used in the traditional capacitor-transfer circuit. We compared the direct-drive circuit and the capacitor-transfer circuit in a longitudinally excited N2 laser (wavelength: 337 nm). Producing high output energy with the capacitor-transfer circuit requires a large storage capacitance and a discharge tube with optimum dimensions (an inner diameter of 4 mm and a length of 10 cm in this work); in contrast, the direct-drive circuit requires a high breakdown voltage, achieved with a small storage capacitance and a large discharge tube. Additionally, for the same input energy of 792 mJ, the maximum output energy of the capacitor-transfer circuit was 174.2 μJ, and that of the direct-drive circuit was 344.7 μJ.
Rotor position sensor switches currents in brushless dc motors
1965-01-01
Reluctance switch incorporated in an induction motor is used for sensing rotor position and switching armature circuits in a brushless dc motor. This device drives the solar array system of an unmanned space satellite.
The design of a sensor with flexible circuit excitation in electromagnetic tomography system
Liu Ze; He Min; Xiong Hanliang
2005-01-01
A novel sensor structure of electromagnetic tomography system is presented in this paper. Flexible circuit straps are used in the excitation layer of the sensor and current of each strip can be controlled independently according to the excitation protocol matrix. In the sensor three kinds of excitation protocols: parallel, quasi-parallel and coil pair can be generated. Furthermore excitation field simulation and image reconstruction experiments have been done for analyzing the performance of the different excitation protocols
Development and Implementation of Biological Circuits Using Excitable and Non-Excitable Cells
Casasnovas-Orus, V.; Gomez-Cid, L.; Hernandez-Romero, I.; Fuentes, L.; Guillem, M.S.; Atienza, F.; Fernandez-Aviles, F.; Climent, A.M.
2016-07-01
Compared to conventional computation systems, living beings require reduced power and raw materials consumption, inviting to explore the concept of biological circuits. In this project, a proof-of-concept of logical biocircuits using cell patterns has been developed. These were based upon differential ionic communication between cells, being the cells types used excitable and non-excitable, modeled by cardiomyocytes and fibroblasts correspondingly. To begin, patterns for the basic logic computation blocks were designed, including the OR gate, AND gate and logic memory. The designs were evaluated with mathematical models and in vitro experiments. Results of mathematical modeling indicated that theoretical approval of the biocircuit function. Regarding in vitro biocircuit implementation, three different selective cell localization techniques proved useful for the pattern creation. Evaluation with optical mapping confirmed the operation of the OR gate and logic memory. More resolution in the cell placement strategy will be needed to observe the proper AND gate operation. Thus, fine-tuning of the implementation process will enable the construction of more complex biocircuits that will take on clinical applications relating to electric stimulation of tissues and programmed drug delivery. (Author)
Uno, Kazuyuki; Jitsuno, Takahisa
2018-05-01
In a longitudinally excited CO2 laser that had a 45 cm-long discharge tube with a 1:1:2 mixture of CO2/N2/He gas at a pressure of 3.0 kPa, we realized the generation of a short laser pulse with a spike pulse width of about 200 ns and a pulse tail length of several tens of microseconds, control of the energy ratio of the spike pulse part to the pulse tail part in the short laser pulse, the generation of a long laser pulse with a pulse width of several tens of microseconds, and control of the pulse width in the long laser pulse, by using four types of excitation circuits in which the capacitance was adjusted. In the short laser pulse, the energy ratio was in the range 1:14-1:112. In the long laser pulse, the pulse width was in the range 25.7-82.7 μs.
Dependence of excitation frequency of resonant circuit on RF irradiation position of MRI equipment
Shimizu, Masato; Yamada, Tsutomu; Takemura, Yasushi; Niwa, Touru; Inoue, Tomio
2010-01-01
Hyperthermia using implants is a cancer treatment in which cancer tissue is heated to over 42.5 deg C to selectively kill the cancer cells. In this study, a resonant circuit was used as an implant, and a weak magnetic field of radiofrequency (RF) pulses from a magnetic resonance imaging (MRI) device was used as an excitation source. We report here how the temperature of the resonant circuit was controlled by changing the excitation frequency of the MRI. As a result, the temperature rise of the resonant circuit was successfully found to depend on its position in the MRI device. This significant result indicates that the temperature of the resonant circuit can be controlled only by adjusting the excitation position. Accurate temperature control is therefore expected to be possible by combining this control technique with the temperature measurement function of MRI equipment. (author)
Didactic Considerations on Magnetic Circuits Excited by Permanent Magnets
Barmada, S.; Rizzo, R.; Sani, L.
2009-01-01
In this paper, the authors focus their attention on the way magnetic circuits and permanent magnets are usually treated in most textbooks and electrical engineering courses. This paper demonstrates how this important topic is too often presented simplistically. This simplistic treatment does not allow the students to develop a complete…
Controller for computer control of brushless dc motors. [automobile engines
Hieda, L. S. (Inventor)
1981-01-01
A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.
Resonant circuit which provides dual frequency excitation for rapid cycling of an electromagnet
Praeg, Walter F.
1984-01-01
Disclosed is a ring magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the cosinusoidal guide field of the ring magnet during particle acceleration. the control circuit generates cosinusoidal excitation currents of different frequencies in the half waves. During radio frequency acceleration of the particles in the synchrotron, the control circuit operates with a lower frequency cosine wave and thereafter the electromagnets are reset with a higher frequency half cosine wave. Flat-bottom and flat-top wave shaping circuits maintain the magnetic guide field in a relatively time-invariant mode during times when the particles are being injected into the ring magnets and when the particles are being ejected from the ring magnets.
Self-Excited Single-Stage Power Factor Correction Driving Circuit for LED Lighting
Yong-Nong Chang
2014-01-01
Full Text Available This pa\tper proposes a self-excited single-stage high power factor LED lighting driving circuit. Being featured with power factor correction capability without needing any control devices, the proposed circuit structure is with low cost and suitable for commercial production. The power factor correction function is accomplished by using inductor in combination with a half-bridge quasi resonant converter to achieve active switching and yield out voltage regulation according to load requirement. Furthermore, the zero-voltage switching in the half-bridge converter can be attained to promote the overall performance efficiency of the proposed circuit. Finally, the validity and production availability of the proposed circuit will be verified as well.
Sinusoidal excitation on the Chua's circuit simulation of limit cycles and chaos
Lindberg, Erik
1994-01-01
of charging”, and stable limit cycle behaviour based on the balance between the energy lost in the regions with mainly positive losses and the energy gained in the regions with mainly negative losses. Convergence problems observed in connection with simulation of the ideal piecewise-linear model are solved......Experiments with modelling and simulation of sinusoidal excitation on Chua's circuit are presented. It is demonstrated that the behaviour of the circuit is based on the interaction of two different kinds of energy balance: chaotic behaviour based on a balance between two unstable “states...
Laser cooling and optical detection of excitations in a LC electrical circuit
Taylor, J. M.; Sørensen, Anders Søndberg; Marcus, Charles Masamed
2011-01-01
We explore a method for laser cooling and optical detection of excitations in a room temperature LC electrical circuit. Our approach uses a nanomechanical oscillator as a transducer between optical and electronic excitations. An experimentally feasible system with the oscillator capacitively...... coupled to the LC and at the same time interacting with light via an optomechanical force is shown to provide strong electromechanical coupling. Conditions for improved sensitivity and quantum limited readout of electrical signals with such an “optical loud speaker” are outlined....
Magnetic Signature of Brushless Electric Motors
Clarke, David
2006-01-01
Brushless electric motors are used in a number of underwater vehicles. When these underwater vehicles are used for mine clearance operations the magnetic signature of the brushless motors is important...
Controller for a High-Power, Brushless dc Motor
Fleming, David J.; Makdad, Terence A.
1987-01-01
Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.
V. S. Malyar
2017-08-01
Full Text Available Purpose. Development of a mathematical model that enables to detect resonance modes during asynchronous startup of salient-pole synchronous motors, in which capacitors are switched on to increase the electromagnetic moment in the circuit of the excitation winding. Methodology. The asynchronous mode is described by a system of differential equations of the electric equilibrium of motor circuits written in orthogonal coordinate axes. The basis of the developed algorithm is the mathematical model of the high-level adequacy motor and the projection method for solving the boundary value problem for the equations of the electric equilibrium of the circuits written in orthogonal coordinate axes, taking into account the presence of capacitors in the excitation winding. The coefficients of differential equations are the differential inductances of the motor circuits, which are determined on the basis of the calculation of its magnetic circuit. As a result of the asymmetry of the rotor windings in the asynchronous mode, the current coupling and currents change according to the periodic law. The problem of its definition is solved as a boundary one. Results. A mathematical model for studying the asynchronous characteristics of synchronous motors with capacitors in an excitation winding is developed, by means of which it is possible to investigate the influence of the size of the capacity on the motor's starting properties and the resonance processes which may arise in this case. Scientific novelty. The developed method of mathematical modeling is based on a fundamentally new mathematical basis for the calculation of stationary dynamic modes of nonlinear electromagnetic circuits, which enables to obtain periodic coordinate dependencies, without resorting to the calculation of the transients. The basis of the developed algorithm is based on the approximation of state variables by cubic splines, the projection method of decomposition for the boundary value
Cabib, Christopher; Cipullo, Federica; Morales, Merche; Valls-Solé, Josep
2016-01-01
Transcranial direct current stimulation (tDCS) causes a tiny burning sensation through activation of local cutaneous trigeminal afferents. Trigeminal sensory inputs from tDCS may generate excitability changes in the trigemino-facial reflex circuits. Sixteen healthy volunteers were submitted to 20 minutes tDCS sessions with two types of electrode-montage conditions: 1. Real vs Sham 'bi-hemispheric' tDCS (cathode/anode: C4/C3), for blinded assessment of effects, and 2. 'uni-hemispheric' tDCS (cathode/anode: Fp3/C3), for assessment of laterality of the effects. Supraorbital nerve stimuli were used to obtain blink reflexes before, during (10 minutes from onset) and after (30 minutes from onset) the tDCS session. Outcome measures were R2 habituation (R2H) to repeated stimuli, the blink reflex excitability recovery (BRER) to paired stimuli and the blink reflex inhibition by a prepulse (BRIP). Real but not sham bi-hemispheric tDCS caused a significant decrease of R2H and leftward shift of BRER curve (p tDCS on BRER and BRIP were larger on ipsilateral than on contralateral blink reflexes (p tDCS enhances the excitability of trigemino-facial reflex circuits. The finding of larger ipsilateral than contralateral effects suggests that sensitization through cutaneous trigeminal afferents adds on other possible mechanisms such as activation of cortico-nuclear or cortico-reticular connections. Copyright © 2016 Elsevier Inc. All rights reserved.
60-GHz integrated-circuit high data rate quadriphase shift keying exciter and modulator
Grote, A.; Chang, K.
1984-01-01
An integrated-circuit quadriphase shift keying (QPSK) exciter and modulator have demonstrated excellent performance directly modulating a carrier frequency of 60 GHz with an output phase error of less than 3 degrees and maximum amplitude error of 0.5 dB. The circuit consists of a 60-GHz Gunn VCO phase-locked to a low-frequency reference source, a 4th subharmonic mixer, and a QPSK modlator packaged into a small volume of 1.8 x 2.5 x 0.35 in. The use of microstrip has the advantages of small size, light-weight, and low-cost fabrication. The unit has the potential for multigigabit data rate applications.
Karavosov, R. K.; Prozorov, A. G.
2011-05-01
Three cases of excitation of resonance oscillations in a circuit with an incompressible medium and a hydrodynamic source of narrow-band acoustic radiation are compared. It is asserted that the Francis turbine can transmit and reflect infrasonic disturbances. It is supposed that an array of immobile coaxial cylinders below the impeller will prevent hydroacoustic self-excitation in flow inside the water conduit.
Fan, Denggui; Duan, Lixia; Wang, Qian; Luan, Guoming
2017-01-01
The mechanisms underlying electrophysiologically observed two-way transitions between absence and tonic-clonic epileptic seizures in cerebral cortex remain unknown. The interplay within thalamocortical network is believed to give rise to these epileptic multiple modes of activity and transitions between them. In particular, it is thought that in some areas of cortex there exists feedforward inhibition from specific relay nucleus of thalamus (TC) to inhibitory neuronal population (IN) which has even more stronger functions on cortical activities than the known feedforward excitation from TC to excitatory neuronal population (EX). Inspired by this, we proposed a modified computational model by introducing feedforward inhibitory connectivity within thalamocortical circuit, to systematically investigate the combined effects of feedforward inhibition and excitation on transitions of epileptic seizures. We first found that the feedforward excitation can induce the transition from tonic oscillation to spike and wave discharges (SWD) in cortex, i.e., the epileptic tonic-absence seizures, with the fixed weak feedforward inhibition. Thereinto, the phase of absence seizures corresponding to strong feedforward excitation can be further transformed into the clonic oscillations with the increasing of feedforward inhibition, representing the epileptic absence-clonic seizures. We also observed the other fascinating dynamical states, such as periodic 2/3/4-spike and wave discharges, reversed SWD and clonic oscillations, as well as saturated firings. More importantly, we can identify the stable parameter regions representing the tonic-clonic oscillations and SWD discharges of epileptic seizures on the 2-D plane composed of feedforward inhibition and excitation, where the physiologically plausible transition pathways between tonic-clonic and absence seizures can be figured out. These results indicate the functional role of feedforward pathways in controlling epileptic seizures and
Denggui Fan
2017-07-01
Full Text Available The mechanisms underlying electrophysiologically observed two-way transitions between absence and tonic-clonic epileptic seizures in cerebral cortex remain unknown. The interplay within thalamocortical network is believed to give rise to these epileptic multiple modes of activity and transitions between them. In particular, it is thought that in some areas of cortex there exists feedforward inhibition from specific relay nucleus of thalamus (TC to inhibitory neuronal population (IN which has even more stronger functions on cortical activities than the known feedforward excitation from TC to excitatory neuronal population (EX. Inspired by this, we proposed a modified computational model by introducing feedforward inhibitory connectivity within thalamocortical circuit, to systematically investigate the combined effects of feedforward inhibition and excitation on transitions of epileptic seizures. We first found that the feedforward excitation can induce the transition from tonic oscillation to spike and wave discharges (SWD in cortex, i.e., the epileptic tonic-absence seizures, with the fixed weak feedforward inhibition. Thereinto, the phase of absence seizures corresponding to strong feedforward excitation can be further transformed into the clonic oscillations with the increasing of feedforward inhibition, representing the epileptic absence-clonic seizures. We also observed the other fascinating dynamical states, such as periodic 2/3/4-spike and wave discharges, reversed SWD and clonic oscillations, as well as saturated firings. More importantly, we can identify the stable parameter regions representing the tonic-clonic oscillations and SWD discharges of epileptic seizures on the 2-D plane composed of feedforward inhibition and excitation, where the physiologically plausible transition pathways between tonic-clonic and absence seizures can be figured out. These results indicate the functional role of feedforward pathways in controlling epileptic
Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method
Ciurys, Marek Pawel
2017-12-01
Field-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network - converter - BLDC motor was carried out.
Motor control for a brushless DC motor
Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)
1985-01-01
This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.
Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo
Wei, Zhouchao; Moroz, Irene; Sprott, J. C.; Akgul, Akif; Zhang, Wei
2017-03-01
We report on the finding of hidden hyperchaos in a 5D extension to a known 3D self-exciting homopolar disc dynamo. The hidden hyperchaos is identified through three positive Lyapunov exponents under the condition that the proposed model has just two stable equilibrium states in certain regions of parameter space. The new 5D hyperchaotic self-exciting homopolar disc dynamo has multiple attractors including point attractors, limit cycles, quasi-periodic dynamics, hidden chaos or hyperchaos, as well as coexisting attractors. We use numerical integrations to create the phase plane trajectories, produce bifurcation diagram, and compute Lyapunov exponents to verify the hidden attractors. Because no unstable equilibria exist in two parameter regions, the system has a multistability and six kinds of complex dynamic behaviors. To the best of our knowledge, this feature has not been previously reported in any other high-dimensional system. Moreover, the 5D hyperchaotic system has been simulated using a specially designed electronic circuit and viewed on an oscilloscope, thereby confirming the results of the numerical integrations. Both Matlab and the oscilloscope outputs produce similar phase portraits. Such implementations in real time represent a new type of hidden attractor with important consequences for engineering applications.
Collective of mechatronics circuit
1987-02-01
This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.
Collective of mechatronics circuit
NONE
1987-02-15
This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.
Hao Kuan-Sheng; Huang Song-Ling; Zhao Wei; Wang Shen
2011-01-01
This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied. (interdisciplinary physics and related areas of science and technology)
Controlling a Four-Quadrant Brushless Three-Phase dc Motor
Nola, F. J.
1986-01-01
Control circuit commutates windings of brushless, three-phase, permanent-magnet motor operating from power supply. With single analog command voltage, controller makes motor accelerate, drive steadily, or brake regeneratively, in clockwise or counterclockwise direction. Controller well suited for use with energy-storage flywheels, actuators for aircraft-control surfaces, cranes, industrial robots, and other electromechanical systems requiring bidirectional control or sudden stopping and reversal.
Jian-ping Wen; Chuan-wei Zhang
2015-01-01
In order to improve energy utilization rate of battery-powered electric vehicle (EV) using brushless DC machine (BLDCM), the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO) to observe actual braking current and the unknown disturbances of regenerative braking system, ...
Mechatronical Design Studies on Small Brushless Motors
W. Amrhein
2003-01-01
Full Text Available Brushless DC- and AC-permanent-magnet motors controlled by powerful micro-controller electronics have opened up a significant share of the small motor market in the last years. Based on the mechanical low cost construction of single-phase motor the paper presents electronic drive concepts to improve the performance and for special applications also the lifetime of brushless motors. The tangential and radial forces acting on the rotor are controlled by special phase current curves to reduce the torque ripple and to avoid expendable machinery parts like ball or sliding bearings.
Brushless power generating system having reduced conducted emissions in output power
Walton, D.N.; Dolan, C.F.; Shah, M.J.
1991-01-01
This patent describes a brushless electrical power generating system. It comprises an exciter for producing alternating current from an exciter rotor; a rectifier mounted for rotation with the rotor for producing a rectified control current from the alternating current; a common mode inductor, coupled to the rectifier, for cancelling common mode noise components within the rectified control current; and a main generator, having a rotating field winding mounted on a main generator rotor excited by the control current and producing an alternating current power output from a stator
O'Donnell, Cian; Gonçalves, J Tiago; Portera-Cailliau, Carlos; Sejnowski, Terrence J
2017-10-11
A leading theory holds that neurodevelopmental brain disorders arise from imbalances in excitatory and inhibitory (E/I) brain circuitry. However, it is unclear whether this one-dimensional model is rich enough to capture the multiple neural circuit alterations underlying brain disorders. Here, we combined computational simulations with analysis of in vivo two-photon Ca 2+ imaging data from somatosensory cortex of Fmr1 knock-out (KO) mice, a model of Fragile-X Syndrome, to test the E/I imbalance theory. We found that: (1) The E/I imbalance model cannot account for joint alterations in the observed neural firing rates and correlations; (2) Neural circuit function is vastly more sensitive to changes in some cellular components over others; (3) The direction of circuit alterations in Fmr1 KO mice changes across development. These findings suggest that the basic E/I imbalance model should be updated to higher dimensional models that can better capture the multidimensional computational functions of neural circuits.
Ionic wave propagation and collision in an excitable circuit model of microtubules
Guemkam Ghomsi, P.; Tameh Berinyoh, J. T.; Moukam Kakmeni, F. M.
2018-02-01
In this paper, we report the propensity to excitability of the internal structure of cellular microtubules, modelled as a relatively large one-dimensional spatial array of electrical units with nonlinear resistive features. We propose a model mimicking the dynamics of a large set of such intracellular dynamical entities as an excitable medium. We show that the behavior of such lattices can be described by a complex Ginzburg-Landau equation, which admits several wave solutions, including the plane waves paradigm. A stability analysis of the plane waves solutions of our dynamical system is conducted both analytically and numerically. It is observed that perturbed plane waves will always evolve toward promoting the generation of localized periodic waves trains. These modes include both stationary and travelling spatial excitations. They encompass, on one hand, localized structures such as solitary waves embracing bright solitons, dark solitons, and bisolitonic impulses with head-on collisions phenomena, and on the other hand, the appearance of both spatially homogeneous and spatially inhomogeneous stationary patterns. This ability exhibited by our array of proteinic elements to display several states of excitability exposes their stunning biological and physical complexity and is of high relevance in the description of the developmental and informative processes occurring on the subcellular scale.
Nanou, Evanthia; Lee, Amy; Catterall, William A
2018-05-02
Activity-dependent regulation controls the balance of synaptic excitation to inhibition in neural circuits, and disruption of this regulation impairs learning and memory and causes many neurological disorders. The molecular mechanisms underlying short-term synaptic plasticity are incompletely understood, and their role in inhibitory synapses remains uncertain. Here we show that regulation of voltage-gated calcium (Ca 2+ ) channel type 2.1 (Ca V 2.1) by neuronal Ca 2+ sensor (CaS) proteins controls synaptic plasticity and excitation/inhibition balance in a hippocampal circuit. Prevention of CaS protein regulation by introducing the IM-AA mutation in Ca V 2.1 channels in male and female mice impairs short-term synaptic facilitation at excitatory synapses of CA3 pyramidal neurons onto parvalbumin (PV)-expressing basket cells. In sharp contrast, the IM-AA mutation abolishes rapid synaptic depression in the inhibitory synapses of PV basket cells onto CA1 pyramidal neurons. These results show that CaS protein regulation of facilitation and inactivation of Ca V 2.1 channels controls the direction of short-term plasticity at these two synapses. Deletion of the CaS protein CaBP1/caldendrin also blocks rapid depression at PV-CA1 synapses, implicating its upregulation of inactivation of Ca V 2.1 channels in control of short-term synaptic plasticity at this inhibitory synapse. Studies of local-circuit function revealed reduced inhibition of CA1 pyramidal neurons by the disynaptic pathway from CA3 pyramidal cells via PV basket cells and greatly increased excitation/inhibition ratio of the direct excitatory input versus indirect inhibitory input from CA3 pyramidal neurons to CA1 pyramidal neurons. This striking defect in local-circuit function may contribute to the dramatic impairment of spatial learning and memory in IM-AA mice. SIGNIFICANCE STATEMENT Many forms of short-term synaptic plasticity in neuronal circuits rely on regulation of presynaptic voltage-gated Ca 2+ (Ca V
Brushless DC motor speed control strategy of simulation research
Xiang Wen
2017-01-01
Full Text Available In view of the brushless DC motor speed regulation problem, an ideal control strategy is designed. Through the model and analysis of Brushless DC motor, the mathematical model of the brushless DC motor is obtained. By comparing three control strategies of PID control strategy, fuzzy control strategy and fuzzy PID control strategy, PID controller, fuzzy controller and fuzzy PID controller are designed respectively for simulation test. The simulation results show that the fuzzy PID controller has good control effect.
Cho, Chahee Peter
1995-01-01
Until recently, brush dc motors have been the dominant drive system because they provide easily controlled motor speed over a wide range, rapid acceleration and deceleration, convenient control of position, and lower product cost. Despite these capabilities, the brush dc motor configuration does not satisfy the design requirements for the U.S. Navy's underwater propulsion applications. Technical advances in rare-earth permanent magnet materials, in high-power semiconductor transistor technology, and in various rotor position-sensing devices have made using brushless permanent magnet motors a viable alternative. This research investigates brushless permanent magnet motor technology, studying the merits of dual-air gap, axial -field, brushless, permanent magnet motor configuration in terms of power density, efficiency, and noise/vibration levels. Because the design objectives for underwater motor applications include high-power density, high-performance, and low-noise/vibration, the traditional, simplified equivalent circuit analysis methods to assist in meeting these goals were inadequate. This study presents the development and verification of detailed finite element analysis (FEA) models and lumped parameter circuit models that can calculate back electromotive force waveforms, inductance, cogging torque, energized torque, and eddy current power losses. It is the first thorough quantification of dual air-gap, axial -field, brushless, permanent magnet motor parameters and performance characteristics. The new methodology introduced in this research not only facilitates the design process of an axial field, brushless, permanent magnet motor but reinforces the idea that the high-power density, high-efficiency, and low-noise/vibration motor is attainable.
Axial flux permanent magnet brushless machines
Gieras, Jacek F; Kamper, Maarten J
2008-01-01
Axial Flux Permanent Magnet (AFPM) brushless machines are modern electrical machines with a lot of advantages over their conventional counterparts. They are being increasingly used in consumer electronics, public life, instrumentation and automation system, clinical engineering, industrial electromechanical drives, automobile manufacturing industry, electric and hybrid electric vehicles, marine vessels and toys. They are also used in more electric aircrafts and many other applications on larger scale. New applications have also emerged in distributed generation systems (wind turbine generators
Crapo, Alan D.; Lloyd, Jerry D.
1991-03-01
Two motors have been designed and built for use with high-temperature superconductor (HTSC) materials. They are a homopolar dc motor that uses HTSC field windings and a brushless dc motor that uses bulk HTSC materials to trap flux in steel rotor poles. The HTSC field windings of the homopolar dc motor are designed to operate at 1000 A/sq cm in a 0.010-T field. In order to maximize torque in the homopolar dc motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar dc motor has been tested while waiting for 575 A turn HTSC coils. The trapped flux brushless dc motor has been built and is ready to test melt textured bulk HTSC rings that are currently being prepared. The stator of the trapped flux motor will impress a magnetic field in the steel rotor poles with warm HTSC bulk rings. The rings are then cooled to 77 K to trap the flux in the rotor. The motor can then operate as a brushless dc motor.
Zao, Yongming; Ouyang, Qi; Chen, Jiawei; Zhang, Xinglan; Hou, Shuaicheng
2017-08-01
This paper investigates the design and implementation of an improved series-parallel inductor-capacitor-inductor (LsCpLp) resonant circuit power supply for excitation of electromagnetic acoustic transducers (EMATs). The main advantage of the proposed resonant circuit is the absence of a high-permeability dynamic transformer. A high-frequency pulsating voltage gain can be achieved through a double resonance phenomenon. Both resonant tailing behavior and higher harmonics are suppressed by the improved resonant circuit, which also contributes to the generation of ultrasonic waves. Additionally, the proposed circuit can realize impedance matching and can also optimize the transduction efficiency. The complete design and implementation procedure for the power supply is described and has been validated by implementation of the proposed power supply to drive a portable EMAT. The circuit simulation results show close agreement with the experimental results and thus confirm the validity of the proposed topology. The proposed circuit is suitable for use as a portable EMAT excitation power supply that is fed by a low-voltage source.
Zao, Yongming; Ouyang, Qi; Chen, Jiawei; Zhang, Xinglan; Hou, Shuaicheng
2017-08-01
This paper investigates the design and implementation of an improved series-parallel inductor-capacitor-inductor (L s C p L p ) resonant circuit power supply for excitation of electromagnetic acoustic transducers (EMATs). The main advantage of the proposed resonant circuit is the absence of a high-permeability dynamic transformer. A high-frequency pulsating voltage gain can be achieved through a double resonance phenomenon. Both resonant tailing behavior and higher harmonics are suppressed by the improved resonant circuit, which also contributes to the generation of ultrasonic waves. Additionally, the proposed circuit can realize impedance matching and can also optimize the transduction efficiency. The complete design and implementation procedure for the power supply is described and has been validated by implementation of the proposed power supply to drive a portable EMAT. The circuit simulation results show close agreement with the experimental results and thus confirm the validity of the proposed topology. The proposed circuit is suitable for use as a portable EMAT excitation power supply that is fed by a low-voltage source.
Rotor apparatus for high strength undiffused brushless electric machine
Hsu, John S [Oak Ridge, TN
2006-01-24
A radial gap brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34) also has at least one stationary excitation coil (35a, 36a) separated from the rotor (32) by a secondary air gap (35e, 35f, 36e, 36f) so as to induce a secondary flux in the rotor (32) which controls a resultant flux in the main air gap (34). Permanent magnetic (PM) material (38) is disposed in spaces between the rotor pole portions (39) to inhibit the second flux from leaking from the pole portions (39) prior to reaching the main air gap (34). By selecting the direction of current in the stationary excitation coil (35a, 36a) both flux enhancement and flux weakening are provided for the main air gap (34). Improvements of a laminated rotor, an end pole structure, and an arrangement of the PM elements for providing an arrangement of the flux paths from the auxiliary field coil assemblies are also disclosed.
Jian-ping Wen
2015-01-01
Full Text Available In order to improve energy utilization rate of battery-powered electric vehicle (EV using brushless DC machine (BLDCM, the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO to observe actual braking current and the unknown disturbances of regenerative braking system, the autodisturbances rejection controller (ADRC for controlling the braking current is developed. Experimental results show that the proposed method gives better recovery efficiency and is robust to disturbances.
Tooth shape optimization of brushless permanent magnet motors for reducing torque ripples
Hsu, L.-Y.; Tsai, M.-C.
2004-01-01
This paper presents a tooth shape optimization method based on a generic algorithm to reduce the torque ripple of brushless permanent magnet motors under two different magnetization directions. The analysis of this design method mainly focuses on magnetic saturation and cogging torque and the computation of the optimization process is based on an equivalent magnetic network circuit. The simulation results, obtained from the finite element analysis, are used to confirm the accuracy and performance. Finite element analysis results from different tooth shapes are compared to show the effectiveness of the proposed method
Magnetic Circuit & Torque Analysis Of Brushless DC Motor
Arif J. Abbas
2013-05-01
Full Text Available This work is concerned with magnetic and torque analysis of BLDCM and with development of a method of designing BLDCM that have symmetric winding on the rotor .make significant contribution to the rotor inductance position difficult. It is also show that the prediction detent torque can be extremely sensitive to the permanent magnet by altering magnet arc width. Finally, simple lumped models that allow one to predict motor performance and characteristics as a function of main dimension, magnet residual flux density and phase current are developed. These models are used as a basis for an approach to designing BLDCM
Yan Hong; Yong Wang; Wang Ling Goh; Yuan Gao; Lei Yao
2015-08-01
This paper presents a mathematic method and a cost-efficient circuit to measure the value of each component of the bio-impedance model at electrode-electrolyte interface. The proposed current excited triple-time-voltage oversampling (TTVO) method deduces the component values by solving triple simultaneous electric equation (TSEE) at different time nodes during a current excitation, which are the voltage functions of time. The proposed triple simultaneous electric equations (TSEEs) allows random selections of the time nodes, hence numerous solutions can be obtained during a single current excitation. Following that, the oversampling approach is engaged by averaging all solutions of multiple TSEEs acquired after a single current excitation, which increases the practical measurement accuracy through the improvement of the signal-to-noise ratio (SNR). In addition, a print circuit board (PCB) that consists a switched current exciter and an analog-to-digital converter (ADC) is designed for signal acquisition. This presents a great cost reduction when compared against other instrument-based measurement data reported [1]. Through testing, the measured values of this work is proven to be in superb agreements on the true component values of the electrode-electrolyte interface model. This work is most suited and also useful for biological and biomedical applications, to perform tasks such as stimulations, recordings, impedance characterizations, etc.
Off-line tuning of a PI speed controller for a permanent magnet brushless DC motor using DSP
Demirtas, Metin, E-mail: mdtas@balikesir.edu.t [Electrical and Electronics Engineering Department, Balikesir University, Balikesir (Turkey)
2011-01-15
In this paper, a new method of tuning Proportional Integral (PI) coefficients for a permanent magnet brushless DC (PMBLDC) motor drives is proposed. Artificial neural network is used to identify the whole system using maximum overshoot and settling time obtained from the application circuit for different K{sub p}-K{sub i} pairs. Optimal values of PI controller coefficients are obtained using genetic algorithm. Motion Control Kit (MCK243) is used to carry out digital motion control applications. The MCK243 kit includes a power module and a three-phase brushless motor. TMS320F243 programs are used for PMBLDC motor speed control. Experimental results are given to show the validity of this method.
Brushless dc motor uses electron beam switching tube as commutator
Studer, P.
1965-01-01
Electron beam switching tube eliminates physical contact between rotor and stator in brushless dc motor. The tube and associated circuitry control the output of a dc source to sequentially energize the motor stator windings.
Comparative analysis of some brushless motors based on catalog data
Anton Kalapish
2005-10-01
Full Text Available Brushless motors (polyphased AC induction, synchronous and brushless DC motors have no alternatives in modern electric drives. They possess highly efficient and very wide range of speeds. The objective of this paper is to represent some relation between the basic parameters and magnitudes of electrical machines. This allows to be made a comparative analysis and a choice of motor concerning each particular case based not only on catalogue data or price for sale.
System For Characterizing Three-Phase Brushless dc Motors
Howard, David E.; Smith, Dennis A.
1996-01-01
System of electronic hardware and software developed to automate measurements and calculations needed to characterize electromechanical performances of three-phase brushless dc motors, associated shaft-angle sensors needed for commutation, and associated brushless tachometers. System quickly takes measurements on all three phases of motor, tachometer, and shaft-angle sensor simultaneously and processes measurements into performance data. Also useful in development and testing of motors with not only three phases but also two, four, or more phases.
Brushless DC micro-motor with external rotor
Rizzo, M.; Turowski, J.
1992-01-01
The increasing use of high-tech electronic components has led researchers to try new solutions in the field of micro-scale electrical machinery. One such solution, described in this paper, consists of the substitution of a conventional mechanical commutator with an electronic type so as to allow the conversion of a electromagnetic micro-motor into a brushless version using permanent magnets. The comparison of the two micro-motor alternatives evidences the clear superiority of the brushless micro-motor
Summary on Sensorless permanent magnet Brushless DC Motor Control Strategies
Li Hai Xia
2016-01-01
Full Text Available This paper aims at discussing the development process and application of permanent magnet brushless DC motor. By referring to the related literatures, this thesis gives an overview of several common non-position sensor detection technologies, analyzing their strengths and weaknesses as well as a number of new and improved methods in practical applications. Besides, The application situation of the electric door with sensorless permanent magnet brushless DC motor was illustrated.
MacMillan, Peter Norman
1985-01-01
Approved for public release; distribution is unlimited Recent improvements in rare earth magnets have made it possible to construct strong, lightweight, high horsepower DC motors. This has occasioned a reassessment of electromechanical actuators as alternatives to comparable pneumatic and hydraulic systems for use as flight control actuators for tactical missiles. A dynamic equivalent circuit model for the analysis of a small four pole brushless DC motor fed by a trans...
The dynamic response of a linear brushless D.C. motor
Moghani, J.S.; Eastham, J.F. [Univ. of Bath (United Kingdom). School of Electrical and Electronic Engineering
1995-12-31
The paper describes the use of the Matlab Analogue Simulation Toolbox SIMULINK for the closed loop dynamic modeling of a linear brushless dc motor which is supplied from a delta-modulated inverter. The work is validated by experimental results taken from a large test rig. Linear version of all rotating machines are possible; a rotating machine can be notionally cut along a radial plane and unrolled to yield a linear version. The most popular form of linear machine, as judged by the quantities that have been produced is the linear induction motor. This has the advantage of first an inexpensive secondary that is often a simple iron backed conducting plate, and secondly the possibility of simple voltage control. The linear brushless synchronous motor is potentially more expensive to produce than its induction counterpart because of the permanent magnets which provide the excitation mmf and the necessity of an inverter supply. However the machine has a power factor efficiency product which can be double that of an induction motor together with about twice the tractive force per pole area.
U. Marschner
2014-09-01
Full Text Available Two-layer flexure beams often serve as basic transducers in actuators and sensors. In this paper a generalized description of their stimuli-influenced mechanical behavior is derived. For small deflection angles this description includes a multi-port circuit or network representation with lumped elements for a beam part of finite length. A number of coupled finite beam parts model the dynamic behavior including the first natural frequencies of the beam. For piezoelectric and piezomagnetic interactions, reversible transducer models are developed. The piezomagnetic two-layer beam model is extended to include solenoid and planar coils. Linear network theory is applied in order to determine network parameters and to simplify the circuit representation. The resulting circuit model is the basis for a fast simulation of the dynamic system behavior with advanced circuit simulators and, thus, the optimization of the system. It is also a useful tool for understanding and explaining this multi-domain system through basic principles of general system theory.
High-temperature brushless DC motor controller
Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan
2017-05-16
A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.
FEM Analysis of Brushless DC Servomotor with Fractional Number of Slots per Pole
BALUTA, G.
2014-02-01
Full Text Available The authors present in this paper the analysis with Finite Element Method (FEM of the magnetic circuit for a Brushless DC servomotor with fractional number of slots/pole (9 slots and 10 poles. For this purpose, FEMM 4.2 software package was used for the analysis. To obtain the waveforms of Back-ElectroMotive Forces (BEMFs, electromagnetic and cogging torque for servomotor a program in LUA scripting language (integrated into interactive shell of FEMM4.2 has been created. A comparation with a structure with integer number of slots/pole (18 slots and 6 poles was also realized. The analysis results prove that the structure chosen is an optimal solution: sinusoidal waveforms of BEMFs, improved electromagnetic torque and reduced cogging torque. Therefore, the operating characteristics of the servomotor with 9/10 slots/poles manufactured by Sistem Euroteh Company and included in an integrated electrical drives system are presented in this paper.
Automated design of DC-excited flux-switching in-wheel motor using magnetic equivalent circuits
Tang, Y.; Paulides, J.J.H.; Lomonova, E.A.
2015-01-01
DC-excited flux-switching motors (DCEFSMs) are increasingly considered as candidate traction motors for electric vehicles due to their robust and magnet-free structure with relatively high torque density and extendable speed range. In this paper, an automated design tool based on nonlinear magnetic
NaV1.6a is required for normal activation of motor circuits normally excited by tactile stimulation
Low, Sean E.; Zhou, Weibin; Choong, Xinling; Saint-Amant, Louis; Sprague, Shawn M.; Hirata, Hiromi; Cui, Wilson W.; Hume, Richard I.; Kuwada, John Y.
2010-01-01
A screen for zebrafish motor mutants identified two non-complementing alleles of a recessive mutation that were named non-active (navmi89 and navmi130). nav embryos displayed diminished spontaneous and touch-evoked escape behaviors during the first three days of development. Genetic mapping identified the gene encoding NaV1.6a (scn8aa) as a potential candidate for nav. Subsequent cloning of scn8aa from the two alleles of nav uncovered two missense mutations in NaV1.6a that eliminated channel activity when assayed heterologously. Furthermore the injection of RNA encoding wild type scn8aa rescued the nav mutant phenotype indicating that scn8aa was the causative gene of nav. In vivo electrophysiological analysis of the touch-evoked escape circuit indicated that voltage-dependent inward current was decreased in mechanosensory neurons in mutants, but they were able to fire action potentials. Furthermore tactile stimulation of mutants activated some neurons downstream of mechanosensory neurons but failed to activate the swim locomotor circuit in accord with the behavioral response of initial escape contractions but no swimming. Thus mutant mechanosensory neurons appeared to respond to tactile stimulation but failed to initiate swimming. Interestingly fictive swimming could be initiated pharmacologically suggesting that a swim circuit was present in mutants. These results suggested that NaV1.6a was required for touch-induced activation of the swim locomotor network. PMID:20225246
Huang, Hao; Ghosh, Prabhat; van den Pol, Anthony N
2006-03-01
The paraventricular thalamic nucleus (PVT) receives one of the most dense innervations by hypothalamic hypocretin/orexin (Hcrt) neurons, which play important roles in sleep-wakefulness, attention, and autonomic function. The PVT projects to several loci, including the medial prefrontal cortex (mPFC), a cortical region involved in associative function and attention. To study the effect of Hcrt on excitatory PVT neurons that project to the mPFC, we used a new line of transgenic mice expressing green fluorescent protein (GFP) under the control of the vesicular glutamate-transporter-2 promoter. These neurons were retrogradely labeled with cholera toxin subunit B that had been microinjected into the mPFC. Membrane characteristics and responses to hypocretin-1 and -2 (Hcrt-1 and -2) were studied using whole cell recording (n > 300). PVT neurons showed distinct membrane properties including inward rectification, H-type potassium currents, low threshold spikes, and spike frequency adaptation. Cortically projecting neurons were depolarized and excited by Hcrt-2. Hcrt-2 actions were stronger than those of Hcrt-1, and the action persisted in TTX and in low calcium/high magnesium artificial cerebrospinal fluid, consistent with direct actions mediated by Hcrt receptor-2. Two mechanisms of Hcrt excitation were found: an increase in input resistance caused by closure of potassium channels and activation of nonselective cation channels. The robust excitation evoked by Hcrt-2 on cortically projecting glutamate PVT neurons could generate substantial excitation in multiple layers of the mPFC, adding to the more selective direct excitatory actions of Hcrt in the mPFC and potentially increasing cortical arousal and attention to limbic or visceral states.
Power factor correction (PFC) converters feeding brushless DC ...
This paper presents a comprehensive study of power factor correction (PFC) converters for feeding brushless DC (BLDC) motor drive. This work explores various configurations of PFC converters which are classified into five different categories of non-isolated, bridgeless (BL) non-isolated, isolated, BL-isolated PFC ...
Brushless dc motors. [applications in non-space technology
1975-01-01
Brushless dc motors were intensively developed and tested over several years before qualification as the prime movers for Apollo Spacecraft life support blowers, and for circulating oxygen in the lunar portable life support system. Knowledge gained through prototype development and critical testing has significantly influenced the technology employed, broadened markets and applications, and reduced the cost of present day motors.
Brushless DC electric motor application in environment CH4 sensor
Drozd, Jakub; Duk, Mariusz; Borecki, Michał
2016-09-01
The work includes using a brushless direct current motor ventilator as a machine which fills a container where methane sensor is researched. The main issue is to choose the best controlling method and implement it to self-made driver of the motor.
A brushless dc spin motor for momentum exchange altitude control
Stern, D.; Rosenlieb, J. W.
1972-01-01
Brushless dc spin motor is designed to use Hall effect probes as means of revolving rotor position and controlling motor winding currents. This results in 3 to 1 reduction in watt-hours required for wheel acceleration, a 2 to 1 reduction in power to run wheel, and a 10 to 1 reduction in the electronics size and weight.
Hybrid Adaptive Observer for a Brushless DC Motor
Niemczyk, Piotr; Porchez, Thomas; Bendtsen, Jan Dimon
2008-01-01
A novel hybrid adaptive observer for Brushless DC Motors (BLDCM) is presented. It uses two current measurements of BLDCM phases to estimate the angle and the speed of the rotor. The observer is designed on the basis of a hybrid model, which is also presented in this paper. The parameters...
Hybrid Adaptive Observer for a Brushless DC Motor
Niemczyk, Piotr; Porchez, Thomas; Bendtsen, Jan Dimon
2008-01-01
A novel hybrid adaptive observer for Brushless DC Motors (BLDCM) is presented. It uses two current measurements of BLDCM phases to estimate the angle and the speed of the rotor. The observer is designed on the basis of a hybrid model, which is also presented in this paper. The parameters of the o...
Slotless brushless permanent magnet motor and winding topologies
Chen, Y.S.; Zhu, Z.Q.; Howe, D.; Hu, G.F.
1998-01-01
In the paper, the merits of alternative slotless brushless permanent magnet motor and winding topologies are investigated, using 2-D analytical models embodied with CAD design software. The design optimisation of both internal and external rotor motors, with and without stator back-iron, and with either overlapping or non-overlapping winding, is considered. (orig.)
Sensorless Control of PM Synchronous Motors and Brushless DC Motors
Montesinos, D.; Galceran, Samuel; Blaabjerg, Frede
2005-01-01
This paper provides a review of the literature addressing sensorless operation methods of PM brushless machines. The methods explained are state-of-the-art of open and closed loop control strategies. The closed loop review includes those methods based on voltage and current measurements, those me...
Volker R Zschorlich
Full Text Available The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR, and extensor carpi radialis (ECR, induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension, without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an "intention network" in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before
Zschorlich, Volker R.; Köhling, Rüdiger
2013-01-01
The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS) of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR), and extensor carpi radialis (ECR), induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension), without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an “intention network” in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before any motor
Simulation and performance of brushless DC motor actuators
Gerba, Alex
1985-01-01
The simulation model for a Brushless D.C. Motor and the associated commutation power conditioner transistor model are presented. The necessary conditions for maximum power output while operating at steady-state speed and sinusoidally distributed air-gap flux are developed. Comparisons of simulated model with the measured performance of a typical motor are done both on time response waveforms and on average performance characteristics. These preliminary results indicate good ...
Pulse-Width-Modulating Driver for Brushless dc Motor
Salomon, Phil M.
1991-01-01
High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.
A novel position-sensorless control method for brushless DC motors
Zhang, X.Z.; Wang, Y.N.
2011-01-01
This paper presents the design and implementation of a high performance position-sensorless control scheme for the extensively used brushless DC (BLDC) motors. In the proposed method, with proper PWM strategy, instead of detecting the zero-crossing point (ZCP) of the nonexcited motor back electromagnetic force (EMF) or the average motor terminal to neutral voltage, the true zero-crossing points of back EMF are extracted directly from the difference of the specific average line-to-line voltages with simple RC circuits and comparators. In contrast to conventional methods, the neutral voltage is not needed and the diode freewheeling currents in the nonconducted phase are eliminated completely; therefore, the commutation signals are more accurate and insensitive to the common-mode noise. Moreover, 100% pulse-width-modulation (PWM) duty ratio control of BLDC motors is provided with the presented method. As a result, the proposed method makes it possible to achieve good motor performance over a wide speed range and to simplify the starting procedure. The detailed circuit model is analyzed and some experimental results obtained from a sensorless prototype are shown to verify the analysis and confirm the validity of the proposed method.
Chengyuan He
2018-05-01
Full Text Available This paper presents an analytical method to design an interior permanent magnet brushless DC electric motor (IPMBLDC motor for a kind of electric impact wrench used for loading and unloading car bolts. It takes into account magnet assembly gap, rotor saturation webs, and bridges. Assumed flux leakage coefficient and selected working point of a permanent magnet were used in the initial design. An advanced equivalent magnetic circuit was developed to verify the total flux leakage and the quiescent operating point based on initial design parameters. Key design method points are considered and analyzed. Thermal analysis is given to simulate the temperature rise of all parts of the motor. The new impact wrench mechanical structure is designed, and its working principle analyzed. An electromagnetic field analysis based on MATLAB and the MAXWELL 2D finite element method (FEM were used in the design to verify the equivalent magnetic circuit and optimize the IPMBLDC motor parameters. Experimental results are obtained to verify the design. The electrical and mechanical designs are combined and an analytical IPMBLDC motor design method is provided. We also show an innovative and reasonable mechanical dynamical calculation method for the impact wrench system, which can be used in whole system design of other functional electric tools.
Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion
Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.
1983-01-01
The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.
Simulation and performance of brushless dc motor actuators
Gerba, A., Jr.
1985-12-01
The simulation model for a Brushless D.C. Motor and the associated commutation power conditioner transistor model are presented. The necessary conditions for maximum power output while operating at steady-state speed and sinusoidally distributed air-gap flux are developed. Comparison of simulated model with the measured performance of a typical motor are done both on time response waveforms and on average performance characteristics. These preliminary results indicate good agreement. Plans for model improvement and testing of a motor-driven positioning device for model evaluation are outlined.
Improved Rotor Speed Brushless DC Motor Using Fuzzy Controller
Jafar Mostafapour
2015-04-01
Full Text Available A brushless DC (BLDC Motors have advantages over brushed, Direct current (DC Motors and , Induction motor (IM. They have better speed verses torque characteristics, high dynamic response, high efficiency, long operating life, noiseless operation, higher speed ranges, and rugged construction. Also, torque delivered to motor size is higher, making it useful in application where space and weight are critical factors. With these advantages BLDC motors find wide spread application in automotive appliance, aerospace medical, and instrumentation and automation industries This paper can be seen as fuzzy controllers compared to PI control BLDC motor rotor speed has improved significantly and beter result can be achieve.
Applications and modelling of bulk HTSs in brushless ac machines
Barnes, G.J.
2000-01-01
The use of high temperature superconducting material in its bulk form for engineering applications is attractive due to the large power densities that can be achieved. In brushless electrical machines, there are essentially four properties that can be exploited; their hysteretic nature, their flux shielding properties, their ability to trap large flux densities and their ability to produce levitation. These properties translate to hysteresis machines, reluctance machines, trapped-field synchronous machines and linear motors respectively. Each one of these machines is addressed separately and computer simulations that reveal the current and field distributions within the machines are used to explain their operation. (author)
Rectifier Fault Diagnosis and Fault Tolerance of a Doubly Fed Brushless Starter Generator
Liwei Shi
2015-01-01
Full Text Available This paper presents a rectifier fault diagnosis method with wavelet packet analysis to improve the fault tolerant four-phase doubly fed brushless starter generator (DFBLSG system reliability. The system components and fault tolerant principle of the high reliable DFBLSG are given. And the common fault of the rectifier is analyzed. The process of wavelet packet transforms fault detection/identification algorithm is introduced in detail. The fault tolerant performance and output voltage experiments were done to gather the energy characteristics with a voltage sensor. The signal is analyzed with 5-layer wavelet packets, and the energy eigenvalue of each frequency band is obtained. Meanwhile, the energy-eigenvalue tolerance was introduced to improve the diagnostic accuracy. With the wavelet packet fault diagnosis, the fault tolerant four-phase DFBLSG can detect the usual open-circuit fault and operate in the fault tolerant mode if there is a fault. The results indicate that the fault analysis techniques in this paper are accurate and effective.
Research on Control System of Three - phase Brushless DC Motor for Electric Vehicle
Wang, Zhiwei; Jin, Hai; Guo, Jie; Su, Jie; Wang, Miao
2017-12-01
In order to study the three-phase brushless motor control system of electric vehicle, Freescale9S12XS128 chip is used as the control core, and the power MOSFET is used as the inverter device. The software is compiled by Codewarrior software. The speed control link adopts open-loop control, and the control chip collects the external sensor signal voltage Change control PWM signal output control three-phase brushless DC motor speed. The whole system consists of Hall position detection module, current detection module, power drive module and voltage detection module. The basic functions of three-phase brushless DC motor drive control are realized.
Miniature 70-W Brushless Motor-Controller for Compact Extraterrestrial-Based Actuation, Phase I
National Aeronautics and Space Administration — This SBIR will support rover locomotion and manipulation with a system of newly-developed penny-sized 70-W brushless servomotor controllers that are networked on a...
Miniature 70-W Brushless Motor-Controller for Compact Extraterrestrial-Based Actuation, Phase II
National Aeronautics and Space Administration — This SBIR will support rover locomotion and manipulation with a system of newly-developed penny-sized 70-W brushless servomotor controllers that are networked on a...
Demerdash, N. A. O.
1976-01-01
The modes of operation of the brushless d.c. machine and its corresponding characteristics (current flow, torque-position, etc.) are presented. The foundations and basic principles on which the preliminary numerical model is based, are discussed.
Abolfazl Halvaei Niasar; AmirHossein Sabbaghean
2017-01-01
This paper presents a simple and low-cost method to capture maximum power throughput of permanent magnet brushless DC (BLDC) generator. Conventional methods of rectification are based on passive converters, and because the current waveform cannot be controlled as ideal waveform, a highly distorted current is drawn from brushless generator. It leads to lower power factor and reduces the efficiency and power per ampere capability. So, in this study an active six-witch power converter is employe...
Chaos synchronization and parameter identification of three time scales brushless DC motor system
Ge, Z.-M.; Cheng, J.-W.
2005-01-01
Chaotic anticontrol and chaos synchronization of brushless DC motor system are studied in this paper. Nondimensional dynamic equations of three time scale brushless DC motor system are presented. Using numerical results, such as phase diagram, bifurcation diagram, and Lyapunov exponent, periodic and chaotic motions can be observed. Then, chaos synchronization of two identical systems via additional inputs and Lyapunov stability theory are studied. And further, the parameter of the system is traced via adaptive control and random optimization method
Low speed phaselock speed control system. [for brushless dc motor
Fulcher, R. W.; Sudey, J. (Inventor)
1975-01-01
A motor speed control system for an electronically commutated brushless dc motor is provided which includes a phaselock loop with bidirectional torque control for locking the frequency output of a high density encoder, responsive to actual speed conditions, to a reference frequency signal, corresponding to the desired speed. The system includes a phase comparator, which produces an output in accordance with the difference in phase between the reference and encoder frequency signals, and an integrator-digital-to-analog converter unit, which converts the comparator output into an analog error signal voltage. Compensation circuitry, including a biasing means, is provided to convert the analog error signal voltage to a bidirectional error signal voltage which is utilized by an absolute value amplifier, rotational decoder, power amplifier-commutators, and an arrangement of commutation circuitry.
Disc rotors with permanent magnets for brushless DC motor
Hawsey, Robert A.; Bailey, J. Milton
1992-01-01
A brushless dc permanent magnet motor drives an autonomous underwater vehe. In one embodiment, the motor comprises four substantially flat stators in stacked relationship, with pairs of the stators axially spaced, each of the stators comprising a tape-wound stator coil, and first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and a drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs of rotors mounted on opposite sides of the stators and driven by counterrotating shafts.
An improved iron loss estimation for permanent magnet brushless machines
Fang, D
1999-01-01
This paper presents an improved approach for predicting iron losses in permanent magnet brushless machines. The new approach is based on the fundamental concept that eddy current losses are proportional to the square of the time rate of change of flux density. Expressions are derived for predicting hysteresis and eddy current losses in the stator teeth and yoke. The so-called anomalous or excess losses, caused by the induced eddy current concentration around moving magnetic domain walls and neglected in the conventional core loss calculation, are also included in the proposed approach. In addition, the model is also capable of accounting for the stator skewing, if present. The core losses obtained from the proposed approach are compared with those measured on an existing PM motor at several operating speeds, showing very good agreement. (14 refs).
Stumberger, Bojan; Stumberger, Gorazd; Hadziselimovic, Miralem; Hamler, Anton; Trlep, Mladen; Gorican, Viktor; Jesenik, Marko
2006-01-01
The paper presents a comparison between the performances of exterior-rotor permanent magnet brushless motors with distributed windings and the performances of exterior-rotor permanent magnet brushless motors with concentrated windings. Finite element method analysis is employed to determine the performance of each motor. It is shown that motors with concentrated windings and similar slot and pole numbers exhibit similar or better performances than motors with distributed windings for brushless AC (BLAC) operation mode and brushless DC (BLDC) operation mode as well
Jingang Bai
2012-01-01
Full Text Available A new type of brushless double rotor machine (BDRM is proposed in this paper. The BDRM is an important component in compound-structure permanent-magnet synchronous machine (CS-PMSM systems, which are promising for power-split hybrid electric vehicle (HEV applications. The BDRM can realize the speed adjustment between claw-pole rotor and permanent-magnet rotor without brushes and slip rings. The structural characteristics of the BDRM are described and its magnetic circuit model is built. Reactance parameters of the BDRM are deduced by an analytical method. It is found that the size characteristics of the BDRM are different from those of conventional machines. The new sizing and torque equations are analyzed and the theoretical results are used in the optimization process. Studies of the analytical magnetic circuit and finite element method (FEM model show that the BDRM tends to have high leakage flux and low power factor, and then the method to obtain high power factor is discussed. Furthermore, a practical methodology of the BDRM design is developed, which includes an analytical tool, 2D field calculation and performance evaluation by 3D field calculation. Finally, different topologies of the BDRM are compared and an optimum prototype is designed.
Mine, K; Takada, S; Tatematsu, M; Takeuchi, H [Aisan Industry Co. Ltd., Aichi (Japan)
1992-10-01
A methanol use electrically driven fuel pump was developed as reported in the present report. Mixed fuel of gasoline with alcohol can be handled by a brushless fuel pump which was proposed and improved as reported. The flow rate performance was heightened to 25g/sec by heightening in output power of motor, while the high temperature performance was 17% heightened against the conventional ratio of lowering in flow rate by heightening in vapor jet capacity. Against the corrosiveness of methanol, an in-tank type was applied to the pump, and all its electrically conductive and other mechanical parts were made to be both anti-corrosive and anti-abrasive. It is structurally of a two-stage series turbine type of non-volume form. A sensor method was applied to the motor by confining the miniaturized control circuit of brushless motor in the motor so that the transistor is controlled against the heightening in temperature. The motor is a three-phase half-wave driving motor. Also developed was a fuel supply system which is useful for the mixed fuel covering a range of 100% methanol through 100% gasoline. The present pump is dimensionally interchangeable with the conventional gasoline use one. Its operational life is more than 10000 hours. 3 refs., 17 figs., 1 tab.
Boroujeni, Mojtaba Shirvani; Markadeh, Gholamreza Arab; Soltani, Jafar
2018-01-01
Brushless Harmonic current injection to the stator windings is one of the most effective methods for torque ripple reduction of brushless DC motors. Because of multi harmonic contents of the stator currents, the conventional methods based on rotational reference frame cannot be used to calculate...
James Webb Space Telescope Deployment Brushless DC Motor Characteristics Analysis
Tran, Ahn N.
2016-01-01
A DC motor's performance is usually characterized by a series of tests, which are conducted by pass/fail criteria. In most cases, these tests are adequate to address the performance characteristics under environmental and loading effects with some uncertainties and decent power/torque margins. However, if the motor performance requirement is very stringent, a better understanding of the motor characteristics is required. The purpose of this paper is to establish a standard way to extract the torque components of the brushless motor and gear box characteristics of a high gear ratio geared motor from the composite geared motor testing and motor parameter measurement. These torque components include motor magnetic detent torque, Coulomb torque, viscous torque, windage torque, and gear tooth sliding torque. The Aerospace Corp bearing torque model and MPB torque models are used to predict the Coulomb torque of the motor rotor bearings and to model the viscous components. Gear tooth sliding friction torque is derived from the dynamo geared motor test data. With these torque data, the geared motor mechanical efficiency can be estimated and provide the overall performance of the geared motor versus several motor operating parameters such as speed, temperature, applied current, and transmitted power.
Dynamic modeling of brushless dc motors for aerospace actuation
Demerdash, N. A.; Nehl, T. W.
1980-01-01
A discrete time model for simulation of the dynamics of samarium cobalt-type permanent magnet brushless dc machines is presented. The simulation model includes modeling of the interaction between these machines and their attached power conditioners. These are transistorized conditioner units. This model is part of an overall discrete-time analysis of the dynamic performance of electromechanical actuators, which was conducted as part of prototype development of such actuators studied and built for NASA-Johnson Space Center as a prospective alternative to hydraulic actuators presently used in shuttle orbiter applications. The resulting numerical simulations of the various machine and power conditioner current and voltage waveforms gave excellent correlation to the actual waveforms collected from actual hardware experimental testing. These results, numerical and experimental, are presented here for machine motoring, regeneration and dynamic braking modes. Application of the resulting model to the determination of machine current and torque profiles during closed-loop actuator operation were also analyzed and the results are given here. These results are given in light of an overall view of the actuator system components. The applicability of this method of analysis to design optimization and trouble-shooting in such prototype development is also discussed in light of the results at hand.
Sensorless optimal sinusoidal brushless direct current for hard disk drives
Soh, C. S.; Bi, C.
2009-04-01
Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.
Chaos anticontrol and synchronization of three time scales brushless DC motor system
Ge Zhengming; Cheng Juiwen; Chen Yensheng
2004-01-01
Chaos anticontrol of three time scale brushless dc motors and chaos synchronization of different order systems are studied. Nondimensional dynamic equations of three time scale brushless DC motor system are presented. Using numerical results, such as phase diagram, bifurcation diagram, and Lyapunov exponent, periodic and chaotic motions can be observed. By adding constant term, periodic square wave, the periodic triangle wave, the periodic sawtooth wave, and kx vertical bar x vertical bar term, to achieve anticontrol of chaotic or periodic systems, it is found that more chaotic phenomena of the system can be observed. Then, by coupled terms and linearization of error dynamics, we obtain the partial synchronization of two different order systems, i.e. brushless DC motor system and rate gyroscope system
Cheaper Synthesis Of Multipole-Brushless-dc-Motor Current
Alhorn, Dean C.; Howard, David E.
1994-01-01
Circuit converts output of single two-phase shaft-angle resolver to that of multi-speed three-phase shaft-angle resolver. Converter circuit applicable to generation of multispeed, multiphase shaft-angle-resolver signals from single two-phase shaft-angle resolver. Combination of converter circuit and single two-phase shaft-angle resolver offer advantages in cost, weight, size, and complexity. Design readily adaptable to two-phase motor.
MacMillan, P. N.
1985-06-01
Recent improvements in rare earth magnets have made it possible to construct strong, lightweight, high horsepower dc motors. This has occasioned a reassessment of electromechanical actuators as alternatives to comparable pneumatic and hydraulic systems for use as flight control actuators for tactical missiles. A dynamic equivalent circuit model for the analysis of a small four pole brushless dc motor fed by a transistorized power conditioner utilizing high speed switching power transistors as final elements is presented. The influence of electronic commutation on instantaneous dynamic motor performance is particularly demonstrated and good correlation between computer simulation and typical experimentally obtained performance data is achieved. The model is implemented in CSMP language and features more accurate air gap flux representation over previous work. Hall effect sensor rotor position feedback is simulated. Both constant and variable air gap flux is modeled and the variable flux model treats the flux as a fundamental and one harmonic.
He, J.; Lin, F. [Stone Safety Corp., Fountain Inn, SC (United States)
1995-12-31
A microprocessor-based ultra-high speed brushless homopolar inductor motor drive system (HiDrive) with no gearing and using a high frequency IGBT inverter switching at 32 kHz is described and discussed in this paper. The homopolar motor features a solid steel rotor without magnets, windings, or laminations, which allows the motor to be operated at very high speed. The HiDrive system achieves 16,000 RPM, 45 Hp continuously. The drive system discussed in this paper can be used to replace conventional motors and speed increasing gear boxes in very high speed industrial applications such as centrifuges, compressors, blowers, pumps, and machine tool spindles. The HiDrive system discussed in this paper is used to drive a compressor for nuclear power application. In this paper, the detailed descriptions of the motor construction, equivalent circuit, operation and control principle are offered. The IGBT inverter drive system design and controls including motor speed sensing, load angle control, synchronization, brake control, power device switchings, and thermal issues are addressed. The simulation results various test results, and the typical application examples of the high speed drives are also presented in this paper.
He, J.; Lin, F.
1995-01-01
A microprocessor-based ultra-high speed brushless homopolar inductor motor drive system (HiDrive) with no gearing and using a high frequency IGBT inverter switching at 32 kHz is described and discussed in this paper. The homopolar motor features a solid steel rotor without magnets, windings, or laminations, which allows the motor to be operated at very high speed. The HiDrive system achieves 16,000 RPM, 45 Hp continuously. The drive system discussed in this paper can be used to replace conventional motors and speed increasing gear boxes in very high speed industrial applications such as centrifuges, compressors, blowers, pumps, and machine tool spindles. The HiDrive system discussed in this paper is used to drive a compressor for nuclear power application. In this paper, the detailed descriptions of the motor construction, equivalent circuit, operation and control principle are offered. The IGBT inverter drive system design and controls including motor speed sensing, load angle control, synchronization, brake control, power device switchings, and thermal issues are addressed. The simulation results various test results, and the typical application examples of the high speed drives are also presented in this paper
Bo Long
2013-12-01
Full Text Available Regenerative braking provides an effective way of extending the driving range of battery powered electric vehicles (EVs. This paper analyzes the equivalent power circuit and operation principles of an EV using regenerative braking control technology. During the braking period, the switching sequence of the power converter is controlled to inverse the output torque of the three-phase brushless direct-current (DC motor, so that the braking energy can be returned to the battery. Compared with the presented methods, this technology can achieve several goals: energy recovery, electric braking, ultra-quiet braking and extending the driving range. Merits and drawbacks of different braking control strategy are further elaborated. State-space model of the EVs under energy-regenerative braking operation is established, considering that parameter variations are unavoidable due to temperature change, measured error, un-modeled dynamics, external disturbance and time-varying system parameters, a sliding mode robust controller (SMRC is designed and implemented. Phase current and DC-link voltage are selected as the state variables, respectively. The corresponding control law is also provided. The proposed control scheme is compared with a conventional proportional-integral (PI controller. A laboratory EV for experiment is setup to verify the proposed scheme. Experimental results show that the drive range of EVs can be improved about 17% using the proposed controller with energy-regeneration control.
Jacob, D.
2005-07-01
This book proposes a presentation of AC electric motors essentially based on physics and technology. Its originality consists in avoiding to use mathematical formulations (like Park's transformation). The modeling retained, which only uses magnetic momentum, magnetic fields and reluctance concepts, leads simply and naturally to the vectorial control principle. The book develops some lecture elements which includes some topics rarely considered like the dimensioning of an asynchronous motor or of a single-phase brush-less motor. Experimental results illustrate the physical phenomena described and many original problems are resolved and commented at the end of each chapter. Content: signals and systems in electrotechnics, torque and rotating magnetic fields generation, asynchronous machine in permanent regime, speed variation of the asynchronous motor, special asynchronous motors, synchronous machine in permanent regime, brush-less motor, note about step motors, note about inverters, index. (J.S.)
Graf, Rudolf F
1996-01-01
This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing
Graf, Rudolf F
1996-01-01
This series of circuits provides designers with a quick source for measuring circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listings
Acoustic resonance of outer-rotor brushless dc motor for air-conditioner fan
Lee, Hong-Joo; Chung, Shi-Uk; Hwang, Sang-Moon
2008-04-01
Generation of acoustic noise in electric motor is an interacting combination of mechanical and electromagnetic sources. In this paper, a brushless dc motor for air-conditioner fan is analyzed by finite element method to identify noise source, and the analysis results are verified by experiments, and sensitivity analysis is performed by design of experiments.
Numerical and Experimental Investigation of Heat Flow in Permanent Magnet Brushless DC Hub Motor
Fasil, Muhammed; Plesner, Daniel; Walther, Jens Honore
2014-01-01
This paper investigates the heat dissipation in the hub motor of an electric two-wheeler using lumped parameter (LP), finite element (FE) and computational fluid dynamic (CFD) models. The motor uses external rotor permanent magnet brushless DC topology and nearly all of its losses are generated...
Novel Motion Sensorless Control of Single Phase Brushless D.C. PM Motor Drive, with experiments
Lepure, Liviu Ioan; Boldea, Ion; Andreescu, Gheorghe Daniel
2010-01-01
A motion sensorless control for single phase permanent magnet brushless d.c. (PM-BLDC) motor drives, based on flux integration and prior knowledge of the PM flux/position characteristic is proposed here and an adequate correction algorithm is adopted, in order to increase the robustness to noise...
Anti-control of chaos of single time-scale brushless DC motor.
Ge, Zheng-Ming; Chang, Ching-Ming; Chen, Yen-Sheng
2006-09-15
Anti-control of chaos of single time-scale brushless DC motors is studied in this paper. In order to analyse a variety of periodic and chaotic phenomena, we employ several numerical techniques such as phase portraits, bifurcation diagrams and Lyapunov exponents. Anti-control of chaos can be achieved by adding an external constant term or an external periodic term.
Improved Analytical Model of a Permanent-Magnet Brushless DC Motor
Kumar, P.; Bauer, P.
2008-01-01
In this paper, we develop a comprehensive model of a permanent-magnet brushless DC (BLDC) motor. An analytical model for determining instantaneous air-gap field density is developed. This instantaneous field distribution can be further used to determine the cogging torque, induced back electromotive
Kazmin, Evgeny; Lomonova, E.A.; Paulides, J.J.H.
2008-01-01
A concept design approach for the brushless PM traction motor, which has crucial constraints on volume envelope and on the drive, is presented. The considered motor drive is the three-phase DC/AC converter, which is commercially available on the modern market of the standard variable frequency
A.V. Matyuschenko
2015-03-01
Full Text Available By means of JMAG-Designer 12 the author performed a comparative analysis of the calculation of the EMF, cogging torque and electromagnetic torque of brushless motor with permanent magnets in two-dimensional and three-dimensional formulation of the problem.
Method and apparatus for sensorless operation of brushless permanent magnet motors
Sriram, T.V.
1998-04-14
A sensorless method and apparatus for providing commutation timing signals for a brushless permanent magnet motor extracts the third harmonic back-emf of a three-phase stator winding and independently cyclically integrates the positive and negative half-cycles thereof and compares the results to a reference level associated with a desired commutation angle. 23 figs.
Method and apparatus for sensorless operation of brushless permanent magnet motors
Sriram, Tillasthanam V.
1998-01-01
A sensorless method and apparatus for providing commutation timing signals for a brushless permanent magnet motor extracts the third harmonic back-emf of a three-phase stator winding and independently cyclically integrates the positive and negative half-cycles thereof and compares the results to a reference level associated with a desired commutation angle.
Analysis and testing of a double armature brushless dc linear motor with NdFeB permanent magnets
Filho, A.F.F.
1998-01-01
The use of high-energy product NdFeB permanent magnets benefits the design and features of a double armature brushless dc linear motor. As the linear motor is also slotless, its 5 mm airgap requires a source of high flux to overcome the reluctance and produce an adequate amount of force. The linear motor employs a topology that makes use of five permanent magnets to provide excitation flux. The permanent magnets are arranged in such a way that maximises the force the linear motor can deliver. The actuator produces a force up to 86.2 N at an armature current of 4.5 A. However, the topology makes the actuator prone to saturation. It affects the operation point of the permanent magnets, reduces the airgap flux density and the force, and increases flux leakage. To avoid saturation, a flux compensation scheme was conceived. The results are presented and assessed by means of finite element simulation and by experimental results that presented a good agreement. (orig.)
Comparison of solar panel cooling system by using dc brushless fan and dc water
Irwan, Y M; Leow, W Z; Irwanto, M; M, Fareq; Hassan, S I S; Amelia, A R; Safwati, I
2015-01-01
The purpose of this article is to discuss comparison of solar panel cooling system by using DC brushless fan and DC water pump. Solar photovoltaic (PV) power generation is an interesting technique to reduce non-renewable energy consumption and as a renewable energy. The temperature of PV modules increases when it absorbs solar radiation, causing a decrease in efficiency. A solar cooling system is design, construct and experimentally researched within this work. To make an effort to cool the PV module, Direct Current (DC) brushless fan and DC water pump with inlet/outlet manifold are designed for constant air movement and water flow circulation at the back side and front side of PV module representatively. Temperature sensors were installed on the PV module to detect temperature of PV. PIC microcontroller was used to control the DC brushless fan and water pump for switch ON or OFF depend on the temperature of PV module automatically. The performance with and without cooling system are shown in this experiment. The PV module with DC water pump cooling system increase 3.52%, 36.27%, 38.98%in term of output voltage, output current, output power respectively. It decrease 6.36 °C compare than to PV module without DC water pump cooling system. While DC brushless fan cooling system increase 3.47%, 29.55%, 32.23%in term of output voltage, output current, and output power respectively. It decrease 6.1 °C compare than to PV module without DC brushless fan cooling system. The efficiency of PV module with cooling system was increasing compared to PV module without cooling system; this is because the ambient temperature dropped significantly. The higher efficiency of PV cell, the payback period of the system can be shorted and the lifespan of PV module can also be longer. (paper)
Abolfazl Halvaei Niasar
2017-12-01
Full Text Available This paper presents a simple and low-cost method to capture maximum power throughput of permanent magnet brushless DC (BLDC generator. Conventional methods of rectification are based on passive converters, and because the current waveform cannot be controlled as ideal waveform, a highly distorted current is drawn from brushless generator. It leads to lower power factor and reduces the efficiency and power per ampere capability. So, in this study an active six-witch power converter is employed and based on the phase back-EMF voltage, an optimum current waveform is generated. The phase currents are controlled inphase to phase voltages and their magnitudes are adjusted to regulate the DC-link voltage. Proposed control theory is verified by simulations for BLDC generator and permanent magnet synchronous generator (PMSG. Moreover, some experimental results are given to demonstrate the theoretical and simulation results.
On-Line Tracking Controller for Brushless DC Motor Drives Using Artificial Neural Networks
Rubaai, Ahmed
1996-01-01
A real-time control architecture is developed for time-varying nonlinear brushless dc motors operating in a high performance drives environment. The developed control architecture possesses the capabilities of simultaneous on-line identification and control. The dynamics of the motor are modeled on-line and controlled using an artificial neural network, as the system runs. The control architecture combines the experience and dependability of adaptive tracking systems with potential and promise of the neural computing technology. The sensitivity of real-time controller to parametric changes that occur during training is investigated. Such changes are usually manifested by rapid changes in the load of the brushless motor drives. This sudden change in the external load is simulated for the sigmoidal and sinusoidal reference tracks. The ability of the neuro-controller to maintain reasonable tracking accuracy in the presence of external noise is also verified for a number of desired reference trajectories.
Multilevel DC Link Inverter for Brushless Permanent Magnet Motors with Very Low Inductance
Su, G.J.
2001-01-01
Due to their long effective air gaps, permanent magnet motors tend to have low inductance. The use of ironless stator structure in present high power PM motors (several tens of kWs) reduces the inductance even further ( and lt; 100(micro)H). This low inductance imposes stringent current regulation demands for the inverter to obtain acceptable current ripple. An analysis of the current ripple for these low inductance brushless PM motors shows that a standard inverter with the most commonly used IGBT switching devices cannot meet the current regulation demands and will produce unacceptable current ripples due to the IGBT's limited switching frequency. This paper introduces a new multilevel dc link inverter, which can dramatically reduce the current ripple for brushless PM motor drives. The operating principle and design guidelines are included
Harmonic Fluxes and Electromagnetic Forces of Concentric Winding Brushless Permanent Magnet Motor
Ishibashi, Fuminori; Takemasa, Ryo; Matsushita, Makoto; Nishizawa, Takashi; Noda, Shinichi
Brushless permanent magnet motors have been widely used in home applications and industrial fields. These days, high efficiency and low noise motors are demanded from the view point of environment. Electromagnetic noise and iron loss of the motor are produced by the harmonic fluxes and electromagnetic forces. However, order and space pattern of these have not been discussed in detail. In this paper, fluxes, electromagnetic forces and magneto-motive forces of brushless permanent magnet motors with concentric winding were analyzed analytically, experimentally and numerically. Time harmonic fluxes and time electromagnetic forces in the air gap were measured by search coils on the inner surface of the stator teeth and analyzed by FEM. Space pattern of time harmonic fluxes and time electromagnetic forces were worked out with experiments and FEM. Magneto motive forces due to concentric winding were analyzed with equations and checked by FEM.
Computation of magnetic field in DC brushless linear motors built with NdFeB magnets
Basak, A.; Shirkoohi, G.H.
1990-01-01
A software package based on finite element technique has been used to compute three-dimensional magnetic fields and static forces developed in brushless d.c. linear motors. As the field flux-source two different types of permanent magnets, one of them being the high energy neodymium- iron-boron type, has been used in computer models. Motors with the same specifications as the computer models were built and experimental results obtained from them are compared with the computed results
System and Method for Determining Rate of Rotation Using Brushless DC Motor
Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2000-01-01
A system and method are provided for measuring rate of rotation. A brushless DC motor is rotated and produces a back electromagnetic force (emf) on each winding thereof. Each winding's back-emf is squared. The squared outputs associated with each winding are combined, with the square root being taken of such combination, to produce a DC output proportional only to the rate of rotation of the motor's shaft.
Rate of rotation measurement using back-EMFS associated with windings of a brushless DC motor
Howard, David E. (Inventor)
2000-01-01
A system and method are provided for measuring rate of rotation. A brushless DC motor is rotated and produces a back electromagnetic force (emf) on each winding thereof. Each winding's back-emf is integrated and multiplied by the back-emf associated with an adjacent winding. The multiplied outputs associated with each winding are combined to produce a directionally sensitive DC output proportional only to the rate of rotation of the motor's shaft.
Design Methodology of a Brushless IPM Machine for a Zero Speed Injection Based Sensorless Control
Godbehere, Jonathan; Wrobel, Rafal; Drury, David; Mellor, Phil
2015-01-01
In this paper a design approach for a sensorless controlled, brushless, interior permanent magnet machine is attained. An initial study based on established electrical machine formulas provides the machine’s basic geometrical sizing. The next design stage combines a particle swarm optimisation (PSO) search routine with a magneto-static finite element (FE) solver to provide a more in depth optimisation. The optimisation system has been formulated to derive alternative machine design variants, ...
Adhika Prajna Nandiwardhana
2017-01-01
Full Text Available Penggunaan motor brushless DC telah banyak digunakan dalam berbagai bidang seperti peralatan rumah tangga maupun industri dikarenakan motor ini memiliki struktur yang sederhana, efisiensi dan torsi yang tinggi, serta menggunakan konsep komutasi elektris yang berbeda dari motor DC lainnya. Namun pengoperasian pada umumnya yang menggunakan sumber AC, penyearah serta inverter membuat tingginya nilai harmonisa arus (THD sebesar 73,33% dan power factor sebesar 0,803 dimana nilai ini kurang baik dalam pengaplikasiannya. Pada penelitian ini akan dikaji mengenai proses power factor correction yang mereduksi harmonisa arus (THD sumber AC dengan menggunakan zeta converter dalam pengaplikasian motor brushless DC, serta pengoperasian motor dengan mengamati respon motor terhadap kecepatan referensi yang berubah-ubah dan mengamati kestabilan motor terhadap pembebanan yang bervariasi. Dalam menerapkan metode yang dilakukan pada penelitian ini, pengoperasian motor brushless DC yang telah dirancang dapat bekerja dengan baik meliputi respon motor yang dapat mengikuti kecepatan referensi yang berubah-ubah, serta kestabilan motor dalam mempertahankan kecepatannya pada pembebanan yang bervariasi. Proses power factor correction dapat meningkatkan kualitas daya pada berbagai kecepatan dan mode penerapan yang berbeda-beda, dimana peningkatan tersebut membuktikan kinerja yang baik dalam sistem ini dan memiliki nilai kualitas daya yang baik.
Design and Optimization of Permanent Magnet Brushless Machines for Electric Vehicle Applications
Weiwei Gu
2015-12-01
Full Text Available In this paper, by considering and establishing the relationship between the maximum operating speed and d-axis inductance, a new design and optimization method is proposed. Thus, a more extended constant power speed range, as well as reduced losses and increased efficiency, especially in the high-speed region, can be obtained, which is essential for electric vehicles (EVs. In the first step, the initial permanent magnet (PM brushless machine is designed based on the consideration of the maximum speed and performance specifications in the entire operation region. Then, on the basis of increasing d-axis inductance, and meanwhile maintaining constant permanent magnet flux linkage, the PM brushless machine is optimized. The corresponding performance of the initial and optimal PM brushless machines are analyzed and compared by the finite-element method (FEM. Several tests are carried out in an EV simulation model based on the urban dynamometer driving schedule (UDDS for evaluation. Both theoretical analysis and simulation results verify the validity of the proposed design and optimization method.
Resonance circuits for adiabatic circuits
C. Schlachta
2003-01-01
Full Text Available One of the possible techniques to reduces the power consumption in digital CMOS circuits is to slow down the charge transport. This slowdown can be achieved by introducing an inductor in the charging path. Additionally, the inductor can act as an energy storage element, conserving the energy that is normally dissipated during discharging. Together with the parasitic capacitances from the circuit a LCresonant circuit is formed.
Electronic circuit encyclopedia 2
Park, Sun Ho
1992-10-01
This book is composed of 15 chapters, which are amplification of weak signal and measurement circuit audio control and power amplification circuit, data transmission and wireless system, forwarding and isolation, signal converting circuit, counter and comparator, discriminator circuit, oscillation circuit and synthesizer, digital and circuit on computer image processing circuit, sensor drive circuit temperature sensor circuit, magnetic control and application circuit, motor driver circuit, measuring instrument and check tool and power control and stability circuit.
Electronic circuit encyclopedia 2
Park, Sun Ho
1992-10-15
This book is composed of 15 chapters, which are amplification of weak signal and measurement circuit audio control and power amplification circuit, data transmission and wireless system, forwarding and isolation, signal converting circuit, counter and comparator, discriminator circuit, oscillation circuit and synthesizer, digital and circuit on computer image processing circuit, sensor drive circuit temperature sensor circuit, magnetic control and application circuit, motor driver circuit, measuring instrument and check tool and power control and stability circuit.
Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY
2012-03-13
The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.
A Novel Approach for Brushless DC Motors Characterization in Drones Based on Chaos
Ramon L. V. Medeiros
2018-04-01
Full Text Available A novel technique named Signal Analysis based on Chaos using Density of Maxima (SAC-DM is presented to analyze Brushless Direct Current (BLDC motors behavior. These motors are vastly used in electric vehicles, especially in Drones. The proposed approach is compared with the traditional Fast-Fourier Transform (FFT and the experiments analyzing a BLDC motor of a drone demonstrates similar results but computationally simpler than that. The main contribution of this technique is the possibility to analyze signals in time domain, instead of the frequency domain. It is possible to identify working and faulty behavior with less computational resources than the traditional approach.
Sensorless direct voltage control of the stand-alone brushless doubly-fed generator
Liu, Yi; Xu, Wei; Xiong, Fei
2017-01-01
The conventional stand-alone brushless doubly-fed generator (BDFG) control strategies need the feedback from the rotor position or speed sensors, which can reduce system reliability and increase the cost and axial volume of the machine. In this paper, a sensorless direct voltage control (DVC) str......) strategy is presented for the stand-alone BDFG. The satisfactory dynamic performance is verified by experimental results under four kinds of typical operation conditions. Besides, the proposed control strategy is robust due to no generator parameters being required....
Aspects Concerning the Torque Ripple Control of the Brushless DC Motor
BALUTA, G.
2013-05-01
Full Text Available This paper deals with two advanced numerical structures to control the electromagnetic torque ripple of Brushless Direct Current Motors (BLDCM, indirectly achieved by phase currents control and directly by the Direct Torque Control (DTC technique. In DTC there was implemented an observer to increase the rudimentary transducer resolution, containing three Hall Effect sensors. The experimental results describe the evolution of torque in both situations of control and are obtained by applying a control strategy for an electric drive system with BLDCM with trapezoidal Back-EMF in Two-Phase Mode.
POSITION CONTROL OF BRUSHLESS DC MOTOR BASED ON DIGITAL SIGNAL PROCESSING
Çetin GENÇER
2006-01-01
Full Text Available Brushless DC Motors (BLDC have been used widely high performance control systems which are depended on to development of power electronic and control technology. In these motors to fed commutated supply, the control of position without oscilation has been required. In this study, position control of BLDC with digital signal processing has been implemented by a proportional-derivative (PD controller because of its simple structure. It has been seen that the controller which is proposed from simulation and experimental studies, has a quick dynamic responce with nonoscillation.
Renato RIZZO
2012-08-01
Full Text Available This paper deals with Permanent Magnet Brushless Motors. In particular is proposed a new set of control algorithm expressions that is realized taking into account resistive parameters of the motor, differently from simplified models of this type of motors where these parameters are usually neglected. The control is set up and an analysis of the performance is reported in the paper, where the validation of the new expressions is done with reference to a motor prototype particularly compact because is foreseen for application on tram propulsion drives. The results are evidenced in the last part of the paper.
A Novel Coaxial Magnetic Gear and Its Integration With Permanent-Magnet Brushless Motor
Zhang, Xiaoxu; Liu, Xiao; Chen, Zhe
2016-01-01
A magnetic geared machine (MGM) is believed to be a promising candidate for high-torque direct-drive application. One of the key issues for developing MGMs is how to resolve the contradiction between the good performance and the complex structure. This paper aims at proposing a novel coaxial...... magnetic gear (CMG), which will not increase the mechanical complexity after integration with a permanent magnet (PM) brushless machine. The prominent feature of the proposed CMG is the introduction of the stator with modulating teeth, which function as the same as the modulating pole...
Three dimensional force prediction in a model linear brushless dc motor
Moghani, J.S.; Eastham, J.F.; Akmese, R.; Hill-Cottingham, R.J. (Univ. of Bath (United Kingdom). School of Electronic and Electric Engineering)
1994-11-01
Practical results are presented for the three axes forces produced on the primary of a linear brushless dc machine which is supplied from a three-phase delta-modulated inverter. Conditions of both lateral alignment and lateral displacement are considered. Finite element analysis using both two and three dimensional modeling is compared with the practical results. It is shown that a modified two dimensional model is adequate, where it can be used, in the aligned position and that the full three dimensional method gives good results when the machine is axially misaligned.
Direct torque control design and experimental evaluation for the brushless doubly fed machine
Sarasola, Izaskun; Poza, Javier; Rodriguez, Miguel A.; Abad, Gonzalo
2011-01-01
In this paper, a direct torque control (DTC) strategy for the brushless doubly fed machine (BDFM) is presented. After analyzing the mathematical model of this machine, the voltage vectors look-up table of classical DTC techniques is derived. Then, the behavior of the machine is studied when it is controlled by the developed DTC technique, concluding that under some specific operation conditions, a BDFM could present a time interval where the torque and the flux can not be controlled simultaneously. In these cases, two different control solutions have been defined: 'flux priority' and 'torque priority'. Finally, simulation and experimental results validate the effectiveness of the proposed control algorithms.
Novel Position and Speed Estimator for PM Single Phase Brushless D.C. Motor Drives
Lepure, Liviu I.; Andreescu, Gheorghe-Daniel; Iles, Doris
2010-01-01
A novel position and speed estimator for single phase permanent magnet brushless d.c. (PMBLDC) motor drives, based on flux integration and prior knowledge of ΨPM (θ) is proposed here and an adequate correction algorithm is adopted in order to increase the robustness to noise and to reduce...... the sensitivity to accuracy of flux linkage estimation. A speed and current close loop control is employed based on the Hall signal and the motor is controlled at different speeds in order to validate the proposed estimation algorithm with satisfying results. The position correction effect is analyzed...
McGowan, F.K.; Stelson, P.H.
1974-01-01
The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)
Mcpeak, W. L.
1975-01-01
A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.
2010-01-01
A switch-mode power circuit comprises a controllable element and a control unit. The controllable element is configured to control a current in response to a control signal supplied to the controllable element. The control unit is connected to the controllable element and provides the control...
Nelson, Jane B.
1998-01-01
Describes a research-based activity for high school physics students in which they build an LC circuit and find its resonant frequency of oscillation using an oscilloscope. Includes a diagram of the apparatus and an explanation of the procedures. (DDR)
Saxena, Anand
The focus of this research was to demonstrate a four blade rotor trim in forward flight using integrated trailing edge flaps instead of using a swashplate controls. A compact brushless DC motor was evaluated as an on-blade actuator, with the possibility of achieving large trailing edge flap amplitudes. A control strategy to actuate the trailing edge flap at desired frequency and amplitude was developed and large trailing edge flap amplitudes from the motor (instead of rotational motion) were obtained. Once the actuator was tested on the bench-top, a lightweight mechanism was designed to incorporate the motor in the blade and actuate the trailing edge flaps. A six feet diameter, four bladed composite rotor with motor-flap system integrated into the NACA 0012 airfoil section was fabricated. Systematic testing was carried out for a range of load conditions, first in the vacuum chamber followed by hover tests. Large trailing edge flap deflections were observed during the hover testing, and a peak to peak trailing edge flap amplitude of 18 degree was achieved at 2000 rotor RPM with hover tip Mach number of 0.628. A closed loop controller was designed to demonstrate trailing edge flap mean position and the peak to peak amplitude control. Further, a soft pitch link was designed and fabricated, to replace the stiff pitch link and thereby reduce the torsional stiffness of the blade to 2/rev. This soft pitch link allowed for blade root pitch motion in response to the trailing edge flap inputs. Blade pitch response due to both steady as well as sinusoidal flap deflections were demonstrated. Finally, tests were performed in Glenn L. Martin wind tunnel using a model rotor rig to assess the performance of motor-flap system in forward flight. A swashplateless trim using brushless DC motor actuated trailing edge flaps was achieved for a rotor operating at 1200 RPM and an advance ratio of 0.28. Also, preliminary exploration was carried out to test the scalability of the motor
Research of influence of open-winding faults on properties of brushless permanent magnets motor
Bogusz, Piotr; Korkosz, Mariusz; Powrózek, Adam; Prokop, Jan; Wygonik, Piotr
2017-12-01
The paper presents an analysis of influence of selected fault states on properties of brushless DC motor with permanent magnets. The subject of study was a BLDC motor designed by the authors for unmanned aerial vehicle hybrid drive. Four parallel branches per each phase were provided in the discussed 3-phase motor. After open-winding fault in single or few parallel branches, a further operation of the motor can be continued. Waveforms of currents, voltages and electromagnetic torque were determined in discussed fault states based on the developed mathematical and simulation models. Laboratory test results concerning an influence of open-windings faults in parallel branches on properties of BLDC motor were presented.
Research of influence of open-winding faults on properties of brushless permanent magnets motor
Bogusz Piotr
2017-12-01
Full Text Available The paper presents an analysis of influence of selected fault states on properties of brushless DC motor with permanent magnets. The subject of study was a BLDC motor designed by the authors for unmanned aerial vehicle hybrid drive. Four parallel branches per each phase were provided in the discussed 3-phase motor. After open-winding fault in single or few parallel branches, a further operation of the motor can be continued. Waveforms of currents, voltages and electromagnetic torque were determined in discussed fault states based on the developed mathematical and simulation models. Laboratory test results concerning an influence of open-windings faults in parallel branches on properties of BLDC motor were presented.
Demerdash, N. A.; Nehl, T. W.
1979-01-01
A comprehensive digital model for the analysis of the dynamic-instantaneous performance of a power conditioner fed samarium-cobalt permanent magnet brushless DC motor is presented. The particular power conditioner-machine system at hand, for which this model was developed, is a component of an actual prototype electromechanical actuator built for NASA-JSC as a possible alternative to hydraulic actuators as part of feasibility studies for the shuttle orbiter applications. Excellent correlation between digital simulated and experimentally obtained performance data was achieved for this specific prototype. This is reported on in this paper. Details of one component of the model, its applications and the corresponding results are given in this paper.
Adaptive H∞ nonlinear velocity tracking using RBFNN for linear DC brushless motor
Tsai, Ching-Chih; Chan, Cheng-Kain; Li, Yi Yu
2012-01-01
This article presents an adaptive H ∞ nonlinear velocity control for a linear DC brushless motor. A simplified model of this motor with friction is briefly recalled. The friction dynamics is described by the Lu Gre model and the online tuning radial basis function neural network (RBFNN) is used to parameterise the nonlinear friction function and un-modelled errors. An adaptive nonlinear H ∞ control method is then proposed to achieve velocity tracking, by assuming that the upper bounds of the ripple force, the changeable load and the nonlinear friction can be learned by the RBFNN. The closed-loop system is proven to be uniformly bounded using the Lyapunov stability theory. The feasibility and the efficacy of the proposed control are exemplified by conducting two velocity tracking experiments.
Harmonic Analysis on Torque Ripple of Brushless DC Motor Based on Advanced Commutation Control
Yanpeng Ji
2018-01-01
Full Text Available This paper investigates the relationship between current, back electromotive force (back-EMF, and torque for permanent-magnet brushless DC (PM BLDC motors under advanced commutation control from the perspective of harmonics. Considering that the phase current is the influencing factor of both torque and torque ripple, this paper firstly analyzes the effects of advanced commutation on phase current and current harmonics. And then, based on the harmonics of the phase current and back-EMF, the torque harmonic expressions are deduced. The expressions reveal the relationship of harmonic order between the torque, phase current, and back-EMF and highlight the different contribution of individual torque harmonic to the total torque ripple. Finally, the proposed harmonic analysis method is verified by the experiments with different speed and load conditions.
Diao Xiaoyan
2016-01-01
Full Text Available To solve the deficiencies of long optimization time and poor precision existing in conventional bacterial foraging algorithm (BFA in the process of parameter optimization, an improved bacterial foraging algorithm (IBFA is proposed and applied to speed and displacement control system of bearingless brushless DC (Bearingless BLDC motors. To begin with the fundamental principle of BFA, the proposed method is introduced and the individual intelligence is efficiently used in the process of parameter optimization, and then the working principle of bearingless BLDC motors is expounded. Finally, modeling and simulation of the speed and displacement control system of bearingless BLDC motors based on the IBFA are carried out by taking the software of MATLAB/Simulink as a platform. Simulation results show that, speed overshoot, torque ripple and rotor position oscillation are dramatically reduced, thus the proposed method has good application prospects in the field of bearingless motors.
Position and Speed Control of Brushless DC Motors Using Sensorless Techniques and Application Trends
Jaime Gómez-Gil
2010-07-01
Full Text Available This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order and Artificial Neural Networks.
Multifrequency spiral vector model for the brushless doubly-fed induction machine
Han, Peng; Cheng, Ming; Zhu, Xinkai
2017-01-01
This paper presents a multifrequency spiral vector model for both steady-state and dynamic performance analysis of the brushless doubly-fed induction machine (BDFIM) with a nested-loop rotor. Winding function theory is first employed to give a full picture of the inductance characteristics...... analytically, revealing the underlying relationship between harmonic components of stator-rotor mutual inductances and the airgap magnetic field distribution. Different from existing vector models, which only model the fundamental components of mutual inductances, the proposed vector model takes...... into consideration the low-order space harmonic coupling by incorporating nonsinusoidal inductances into modeling process. A new model order reduction approach is then proposed to transform the nested-loop rotor into an equivalent single-loop one. The effectiveness of the proposed modelling method is verified by 2D...
Torque ripple reduction of brushless DC motor based on adaptive input-output feedback linearization.
Shirvani Boroujeni, M; Markadeh, G R Arab; Soltani, J
2017-09-01
Torque ripple reduction of Brushless DC Motors (BLDCs) is an interesting subject in variable speed AC drives. In this paper at first, a mathematical expression for torque ripple harmonics is obtained. Then for a non-ideal BLDC motor with known harmonic contents of back-EMF, calculation of desired reference current amplitudes, which are required to eliminate some selected harmonics of torque ripple, are reviewed. In order to inject the reference harmonic currents to the motor windings, an Adaptive Input-Output Feedback Linearization (AIOFBL) control is proposed, which generates the reference voltages for three phases voltage source inverter in stationary reference frame. Experimental results are presented to show the capability and validity of the proposed control method and are compared with the vector control in Multi-Reference Frame (MRF) and Pseudo-Vector Control (P-VC) method results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Holzricher, John
2004-01-01
To more easily obtain a voiced excitation function for speech characterization, measurements of skin motion, tracheal tube, and vocal fold, motions were made and compared to EM sensor-glottal derived...
Wright, Bradford L.
1975-01-01
Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)
Lim, Edward C
1974-01-01
Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab
Roni Permana Saputra
2012-03-01
Full Text Available This paper discusses the design of control system for brushless DC motor using microcontroller ATMega 16 that will be applied to an independent 4-wheel drive Mobile Robot LIPI version 2 (REV-11. The control system consists of two parts which are brushless DC motor control module and supervisory control module that coordinates the desired command to the motor control module. To control the REV-11 platform, supervisory control transmit the reference data of speed and direction of motor to control the speed and direction of each actuator on the platform REV-11. From the test results it is concluded that the designed control system work properly to coordinate and control the speed and direction of motion of the actuator motor REV-11 platform.
Ge Zhengming; Chang Chingming; Chen Yensheng
2006-01-01
Anti-control of chaos of single time scale brushless dc motors (BLDCM) and chaos synchronization of different order systems are studied in this paper. By addition of an external nonlinear term, we can obtain anti-control of chaos. Then, by addition of the coupling terms, by the use of Lyapunov stability theorem and by the linearization of the error dynamics, chaos synchronization between a third-order BLDCM and a second-order Duffing system are presented
Reza Ilka
2012-04-01
Full Text Available ABSTRACT: This paper develops a mathematical relationship for the purpose of designing and selecting the optimum dimensions of a brushless permanent magnet motor. The design is optimised by the use of artificial bee colony algorithm with the goal of maximizing the power density and efficiency of the motor. The required dimensions of the brushless motor are calculated based on the optimum power density and efficiency requirements. Finally, the predicted results of the optimisation are validated using a 2-D numerical program based on finite element analysis.ABSTRAK: Kajian ini mencadangkan persamaan yang menghubungkan rekabentuk dan dimensi magnet motor kekal tanpa berus. Rekabentuk optima berdasarkan algorisma koloni lebah tiruan dengan tujuan meningkatkan ketumpatan kuasa dan keberkesanan dibentangkan dalam kajian ini. Dimensi magnet motor kekal tanpa berus dihitung dengan ketumpatan kuasa optima dan keberkesanan. Akhirnya, keputusan telah disahkan dengan menggunakan program berangka 2-D berdasarkan analisis elemen finit.KEYWORDS: brushless; permanent magnet motor; power density; artificial bee colony; algorithm; finite element analysis
Strong, G.H.; Faught, M.L.
1963-12-24
A device for safety rod counting in a nuclear reactor is described. A Wheatstone bridge circuit is adapted to prevent de-energizing the hopper coils of a ball backup system if safety rods, sufficient in total control effect, properly enter the reactor core to effect shut down. A plurality of resistances form one arm of the bridge, each resistance being associated with a particular safety rod and weighted in value according to the control effect of the particular safety rod. Switching means are used to switch each of the resistances in and out of the bridge circuit responsive to the presence of a particular safety rod in its effective position in the reactor core and responsive to the attainment of a predetermined velocity by a particular safety rod enroute to its effective position. The bridge is unbalanced in one direction during normal reactor operation prior to the generation of a scram signal and the switching means and resistances are adapted to unbalance the bridge in the opposite direction if the safety rods produce a predetermined amount of control effect in response to the scram signal. The bridge unbalance reversal is then utilized to prevent the actuation of the ball backup system, or, conversely, a failure of the safety rods to produce the predetermined effect produces no unbalance reversal and the ball backup system is actuated. (AEC)
Short- circuit tests of circuit breakers
Chorovský, P.
2015-01-01
This paper deals with short-circuit tests of low voltage electrical devices. In the first part of this paper, there are described basic types of short- circuit tests and their principles. Direct and indirect (synthetic) tests with more details are described in the second part. Each test and principles are explained separately. Oscilogram is obtained from short-circuit tests of circuit breakers at laboratory. The aim of this research work is to propose a test circuit for performing indirect test.
Boudjema, F.; Djouadi, A.; Kneur, J.L.
1992-01-01
The production of excited fermions with mass above 100 GeV is considered. f→Vf (1) decay widths are calculated where V=γ, Z or W. Excited fermion pair production in e + e - annihilation and in γγ collisions, and single production in e + e - annihilation, eγ and γγ collisions is also discussed. Cross sections are calculated for all these cases. The discovery potential of the NLC at 500 GeV is compared with that of other colliders. (K.A.) 15 refs., 5 figs., 2 tabs
K.M. Vasyliv
2013-02-01
Full Text Available By means of mathematical experiment, the author investigates electromagnetic and electromechanical processes in an independent electric power supply system based on an asynchronized generator with a three-phase modulated exciter. The processes are analyzed to specify the working capacity of the power supply system during its operation under active-inductive loading. Regularities of the electromagnetic and electromechanical processes behavior versus load intensity and the modulator scheme are identified.
K.M. Vasyliv
2013-04-01
Full Text Available By means of a mathematical experiment, electromagnetic and electromechanical processes in an independent electric power supply system based on an asynchronized generator with a three-phase modulated exciter are investigated. The processes are analyzed to specify the working capacity of the power supply system during its operation to an induction motors site. Regularities of the electromagnetic and electromechanical processes behavior versus load intensity and the switch control system parameters are identified.
Design and Performance Test of Axial Halbach Brushless DC Motor with Power Density 1.5 Kw/Kg
Kevin Dwi Prasetio
2017-01-01
Full Text Available Progress of technology on electric vehicle component sector is one reason the emergence of electric vehicles at the moment. Starting from battery which has a great current density up to the automatic control systems on electric vehicles. But there are still some shortcomings of this electric vehicle components, one of which is the low value of power density of existing electric motor in the market today.On vehicles such as electric cars when Race Car Contest, energy saving problems about power density of the driving motor is very vital. This is because the total weight of the vehicle has a huge influence on the vehicle efficiency is against it. The issue is one of the reasons of the research task. In this final task is done making the design, simulation, and architecture of the Axial Halbach Brushless DC Motor. Use of system configuration on the halbach magnet to avoid the use of iron as a material cantilever rotor. By changing the material of the cantilever rotor with lighter materials such as aluminum or even carbon fibre, the value of power density electric motors can be increased. Then using the litz wire on coil stator to reduce loss-power loss due to the barriers on the coil. Coreless stator on the system and to avoid the phenomenon of cogging at the time due to low rpm style attraction magnet with iron in the core material. While the creation process begins by determining the specifications of the Axial Halbach Brushless DC motors. Then go into the design phase of the mechanical and electrical design. Who then conducted simulations to help determine other parameters such as air gap, slot turn, and magnetic orientation. The process of making a component of stator and rotor after the simulation is completed. After all the components of the rotor and stator on assembly, mounting the hall sensor is carried out to the right to position obtained by reading the signals. After the motor can spin with good motor performance, testing can be done
On the calculation of the equivalent circuit for an electrostatic probe
Alekseev, B.V.; Kotel'nikov, V.A.; Cherepanov, V.V.
1982-01-01
An electric circuit of the probe including a nonlinear element - the layer of a volumetric charge - is considered. Free-molecular and gas dynamical modes are investigated. Calculations of transition processes in the probe circuit are conducted. Characteristic times of formation of the excited zone and the transition process in the circuit are compared. The threshold value of time constant of the circuit at which the transition process in the excited zone can be neglected is determined
Guzman, R
2000-03-01
Circuit parties are extended celebrations, lasting from a day to a week, primarily attended by gay and bisexual men in their thirties and forties. These large-scale dance parties move from city to city and draw thousands of participants. The risks for contracting HIV during these parties include recreational drug use and unsafe sex. Limited data exists on the level of risk at these parties, and participants are skeptical of outside help because of past criticism of these events. Health care and HIV advocates can promote risk-reduction strategies with the cooperation of party planners and can counsel individuals to personally reduce their own risk. To convey the message, HIV prevention workers should emphasize positive and community-centered aspects of the parties, such as taking care of friends and avoiding overdose.
Commutation circuit for an HVDC circuit breaker
Premerlani, William J.
1981-01-01
A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.
Efficiency of homopolar generators without ferromagnetic circuit
Kharitonov, V.V.
1982-01-01
E.m.f. and weights of homopolar generators (HG) without a ferromagnetic circuit and of similar generator with a ferromagnetic circuit are compared at equal armature diameters and armature rotative speed. HG without ferromagnetic cuircuit of disk and cylinder types with hot and superconducting excitation winding are considered. Areas of the most reasonable removal of a ferromagnetic circuit in the HG layout are found. The plots of relationships between the e.m.f. and HG weight that permit to estimate the efficiency of ''nonferrite'' HG constructions are presented
Synaptic Circuit Organization of Motor Corticothalamic Neurons
Yamawaki, Naoki
2015-01-01
Corticothalamic (CT) neurons in layer 6 constitute a large but enigmatic class of cortical projection neurons. How they are integrated into intracortical and thalamo-cortico-thalamic circuits is incompletely understood, especially outside of sensory cortex. Here, we investigated CT circuits in mouse forelimb motor cortex (M1) using multiple circuit-analysis methods. Stimulating and recording from CT, intratelencephalic (IT), and pyramidal tract (PT) projection neurons, we found strong CT↔ CT and CT↔ IT connections; however, CT→IT connections were limited to IT neurons in layer 6, not 5B. There was strikingly little CT↔ PT excitatory connectivity. Disynaptic inhibition systematically accompanied excitation in these pathways, scaling with the amplitude of excitation according to both presynaptic (class-specific) and postsynaptic (cell-by-cell) factors. In particular, CT neurons evoked proportionally more inhibition relative to excitation (I/E ratio) than IT neurons. Furthermore, the amplitude of inhibition was tuned to match the amount of excitation at the level of individual neurons; in the extreme, neurons receiving no excitation received no inhibition either. Extending these studies to dissect the connectivity between cortex and thalamus, we found that M1-CT neurons and thalamocortical neurons in the ventrolateral (VL) nucleus were remarkably unconnected in either direction. Instead, VL axons in the cortex excited both IT and PT neurons, and CT axons in the thalamus excited other thalamic neurons, including those in the posterior nucleus, which additionally received PT excitation. These findings, which contrast in several ways with previous observations in sensory areas, illuminate the basic circuit organization of CT neurons within M1 and between M1 and thalamus. PMID:25653383
Mukhopadhyay, N.C.
1986-01-01
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested
Mukhopadhyay, N.C.
1986-01-01
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)
Circuit QED lattices: Towards quantum simulation with superconducting circuits
Schmidt, Sebastian [Institute for Theoretical Physics, ETH Zurich, 8093, Zurich (Switzerland); Koch, Jens [Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208 (United States)
2013-06-15
The Jaynes-Cummings model describes the coupling between photons and a single two-level atom in a simplified representation of light-matter interactions. In circuit QED, this model is implemented by combining microwave resonators and superconducting qubits on a microchip with unprecedented experimental control. Arranging qubits and resonators in the form of a lattice realizes a new kind of Hubbard model, the Jaynes-Cummings-Hubbard model, in which the elementary excitations are polariton quasi-particles. Due to the genuine openness of photonic systems, circuit QED lattices offer the possibility to study the intricate interplay of collective behavior, strong correlations and non-equilibrium physics. Thus, turning circuit QED into an architecture for quantum simulation, i.e., using a well-controlled system to mimic the intricate quantum behavior of another system too daunting for a theorist to tackle head-on, is an exciting idea which has served as theorists' playground for a while and is now also starting to catch on in experiments. This review gives a summary of the most recent theoretical proposals and experimental efforts. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
GHOLAMIAN, A. S.
2009-06-01
Full Text Available In this paper, a magnet shape optimization method for reduction of cogging torque and torque ripple in Permanent Magnet (PM brushless DC motors is presented by using the reduced basis technique coupled by finite element and design of experiments methods. The primary objective of the method is to reduce the enormous number of design variables required to define the magnet shape. The reduced basis technique is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective is achieved. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the magnet shape optimization of a 6-poles/18-slots PM BLDC motor.
Speed Control Analysis of Brushless DC Motor Based on Maximum Amplitude DC Current Feedback
Hassan M.A.A.
2014-07-01
Full Text Available This paper describes an approach to develop accurate and simple current controlled modulation technique for brushless DC (BLDC motor drive. The approach is applied to control phase current based on generation of quasi-square wave current by using only one current controller for the three phases. Unlike the vector control method which is complicated to be implemented, this simple current modulation technique presents advantages such as phase currents are kept in balance and the current is controlled through only one dc signal which represent maximum amplitude value of trapezoidal current (Imax. This technique is performed with Proportional Integral (PI control algorithm and triangular carrier comparison method to generate Pulse Width Modulation (PWM signal. In addition, the PI speed controller is incorporated with the current controller to perform desirable speed operation of non-overshoot response. The performance and functionality of the BLDC motor driver are verified via simulation by using MATLAB/SIMULINK. The simulation results show the developed control system performs desirable speed operation of non-overshoot and good current waveforms.
Lawler, J.S.
2001-01-01
The brushless dc motor (BDCM) has high-power density and efficiency relative to other motor types. These properties make the BDCM well suited for applications in electric vehicles provided a method can be developed for driving the motor over the 4 to 6:1 constant power speed range (CPSR) required by such applications. The present state of the art for constant power operation of the BDCM is conventional phase advance (CPA)[1]. In this paper, we identify key limitations of CPA. It is shown that the CPA has effective control over the developed power but that the current magnitude is relatively insensitive to power output and is inversely proportional to motor inductance. If the motor inductance is low, then the rms current at rated power and high speed may be several times larger than the current rating. The inductance required to maintain rms current within rating is derived analytically and is found to be large relative to that of BDCM designs using high-strength rare earth magnets. Th us, the CPA requires a BDCM with a large equivalent inductance
Research on an Axial Magnetic-Field-Modulated Brushless Double Rotor Machine
Bin Yu
2013-09-01
Full Text Available Double rotor machine, an electronic continuously variable transmission, has great potential in application of hybrid electric vehicles (HEVs, wind power and marine propulsion. In this paper, an axial magnetic-field-modulated brushless double rotor machine (MFM-BDRM, which can realize the speed decoupling between the shaft of the modulating ring rotor and that of the permanent magnet rotor is proposed. Without brushes and slip rings, the axial MFM-BDRM offers significant advantages such as excellent reliability and high efficiency. Since the number of pole pairs of the stator is not equal to that of the permanent magnet rotor, which differs from the traditional permanent magnet synchronous machine, the operating principle of the MFM-BDRM is deduced. The relations of corresponding speed and toque transmission are analytically discussed. The cogging toque characteristics, especially the order of the cogging torque are mathematically formulated. Matching principle of the number of pole pairs of the stator, that of the permanent magnet rotor and the number of ferromagnetic pole pieces is inferred since it affects MFM-BDRM’s performance greatly, especially in the respect of the cogging torque and electromagnetic torque ripple. The above analyses are assessed with the three-dimensional (3D finite-element method (FEM.
Brushless DC motor control system responsive to control signals generated by a computer or the like
Packard, Douglas T. (Inventor); Schmitt, Donald E. (Inventor)
1987-01-01
A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The rotor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor may be regulated by applying a separate control signal to each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.
Astik, Mitesh B.; Bhatt, Praghnesh; Bhalja, Bhavesh R.
2017-03-01
A sensorless control scheme based on an unknown input observer is presented in this paper in which back EMF of the Brushless DC Motor (BLDC) is continuously estimated from available line voltages and currents. During negative rotation of motor, actual and estimated speed fail to track the reference speed and if the corrective action is not taken by the observer, the motor goes into saturation. To overcome this problem, the speed estimation algorithm has been implemented in this paper to control the dynamic behavior of the motor during negative rotation. The Ackermans method was used to calculate the gains of an unknown input observer which is based on the appropriate choice of the eigenvalues in advance. The criteria to choose eigenvalue is to obtain a balance between faster convergence rate and the least noise level. Simulations have been carried out for different disturbances such as step changes in motor reference speed and load torque. The comparative simulation results clearly depict that the disturbance effects in actual and estimated responses minimizes as observer gain setting increases.
Gwaltney, D. A.
2002-01-01
A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.
On Stability of Open-Loop Operation without Rotor Information for Brushless DC Motors
Zhong Wu
2014-01-01
Full Text Available Open-loop operation mode is often used to control the Brushless DC Motors (BLDCMs without rotor position sensors when the back electromotive force (EMF is too weak due to the very low rotor velocity. The rotor position information is not necessary in this mode and the stator windings are supplied with voltages under a certain ratio of the amplitude to the frequency. However, the rotor synchronization will be destroyed once if the commutation instant is inappropriate. In order to improve the reliability of the open-loop operation mode, a dynamic equation is established to represent the synchronization error between the rotor and the stator. Thereafter, the stability of the open-loop control mode is analyzed by using Lyapunov indirect method. Theoretical analysis indicates that the open-loop control mode is asymptotically stable only when the commutation instant of the stator current lags behind the ideal one suitably. Finally, theoretical analysis is verified through the experimental results of a certain BLDCM.
Speed response of brushless DC motor using fuzzy PID controller under varying load condition
Akash Varshney
2017-09-01
Full Text Available The increasing trend towards usage of precisely controlled, high torque, efficient and low noise motors for dedicated applications has attracted the attention of researcher in Brushless DC (BLDC motors. BLDC motors can act as an acceptable alternative to the conventional motors like Induction Motors, Switched Reluctance Motors etc. This paper presents a detailed study on the performance of a BLDC motor supplying different types of loads, and at the same time, deploying different control techniques. An advance Fuzzy PID controller is compared with the commonly used PID controller. The load variations considered are of the most common types, generally encountered in practice. A comparison has been carried out in this paper by observing the dynamic speed response of motor at the time of application as well as at the time of removal of the load. The BLDC motors suffer from a major drawback of having jerky behaviour at the time of load removal. The study reveals that irrespective of the type of controller used, the gradual load variation produces better results as against sudden load variations. It is further observed that in addition to other dynamic features, the jerks produced at the time of load removal also get improved to a large extent with Fuzzy PID controller.The speed torque characteristics unraveled the fact that the jerks are minimum at the time of gradual load removal with Fuzzy PID controller in place. An attempt has been made to define these jerks by ‘Perturbation Window’.
Optimization Design and Performance Analysis of a PM Brushless Rotor Claw Pole Motor with FEM
Zhenyang Zhang
2016-07-01
Full Text Available A new type of permanent magnet (PM brushless claw pole motor (CPM with soft magnetic composite (SMC core is designed and analyzed in this paper. The PMs are mounted on the claw pole surface, and the three-phase stator windings are fed by variable-frequency three-phase AC currents. The advantages of the proposed CPM are that the slip rings on the rotor are cast off and it can achieve the efficiency improvement and higher power density. The effects of the claw-pole structure parameters, the air-gap length, and the PM thinner parameter of the proposed CPM on the output torque are investigated by using three-dimensional time-stepping finite element method (3D TS-FEM. The optimal rotor structure of the proposed CPM is obtained by using the response surface methodology (RSM and the particle swarm optimization (PSO method and the comparison of full-load performances of the proposed CPM with different material cores (SMC and silicon steel is analyzed.
Analog circuit design designing dynamic circuit response
Feucht, Dennis
2010-01-01
This second volume, Designing Dynamic Circuit Response builds upon the first volume Designing Amplifier Circuits by extending coverage to include reactances and their time- and frequency-related behavioral consequences.
Verity, P.R.; Chaplain, M.D.; Turner, G.D.J.
1984-01-01
A monostable trigger circuit comprises transistors TR2 and TR3 arranged with their collectors and bases interconnected. The collector of the transistor TR2 is connected to the base of transistor TR3 via a capacitor C2 the main current path of a grounded base transistor TR1 and resistive means R2,R3. The collector of transistor TR3 is connected to the base of transistor TR2 via resistive means R6, R7. In the stable state all the transistors are OFF, the capacitor C2 is charged, and the output is LOW. A positive pulse input to the base of TR2 switches it ON, which in turn lowers the voltage at points A and B and so switches TR1 ON so that C2 can discharge via R2, R3, which in turn switches TR3 ON making the output high. Thus all three transistors are latched ON. When C2 has discharged sufficiently TR1 switches OFF, followed by TR3 (making the output low again) and TR2. The components C1, C3 and R4 serve to reduce noise, and the diode D1 is optional. (author)
Regulation of fields excited by permanent magnets
Savchenko, I.S.
1989-01-01
Two methods of fast regulation of fields excited by permanent magnets in salient-pole electron-optical lenses are described: 1)the hybrid method realized using the additional electromagnet introduced to a magnetic chain sequentially its field being composed or substracted with magnetosolid exciter field; 2)the method with saturation of a part of a magnetic circuit, with saturation being achievable at the begining or in the end of a regulation cycle. In the second method it is proposed to direct orthogonally the main flux excited by permanent magnets and the flux in the saturated part of the magnetic circuit excited using an electromagnet. It is shown that the second method allows one to reduce the required ampere-coils by more than an order as compared to the first method at one and the same regulation range and other equal conditions. The frequency of field regulation in the experimental mock-up was 10 kHz. 3 refs.; 2 figs
A New Simple Chaotic Circuit Based on Memristor
Wu, Renping; Wang, Chunhua
In this paper, a new memristor is proposed, and then an emulator built from off-the-shelf solid state components imitating the behavior of the proposed memristor is presented. Multisim simulation and breadboard experiment are done on the emulator, exhibiting a pinched hysteresis loop in the voltage-current plane when the emulator is driven by a periodic excitation voltage. In addition, a new simple chaotic circuit is designed by using the proposed memristor and other circuit elements. It is exciting that this circuit with only a linear negative resistor, a capacitor, an inductor and a memristor can generate a chaotic attractor. The dynamical behaviors of the proposed chaotic system are analyzed by Lyapunov exponents, phase portraits and bifurcation diagrams. Finally, an electronic circuit is designed to implement the chaotic system. For the sake of simple circuit topology, the proposed chaotic circuit can be easily manufactured at low cost.
RC Circuits: Some Computer-Interfaced Experiments.
Jolly, Pratibha; Verma, Mallika
1994-01-01
Describes a simple computer-interface experiment for recording the response of an RC network to an arbitrary input excitation. The setup is used to pose a variety of open-ended investigations in network modeling by varying the initial conditions, input signal waveform, and the circuit topology. (DDR)
Zhang, Xiaoxu; Liu, Xiao; Chen, Zhe
2015-01-01
This paper presents a rapid approach to compute the magnetic field distribution in a flux-modulated permanent-magnet brushless motor. Partial differential equations are used to describe the magnet field behavior in terms of magnetic vector potentials. The whole computational domain is divided...... into several regions, i.e., magnet, air-gaps, slot-openings, and slots. The numerical solution could be obtained by applying the boundary constraints on the interfaces between these regions. The accuracy of the proposed analytical model is verified by comparing the no-load magnetic field and armature reaction...... magnetic field with those calculated by finite element method....
Yue Hao
2014-12-01
Full Text Available The performances of two topologies of low-speed double-fed brushless machine (DFBM with fractional slot windings are quantitatively compared and analyzed using two-dimensional (2-D finite element method (FEM. To fairly compare the torque capability and power efficiency of different DFBMs, the investigated DFBMs have the same outer diameter, the same axial stack length and the same iron core materials, and some comparison rules are presented. In order to maximize the torque density, several important structure parameters are optimized. The results of this paper reveal the torque density levels and power density levels of two kinds of DFBMs.
Teguh, Jefri S; Kurniawan, Michael; Wu, Xiangyang; Sum, Tze Chien; Yeow, Edwin K L
2013-01-07
Fluorescence intensity modulation of single Atto647N dye molecules in a short-circuit device and a defective device, caused by damaging an open-circuit device, is due to a variation in the excitation light focus as a result of the formation of an alternating electric current.
Pridham, G J
2013-01-01
Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided
Santiago, John
2013-01-01
Circuits overloaded from electric circuit analysis? Many universities require that students pursuing a degree in electrical or computer engineering take an Electric Circuit Analysis course to determine who will ""make the cut"" and continue in the degree program. Circuit Analysis For Dummies will help these students to better understand electric circuit analysis by presenting the information in an effective and straightforward manner. Circuit Analysis For Dummies gives you clear-cut information about the topics covered in an electric circuit analysis courses to help
Current limiter circuit system
Witcher, Joseph Brandon; Bredemann, Michael V.
2017-09-05
An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.
Equivalent circuit simulation of HPEM-induced transient responses at nonlinear loads
M. Kotzev
2017-09-01
Full Text Available In this paper the equivalent circuit modeling of a nonlinearly loaded loop antenna and its transient responses to HPEM field excitations are investigated. For the circuit modeling the general strategy to characterize the nonlinearly loaded antenna by a linear and a nonlinear circuit part is pursued. The linear circuit part can be determined by standard methods of antenna theory and numerical field computation. The modeling of the nonlinear circuit part requires realistic circuit models of the nonlinear loads that are given by Schottky diodes. Combining both parts, appropriate circuit models are obtained and analyzed by means of a standard SPICE circuit simulator. It is the main result that in this way full-wave simulation results can be reproduced. Furthermore it is clearly seen that the equivalent circuit modeling offers considerable advantages with respect to computation speed and also leads to improved physical insights regarding the coupling between HPEM field excitation and nonlinearly loaded loop antenna.
Ping Zheng
2017-05-01
Full Text Available The magnetic-field-modulated brushless double-rotor machine (MFM-BDRM, composed of a stator, a modulating ring rotor, and a PM rotor, is a kind of power-split device for hybrid electric vehicles (HEVs. In this paper, a new MFM-BDRM with sinusoidal-permeance modulating ring named Sinusoidal-Permeance-Modulating-Ring Brushless Double-Rotor Machine (SPMR-BDRM is proposed to solve the problem of poor mechanical strength and large iron loss. The structure and the operating principle of the MFM-BDRM are introduced. The design principle of the sinusoidal-permeance modulating ring is analyzed and derived. The main idea of that is to minimize the harmonic permeance of air gap, thereby the harmonic magnetic fields can be restrained. There are comparisons between a MFM-BDRM with sinusoidal-permeance modulating ring and a same size MFM-BDRM with traditional modulating ring, including magnetic field distributions and electromagnetic performances. Most importantly, the iron losses are compared under six different conditions. The result indicates that the harmonic magnetic fields in the air gap are restrained; the electromagnetic torque and power factor are almost the same with same armature current; the torque ripples of the modulating ring rotor and the PM rotor are reduced; the stator loss is reduced by 13% at least and the PM loss is reduced by 20% at least compared with the same size traditional MFM-BDRM under the same operating conditions.
Liu, Yi; Xu, Wei; Yu, Kailiang
2018-01-01
The stand-alone brushless doubly-fed induction generator (BDFIG) with the conventional control strategies suffers heavily from poor dynamic performance especially under heavy load disturbance. This paper presents a new vector control strategy of BDFIG for stand-alone power generation applications...... control strategies, and the results verify the satisfactory dynamic performance of the proposed strategy....
Demerdash, N. A. O.; Nehl, T. W.
1979-01-01
A mathematical model was developed and computerized simulations were obtained for a brushless dc motor. Experimentally obtained oscillograms of the machine phase currents are presented and the corresponding current and voltage waveforms for various modes of operation of the motor are presented and discussed.
Liu, Yi; Xu, Wei; Xiong, Fei
2017-01-01
The ship shaft power generation system based on a stand-alone brushless doubly-fed induction generator (BDFIG) have demonstrated excellent saving-energy performance. This paper presents a new control scheme of the stand-alone BDFIG for supplying unbalanced loads in the ship shaft power generation...
Intuitive analog circuit design
Thompson, Marc
2013-01-01
Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi
The circuit designer's companion
Williams, Tim
1991-01-01
The Circuit Designer's Companion covers the theoretical aspects and practices in analogue and digital circuit design. Electronic circuit design involves designing a circuit that will fulfill its specified function and designing the same circuit so that every production model of it will fulfill its specified function, and no other undesired and unspecified function.This book is composed of nine chapters and starts with a review of the concept of grounding, wiring, and printed circuits. The subsequent chapters deal with the passive and active components of circuitry design. These topics are foll
Electronic devices and circuits
Pridham, Gordon John
1972-01-01
Electronic Devices and Circuits, Volume 3 provides a comprehensive account on electronic devices and circuits and includes introductory network theory and physics. The physics of semiconductor devices is described, along with field effect transistors, small-signal equivalent circuits of bipolar transistors, and integrated circuits. Linear and non-linear circuits as well as logic circuits are also considered. This volume is comprised of 12 chapters and begins with an analysis of the use of Laplace transforms for analysis of filter networks, followed by a discussion on the physical properties of
A portable tube exciting X-ray fluorescence analysis system
Yang Qiang; Lai Wanchang; Ge Liangquan
2009-01-01
Article introduced a portable tube exciting X-ray fluorescence analysis system which is based on arm architecture. Also, we designed Tube control circuit and finished preliminary application. The energy and the intensity of the photon can be adjusted continuously by using the tube. Experiments show that high excitation efficiency obtained by setting the appropriate parameters of the tube for the various elements. (authors)
Analysis of the Torque Ripples in Designing a Disk Type Brushless Direct Current Motor
A. V. Stepanov
2015-01-01
Full Text Available This paper investigates the torque ripples of disk-type low-power brushless direct current motor (BDCM with permanent magnets. In spite of numerous studies on designing of valve engines this issue is understudied as yet. The torque ripples cause noise and vibration and can significantly limit accuracy when used in instrumentation, computer technology.We consider a motor that includes a power unit consisting of a rotor and a stator. There are ferrite elements of sensor on the rotor, and the nonmagnetic disk, bonded to it, contains permanent magnets. The rotor is mounted on a rotating shaft. The stator consists of a steel casing and bonded to it non-magnetic, non-conductive disk with holes. In the disk holes from both sides are mounted armature coils. The armature winding consists of two sections each of which has 6 coils. Each adjacent coil in section has an opposite direction of winding. The coils are arranged circumferentially and are shifted relative to each other; the displacement angle between the coils of one section is equal to 2π/6 (rad. Sections are also shifted relative to each other; the angular shift is π/6 (rad. Sections are connected to the output terminals of the electronic switch. Sections of motor windings have the reverse full-wave power.The paper has investigated the steady operation at four-stroke switching and under constant load (torque. In this case, the electromagnetic torque and rotor speed are periodical functions of the rotor rotation angle. The dependencies of the averaged torque on the rotation speed have been obtained. The spectral distribution of the torque ripples at various rotor speeds of rotation has been calculated. The dependencies of the torque on the speed were studied both at constant speed and taking into account the uneven speed. Based on the research findings of disk type BDCM was computed a level of ripples amounted to 0.8 - 5%, which is quite acceptable for use in a drive. The results are useful for
Electrical Circuits and Water Analogies
Smith, Frederick A.; Wilson, Jerry D.
1974-01-01
Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Electric Circuits I includes units, notation, resistive circuits, experimental laws, transient circuits, network theorems, techniques of circuit analysis, sinusoidal analysis, polyph
Treu, C.A. Jr.
1999-08-31
A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.
2009-01-01
A load testing circuit a circuit tests the load impedance of a load connected to an amplifier. The load impedance includes a first terminal and a second terminal, the load testing circuit comprising a signal generator providing a test signal of a defined bandwidth to the first terminal of the load...
Bergstra, J.A.; Ponse, A.
2010-01-01
Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is only evaluated if the first argument does not suffice to determine the value of the expression. In programming, short-circuit evaluation is widely used. A short-circuit logic is a variant of
Louwsma, S.M.; Vertregt, Maarten
2011-01-01
A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital
Louwsma, S.M.; Vertregt, Maarten
2010-01-01
A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital
Shaped excitation current for synchrotron magnets
Foss, M.; Praeg, W.
1981-01-01
A 500-MeV synchrotron at Argonne National Laboratory (ANL) operates at 30 Hz with its beam spill locked to neutron choppers with a precision of +- 0.5 μs. The average beam will be increased by running the magnets at 45 Hz. Three 45-Hz circuits are discussed which differ greatly in overall cost and complexity. The first is a conventional 45-Hz sine wave circuit. The reduction in time for beam acceleration results in a costly increase in peak rf power. This problem is avoided in the other two circuits by making the field rise slowly and fall rapidly. The second circuit discussed is resonant at 45 Hz and 90 Hz. Exciting this circuit with a mixture of dc, 45 Hz, and 90 Hz can produce a magnetic field with the same maximum dB/dt as the present 30-Hz field. A third, and possibly least expensive, solution is a novel circuit which produces 30 Hz during acceleration and 90 Hz when the magnets are reset. The rf requirements are, of course, identical to present requirements during acceleration. Circuit details are given
Ochoa, Agustin
2016-01-01
This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...
Shi, Yongli; Wu, Zhong; Zhi, Kangyi; Xiong, Jun
2018-03-01
In order to realize reliable commutation of brushless DC motors (BLDCMs), a simple approach is proposed to detect and correct signal faults of Hall position sensors in this paper. First, the time instant of the next jumping edge for Hall signals is predicted by using prior information of pulse intervals in the last electrical period. Considering the possible errors between the predicted instant and the real one, a confidence interval is set by using the predicted value and a suitable tolerance for the next pulse edge. According to the relationship between the real pulse edge and the confidence interval, Hall signals can be judged and the signal faults can be corrected. Experimental results of a BLDCM at steady speed demonstrate the effectiveness of the approach.
Mohd Tariq
2016-05-01
Full Text Available Most of the Brushless DC (BLDC motors drive adopts proportional, integral and derivative (PID controller and pulse width modulation (PWM scheme for speed control. Hence, BLDC motor drive has strong saturation characteristics. The saturation results in a typical windup phenomenon. The paper presents an Antiwindup drive for BLDC motor. An Antiwindup controller (AWC has been used in the paper. AWC has been modeled in MATLAB/Simulink and comparison has been done between conventional PI controller and AWC at different starting loads. Dynamic characteristics of the BLDC motor drive have been examined and results are presented and discussed in detail in this paper. Details of DSP based experimental validation of the simulated results are also presented here.
Device, system and method for a sensing electrical circuit
Vranish, John M. (Inventor)
2009-01-01
The invention relates to a driven ground electrical circuit. A driven ground is a current-measuring ground termination to an electrical circuit with the current measured as a vector with amplification. The driven ground module may include an electric potential source V.sub.S driving an electric current through an impedance (load Z) to a driven ground. Voltage from the source V.sub.S excites the minus terminal of an operational amplifier inside the driven ground which, in turn, may react by generating an equal and opposite voltage to drive the net potential to approximately zero (effectively ground). A driven ground may also be a means of passing information via the current passing through one grounded circuit to another electronic circuit as input. It may ground one circuit, amplify the information carried in its current and pass this information on as input to the next circuit.
Poulton, D.
1989-09-01
Single electron tunnelling in multiply connected weak link systems is considered. Using a second quantised approach the tunnel current, in both normal and superconducting systems, using perturbation theory, is derived. The tunnel currents are determined as a function of an Aharanov-Bohm phase (acquired by the electrons). Using these results, the multiply connected system is then discussed when coupled to a resonant LC circuit. The resulting dynamics of this composite system are then determined. In the superconducting case the results are compared and contrasted with flux mode behaviour seen in large superconducting weak link rings. Systems in which the predicted dynamics may be seen are also discussed. In analogy to the electron tunnelling analysis, the tunnelling of magnetic flux quanta through the weak link is also considered. Here, the voltage across the weak link, due to flux tunnelling, is determined as a function of an externally applied current. This is done for both singly and multiply connected flux systems. The results are compared and contrasted with charge mode behaviour seen in superconducting weak link systems. Finally, the behaviour of simple quantum fluids is considered when subject to an external rotation. Using a microscopic analysis it is found that the microscopic quantum behaviour of the particles is manifest on a macroscopic level. Results are derived for bosonic, fermionic and BCS pair-type systems. The connection between flux quantisation in electromagnetic systems is also made. Using these results, the dynamics of such a quantum fluid is considered when coupled to a rotating torsional oscillator. The results are compared with those found in SQUID devices. A model is also presented which discusses the possible excited state dynamics of such a fluid. (author)
Multi-qubit circuit quantum electrodynamics
Viehmann, Oliver
2013-01-01
Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a
Multi-qubit circuit quantum electrodynamics
Viehmann, Oliver
2013-09-03
Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a
Weiran Wang
2013-06-01
Full Text Available In order to improve the performance of bearingless brushless DC motor, a closed-loop suspended force controller combining the discrete space voltage vector modulation is applied and the direct torque control is presented in this paper. Firstly, we increase the number of the control vector to reduce the torque ripple. Then, the suspending equation is constructed which is spired by the direct torque control algorithm. As a result, the closed-loop suspended force controller is built. The simulated and experimental results evaluate the performance of the proposed method. The more advantage is that the proposed algorithm can achieve the fast torque response, reduce the torque ripple, and follow ideal stator flux track. Furthermore, the motor which implants the closed-loop suspended force controller cannot onlyobtain the dynamic response rapidly and displacement control accurately, but also has the characteristics of bearingless brushless DC motor (such as simple structure, high energy efficiency, small volume and low failure rate.
Sabah, Nassir H
2007-01-01
Circuit Variables and Elements Overview Learning Objectives Electric Current Voltage Electric Power and Energy Assigned Positive Directions Active and Passive Circuit Elements Voltage and Current Sources The Resistor The Capacitor The Inductor Concluding Remarks Summary of Main Concepts and Results Learning Outcomes Supplementary Topics on CD Problems and Exercises Basic Circuit Connections and Laws Overview Learning Objectives Circuit Terminology Kirchhoff's Laws Voltage Division and Series Connection of Resistors Current Division and Parallel Connection of Resistors D-Y Transformation Source Equivalence and Transformation Reduced-Voltage Supply Summary of Main Concepts and Results Learning Outcomes Supplementary Topics and Examples on CD Problems and Exercises Basic Analysis of Resistive Circuits Overview Learning Objectives Number of Independent Circuit Equations Node-Voltage Analysis Special Considerations in Node-Voltage Analysis Mesh-Current Analysis Special Conside...
Rangel-Abundis, Alberto
2006-01-01
Shunt and short circuit are antonyms. In French, the term shunt has been adopted to denote the alternative pathway of blood flow. However, in French, as well as in Spanish, the word short circuit (court-circuit and cortocircuito) is synonymous with shunt, giving rise to a linguistic and scientific inconsistency. Scientific because shunt and short circuit made reference to a phenomenon that occurs in the field of the physics. Because shunt and short circuit are antonyms, it is necessary to clarify that shunt is an alternative pathway of flow from a net of high resistance to a net of low resistance, maintaining the stream. Short circuit is the interruption of the flow, because a high resistance impeaches the flood. This concept is applied to electrical and cardiovascular physiology, as well as to the metabolic pathways.
Hickman, Ian
2013-01-01
Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.
Dobkin, Bob
2012-01-01
Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are being challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions aids engineers with elegant and practical design techniques that focus on common analog challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. <
Regenerative feedback resonant circuit
Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.
2014-09-02
A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.
Marston, R M
1995-01-01
CMOS Circuits Manual is a user's guide for CMOS. The book emphasizes the practical aspects of CMOS and provides circuits, tables, and graphs to further relate the fundamentals with the applications. The text first discusses the basic principles and characteristics of the CMOS devices. The succeeding chapters detail the types of CMOS IC, including simple inverter, gate and logic ICs and circuits, and complex counters and decoders. The last chapter presents a miscellaneous collection of two dozen useful CMOS circuits. The book will be useful to researchers and professionals who employ CMOS circu
Timergenerator circuits manual
Marston, R M
2013-01-01
Timer/Generator Circuits Manual is an 11-chapter text that deals mainly with waveform generator techniques and circuits. Each chapter starts with an explanation of the basic principles of its subject followed by a wide range of practical circuit designs. This work presents a total of over 300 practical circuits, diagrams, and tables.Chapter 1 outlines the basic principles and the different types of generator. Chapters 2 to 9 deal with a specific type of waveform generator, including sine, square, triangular, sawtooth, and special waveform generators pulse. These chapters also include pulse gen
Electronic devices and circuits
Pridham, Gordon John
1968-01-01
Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th
Maximum Acceleration Recording Circuit
Bozeman, Richard J., Jr.
1995-01-01
Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.
Wolfendale, E
2013-01-01
MOS Integral Circuit Design aims to help in the design of integrated circuits, especially large-scale ones, using MOS Technology through teaching of techniques, practical applications, and examples. The book covers topics such as design equation and process parameters; MOS static and dynamic circuits; logic design techniques, system partitioning, and layout techniques. Also featured are computer aids such as logic simulation and mask layout, as well as examples on simple MOS design. The text is recommended for electrical engineers who would like to know how to use MOS for integral circuit desi
Chen, Wai-Kai
2003-01-01
A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi
Security electronics circuits manual
MARSTON, R M
1998-01-01
Security Electronics Circuits Manual is an invaluable guide for engineers and technicians in the security industry. It will also prove to be a useful guide for students and experimenters, as well as providing experienced amateurs and DIY enthusiasts with numerous ideas to protect their homes, businesses and properties.As with all Ray Marston's Circuits Manuals, the style is easy-to-read and non-mathematical, with the emphasis firmly on practical applications, circuits and design ideas. The ICs and other devices used in the practical circuits are modestly priced and readily available ty
Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro; Vinay, V
2006-01-01
We consider the computational power of constant width polynomial size cylindrical circuits and nondeterministic branching programs. We show that every function computed by a Pi2 o MOD o AC0 circuit can also be computed by a constant width polynomial size cylindrical nondeterministic branching pro...
Allen, Phillip E
1987-01-01
This text presents the principles and techniques for designing analog circuits to be implemented in a CMOS technology. The level is appropriate for seniors and graduate students familiar with basic electronics, including biasing, modeling, circuit analysis, and some familiarity with frequency response. Students learn the methodology of analog integrated circuit design through a hierarchically-oriented approach to the subject that provides thorough background and practical guidance for designing CMOS analog circuits, including modeling, simulation, and testing. The authors' vast industrial experience and knowledge is reflected in the circuits, techniques, and principles presented. They even identify the many common pitfalls that lie in the path of the beginning designer--expert advice from veteran designers. The text mixes the academic and practical viewpoints in a treatment that is neither superficial nor overly detailed, providing the perfect balance.
Butler, J.N.; Shukla, S.
1995-05-01
The experimental status of excited charmed mesons is reviewed and is compared to theoretical expectations. Six states have been observed and their properties are consistent with those predicted for excited charmed states with orbital angular momentum equal to one
Beecher, L. C.; Williams, F. T.
1970-01-01
Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.
Younis, Mohammad I.
2016-01-01
Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected
Approximate circuits for increased reliability
Hamlet, Jason R.; Mayo, Jackson R.
2015-08-18
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Circuit for Driving Piezoelectric Transducers
Randall, David P.; Chapsky, Jacob
2009-01-01
The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the
Coherent defects in superconducting circuits
Mueller, Clemens
2011-01-01
The interaction of superconducting circuits with additional quantum systems is a topic that has found extensive study in the recent past. In the limit where the added system are incoherent, this is the standard field of decoherence and the system dynamics can be described by a simple master equation. In the other limit however, when the additional parts are coherent, the resulting time-evolution can become more complicated. In this thesis we have investigated the interaction of superconducting circuits with coherent and incoherent two-level defects. We have shown theoretical calculations characterizing this interaction for all relevant parameter regimes. In the weak coupling limit, the interaction can be described in an effective bath picture, where the TLS act as parts of a large, decohering environment. For strong coupling, however, the coherent dynamics of the full coupled system has to be considered. We show the calculations of the coupled time-evolution and again characterize the interaction by an effective decoherence rate. We also used experimental data to characterize the microscopic origin of the defects and the details of their interaction with the circuits. The results obtained by analyzing spectroscopic data allow us to place strong constraint on several microscopic models for the observed TLS. However, these calculations are not yet fully conclusive as to the physical nature of the TLS. We propose additional experiments to fully characterize the interaction part of the Hamiltonian, thus providing the answer to the question of the physical origin of the coupling. Additionally we have developed a method to directly drive individual defect states via virtual excitation of the qubit. This method allows one to directly probe the properties of single TLS and possibly make use of their superior coherence times for quantum information purposes. The last part of this thesis provided a way for a possible implementation of geometric quantum computation in
Troubleshooting analog circuits
Pease, Robert A
1991-01-01
Troubleshooting Analog Circuits is a guidebook for solving product or process related problems in analog circuits. The book also provides advice in selecting equipment, preventing problems, and general tips. The coverage of the book includes the philosophy of troubleshooting; the modes of failure of various components; and preventive measures. The text also deals with the active components of analog circuits, including diodes and rectifiers, optically coupled devices, solar cells, and batteries. The book will be of great use to both students and practitioners of electronics engineering. Other
Marston, R M
2013-01-01
Modern TTL Circuits Manual provides an introduction to the basic principles of Transistor-Transistor Logic (TTL). This book outlines the major features of the 74 series of integrated circuits (ICs) and introduces the various sub-groups of the TTL family.Organized into seven chapters, this book begins with an overview of the basics of digital ICs. This text then examines the symbology and mathematics of digital logic. Other chapters consider a variety of topics, including waveform generator circuitry, clocked flip-flop and counter circuits, special counter/dividers, registers, data latches, com
Circuit analysis with Multisim
Baez-Lopez, David
2011-01-01
This book is concerned with circuit simulation using National Instruments Multisim. It focuses on the use and comprehension of the working techniques for electrical and electronic circuit simulation. The first chapters are devoted to basic circuit analysis.It starts by describing in detail how to perform a DC analysis using only resistors and independent and controlled sources. Then, it introduces capacitors and inductors to make a transient analysis. In the case of transient analysis, it is possible to have an initial condition either in the capacitor voltage or in the inductor current, or bo
Optoelectronics circuits manual
Marston, R M
2013-01-01
Optoelectronics Circuits Manual covers the basic principles and characteristics of the best known types of optoelectronic devices, as well as the practical applications of many of these optoelectronic devices. The book describes LED display circuits and LED dot- and bar-graph circuits and discusses the applications of seven-segment displays, light-sensitive devices, optocouplers, and a variety of brightness control techniques. The text also tackles infrared light-beam alarms and multichannel remote control systems. The book provides practical user information and circuitry and illustrations.
'Speedy' superconducting circuits
Holst, T.
1994-01-01
The most promising concept for realizing ultra-fast superconducting digital circuits is the Rapid Single Flux Quantum (RSFQ) logic. The basic physical principle behind RSFQ logic, which include the storage and transfer of individual magnetic flux quanta in Superconducting Quantum Interference Devices (SQUIDs), is explained. A Set-Reset flip-flop is used as an example of the implementation of an RSFQ based circuit. Finally, the outlook for high-temperature superconducting materials in connection with RSFQ circuits is discussed in some details. (au)
Developing magnonic architectures in circuit QED
Karenowska, Alexy; van Loo, Arjan; Morris, Richard; Kosen, Sandoko
The development of low-temperature experiments aimed at exploring and exploiting magnonic systems at the quantum level is rapidly becoming a highly active and innovative area of microwave magnetics research. Magnons are easily excited over the microwave frequency range typical of established solid-state quantum circuit technology, and couple readily to electromagnetic fields. These facts, in combination with the highly tunable dispersion of the excitations, make them a particularly interesting proposition in the context of quantum device design. In this talk, we survey recent progress made in our group in the area of the hybridization of planar superconducting circuit technology (circuit-QED) with magnon systems. We discuss the technical requirements of successful experiments, including the choice of suitable materials. We go on to describe the results of investigations including the study spin-wave propagation in magnetic waveguides at the single magnon level, the investigation of magnon modes in spherical magnetic resonators, and the development of systems incorporating Josephson-junction based qubits. The authors would like to acknowledge funding by the EPSRC through Grant EP/K032690/1.
Ma, J.; Liu, Q.
2018-02-01
This paper presents an improved short circuit calculation method, based on pre-computed surface to determine the short circuit current of a distribution system with multiple doubly fed induction generators (DFIGs). The short circuit current, injected into power grid by DFIG, is determined by low voltage ride through (LVRT) control and protection under grid fault. However, the existing methods are difficult to calculate the short circuit current of DFIG in engineering practice due to its complexity. A short circuit calculation method, based on pre-computed surface, was proposed by developing the surface of short circuit current changing with the calculating impedance and the open circuit voltage. And the short circuit currents were derived by taking into account the rotor excitation and crowbar activation time. Finally, the pre-computed surfaces of short circuit current at different time were established, and the procedure of DFIG short circuit calculation considering its LVRT was designed. The correctness of proposed method was verified by simulation.
Elementary excitations in nuclei
Lemmer, R.H.
1987-01-01
The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited
Chetan K. Lad
2017-08-01
Full Text Available A commutation torque ripple is generated in a brushless DC motor due to a finite time taken for current transfer between outgoing phase and incoming phase due to the phase inductance. The effect of commutation ripple will be more severe for low voltage high current BLDC drives used for automotive applications. Direct Torque Control (DTC techniques are used to reduce the torque ripple. Two phase conduction with six voltage space vectors and three phase conduction with twelve voltage space vectors with DTC are used to reduce the torque ripple. Twelve Step DTC (TSDTC is capable of reducing torque ripple considerably but at the cost of increased inverter and winding losses. In Six Step DTC (SSDTC the torque ripple is higher than that of TSDTC but with reduced winding and inverter losses. In this paper an attempt has been made to strike a balance between torque ripple and losses. A novel Direct Torque Control with twelve voltage space vector with overlap angle control has been proposed. The proposed method is validated through simulation and experimental results.
Quanwu Li
2016-01-01
Full Text Available High reliability is required for the permanent magnet brushless DC motor (PM-BLDCM in an electrical pump of hypersonic vehicle. The PM-BLDCM is a short-time duty motor with high-power-density. Since thermal equilibrium is not reached for the PM-BLDCM, the temperature distribution is not uniform and there is a risk of local overheating. The winding is a main heat source and its insulation is thermally sensitive, so reducing the winding temperature rise is the key to the improvement of the reliability. In order to reduce the winding temperature rise, an electromagnetic-thermal integrated design optimization method is proposed. The method is based on electromagnetic analysis and thermal transient analysis. The requirements and constraints of electromagnetic and thermal design are considered in this method. The split ratio and the maximum flux density in stator lamination, which are highly relevant to the windings temperature rise, are optimized analytically. The analytical results are verified by finite element analysis (FEA and experiments. The maximum error between the analytical and the FEA results is 4%. The errors between the analytical and measured windings temperature rise are less than 8%. It can be proved that the method can obtain the optimal design accurately to reduce the winding temperature rise.
Sukri M.F.
2016-01-01
Full Text Available The present study presents an experimental investigation on the effect of condenser air inlet temperature and dimensionless parameter of X on the performance of automobile air-conditioning (AAC system using integrated brushless direct current motor-rotary compressor and electronic expansion valve. The other components of AAC system are from original component of AAC system used for medium size passenger car. The experimental results showed that the increment of the condenser air inlet temperature and X caused an increase in condensing temperature, cooling capacity and compressor work, while decreasing the coefficient of performance (COP. Meanwhile, the evaporating temperature increase with the increment of condenser air inlet temperature, but decrease with decrement of X. In general, AAC system have to work at higher value of X in order to produce more cooling capacity, thereby increment in compressor work also occurs due to energy balance. However, at higher value of X, the COP of the system dropped due to dominant increase in compressor power, as opposed to a rise in cooling capacity. Due to this reason, the best operation of this compressor occurs at X = 4.96 for constant T5 (35ºC, or at T5 = 30ºC for constant X (4.96.
Mendo, C
1988-09-01
Most analogue simulators have evolved from SPICE. The history and description of SPICE-like simulators are given. From a mathematical formulation of the electronic circuit the following analysis are possible: DC, AC, transient, noise, distortion, Worst Case and Statistical.
Laurent Guiraud
1999-01-01
A printed circuit board made by scientists in the ATLAS collaboration for the transition radiaton tracker (TRT). This will read data produced when a high energy particle crosses the boundary between two materials with different electrical properties.
Khitun, Alexander; Bao Mingqiang; Wang, Kang L
2010-01-01
We describe and analyse possible approaches to magnonic logic circuits and basic elements required for circuit construction. A distinctive feature of the magnonic circuitry is that information is transmitted by spin waves propagating in the magnetic waveguides without the use of electric current. The latter makes it possible to exploit spin wave phenomena for more efficient data transfer and enhanced logic functionality. We describe possible schemes for general computing and special task data processing. The functional throughput of the magnonic logic gates is estimated and compared with the conventional transistor-based approach. Magnonic logic circuits allow scaling down to the deep submicrometre range and THz frequency operation. The scaling is in favour of the magnonic circuits offering a significant functional advantage over the traditional approach. The disadvantages and problems of the spin wave devices are also discussed.
Younis, Mohammad I.
2016-03-10
Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected for the device based on the natural frequency. Additionally, a second voltage amplitude of a second source of excitation can be selected for the device, and the first and second sources of excitation can be applied to the device. After applying the first and second sources of excitation, a frequency of the second source of excitation can be swept. Using the methods of multi- frequency excitation described herein, new operating frequencies, operating frequency ranges, resonance frequencies, resonance frequency ranges, and/or resonance responses can be achieved for devices and systems.
Courtin, E.; Grund, K.; Traub, S.; Zeeb, H.
1975-01-01
The peak reading detector circuit serves for picking up the instants during which peaks of a given polarity occur in sequences of signals in which the extreme values, their time intervals, and the curve shape of the signals vary. The signal sequences appear in measuring the foetal heart beat frequence from amplitude-modulated ultrasonic, electrocardiagram, and blood pressure signals. In order to prevent undesired emission of output signals from, e. g., disturbing intermediate extreme values, the circuit consists of the series connections of a circuit to simulate an ideal diode, a strong unit, a discriminator for the direction of charging current, a time-delay circuit, and an electronic switch lying in the decharging circuit of the storage unit. The time-delay circuit thereby causes storing of a preliminary maximum value being used only after a certain time delay for the emission of the output signal. If a larger extreme value occurs during the delay time the preliminary maximum value is cleared and the delay time starts running anew. (DG/PB) [de
Color Coding of Circuit Quantities in Introductory Circuit Analysis Instruction
Reisslein, Jana; Johnson, Amy M.; Reisslein, Martin
2015-01-01
Learning the analysis of electrical circuits represented by circuit diagrams is often challenging for novice students. An open research question in electrical circuit analysis instruction is whether color coding of the mathematical symbols (variables) that denote electrical quantities can improve circuit analysis learning. The present study…
Project Circuits in a Basic Electric Circuits Course
Becker, James P.; Plumb, Carolyn; Revia, Richard A.
2014-01-01
The use of project circuits (a photoplethysmograph circuit and a simple audio amplifier), introduced in a sophomore-level electric circuits course utilizing active learning and inquiry-based methods, is described. The development of the project circuits was initiated to promote enhanced engagement and deeper understanding of course content among…
a simple a simple excitation control excitation control excitation
eobe
field voltages determined follow a simple quadratic relationship that offer a very simple control scheme, dependent on only the stator current. Keywords: saturated reactances, no-load field voltage, excitation control, synchronous generators. 1. Introduction. Introduction. Introduction. The commonest generator in use today is ...
Low latency asynchronous interface circuits
Sadowski, Greg
2017-06-20
In one form, a logic circuit includes an asynchronous logic circuit, a synchronous logic circuit, and an interface circuit coupled between the asynchronous logic circuit and the synchronous logic circuit. The asynchronous logic circuit has a plurality of asynchronous outputs for providing a corresponding plurality of asynchronous signals. The synchronous logic circuit has a plurality of synchronous inputs corresponding to the plurality of asynchronous outputs, a stretch input for receiving a stretch signal, and a clock output for providing a clock signal. The synchronous logic circuit provides the clock signal as a periodic signal but prolongs a predetermined state of the clock signal while the stretch signal is active. The asynchronous interface detects whether metastability could occur when latching any of the plurality of the asynchronous outputs of the asynchronous logic circuit using said clock signal, and activates the stretch signal while the metastability could occur.
Nonlinear dynamics based digital logic and circuits.
Kia, Behnam; Lindner, John F; Ditto, William L
2015-01-01
We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two.
GABAergic circuit dysfunctions in neurodevelopmental disorders
Bidisha eChattopadhyaya
2012-05-01
Full Text Available GABAergic interneurons control neuronal excitability, integration, and plasticity. Further, they regulate the generation of temporal synchrony and oscillatory behavior among networks of pyramidal neurons. Such oscillations within and across neural systems are believed to serve various complex functions, such as perception, movement initiation, and memory. Alterations in the development of GABAergic circuits have been implicated in various brain diseases with neurodevelopmental origin. Here, we highlight recent studies suggesting a role for alterations of GABA transmission in the pathophysiology of two neurodevelopmental diseases, schizophrenia and autism. We further discuss how manipulations of GABA signaling may be used for novel therapeutic interventions.
García Haro, Juan Miguel
2011-01-01
Este proyecto que el CAR inició hace pocos años tiene como objetivo principal el estudio y desarrollo de nuevas tecnologías en el campo de actuación y control automático, que servirá de base para otras futuras investigaciones dentro del centro. La tecnología a la que se hace mención se refiere al control de actuadores basados en motores DC brushless (BLDC Motors) empleando el sistema de hardware embebido CompactRIO y programación LabVIEW de National Instruments. Tradicionalmente se emplea en ...
Li Wenfei; Zhang Fengshou; Chen Liewen
2001-01-01
Within the framework of Hartree-Fock theory using the extended Skyrme effective interaction, the isospin excitation energy as a function of relative neutron excess δ was investigated at different temperatures and densities. It was found that the isospin excitation energy decreased with the increment of temperature and/or the decrement of density. The authors pointed out that the decrement of isospin excitation energy was resulted from the weakening of quantum effect with increment of temperature and/or decrement of density. Meanwhile, the relationship between the isospin excitation energy and the symmetry energy was discussed and found that the symmetry energy was just a part of the isospin excitation energy. With increasing temperature and decreasing density, the contribution of the symmetry energy to the isospin excitation energy becomes more and more important. The isospin excitation energy as a function of relative neutron excess was also investigated using different potential parameters. The results shows that the isospin excitation energy is almost independent of the incompressibility and the effective mass, but strongly depends on the symmetry energy strength coefficient, which indicates that it is possible to extract the symmetry energy of the nuclear equation of state by investigating the isospin excitation energy in experiments
Lim, Edward C
2013-01-01
Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo
Lim, Edward C
1982-01-01
Excited States, Volume 6 is a collection of papers that discusses the excited states of molecules. The first paper discusses the linear polyene electronic structure and potential surfaces, considering both the theoretical and experimental approaches in such electronic states. This paper also reviews the theory of electronic structure and cites some experimental techniques on polyene excitations, polyene spectroscopic phenomenology, and those involving higher states of polyenes and their triplet states. Examples of these experimental studies of excited states involve the high-resolution one-pho
Junction and circuit fabrication
Jackel, L.D.
1980-01-01
Great strides have been made in Josephson junction fabrication in the four years since the first IC SQUID meeting. Advances in lithography have allowed the production of devices with planar dimensions as small as a few hundred angstroms. Improved technology has provided ultra-high sensitivity SQUIDS, high-efficiency low-noise mixers, and complex integrated circuits. This review highlights some of the new fabrication procedures. The review consists of three parts. Part 1 is a short summary of the requirements on junctions for various applications. Part 2 reviews intergrated circuit fabrication, including tunnel junction logic circuits made at IBM and Bell Labs, and microbridge radiation sources made at SUNY at Stony Brook. Part 3 describes new junction fabrication techniques, the major emphasis of this review. This part includes a discussion of small oxide-barrier tunnel junctions, semiconductor barrier junctions, and microbridge junctions. Part 3 concludes by considering very fine lithography and limitations to miniaturization. (orig.)
Microwave GaAs Integrated Circuits On Quartz Substrates
Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara
1994-01-01
Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.
A neural command circuit for grooming movement control.
Hampel, Stefanie; Franconville, Romain; Simpson, Julie H; Seeds, Andrew M
2015-09-07
Animals perform many stereotyped movements, but how nervous systems are organized for controlling specific movements remains unclear. Here we use anatomical, optogenetic, behavioral, and physiological techniques to identify a circuit in Drosophila melanogaster that can elicit stereotyped leg movements that groom the antennae. Mechanosensory chordotonal neurons detect displacements of the antennae and excite three different classes of functionally connected interneurons, which include two classes of brain interneurons and different parallel descending neurons. This multilayered circuit is organized such that neurons within each layer are sufficient to specifically elicit antennal grooming. However, we find differences in the durations of antennal grooming elicited by neurons in the different layers, suggesting that the circuit is organized to both command antennal grooming and control its duration. As similar features underlie stimulus-induced movements in other animals, we infer the possibility of a common circuit organization for movement control that can be dissected in Drosophila.
Wang, Yaxin; Logan, Thomas G; Smith, P Alex; Hsu, Po-Lin; Cohn, William E; Xu, Liping; McMahon, Richard A
2017-10-01
The IntraVAD is a miniature intra-aortic ventricular assist device (VAD) designed to work in series with the compromised left ventricle. A reverse-rotation control (RRc) mode has been developed to increase myocardial perfusion and reduce ventricular volume. The RRc mode includes forward rotation in systole and reverse rotation in diastole, which requires the IntraVAD to periodically reverse its rotational direction in synchrony with the cardiac cycle. This periodic reversal leads to changes in pressure force over the impeller, which makes the entire system less stable. To eliminate the mechanical wear of a contact bearing and provide active control over the axial position of the rotor, a miniature magnetically levitated bearing (i.e., the PM-Coil module) composed of two concentric permanent magnetic (PM) rings and a pair of coils-one on each side-was proposed to provide passive radial and active axial rotor stabilization. In the early design stage, the numerical finite element method (FEM) was used to optimize the geometry of the brushless DC (BLDC) motor and the maglev module, but constructing a new model each time certain design parameters were adjusted required substantial computation time. Because the design criteria for the module had to be modified to account for the magnetic force produced by the motor and for the hemodynamic changes associated with pump operation, a simplified analytic expression was derived for the expected magnetic forces. Suitable bearings could then be designed capable of overcoming these forces without repeating the complicated FEM simulation for the motor. Using this method at the initial design stage can inform the design of the miniature maglev BLDC motor for the proposed pulsatile axial-flow VAD. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Small circuits for cryptography.
Torgerson, Mark Dolan; Draelos, Timothy John; Schroeppel, Richard Crabtree; Miller, Russell D.; Anderson, William Erik
2005-10-01
This report examines a number of hardware circuit design issues associated with implementing certain functions in FPGA and ASIC technologies. Here we show circuit designs for AES and SHA-1 that have an extremely small hardware footprint, yet show reasonably good performance characteristics as compared to the state of the art designs found in the literature. Our AES performance numbers are fueled by an optimized composite field S-box design for the Stratix chipset. Our SHA-1 designs use register packing and feedback functionalities of the Stratix LE, which reduce the logic element usage by as much as 72% as compared to other SHA-1 designs.
Silicon integrated circuit process
Lee, Jong Duck
1985-12-01
This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.
Argyle, Andrew
2009-01-01
Step-by-step instructions for making your own PCBs at home. Making your own printed circuit board (PCB) might seem a daunting task, but once you master the steps, it's easy to attain professional-looking results. Printed circuit boards, which connect chips and other components, are what make almost all modern electronic devices possible. PCBs are made from sheets of fiberglass clad with copper, usually in multiplelayers. Cut a computer motherboard in two, for instance, and you'll often see five or more differently patterned layers. Making boards at home is relatively easy
Silicon integrated circuit process
Lee, Jong Duck
1985-12-15
This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.
Circuit design for reliability
Cao, Yu; Wirth, Gilson
2015-01-01
This book presents physical understanding, modeling and simulation, on-chip characterization, layout solutions, and design techniques that are effective to enhance the reliability of various circuit units. The authors provide readers with techniques for state of the art and future technologies, ranging from technology modeling, fault detection and analysis, circuit hardening, and reliability management. Provides comprehensive review on various reliability mechanisms at sub-45nm nodes; Describes practical modeling and characterization techniques for reliability; Includes thorough presentation of robust design techniques for major VLSI design units; Promotes physical understanding with first-principle simulations.
Electronic circuits fundamentals & applications
Tooley, Mike
2015-01-01
Electronics explained in one volume, using both theoretical and practical applications.New chapter on Raspberry PiCompanion website contains free electronic tools to aid learning for students and a question bank for lecturersPractical investigations and questions within each chapter help reinforce learning Mike Tooley provides all the information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies and oscillators. The
Design of remote laser-induced fluorescence system's acquisition circuit
Wang, Guoqing; Lou, Yue; Wang, Ran; Yan, Debao; Li, Xin; Zhao, Xin; Chen, Dong; Zhao, Qi
2017-10-01
Laser-induced fluorescence system(LIfS) has been found its significant application in identifying one kind of substance from another by its properties even it's thimbleful, and becomes useful in plenty of fields. Many superior works have reported LIfS' theoretical analysis , designs and uses. However, the usual LIPS is always constructed in labs to detect matter quite closely, for the system using low-power laser as excitation source and charge coupled device (CCD) as detector. Promoting the detectivity of LIfS is of much concern to spread its application. Here, we take a high-energy narrow-pulse laser instead of commonly used continuous wave laser to operate sample, thus we can get strong fluorescent. Besides, photomultiplier (PMT) with high sensitivity is adopted in our system to detect extremely weak fluorescence after a long flight time from the sample to the detector. Another advantage in our system, as the fluorescence collected into spectroscopy, multiple wavelengths of light can be converted to the corresponding electrical signals with the linear array multichannel PMT. Therefore, at the cost of high-powered incentive and high-sensitive detector, a remote LIFS is get. In order to run this system, it is of importance to turn light signal to digital signal which can be processed by computer. The pulse width of fluorescence is deeply associated with excitation laser, at the nanosecond(ns) level, which has a high demand for acquisition circuit. We design an acquisition circuit including, I/V conversion circuit, amplifying circuit and peak-holding circuit. The simulation of circuit shows that peak-holding circuit can be one effective approach to reducing difficulty of acquisition circuit.
A scalable piezoelectric impulse-excited energy harvester for human body excitation
Pillatsch, P; Yeatman, E M; Holmes, A S
2012-01-01
Harvesting energy from low-frequency and non-harmonic excitations typical of human motion presents specific challenges. While resonant devices do have an advantage in environments where the excitation frequency is constant, and while they can make use of the entire proof mass travel range in the case of excitation amplitudes that are smaller than the internal displacement limit, they are not suitable for body applications since the frequencies are random and the amplitudes tend to be larger than the device size. In this paper a piezoelectric, impulse-excited approach is presented. A cylindrical proof mass actuates an array of piezoelectric bi-morph beams through magnetic attraction. After the initial excitation these transducers are left to vibrate at their natural frequency. This increases the operational frequency range as well as the electromechanical coupling. The principle of impulse excitation is discussed and a centimetre-scale functional model is introduced as a proof of concept. The obtained data show the influence of varying the frequency, acceleration and proof mass. Finally, a commercially available integrated circuit for voltage regulation is tested. At a frequency of 2 Hz and an acceleration of 2.7 m s −2 a maximal power output of 2.1 mW was achieved. (paper)
Amara, Y
2001-12-01
Double excitation machines are synchronous machines where two excitation circuits coexist: one with permanent magnets and the other with windings. This study shows that double excitation allows to combine the advantages of synchronous machines with winded inductor with those of permanent magnet machines. This concept allows a better dimensioning of the converter-machine set and a better energy management. In order to allow the operation of permanent magnet machines over a wide range of speeds, it is necessary to have a magnetic reaction of the induced circuit of the same order than the excitation flux. On the other hand, the power factor is weaker and the power supply converter is over-dimensioned. The double excitation allows the permanent magnet machines to work over a large speed range with a better power factor, even when the magnetic reaction of the induced circuit is relatively weak with respect to the excitation flux. (J.S.)
ESD analog circuits and design
Voldman, Steven H
2014-01-01
A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design. It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect pres
Unstable oscillators based hyperchaotic circuit
Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.
1999-01-01
A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ...... in the circuit. The performance of the circuit is investigated by means of numerical integration of appropriate differential equations, PSPICE simulations, and hardware experiment.......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...
Baviere, Ph.
Tests which have proven effective for evaluating VLSI circuits for space applications are described. It is recommended that circuits be examined after each manfacturing step to gain fast feedback on inadequacies in the production system. Data from failure modes which occur during operational lifetimes of circuits also permit redefinition of the manufacturing and quality control process to eliminate the defects identified. Other tests include determination of the operational envelope of the circuits, examination of the circuit response to controlled inputs, and the performance and functional speeds of ROM and RAM memories. Finally, it is desirable that all new circuits be designed with testing in mind.
Electronic Circuit Analysis Language (ECAL)
Chenghang, C.
1983-03-01
The computer aided design technique is an important development in computer applications and it is an important component of computer science. The special language for electronic circuit analysis is the foundation of computer aided design or computer aided circuit analysis (abbreviated as CACD and CACA) of simulated circuits. Electronic circuit analysis language (ECAL) is a comparatively simple and easy to use circuit analysis special language which uses the FORTRAN language to carry out the explanatory executions. It is capable of conducting dc analysis, ac analysis, and transient analysis of a circuit. Futhermore, the results of the dc analysis can be used directly as the initial conditions for the ac and transient analyses.
Bonin, E. L.
1969-01-01
Multi-chip integrated circuit switch consists of a GaAs photon-emitting diode in close proximity with S1 phototransistor. A high current gain is obtained when the transistor has a high forward common-emitter current gain.
Keefe, D.J.
1980-01-01
An automatically sweeping circuit for searching for an evoked response in an output signal in time with respect to a trigger input is described. Digital counters are used to activate a detector at precise intervals, and monitoring is repeated for statistical accuracy. If the response is not found then a different time window is examined until the signal is found
Keefe, Donald J.
1980-01-01
An automatically sweeping circuit for searching for an evoked response in an output signal in time with respect to a trigger input. Digital counters are used to activate a detector at precise intervals, and monitoring is repeated for statistical accuracy. If the response is not found then a different time window is examined until the signal is found.
Dickinson, R. M.
1977-01-01
Rectifying antenna is less bulky structure for absorbing transmitted microwave power and converting it into electrical current. Printed-circuit approach, using microstrip technology and circularly polarized antenna, makes polarization orientation unimportant and allows much smaller arrays for given performance. Innovation is particularly useful with proposed electric vehicles powered by beam microwaves.
Nauta, Bram
2013-01-01
De chip, of geïntegreerde schakeling, heeft in een razend tempo ons leven ingrijpend veranderd. Het lijkt zo vanzelfsprekend dat er weer een nieuwe generatie smartphones, tablets of computers is. Maar dat is het niet. Prof.dr.ir. Bram Nauta, hoogleraar Integrated Circuit Design, laat in zijn rede
2005-01-01
A voltage regulating circuit comprising a rectifier (2) for receiving an AC voltage (Vmains) and for generating a rectified AC voltage (vrec), and a capacitor (3) connected in parallel with said rectified AC voltage for providing a DC voltage (VDC) over a load (5), characterized by a unidirectional
Gerards, Marco Egbertus Theodorus; Kuper, Jan; Kokkeler, Andre B.J.; Molenkamp, Egbert
2009-01-01
Reduction circuits are used to reduce rows of ﬂoating point values to single values. Binary ﬂoating point operators often have deep pipelines, which may cause hazards when many consecutive rows have to be reduced. We present an algorithm by which any number of consecutive rows of arbitrary lengths
A Magnetic Circuit Demonstration.
Vanderkooy, John; Lowe, June
1995-01-01
Presents a demonstration designed to illustrate Faraday's, Ampere's, and Lenz's laws and to reinforce the concepts through the analysis of a two-loop magnetic circuit. Can be made dramatic and challenging for sophisticated students but is suitable for an introductory course in electricity and magnetism. (JRH)
Lindberg, Erik; Murali, K.; Tamacevicius, Arunas
2006-01-01
The state equations of the LMT circuit are modeled as a dedicated analogue computer circuit and solved by means of PSpice. The nonlinear part of the system is studied. Problems with the PSpice program are presented....
Resistor Combinations for Parallel Circuits.
McTernan, James P.
1978-01-01
To help simplify both teaching and learning of parallel circuits, a high school electricity/electronics teacher presents and illustrates the use of tables of values for parallel resistive circuits in which total resistances are whole numbers. (MF)
Detecting short circuits during assembly
Deboo, G. J.
1980-01-01
Detector circuit identifies shorts between bus bars of electronic equipment being wired. Detector sounds alarm and indicates which planes are shorted. Power and ground bus bars are scanned continuously until short circuit occurs.
BR-5 primary circuit decontamination
Efimov, I.A.; Nikulin, M.P.; Smirnov-Averin, A.P.; Tymosh, B.S.; Shereshkov, V.S.
1976-01-01
Results and methodology of steam-water and acid decontamination of the primary coolant circuit SBR-5 reactor in 1971 are discussed. Regeneration process in a cold trap of the primary coolant circuit is discussed
Explicit logic circuits discriminate neural states.
Lane Yoder
Full Text Available The magnitude and apparent complexity of the brain's connectivity have left explicit networks largely unexplored. As a result, the relationship between the organization of synaptic connections and how the brain processes information is poorly understood. A recently proposed retinal network that produces neural correlates of color vision is refined and extended here to a family of general logic circuits. For any combination of high and low activity in any set of neurons, one of the logic circuits can receive input from the neurons and activate a single output neuron whenever the input neurons have the given activity state. The strength of the output neuron's response is a measure of the difference between the smallest of the high inputs and the largest of the low inputs. The networks generate correlates of known psychophysical phenomena. These results follow directly from the most cost-effective architectures for specific logic circuits and the minimal cellular capabilities of excitation and inhibition. The networks function dynamically, making their operation consistent with the speed of most brain functions. The networks show that well-known psychophysical phenomena do not require extraordinarily complex brain structures, and that a single network architecture can produce apparently disparate phenomena in different sensory systems.
MOS voltage automatic tuning circuit
李, 田茂; 中田, 辰則; 松本, 寛樹
2004-01-01
Abstract ###Automatic tuning circuit adjusts frequency performance to compensate for the process variation. Phase locked ###loop (PLL) is a suitable oscillator for the integrated circuit. It is a feedback system that compares the input ###phase with the output phase. It can make the output frequency equal to the input frequency. In this paper, PLL ###fomed of MOSFET's is presented.The presented circuit consists of XOR circuit, Low-pass filter and Relaxation ###Oscillator. On PSPICE simulation...
Behavioral synthesis of asynchronous circuits
Nielsen, Sune Fallgaard
2005-01-01
This thesis presents a method for behavioral synthesis of asynchronous circuits, which aims at providing a synthesis flow which uses and tranfers methods from synchronous circuits to asynchronous circuits. We move the synchronous behavioral synthesis abstraction into the asynchronous handshake...... is idle. This reduces unnecessary switching activity in the individual functional units and therefore the energy consumption of the entire circuit. A collection of behavioral synthesis algorithms have been developed allowing the designer to perform time and power constrained design space exploration...
Selected collection of circuit drawings
1977-01-01
The many electronics circuits have been constracted in the Electronics Shop for use in nuclear experiments or other purposes of this Institute. The types of these circuits amount to about 500 items in total since 1968. This report describes the electronics circuit diagrams selected from this collection. The circuit details are not presented in this report, because these are already been published in the other technical reports. (auth.)
Diode, transistor & fet circuits manual
Marston, R M
2013-01-01
Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration
Analysis of Bernstein's factorization circuit
Lenstra, A.K.; Shamir, A.; Tomlinson, J.; Tromer, E.; Zheng, Y.
2002-01-01
In [1], Bernstein proposed a circuit-based implementation of the matrix step of the number field sieve factorization algorithm. These circuits offer an asymptotic cost reduction under the measure "construction cost x run time". We evaluate the cost of these circuits, in agreement with [1], but argue
High voltage MOSFET switching circuit
McEwan, Thomas E.
1994-01-01
The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.
Harmonic excitations in quasicrystals
Luck, J.M.
1986-03-01
The harmonic excitations (phonons) of quasicrystals are studied in a simple one-dimensional model. The spectrum is a Cantor set, which exhibits selfsimilarity properties. The eigenstates are generically ''critical'', i.e. neither extended nor localized
Neuromorphic Silicon Neuron Circuits
Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena
2011-01-01
Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754
Neuromorphic silicon neuron circuits
Giacomo eIndiveri
2011-05-01
Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.
Radio frequency plasma excitation
Burden, M.St.J.; Cross, K.B.
1979-01-01
An investigation into the use of rf sputtering for ion cleaning of insulating substrates before ion plating is reported. Initial experiments consisted of sputtering metals with rf power followed by the deposition of copper onto glass slides using rf plasma excitation and biasing supply. It was found that good quality films were obtained by rf ion plating onto plastics with excellent adhesion over a wide operating pressure range. A block schematic of the rf plasma excitation system is shown. (UK)
High energy nuclear excitations
Gogny, D.; Decharge, J.
1983-09-01
The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering
1981-01-01
The invention describes the fabrication of integrated circuit structures, such as read-only memory components of field-effect transistors, which may be fabricated and then maintained in inventory, and later selectively modified in accordance with a desired pattern. It is claimed that MOS depletion-mode devices in accordance with the invention can be fabricated at lower cost and at higher yields. (U.K.)
Sketoe, J. G.; Clark, Anthony
2000-01-01
This paper presents a DOD E3 program overview on integrated circuit immunity. The topics include: 1) EMI Immunity Testing; 2) Threshold Definition; 3) Bias Tee Function; 4) Bias Tee Calibration Set-Up; 5) EDM Test Figure; 6) EMI Immunity Levels; 7) NAND vs. and Gate Immunity; 8) TTL vs. LS Immunity Levels; 9) TP vs. OC Immunity Levels; 10) 7805 Volt Reg Immunity; and 11) Seventies Chip Set. This paper is presented in viewgraph form.
Integrated coincidence circuits
Borejko, V.F.; Grebenyuk, V.M.; Zinov, V.G.
1976-01-01
The description is given of two coincidence units employing integral circuits in the VISHNYA standard. The units are distinguished for the coincidence selection element which is essentially a combination of a tunnel diode and microcircuits. The output fast response of the units is at least 90 MHz in the mode of the output signal unshaped in duration and 50 MHz minimum in the mode of the output signal shaping. The resolution time of the units is dependent upon the duration of input signals
Semiconductor integrated circuits
Michel, A.E.; Schwenker, R.O.; Ziegler, J.F.
1979-01-01
An improved method involving ion implantation to form non-epitaxial semiconductor integrated circuits. These are made by forming a silicon substrate of one conductivity type with a recessed silicon dioxide region extending into the substrate and enclosing a portion of the silicon substrate. A beam of ions of opposite conductivity type impurity is directed at the substrate at an energy and dosage level sufficient to form a first region of opposite conductivity within the silicon dioxide region. This impurity having a concentration peak below the surface of the substrate forms a region of the one conductivity type which extends from the substrate surface into the first opposite type region to a depth between the concentration peak and the surface and forms a second region of opposite conductivity type. The method, materials and ion beam conditions are detailed. Vertical bipolar integrated circuits can be made this way when the first opposite type conductivity region will function as a collector. Also circuits with inverted bipolar devices when this first region functions as a 'buried'' emitter region. (U.K.)
Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters
Ting Tan
2017-03-01
Full Text Available The performance of cantilever-beam piezoelectric energy harvester is usually analyzed with pure resistive circuit. The optimal performance of such a vibration-based energy harvesting system is limited by narrow bandwidth around its modified natural frequency. For broadband piezoelectric energy harvesting, series and parallel inductive-resistive circuits are introduced. The electromechanical coupled distributed parameter models for such systems under harmonic base excitations are decoupled with modified natural frequency and electrical damping to consider the coupling effect. Analytical solutions of the harvested power and tip displacement for the electromechanical decoupled model are confirmed with numerical solutions for the coupled model. The optimal performance of piezoelectric energy harvesting with inductive-resistive circuits is revealed theoretically as constant maximal power at any excitation frequency. This is achieved by the scenarios of matching the modified natural frequency with the excitation frequency and equating the electrical damping to the mechanical damping. The inductance and load resistance should be simultaneously tuned to their optimal values, which may not be applicable for very high electromechanical coupling systems when the excitation frequency is higher than their natural frequencies. With identical optimal performance, the series inductive-resistive circuit is recommended for relatively small load resistance, while the parallel inductive-resistive circuit is suggested for relatively large load resistance. This study provides a simplified optimization method for broadband piezoelectric energy harvesters with inductive-resistive circuits.
Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters
Tan, Ting; Yan, Zhimiao
2017-03-01
The performance of cantilever-beam piezoelectric energy harvester is usually analyzed with pure resistive circuit. The optimal performance of such a vibration-based energy harvesting system is limited by narrow bandwidth around its modified natural frequency. For broadband piezoelectric energy harvesting, series and parallel inductive-resistive circuits are introduced. The electromechanical coupled distributed parameter models for such systems under harmonic base excitations are decoupled with modified natural frequency and electrical damping to consider the coupling effect. Analytical solutions of the harvested power and tip displacement for the electromechanical decoupled model are confirmed with numerical solutions for the coupled model. The optimal performance of piezoelectric energy harvesting with inductive-resistive circuits is revealed theoretically as constant maximal power at any excitation frequency. This is achieved by the scenarios of matching the modified natural frequency with the excitation frequency and equating the electrical damping to the mechanical damping. The inductance and load resistance should be simultaneously tuned to their optimal values, which may not be applicable for very high electromechanical coupling systems when the excitation frequency is higher than their natural frequencies. With identical optimal performance, the series inductive-resistive circuit is recommended for relatively small load resistance, while the parallel inductive-resistive circuit is suggested for relatively large load resistance. This study provides a simplified optimization method for broadband piezoelectric energy harvesters with inductive-resistive circuits.
Interface Circuit For Printer Port
Tucker, Jerry H.; Yadlowsky, Ann B.
1991-01-01
Electronic circuit, called printer-port interface circuit (PPI) developed to overcome certain disadvantages of previous methods for connecting IBM PC or PC-compatible computer to other equipment. Has both reading and writing modes of operation. Very simple, requiring only six integrated circuits. Provides for moderately fast rates of transfer of data and uses existing unmodified circuit card in IBM PC. When used with appropriate software, circuit converts printer port on IBM PC, XT, AT, or compatible personal computer to general purpose, 8-bit-data, 16-bit address bus that connects to multitude of devices.
Changes to the shuttle circuits
GS Department
2011-01-01
To fit with passengers expectation, there will be some changes to the shuttle circuits as from Monday 10 October. See details on http://cern.ch/ShuttleService (on line on 7 October). Circuit No. 5 is cancelled as circuit No. 1 also stops at Bldg. 33. In order to guarantee shorter travel times, circuit No. 1 will circulate on Meyrin site only and circuit No. 2, with departures from Bldg. 33 and 500, on Prévessin site only. Site Services Section
Measuring Feedforward Inhibition and Its Impact on Local Circuit Function.
Hull, Court
2017-05-01
This protocol describes a series of approaches to measure feedforward inhibition in acute brain slices from the cerebellar cortex. Using whole-cell voltage and current clamp recordings from Purkinje cells in conjunction with electrical stimulation of the parallel fibers, these methods demonstrate how to measure the relationship between excitation and inhibition in a feedforward circuit. This protocol also describes how to measure the impact of feedforward inhibition on Purkinje cell excitability, with an emphasis on spike timing. © 2017 Cold Spring Harbor Laboratory Press.
Asynchronous Rate Chaos in Spiking Neuronal Circuits.
Omri Harish
2015-07-01
Full Text Available The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results.
Cortical feedback control of olfactory bulb circuits.
Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S
2012-12-20
Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.
Asynchronous Rate Chaos in Spiking Neuronal Circuits
Harish, Omri; Hansel, David
2015-01-01
The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI) spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results. PMID:26230679
Thermionic integrated circuits: electronics for hostile environments
Lynn, D.K.; McCormick, J.B.; MacRoberts, M.D.J.; Wilde, D.K.; Dooley, G.R.; Brown, D.R.
1985-01-01
Thermionic integrated circuits combine vacuum tube technology with integrated circuit techniques to form integrated vacuum triode circuits. These circuits are capable of extended operation in both high-temperature and high-radiation environments
Power system with an integrated lubrication circuit
Hoff, Brian D [East Peoria, IL; Akasam, Sivaprasad [Peoria, IL; Algrain, Marcelo C [Peoria, IL; Johnson, Kris W [Washington, IL; Lane, William H [Chillicothe, IL
2009-11-10
A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.
Integrated coherent matter wave circuits
Ryu, C.; Boshier, M. G.
2015-01-01
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. Moreover, the source of coherent matter waves is a Bose-Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry
Matchgate circuits and compressed quantum computation
Boyajian, W.L.
2015-01-01
exact diagonal- ization. In Part II, we deal with the compressed way of quantum computation mentioned above, used to simulate physically interesting behaviours of large systems. To give an example, consider an experimental set–up, where up to 8 qubits can be well controlled. Such a set–up can be used to simulate certain interactions of 2 8 = 256 qubits. In [Boyajian et al. (2013)], we generalised the results from [Kraus (2011)], and demonstrated how the adiabatic evolution of the 1D XY-model can be simulated via an exponentially smaller quantum system. More precisely, it is shown there, how the phase transition of such a model of a spin chain consisting out of n qubits can be observed via a compressed algorithm processing only log( n ) qubits. The feasibility of such a compressed quantum simulation is due to the fact that the adiabatic evolution and the measurement of the magnetization employed to observe the phase transition can be described by a matchgate circuit. Remarkably, the number of elementary gates, i.e. the number of single and two-qubit gates which are required to implement the compressed simulation can be even smaller than required to implement the original matchgate circuit. This compressed algorithm has already been experimentally realized using NMR quantum computing [Li et al. (2014)]. In [Boyajian et al. (2013)] we showed that not only the quantum phase transition can be observed in this way, but that various other interesting processes, such as quantum quenching, where the evolution is non–adiabatic, and general time evolutions can be simulated with an exponentially smaller system. In Part II, we also recall the results from [Boyajian and Kraus (2015)] where we extend the notion of compressed quantum simulation even further. We consider the XY-model and derive compressed circuits to simulate the behavior of the thermal and any excited state of the system. To this end, we use the diagonalization of the XY-Hamiltonian presented in[ Verstraete et al
Active filter for the DESY III dipole circuit
Bothe, W.
1991-01-01
The DESY 3 dipole circuit is now operated in a ramp mode cycle with 3.6 s repetition rate. Excitation is done by a 12-pulse thyristor converter, followed by a passive filter. The existing current control could be improved by addition of an active filter. The use of a more efficient passive filter reduces the size of the active filter and does not deteriorate the dynamic behavior. The design of the control loops and the results of the simulation are presented
Selective serotonergic excitation of callosal projection neurons
Daniel eAvesar
2012-03-01
Full Text Available Serotonin (5-HT acting as a neurotransmitter in the cerebral cortex is critical for cognitive function, yet how 5-HT regulates information processing in cortical circuits is not well understood. We tested the serotonergic responsiveness of layer 5 pyramidal neurons (L5PNs of the mouse medial prefrontal cortex (mPFC, and found 3 distinct response types: long-lasting 5-HT1A (1A receptor-dependent inhibitory responses (84% of L5PNs, 5-HT2A (2A receptor-dependent excitatory responses (9%, and biphasic responses in which 2A-dependent excitation followed brief inhibition (5%. Relative to 5-HT-inhibited neurons, those excited by 5-HT had physiological properties characteristic of callosal/commissural (COM neurons that project to the contralateral cortex. We tested whether serotonergic responses in cortical pyramidal neurons are correlated with their axonal projection pattern using retrograde fluorescent labeling of COM and corticopontine-projecting (CPn neurons. 5-HT generated excitatory or biphasic responses in all 5-HT-responsive layer 5 COM neurons. Conversely, CPn neurons were universally inhibited by 5-HT. Serotonergic excitation of COM neurons was blocked by the 2A antagonist MDL 11939, while serotonergic inhibition of CPn neurons was blocked by the 1A antagonist WAY 100635, confirming a role for these two receptor subtypes in regulating pyramidal neuron activity. Selective serotonergic excitation of COM neurons was not layer-specific, as COM neurons in layer 2/3 were also selectively excited by 5-HT relative to their non-labeled pyramidal neuron neighbors. Because neocortical 2A receptors are implicated in the etiology and pathophysiology of schizophrenia, we propose that COM neurons may represent a novel cellular target for intervention in psychiatric disease.
Dynamic pulse difference circuit
Erickson, G.L.
1978-01-01
A digital electronic circuit of especial use for subtracting background activity pulses in gamma spectrometry is disclosed which comprises an up-down counter connected to count up with signal-channel pulses and to count down with background-channel pulses. A detector responsive to the count position of the up-down counter provides a signal when the up-down counter has completed one scaling sequence cycle of counts in the up direction. In an alternate embodiment, a detector responsive to the count position of the up-down counter provides a signal upon overflow of the counter
Electronics circuits and systems
Bishop, Owen
2007-01-01
The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Each chapter ends with a set
Electric circuits problem solver
REA, Editors of
2012-01-01
Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies.Here in this highly useful reference is the finest overview of electric circuits currently av
Yun, Gil Jung; Yang, Hong Young
2011-03-15
This book is about digital logic circuit test, which lists the digital basic theory, basic gate like and, or And Not gate, NAND/NOR gate such as NAND gate, NOR gate, AND and OR, logic function, EX-OR gate, adder and subtractor, decoder and encoder, multiplexer, demultiplexer, flip-flop, counter such as up/down counter modulus N counter and Reset type counter, shift register, D/A and A/D converter and two supplements list of using components and TTL manual and CMOS manual.
Krainak, Michael; Merritt, Scott
2016-01-01
Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.
Integrated circuit cell library
Whitaker, Sterling R. (Inventor); Miles, Lowell H. (Inventor)
2005-01-01
According to the invention, an ASIC cell library for use in creation of custom integrated circuits is disclosed. The ASIC cell library includes some first cells and some second cells. Each of the second cells includes two or more kernel cells. The ASIC cell library is at least 5% comprised of second cells. In various embodiments, the ASIC cell library could be 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 95% or more comprised of second cells.
Nano integrated circuit process
Yoon, Yung Sup
2004-02-01
This book contains nine chapters, which are introduction of manufacture of semiconductor chip, oxidation such as Dry-oxidation, wet oxidation, oxidation model and oxide film, diffusion like diffusion process, diffusion equation, diffusion coefficient and diffusion system, ion implantation, including ion distribution, channeling, multiimplantation and masking and its system, sputtering such as CVD and PVD, lithography, wet etch and dry etch, interconnection and flattening like metal-silicon connection, silicide, multiple layer metal process and flattening, an integrated circuit process, including MOSFET and CMOS.
Gibson, J
2013-01-01
Most branches of organizing utilize digital electronic systems. This book introduces the design of such systems using basic logic elements as the components. The material is presented in a straightforward manner suitable for students of electronic engineering and computer science. The book is also of use to engineers in related disciplines who require a clear introduction to logic circuits. This third edition has been revised to encompass the most recent advances in technology as well as the latest trends in components and notation. It includes a wide coverage of application specific integrate
Carr, Joseph
1996-01-01
The linear IC market is large and growing, as is the demand for well trained technicians and engineers who understand how these devices work and how to apply them. Linear Integrated Circuits provides in-depth coverage of the devices and their operation, but not at the expense of practical applications in which linear devices figure prominently. This book is written for a wide readership from FE and first degree students, to hobbyists and professionals.Chapter 1 offers a general introduction that will provide students with the foundations of linear IC technology. From chapter 2 onwa
Nano integrated circuit process
Yoon, Yung Sup
2004-02-15
This book contains nine chapters, which are introduction of manufacture of semiconductor chip, oxidation such as Dry-oxidation, wet oxidation, oxidation model and oxide film, diffusion like diffusion process, diffusion equation, diffusion coefficient and diffusion system, ion implantation, including ion distribution, channeling, multiimplantation and masking and its system, sputtering such as CVD and PVD, lithography, wet etch and dry etch, interconnection and flattening like metal-silicon connection, silicide, multiple layer metal process and flattening, an integrated circuit process, including MOSFET and CMOS.
Electronics circuits and systems
Bishop, Owen
2011-01-01
The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Ea
Optoelectronics circuits manual
Marston, R M
1999-01-01
This manual is a useful single-volume guide specifically aimed at the practical design engineer, technician, and experimenter, as well as the electronics student and amateur. It deals with the subject in an easy to read, down to earth, and non-mathematical yet comprehensive manner, explaining the basic principles and characteristics of the best known devices, and presenting the reader with many practical applications and over 200 circuits. Most of the ICs and other devices used are inexpensive and readily available types, with universally recognised type numbers.The second edition
Optically controllable molecular logic circuits
Nishimura, Takahiro; Fujii, Ryo; Ogura, Yusuke; Tanida, Jun
2015-01-01
Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals
Emergence of task-dependent representations in working memory circuits
Cristina eSavin
2014-05-01
Full Text Available A wealth of experimental evidence suggests that working memory circuits preferentially represent information that is behaviorally relevant. Still, we are missing a mechanistic account of how these representations come about. Here we provide a simple explanation for a range of experimental findings, in light of prefrontal circuits adapting to task constraints by reward-dependent learning. In particular, we model a neural network shaped by reward-modulated spike-timing dependent plasticity (r-STDP and homeostatic plasticity (intrinsic excitability and synaptic scaling. We show that the experimentally-observed neural representations naturally emerge in an initially unstructured circuit as it learns to solve several working memory tasks. These results point to a critical, and previously unappreciated, role for reward-dependent learning in shaping prefrontal cortex activity.
High resolution capacitance detection circuit for rotor micro-gyroscope
Ming-Yuan Ren
2014-03-01
Full Text Available Conventional methods for rotor position detection of micro-gyroscopes include common exciting electrodes (single frequency and common sensing electrodes (frequency multiplex, but they have encountered some problems. So we present a high resolution and low noise pick-off circuit for micro-gyroscopes which utilizes the time multiplex method. The detecting circuit adopts a continuous-time current sensing circuit for capacitance measurement, and its noise analysis of the charge amplifier is introduced. The equivalent output noise power spectral density of phase-sensitive demodulation is 120 nV/Hz1/2. Tests revealed that the whole circuitry has a relative capacitance resolution of 1 × 10−8.
Sequential circuit design for radiation hardened multiple voltage integrated circuits
Clark, Lawrence T [Phoenix, AZ; McIver, III, John K.
2009-11-24
The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.
Neeraj Priyadarshi
2018-04-01
Full Text Available In this research paper, a hybrid Artificial Neural Network (ANN-Fuzzy Logic Control (FLC tuned Flower Pollination Algorithm (FPA as a Maximum Power Point Tracker (MPPT is employed to amend root mean square error (RMSE of photovoltaic (PV modeling. Moreover, Gaussian membership functions have been considered for fuzzy controller design. This paper interprets the Luo converter occupied brushless DC motor (BLDC-directed PV water pump application. Experimental responses certify the effectiveness of the suggested motor-pump system supporting diverse operating states. The Luo converter, a newly developed DC-DC converter, has high power density, better voltage gain transfer and superior output waveform and can track optimal power from PV modules. For BLDC speed control there is no extra circuitry, and phase current sensors are enforced for this scheme. The most recent attempt using adaptive neuro-fuzzy inference system (ANFIS-FPA-operated BLDC directed PV pump with advanced Luo converter, has not been formerly conferred.
Jingxiong ZHANG
2014-01-01
Full Text Available In this paper, a transient simulation model of a variable speed doubly fed brushless motor (DFBM using back-to-back converter is described. Based on analysis of rotor flux oriented vector control theory of doubly fed induction motor, the control of the currents in DFBM that produce the magnetic flux and the torque is achieved by a digital controller, the speed is regulated by a PI controller which is tuned by a genetic algorithm. According to the state equation of DFBM and the control schemes, the system simulation module is established in MATLAB/ SIMULINK. An extensive simulation study is performed to examine the control characteristics of the machine-side converter under different operation conditions in variable-speed DFBM driver system.
Demerdash, N. A.; Nehl, T. W.
1980-01-01
A comprehensive digital model for the analysis and possible optimization of the closed loop dynamic (instantaneous) performance of a power conditioner fed, brushless dc motor powered, electromechanical actuator system (EMA) is presented. This model was developed for the simulation of the dynamic performance of an actual prototype EMA built for NASA-JSC as a possible alternative to hydraulic actuators for consideration in Space Shuttle Orbiter applications. Excellent correlation was achieved between numerical model simulation and experimental test results obtained from the actual hardware. These results include: various current and voltage waveforms in the machine-power conditioner (MPC) unit, flap position as well as other control loop variables in response to step commands of change of flap position. These results with consequent conclusions are detailed in the paper.
Chengde Tong
2017-05-01
Full Text Available The axial-flux magnetic-field-modulated brushless double-rotor machine (MFM-BDRM is a possible alternative as a power-split device for hybrid electric vehicles (HEVs. However, the existence of large axial force may lead to assembly problems and rich inner air-gap harmonics could result in high PM loss and low efficiency. This paper proposes a novel axial-flux MFM-BDRM with improved PM rotor structure. 2-D analytical method to predict the magnetic-field distribution of the proposed MFM-BDRM is developed and the design procedure of the proposed machine is illustrated. The impact of key geometrical parameters on axial force and torque is investigated. To evaluate the advantage of the proposed machine, a comparison is made with a conventional one with respect to electromagnetic performances. Results show that the proposed machine is effective in reducing PM eddy loss and axial force by 60% and 35%, respectively.
Luo, Shaohua; Wu, Songli; Gao, Ruizhen
2015-01-01
This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation
Luo, Shaohua; Wu, Songli; Gao, Ruizhen
2015-07-01
This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.
Giant resonances on excited states
Besold, W.; Reinhard, P.G.; Toepffer, C.
1984-01-01
We derive modified RPA equations for small vibrations about excited states. The temperature dependence of collective excitations is examined. The formalism is applied to the ground state and the first excited state of 90 Zr in order to confirm a hypothesis which states that not only the ground state but every excited state of a nucleus has a giant resonance built upon it. (orig.)
Excitation of Nucleon Resonances
Burkert, Volker D.
2001-01-01
I discuss developments in the area of nucleon resonance excitation, both necessary and feasible, that would put our understanding of nucleon structure in the regime of strong QCD on a qualitatively new level. They involve the collection of high quality data in various channels, a more rigorous approach in the search for ''missing'' resonances, an effort to compute some critical quantities in nucleon resonance excitations from first principles, i.e. QCD, and a proposal focused to obtain an understanding of a fundamental quantity in nucleon structure
Johnson, Steven D.; Byers, Jerry W.; Martin, James A.
2012-01-01
A method has been developed for continuous cell voltage balancing for rechargeable batteries (e.g. lithium ion batteries). A resistor divider chain is provided that generates a set of voltages representing the ideal cell voltage (the voltage of each cell should be as if the cells were perfectly balanced). An operational amplifier circuit with an added current buffer stage generates the ideal voltage with a very high degree of accuracy, using the concept of negative feedback. The ideal voltages are each connected to the corresponding cell through a current- limiting resistance. Over time, having the cell connected to the ideal voltage provides a balancing current that moves the cell voltage very close to that ideal level. In effect, it adjusts the current of each cell during charging, discharging, and standby periods to force the cell voltages to be equal to the ideal voltages generated by the resistor divider. The device also includes solid-state switches that disconnect the circuit from the battery so that it will not discharge the battery during storage. This solution requires relatively few parts and is, therefore, of lower cost and of increased reliability due to the fewer failure modes. Additionally, this design uses very little power. A preliminary model predicts a power usage of 0.18 W for an 8-cell battery. This approach is applicable to a wide range of battery capacities and voltages.
MöTtöNen, Mikko; Tan, Kuan Y.; Masuda, Shumpei; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Silveri, Matti; Grabert, Hermann
Quantum technology holds great potential in providing revolutionizing practical applications. However, fast and precise cooling of the functional quantum degrees of freedom on demand remains a major challenge in many solid-state implementations, such as superconducting circuits. We demonstrate direct cooling of a superconducting resonator mode using voltage-controllable quantum tunneling of electrons in a nanoscale refrigerator. In our first experiments on this type of a quantum-circuit refrigerator, we measure the drop in the mode temperature by electron thermometry at a resistor which is coupled to the resonator mode through ohmic losses. To eliminate unwanted dissipation, we remove the probe resistor and directly observe the power spectrum of the resonator output in agreement with the so-called P(E) theory. We also demonstrate in microwave reflection experiments that the internal quality factor of the resonator can be tuned by orders of magnitude. In the future, our refrigerator can be integrated with different quantum electric devices, potentially enhancing their performance. For example, it may prove useful in the initialization of superconducting quantum bits and in dissipation-assisted quantum annealing. We acknowledge European Research Council Grant SINGLEOUT (278117) and QUESS (681311) for funding.
Bradley, William; Bird, Ross; Eldred, Dennis; Zook, Jon; Knowles, Gareth
2013-01-01
This work involved developing spacequalifiable switch mode DC/DC power supplies that improve performance with fewer components, and result in elimination of digital components and reduction in magnetics. This design is for missions where systems may be operating under extreme conditions, especially at elevated temperature levels from 200 to 300 degC. Prior art for radiation-tolerant DC/DC converters has been accomplished utilizing classical magnetic-based switch mode converter topologies; however, this requires specific shielding and component de-rating to meet the high-reliability specifications. It requires complex measurement and feedback components, and will not enable automatic re-optimization for larger changes in voltage supply or electrical loading condition. The innovation is a switch mode DC/DC power supply that eliminates the need for processors and most magnetics. It can provide a well-regulated voltage supply with a gain of 1:100 step-up to 8:1 step down, tolerating an up to 30% fluctuation of the voltage supply parameters. The circuit incorporates a ceramic core transformer in a manner that enables it to provide a well-regulated voltage output without use of any processor components or magnetic transformers. The circuit adjusts its internal parameters to re-optimize its performance for changes in supply voltage, environmental conditions, or electrical loading at the output
Arithmetic circuits for DSP applications
Stouraitis, Thanos
2017-01-01
Arithmetic Circuits for DSP Applications is a complete resource on arithmetic circuits for digital signal processing (DSP). It covers the key concepts, designs and developments of different types of arithmetic circuits, which can be used for improving the efficiency of implementation of a multitude of DSP applications. Each chapter includes various applications of the respective class of arithmetic circuits along with information on the future scope of research. Written for students, engineers, and researchers in electrical and computer engineering, this comprehensive text offers a clear understanding of different types of arithmetic circuits used for digital signal processing applications. The text includes contributions from noted researchers on a wide range of topics, including a review o circuits used in implementing basic operations like additions and multiplications; distributed arithmetic as a technique for the multiplier-less implementation of inner products for DSP applications; discussions on look ...
Integrated circuit cooled turbine blade
Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven
2017-08-29
A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.
Control circuit for transformer relay
Wyatt, G.A.
1984-01-01
A control circuit for a transformer relay which will automatically momentarily control the transformer relay to a selected state upon energization of the control circuit. The control circuit has an energy storage element and a current director coupled in series and adapted to be coupled with the secondary winding of the transformer relay. A device for discharge is coupled across the energy storage element. The energy storage element and current director will momentarily allow a unidirectional flow of current in the secondary winding of the transformer relay upon application of energy to the control circuit. When energy is not applied to the control circuit the device for discharge will allow the energy storage element to discharge and be available for another operation of the control circuit
Synchro-betatron resonance excitation in LEP
Myers, S.
1987-01-01
The excitation of synchrotro-betatron resonances due to spurious dispersion and induced transverse deflecting fields at the RF cavities has been simulated for the LEP storage ring. These simulations have been performed for various possible modes of operation. In particular, a scenario has been studied in which LEP is operated at the maximum possible value of the synchrotron tune throughout the acceleration cycle, in an attempt to maximise the threshold intensity at which the Transverse Mode Coupling Instability (TMCI) occurs. This mode of operation necessitates the crossing of synchro-betatron resonances at some points in the acceleration cycle if low order non-linear machine resonances are to be avoided. Simulations have been performed in which the machine tune is swept across these synchro-betratron resonances at a rate given by the bandwidth of the magnet plus power supply circuits of the main quadrupole chain. The effect of longitudinal and transverse wake-fields on the excitation of these resonances has been investigated. These studies indicate that the distortion of the RF potential well caused by the longitudinal wake fields increases the non-linear content of the synchrotron motion and consequently increases significantly the excitation of the higher order synchro-betatron resonances
Electrically Excited Plasmonic Nanoruler for Biomolecule Detection.
Dathe, André; Ziegler, Mario; Hübner, Uwe; Fritzsche, Wolfgang; Stranik, Ondrej
2016-09-14
Plasmon-based sensors are excellent tools for a label-free detection of small biomolecules. An interesting group of such sensors are plasmonic nanorulers that rely on the plasmon hybridization upon modification of their morphology to sense nanoscale distances. Sensor geometries based on the interaction of plasmons in a flat metallic layer together with metal nanoparticles inherit unique advantages but need a special optical excitation configuration that is not easy to miniaturize. Herein, we introduce the concept of nanoruler excitation by direct, electrically induced generation of surface plasmons based on the quantum shot noise of tunneling currents. An electron tunneling junction consisting of a metal-dielectric-semiconductor heterostructure is directly incorporated into the nanoruler basic geometry. With the application of voltage on this modified nanoruler, the plasmon modes are directly excited without any additional optical component as a light source. We demonstrate via several experiments that this electrically driven nanoruler possesses similar properties as an optically exited one and confirm its sensing capabilities by the detection of the binding of small biomolecules such as antibodies. This new sensing principle could open the way to a new platform of highly miniaturized, integrated plasmonic sensors compatible with monolithic integrated circuits.
Source-circuit design overview
Ross, R. G., Jr.
1983-01-01
The source circuit is the fundamental electrical building block of a large central-station array; it consists of a series-parallel network of solar cells that develops full system voltage. The array field is generally made up of a large number of parallel source circuits. Source-circuit electrical configuration is driven by a number of design considerations, which must be considered simultaneously. Array fault tolerance and hot spot heating endurance are examined in detail.
Can Measured Synergy Excitations Accurately Construct Unmeasured Muscle Excitations?
Bianco, Nicholas A; Patten, Carolynn; Fregly, Benjamin J
2018-01-01
Accurate prediction of muscle and joint contact forces during human movement could improve treatment planning for disorders such as osteoarthritis, stroke, Parkinson's disease, and cerebral palsy. Recent studies suggest that muscle synergies, a low-dimensional representation of a large set of muscle electromyographic (EMG) signals (henceforth called "muscle excitations"), may reduce the redundancy of muscle excitation solutions predicted by optimization methods. This study explores the feasibility of using muscle synergy information extracted from eight muscle EMG signals (henceforth called "included" muscle excitations) to accurately construct muscle excitations from up to 16 additional EMG signals (henceforth called "excluded" muscle excitations). Using treadmill walking data collected at multiple speeds from two subjects (one healthy, one poststroke), we performed muscle synergy analysis on all possible subsets of eight included muscle excitations and evaluated how well the calculated time-varying synergy excitations could construct the remaining excluded muscle excitations (henceforth called "synergy extrapolation"). We found that some, but not all, eight-muscle subsets yielded synergy excitations that achieved >90% extrapolation variance accounted for (VAF). Using the top 10% of subsets, we developed muscle selection heuristics to identify included muscle combinations whose synergy excitations achieved high extrapolation accuracy. For 3, 4, and 5 synergies, these heuristics yielded extrapolation VAF values approximately 5% lower than corresponding reconstruction VAF values for each associated eight-muscle subset. These results suggest that synergy excitations obtained from experimentally measured muscle excitations can accurately construct unmeasured muscle excitations, which could help limit muscle excitations predicted by muscle force optimizations.
Excitation of Stellar Pulsations
Houdek, G.
2012-01-01
In this review I present an overview of our current understanding of the physical mechanisms that are responsible for the excitation of pulsations in stars with surface convection zones. These are typically cooler stars such as the δ Scuti stars, and stars supporting solar-like oscillations....
Relativistic Coulomb excitation
Winther, A.; Alder, K.
1979-01-01
Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)
Behrend, H.J.; Buerger, J.; Criegee, L.; Fenner, H.; Field, J.H.; Franke, G.; Fuster, J.; Holler, Y.; Meyer, J.; Schroeder, V.; Sindt, H.; Timm, U.; Winter, G.G.; Zimmermann, W.; Bussey, P.J.; Campbell, A.J.; Dainton, J.B.; Hendry, D.; McCurrach, G.; Scarr, J.M.; Skillicorn, I.O.; Smith, K.M.; Blobel, V.; Poppe, M.; Spitzer, H.; Boer, W. de; Buschhorn, G.; Christiansen, W.; Grindhammer, G.; Gunderson, B.; Kiesling, C.; Kotthaus, R.; Kroha, H.; Lueers, D.; Oberlack, H.; Sack, B.; Schacht, P.; Shooshtari, G.; Wiedenmann, W.; Cordier, A.; Davier, M.; Fournier, D.; Gaillard, M.; Grivaz, J.F.; Haissinski, J.; Janot, P.; Journe, V.; Le Diberder, F.; Ros, E.; Spadafora, A.; Veillet, J.J.; Aleksan, R.; Cozzika, G.; Ducros, Y.; Jarry, P.; Lavagne, Y.; Ould Saada, F.; Pamela, J.; Pierre, F.; Zacek, J.; Alexander, G.; Bella, G.; Gnat, Y.; Grunhaus, J.
1986-02-01
Using the CELLO detector at PETRA we have searched for excited leptons by studying e + e - interactions which yield p + p - γγ, l + l - γ and γγ final states, where l = 3, μ or τ. We observe good agreement with QED and set new limits on e*, μ*, and τ* production. (orig.)
Hardness and excitation energy
It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the ...
Timing control by redundant inhibitory neuronal circuits
Tristan, I., E-mail: itristan@ucsd.edu; Rulkov, N. F.; Huerta, R.; Rabinovich, M. [BioCircuits Institute, University of California, San Diego, La Jolla, California 92093-0402 (United States)
2014-03-15
Rhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters. It is shown that redundancy and diversity of neurons within each cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the whole network. The generality of the mechanism is shown to work on two different neuronal models: a conductance-based model and a map-based model.
Timing control by redundant inhibitory neuronal circuits
Tristan, I.; Rulkov, N. F.; Huerta, R.; Rabinovich, M.
2014-01-01
Rhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters. It is shown that redundancy and diversity of neurons within each cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the whole network. The generality of the mechanism is shown to work on two different neuronal models: a conductance-based model and a map-based model
Radiation-sensitive switching circuits
Moore, J.H.; Cockshott, C.P.
1976-03-16
A radiation-sensitive switching circuit has a light emitting diode which supplies light to a photo-transistor, the light being interrupted from time to time. When the photo-transistor is illuminated, current builds up and when this current reaches a predetermined value, a trigger circuit changes state. The peak output of the photo-transistor is measured and the trigger circuit is arranged to change state when the output of the device is a set proportion of the peak output, so as to allow for aging of the components. The circuit is designed to control the ignition system in an automobile engine.
Four-junction superconducting circuit
Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.
2016-01-01
We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619
Nonlinear excitations in biomolecules
Peyrard, M.
1995-01-01
The aim of the workshop entitled ''Nonlinear Excitations in Biomolecules'' is to attempt to bridge the gap between the physicists and biologists communities which is mainly due to language and cultural barriers. The progress of nonlinear science in the last few decades which have shown that the combination of nonlinearity, which characterize most biological phenomena, and cooperative effects in a system having a large number of degrees of freedom, can give rise to coherent excitations with remarkable properties. New concepts, such as solitons nd nonlinear energy localisation have become familiar to physicists and applied mathematicians. It is thus tempting to make an analogy between these coherent excitations and the exceptional stability of some biological processes, such as for instance DNA transcription, which require the coordination of many events in the ever changing environment of a cell. Physicists are now invoking nonlinear excitations to describe and explain many bio-molecular processes while biologists often doubt that the seemingly infinite variety of phenomena that they are attempting to classify can be reduced to such simple concepts. A large part of the meeting is devoted to tutorial lectures rather than to latest research results. The book provides a pedagogical introduction to the two topics forming the backbone of the meeting: the theory of nonlinear excitations and solitons, and their application in biology; and the structure and function of biomolecules, as well as energy and charge transport in biophysics. In order to emphasize the link between physics and biology, the volume is not divided along these two topics but according to biological subjects. Each chapter starts with a short introduction attempting to help the reader to find his way among the contributions and point out the connection between them. 23 lectures over the 32 presented have been selected and refers to quantum properties of macro-molecules. (J.S.)
Memristor Circuits and Systems
Zidan, Mohammed A.
2015-05-01
Current CMOS-based technologies are facing design challenges related to the continuous scaling down of the minimum feature size, according to Moore’s law. Moreover, conventional computing architecture is no longer an effective way of fulfilling modern applications demands, such as big data analysis, pattern recognition, and vector processing. Therefore, there is an exigent need to shift to new technologies, at both the architecture and the device levels. Recently, memristor devices and structures attracted attention for being promising candidates for this job. Memristor device adds a new dimension for designing novel circuits and systems. In addition, high-density memristor-based crossbar is widely considered to be the essential element for future memory and bio-inspired computing systems. However, numerous challenges need to be addressed before the memristor genuinely replaces current memory and computing technologies, which is the motivation behind this research effort. In order to address the technology challenges, we begin by fabricating and modeling the memristor device. The devices fabricated at our local clean room enriched our understanding of the memristive phenomenon and enabled the experimental testing for our memristor-based circuits. Moreover, our proposed mathematical modeling for memristor behavior is an essential element for the theoretical circuit design stage. Designing and addressing the challenges of memristor systems with practical complexity, however, requires an extra step, which takes the form of a reliable and modular simulation platform. We, therefore, built a new simulation platform for the resistive crossbar, which can simulate realistic size arrays filled with real memory data. In addition, this simulation platform includes various crossbar nonidealities in order to obtain accurate simulation results. Consequently, we were able to address the significant challenges facing the high density memristor crossbar, as the building block for
Buckley, P M
1980-01-01
In the past, the teaching of electricity and electronics has more often than not been carried out from a theoretical and often highly academic standpoint. Fundamentals and basic concepts have often been presented with no indication of their practical appli cations, and all too frequently they have been illustrated by artificially contrived laboratory experiments bearing little relationship to the outside world. The course comes in the form of fourteen fairly open-ended constructional experiments or projects. Each experiment has associated with it a construction exercise and an explanation. The basic idea behind this dual presentation is that the student can embark on each circuit following only the briefest possible instructions and that an open-ended approach is thereby not prejudiced by an initial lengthy encounter with the theory behind the project; this being a sure way to dampen enthusiasm at the outset. As the investigation progresses, questions inevitably arise. Descriptions of the phenomena encounte...
Sato, Takashi.
1986-01-01
Purpose: To afford a sufficient margin to pressure vibrations upon starting of an automatic depressurization system by dispersing pressure vibration in suppression water due to the opening action of an automatic releaf valve in the automatic depressurization system thereby reducing the dynamic load exerted to the surface of the suppression walls. Constitution: Upon occurrence of loss of coolant accidents, an automatic releaf valve for automatic depressurization is opened to deliver the steams in the pressure vessel into the suppression pool. Since a plurality of automatic releaf valves have usually been disposed, if they are opened simultaneously, excess dynamic loads are exerted due to the pressure vibrations to the wall surface of the suppression pool. In this invention, a control circuit is disposed such that the opening timing for each of the automatic releaf valves is deviated upon occurrence of a driving signal for the automatic depressurization system to thereby disperse the pressure vibrations in the suppression water. (Kamimura, M.)
Rosaria Marraffino
2014-01-01
You have always been told that electronic devices fear water. However, at the Surface Mount Devices (SMD) Workshop here at CERN all the electronic assemblies are cleaned with a machine that looks like a… dishwasher. The circuit dishwasher. Credit: Clara Nellist. If you think the image above shows a dishwasher, you wouldn’t be completely wrong. Apart from the fact that the whole pumping system and the case itself are made entirely from stainless steel and chemical resistant materials, and the fact that it washes electrical boards instead of dishes… it works exactly like a dishwasher. It’s a professional machine (mainly used in the pharmaceutical industry) designed to clean everything that can be washed with a water-based chemical soap. This type of treatment increases the lifetime of the electronic boards and therefore the LHC's reliability by preventing corrosion problems in the severe radiation and ozone environment of the LHC tunn...
Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon
2010-09-01
The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.
Inductive circuit arrangements
Mansfield, Peter; Coxon, R.J.
1987-01-01
A switched coil arrangement is connected in a bridge configuration of four switches S 1 , S 2 , S 3 and S 4 which are each shunted by diodes D 1 , D 2 , D 3 and D 4 so that current can flow in either direction through a coil L depending on the setting of the switches. A capacitor C is connected across the bridge through a switch S 5 to receive the inductive energy stored in coil L on breaking the current flow path through the coil. The electrostatic energy stored in capacitor C can then be used to supply current through the coil in the reverse direction either immediately or after a time delay. Coil L may be a superconductive coil. Losses in the circuit can be made up by a trickle charge of capacitor C from a separate supply V 2 . The device may be used in nuclear magnetic resonance imaging. (author)
Graphene-on-silicon hybrid plasmonic-photonic integrated circuits.
Xiao, Ting-Hui; Cheng, Zhenzhou; Goda, Keisuke
2017-06-16
Graphene surface plasmons (GSPs) have shown great potential in biochemical sensing, thermal imaging, and optoelectronics. To excite GSPs, several methods based on the near-field optical microscope and graphene nanostructures have been developed in the past few years. However, these methods suffer from their bulky setups and low GSP-excitation efficiency due to the short interaction length between free-space vertical excitation light and the atomic layer of graphene. Here we present a CMOS-compatible design of graphene-on-silicon hybrid plasmonic-photonic integrated circuits that achieve the in-plane excitation of GSP polaritons as well as localized surface plasmon (SP) resonance. By employing a suspended membrane slot waveguide, our design is able to excite GSP polaritons on a chip. Moreover, by utilizing a graphene nanoribbon array, we engineer the transmission spectrum of the waveguide by excitation of localized SP resonance. Our theoretical and computational study paves a new avenue to enable, modulate, and monitor GSPs on a chip, potentially applicable for the development of on-chip electro-optic devices.
Quantum memristor in a superconducting circuit
Salmilehto, Juha; Sanz, Mikel; di Ventra, Massimiliano; Solano, Enrique
Memristors, resistive elements that retain information of their past, have garnered interest due to their paradigm-changing potential in information processing and electronics. The emergent hysteretic behaviour allows for novel architectural applications and has recently been classically demonstrated in a simplified superconducting setup using the phase-dependent conductance in the tunnel-junction-microscopic model. In this contribution, we present a truly quantum model for a memristor constructed using established elements and techniques in superconducting nanoelectronics, and explore the parameters for feasible operation as well as refine the methods for quantifying the memory retention. In particular, the memristive behaviour is shown to arise from quasiparticle-induced tunneling in the full dissipative model and can be observed in the phase-driven tunneling current. The relevant hysteretic behaviour should be observable using current state-of-the-art measurements for detecting quasiparticle excitations. Our theoretical findings constitute the first quantum memristor in a superconducting circuit and act as the starting point for designing further circuit elements that have non-Markovian characteristics The authors acknowledge support from the CCQED EU project and the Finnish Cultural Foundation.
A memristor-based nonvolatile latch circuit
Robinett, Warren; Pickett, Matthew; Borghetti, Julien; Xia Qiangfei; Snider, Gregory S; Medeiros-Ribeiro, Gilberto; Williams, R Stanley
2010-01-01
Memristive devices, which exhibit a dynamical conductance state that depends on the excitation history, can be used as nonvolatile memory elements by storing information as different conductance states. We describe the implementation of a nonvolatile synchronous flip-flop circuit that uses a nanoscale memristive device as the nonvolatile memory element. Controlled testing of the circuit demonstrated successful state storage and restoration, with an error rate of 0.1%, during 1000 power loss events. These results indicate that integration of digital logic devices and memristors could open the way for nonvolatile computation with applications in small platforms that rely on intermittent power sources. This demonstrated feasibility of tight integration of memristors with CMOS (complementary metal-oxide-semiconductor) circuitry challenges the traditional memory hierarchy, in which nonvolatile memory is only available as a large, slow, monolithic block at the bottom of the hierarchy. In contrast, the nonvolatile, memristor-based memory cell can be fast, fine-grained and small, and is compatible with conventional CMOS electronics. This threatens to upset the traditional memory hierarchy, and may open up new architectural possibilities beyond it.
From strong to ultrastrong coupling in circuit QED architectures
Niemczyk, Thomas
2011-01-01
The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)
Adult neurogenesis modifies excitability of the dentate gyrus
Taruna eIkrar
2013-12-01
Full Text Available Adult-born dentate granule neurons contribute to memory encoding functions of the dentate gyrus (DG such as pattern separation. However, local circuit-mechanisms by which adult-born neurons partake in this process are poorly understood. Computational, neuroanatomical and electrophysiological studies suggest that sparseness of activation in the granule cell layer (GCL is conducive for pattern separation. A sparse coding scheme is thought to facilitate the distribution of similar entorhinal inputs across the GCL to decorrelate overlapping representations and minimize interference. Here we used fast voltage-sensitive dye (VSD imaging combined with laser photostimulation and electrical stimulation to examine how selectively increasing adult DG neurogenesis influences local circuit activity and excitability. We show that DG of mice with more adult-born neurons exhibits decreased strength of neuronal activation and more restricted excitation spread in GCL while maintaining effective output to CA3c. Conversely, blockade of adult hippocampal neurogenesis changed excitability of the DG in the opposite direction. Analysis of GABAergic inhibition onto mature dentate granule neurons in the DG of mice with more adult-born neurons shows a modest readjustment of perisomatic inhibitory synaptic gain without changes in overall inhibitory tone, presynaptic properties or GABAergic innervation pattern. Retroviral labeling of connectivity in mice with more adult-born neurons showed increased number of excitatory synaptic contacts of adult-born neurons onto hilar interneurons. Together, these studies demonstrate that adult hippocampal neurogenesis modifies excitability of mature dentate granule neurons and that this non-cell autonomous effect may be mediated by local circuit mechanisms such as excitatory drive onto hilar interneurons. Modulation of DG excitability by adult-born dentate granule neurons may enhance sparse coding in the GCL to influence pattern
Compact Circuit Preprocesses Accelerometer Output
Bozeman, Richard J., Jr.
1993-01-01
Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.
Comminution circuits for compact itabirites
Pedro Ferreira Pinto
Full Text Available Abstract In the beneficiation of compact Itabirites, crushing and grinding account for major operational and capital costs. As such, the study and development of comminution circuits have a fundamental importance for feasibility and optimization of compact Itabirite beneficiation. This work makes a comparison between comminution circuits for compact Itabirites from the Iron Quadrangle. The circuits developed are: a crushing and ball mill circuit (CB, a SAG mill and ball mill circuit (SAB and a single stage SAG mill circuit (SSSAG. For the SAB circuit, the use of pebble crushing is analyzed (SABC. An industrial circuit for 25 million tons of run of mine was developed for each route from tests on a pilot scale (grinding and industrial scale. The energy consumption obtained for grinding in the pilot tests was compared with that reported by Donda and Bond. The SSSAG route had the lowest energy consumption, 11.8kWh/t and the SAB route had the highest energy consumption, 15.8kWh/t. The CB and SABC routes had a similar energy consumption of 14.4 kWh/t and 14.5 kWh/t respectively.
Wassenaar, R.F.
1992-01-01
The minimum-maximum (minimax) circuit selects the minimum and maximum of two input currents. Four transistors in matched pairs are operated in the saturation region. Because the behavior of the circuit is based on matched devices and is independent of the relationship between the drain current and
Short-circuit impedance measurement
Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad
2003-01-01
Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...
Cell short circuit, preshort signature
Lurie, C.
1980-01-01
Short-circuit events observed in ground test simulations of DSCS-3 battery in-orbit operations are analyzed. Voltage signatures appearing in the data preceding the short-circuit event are evaluated. The ground test simulation is briefly described along with performance during reconditioning discharges. Results suggest that a characteristic signature develops prior to a shorting event.
Enhancement of Linear Circuit Program
Gaunholt, Hans; Dabu, Mihaela; Beldiman, Octavian
1996-01-01
In this report a preliminary user friendly interface has been added to the LCP2 program making it possible to describe an electronic circuit by actually drawing the circuit on the screen. Component values and other options and parameters can easily be set by the aid of the interface. The interface...
Pancholi, S C
2011-01-01
By providing the reader with a foundational background in high spin nuclear structure physics and exploring exciting current discoveries in the field, this book presents new phenomena in a clear and compelling way. The quest for achieving the highest spin states has resulted in some remarkable successes which this monograph will address in comprehensive detail. The text covers an array of pertinent subject matter, including the rotational alignment and bandcrossings, magnetic rotation, triaxial strong deformation and wobbling motion and chirality in nuclei. Dr. Pancholi offers his readers a clearly-written and up-to-date treatment of the topics covered. The prerequisites for a proper appreciation are courses in nuclear physics and nuclear models and measurement techniques of observables like gamma-ray energies, intensities, multi-fold coincidences, angular correlations or distributions, linear polarization, internal conversion coefficients, short lifetime (pico-second range) of excited states etc. and instrum...
Ngo, C.
1986-11-01
Experimental indications leading to the thought of a very excited nucleus fragmentation are resumed. Theoretical approaches are briefly described; they are used to explain the phenomenon in showing off they are based on a minimum information principle. This model is based on time dependent Thomas-Fermi calculation which allows the mean field effect description, and with a site-bound percolation model which allows the fluctuation description [fr
Automatic circuit analysis based on mask information
Preas, B.T.; Lindsay, B.W.; Gwyn, C.W.
1976-01-01
The Circuit Mask Translator (CMAT) code has been developed which converts integrated circuit mask information into a circuit schematic. Logical operations, pattern recognition, and special functions are used to identify and interconnect diodes, transistors, capacitors, and resistances. The circuit topology provided by the translator is compatible with the input required for a circuit analysis program
Harmonically excited orbital variations
Morgan, T.
1985-01-01
Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs
Extremely confined gap surface-plasmon modes excited by electrons
Raza, Søren; Stenger, Nicolas; Pors, Anders Lambertus
2014-01-01
High-spatial and energy resolution electron energy-loss spectroscopy (EELS) can be used for detailed characterization of localized and propagating surface-plasmon excitations in metal nanostructures, giving insight into fundamental physical phenomena and various plasmonic effects. Here, applying...... EELS to ultra-sharp convex grooves in gold, we directly probe extremely confined gap surface-plasmon (GSP) modes excited by swift electrons in nanometre-wide gaps. We reveal the resonance behaviour associated with the excitation of the antisymmetric GSP mode for extremely small gap widths, down to ~5...... mode exploited in plasmonic waveguides with extreme light confinement is a very important factor that should be taken into account in the design of nanoplasmonic circuits and devices....
Nanofluidic Transistor Circuits
Chang, Hsueh-Chia; Cheng, Li-Jing; Yan, Yu; Slouka, Zdenek; Senapati, Satyajyoti
2012-02-01
Non-equilibrium ion/fluid transport physics across on-chip membranes/nanopores is used to construct rectifying, hysteretic, oscillatory, excitatory and inhibitory nanofluidic elements. Analogs to linear resistors, capacitors, inductors and constant-phase elements were reported earlier (Chang and Yossifon, BMF 2009). Nonlinear rectifier is designed by introducing intra-membrane conductivity gradient and by asymmetric external depletion with a reverse rectification (Yossifon and Chang, PRL, PRE, Europhys Lett 2009-2011). Gating phenomenon is introduced by functionalizing polyelectrolytes whose conformation is field/pH sensitive (Wang, Chang and Zhu, Macromolecules 2010). Surface ion depletion can drive Rubinstein's microvortex instability (Chang, Yossifon and Demekhin, Annual Rev of Fluid Mech, 2012) or Onsager-Wien's water dissociation phenomenon, leading to two distinct overlimiting I-V features. Bipolar membranes exhibit an S-hysteresis due to water dissociation (Cheng and Chang, BMF 2011). Coupling the hysteretic diode with some linear elements result in autonomous ion current oscillations, which undergo classical transitions to chaos. Our integrated nanofluidic circuits are used for molecular sensing, protein separation/concentration, electrospray etc.
den Boon, F.S.; Werkman, T.R.; Schaafsma-Zhao, Q.; Houthuijs, K.; Vitalis, T.; Kruse, C.G.; Wadman, W.J.; Chameau, P.
2015-01-01
Activation of the endocannabinoid (eCB) system by exogenous cannabinoids (drug abuse) can alter the physiology of the brain circuits involved in higher-order cognitive functions such as the medial prefrontal cortex (mPFC). A proper balance between excitation and inhibition (E/I balance) is critical
Experimental Device for Learning of Logical Circuit Design using Integrated Circuits
石橋, 孝昭
2012-01-01
This paper presents an experimental device for learning of logical circuit design using integrated circuits and breadboards. The experimental device can be made at a low cost and can be used for many subjects such as logical circuits, computer engineering, basic electricity, electrical circuits and electronic circuits. The proposed device is effective to learn the logical circuits than the usual lecture.
Variational integrators for electric circuits
Ober-Blöbaum, Sina; Tao, Molei; Cheng, Mulin; Owhadi, Houman; Marsden, Jerrold E.
2013-01-01
In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering the dynamics of an electric circuit, one is faced with three special situations: 1. The system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared to standard integration tools for circuits; in particular, a comparison to BDF methods (which are usually the method of choice for the simulation of electric circuits) shows that even for simple LCR circuits, a better energy behavior and frequency spectrum preservation can be observed using the developed variational integrator
Integrated circuits, and design and manufacture thereof
Auracher, Stefan; Pribbernow, Claus; Hils, Andreas
2006-04-18
A representation of a macro for an integrated circuit layout. The representation may define sub-circuit cells of a module. The module may have a predefined functionality. The sub-circuit cells may include at least one reusable circuit cell. The reusable circuit cell may be configured such that when the predefined functionality of the module is not used, the reusable circuit cell is available for re-use.
Radiation-sensitive switching circuits
Moore, J.H.; Cockshott, C.P.
1976-03-16
A radiation-sensitive switching circuit includes a light emitting diode which from time to time illuminates a photo-transistor, the photo-transistor serving when its output reaches a predetermined value to operate a trigger circuit. In order to allow for aging of the components, the current flow through the diode is increased when the output from the transistor falls below a known level. Conveniently, this is achieved by having a transistor in parallel with the diode, and turning the transistor off when the output from the phototransistor becomes too low. The circuit is designed to control the ignition system in an automobile engine.
The Maplin electronic circuits handbook
Tooley, Michael
1990-01-01
The Maplin Electronic Circuits Handbook provides pertinent data, formula, explanation, practical guidance, theory and practical guidance in the design, testing, and construction of electronic circuits. This book discusses the developments in electronics technology techniques.Organized into 11 chapters, this book begins with an overview of the common types of passive component. This text then provides the reader with sufficient information to make a correct selection of passive components for use in the circuits. Other chapters consider the various types of the most commonly used semiconductor
Secure integrated circuits and systems
Verbauwhede, Ingrid MR
2010-01-01
On any advanced integrated circuit or 'system-on-chip' there is a need for security. In many applications the actual implementation has become the weakest link in security rather than the algorithms or protocols. The purpose of the book is to give the integrated circuits and systems designer an insight into the basics of security and cryptography from the implementation point of view. As a designer of integrated circuits and systems it is important to know both the state-of-the-art attacks as well as the countermeasures. Optimizing for security is different from optimizations for speed, area,
INTEGRATED SENSOR EVALUATION CIRCUIT AND METHOD FOR OPERATING SAID CIRCUIT
Krüger, Jens; Gausa, Dominik
2015-01-01
WO15090426A1 Sensor evaluation device and method for operating said device Integrated sensor evaluation circuit for evaluating a sensor signal (14) received from a sensor (12), having a first connection (28a) for connection to the sensor and a second connection (28b) for connection to the sensor. The integrated sensor evaluation circuit comprises a configuration data memory (16) for storing configuration data which describe signal properties of a plurality of sensor control signals (26a-c). T...
Gainey, Melanie A; Aman, Joseph W; Feldman, Daniel E
2018-04-20
Rapid plasticity of layer (L) 2/3 inhibitory circuits is an early step in sensory cortical map plasticity, but its cellular basis is unclear. We show that, in mice of either sex, 1 day whisker deprivation drives rapid loss of L4-evoked feedforward inhibition and more modest loss of feedforward excitation in L2/3 pyramidal (PYR) cells, increasing E-I conductance ratio. Rapid disinhibition was due to reduced L4-evoked spiking by L2/3 parvalbumin (PV) interneurons, caused by reduced PV intrinsic excitability. This included elevated PV spike threshold, associated with an increase in low-threshold, voltage activated delayed rectifier (presumed Kv1) and A-type potassium currents. Excitatory synaptic input and unitary inhibitory output of PV cells were unaffected. Functionally, the loss of feedforward inhibition and excitation were precisely coordinated in L2/3 PYR cells, so that peak feedforward synaptic depolarization remained stable. Thus, rapid plasticity of PV intrinsic excitability offsets early weakening of excitatory circuits to homeostatically stabilize synaptic potentials in PYR cells of sensory cortex. SIGNIFICANCE STATEMENT Inhibitory circuits in cerebral cortex are highly plastic, but the cellular mechanisms and functional importance of this plasticity are incompletely understood. We show that brief (1-day) sensory deprivation rapidly weakens parvalbumin (PV) inhibitory circuits by reducing the intrinsic excitability of PV neurons. This involved a rapid increase in voltage-gated potassium conductances that control near-threshold spiking excitability. Functionally, the loss of PV-mediated feedforward inhibition in L2/3 pyramidal cells was precisely balanced with the separate loss of feedforward excitation, resulting in a net homeostatic stabilization of synaptic potentials. Thus, rapid plasticity of PV intrinsic excitability implements network-level homeostasis to stabilize synaptic potentials in sensory cortex. Copyright © 2018 the authors.
2017-01-01
This edition is the ninth in a series of workshops that had been previously organised in Poland (2009), Slovakia (2010 and 2015), France (2011), Portugal (2012 and 2016) and Bosnia and Herzegovina (2013 and 2014). In the year 2017 the workshop goes to the beautiful Sintra near Lisbon, Portugal. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, new resonances, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-gluon plasma, holography, colour-glass condensate, compact stars, applications to astrophysics.
Kleppner, D.; Littman, M.G.; Zimmerman, M.L.
1981-01-01
Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before
Electromagnetic Flow Meter Having a Driver Circuit Including a Current Transducer
Karon, David M. (Inventor); Cushing, Vincent (Inventor); Patel, Sandeep K. (Inventor)
2014-01-01
An electromagnetic flow meter (EMFM) accurately measures both the complete flow rate and the dynamically fluctuating flow rate of a fluid by applying a unipolar DC voltage to excitation coils for a predetermined period of time, measuring the electric potential at a pair of electrodes, determining a complete flow rate and independently measuring the dynamic flow rate during the "on" cycle of the DC excitation, and correcting the measurements for errors resulting from galvanic drift and other effects on the electric potential. The EMFM can also correct for effects from the excitation circuit induced during operation of the EMFM.
Transistor and integrated circuit manufacture
Colman, D.
1978-01-01
This invention relates to the manufacture of transistors and integrated circuits by ion bombardment techniques and is particularly, but not exclusively, of value in the manufacture of so-called integrated injection logic circuitry. (author)
Time domain analog circuit simulation
Fijnvandraat, J.G.; Houben, S.H.M.J.; Maten, ter E.J.W.; Peters, J.M.F.
2006-01-01
Recent developments of new methods for simulating electric circuits are described. Emphasis is put on methods that fit existing datastructures for backward differentiation formulae methods. These methods can be modified to apply to hierarchically organized datastructures, which allows for efficient
Circuit design on plastic foils
Raiteri, Daniele; Roermund, Arthur H M
2015-01-01
This book illustrates a variety of circuit designs on plastic foils and provides all the information needed to undertake successful designs in large-area electronics. The authors demonstrate architectural, circuit, layout, and device solutions and explain the reasons and the creative process behind each. Readers will learn how to keep under control large-area technologies and achieve robust, reliable circuit designs that can face the challenges imposed by low-cost low-temperature high-throughput manufacturing. • Discusses implications of problems associated with large-area electronics and compares them to standard silicon; • Provides the basis for understanding physics and modeling of disordered material; • Includes guidelines to quickly setup the basic CAD tools enabling efficient and reliable designs; • Illustrates practical solutions to cope with hard/soft faults, variability, mismatch, aging and bias stress at architecture, circuit, layout, and device levels.
Discharge quenching circuit for counters
Karasik, A.S.
1982-01-01
A circuit for quenching discharges in gas-discharge detectors with working voltage of 3-5 kV based on transistors operating in the avalanche mode is described. The quenching circuit consists of a coordinating emitter follower, amplifier-shaper for avalanche key cascade control which changes potential on the counter electrodes and a shaper of discharge quenching duration. The emitter follower is assembled according to a widely used flowsheet with two transistors. The circuit permits to obtain a rectangular quenching pulse with front of 100 ns and an amplitude of up to 3.2 kV at duration of 500 μm-8 ms. Application of the quenching circuit described permits to obtain countering characteristics with the slope less than or equal to 0.02%/V and plateau extent greater than or equal to 300 V [ru
Transistor and integrated circuit manufacture
Colman, D
1978-09-27
This invention relates to the manufacture of transistors and integrated circuits by ion bombardment techniques and is particularly, but not exclusively, of value in the manufacture of so-called integrated injection logic circuitry.
Ignition circuit for combustion engines
Becker, H W
1977-05-26
The invention refers to the ignition circuit for combustion engines, which are battery fed. The circuit contains a transistor and an oscillator to produce an output voltage on the secondary winding of an output transformer to supply an ignition current. The plant is controlled by an interrupter. The purpose of the invention is to form such a circuit that improved sparks for ignition are produced, on the one hand, and that on the other hand, the plant can continue to function after loss of the oscillator. The problem is solved by the battery and the secondary winding of the output transformers of the oscillator are connected via a rectifier circuit to produce a resultant total voltage with the ignition coil from the battery voltage and the rectified pulsating oscillator output.
Reverse engineering of integrated circuits
Chisholm, Gregory H.; Eckmann, Steven T.; Lain, Christopher M.; Veroff, Robert L.
2003-01-01
Software and a method therein to analyze circuits. The software comprises several tools, each of which perform particular functions in the Reverse Engineering process. The analyst, through a standard interface, directs each tool to the portion of the task to which it is most well suited, rendering previously intractable problems solvable. The tools are generally used iteratively to produce a successively more abstract picture of a circuit, about which incomplete a priori knowledge exists.
A new time-digital convert circuit based on digital delay line
Liu Haifeng; Guo Ying; Zhang Zhi
2004-01-01
An introduction of a new method of time-digital convert circuit based on digital delay line is given. High precision and good reliability can be realized when it is combined with traditional counting convert method in the measurement of large scale pulse width and low frequency self-excitation oscillator. (authors)
Receiver Gain Modulation Circuit
Jones, Hollis; Racette, Paul; Walker, David; Gu, Dazhen
2011-01-01
A receiver gain modulation circuit (RGMC) was developed that modulates the power gain of the output of a radiometer receiver with a test signal. As the radiometer receiver switches between calibration noise references, the test signal is mixed with the calibrated noise and thus produces an ensemble set of measurements from which ensemble statistical analysis can be used to extract statistical information about the test signal. The RGMC is an enabling technology of the ensemble detector. As a key component for achieving ensemble detection and analysis, the RGMC has broad aeronautical and space applications. The RGMC can be used to test and develop new calibration algorithms, for example, to detect gain anomalies, and/or correct for slow drifts that affect climate-quality measurements over an accelerated time scale. A generalized approach to analyzing radiometer system designs yields a mathematical treatment of noise reference measurements in calibration algorithms. By treating the measurements from the different noise references as ensemble samples of the receiver state, i.e. receiver gain, a quantitative description of the non-stationary properties of the underlying receiver fluctuations can be derived. Excellent agreement has been obtained between model calculations and radiometric measurements. The mathematical formulation is equivalent to modulating the gain of a stable receiver with an externally generated signal and is the basis for ensemble detection and analysis (EDA). The concept of generating ensemble data sets using an ensemble detector is similar to the ensemble data sets generated as part of ensemble empirical mode decomposition (EEMD) with exception of a key distinguishing factor. EEMD adds noise to the signal under study whereas EDA mixes the signal with calibrated noise. It is mixing with calibrated noise that permits the measurement of temporal-functional variability of uncertainty in the underlying process. The RGMC permits the evaluation of EDA by
Activity-regulated genes as mediators of neural circuit plasticity.
Leslie, Jennifer H; Nedivi, Elly
2011-08-01
Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Evidence has linked activity-regulated gene expression to the long-term structural and electrophysiological adaptations that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. In all these cases, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. Synaptic strengthening or weakening can reweight existing circuit connections, while structural changes including synapse addition and elimination create new connections. Posttranscriptional regulatory mechanisms, often also dependent on activity, further modulate activity-regulated gene transcript and protein function. Thus, activity-regulated genes implement varied forms of structural and functional plasticity to fine-tune brain circuit wiring. Copyright © 2011 Elsevier Ltd. All rights reserved.
Inoue, Kenta; Narama, Tatsuya; Yamanashi, Yuki; Yoshikawa, Nobuyuki; Takeuchi, Naoki
2015-01-01
Adiabatic quantum-flux-parametron (AQFP) logic is an energy-efficient superconductor logic with zero static power and very small dynamic power due to adiabatic switching operations. In order to build large-scale digital circuits, we built AQFP logic cells using superconductor magnetic shields, which are necessary in order to avoid unwanted magnetic couplings between the cells and excitation currents. In preliminary experimental tests, we confirmed that the unwanted coupling became negligibly small thanks to the superconductor shields. As a demonstration, we designed a four-to-one multiplexor and a 16-junction full adder using the shielded logic cells. In both circuits, we confirmed correct logic operations with wide operation margins of excitation currents. These results indicate that large-scale AQFP digital circuits can be realized using the shielded logic cells. (paper)
CINE: Comet INfrared Excitation
de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.
2017-08-01
CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.
Soliton excitation in superlattice
Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Twum, A.K.
1995-10-01
Excitation of soliton in superlattice has been investigated theoretically. It is noted that the soliton velocity u and the length L depend on the amplitude E 0 and that an increase in the amplitude causes soliton width L to approach zero and the velocity u to that of light V in homogeneous medium. The characteristic parameters of soliton u, L and E 0 are related by expression u/L E 0 = ed/2(h/2π) which is constant depending only on the SL period d. It is observed also that the soliton has both energy E = 8V 2 (1 - u 2 /V 2 ) -1/2 and momentum P = u/V 2 E which makes it behave as relativistic free particle with rest energy 8V 2 . Its interaction with electrons can cause the soliton electric effect in SL. (author). 27 refs
Lawler, J.S.
2001-01-01
Previous theoretical work has shown that when all loss mechanisms are neglected the constant power speed range (CPSR) of a brushless dc motor (BDCM) is infinite when the motor is driven by the dual-mode inverter control (DMIC)[1,2]. In a physical drive, losses, particularly speed-sensitive losses, will limit the CPSR to a finite value. In this paper we report the results of laboratory testing of a low-inductance, 7.5-hp BDCM driven by the DMIC. The speed rating of the test motor rotor limited the upper speed of the testing, and the results show that the CPSR of the test machine is greater than 6:1 when driven by the DMIC. Current wave shape, peak, and rms values remained controlled and within rating over the entire speed range. The laboratory measurements allowed the speed-sensitive losses to be quantified and incorporated into computer simulation models, which then accurately reproduce the results of lab testing. The simulator shows that the limiting CPSR of the test motor is 8:1. These results confirm that the DMIC is capable of driving low-inductance BDCMs over the wide CPSR that would be required in electric vehicle applications
Mousa, Mohamed G; Allam, S M; Rashad, Essam M
2018-01-01
This paper proposes an advanced strategy to synchronize the wind-driven Brushless Doubly-Fed Reluctance Generator (BDFRG) to the grid-side terminals. The proposed strategy depends mainly upon determining the electrical angle of the grid voltage, θ v and using the same transformation matrix of both the power winding and grid sides to ensure that the generated power-winding voltage has the same phase-sequence of the grid-side voltage. On the other hand, the paper proposes a vector-control (power-winding flux orientation) technique for maximum wind-power extraction under two schemes summarized as; unity power-factor operation and minimum converter-current. Moreover, a soft-starting method is suggested to avoid the employed converter over-current. The first control scheme is achieved by adjusting the command power-winding reactive power at zero for a unity power-factor operation. However, the second scheme depends on setting the command d-axis control-winding current at zero to maximize the ratio of the generator electromagnetic-torque per the converter current. This enables the system to get a certain command torque under minimum converter current. A sample of the obtained simulation and experimental results is presented to check the effectiveness of the proposed control strategies. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Alexander, Gerald C.; Spee, Rene; Wallace, Alan K.
1993-12-31
Since the inception of the BDFM development program in 1989, the value of BDFM technology has become apparent. The BDFM provides for adjustable speed, synchronous operation while keeping costs associated with the required power conversion equipment lower than in competing technologies. This provides for an advantage in initial as well as maintenance expenses over conventional drive system. Thus, the BDFM enables energy efficient, adjustable speed process control for applications where established drive technology has not been able to deliver satisfactory returns on investment. At the same time, the BDFM challenges conventional drive technologies in established markets by providing for improved performance at lower cost. BDFM converter rating is kept at a minimum, which significantly improves power quality at the utility interface over competing power conversion equipment. In summary, BDFM technology can be expected to provide significant benefits to utilities as well as their customers. This report discusses technical research and development activities related to Phase 3 of the Brushless Doubly-Fed Machine System Development Program, including work made possible by supplemental funds for laboratory improvement and prototype construction. Market research for the BDFM was provided by the College of Business at Oregon State University; market study results will be discussed in a separate report.
Chengde Tong
2017-09-01
Full Text Available In this paper, a novel sensorless control strategy based on the estimation of line back electro-motive force (BEMF is proposed. According to the phase relationship between the ideal commutation points of the brushless direct current motor (BLDCM and the zero-crossing points (ZCPs of the line BEMF, the calculation formula of line BEMF is simplified properly and the commutation rule for different positions of the rotor is presented. The estimation error of line BEMF caused by the freewheeling current of silent phase is analyzed, and the solution is given. With the phase shift of the low-pass filter considered, a compensation method using “60°-α” and “120°-α” is studied in this paper to eliminate the error. Finally, the simulation and experimental results show that the rotor-position-detection error is reduced effectively and the motor driven by the accurate commutation signal can work well at low and high speed.
Lawler, J.S.
2001-01-01
An inverter topology and control scheme has been developed that can drive low-inductance, surface-mounted permanent magnet motors over the wide constant power speed range required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC)[1]. The DMIC can drive either the Permanent Magnet Synchronous Machine (PMSM) with sinusoidal back emf, or the brushless dc machine (BDCM) with trapezoidal emf in the motoring and regenerative braking modes. In this paper we concentrate on the BDCM under high-speed motoring conditions. Simulation results show that if all motor and inverter loss mechanisms are neglected, the constant power speed range of the DMIC is infinite. The simulation results are supported by closed form expressions for peak and rms motor current and average power derived from analytical solution to the differential equations governing the DMIC/BDCM drive for the lossless case. The analytical solution shows that the range of motor inductance that can be accommodated by the DMIC is more than an order of magnitude such that the DMIC is compatible with both low- and high-inductance BDCMs. Finally, method is given for integrating the classical hysteresis band current control, used for motor control below base speed, with the phase advance of DMIC that is applied above base speed. The power versus speed performance of the DMIC is then simulated across the entire speed range
Bravin, E; Sosa, A
2014-01-01
This report summarizes the results of a series of tests performed on the prototype HIE-ISOLDE diagnostic box (HIE-DB) regarding the vibrations and drifts in the transverse position of the scanning blade while moving in and out of beam path in the HIE-ISOLDE short box prototype. To monitor the transverse position of the blade, a series of 0.1 mm diameter holes were drilled on it and their positions were tracked with an optical system. The linear motion actuator was acquired from UHV design (model LSM38-150-SS), and it was adapted to be driven by a brushless EC motor from MAXON. The speed of the scanning blade during the tests was 10 mm/s. The transverse movement of the slit in the direction perpendicular to the movement was lower than 40 m, and is dominated by the displacement of the contact point of the applied force on the lead-screw. An offset on the slit position was observed while changing the direction of movement of the blade, its amplitude being of the order of 30 m. The amplitudes of the displacements...
Kai Ji
2018-04-01
Full Text Available In this paper, a novel voltage control strategy for stand-alone operation brushless doubly fed induction generators for variable speed constant frequency wind energy conversion systems was presented and discussed. Based on the model of the power generation system, the proposed direct flux control strategy employs a nonlinear reduced-order generalized integrator-based resonant sliding-mode control approach to directly calculate and regulate the output value of converter which the control winding stator requires so as to eliminate its instantaneous errors, without involving any synchronous rotating coordinate transformations. The stability, robustness and convergence capability of the proposed control strategy were described and analyzed. Owing to the fact no additional current control inner loops are involved, the system configuration is therefore simplified and the dynamic performance enhanced. A constant converter switching frequency was achieved by using space vector pulse width modulation, which reduces the harmonics of the generator terminal voltage. In addition, the feasibility and validity of the proposed scheme is verified by experiments, and excellent steady and transient performance is achieved.
Salehi Arashloo, Ramin; Salehifar, Mehdi; Romeral, Luis; Sala, Vicent
2015-01-01
Highlights: • Model predictive deadbeat control of generator stator phase currents. • Fault tolerant control of five-phase BLDC generator. • Control of stator phase currents under normal and open-circuit faulty conditions. • MATLAB simulation and experimental verification of proposed control method. • Verification of robustness and fast respond of proposed controlling method. - Abstract: Fault tolerant control of five-phase brushless direct current (BLDC) machines is gaining more importance in high-safety applications such as offshore wind generators and automotive industries. In many applications, traditional controllers (such as PI controllers) are used to control the stator currents under faulty conditions. These controllers have good performance with dc signals. However, in the case of missing one or two of the phases, appropriate reference currents of these machines have oscillatory dynamics both in phase- and synchronous-reference frames. Non-constant nature of these reference values requires the implication of fast current controllers. In this paper, model predictive deadbeat controllers are proposed to control the stator currents of five-phase BLDC machines under normal and faulty conditions. Open circuit fault is considered for both one and two stator phases, and the behaviour of proposed controlling method is evaluated. This evaluation is generally focused on first, sensitivity of proposed controlling method and second, its speed in following reference current values under transient states. Proposed method is simulated and is verified experimentally on a five-phase BLDC drive
Spectral Purity Enhancement via Polyphase Multipath Circuits
Mensink, E.; Klumperink, Eric A.M.; Nauta, Bram
2004-01-01
The central question of this paper is: can we enhance the spectral purity of nonlinear circuits by using polyphase multipath circuits? The basic idea behind polyphase multipath circuits is to split the nonlinear circuits into two or more paths and exploit phase differences between these paths to
Distortion Cancellation via Polyphase Multipath Circuits
Mensink, E.; Klumperink, Eric A.M.; Nauta, Bram
The central question of this paper is: can we enhance the spectral purity of nonlinear circuits with the help of polyphase multipath circuits. Polyphase multipath circuits are circuits with two or more paths that exploit phase differences between the paths to cancel unwanted signals. It turns out
Dynamic theory for the mesoscopic electric circuit
Chen Bin; Shen Xiaojuan; Li Youquan; Sun LiLy; Yin Zhujian
2005-01-01
The quantum theory for mesoscopic electric circuit with charge discreteness is briefly described. The minibands of quasienergy in LC design mesoscopic electric circuit have been found. In the mesoscopic 'pure' inductance design circuit, just like in the mesoscopic metallic rings, the quantum dynamic characteristics have been obtained explicitly. In the 'pure' capacity design circuit, the Coulomb blockade had also been addressed
Multi-Layer E-Textile Circuits
Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory
2012-01-01
Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.
Kinetics of excited levels in copper-vapor laser
Smilanski, I.
1981-10-01
A full and representative description of the excited copper level kinetics in a copper-vapor laser is presented. The research was carried out in three stages. The first stage was the development of a representative and reliable measurement cell. A laser tube constructed of refractory materials and an excitation circuit which provides short pulses at a high repetition rate to heat the tube and excite the copper atoms were developed. This stage was also dedicated to characterizing the laser and studying its scaling laws. In the second stage a rapid neasuring system which avoids the problem of spectral line shape was developed. The system is based on the 'hook' method, which utilizes the anomalous dispersion in the vicinity of an atomic line. The light source, a wide band nitrogen-laser-pumped dye laser, ensures a short sampling time, and the recording system, with a television camera face as the recording medium, allows precise data reduction. In the third stage the excited copper level kinetics in a copper vapor laser is measured. The principal conclusions, that only a small part of the energy in the discharge is utilized to populate the upper laser levels and that the lower laser level population is very large at the end of the excitation pulse and cannot be attributed to relaxation of the upper levels, necessitate a new kinetic description of the copper-vapor laser. The laser is not self-terminating; it is activated and terminated by the electrical discharge
Charmonium non-potential excitations
Borue, V.Y.; Khokhlachev, S.B.
1990-01-01
Within the framework of an effective theory of quantum gluodynamics formulated earlier in terms of the glueball degrees of freedom, the excitations of gluon bunch formed by heavy quark and antiquark are considered. It is shown that these excitations correspond to the vibration of the gluon bunch shape and lie nearly 800 MeV higher than the charmonium ground state. The consequences of the existence of these excitations are discussed
Fission fragment excited laser system
McArthur, David A.; Tollefsrud, Philip B.
1976-01-01
A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.
Subsurface excitations in a metal
Ray, M. P.; Lake, R. E.; Sosolik, C. E.
2009-01-01
We investigate internal hot carrier excitations in a Au thin film bombarded by hyperthermal and low energy alkali and noble gas ions. Excitations within the thin film of a metal-oxide-semiconductor device are measured revealing that ions whose velocities fall below the classical threshold given...... by the free-electron model of a metal still excite hot carriers. Excellent agreement between these results and a nonadiabatic model that accounts for the time-varying ion-surface interaction indicates that the measured excitations are due to semilocalized electrons near the metal surface....
Nanofabrication of Plasmonic Circuits Containing Single Photon Sources
Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.
2017-01-01
Nanofabrication of photonic components based on dielectric loaded surface plasmon polariton waveguides (DLSPPWs) excited by single nitrogen vacancy (NV) centers in nanodiamonds is demonstrated. DLSPPW circuits are built around NV containing nanodiamonds, which are certified to be single-photon...... emitters, using electron-beam lithography of hydrogen silsesquioxane (HSQ) resist on silver-coated silicon substrates. A propagation length of 20 ± 5 μm for the NV single-photon emission is measured with DLSPPWs. A 5-fold enhancement in the total decay rate, and 58% coupling efficiency to the DLSPPW mode...
Diamond electro-optomechanical resonators integrated in nanophotonic circuits
Rath, P.; Ummethala, S.; Pernice, W. H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Diewald, S. [Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Lewes-Malandrakis, G.; Brink, D.; Heidrich, N.; Nebel, C. [Fraunhofer Institute for Applied Solid State Physics, Tullastr. 72, 79108 Freiburg (Germany)
2014-12-22
Diamond integrated photonic devices are promising candidates for emerging applications in nanophotonics and quantum optics. Here, we demonstrate active modulation of diamond nanophotonic circuits by exploiting mechanical degrees of freedom in free-standing diamond electro-optomechanical resonators. We obtain high quality factors up to 9600, allowing us to read out the driven nanomechanical response with integrated optical interferometers with high sensitivity. We are able to excite higher order mechanical modes up to 115 MHz and observe the nanomechanical response also under ambient conditions.
Instrumentation and test gear circuits manual
Marston, R M
2013-01-01
Instrumentation and Test Gear Circuits Manual provides diagrams, graphs, tables, and discussions of several types of practical circuits. The practical circuits covered in this book include attenuators, bridges, scope trace doublers, timebases, and digital frequency meters. Chapter 1 discusses the basic instrumentation and test gear principles. Chapter 2 deals with the design of passive attenuators, and Chapter 3 with passive and active filter circuits. The subsequent chapters tackle 'bridge' circuits, analogue and digital metering techniques and circuitry, signal and waveform generation, and p
Logic circuits from zero forcing.
Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael
We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.
Installations having pressurised fluid circuits
Rigg, S.; Grant, J.
1977-01-01
Reference is made to nuclear installations having pressurised coolant flow circuits. Breaches in such circuits may quickly result in much damage to the plant. Devices such as non-return valves, orifice plates, and automatically operated shut-off valves have been provided to prevent or reduce fluid flow through a breached pipe line, but such devices have several disadvantages; they may present large restrictions to normal flow of coolant, and may depend on the operation of ancillary equipment, with consequent delay in bringing them into operation in an emergency. Other expedients that have been adopted to prevent or reduce reverse flow through an upstream breach comprise various forms of hydraulic counter flow brakes. The arrangement described has at least one variable fluid brake comprising a fluidic device connected into a duct in the pressurised circuit, the device having an inlet, an outlet, a vortex chamber between the inlet and outlet, a control jet for introducing fluid into the vortex chamber, connections communicating the inlet and the outlet into one part of the circuit and the control jet into another region at a complementary pressure so that, in the event of a breach in the circuit in one region, fluid passes from the other region to enter the vortex chamber to stimulate pressure to create a flow restricting vortex in the chamber that reduces flow through the breach. The system finds particular application to stream generating pressure tube reactors, such as the steam generating heavy water reactor at UKAEA, Winfrith. (U.K.)
Vibrational-rotational excitation: chemical reactions of vibrationally excited molecules
Moore, C.B.; Smith, I.W.M.
1979-03-01
This review considers a limited number of systems, particularly gas-phase processes. Excited states and their preparation, direct bimolecular reactions, reactions of highly excited molecules, and reactions in condensed phases are discussed. Laser-induced isotope separation applications are mentioned briefly. 109 references
30 CFR 75.601-1 - Short circuit protection; ratings and settings of circuit breakers.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection; ratings and settings... Trailing Cables § 75.601-1 Short circuit protection; ratings and settings of circuit breakers. Circuit breakers providing short circuit protection for trailing cables shall be set so as not to exceed the...
30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.
2010-07-01
... short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the correct type and capacity shall be installed so as to protect all electric equipment and circuits against short...
30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.
2010-07-01
... short circuit protection. 75.518 Section 75.518 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.518 Electric equipment and circuits; overload and short circuit protection... installed so as to protect all electric equipment and circuits against short circuit and overloads. Three...
Excitation of graphene plasmons as an analogy with the two-level system
Fu, Jiahui [Microwave and Electromagnetic Laboratory, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin City, Heilongjiang Province (China); Lv, Bo, E-mail: lb19840313@126.com [Microwave and Electromagnetic Laboratory, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin City, Heilongjiang Province (China); Li, Rujiang [College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027 (China); Ma, Ruyu; Chen, Wan; Meng, Fanyi [Microwave and Electromagnetic Laboratory, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin City, Heilongjiang Province (China)
2016-02-15
The excitation of graphene plasmons (GPs) is presented as an interaction between the GPs and the incident electromagnetic field. In this Letter, the excitation of GPs in a plasmonic system is interpreted as an analogy with the two-level system by taking the two-coupled graphene-covered gratings as an example. Based on the equivalent circuit theory, the excitation of GPs in the graphene-covered grating is equivalent to the resonance of an oscillator. Thus, according to the governing equation, the electric currents at the resonant frequencies for two-coupled graphene-covered gratings correspond to the energy states in a two-level system. In addition, the excitation of GPs in different two-coupled graphene-covered gratings is numerically studied to validate our theoretical model. Our work provides an intuitive understanding of the excitation of GPs using an analogy with the two-level system. - Highlights: • The excitation of graphene plasmons (GPs) in graphene-covered grating is equivalent to the resonance of an oscillator. • We establish the equivalent circuit of two-level system to analyze the resonant character. • The excitation of GPs in different two-coupled graphene-covered gratings are numerically studied to validate our theoretical model.
Excitation of graphene plasmons as an analogy with the two-level system
Fu, Jiahui; Lv, Bo; Li, Rujiang; Ma, Ruyu; Chen, Wan; Meng, Fanyi
2016-01-01
The excitation of graphene plasmons (GPs) is presented as an interaction between the GPs and the incident electromagnetic field. In this Letter, the excitation of GPs in a plasmonic system is interpreted as an analogy with the two-level system by taking the two-coupled graphene-covered gratings as an example. Based on the equivalent circuit theory, the excitation of GPs in the graphene-covered grating is equivalent to the resonance of an oscillator. Thus, according to the governing equation, the electric currents at the resonant frequencies for two-coupled graphene-covered gratings correspond to the energy states in a two-level system. In addition, the excitation of GPs in different two-coupled graphene-covered gratings is numerically studied to validate our theoretical model. Our work provides an intuitive understanding of the excitation of GPs using an analogy with the two-level system. - Highlights: • The excitation of graphene plasmons (GPs) in graphene-covered grating is equivalent to the resonance of an oscillator. • We establish the equivalent circuit of two-level system to analyze the resonant character. • The excitation of GPs in different two-coupled graphene-covered gratings are numerically studied to validate our theoretical model.
Multiplication circuit for particle identification
Gerlier, Jean
1962-01-01
After having commented some characteristics of the particles present in a cyclotron, and their interactions, this report addresses the development and the implementation of a method and a device for selecting and counting particles. The author presents the principle and existing techniques of selection. In comparison with an existing device, the proportional counter and the scintillator are replaced by junctions: a surface barrier type junction (a silicon N layer with a very thin oxygen layer playing the role of the P layer), and lithium-based junction (a silicon P type layer made intrinsic by migration of lithium). The author then describes the developed circuit and assembly (background of the choice of a multiplication circuit), and their operation. In the next part, he presents the performed tests and discuses the obtained results. He finally outlines the benefits of the herein presented circuit [fr
Wiring of electronic evaluation circuits
Bauer, R.; Svoboda, Z.
1977-01-01
The wiring is described of electronic evaluation circuits for the automatic viewing of photographic paper strip negatives on which line tracks with an angular scatter relative to the spectrograph longitudinal axis were recorded during the oblique flight of nuclear particles during exposure in the spectrograph. In coincidence evaluation, the size of the angular scatter eventually requires that evaluation dead time be increased. The equipment consists of minimally two fixed registers and a block of logic circuits whose output is designed such as will allow connection to equipment for recording signals corresponding to the number of tracks on the film. The connection may be implemented using integrated circuits guaranteeing high operating reliability and life. (J.B.)
Counterpulse railgun energy recovery circuit
Honig, E.M.
1986-01-01
This patent describes a counterpulse railgun energy recovery circuit for propelling a projectile along a railgun the counterpulse railgun energy recovery circuit consists of: a railgun having an effective inductance; a source inductor initially charged to an initial current; current means for initially charging the source inductor to the initial current; first current-zero type switching means; second current-zero type switching; third current-zero type switching; muzzle current-zero type switching means; transfer capacitor, the transfer capacitor is for cooperating with the first, second, third, and muzzle current-zero type switching means for providing a resonant circuit for transferring current from the source inductor to the effective inductance of the railgun during the propelling of a projectile along the railgun and for returning current from the effective inductance of the railgun to the source inductance after the projectile has exited the railgun
Vertically Integrated Circuits at Fermilab
Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom
2009-01-01
The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.
High energy magnetic excitations
Endoh, Yasuo
1988-01-01
The report emphasizes that the current development in condensed matter physics opens a research field fit to inelastic neutron scattering experiments in the eV range which is easilly accessed by spallation neutron sources. Several important subjects adopted at thermal reactors are shown. It is desired to extend the implementation of the spectroscopic experiments for investigation of higher energy magnetic excitations. For La 2 CuO 4 , which is the mother crystal of the first high Tc materials found by Bednortz and Muller, it seems to be believed that the magnetism is well characterized by the two-dimensional Heisenberg antiferromagnetic Hamiltonian, and it is widely accepted that the magnetism is a most probable progenitor of high Tc superconductors. The unusual properties of spin correlations in this crystal have been studied extensively by standard neutron scattering techniques with steady neutrons at BNL. FeSi is not ordered magnetically but shows a very unique feature of temperature induced magnetism, which also has been studied extensively by using the thermal neutron scattering technique at BNL. In these experiments, polarized neutrons are indispensable to extract the clean magnetic components out of other components of non-magnetic scattering. (N.K.)
Magnetic measurement of soft magnetic composites material under 3D SVPWM excitation
Zhang, Changgeng; Jiang, Baolin; Li, Yongjian; Yang, Qingxin
2018-05-01
The magnetic properties measurement and analysis of soft magnetic material under the rotational space-vector pulse width modulation (SVPWM) excitation are key factors in design and optimization of the adjustable speed motor. In this paper, a three-dimensional (3D) magnetic properties testing system fit for SVPWM excitation is built, which includes symmetrical orthogonal excitation magnetic circuit and cubic field-metric sensor. Base on the testing system, the vector B and H loci of soft magnetic composite (SMC) material under SVPWM excitation are measured and analyzed by proposed 3D SVPWM control method. Alternating and rotating core losses under various complex excitation with different magnitude modulation ratio are calculated and compared.
Keming Zhou
2017-05-01
Full Text Available Excitation-inhibition imbalance in neural networks is widely linked to neurological and neuropsychiatric disorders. However, how genetic factors alter neuronal activity, leading to excitation-inhibition imbalance, remains unclear. Here, using the C. elegans locomotor circuit, we examine how altering neuronal activity for varying time periods affects synaptic release pattern and animal behavior. We show that while short-duration activation of excitatory cholinergic neurons elicits a reversible enhancement of presynaptic strength, persistent activation results to asynchronous and reduced cholinergic drive, inducing imbalance between endogenous excitation and inhibition. We find that the neuronal calcium sensor protein NCS-2 is required for asynchronous cholinergic release in an activity-dependent manner and dampens excitability of inhibitory neurons non-cell autonomously. The function of NCS-2 requires its Ca2+ binding and membrane association domains. These results reveal a synaptic mechanism implicating asynchronous release in regulation of excitation-inhibition balance.
Fermionic models with superconducting circuits
Las Heras, Urtzi; Garcia-Alvarez, Laura; Mezzacapo, Antonio; Lamata, Lucas [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Solano, Enrique [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)
2015-12-01
We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups. (orig.)
Circuit modeling for electromagnetic compatibility
Darney, Ian B
2013-01-01
Very simply, electromagnetic interference (EMI) costs money, reduces profits, and generally wreaks havoc for circuit designers in all industries. This book shows how the analytic tools of circuit theory can be used to simulate the coupling of interference into, and out of, any signal link in the system being reviewed. The technique is simple, systematic and accurate. It enables the design of any equipment to be tailored to meet EMC requirements. Every electronic system consists of a number of functional modules interconnected by signal links and power supply lines. Electromagnetic interference
Relative ultrasound energy measurement circuit
Gustafsson, E.Martin I.; Johansson, Jonny; Delsing, Jerker
2005-01-01
A relative ultrasound energy estimation circuit has been designed in a standard 0.35-μm CMOS process, to be a part of a thumb size internet connected wireless ultrasound measurement system. This circuit measures the relative energy between received ultrasound pulses, and presents an output signal that is linear to the received energy. Post-layout simulations indicate 7 bit linearity for 500 mV input signals, 5 μsec startup and stop times, 2.6 mW power consumption during active state. The acti...
Simplified design of filter circuits
Lenk, John
1999-01-01
Simplified Design of Filter Circuits, the eighth book in this popular series, is a step-by-step guide to designing filters using off-the-shelf ICs. The book starts with the basic operating principles of filters and common applications, then moves on to describe how to design circuits by using and modifying chips available on the market today. Lenk's emphasis is on practical, simplified approaches to solving design problems.Contains practical designs using off-the-shelf ICsStraightforward, no-nonsense approachHighly illustrated with manufacturer's data sheets
Programming languages for circuit design.
Pedersen, Michael; Yordanov, Boyan
2015-01-01
This chapter provides an overview of a programming language for Genetic Engineering of Cells (GEC). A GEC program specifies a genetic circuit at a high level of abstraction through constraints on otherwise unspecified DNA parts. The GEC compiler then selects parts which satisfy the constraints from a given parts database. GEC further provides more conventional programming language constructs for abstraction, e.g., through modularity. The GEC language and compiler is available through a Web tool which also provides functionality, e.g., for simulation of designed circuits.
Endogenous money, circuits and financialization
Malcolm Sawyer
2013-01-01
This paper locates the endogenous money approach in a circuitist framework. It argues for the significance of the credit creation process for the evolution of the economy and the absence of any notion of â€˜neutrality of moneyâ€™. Clearing banks are distinguished from other financial institutions as the providers of initial finance in a circuit whereas other financial institutions operate in a final finance circuit. Financialization is here viewed in terms of the growth of financial assets an...
Topological excitations in magnetic materials
Bazeia, D., E-mail: bazeia@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Doria, M.M. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil); Dipartimento di Fisica, Università di Camerino, I-62032 Camerino (Italy); Rodrigues, E.I.B. [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil)
2016-05-20
In this work we propose a new route to describe topological excitations in magnetic systems through a single real scalar field. We show here that spherically symmetric structures in two spatial dimensions, which map helical excitations in magnetic materials, admit this formulation and can be used to model skyrmion-like structures in magnetic materials.
From strong to ultrastrong coupling in circuit QED architectures
Niemczyk, Thomas
2011-08-10
The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)
Bechert, D. W.
1982-01-01
The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.
Implementation of Chua's circuit using simulated inductance
Gopakumar, K.; Premlet, B.; Gopchandran, K. G.
2011-05-01
In this study we describe how to build an inductorless version of the classic Chua's circuit. A suitable inductor for Chua's circuit is often hard to procure. The required inductor for the circuit is designed using simple circuit elements such as resistors, capacitors and operational amplifiers. The complete circuit can be implemented by using off-the-shelf components, and it can readily be integrated on a single chip. This design of Chua's circuit allows the original dynamics to be slowed down to just a few hertz, enabling implementation of sophisticated control schemes without severe time restrictions. Another novel feature of the circuit is that losses associated with capacitors due to leakages can easily be compensated by providing negative resistance using the same setup. The chaotic behaviour of the circuit is verified by PSpice and Multisim simulation and also by experimental study on a circuit breadboard. The results give excellent agreement with each other and with the results of previous investigators.
Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex.
Adesnik, Hillel
2018-05-01
Understanding the balance between synaptic excitation and inhibition in cortical circuits in the brain, and how this contributes to cortical rhythms, is fundamental to explaining information processing in the cortex. This study used cortical layer-specific optogenetic activation in mouse cortex to show that excitatory neurons in any cortical layer can drive powerful gamma rhythms, while inhibition balances excitation. The net impact of this is to keep activity within each layer in check, but simultaneously to promote the propagation of activity to downstream layers. The data show that rhythm-generating circuits exist in all principle layers of the cortex, and provide layer-specific balances of excitation and inhibition that affect the flow of information across the layers. Rhythmic activity can synchronize neural ensembles within and across cortical layers. While gamma band rhythmicity has been observed in all layers, the laminar sources and functional impacts of neuronal synchronization in the cortex remain incompletely understood. Here, layer-specific optogenetic stimulation demonstrates that populations of excitatory neurons in any cortical layer of the mouse's primary visual cortex are sufficient to powerfully entrain neuronal oscillations in the gamma band. Within each layer, inhibition balances excitation and keeps activity in check. Across layers, translaminar output overcomes inhibition and drives downstream firing. These data establish that rhythm-generating circuits exist in all principle layers of the cortex, but provide layer-specific balances of excitation and inhibition that may dynamically shape the flow of information through cortical circuits. These data might help explain how excitation/inhibition (E/I) balances across cortical layers shape information processing, and shed light on the diverse nature and functional impacts of cortical gamma rhythms. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Advanced circuit simulation using Multisim workbench
Báez-López, David; Cervantes-Villagómez, Ofelia Delfina
2012-01-01
Multisim is now the de facto standard for circuit simulation. It is a SPICE-based circuit simulator which combines analog, discrete-time, and mixed-mode circuits. In addition, it is the only simulator which incorporates microcontroller simulation in the same environment. It also includes a tool for printed circuit board design.Advanced Circuit Simulation Using Multisim Workbench is a companion book to Circuit Analysis Using Multisim, published by Morgan & Claypool in 2011. This new book covers advanced analyses and the creation of models and subcircuits. It also includes coverage of transmissi
Digital circuit boards mach 1 GHz
Morrison, Ralph
2012-01-01
A unique, practical approach to the design of high-speed digital circuit boards The demand for ever-faster digital circuit designs is beginning to render the circuit theory used by engineers ineffective. Digital Circuit Boards presents an alternative to the circuit theory approach, emphasizing energy flow rather than just signal interconnection to explain logic circuit behavior. The book shows how treating design in terms of transmission lines will ensure that the logic will function, addressing both storage and movement of electrical energy on these lines. It cove
Clocking Scheme for Switched-Capacitor Circuits
Steensgaard-Madsen, Jesper
1998-01-01
A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....
Unbalanced Neuronal Circuits in Addiction
Volkow, Nora D.; Wang, Gen-Jack; Tomasi, Dardo; Baler, Ruben D.
2013-01-01
Through sequential waves of drug-induced neurochemical stimulation, addiction co-opts the brain's neuronal circuits that mediate reward, motivation, , to behavioral inflexibility and a severe disruption of self-control and compulsive drug intake. Brain imaging technologies have allowed neuroscientists to map out the neural landscape of addiction in the human brain and to understand how drugs modify it.
A Low Noise Electronic Circuit
Annema, Anne J.; Leenaerts, Dominicus M.W.; de Vreede, Petrus W.H.
2002-01-01
An electronic circuit, which can be used as a Low Noise Amplifier (LNA), comprises two complementary Field Effect Transistors (M1, M2; M5, M6), each having a gate, a source and a drain. The gates are connected together as a common input terminal, and the drains are connected together as a
Circuit design for RF transceivers
Leenaerts, Domine; Vaucher, Cicero S
2007-01-01
Second edition of this successful 2001 RF Circuit Design book, has been updated, latest technology reviews have been added as well as several actual case studies. Due to the authors being active in industry as well as academia, this should prove to be an essential guide on RF Transceiver Design for students and engineers.
Integrated Circuit Stellar Magnitude Simulator
Blackburn, James A.
1978-01-01
Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)
Simulated annealing and circuit layout
Aarts, E.H.L.; Laarhoven, van P.J.M.
1991-01-01
We discuss the problem of approximately sotvlng circuit layout problems by simulated annealing. For this we first summarize the theoretical concepts of the simulated annealing algorithm using Ihe theory of homogeneous and inhomogeneous Markov chains. Next we briefly review general aspects of the
One Photon Can Simultaneously Excite Two or More Atoms.
Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore
2016-07-22
We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.
Growth mechanism and magnon excitation in NiO nanowalls
Yang Chun
2011-01-01
Full Text Available Abstract The nanosized effects of short-range multimagnon excitation behavior and short-circuit diffusion in NiO nanowalls synthesized using the Ni grid thermal treatment method were observed. The energy dispersive spectroscopy mapping technique was used to characterize the growth mechanism, and confocal Raman scattering was used to probe the antiferromagnetic exchange energy J 2 between next-nearest-neighboring Ni ions in NiO nanowalls at various growth temperatures below the Neel temperature. This study shows that short spin correlation leads to an exponential dependence of the growth temperatures and the existence of nickel vacancies during the magnon excitation. Four-magnon configurations were determined from the scattering factor, revealing a lowest state and monotonic change with the growth temperature. PACS: 75.47.Lx; 61.82.Rx; 75.50.Tt; 74.25.nd; 72.10.Di
Growth mechanism and magnon excitation in NiO nanowalls
2011-01-01
The nanosized effects of short-range multimagnon excitation behavior and short-circuit diffusion in NiO nanowalls synthesized using the Ni grid thermal treatment method were observed. The energy dispersive spectroscopy mapping technique was used to characterize the growth mechanism, and confocal Raman scattering was used to probe the antiferromagnetic exchange energy J2 between next-nearest-neighboring Ni ions in NiO nanowalls at various growth temperatures below the Neel temperature. This study shows that short spin correlation leads to an exponential dependence of the growth temperatures and the existence of nickel vacancies during the magnon excitation. Four-magnon configurations were determined from the scattering factor, revealing a lowest state and monotonic change with the growth temperature. PACS: 75.47.Lx; 61.82.Rx; 75.50.Tt; 74.25.nd; 72.10.Di PMID:21824408
Excitation of coherent propagating spin waves by pure spin currents.
Demidov, Vladislav E; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O
2016-01-28
Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics.
Lopez-Arrietea, M. G.; Solis, M. A.; De Llano, M. [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)
2001-02-01
Excited cooper pairs formed in a many-fermion system are those with nonzero total center-of mass momentum (CMM). They are normally neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM pairs. However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM pairs relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any specific CMM less than the maximum (or breakup of the pair) momentum turns out to be typically larger than about 95% of those with zero-CMM at zero temperature T. Even at T {approx}100 K this fraction en 2D is still as large as about 70% for typical quasi-2D cuprate superconductor parameters. [Spanish] Los pares de cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM) diferente de cero. Normalmente estos no son tomados en cuenta en la teoria estandar de la superconductividad de Bardeen-Cooper-Schrieffer (BCS) al suponer que su numero es muy pequeno comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de condensacion Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccion modelo BCS entre los fermiones, determinamos la poblacion de pares cooper con cada uno de todos los posibles valores del CMM calculando el numero de pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razon decrece rapidamente con el CMM, el numero de pares de cooper para cualquier CMM especifico menor que el momento maximo (o rompimiento de par) es tipicamente mas grande que el 95% de aquellos con CMM cero. Aun a T {approx}100 K esta fraccion en 2D es
IMPROVING THE RELIABILITY OF THE POWER CIRCUIT OF THE ELECTRIC TRAINS ЕР2Т AND ЕПЛ2Т
N. H. Visin
2010-02-01
Full Text Available The transitional processes in shunt circuit of traction engines, which armatures and excitation windings are connected in non-conducting direction as to the flowing power current, are considered in this paper. The changes in the control circuits of braking switch and in the shunt power circuit of traction engines with additional mounting a resistor of 0.5 Ohm are proposed. All this modernization will allow increasing greatly the operation reliability of power circuit of ЭР2Т and ЕПЛ2Т electric locomotives during their service life.
Uniform excitations in magnetic nanoparticles
Mørup, Steen; Frandsen, Cathrine; Hansen, Mikkel Fougt
2010-01-01
We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization...... and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering....
Uniform excitations in magnetic nanoparticles
Steen Mørup
2010-11-01
Full Text Available We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering.
Excited states in biological systems
Cilento, G.; Zinner, K.; Bechara, E.J.H.; Duran, N.; Baptista, R.C. de; Shimizu, Y.; Augusto, O.; Faljoni-Alario, A.; Vidigal, C.C.C.; Oliveira, O.M.M.F.; Haun, M.
1979-01-01
Some aspects of bioluminescence related to bioenergetics are discussed: 1. chemical generation of excited species, by means of two general processes: electron transference and cyclic - and linear peroxide cleavage; 2. biological systems capable of generating excited states and 3. biological functions of these states, specially the non-emissive ones (tripletes). The production and the role of non-emissive excited states in biological systems are analysed, the main purpose of the study being the search for non-emissive states. Experiences carried out in biological systems are described; results and conclusions are given. (M.A.) [pt
Bao Bo-Cheng; Feng Fei; Dong Wei; Pan Sai-Hu
2013-01-01
A flux-controlled memristor characterized by smooth cubic nonlinearity is taken as an example, upon which the voltage—current relationships (VCRs) between two parallel memristive circuits — a parallel memristor and capacitor circuit (the parallel MC circuit), and a parallel memristor and inductor circuit (the parallel ML circuit) — are investigated. The results indicate that the VCR between these two parallel memristive circuits is closely related to the circuit parameters, and the frequency and amplitude of the sinusoidal voltage stimulus. An equivalent circuit model of the memristor is built, upon which the circuit simulations and experimental measurements of both the parallel MC circuit and the parallel ML circuit are performed, and the results verify the theoretical analysis results
Fabric circuits and method of manufacturing fabric circuits
Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)
2011-01-01
A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.
Investigation of Equivalent Circuit for PEMFC Assessment
Myong, Kwang Jae
2011-01-01
Chemical reactions occurring in a PEMFC are dominated by the physical conditions and interface properties, and the reactions are expressed in terms of impedance. The performance of a PEMFC can be simply diagnosed by examining the impedance because impedance characteristics can be expressed by an equivalent electrical circuit. In this study, the characteristics of a PEMFC are assessed using the AC impedance and various equivalent circuits such as a simple equivalent circuit, equivalent circuit with a CPE, equivalent circuit with two RCs, and equivalent circuit with two CPEs. It was found in this study that the characteristics of a PEMFC could be assessed using impedance and an equivalent circuit, and the accuracy was highest for an equivalent circuit with two CPEs
Sustainability issues in circuit board recycling
Legarth, Jens Brøbech; Alting, Leo; Baldo, Gian Luca
1995-01-01
The resource recovery and environmental impact issues of printed circuit board recycling by secondary copper smelters are discussed. Guidelines concerning material selection for circuit board manufacture and concerning the recycling processes are given to enhance recovery efficiency and to lower...
Developing a Domain Model for Relay Circuits
Haxthausen, Anne Elisabeth
2009-01-01
In this paper we stepwise develop a domain model for relay circuits as used in railway control systems. First we provide an abstract, property-oriented model of networks consisting of components that can be glued together with connectors. This model is strongly inspired by a network model...... for railways madeby Bjørner et.al., however our model is more general: the components can be of any kind and can later be refined to e.g. railway components or circuit components. Then we show how the abstract network model can be refined into an explicit model for relay circuits. The circuit model describes...... the statics as well as the dynamics of relay circuits, i.e. how a relay circuit can be composed legally from electrical components as well as how the components may change state over time. Finally the circuit model is transformed into an executable model, and we show how a concrete circuit can be defined...
Telecommunications Circuit Allocation Programs - Kansas City Area
Thomas, William
1994-01-01
The overall objective of the audit was to determine whether DoD circuit allocation programs identified and used the most effective configurations for leased long-haul, special-purpose telecommunications circuits...
Time- and Site-Resolved Dynamics in a Topological Circuit
Jia Ningyuan
2015-06-01
Full Text Available From studies of exotic quantum many-body phenomena to applications in spintronics and quantum information processing, topological materials are poised to revolutionize the condensed-matter frontier and the landscape of modern materials science. Accordingly, there is a broad effort to realize topologically nontrivial electronic and photonic materials for fundamental science as well as practical applications. In this work, we demonstrate the first simultaneous site- and time-resolved measurements of a time-reversal-invariant topological band structure, which we realize in a radio-frequency photonic circuit. We control band-structure topology via local permutation of a traveling-wave capacitor-inductor network, increasing robustness by going beyond the tight-binding limit. We observe a gapped density of states consistent with a modified Hofstadter spectrum at a flux per plaquette of ϕ=π/2. In situ probes of the band gaps reveal spatially localized bulk states and delocalized edge states. Time-resolved measurements reveal dynamical separation of localized edge excitations into spin-polarized currents. The radio-frequency circuit paradigm is naturally compatible with nonlocal coupling schemes, allowing us to implement a Möbius strip topology inaccessible in conventional systems. This room-temperature experiment illuminates the origins of topology in band structure, and when combined with circuit quantum electrodynamics techniques, it provides a direct path to topologically ordered quantum matter.
Longitudinally excited CO2 laser with multiple laser tubes
Uno, Kazuyuki; Akitsu, Tetsuya; Jitsuno, Takahisa
2016-11-01
We developed a longitudinally excited CO2 laser system that was constituted of two or three laser tubes and a single driving circuit. The multiple laser tubes simultaneously produced almost the same short laser pulses with a spike pulse width of about 164 ns and a pulse tail length of about 74 μs with a single driving circuit. The double-tube system was constituted of two 30 cm-long laser tubes with inner diameters of 13 mm and 16 mm and a single driving circuit with an input energy of 2.18 J. The output energy of the 13 mm-tube was 23.3 mJ, and that of the 16 mm-tube was 21.9 mJ at a gas pressure of 4.2 kPa (CO2:N2:He = 1:1:2). The triple-tube system was constituted of three 30 cm-long laser tubes with inner diameters of 9 mm, 13 mm, and 16 mm and a single driving circuit with an input energy of 2.18 J. The output energy of the 9 mm tube was 15.9 mJ, that of the 13 mm tube was 24.1 mJ, and that of the 16 mm tube was 19.2 mJ at a gas pressure of 4.2 kPa. With the same driving circuit and the same input energy, the total output energies of the multitube laser systems were higher than the output energy of a single-tube system.
Optimization of a primary circuit of the nuclear power plant from the vibration point of view
Dupal, J.; Zeman, V.
2003-01-01
The primary circuit of the nuclear power plant (NPP) as a dynamical vibrating system can be disturbed by various excitation including earthquake or pressure pulsation generated by main circulation pumps (MCP). Especially, unpleasant pulsation vibration growth can be caused by the small differences of revolutions between main circulation pumps of the individual coolant loops. This growth corresponds to the well known beats. The paper deals with an approach to the improving and optimization of dynamical properties of the whole primary circuit system including the reactor and coolant loops under pressure pulsation. (author)
Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.
Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue
2014-12-15
We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.
Influence of an inner short-circuit on the behaviour of the superconducting magnet
Zizek, F.
1984-01-01
On exciting one of the superconducting quadrupole magnets, voltage pulses were observed on the winding outlets. Over a certain current level the pulses disappeared and a quench of the magnet was registered. A subsequent analysis proved that phenomenon was caused by short-circuiting of the turns inside one of the quadrupole coils. The voltage pulses were caused by repeated quenches of the short-circuited part of the winding. The above effect did not appear until a certain rate of rise of the current was attained
Influence of an inner short-circuit on the behaviour of the superconducting magnet
Zizek, F. (Skoda k.p., Plzen (Czechoslovakia))
1984-01-01
On exciting one of the superconducting quadrupole magnets, voltage pulses were observed on the winding outlets. Over a certain current level the pulses disappeared and a quench of the magnet was registered. A subsequent analysis proved that phenomenon was caused by short-circuiting of the turns inside one of the quadrupole coils. The voltage pulses were caused by repeated quenches of the short-circuited part of the winding. The above effect did not appear until a certain rate of rise of the current was attained.
The propagation of pressure pulsations in the primary circuit of power plant A1
Pecinka, L.
1976-01-01
A classification is made of the exciting forces of pressure pulsations in the primary coolant circuit with forced coolant circulation. A mathematical model is constructed of the propagation of pressure pulsations in the system and examples of measurements are given. The measurement methods used and the methods for the generalization of obtained data are assessed. The methods and results of the measurements of hydrodynamic pressure pulsations in a closed primary circuit with forced coolant circulation of the A-1 nuclear power plant are given. (F.M.)
Scattering of highly excited atoms
Raith, W.
1980-01-01
Experimental methods to excite atomic beams into Rydberg states and the first results of collision experiments with such beams are reported. For further information see hints under relevant topics. (orig.) [de