Teaching about operation of brushless DC motors
Čufar, Aleksandra
2013-01-01
Brush DC motor is being replaced by brushless DC motors on every area of application. My diploma thesis is a presentation of brushless DC motor, how it works and its application. Within first part we describe various electric motors and their application. There are several types of electric motors division. Last to be added is a brushless motor. Within second part of thesis we look into a brushless DC motor, how it works, its application and control. In the third part of thesis we construct a...
Motor control for a brushless DC motor
Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)
1985-01-01
This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.
Variable Rail Voltage Control of a Brushless DC (BLDC) Motor
2013-01-01
Variable Rail Voltage Control of a Brushless DC (BLDC) Motor by Yuan Chen, Joseph Conroy, and William Nothwang ARL-TR-6308 January 2013...TR-6308 January 2013 Variable Rail Voltage Control of a Brushless DC (BLDC) Motor Yuan Chen, Joseph Conroy, and William Nothwang Sensors...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Variable Rail Voltage Control of a Brushless DC (BLDC) Motor 5a. CONTRACT NUMBER 5b. GRANT
Brushless dc motor uses electron beam switching tube as commutator
Studer, P.
1965-01-01
Electron beam switching tube eliminates physical contact between rotor and stator in brushless dc motor. The tube and associated circuitry control the output of a dc source to sequentially energize the motor stator windings.
Integrated-Circuit Controller For Brushless dc Motor
Le, Dong Tuan
1994-01-01
Generic circuit performs commutation-logic and power-switching functions for control of brushless dc motor. Controller includes commutation-logic and associated control circuitry, power supply, and inverters containing power transistors. Major advantages of controller are size, weight, and power consumption can be made less than other brushless-dc-motor controllers.
Rotor position sensor switches currents in brushless dc motors
1965-01-01
Reluctance switch incorporated in an induction motor is used for sensing rotor position and switching armature circuits in a brushless dc motor. This device drives the solar array system of an unmanned space satellite.
Tachometers Derived From a Brushless DC Motor
Howard, David E.; Smith, Dennis A.
2007-01-01
The upper part of the figure illustrates the major functional blocks of a direction-sensitive analog tachometer circuit based on the use of an unexcited two-phase brushless dc motor as a rotation transducer. The primary advantages of this circuit over many older tachometer circuits include the following: Its output inherently varies linearly with the rate of rotation of the shaft. Unlike some tachometer circuits that rely on differentiation of voltages with respect to time, this circuit relies on integration, which results in signals that are less noisy. There is no need for an additional shaft-angle sensor, nor is there any need to supply electrical excitation to a shaft-angle sensor. There is no need for mechanical brushes (which tend to act as sources of electrical noise). The underlying concept and electrical design are relatively simple. This circuit processes the back-electromagnetic force (back-emf) outputs of the two motor phases into a voltage directly proportional to the instantaneous rate (sign magnitude) of rotation of the shaft. The processing in this circuit effects a straightforward combination of mathematical operations leading to a final operation based on the well-known trigonometric identity (sin x)2 + (cos x)2 = 1 for any value of x. The principle of operation of this circuit is closely related to that of the tachometer circuit described in Tachometer Derived From Brushless Shaft-Angle Resolver (MFS-28845), NASA Tech Briefs, Vol. 19, No. 3 (March 1995), page 39. However, the present circuit is simpler in some respects because there is no need for sinusoidal excitation of shaftangle- resolver windings.
Mathematical modeling of electromechanical processes in a brushless DC motor
Directory of Open Access Journals (Sweden)
V.I. Tkachuk
2014-03-01
Full Text Available On the basis of initial assumptions, a mathematical model that describes electromechanical processes in a brushless DC electric motor with a salient-pole stator and permanent-magnet excitation is created.
Mathematical modeling of electromechanical processes in a brushless DC motor
V.I. Tkachuk; V.I. Zhuk
2014-01-01
On the basis of initial assumptions, a mathematical model that describes electromechanical processes in a brushless DC electric motor with a salient-pole stator and permanent-magnet excitation is created.
Universal Brushless-DC Motor Controller for Space Applications Project
National Aeronautics and Space Administration — The goal of this SBIR is to adapt an initial prototype ultra-miniature high-performance brushless-DC-motor controller, code named 'Puck', for use by NASA across a...
Summary on Sensorless permanent magnet Brushless DC Motor Control Strategies
Directory of Open Access Journals (Sweden)
Li Hai Xia
2016-01-01
Full Text Available This paper aims at discussing the development process and application of permanent magnet brushless DC motor. By referring to the related literatures, this thesis gives an overview of several common non-position sensor detection technologies, analyzing their strengths and weaknesses as well as a number of new and improved methods in practical applications. Besides, The application situation of the electric door with sensorless permanent magnet brushless DC motor was illustrated.
System For Characterizing Three-Phase Brushless dc Motors
Howard, David E.; Smith, Dennis A.
1996-01-01
System of electronic hardware and software developed to automate measurements and calculations needed to characterize electromechanical performances of three-phase brushless dc motors, associated shaft-angle sensors needed for commutation, and associated brushless tachometers. System quickly takes measurements on all three phases of motor, tachometer, and shaft-angle sensor simultaneously and processes measurements into performance data. Also useful in development and testing of motors with not only three phases but also two, four, or more phases.
Controller for computer control of brushless dc motors. [automobile engines
Hieda, L. S. (Inventor)
1981-01-01
A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.
Brushless dc motors. [applications in non-space technology
1975-01-01
Brushless dc motors were intensively developed and tested over several years before qualification as the prime movers for Apollo Spacecraft life support blowers, and for circulating oxygen in the lunar portable life support system. Knowledge gained through prototype development and critical testing has significantly influenced the technology employed, broadened markets and applications, and reduced the cost of present day motors.
A brushless dc spin motor for momentum exchange altitude control
Stern, D.; Rosenlieb, J. W.
1972-01-01
Brushless dc spin motor is designed to use Hall effect probes as means of revolving rotor position and controlling motor winding currents. This results in 3 to 1 reduction in watt-hours required for wheel acceleration, a 2 to 1 reduction in power to run wheel, and a 10 to 1 reduction in the electronics size and weight.
Pulse-Width-Modulating Driver for Brushless dc Motor
Salomon, Phil M.
1991-01-01
High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.
Hybrid Adaptive Observer for a Brushless DC Motor
DEFF Research Database (Denmark)
Niemczyk, Piotr; Porchez, Thomas; Bendtsen, Jan Dimon
2008-01-01
A novel hybrid adaptive observer for Brushless DC Motors (BLDCM) is presented. It uses two current measurements of BLDCM phases to estimate the angle and the speed of the rotor. The observer is designed on the basis of a hybrid model, which is also presented in this paper. The parameters of the o...
Controller for a High-Power, Brushless dc Motor
Fleming, David J.; Makdad, Terence A.
1987-01-01
Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.
The Model of Brushless Dc Motor Drive
Directory of Open Access Journals (Sweden)
Aurelijus Pitrėnas
2013-05-01
Full Text Available The research considered the operation, control, mathematical and simulation models of BLDC motor. A simplified idealized simulation model was designed and tested using Matlab Simulink software package. The simulation model uses Hall effect sensor signals for determining the rotor position. Simulation was done for Maxon, EC-4 pole 22 BL A series motor. The obtained model testing results deviate from the data supplied by the motor manufacturer by as little as 0.2–10.6%; consequently, the implemented model is suitable for BLDC motor control study and research.Article in Lithuanian
Hall effect encoding of brushless dc motors
Berard, C. A.; Furia, T. J.; Goldberg, E. A.; Greene, R. C.
1970-01-01
Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member.
(PFC) converters feeding brushless DC motor drive
African Journals Online (AJOL)
DR OKE
1Department of Electrical Engineering, Indian Institute of Technology Delhi, INDIA ... configurations of PFC converters feeding BLDC motor drive are presented as low ..... In future, it is expected for a continuing research in the quest of energy ...
High-temperature brushless DC motor controller
Energy Technology Data Exchange (ETDEWEB)
Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan
2017-05-16
A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.
(PFC) converters feeding brushless DC motor drive
African Journals Online (AJOL)
DR OKE
BLDC motor finds applications in variety of appliances used in domestic and household purposes, electrical vehicles and transportation, aerospace applications, medical equipments, medium power industrial tools, heating ventilation and air- conditioning (HVAC), precise motion control and industrial automation [1-4].
James Webb Space Telescope Deployment Brushless DC Motor Characteristics Analysis
Tran, Ahn N.
2016-01-01
A DC motor's performance is usually characterized by a series of tests, which are conducted by pass/fail criteria. In most cases, these tests are adequate to address the performance characteristics under environmental and loading effects with some uncertainties and decent power/torque margins. However, if the motor performance requirement is very stringent, a better understanding of the motor characteristics is required. The purpose of this paper is to establish a standard way to extract the torque components of the brushless motor and gear box characteristics of a high gear ratio geared motor from the composite geared motor testing and motor parameter measurement. These torque components include motor magnetic detent torque, Coulomb torque, viscous torque, windage torque, and gear tooth sliding torque. The Aerospace Corp bearing torque model and MPB torque models are used to predict the Coulomb torque of the motor rotor bearings and to model the viscous components. Gear tooth sliding friction torque is derived from the dynamo geared motor test data. With these torque data, the geared motor mechanical efficiency can be estimated and provide the overall performance of the geared motor versus several motor operating parameters such as speed, temperature, applied current, and transmitted power.
Disc rotors with permanent magnets for brushless DC motor
Hawsey, Robert A.; Bailey, J. Milton
1992-01-01
A brushless dc permanent magnet motor drives an autonomous underwater vehe. In one embodiment, the motor comprises four substantially flat stators in stacked relationship, with pairs of the stators axially spaced, each of the stators comprising a tape-wound stator coil, and first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and a drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs of rotors mounted on opposite sides of the stators and driven by counterrotating shafts.
Low speed phaselock speed control system. [for brushless dc motor
Fulcher, R. W.; Sudey, J. (Inventor)
1975-01-01
A motor speed control system for an electronically commutated brushless dc motor is provided which includes a phaselock loop with bidirectional torque control for locking the frequency output of a high density encoder, responsive to actual speed conditions, to a reference frequency signal, corresponding to the desired speed. The system includes a phase comparator, which produces an output in accordance with the difference in phase between the reference and encoder frequency signals, and an integrator-digital-to-analog converter unit, which converts the comparator output into an analog error signal voltage. Compensation circuitry, including a biasing means, is provided to convert the analog error signal voltage to a bidirectional error signal voltage which is utilized by an absolute value amplifier, rotational decoder, power amplifier-commutators, and an arrangement of commutation circuitry.
Research on Control System of Three - phase Brushless DC Motor for Electric Vehicle
Wang, Zhiwei; Jin, Hai; Guo, Jie; Su, Jie; Wang, Miao
2017-12-01
In order to study the three-phase brushless motor control system of electric vehicle, Freescale9S12XS128 chip is used as the control core, and the power MOSFET is used as the inverter device. The software is compiled by Codewarrior software. The speed control link adopts open-loop control, and the control chip collects the external sensor signal voltage Change control PWM signal output control three-phase brushless DC motor speed. The whole system consists of Hall position detection module, current detection module, power drive module and voltage detection module. The basic functions of three-phase brushless DC motor drive control are realized.
Dynamic modeling of brushless dc motors for aerospace actuation
Demerdash, N. A.; Nehl, T. W.
1980-01-01
A discrete time model for simulation of the dynamics of samarium cobalt-type permanent magnet brushless dc machines is presented. The simulation model includes modeling of the interaction between these machines and their attached power conditioners. These are transistorized conditioner units. This model is part of an overall discrete-time analysis of the dynamic performance of electromechanical actuators, which was conducted as part of prototype development of such actuators studied and built for NASA-Johnson Space Center as a prospective alternative to hydraulic actuators presently used in shuttle orbiter applications. The resulting numerical simulations of the various machine and power conditioner current and voltage waveforms gave excellent correlation to the actual waveforms collected from actual hardware experimental testing. These results, numerical and experimental, are presented here for machine motoring, regeneration and dynamic braking modes. Application of the resulting model to the determination of machine current and torque profiles during closed-loop actuator operation were also analyzed and the results are given here. These results are given in light of an overall view of the actuator system components. The applicability of this method of analysis to design optimization and trouble-shooting in such prototype development is also discussed in light of the results at hand.
Research of subdivision driving technology for brushless DC motors in optical fiber positioning
Kan, Yi; Gu, Yonggang; Zhu, Ye; Zhai, Chao
2016-07-01
In fiber spectroscopic telescopes, optical fiber positioning units are used to position thousands of fibers on the focal plane quickly and precisely. Stepper motors are used in existing units, however, it has some inherent deficiencies, such as serious heating and low efficiency. In this work, the universally adopted subdivision driving technology for stepper motors is transplanted to brushless DC motors. It keeps the advantages of stepper motors such as high positioning accuracy and resolution, while overcomes the disadvantages mentioned above. Thus, this research mainly focuses on develop a novel subdivision driving technology for brushless DC motor. By the proving of experiments of online debug and subdivision speed and position, the proposed brushless DC motor subdivision technology can achieve the expected functions.
Sensorless Control of PM Synchronous Motors and Brushless DC Motors
DEFF Research Database (Denmark)
Montesinos, D.; Galceran, Samuel; Blaabjerg, Frede
2005-01-01
This paper provides a review of the literature addressing sensorless operation methods of PM brushless machines. The methods explained are state-of-the-art of open and closed loop control strategies. The closed loop review includes those methods based on voltage and current measurements, those me...
Characterization of Small DC Brushed and Brushless Motors
2013-03-01
back EMF signals for a brushless motor. ............................13 Figure 11. Torque vs. RPM at various voltages, 100% throttle for an A05-3700...electrical power to mechanical power in the form of rotary motion. This electromechanical system is characterized by a few specific parameters that, if...of the magnets over the coils also creates a back electromotive force ( EMF ) on the unenergized stator, which is sensed by the speed controller to
A Hybrid Model of a Brushless DC Motor
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Hansen, Hans Brink; Kallesøe, Carsten Skovmose
2007-01-01
This paper presents a novel approach to modeling of a Brush-Less Direct Current Motor (BLDCM) driven by an inverter using hybrid systems theory. Hybrid systems combine continuous and discrete (event-based) dynamics, which is exactly the case in an inverter-driven BLDCM. The model presented...... in this work consists of a general automaton with discrete states, combined with a set of continuous dynamic equations describing the electro-mechanical behavior of the motor. One of the significant benefits of this strategy is that the model describes the motor under all possible operating conditions...
System and Method for Determining Rate of Rotation Using Brushless DC Motor
Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2000-01-01
A system and method are provided for measuring rate of rotation. A brushless DC motor is rotated and produces a back electromagnetic force (emf) on each winding thereof. Each winding's back-emf is squared. The squared outputs associated with each winding are combined, with the square root being taken of such combination, to produce a DC output proportional only to the rate of rotation of the motor's shaft.
Rate of rotation measurement using back-EMFS associated with windings of a brushless DC motor
Howard, David E. (Inventor)
2000-01-01
A system and method are provided for measuring rate of rotation. A brushless DC motor is rotated and produces a back electromagnetic force (emf) on each winding thereof. Each winding's back-emf is integrated and multiplied by the back-emf associated with an adjacent winding. The multiplied outputs associated with each winding are combined to produce a directionally sensitive DC output proportional only to the rate of rotation of the motor's shaft.
Directory of Open Access Journals (Sweden)
Adhika Prajna Nandiwardhana
2017-01-01
Full Text Available Penggunaan motor brushless DC telah banyak digunakan dalam berbagai bidang seperti peralatan rumah tangga maupun industri dikarenakan motor ini memiliki struktur yang sederhana, efisiensi dan torsi yang tinggi, serta menggunakan konsep komutasi elektris yang berbeda dari motor DC lainnya. Namun pengoperasian pada umumnya yang menggunakan sumber AC, penyearah serta inverter membuat tingginya nilai harmonisa arus (THD sebesar 73,33% dan power factor sebesar 0,803 dimana nilai ini kurang baik dalam pengaplikasiannya. Pada penelitian ini akan dikaji mengenai proses power factor correction yang mereduksi harmonisa arus (THD sumber AC dengan menggunakan zeta converter dalam pengaplikasian motor brushless DC, serta pengoperasian motor dengan mengamati respon motor terhadap kecepatan referensi yang berubah-ubah dan mengamati kestabilan motor terhadap pembebanan yang bervariasi. Dalam menerapkan metode yang dilakukan pada penelitian ini, pengoperasian motor brushless DC yang telah dirancang dapat bekerja dengan baik meliputi respon motor yang dapat mengikuti kecepatan referensi yang berubah-ubah, serta kestabilan motor dalam mempertahankan kecepatannya pada pembebanan yang bervariasi. Proses power factor correction dapat meningkatkan kualitas daya pada berbagai kecepatan dan mode penerapan yang berbeda-beda, dimana peningkatan tersebut membuktikan kinerja yang baik dalam sistem ini dan memiliki nilai kualitas daya yang baik.
Anti-control of chaos of single time-scale brushless DC motor.
Ge, Zheng-Ming; Chang, Ching-Ming; Chen, Yen-Sheng
2006-09-15
Anti-control of chaos of single time-scale brushless DC motors is studied in this paper. In order to analyse a variety of periodic and chaotic phenomena, we employ several numerical techniques such as phase portraits, bifurcation diagrams and Lyapunov exponents. Anti-control of chaos can be achieved by adding an external constant term or an external periodic term.
Synchronization of the Fractional-Order Brushless DC Motors Chaotic System
Directory of Open Access Journals (Sweden)
Shiyun Shen
2016-01-01
Full Text Available Based on the extension of Lyapunov direct method for nonlinear fractional-order systems, chaos synchronization for the fractional-order Brushless DC motors (BLDCM is discussed. A chaos synchronization scheme is suggested. By means of Lyapunov candidate function, the theoretical proof of chaos synchronization is addressed. The numerical results show that the chaos synchronization scheme is valid.
Synchronization of the Fractional-Order Brushless DC Motors Chaotic System
Shiyun Shen; Ping Zhou
2016-01-01
Based on the extension of Lyapunov direct method for nonlinear fractional-order systems, chaos synchronization for the fractional-order Brushless DC motors (BLDCM) is discussed. A chaos synchronization scheme is suggested. By means of Lyapunov candidate function, the theoretical proof of chaos synchronization is addressed. The numerical results show that the chaos synchronization scheme is valid.
Novel Motion Sensorless Control of Single Phase Brushless D.C. PM Motor Drive, with experiments
DEFF Research Database (Denmark)
Lepure, Liviu Ioan; Boldea, Ion; Andreescu, Gheorghe Daniel
2010-01-01
A motion sensorless control for single phase permanent magnet brushless d.c. (PM-BLDC) motor drives, based on flux integration and prior knowledge of the PM flux/position characteristic is proposed here and an adequate correction algorithm is adopted, in order to increase the robustness to noise...
Improved Analytical Model of a Permanent-Magnet Brushless DC Motor
Kumar, P.; Bauer, P.
2008-01-01
In this paper, we develop a comprehensive model of a permanent-magnet brushless DC (BLDC) motor. An analytical model for determining instantaneous air-gap field density is developed. This instantaneous field distribution can be further used to determine the cogging torque, induced back electromotive
Optimal PID control of a brushless DC motor using PSO and BF techniques
Directory of Open Access Journals (Sweden)
H.E.A. Ibrahim
2014-06-01
Full Text Available This paper presents a Particle Swarm Optimization (PSO technique and bacterial foraging (BF technique for determining the optimal parameters of (PID controller for speed control of a brushless DC motor (BLDC where the (BLDC motor is modeled in simulink in Matlab. The proposed technique was more efficient in improving the step response characteristics as well as reducing the steady-state error, rise time, settling time and maximum overshoot.
Directory of Open Access Journals (Sweden)
Uma Devi Kumaravelu
2012-01-01
Full Text Available A method of simulation and modeling outer rotor permanent magnet brushless DC (ORPMBLDC motor under dynamic conditions using finite element method by FEMM 4.2 software package is presented. In the proposed simulation, the torque developed at various positions of the rotor, under a complete cycle of excitation of the stator, is analysed. A novel method of sinusoidal excitation is proposed to enhance the overall torque development of ORPMBLDC motor.
Uma Devi Kumaravelu; Sanavullah Mohamed Yakub
2012-01-01
A method of simulation and modeling outer rotor permanent magnet brushless DC (ORPMBLDC) motor under dynamic conditions using finite element method by FEMM 4.2 software package is presented. In the proposed simulation, the torque developed at various positions of the rotor, under a complete cycle of excitation of the stator, is analysed. A novel method of sinusoidal excitation is proposed to enhance the overall torque development of ORPMBLDC motor.
Directory of Open Access Journals (Sweden)
Rizqi Andry Ardiansyah
2017-08-01
Full Text Available Many industrial applications use servo motor because of its accuracy and user-friendly, but by using it in an application, a higher cost is required. To make an actuator with good precision and universal purpose but with lower cost, a position control system for brushless dc motor was built. To achieve a better precision in the position control for brushless DC motor, the system is utilized with a microcontroller ATmega 2560, an absolute encoder as a position sensor, and also Proportional-Derivative closed-loop control algorithm. In the final test, we obtained that the system worked well on average angular speed about 3.88º/ms and angle tolerance about 1º.
Speed Control Analysis of Brushless DC Motor Based on Maximum Amplitude DC Current Feedback
Directory of Open Access Journals (Sweden)
Hassan M.A.A.
2014-07-01
Full Text Available This paper describes an approach to develop accurate and simple current controlled modulation technique for brushless DC (BLDC motor drive. The approach is applied to control phase current based on generation of quasi-square wave current by using only one current controller for the three phases. Unlike the vector control method which is complicated to be implemented, this simple current modulation technique presents advantages such as phase currents are kept in balance and the current is controlled through only one dc signal which represent maximum amplitude value of trapezoidal current (Imax. This technique is performed with Proportional Integral (PI control algorithm and triangular carrier comparison method to generate Pulse Width Modulation (PWM signal. In addition, the PI speed controller is incorporated with the current controller to perform desirable speed operation of non-overshoot response. The performance and functionality of the BLDC motor driver are verified via simulation by using MATLAB/SIMULINK. The simulation results show the developed control system performs desirable speed operation of non-overshoot and good current waveforms.
Estimation parameters and black box model of a brushless DC motor
Directory of Open Access Journals (Sweden)
José A. Becerra-Vargas
2014-08-01
Full Text Available The modeling of a process or a plant is vital for the design of its control system, since it allows predicting its dynamic and behavior under different circumstances, inputs, disturbances and noise. The main objective of this work is to identify which model is best for a permanent magnet brushless DC specific motor. For this, the mathematical model of a DC motor brushless PW16D, manufactured by Golden Motor, is presented and compared with its black box model; both are derived from experimental data. These data, the average applied voltage and the angular velocity, are acquired by a data acquisition card and imported to the computer. The constants of the mathematical model are estimated by a curve fitting algorithm based on non-linear least squares and pattern search using computational tool. To estimate the mathematical model constants by non-linear least square and search pattern, a goodness of fit of 84.88% and 80.48% respectively was obtained. The goodness of fit obtained by the black box model was 87.72%. The mathematical model presented slightly lower goodness of fit, but allowed to analyze the behavior of variables of interest such as the power consumption and the torque applied to the motor. Because of this, it is concluded that the mathematical model obtained by experimental data of the brushless motor PW16D, is better than its black box model.
On-Line Tracking Controller for Brushless DC Motor Drives Using Artificial Neural Networks
Rubaai, Ahmed
1996-01-01
A real-time control architecture is developed for time-varying nonlinear brushless dc motors operating in a high performance drives environment. The developed control architecture possesses the capabilities of simultaneous on-line identification and control. The dynamics of the motor are modeled on-line and controlled using an artificial neural network, as the system runs. The control architecture combines the experience and dependability of adaptive tracking systems with potential and promise of the neural computing technology. The sensitivity of real-time controller to parametric changes that occur during training is investigated. Such changes are usually manifested by rapid changes in the load of the brushless motor drives. This sudden change in the external load is simulated for the sigmoidal and sinusoidal reference tracks. The ability of the neuro-controller to maintain reasonable tracking accuracy in the presence of external noise is also verified for a number of desired reference trajectories.
POSITION CONTROL OF BRUSHLESS DC MOTOR BASED ON DIGITAL SIGNAL PROCESSING
Directory of Open Access Journals (Sweden)
Çetin GENÇER
2006-01-01
Full Text Available Brushless DC Motors (BLDC have been used widely high performance control systems which are depended on to development of power electronic and control technology. In these motors to fed commutated supply, the control of position without oscilation has been required. In this study, position control of BLDC with digital signal processing has been implemented by a proportional-derivative (PD controller because of its simple structure. It has been seen that the controller which is proposed from simulation and experimental studies, has a quick dynamic responce with nonoscillation.
Novel Position and Speed Estimator for PM Single Phase Brushless D.C. Motor Drives
DEFF Research Database (Denmark)
Lepure, Liviu I.; Andreescu, Gheorghe-Daniel; Iles, Doris
2010-01-01
A novel position and speed estimator for single phase permanent magnet brushless d.c. (PMBLDC) motor drives, based on flux integration and prior knowledge of ΨPM (θ) is proposed here and an adequate correction algorithm is adopted in order to increase the robustness to noise and to reduce...... the sensitivity to accuracy of flux linkage estimation. A speed and current close loop control is employed based on the Hall signal and the motor is controlled at different speeds in order to validate the proposed estimation algorithm with satisfying results. The position correction effect is analyzed...
Permanent magnet brushless DC motor drives and controls
Xia, Chang-liang
2012-01-01
An advanced introduction to the simulation and hardware implementation of BLDC motor drives A thorough reference on the simulation and hardware implementation of BLDC motor drives, this book covers recent advances in the control of BLDC motor drives, including intelligent control, sensorless control, torque ripple reduction and hardware implementation. With the guidance of the expert author team, readers will understand the principle, modelling, design and control of BLDC motor drives. The advanced control methods and new achievements of BLDC motor drives, of interest to more a
Spin coater based on brushless dc motor of hard disk drivers.
Bianchi, Rodrigo Fernando; Panssiera, M. F.; Lima, J. P. H.; Yagura, L.; Andrade, A. M.; Faria, Roberto Mendonça
2006-01-01
We have developed a novel programmable, low cost, spin coater to be used for applications where flat substrates are coated with an uniform thin layer of a desirable material. The equipment is built with dc brushless motor present in most of the hard disk drivers (HDDs). The system offers manual control, wide speed range (from 0 to 10,000 rpm), spin speed stability and compact size. The paper also describes the use of such equipment for the fabrication of thin poly(o-methoxyaniline) (POMA) fil...
Brushless DC Motor and Resolver for Venusian Environment Project
National Aeronautics and Space Administration — In response to the need for motors and actuators that can operate in the harsh venusian environment for extended periods of time, on the order of several hours to...
Brushless DC Motor and Resolver for Venusian Environment Project
National Aeronautics and Space Administration — In response to the need for motors, actuators and sample acquisition system that can operate in the harsh Venusian environment for extended periods of time, on the...
A Design Study of Dual-Stator Permanent Magnet Brushless DC Motor
Directory of Open Access Journals (Sweden)
Yanliang Xu
2013-11-01
Full Text Available Dual-stator permanent magnet brushless DC Motor (DSBLDC features high efficiency and torque-density. As DSBLDC could operate in various states according to different winding connection modes, it is fully qualified for electric vehicle (EV drive. Unfortunately, due to the particular dual-stator structure, this kind of motor is difficult to be designed by available design methods. However, this paper demonstrates that a DSBLDC with series magnetic circuit structure can be regarded as being consisted of two independent BLDCs, i.e. an inner-rotor BLDC and an outer-rotor BLDC. Thus, the DSBLDC can be divided into two single-stator BLDCs. Based on this demonstration, the design method is verified by finite element analysis (FEA, and the basic design steps are given. Furthermore, experimental results of the prototype motor have verified the correction of the method, which also indicates that the motor with superior performance is adapted to EV drive.
Four quadrant control circuit for a brushless three-phase dc motor
Nola, Frank J. (Inventor)
1987-01-01
A control circuit is provided for a brushless three-phase dc motor which affords four quadrant control from a single command. The control circuit probes acceleration of the motor in both clockwise and counterclockwise directions and braking and generation in both clockwise and counterclockwise directions. In addition to turning on individual transistors of the transistor pairs connected to the phase windings of the motor for 120 deg periods while the other transistor of that pair is off, the control circuit also provides, in a future mode of operation, turning the two transistors of each pair on and off alternately at a phase modulation frequency during such a 120 deg period. A feedback signal is derived which is proportional to the motor current and which has a polarity consistent with the command signal, such that negative feedback results.
Genetic algorithm based design optimization of a permanent magnet brushless dc motor
Upadhyay, P. R.; Rajagopal, K. R.
2005-05-01
Genetic algorithm (GA) based design optimization of a permanent magnet brushless dc motor is presented in this paper. A 70 W, 350 rpm, ceiling fan motor with radial-filed configuration is designed by considering the efficiency as the objective function. Temperature-rise and motor weight are the constraints and the slot electric loading, magnet-fraction, slot-fraction, airgap, and airgap flux density are the design variables. The efficiency and the phase-inductance of the motor designed using the developed CAD program are improved by using the GA based optimization technique; from 84.75% and 5.55 mH to 86.06% and 2.4 mH, respectively.
Numerical and Experimental Investigation of Heat Flow in Permanent Magnet Brushless DC Hub Motor
DEFF Research Database (Denmark)
Fasil, Muhammed; Plesner, Daniel; Walther, Jens Honore
2014-01-01
This paper investigates the heat dissipation in the hub motor of an electric two-wheeler using lumped parameter (LP), finite element (FE) and computational fluid dynamic (CFD) models. The motor uses external rotor permanent magnet brushless DC topology and nearly all of its losses are generated...... in the stator. The hub motor construction restricts the available conductive paths for heat dissipation from the stator to the ambient only through the shaft. In contrast to an internal rotor structure, where the stator winding losses are diffused via conduction, here convection plays a major role in loss...... dissipation. Therefore, a LP thermal model with improved convection modelling has been proposed to calculate the temperature of the components inside the hub motor. The developed model is validated with the FE thermal model and the test data. In addition, CFD tools has been used to accurately model...
Developing micro DC-brushless motor driver and position control for fiber positioners
Jenni, Laurent; Hörler, Philipp; Makarem, Laleh; Kneib, Jean-Paul; Gillet, Denis; Bleuler, Hannes; Bouri, Mohamed; Prada, Francisco; De Rivera, Guillermo; Sanchez, Justo
2014-07-01
In the large-scale, Dark Energy Spectroscopic Instrument (DESI), thousands of fiber positioners will be used. Those are robotic positioners, with two axis, and having the size of a pen. They are tightly packed on the focal plane of the telescope. Dedicated micro-robots have been developed and they use 4mm brushless DC motors. To simplify the implementation and reduce the space occupancy, each actuator will integrate its own electronic control board. This board will be used to communicate with the central trajectory generator, manage low level control tasks and motor current feeding. In this context, we present a solution for a highly compact electronic. This electronic is composed of two layers. The first is the power stage that can drive simultaneously two brushless motors. The second one consists of a fast microcontroller and deals with different control tasks: communication, acquisition of the hall sensor signals, commutation of the motors phases, and performing position and current regulation. A set of diagnostic functions are also implemented to detect failure in the motors or the sensors, and to sense abnormal load change that may be the result of two robots colliding.
Multon, Bernard; Hoang, Emmanuel; Camus, François
1993-01-01
International audience; In this paper, we carried out a dimensional parametric analysis of average torque and copper losses in the case of two synchronous brushless motors. These motors were, on the one hand, a Permanent-Magnet Brushless DC (PMBLDC) motor supplied by quasi-square currents, with surface magnet mounted rotor and trapezoidal e.m.f. waveform, and, on the other hand, a Doubly Salient Variable Reluctance (DSVR) motor fed by quasi-square currents at low speed, and by full wave squar...
Cheaper Synthesis Of Multipole-Brushless-dc-Motor Current
Alhorn, Dean C.; Howard, David E.
1994-01-01
Circuit converts output of single two-phase shaft-angle resolver to that of multi-speed three-phase shaft-angle resolver. Converter circuit applicable to generation of multispeed, multiphase shaft-angle-resolver signals from single two-phase shaft-angle resolver. Combination of converter circuit and single two-phase shaft-angle resolver offer advantages in cost, weight, size, and complexity. Design readily adaptable to two-phase motor.
Saxena, Anand
The focus of this research was to demonstrate a four blade rotor trim in forward flight using integrated trailing edge flaps instead of using a swashplate controls. A compact brushless DC motor was evaluated as an on-blade actuator, with the possibility of achieving large trailing edge flap amplitudes. A control strategy to actuate the trailing edge flap at desired frequency and amplitude was developed and large trailing edge flap amplitudes from the motor (instead of rotational motion) were obtained. Once the actuator was tested on the bench-top, a lightweight mechanism was designed to incorporate the motor in the blade and actuate the trailing edge flaps. A six feet diameter, four bladed composite rotor with motor-flap system integrated into the NACA 0012 airfoil section was fabricated. Systematic testing was carried out for a range of load conditions, first in the vacuum chamber followed by hover tests. Large trailing edge flap deflections were observed during the hover testing, and a peak to peak trailing edge flap amplitude of 18 degree was achieved at 2000 rotor RPM with hover tip Mach number of 0.628. A closed loop controller was designed to demonstrate trailing edge flap mean position and the peak to peak amplitude control. Further, a soft pitch link was designed and fabricated, to replace the stiff pitch link and thereby reduce the torsional stiffness of the blade to 2/rev. This soft pitch link allowed for blade root pitch motion in response to the trailing edge flap inputs. Blade pitch response due to both steady as well as sinusoidal flap deflections were demonstrated. Finally, tests were performed in Glenn L. Martin wind tunnel using a model rotor rig to assess the performance of motor-flap system in forward flight. A swashplateless trim using brushless DC motor actuated trailing edge flaps was achieved for a rotor operating at 1200 RPM and an advance ratio of 0.28. Also, preliminary exploration was carried out to test the scalability of the motor
Brushless DC motor control system responsive to control signals generated by a computer or the like
Packard, D. T.
1985-04-01
A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The motor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor be regulated by applying a separate control signal and each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.
Characterization and enhancement of micro brushless DC motor response
Conroy, Joseph; Kehlenbeck, Andrew; Humbert, J. Sean; Nothwang, William
2014-06-01
Commercially available speed controllers, motors, and propellers typically comprise the powertrains of many micro aerial robotic systems, such as quadrotor vehicles. As on board state sensing and processing improves, actuation bandwidth is becoming a significant bottleneck that limits the performance of the entire closed loop system. The performance of the commercial products can be greatly enhanced through the implementation of classical control methods directly at the powertrain level. In this paper, reduced order open loop models for three representative commercially available powertrains were estimated and were compared with closed loop equivalents. Further performance improvement is realized by the addition of a static inverse to mitigate the steady state structured uncertainty of the system.
Magnetic Circuit & Torque Analysis Of Brushless DC Motor
Directory of Open Access Journals (Sweden)
Arif J. Abbas
2013-05-01
Full Text Available This work is concerned with magnetic and torque analysis of BLDCM and with development of a method of designing BLDCM that have symmetric winding on the rotor .make significant contribution to the rotor inductance position difficult. It is also show that the prediction detent torque can be extremely sensitive to the permanent magnet by altering magnet arc width. Finally, simple lumped models that allow one to predict motor performance and characteristics as a function of main dimension, magnet residual flux density and phase current are developed. These models are used as a basis for an approach to designing BLDCM
Torque ripple reduction of brushless DC motor based on adaptive input-output feedback linearization.
Shirvani Boroujeni, M; Markadeh, G R Arab; Soltani, J
2017-09-01
Torque ripple reduction of Brushless DC Motors (BLDCs) is an interesting subject in variable speed AC drives. In this paper at first, a mathematical expression for torque ripple harmonics is obtained. Then for a non-ideal BLDC motor with known harmonic contents of back-EMF, calculation of desired reference current amplitudes, which are required to eliminate some selected harmonics of torque ripple, are reviewed. In order to inject the reference harmonic currents to the motor windings, an Adaptive Input-Output Feedback Linearization (AIOFBL) control is proposed, which generates the reference voltages for three phases voltage source inverter in stationary reference frame. Experimental results are presented to show the capability and validity of the proposed control method and are compared with the vector control in Multi-Reference Frame (MRF) and Pseudo-Vector Control (P-VC) method results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Brushless direct-current motors
Bahm, E. J.
1970-01-01
Survey results are presented on the use of unconventional motor windings and switching sequences to optimize performance of brushless dc motors. A motor was built, each coil terminal having a separate, accessible lead. With the shaft and all electronics excluded, length and outside diameter measured 1.25 and 0.75 in., respectively.
Brushless DC motor control system responsive to control signals generated by a computer or the like
Packard, Douglas T. (Inventor); Schmitt, Donald E. (Inventor)
1987-01-01
A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The rotor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor may be regulated by applying a separate control signal to each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.
Demerdash, N. A. O.
1976-01-01
The modes of operation of the brushless d.c. machine and its corresponding characteristics (current flow, torque-position, etc.) are presented. The foundations and basic principles on which the preliminary numerical model is based, are discussed.
Speed response of brushless DC motor using fuzzy PID controller under varying load condition
Directory of Open Access Journals (Sweden)
Akash Varshney
2017-09-01
Full Text Available The increasing trend towards usage of precisely controlled, high torque, efficient and low noise motors for dedicated applications has attracted the attention of researcher in Brushless DC (BLDC motors. BLDC motors can act as an acceptable alternative to the conventional motors like Induction Motors, Switched Reluctance Motors etc. This paper presents a detailed study on the performance of a BLDC motor supplying different types of loads, and at the same time, deploying different control techniques. An advance Fuzzy PID controller is compared with the commonly used PID controller. The load variations considered are of the most common types, generally encountered in practice. A comparison has been carried out in this paper by observing the dynamic speed response of motor at the time of application as well as at the time of removal of the load. The BLDC motors suffer from a major drawback of having jerky behaviour at the time of load removal. The study reveals that irrespective of the type of controller used, the gradual load variation produces better results as against sudden load variations. It is further observed that in addition to other dynamic features, the jerks produced at the time of load removal also get improved to a large extent with Fuzzy PID controller.The speed torque characteristics unraveled the fact that the jerks are minimum at the time of gradual load removal with Fuzzy PID controller in place. An attempt has been made to define these jerks by ‘Perturbation Window’.
Directory of Open Access Journals (Sweden)
Roni Permana Saputra
2012-03-01
Full Text Available This paper discusses the design of control system for brushless DC motor using microcontroller ATMega 16 that will be applied to an independent 4-wheel drive Mobile Robot LIPI version 2 (REV-11. The control system consists of two parts which are brushless DC motor control module and supervisory control module that coordinates the desired command to the motor control module. To control the REV-11 platform, supervisory control transmit the reference data of speed and direction of motor to control the speed and direction of each actuator on the platform REV-11. From the test results it is concluded that the designed control system work properly to coordinate and control the speed and direction of motion of the actuator motor REV-11 platform.
Speed Digital Control of Brushless DC Motor Using dsPIC Controller
Directory of Open Access Journals (Sweden)
Gheorghe Băluţă
2014-09-01
Full Text Available This paper presents the digital control of the Brushless DC motor (BLDCM speed. The dsPICDEM MC1 development system (with the dsPIC30F6010A microcontroller and the dsPICDEM MC1L power module, manufactured by Microchip Company, were used. The control program was developed in C programming language. The graphical user interface was realized in LabVIEW 8.6 graphical programming language. For speed control, a digital controller PI type was implemented. Due to digital controller well chosen and well tuned, the system response at speed step variation is very good. Therewith, the experimental results obtained also show a good compensation of disturbance which does not happen in open-loop control.
Demerdash, N. A.; Nehl, T. W.
1979-01-01
A comprehensive digital model for the analysis of the dynamic-instantaneous performance of a power conditioner fed samarium-cobalt permanent magnet brushless DC motor is presented. The particular power conditioner-machine system at hand, for which this model was developed, is a component of an actual prototype electromechanical actuator built for NASA-JSC as a possible alternative to hydraulic actuators as part of feasibility studies for the shuttle orbiter applications. Excellent correlation between digital simulated and experimentally obtained performance data was achieved for this specific prototype. This is reported on in this paper. Details of one component of the model, its applications and the corresponding results are given in this paper.
Gwaltney, D. A.
2002-01-01
A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.
Control motor brushless sensorless
Solchaga Pérez de Lazárraga, Gonzalo
2015-01-01
El proyecto consiste en la creación de un circuito capaz de controlar la velocidad de un motor brushless sensorless. Este tipo de motores eléctricos tienen como característica que no tienen escobillas para cambiar la polaridad del bobinado de su interior y tampoco precisan de un sensor que indique que ha realizado una vuelta. Los motores brushless que son controlados por este tipo de circuitos son específicos para aeronaves no tripuladas y requieren un diseño diferente a un motor brushless pe...
Extended Constant Power Speed Range of the Brushless DC Motor Through Dual Mode Inverter Control
Energy Technology Data Exchange (ETDEWEB)
Lawler, J.S.
2000-06-23
The trapezoidal back electromotive force (emf) brushless direct current (dc) motor (BDCM) with surface-mounted magnets has high-power density and efficiency especially when rare-earth magnet materials are used. Traction applications, such as electric vehicles, could benefit significantly from the use of such motors. Unfortunately, a practical means for driving the motor over a constant power speed ratio (CPSR) of 5:1 or more has not yet been developed. A key feature of these motors is that they have low internal inductance. The phase advance method is effective in controlling the motor power over such a speed range, but the current at high speed may be several times greater than that required at the base speed. The increase in current during high-speed operation is due to the low motor inductance and the action of the bypass diodes of the inverter. The use of such a control would require increased current rating of the inverter semiconductors and additional cooling for the inverter, where the conduction losses increase proportionally with current, and especially for the motor, where the losses increase with the square of the current. The high current problems of phase advance can be mitigated by adding series inductance; however, this reduces power density, requires significant increase in supply voltage, and leaves the CPSR performance of the system highly sensitive to variations in the available voltage. A new inverter topology and control scheme has been developed that can drive low-inductance BDCMs over the CPSR that would be required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC). It is shown that the BDCM has an infinite CPSR when it is driven by the DMIC.
Torque-Summing Brushless Motor
Vaidya, J. G.
1986-01-01
Torque channels function cooperatively but electrically independent for reliability. Brushless, electronically-commutated dc motor sums electromagnetic torques on four channels and applies them to single shaft. Motor operates with any combination of channels and continues if one or more of channels fail electrically. Motor employs single stator and rotor and mechanically simple; however, each of channels electrically isolated from other so that failure of one does not adversely affect others.
Directory of Open Access Journals (Sweden)
SANJEEV SINGH
2010-12-01
Full Text Available Permanent magnet brushless DC motor (PMBLDCM drives are being employed in many variable speed applications due to their high efficiency, silent operation, compact size, high reliability, ease of control, and low maintenance requirements. These drives have power quality problems and poor power factor at input AC mains as they are mostly fed through diode bridge rectifier based voltage source inverters. To overcome such problems a single-phase single-switch power factor correction AC-DC converter topology based on a Cuk converter is proposed to feed voltage source inverters based PMBLDCM. It focuses on the analysis, design and performance evaluation of the proposed PFC converter topology for a 1.5 kW, 1500 rpm, 400 V PMBLDCM drive used for an air-conditioning system. The proposed PFC converter topology is modelled and its performance is simulated in Matlab-Simulink environment and results show an improved power quality and good power factor in wide speed range of the drive.
Directory of Open Access Journals (Sweden)
GHOLAMIAN, A. S.
2009-06-01
Full Text Available In this paper, a magnet shape optimization method for reduction of cogging torque and torque ripple in Permanent Magnet (PM brushless DC motors is presented by using the reduced basis technique coupled by finite element and design of experiments methods. The primary objective of the method is to reduce the enormous number of design variables required to define the magnet shape. The reduced basis technique is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective is achieved. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the magnet shape optimization of a 6-poles/18-slots PM BLDC motor.
Design and Performance Test of Axial Halbach Brushless DC Motor with Power Density 1.5 Kw/Kg
Directory of Open Access Journals (Sweden)
Kevin Dwi Prasetio
2017-01-01
Full Text Available Progress of technology on electric vehicle component sector is one reason the emergence of electric vehicles at the moment. Starting from battery which has a great current density up to the automatic control systems on electric vehicles. But there are still some shortcomings of this electric vehicle components, one of which is the low value of power density of existing electric motor in the market today.On vehicles such as electric cars when Race Car Contest, energy saving problems about power density of the driving motor is very vital. This is because the total weight of the vehicle has a huge influence on the vehicle efficiency is against it. The issue is one of the reasons of the research task. In this final task is done making the design, simulation, and architecture of the Axial Halbach Brushless DC Motor. Use of system configuration on the halbach magnet to avoid the use of iron as a material cantilever rotor. By changing the material of the cantilever rotor with lighter materials such as aluminum or even carbon fibre, the value of power density electric motors can be increased. Then using the litz wire on coil stator to reduce loss-power loss due to the barriers on the coil. Coreless stator on the system and to avoid the phenomenon of cogging at the time due to low rpm style attraction magnet with iron in the core material. While the creation process begins by determining the specifications of the Axial Halbach Brushless DC motors. Then go into the design phase of the mechanical and electrical design. Who then conducted simulations to help determine other parameters such as air gap, slot turn, and magnetic orientation. The process of making a component of stator and rotor after the simulation is completed. After all the components of the rotor and stator on assembly, mounting the hall sensor is carried out to the right to position obtained by reading the signals. After the motor can spin with good motor performance, testing can be done
Directory of Open Access Journals (Sweden)
A.V. Matyuschenko
2015-03-01
Full Text Available By means of JMAG-Designer 12 the author performed a comparative analysis of the calculation of the EMF, cogging torque and electromagnetic torque of brushless motor with permanent magnets in two-dimensional and three-dimensional formulation of the problem.
On Stability of Open-Loop Operation without Rotor Information for Brushless DC Motors
Directory of Open Access Journals (Sweden)
Zhong Wu
2014-01-01
Full Text Available Open-loop operation mode is often used to control the Brushless DC Motors (BLDCMs without rotor position sensors when the back electromotive force (EMF is too weak due to the very low rotor velocity. The rotor position information is not necessary in this mode and the stator windings are supplied with voltages under a certain ratio of the amplitude to the frequency. However, the rotor synchronization will be destroyed once if the commutation instant is inappropriate. In order to improve the reliability of the open-loop operation mode, a dynamic equation is established to represent the synchronization error between the rotor and the stator. Thereafter, the stability of the open-loop control mode is analyzed by using Lyapunov indirect method. Theoretical analysis indicates that the open-loop control mode is asymptotically stable only when the commutation instant of the stator current lags behind the ideal one suitably. Finally, theoretical analysis is verified through the experimental results of a certain BLDCM.
Controlling a Four-Quadrant Brushless Three-Phase dc Motor
Nola, F. J.
1986-01-01
Control circuit commutates windings of brushless, three-phase, permanent-magnet motor operating from power supply. With single analog command voltage, controller makes motor accelerate, drive steadily, or brake regeneratively, in clockwise or counterclockwise direction. Controller well suited for use with energy-storage flywheels, actuators for aircraft-control surfaces, cranes, industrial robots, and other electromechanical systems requiring bidirectional control or sudden stopping and reversal.
Brushless direct-current motor with stationary armature and field
Studer, P. A.
1970-01-01
Electronically commutated dc motor has an active fixed field winding, and active fixed armature winding, and passive rotor. By use of brushless dc motor switching technique, motor provides continuous controllable and reversible torque without use of sliding contacts.
An enhanced Z-source inverter topology-based permanent magnet brushless DC motor drive speed control
Geno Peter, P.; Rajaram, M.
2015-08-01
In this paper, an enhanced Z-source inverter (ZSI) is introduced for controlling the speed of permanent magnet brushless DC motor (PMBLDCM) drive. It is the extension of the conventional ZSI and the elements used in the circuit are the same as those of the conventional ZSI, except that the position of Inverter Bridge and diode would be exchanged from the classical circuit diagram. This exchanged circuit avoids the startup path of the inrush current and hence reduces the inrush current and improves the motor efficiency. Different modes of enhanced ZSI are studied with PMBLDCM. The voltage polarity of Z-source capacitors in the proposed circuit is the same as that of the input voltage polarity. Furthermore, to get the same voltage boost, the capacitor voltage stress is reduced to a significant extent. The speed control capability of the proposed brushless DC motor drive is compared with that of the conventional ZSI. The proposed ZSI is implemented in MATLAB/Simulink working platform and the output performance is evaluated. Also, the performance of voltage ratio is analysed both by simulation and mathematical models. All these analyses are known to express the innovative features of the proposed system.
Demerdash, N. A. O.; Nehl, T. W.
1979-01-01
A mathematical model was developed and computerized simulations were obtained for a brushless dc motor. Experimentally obtained oscillograms of the machine phase currents are presented and the corresponding current and voltage waveforms for various modes of operation of the motor are presented and discussed.
Directory of Open Access Journals (Sweden)
Mohd Tariq
2016-05-01
Full Text Available Most of the Brushless DC (BLDC motors drive adopts proportional, integral and derivative (PID controller and pulse width modulation (PWM scheme for speed control. Hence, BLDC motor drive has strong saturation characteristics. The saturation results in a typical windup phenomenon. The paper presents an Antiwindup drive for BLDC motor. An Antiwindup controller (AWC has been used in the paper. AWC has been modeled in MATLAB/Simulink and comparison has been done between conventional PI controller and AWC at different starting loads. Dynamic characteristics of the BLDC motor drive have been examined and results are presented and discussed in detail in this paper. Details of DSP based experimental validation of the simulated results are also presented here.
Aspects Concerning the Torque Ripple Control of the Brushless DC Motor
Directory of Open Access Journals (Sweden)
BALUTA, G.
2013-05-01
Full Text Available This paper deals with two advanced numerical structures to control the electromagnetic torque ripple of Brushless Direct Current Motors (BLDCM, indirectly achieved by phase currents control and directly by the Direct Torque Control (DTC technique. In DTC there was implemented an observer to increase the rudimentary transducer resolution, containing three Hall Effect sensors. The experimental results describe the evolution of torque in both situations of control and are obtained by applying a control strategy for an electric drive system with BLDCM with trapezoidal Back-EMF in Two-Phase Mode.
Energy Technology Data Exchange (ETDEWEB)
Luo, Shaohua, E-mail: hua66com@163.com [The Jiangsu Key Laboratory of Advanced Manufacturing Technology, Huaiyin Institute of Technology, Huai’an 223003 (China); School of Automation, Chongqing University, Chongqing 400044 (China); Hou, Zhiwei; Chen, Zhong [The Jiangsu Key Laboratory of Advanced Manufacturing Technology, Huaiyin Institute of Technology, Huai’an 223003 (China)
2015-12-15
In this paper, chaos control is proposed for the output- constrained system with uncertain control gain and time delay and is applied to the brushless DC motor. Using the dynamic surface technology, the controller overcomes the repetitive differentiation of backstepping and boundedness hypothesis of pre-determined control gain by incorporating radial basis function neural network and adaptive technology. The tangent barrier Lyapunov function is employed for time-delay chaotic system to prevent constraint violation. It is proved that the proposed control approach can guarantee asymptotically stable in the sense of uniformly ultimate boundedness without constraint violation. Finally, the effectiveness of the proposed approach is demonstrated on the brushless DC motor example.
Directory of Open Access Journals (Sweden)
Hassan Moradi CheshmehBeigi
2015-12-01
Full Text Available Abstract. This paper presents the design optimization and accurate electromagnetic field analysis of an 18-12 there phase Brushless dc motor (BLDCM by using a three-dimensional Finite-Element analysis. Proposed motor will provide a wide range of air-gap flux control by a dc assisted field winding which is replaced with the permanent magnet in the rotor structure. In proposed BLDCM a simple dc current control is used and no brushes or slip rings are required to perform this control. To achieve the required performance within a specified space envelope, the physical dimensions of the proposed configuration were optimized; subject to maximize the average output power. Proposed 18-12 BLDCM configuration has been compared with a 9-6 BLDCM configuration. To evaluate the motor performance, the numerical techniques have been utilized. In the numerical part, 3-D Finite Element (FE analysis has been carried out using a MagNet CAD package (Infolytica Corporation Ltd. for two type of BLDCM to confirm the accuracy and the efficacy of the proposed design procedure. The analysis results demonstrate the effectiveness of the proposed machine design methodology. Keywords: FE Analysis; Field analysis; Brushless Dc Motor
Energy Technology Data Exchange (ETDEWEB)
Lukaniszyn, M.; Jagiela, M.; Wrobel, R.
2003-04-16
A brushless, permanent magnet, three-phase disc-type salient-pole DC motor with co-axial flux in the stator is considered. Electromechanical properties of a basic eight-pole motor are compared with those for a 16-pole one of the same volume, in order to contrast the two potential candidates for variable-speed, low-cost drives. As a basis of the comparative analysis, 3D FEM magnetic field modelling and circuit analysis considering an electronic commutator are employed. Increasing the number of poles results in unfavourable raising in the switching frequency. The eight-pole motor construction has been shown in simulations to have higher efficiency and lower power losses than its 16-pole counterpart. (Author)
Position and Speed Control of Brushless DC Motors Using Sensorless Techniques and Application Trends
Directory of Open Access Journals (Sweden)
Jaime Gómez-Gil
2010-07-01
Full Text Available This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order and Artificial Neural Networks.
Gamazo-Real, José Carlos; Vázquez-Sánchez, Ernesto; Gómez-Gil, Jaime
2010-01-01
This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC) motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order) and Artificial Neural Networks.
Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion
Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.
1983-01-01
The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.
Directory of Open Access Journals (Sweden)
Achmad Abdul Ghoni
2015-12-01
Full Text Available Seiring berjalannya waktu dibutuhkan pengembangan teknologi pada motor penggerak pada kendaraan yang beredar dipasaran. Karena sumber energi fosil merupakan energi yang tidak dapat diperbarui, maka pengembangan kendaraan dengan listrik sebagai sumber energi adalah solusi untuk penghematan energi dimasa depan. Salah satu jenis motor yang tepat untuk digunakan sebagai penggerak kendaraan akan dibahas pada tugas akhir ini, yaitu motor axial flux brushless DC. Pada tugas akhir ini dilakukan pembuatan desain dan analisis simulasi variabel air gap pada motor axial flux brushless DC dengan rating daya output 12 kW, tegangan DC input 400 V, frekuensi 200 Hz, dan kecepatan 2388 rpm. Varasi variabel air gap dilakukan dengan cara membuat jarak air gap pada jari-jari dalam lebih lebar dibandingkan jari-jari luar. Variasi variabel air gap yang diberikan menghasilkan perubahan nilai pada beberapa parameter kelistrikan motor. Dari simulasi yang didapatkan variasi variabel air gap terbaik pada 1,5 mm dengan kompensasi penambahan ketebalan magnet permanen sebesar 5 mm. Hasil dari variabel air gap pada motor axial flux brushless DC adalah rating daya output yang meningkat menjadi 14,5 kW dengan efisiensi 78,8 persen dan core loss sebesar 356,2 W.
Energy Technology Data Exchange (ETDEWEB)
Shibata, F.; Fukami, T. (Kanazawa Institute of Technology, Ishikawa (Japan))
1992-08-15
In this paper, configuration of a brushless three-phase synchronous motor with no exciter is proposed. The applied technique is effective to simplify the conventional brushless synchronous motor configuration. A stator of the motor is equipped with a double-star connected armature winding with two neutral points for DC exciting. A cylindrical stator is equipped with a two-phase field winding, which is connected with shaft-mounted rectifiers. During the operation of the motor at synchronous speed, DC voltage is applied to the two neutral points of the armature winding for excitation of the rotor. At that time, the armature winding acts as a stator DC exciting winding and a load winding. This paper describes the principle and the characteristic analysis of the new motor as well as the experimental results of the 2kW test-motor. The experimental results almost agree with the analytical results, so that the favorable performance characteristics of the proposed motor were confirmed. For instance, the power factor of this motor can be controlled in a wide range by adjusting the stator DC exciting current. 9 refs., 8 figs., 1 tab.
Directory of Open Access Journals (Sweden)
Weiran Wang
2013-06-01
Full Text Available In order to improve the performance of bearingless brushless DC motor, a closed-loop suspended force controller combining the discrete space voltage vector modulation is applied and the direct torque control is presented in this paper. Firstly, we increase the number of the control vector to reduce the torque ripple. Then, the suspending equation is constructed which is spired by the direct torque control algorithm. As a result, the closed-loop suspended force controller is built. The simulated and experimental results evaluate the performance of the proposed method. The more advantage is that the proposed algorithm can achieve the fast torque response, reduce the torque ripple, and follow ideal stator flux track. Furthermore, the motor which implants the closed-loop suspended force controller cannot onlyobtain the dynamic response rapidly and displacement control accurately, but also has the characteristics of bearingless brushless DC motor (such as simple structure, high energy efficiency, small volume and low failure rate.
Directory of Open Access Journals (Sweden)
Nitin Subramonium A K
2017-03-01
Full Text Available Environmental protection and energy conservations are the main concern of 21st century Asia Pacific developing countries. This concern has compelled to design and develop zero pollution road transportation Electric Vehicles (EVs. The EV system consist of energy storage devices such as battery, fuel cell, ultra-capacitors along with electric propulsion, body of the vehicle and energy management system with the diversified technology of electrical, electronics, mechanical, automotive and chemical engineering. The objective of electric vehicle is to produce commercial viable range, efficient performance, and comfort with safety and reliable operations at cheaper price than its counterpart the Internal Combustion Engine Vehicle (ICEV. The PMBLDC motors are the present choice of automobile industries and researchers because of its high power density, compact size, reliability, with noise free and minimum maintenance requirements. The present state of art Permanent Magnet Brushless DC (PMBLDC Motor drive for the electric vehicle application is studied / reviewed in this paper.. In addition the study also reveals the advancement of the Power Processing Unit (PPU which consists of Microelectronics and Controls (Me and C to produce the super-premium efficiency PMBLDC drive system for EV applications.
Directory of Open Access Journals (Sweden)
Quanwu Li
2016-01-01
Full Text Available High reliability is required for the permanent magnet brushless DC motor (PM-BLDCM in an electrical pump of hypersonic vehicle. The PM-BLDCM is a short-time duty motor with high-power-density. Since thermal equilibrium is not reached for the PM-BLDCM, the temperature distribution is not uniform and there is a risk of local overheating. The winding is a main heat source and its insulation is thermally sensitive, so reducing the winding temperature rise is the key to the improvement of the reliability. In order to reduce the winding temperature rise, an electromagnetic-thermal integrated design optimization method is proposed. The method is based on electromagnetic analysis and thermal transient analysis. The requirements and constraints of electromagnetic and thermal design are considered in this method. The split ratio and the maximum flux density in stator lamination, which are highly relevant to the windings temperature rise, are optimized analytically. The analytical results are verified by finite element analysis (FEA and experiments. The maximum error between the analytical and the FEA results is 4%. The errors between the analytical and measured windings temperature rise are less than 8%. It can be proved that the method can obtain the optimal design accurately to reduce the winding temperature rise.
Wang, Yaxin; Logan, Thomas G; Smith, P Alex; Hsu, Po-Lin; Cohn, William E; Xu, Liping; McMahon, Richard A
2017-10-01
The IntraVAD is a miniature intra-aortic ventricular assist device (VAD) designed to work in series with the compromised left ventricle. A reverse-rotation control (RRc) mode has been developed to increase myocardial perfusion and reduce ventricular volume. The RRc mode includes forward rotation in systole and reverse rotation in diastole, which requires the IntraVAD to periodically reverse its rotational direction in synchrony with the cardiac cycle. This periodic reversal leads to changes in pressure force over the impeller, which makes the entire system less stable. To eliminate the mechanical wear of a contact bearing and provide active control over the axial position of the rotor, a miniature magnetically levitated bearing (i.e., the PM-Coil module) composed of two concentric permanent magnetic (PM) rings and a pair of coils-one on each side-was proposed to provide passive radial and active axial rotor stabilization. In the early design stage, the numerical finite element method (FEM) was used to optimize the geometry of the brushless DC (BLDC) motor and the maglev module, but constructing a new model each time certain design parameters were adjusted required substantial computation time. Because the design criteria for the module had to be modified to account for the magnetic force produced by the motor and for the hemodynamic changes associated with pump operation, a simplified analytic expression was derived for the expected magnetic forces. Suitable bearings could then be designed capable of overcoming these forces without repeating the complicated FEM simulation for the motor. Using this method at the initial design stage can inform the design of the miniature maglev BLDC motor for the proposed pulsatile axial-flow VAD. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Magnetic Signature of Brushless Electric Motors
National Research Council Canada - National Science Library
Clarke, David
2006-01-01
Brushless electric motors are used in a number of underwater vehicles. When these underwater vehicles are used for mine clearance operations the magnetic signature of the brushless motors is important...
Directory of Open Access Journals (Sweden)
Chetan K. Lad
2017-08-01
Full Text Available A commutation torque ripple is generated in a brushless DC motor due to a finite time taken for current transfer between outgoing phase and incoming phase due to the phase inductance. The effect of commutation ripple will be more severe for low voltage high current BLDC drives used for automotive applications. Direct Torque Control (DTC techniques are used to reduce the torque ripple. Two phase conduction with six voltage space vectors and three phase conduction with twelve voltage space vectors with DTC are used to reduce the torque ripple. Twelve Step DTC (TSDTC is capable of reducing torque ripple considerably but at the cost of increased inverter and winding losses. In Six Step DTC (SSDTC the torque ripple is higher than that of TSDTC but with reduced winding and inverter losses. In this paper an attempt has been made to strike a balance between torque ripple and losses. A novel Direct Torque Control with twelve voltage space vector with overlap angle control has been proposed. The proposed method is validated through simulation and experimental results.
Comparative analysis of some brushless motors based on catalog data
Directory of Open Access Journals (Sweden)
Anton Kalapish
2005-10-01
Full Text Available Brushless motors (polyphased AC induction, synchronous and brushless DC motors have no alternatives in modern electric drives. They possess highly efficient and very wide range of speeds. The objective of this paper is to represent some relation between the basic parameters and magnitudes of electrical machines. This allows to be made a comparative analysis and a choice of motor concerning each particular case based not only on catalogue data or price for sale.
García Haro, Juan Miguel
2011-01-01
Este proyecto que el CAR inició hace pocos años tiene como objetivo principal el estudio y desarrollo de nuevas tecnologías en el campo de actuación y control automático, que servirá de base para otras futuras investigaciones dentro del centro. La tecnología a la que se hace mención se refiere al control de actuadores basados en motores DC brushless (BLDC Motors) empleando el sistema de hardware embebido CompactRIO y programación LabVIEW de National Instruments. Tradicionalmente se emplea en ...
Power factor correction (PFC) converters feeding brushless DC ...
African Journals Online (AJOL)
This paper presents a comprehensive study of power factor correction (PFC) converters for feeding brushless DC (BLDC) motor drive. This work explores various configurations of PFC converters which are classified into five different categories of non-isolated, bridgeless (BL) non-isolated, isolated, BL-isolated PFC ...
Directory of Open Access Journals (Sweden)
Fachrul Arifin
2015-12-01
Full Text Available Saat ini, penelitian dan pengembangan mobil listrik (electric vehicle sudah menjadi pusat perhatian bagi kalangan industri dan civitas academica. Sudah banyak kendaraan listrik yang sudah diproduksi secara massal di seluruh dunia. Beberapa dari kendaraan listrik tersebut menggunakan motor BLDC sebagai penggerak utamanya. Pada Tugas Akhir kali ini, salah satu kemampuan yang akan diteliti dan dianalisa adalah respon kecepatan motor BLDC pada mobil listrik saat mobil diberi suatu beban. Ketika mendapat pembebanan, respon kecepatan dari motor BLDC akan turun sehingga performa dari motor BLDC tidak sesuai dengan setpoint yang diharapkan. Oleh karena itu, dibutuhkan suatu kontroler yang dapat mengatasi permasalahan diatas dan melakukan pengaturan kerja pada motor BLDC agar bekerja sesuai dengan kebutuhan. Kontroler ini diharapkan mampu untuk mengembalikan respon kecepatan pada motor BLDC kembali kepada setpoint ketika motor BLDC diberi pembebanan. Penulis menggunakan metode kontroler Model Predictive Control (MPC yang dapat memprediksi perilaku sistem pada masa depan yang bergantung pada informasi sistem saat ini dan model state-space dari sistem. Berdasarkan hasil implementasi, kontroler MPC dapat memberikan respon yang sesuai dengan tracking setpoint yang diberikan dengan rata-rata nilai steady-state error sebesar 9,8% untuk semua parameter pembebanan.
Development of a hermetically sealed brushless DC motor for a J-T cryocooler
Joscelyn, Edwin; Hochler, Irwin; Ferri, Andrew; Rott, Heinz; Soukaris, Ted
1996-01-01
This development was sponsored by Ball Aerospace for the Cryogenic On-Orbit LongLife Active Refrigerator (COOLLAR) program. The cryocooler is designed to cool objects to 65 K and operate in space for at least 7 years. The system also imports minimal impact to the spacecraft in terms of vibration and heat. The basic Joule-Thompson cycle involves compressing a working fluid, nitrogen in this case, at near-constant temperature from 17.2 KPa to 6.89 MPa. The nitrogen is then expanded through a Joule-Thompson valve. The pure nitrogen gas must be kept clean; therefore, any contamination from motor organic materials must be eliminated. This requirement drove the design towards sealing of the motor within a titanium housing without sacrificing motor performance. It is estimated that an unsealed motor would have contributed 1.65 g of contaminants, due to the organic insulation and potting materials, over the 7-year life. This paper describes the motor electrical and mechanical design, as well as the sealing difficulties encountered, along with their solutions.
Cogging Torque Reduction in Brushless DC Motors Using Slot-Opening Shift
Directory of Open Access Journals (Sweden)
SAIED, S. A.
2009-02-01
Full Text Available In this paper, two new methods for the stator skew are introduced. In contrary with the conventional stator skew, this paper is concentrate on the slot-opening skew. The simula-tion result by finite element shows a considerable reduction in the cogging torque of the motors, the new methods are applied to. Moreover the simulations justify that the back-EMF shape remains trapezoidal for various skew angles in contrary with that in the conventional skew, this fact makes the method highly applicable in BLDC motors.
Variable Reluctance Rotating Shaft Sensor for DC Brushless Vernier Reluctance Motor
Multon, Bernard; Geoffroy, Marc; Desesquelles, Pierre-François
1992-01-01
International audience; In this paper, a variable Reluctance Rotating Shaft Sensor made with a stack of magnetic sheet a Switched Reluctance Motor is studied. The magnetic coupling are taken into eaccount and an 3D FE modelization is used. Synchronous demodulation is used to obtain position signals.
Directory of Open Access Journals (Sweden)
Bangcheng Han
2013-01-01
Full Text Available We firstly report on an investigation into the unbalanced magnetic pull (UMP effect on the static stiffness models of radial active magnetic bearing (RAMB in brushless DC motor (BDCM in no-loaded and loaded conditions using the finite element method (FEM. The influences of the UMP on the force-control current, force-position, current stiffness, and position stiffness of RAMB are clarified in BDCM with 100 kW rated power. We found the position stiffness to be more susceptible to UMP. The primary source of UMP is the permanent magnets of BDCM. In addition, the performance of RAMB is affected by the UMP ripples during motor commutation and also periodically affected by the angular position of rotor. The characteristic curves of RAMB force versus control current (or rotor position and angular position of rotor affected by the UMP are given. The method is useful in design and optimization of RAMB in magnetically suspended BDCMs.
Demerdash, N. A.; Nehl, T. W.
1980-01-01
A comprehensive digital model for the analysis and possible optimization of the closed loop dynamic (instantaneous) performance of a power conditioner fed, brushless dc motor powered, electromechanical actuator system (EMA) is presented. This model was developed for the simulation of the dynamic performance of an actual prototype EMA built for NASA-JSC as a possible alternative to hydraulic actuators for consideration in Space Shuttle Orbiter applications. Excellent correlation was achieved between numerical model simulation and experimental test results obtained from the actual hardware. These results include: various current and voltage waveforms in the machine-power conditioner (MPC) unit, flap position as well as other control loop variables in response to step commands of change of flap position. These results with consequent conclusions are detailed in the paper.
Jiaxin, Chen; Youguang, Guo; Jianguo, Zhu; College of Electromechanical Engineering, Donghua University : Faculty of Engineering, University of Technology; Faculty of Engineering, University of Technology; Faculty of Engineering, University of Technology
2007-01-01
This paper presents the performance evaluation of a high-speed surface mounted PM brushless DC motor by using an improved phase variable model. Magnetic field finite element analyses are conducted to accurately calculate the key motor parameters such as air gap flux, back electromotive force and inductance, and their dependence on rotor position and magnetic saturation. Based on the numerical magnetic field solutions, a modified incremental energy method is applied to effectively calculate th...
Generalized model of brushless dc generator
Vadher, V. V.; Kettleborough, J. Gordon; Smith, I. R.; Gerges, Wahid R.
1989-07-01
A generalized model is described for a brushless dc machine consisting of a multiphase synchronous machine with a full-wave bridge rectifier connected to its output terminals. The state-variable equations for the machine are suitable for numerical integration on a digital computer, and are assembled in a form which permits investigations to be made on the effects of different numbers of armature phase windings and different winding connections. The model has been used in both steady-state and transient studies on a number of generating units, with the detailed information which is provided being beneficial to design engineers. Comparisons presented between predicted and measured results illustrate the validity of the model and the mathematical techniques adopted, and confirm that accurate information on the performance of a brushless generator may be obtained prior to manufacture.
Redundant speed control for brushless Hall effect motor
Nola, F. J. (Inventor)
1973-01-01
A speed control system for a brushless Hall effect device equipped direct current (D.C.) motor is described. Separate windings of the motor are powered by separate speed responsive power sources. A change in speed, upward or downward, because of the failure of a component of one of the power sources results in a corrective signal being generated in the other power source to supply an appropriate power level and polarity to one winding to cause the motor to be corrected in speed.
Mechanism For Adjustment Of Commutation Of Brushless Motor
Schaefer, Richard E.
1995-01-01
Mechanism enables adjustment of angular position of set of Hall-effect devices that sense instantaneous shaft angle of brushless dc motor. Outputs of sensors fed to commutation circuitry. Measurement of shaft angle essential for commutation; that is, application of voltage to stator windings must be synchronized with shaft angle. To obtain correct angle measurement for commutation, Hall-effect angle sensors positioned at proper reference angle. The present mechanism accelerates adjustment procedure and makes it possible to obtain more accurate indication of minimum-current position because it provides for adjustment while motor running.
Permanent magnet brushless motor control based on ADRC
Directory of Open Access Journals (Sweden)
Li Xiaokun
2016-01-01
Full Text Available Permanent magnet brushless motor is a nonlinear system with multiple variables, the mathematical model of Permanent magnet brushless motor is difficult to establish, and since that the classic PID control is hard to precisely control the motor. Active disturbance rejection control (ADRC technique is a new nonlinear controller which does not depend on the system model. It is starting from the classic PID control, and establishing the loop control system by error negative feedback, the ESO(extended state observer observing system which comes from the observer theory of modern control theory to observe internal and external perturbations. ADRC inherits the advantages of PID with little overshoot, high convergence speed, high accuracy, strong anti-interference ability and other characteristics, and it has a strong disturbance adaptability and robustness as for the uncertainty perturbation and their internal disturbance of control objects. Therefore, This paper attempts to use Active disturbance rejection control(ADRC, in order to improve the control of permanent magnet brushless motor. In this design of control system, the simulation of the system is realized based on MATLAB, and then the discrete control algorithm is transplanted to the embedded system to control the permanent magnet brushless DC motor (PMBLDCM. The control system is implemented on the DSP-F28335 digital signal processor, and the DSP also provides the functions like voltage and current AD sampling, PWM driver generation, speed and rotor position calculation, etc. The simulation and experiment results indicate that, the system has good dynamic performance and anti-disturbance performance.
Ironless-armature brushless motor
Fisher, R. L.
1977-01-01
Device uses 12-pole samarium cobalt permanent-magnet rotor and three Hall-effect sensors for commutation. In prototype motor, torque constant (3-phase delta) is 65 oz-in/amp; electrical time constant (L/R) is 0.2 x 0.001 sec, and armature resistance is 20 ohms.
Comparison of solar panel cooling system by using dc brushless fan and dc water
Irwan, Y. M.; Leow, W. Z.; Irwanto, M.; M, Fareq; Hassan, S. I. S.; Safwati, I.; Amelia, A. R.
2015-06-01
The purpose of this article is to discuss comparison of solar panel cooling system by using DC brushless fan and DC water pump. Solar photovoltaic (PV) power generation is an interesting technique to reduce non-renewable energy consumption and as a renewable energy. The temperature of PV modules increases when it absorbs solar radiation, causing a decrease in efficiency. A solar cooling system is design, construct and experimentally researched within this work. To make an effort to cool the PV module, Direct Current (DC) brushless fan and DC water pump with inlet/outlet manifold are designed for constant air movement and water flow circulation at the back side and front side of PV module representatively. Temperature sensors were installed on the PV module to detect temperature of PV. PIC microcontroller was used to control the DC brushless fan and water pump for switch ON or OFF depend on the temperature of PV module automatically. The performance with and without cooling system are shown in this experiment. The PV module with DC water pump cooling system increase 3.52%, 36.27%, 38.98%in term of output voltage, output current, output power respectively. It decrease 6.36 °C compare than to PV module without DC water pump cooling system. While DC brushless fan cooling system increase 3.47%, 29.55%, 32.23%in term of output voltage, output current, and output power respectively. It decrease 6.1 °C compare than to PV module without DC brushless fan cooling system. The efficiency of PV module with cooling system was increasing compared to PV module without cooling system; this is because the ambient temperature dropped significantly. The higher efficiency of PV cell, the payback period of the system can be shorted and the lifespan of PV module can also be longer.
E. Kaliappan; C. Chellamuthu
2012-01-01
Problem statement: In this study, a simplified modeling and experimental analysis of Permanent Magnet Brushless DC (PMBLDC) motors for Sensorless operation using MATLAB/SIMULINK. This model provides a mechanism for monitoring and controlling the voltage, current, speed and torque response. Approach: BLDC motor is modeled as sub-blocks. The inverter and switching function are implemented as S-function builder block. The Sensorless scheme employs direct back emf based zero crossing detection te...
Modeling of brushless dc generating systems using diakoptics
Vadher, Vinod; Gregory, Keith; Kettleborough, J. G.; Smith, Ivor R.
1993-01-01
The mathematical modeling of a brushless dc generator is described, as an illustration of the application of diakoptic techniques to the analysis of small-scale electrical power supply systems. Modeling of the generator and its output rectifier is accomplished using an established matrix technique that accounts for the continuously changing conduction pattern of the diode bridge network. The advantages of using diakoptics are introduced when consideration is given to the main generator linked to its exciter and to the automatic voltage regulator and permanent magnet generator which are often included in a complete unit. A solution algorithm is presented for this overall arrangement and a comparison is made between theoretical and practical results for a typical 3-stage 4000 rev/min 10.3 kW 28 V unit.
Flores Hornero, Pablo
2017-01-01
El siguiente proyecto consiste en el diseño y la implementación de un driver electrónico cuya principal función será la de realizar el control de un motor trifásico síncrono sin escobillas. Este tipo de motores son frecuentemente utilizados en la automatización de procesos industriales, por este motivo, el control de posición, velocidad y par de los mismos tiene vital importancia. Este proyecto nace sin un propósito de aplicación final concreta, simplemente pretende comprobar la validez de...
Demerdash, N. A. O.; Nehl, T. W.
1979-01-01
A description and user's guide of the computer program developed to simulate the dynamics of an electromechanical actuator for aerospace applications are presented. The effects of the stator phase currents on the permanent magnets of the rotor are examined. The voltage and current waveforms present in the power conditioner network during the motoring, regenerative braking, and plugging modes of operation are presented and discussed.
Demerdash, N. A. O.; Nehl, T. W.
1979-01-01
The development, fabrication and evaluation of a prototype electromechanical actuator (EMA) is discussed. Application of the EMA as a motor for control surfaces in aerospace flight is examined. A mathematical model of the EMA is developed for design optimization. Nonlinearities which complicate the mathematical model are discussed. The dynamics of the EMA from the underlying physical principles are determined and a discussion of similating the control logic by means of equivalent boolean expressions is presented.
Analysis of brushless DC generator incorporating an axial field coil
Energy Technology Data Exchange (ETDEWEB)
Moradi, Hassan, E-mail: H_moradi@sbu.ac.i [Department of Electrical and Computer Engineering, Shahid Beheshti University, GC, Tehran (Iran, Islamic Republic of); Afjei, E. [Department of Electrical and Computer Engineering, Shahid Beheshti University, GC, Tehran (Iran, Islamic Republic of)
2011-07-15
Highlights: {yields} Magnetic analysis and experiment of a three-phase field assisted BLDC generator. {yields} Confirm the accuracy of the predicted flux-linkage by 2-D FE analysis. {yields} Confirm the accuracy of the FE analysis results by coupling the FE and BE method. {yields} Control the output voltage to a desired level by control the amplitude of the I{sub f}. {yields} Compatible with any application that requires variable speed operation. -- Abstract: This paper describes the magnetic analysis and experiment of a three-phase field assisted brushless DC (BLDC) generator. Unlike conventional BLDC generators, the permanent magnet is replaced with an assisted field winding. The stator and rotor are constructed with two dependent magnetically sets, in which each stator set includes nine salient poles with coil windings, and the rotor comprises of six salient poles. Other pole combinations also are possible. This construction is similar to a homopolar inductor alternator. The DC current in the assisted field winding produces axial flux which makes the rotor magnetically polarized at its ends. The magnetic field flows axially through the rotor shaft and closes through the stator teeth and the machine housing. To evaluate the generator performance, two types of analysis, namely the numerical technique and the experimental study have been utilized. In the numerical analysis, 2-D finite element (FE) analysis has been carried out using a MagNet CAD package (Infolytica Corporation Ltd.), to confirm the accuracy of the predicted flux-linkage characteristics, whereas in the experimental study, a prototype BLDC generator was constructed for verifying the actual performance. Furthermore, the evaluation method based on a hybrid numerical method coupling the finite element (FE) analysis and boundary element (BE) method, has been carried out to confirm the accuracy of the 2-D FE analysis simulation results. It provides not only confirmations of the investigation in results
Research of influence of open-winding faults on properties of brushless permanent magnets motor
Bogusz, Piotr; Korkosz, Mariusz; Powrózek, Adam; Prokop, Jan; Wygonik, Piotr
2017-12-01
The paper presents an analysis of influence of selected fault states on properties of brushless DC motor with permanent magnets. The subject of study was a BLDC motor designed by the authors for unmanned aerial vehicle hybrid drive. Four parallel branches per each phase were provided in the discussed 3-phase motor. After open-winding fault in single or few parallel branches, a further operation of the motor can be continued. Waveforms of currents, voltages and electromagnetic torque were determined in discussed fault states based on the developed mathematical and simulation models. Laboratory test results concerning an influence of open-windings faults in parallel branches on properties of BLDC motor were presented.
Peacock, W. M.
1971-01-01
The ITOS with an improved attitude control system is described. A Hall generator brushless dc torque motor will replace the brush dc torque motor on ITOS-I and ITOS-A (NOAA-1). The four attitude horizon sensors will be replaced with two CO2 sensors for better horizon definition. An earth horizon splitting technique will be used to keep the earth facing side of the satellite toward earth even if the desired circular orbit is not achieved. The external appearance of the pitch control subsystem differs from TIROS-M (ITOS-1) and ITOS-A (NOAA-1) in that two instead of one pitch control electronics (PCE) boxes are used. Two instead of four horizon sensors will be used and one instead of two mirrors will be used for sensor scanning. The brushless motor will eliminate the requirement for brushes, strain gages and the telemetry for the brush wear. A single rotating flywheel, supported by a single bearing provides the gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminates the requirement for expendable propellants which would limit satellite life in orbit.
Modeling and control of a brushless DC axial flow ventricular assist device.
Giridharan, Guruprasad A; Skliar, Mikhail; Olsen, Donald B; Pantalos, George M
2002-01-01
This article presents an integrated model of the human circulatory system that incorporates circulatory support by a brushless DC axial flow ventricular assist device (VAD), and a feedback VAD controller designed to maintain physiologically sufficient perfusion. The developed integrated model combines a network type model of the circulatory system with a nonlinear dynamic model of the brushless DC pump We show that maintaining a reference differential pressure between the left ventricle and aorta leads to adequate perfusion for different pathologic cases, ranging from normal heart to left heart asystole, and widely varying physical activity scenarios from rest to exercise.
A Brushless Three-phase Synchronous Induction Motor with Two Stators
Inoue, Kenji; Yamashita, Hideo; Ohnogi, Yukio; Cingoski, Vlatko
1993-01-01
In this paper, a brushless three-phase synchronous induction motor with two stators which can self-start as a wound-rotor induction motor without external secondary resistance is proposed. In the proposed motor, two excitation schemes, separately and self-ones, can be realized. In the separately excitation scheme, the proposed machine can operate as a synchronous generator-motor. The proposed machine compared with traditional brushless synchronous motor with AC exciter has the following advan...
Optimization of brushless direct current motor design using an intelligent technique.
Shabanian, Alireza; Tousiwas, Armin Amini Poustchi; Pourmandi, Massoud; Khormali, Aminollah; Ataei, Abdolhay
2015-07-01
This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using an improved bee algorithm (IBA). The characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. This method is based on the capability of swarm-based algorithms in finding the optimal solution. One sample case is used to illustrate the performance of the design approach and optimization technique. The IBA has a better performance and speed of convergence compared with bee algorithm (BA). Simulation results show that the proposed method has a very high/efficient performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
An ironless armature brushless torque motor
Studer, P. A.
1973-01-01
A high torque motor with improved servo mechanism is reported. Armature windings are cast into an epoxy cylinder and armature conductors are integrally cast with an aluminum mounting ring which provides thermal conductance directly into the structure. This configuration eliminates magnetic hysteresis because there is no relative motion between the rotating magnetic field and any stationary iron. The absence of destabilization forces provides a fast electrical response compared with a typical torquer of conventional construction.
Directory of Open Access Journals (Sweden)
Abolfazl Halvaei Niasar
2017-12-01
Full Text Available This paper presents a simple and low-cost method to capture maximum power throughput of permanent magnet brushless DC (BLDC generator. Conventional methods of rectification are based on passive converters, and because the current waveform cannot be controlled as ideal waveform, a highly distorted current is drawn from brushless generator. It leads to lower power factor and reduces the efficiency and power per ampere capability. So, in this study an active six-witch power converter is employed and based on the phase back-EMF voltage, an optimum current waveform is generated. The phase currents are controlled inphase to phase voltages and their magnitudes are adjusted to regulate the DC-link voltage. Proposed control theory is verified by simulations for BLDC generator and permanent magnet synchronous generator (PMSG. Moreover, some experimental results are given to demonstrate the theoretical and simulation results.
Jian-ping Wen; Chuan-wei Zhang
2015-01-01
In order to improve energy utilization rate of battery-powered electric vehicle (EV) using brushless DC machine (BLDCM), the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO) to observe actual braking current and the unknown disturbances of regenerative braking system, ...
Prospects for Brushless ac Motors with HTS Rotors
McCulloch, M. D.; Jim, K.; Kawai, Y.; Dew-Hughes, D.; Morgan, C.; Goringe, M. J.; Grovenor, C. R. M.
1997-03-01
There is a superconducting equivalent for every type of brushless ac motor; permanent magnet, reluctance, hysteresis and induction (squirrel cage) motor. The particular advantage of superconducting versions of these machines is that they are expected to provide much higher power densities than their conventional equivalents. The behaviour of superconducting rotors fabricated in the form of (a) squirrell cages from silver coated with melt-processed Bi-2212, (b) tubes cast centifugally from Bi-2212, and (c) small cylinders of melt-processed and seeded YBCO has been studied in rotating magnetic fields provided by conventional motor coils. Measurements of static torque, and values of dynamic torque deduced from angular velocity and acceleration have been used to characterise the potential performance of these embryonic machines. Two broad types of behaviour have been observed. In the Bi-2212 rotors the torque decreases with increasing rotor speed; this behaviour is believed due to flux creep. By contrast the strong-pinning YBCO rotors maintain a constant torque up to synchronous speed. Mathematical modelling of flux penetration and distribution within the rotors is able to reproduce both types of the observed behaviour. Power densities some 5 to 10 times that of conventional machines are predicted to be achievable in optimised prototype machines.
Peacock, W. M.
1973-01-01
The National Aeronautics and Space Administration (NASA), launched ITOS-D with an improved attitude control system. A Hall generator brushless dc torque motor replaced the brush dc torque motor on Tiros-M and ITOS-A. Two CO2 attitude horizon sensors and one mirror replaced the four wideband horizon sensors and two mirrors on ITOS-1 and NOAA-1. Redundant pitch-control electronic boxes containing additional electronic circuitry for earth-splitting and brushless motor electronics were used. A method of generating a spacecraft earth-facing side reference for comparison to the time occurrence of the earth-splitting pulse was used to automatically correct pitch-attitude error. A single rotating flywheel, supported by a single bearing, provided gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminated the requirement for expendable propellants which would limit satellite life in orbit.
Initial Rotor Position Estimation of Half-Wave Rectified Brushless Synchronous Motor
Abe, Takashi; Oyama, Jun; Higuchi, Tsuyoshi
This paper presents an initial rotor position estimation of Half-Wave Rectified Brushless Synchronous Motor. In the previous paper, we proposed this motor as AC servo motor, which is based on the half-wave rectified brushless excitation principle. The basic principle of this estimation technique utilizes the dependence of inductance on the rotor position. The bias frequency component of half-Wave rectified brushless excitation is used to estimate the rotor position error. The magnetic pole is discriminated by the switching condition of the diode inserted into the rotor field winding. This estimation technique is confirmed by simulation include inverter circuit, control program and motor model. Finally, the effectiveness of the proposed estimation technique has been verified by experiments.
Directory of Open Access Journals (Sweden)
Jian-ping Wen
2015-01-01
Full Text Available In order to improve energy utilization rate of battery-powered electric vehicle (EV using brushless DC machine (BLDCM, the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO to observe actual braking current and the unknown disturbances of regenerative braking system, the autodisturbances rejection controller (ADRC for controlling the braking current is developed. Experimental results show that the proposed method gives better recovery efficiency and is robust to disturbances.
Shen, J.X.; Zhu, Z Q; Howe, D.
2004-01-01
The sensorless control of brushless machines by detecting the third harmonic back electromotive force is a relatively simple and potentially low-cost technique. However, its application has been reported only for brushless dc motors operating under normal commutation. In this paper, the utility of the method for the sensorless control of both brushless dc and ac motors, including operation in the flux-weakening mode, is demonstrated.
Method and apparatus for sensorless operation of brushless permanent magnet motors
Sriram, T.V.
1998-04-14
A sensorless method and apparatus for providing commutation timing signals for a brushless permanent magnet motor extracts the third harmonic back-emf of a three-phase stator winding and independently cyclically integrates the positive and negative half-cycles thereof and compares the results to a reference level associated with a desired commutation angle. 23 figs.
Method and apparatus for sensorless operation of brushless permanent magnet motors
Sriram, Tillasthanam V.
1998-01-01
A sensorless method and apparatus for providing commutation timing signals for a brushless permanent magnet motor extracts the third harmonic back-emf of a three-phase stator winding and independently cyclically integrates the positive and negative half-cycles thereof and compares the results to a reference level associated with a desired commutation angle.
A flux-mnemonic permanent magnet brushless motor for electric vehicles
Yu, Chuang; Chau, K. T.; Liu, Xinhua; Jiang, J. Z.
2008-04-01
In this paper, a new permanent magnet (PM) brushless motor is proposed for electric vehicles. The key is to incorporate the concept of memory motors, namely, the online tunable flux-mnemonic PMs, into the stator doubly fed doubly salient PM motor, hence achieving effective air-gap flux control. By further employing the outer-rotor and double-layer-stator topology, the proposed motor takes the definite advantages of compact structure, low armature reaction, and direct-drive capability. Increasingly, this motor can offer the unique features of pole dropping and pole reversing. Finite element analysis and, hence, computer simulation are given to verify the validity of the proposed motor.
FEM Analysis of Brushless DC Servomotor with Fractional Number of Slots per Pole
Directory of Open Access Journals (Sweden)
BALUTA, G.
2014-02-01
Full Text Available The authors present in this paper the analysis with Finite Element Method (FEM of the magnetic circuit for a Brushless DC servomotor with fractional number of slots/pole (9 slots and 10 poles. For this purpose, FEMM 4.2 software package was used for the analysis. To obtain the waveforms of Back-ElectroMotive Forces (BEMFs, electromagnetic and cogging torque for servomotor a program in LUA scripting language (integrated into interactive shell of FEMM4.2 has been created. A comparation with a structure with integer number of slots/pole (18 slots and 6 poles was also realized. The analysis results prove that the structure chosen is an optimal solution: sinusoidal waveforms of BEMFs, improved electromagnetic torque and reduced cogging torque. Therefore, the operating characteristics of the servomotor with 9/10 slots/poles manufactured by Sistem Euroteh Company and included in an integrated electrical drives system are presented in this paper.
Pohlmann, André; Hameyer, Kay
2012-01-01
Ventricular Assist Devices (VADs) are mechanical blood pumps that support the human heart in order to maintain a sufficient perfusion of the human body and its organs. During VAD operation blood damage caused by hemolysis, thrombogenecity and denaturation has to be avoided. One key parameter causing the blood's denaturation is its temperature which must not exceed 42 °C. As a temperature rise can be directly linked to the losses occuring in the drive system, this paper introduces an efficiency prediction chain for Brushless DC (BLDC) drives which are applied in various VAD systems. The presented chain is applied to various core materials and operation ranges, providing a general overview on the loss dependencies.
Energy Technology Data Exchange (ETDEWEB)
Muenchow, Frank [Federal-Mogul, Bad Camberg (Germany). Geschaeftsbereich Vehicle Safety and Protection; Harvey, Richard; Richards, Michael [Federal-Mogul Corporation, Logansport, IN (United States). Business Unit Vehicle Safety and Protection
2012-03-15
Electrifying components in commercial vehicles can be a challenge. High vibration levels, for instance, amplify carbon brush and commutator erosion in a conventional electric motor. To offer a solution Federal-Mogul has developed the brushless fuel pump. This BLDC pump has successfully passed 10,000 h of operation in B100 fuel. (orig.)
Fuzzy controllers in the control system of a brushless electric motor using HIL technology
Directory of Open Access Journals (Sweden)
Kalach Gennady
2017-01-01
Full Text Available This article proposes a method for creation of a control system for a brushless electric motor based on a fuzzy logic apparatus. The use of a fuzzy controller in this case can increase stability and improve the quality of the system under consideration, which was implemented in the Simulink environment using HIL technology. This technology increases the chances of successfully passing the test phase, considering the control system in prototype.
Pulsewidth Modulated Speed Control of Brushless DC Motors.
1984-09-01
voltaje across the inductor terminals, owing to a rapid rate of change in the inductor current. This induced voltage turns on diode Dr, whicn provides a... voltaje relation~zip as sho.w;. in ey uation 4.9: V il. + Ll) di/dt + Pi + K, *w (k2 !1- -4. .ii;the: !Lapiace trarnsl-orm o f e,,uation ~5vls 36 S I E
Permanent magnet synchronous and brushless DC motor drives
Ramu, Krishnan
2009-01-01
Presents an introduction to machines, power devices, inverters, and control. This book covers pm synchronous machines, including modeling, implementation, control strategies, flux weakening operations, parameter sensitivity, sensorless control, and intelligent control applications.
Directory of Open Access Journals (Sweden)
Bo Long
2013-12-01
Full Text Available Regenerative braking provides an effective way of extending the driving range of battery powered electric vehicles (EVs. This paper analyzes the equivalent power circuit and operation principles of an EV using regenerative braking control technology. During the braking period, the switching sequence of the power converter is controlled to inverse the output torque of the three-phase brushless direct-current (DC motor, so that the braking energy can be returned to the battery. Compared with the presented methods, this technology can achieve several goals: energy recovery, electric braking, ultra-quiet braking and extending the driving range. Merits and drawbacks of different braking control strategy are further elaborated. State-space model of the EVs under energy-regenerative braking operation is established, considering that parameter variations are unavoidable due to temperature change, measured error, un-modeled dynamics, external disturbance and time-varying system parameters, a sliding mode robust controller (SMRC is designed and implemented. Phase current and DC-link voltage are selected as the state variables, respectively. The corresponding control law is also provided. The proposed control scheme is compared with a conventional proportional-integral (PI controller. A laboratory EV for experiment is setup to verify the proposed scheme. Experimental results show that the drive range of EVs can be improved about 17% using the proposed controller with energy-regeneration control.
Optimal current waveforms for brushless permanent magnet motors
Moehle, Nicholas; Boyd, Stephen
2015-07-01
In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model, such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor with a sinusoidal back-EMF, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque region and constant-power region.
Directory of Open Access Journals (Sweden)
Reza Ilka
2012-04-01
Full Text Available ABSTRACT: This paper develops a mathematical relationship for the purpose of designing and selecting the optimum dimensions of a brushless permanent magnet motor. The design is optimised by the use of artificial bee colony algorithm with the goal of maximizing the power density and efficiency of the motor. The required dimensions of the brushless motor are calculated based on the optimum power density and efficiency requirements. Finally, the predicted results of the optimisation are validated using a 2-D numerical program based on finite element analysis.ABSTRAK: Kajian ini mencadangkan persamaan yang menghubungkan rekabentuk dan dimensi magnet motor kekal tanpa berus. Rekabentuk optima berdasarkan algorisma koloni lebah tiruan dengan tujuan meningkatkan ketumpatan kuasa dan keberkesanan dibentangkan dalam kajian ini. Dimensi magnet motor kekal tanpa berus dihitung dengan ketumpatan kuasa optima dan keberkesanan. Akhirnya, keputusan telah disahkan dengan menggunakan program berangka 2-D berdasarkan analisis elemen finit.KEYWORDS: brushless; permanent magnet motor; power density; artificial bee colony; algorithm; finite element analysis
Luo, Shaohua; Wu, Songli; Gao, Ruizhen
2015-07-01
This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.
Energy Technology Data Exchange (ETDEWEB)
Luo, Shaohua [School of Automation, Chongqing University, Chongqing 400044 (China); Department of Mechanical Engineering, Chongqing Aerospace Polytechnic, Chongqing, 400021 (China); Wu, Songli [Department of Mechanical Engineering, Chongqing Aerospace Polytechnic, Chongqing, 400021 (China); Gao, Ruizhen [School of Automation, Chongqing University, Chongqing 400044 (China)
2015-07-15
This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.
A new technique to control brushless motor for blood pump application.
Fonseca, Jeison; Andrade, Aron; Nicolosi, Denys E C; Biscegli, José F; Legendre, Daniel; Bock, Eduardo; Lucchi, Júlio César
2008-04-01
This article presents a back-electromotive force (BEMF)-based technique of detection for sensorless brushless direct current motor (BLDCM) drivers. The BLDCM has been chosen as the energy converter in rotary or pulsatile blood pumps that use electrical motors for pumping. However, in order to operate properly, the BLDCM driver needs to know the shaft position. Usually, that information is obtained through a set of Hall sensors assembled close to the rotor and connected to the electronic controller by wires. Sometimes, a large distance between the motor and controller makes the system susceptible to interference on the sensor signal because of winding current switching. Thus, the goal of the sensorless technique presented in this study is to avoid this problem. First, the operation of BLDCM was evaluated on the electronic simulator PSpice. Then, a BEMF detector circuitry was assembled in our laboratories. For the tests, a sensor-dependent system was assembled where the direct comparison between the Hall sensors signals and the detected signals was performed. The obtained results showed that the output sensorless detector signals are very similar to the Hall signals at speeds of more than 2500 rpm. Therefore, the sensorless technique is recommended as a responsible or redundant system to be used in rotary blood pumps.
Speed Control of Bldc Motor Drive By Using Pid Controllers
Y.Narendra Kumar,; P.Eswara Rao
2014-01-01
This paper mainly deals with the Brushless DC (BLDC) motor speed driving systems have sprouted in various small scale and large scale applications like automobile industries, domestic appliances etc. This leads to the development in Brushless DC motor (BLDCM). The usage of BLDC Motor enhances various performance factors ranging from higher efficiency, higher torque in low-speed range, high power density ,low maintenance and less noise than other motors. The BLDC Motor can act ...
BRUSHLESS VALVE ELECTRIC DRIVE WITH MINIMUM EQUIPMENT EXCESS FOR AUTONOMOUS FLOATING VEHICLE
Directory of Open Access Journals (Sweden)
Ya. B. Volyanskaya
2017-08-01
Full Text Available Purpose. Development of a brushless valve electric drive with a minimum apparatus excess for an autonomous floating vehicle. Methodology. The construction of models of an automated electric drive with a contactless DC motor and the subsequent technical implementation of such automated electric drive under various control methods are possible using coordinate transformations of differential equations describing the electric motor under the assumed assumptions. Results. The analysis of the current state of an automated electric drive with a brushless DC motor in a special technique is carried out, possible directions for the improvement of automated electric drives are determined. A simple technical solution of an automated electric drive with a brushless DC motor was proposed and its mathematical model for an electric drive of an automatic floating vehicle with improved technical and economic parameters was developed. Model of an automated electric drive with a brushless DC motor are carried out. Originality. A simple technical solution for the construction of an automated electric drive with a brushless DC motor is proposed, which excludes the use of intermediate computation of coordinates and an expensive encoder. Practical value. Model of the proposed scheme of an automated electric drive with a minimum hardware redundancy, which confirmed the operability of the proposed solution, were carried out. Analysis of the dynamic and static characteristics of the proposed scheme of an automated asynchronous electric drive with a brushless DC motor with a simplified rotor position sensor has made it possible to determine the maximum speed control range with an allowable level of its pulsations.
Pemodelan Sistem Kontrol Motor DC Dengan Temperatur Udara Sebagai Pemicu
Prabowo, Brilliant Adhi
2008-01-01
Motor dc lebih sering digunakan untuk beberapa kegiatan yang memerlukan pengaturan kecepatan daripada motor ac. Disamping pengontrolan kecepatan putar, sistem control motor dc juga mengatur arah putar rotor, searah jarum jam atau berlawanan dengan arah jarum jam. Salah satu sistem control motor dc adalah menggunakan Modulasi Lebar Pulsa (PWM) sebagai pemicu pada driver control seperti transistor H-Bridge. Penelitian ini bertujuan untuk merancang sistem control motor dc menggunakan suhu udar...
Modeling and simulation for micro DC motor based on simulink
Shen, Hanxin; Lei, Qiao; Chen, Wenxiang
2017-09-01
The micro DC motor has a large market demand but there is a lack of theoretical research for it. Through detailed analysis of the commutation process of micro DC motor commutator, based on micro DC motor electromagnetic torque equation and mechanical torque equation, with the help of Simulink toolkit, a triangle connection micro DC motor simulation model is established. By using the model, a sample micro DC motor are simulated, and an experimental measurements has been carried on the sample micro DC motor. It is found that the simulation results are consistent with theoretical analysis and experimental results.
Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor
Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa
2012-04-01
The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.
Optimization Design and Performance Analysis of a PM Brushless Rotor Claw Pole Motor with FEM
Directory of Open Access Journals (Sweden)
Zhenyang Zhang
2016-07-01
Full Text Available A new type of permanent magnet (PM brushless claw pole motor (CPM with soft magnetic composite (SMC core is designed and analyzed in this paper. The PMs are mounted on the claw pole surface, and the three-phase stator windings are fed by variable-frequency three-phase AC currents. The advantages of the proposed CPM are that the slip rings on the rotor are cast off and it can achieve the efficiency improvement and higher power density. The effects of the claw-pole structure parameters, the air-gap length, and the PM thinner parameter of the proposed CPM on the output torque are investigated by using three-dimensional time-stepping finite element method (3D TS-FEM. The optimal rotor structure of the proposed CPM is obtained by using the response surface methodology (RSM and the particle swarm optimization (PSO method and the comparison of full-load performances of the proposed CPM with different material cores (SMC and silicon steel is analyzed.
Analysis of the Torque Ripples in Designing a Disk Type Brushless Direct Current Motor
Directory of Open Access Journals (Sweden)
A. V. Stepanov
2015-01-01
Full Text Available This paper investigates the torque ripples of disk-type low-power brushless direct current motor (BDCM with permanent magnets. In spite of numerous studies on designing of valve engines this issue is understudied as yet. The torque ripples cause noise and vibration and can significantly limit accuracy when used in instrumentation, computer technology.We consider a motor that includes a power unit consisting of a rotor and a stator. There are ferrite elements of sensor on the rotor, and the nonmagnetic disk, bonded to it, contains permanent magnets. The rotor is mounted on a rotating shaft. The stator consists of a steel casing and bonded to it non-magnetic, non-conductive disk with holes. In the disk holes from both sides are mounted armature coils. The armature winding consists of two sections each of which has 6 coils. Each adjacent coil in section has an opposite direction of winding. The coils are arranged circumferentially and are shifted relative to each other; the displacement angle between the coils of one section is equal to 2π/6 (rad. Sections are also shifted relative to each other; the angular shift is π/6 (rad. Sections are connected to the output terminals of the electronic switch. Sections of motor windings have the reverse full-wave power.The paper has investigated the steady operation at four-stroke switching and under constant load (torque. In this case, the electromagnetic torque and rotor speed are periodical functions of the rotor rotation angle. The dependencies of the averaged torque on the rotation speed have been obtained. The spectral distribution of the torque ripples at various rotor speeds of rotation has been calculated. The dependencies of the torque on the speed were studied both at constant speed and taking into account the uneven speed. Based on the research findings of disk type BDCM was computed a level of ripples amounted to 0.8 - 5%, which is quite acceptable for use in a drive. The results are useful for
DEFF Research Database (Denmark)
Zhang, Xiaoxu; Liu, Xiao; Chen, Zhe
2015-01-01
This paper presents a rapid approach to compute the magnetic field distribution in a flux-modulated permanent-magnet brushless motor. Partial differential equations are used to describe the magnet field behavior in terms of magnetic vector potentials. The whole computational domain is divided...... into several regions, i.e., magnet, air-gaps, slot-openings, and slots. The numerical solution could be obtained by applying the boundary constraints on the interfaces between these regions. The accuracy of the proposed analytical model is verified by comparing the no-load magnetic field and armature reaction...... magnetic field with those calculated by finite element method....
Embedded Based DC Motor Speed Control System
Directory of Open Access Journals (Sweden)
Chandrasekhar T.
2010-10-01
Full Text Available An embedded based DC motor speed control system using cygnal microcontroller (C8051F020 has been designed and developed. It is based on frequency domain technique. The principle is opto-coupler senses the speed of the motor in the form of TTL pulses, which is given to F/V (frequency to voltage converter. The output of the F/V converter voltage is fed to an inbuilt 12-bit ADC of cygnal microcontroller. The converted digital value applied in Liner equitation for converting back to frequency and speed is displayed on two lines LCD in RPM. Microcontroller is applied for PID control action to correct error in the form of voltage to the motor through built-in 12-bit D/A converter, PWM circuit, and actuator. The present study discusses the design, development, fabrication, and analysis of cygnal microcontroller based PID logic controller for DC motor speed control systems. Software is developed in ‘C’ language using Si-Lab IDE C-cross compiler. The paper deals with the hardware and software details.
Yang, Shen; Zhu, Xiaoyong; Xiang, Zixuan; Fan, Deyang; Wu, Wenye; Yin, Jianing
2017-05-01
This paper proposes a new flux-intensifying permanent magnet brushless motor for potential application in electric vehicles. The key of the proposed motor is to adopt the concept of flux-intensifying effect, thus the preferable flux-weakening ability and extended speed range can be achieved. The usage of segmented and relatively thinner permanent magnet (PM) in the proposed motor contributes to the increase of d-axis inductance Ld. In addition, the multilayer flux barriers along q-axis flux path will effectively decrease q-axis inductance Lq. As a result, the unique feature of Ld>Lq can be obtained, which is beneficial to extending the speed range of the proposed motor. Furthermore, the flux-intensifying effect can reduce the risk of irreversible demagnetization in PMs. The electromagnetic performances of the proposed motor are analyzed and investigated in details by using the finite element methods, which demonstrate the excellent flux-weakening capability and wide speed range can be achieved in the proposed FI-PMBL motor.
Nurun Nayiroh, Mokhamad Tirono
2008-01-01
Motor DC (Direct Current) adalah motor yang digerakkan oleh energi listrik DC. Salah satu jenis motor DC tersebut ialah motor DC magnet permanen yang banyak ditemui penggunaannya baik di industri maupun di rumah tangga. Terapan motor DC kebanyakan merupakan sistem yang memerlukan pengatur kecepatan. Tujuan penelitian adalah untuk menghasilkan respon transien yang stabil dan performansi yang baik pada sistem motor DC.Sistem motor DC dimodelkan berdasarkan persamaan kesetimbangan torsi dan pers...
Artificial Intelligent Controller for a DC Motor
Delavari, Hadi; Ranjbar Noiey, Abolzafl; Minagar, Sara
The Speed and position control of DC motors is addressed in this paper. An optimal intelligent control scheme is proposed for the system. Preliminary a PID controller is designed using Genetic Algorithms (GA). The proposed controller is implemented by using optimal integral state feedback control with GA and Kalman filter. In the proposed scheme, performance depends on choosing weighting matrices Q and R in the cost function, and accordingly GA is used to find these proper weighting matrices. In order to reduce the control performance degradation due to system parameters variation, a Kalman filter is gained. The performance of the proposed technique (ISF) is compared with PID controller. Computer simulation validates the effectiveness of the proposed scheme even in presence of uncertainties.
A Novel Coaxial Magnetic Gear and Its Integration With Permanent-Magnet Brushless Motor
DEFF Research Database (Denmark)
Zhang, Xiaoxu; Liu, Xiao; Chen, Zhe
2016-01-01
magnetic gear (CMG), which will not increase the mechanical complexity after integration with a permanent magnet (PM) brushless machine. The prominent feature of the proposed CMG is the introduction of the stator with modulating teeth, which function as the same as the modulating pole......A magnetic geared machine (MGM) is believed to be a promising candidate for high-torque direct-drive application. One of the key issues for developing MGMs is how to resolve the contradiction between the good performance and the complex structure. This paper aims at proposing a novel coaxial...
DC drive system for cine/pulse cameras
Gerlach, R. H.; Sharpsteen, J. T.; Solheim, C. D.; Stoap, L. J.
1977-01-01
Camera-drive functions are separated mechanically into two groups which are driven by two separate dc brushless motors. First motor, a 90 deg stepper, drives rotating shutter; second electronically commutated motor drives claw and film transport. Shutter is made of one piece but has two openings for slow and fast exposures.
National Research Council Canada - National Science Library
Kato Engineering Inc
1984-01-01
Contents: Common frame brushless synchronous motor-generator set - Field failure and out-of-step protection assembly for sychronous motor - Kato KCR 360 voltage regulators - Installation and maintenance...
Bat algorithm optimized fuzzy PD based speed controller for brushless direct current motor
Directory of Open Access Journals (Sweden)
K. Premkumar
2016-06-01
Full Text Available In this paper, design of fuzzy proportional derivative controller and fuzzy proportional derivative integral controller for speed control of brushless direct current drive has been presented. Optimization of the above controllers design is carried out using nature inspired optimization algorithms such as particle swarm, cuckoo search, and bat algorithms. Time domain specifications such as overshoot, undershoot, settling time, recovery time, and steady state error and performance indices such as root mean squared error, integral of absolute error, integral of time multiplied absolute error and integral of squared error are measured and compared for the above controllers under different operating conditions such as varying set speed and load disturbance conditions. The precise investigation through simulation is performed using simulink toolbox. From the simulation test results, it is evident that bat optimized fuzzy proportional derivative controller has superior performance than the other controllers considered. Experimental test results have also been taken and analyzed for the optimal controller identified through simulation.
Summary of electric vehicle dc motor-controller tests
Energy Technology Data Exchange (ETDEWEB)
McBrien, E F; Tryon, H B
1982-09-01
Available performance data for production motors are usually of marginal value to the electric vehicle designer. To provide at least a partial remedy to this situation, tests of typical dc propulsion motors and controllers were conducted as part of the DOE Electric Vehicle Program. The objectives of this program were to evaluate the differences in the performance of dc motors when operating with chopper-type controllers and when operating on direct current; and to gain an understanding of the interactions between the motor and the controller which cause these differences. Toward this end, motor-controller tests performed by the NASA Lewis Research Center provided some of the first published data that quantified motor efficiency variations for both ripple-free (straight dc) and chopper modes of operation. Test and analysis work at the University of Pittsburgh explored motor-controller relationships in greater depth. And to provide additional data, 3E Vehicles tested two small motors, both on a dynamometer and in a vehicle, and the Eaton Corporation tested larger motors, using sophisticated instrumentation and digital processing techniques. All the motors tested were direct-current types. Of the separately excited types, seven were series wound and two were shunt wound. One self-excited permanent magnet type was also tested. Four of the series wound motors used brush shifting to obtain good commutation. In almost all cases, controller limitations constrained the test envelope so that the full capability of the motors could not be explored.
Efficiency Characteristics of Low Power Hybrid Switched Reluctance Motor
DEFF Research Database (Denmark)
Jakobsen, Uffe; Ahn, Jin-Woo
2009-01-01
Switched reluctance motors (SRM) are usually considered inferior in terms of efficiency as compared to permanent magnet synchronous motors (PMSM) and brushless DC-motors (BLDC), but less costly. This article presents a test of a 70W hybrid switched reluctance motor (HSRM), that archieves a peak e...
Directory of Open Access Journals (Sweden)
Sukri M.F.
2016-01-01
Full Text Available The present study presents an experimental investigation on the effect of condenser air inlet temperature and dimensionless parameter of X on the performance of automobile air-conditioning (AAC system using integrated brushless direct current motor-rotary compressor and electronic expansion valve. The other components of AAC system are from original component of AAC system used for medium size passenger car. The experimental results showed that the increment of the condenser air inlet temperature and X caused an increase in condensing temperature, cooling capacity and compressor work, while decreasing the coefficient of performance (COP. Meanwhile, the evaporating temperature increase with the increment of condenser air inlet temperature, but decrease with decrement of X. In general, AAC system have to work at higher value of X in order to produce more cooling capacity, thereby increment in compressor work also occurs due to energy balance. However, at higher value of X, the COP of the system dropped due to dominant increase in compressor power, as opposed to a rise in cooling capacity. Due to this reason, the best operation of this compressor occurs at X = 4.96 for constant T5 (35ºC, or at T5 = 30ºC for constant X (4.96.
Photovoltaic-wind hybrid system for permanent magnet DC motor
Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.
2015-05-01
Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown
Parameters identification of a permanent magnet DC motor
Energy Technology Data Exchange (ETDEWEB)
Salah, M. [Univ. College of Applied Science, Gaza, Palestine (Israel); Abdelati, M. [Islamic Univ. of Gaza, Gaza, Palestine (Israel)
2010-03-09
Due to precise, wide, simple, and continuous control characteristics, direct current (DC) motors have been commonly employed in many industrial applications such as electric vehicles, steel rolling mills, electric cranes, and robotic manipulators. Because of their lower cost and ease of controller implementation, DC motors are preferred over alternating current (AC) motors. System identification of DC motors is of great importance in control problems. Accurate mathematical models and their parameters are necessary when designing controllers. This paper addressed driver circuits and parameters identification of a permanent magnet DC motor. An experimental measurement of armature voltage, armature current and rotor speed were performed using a data acquisition module in order to identify the parameters of the motor. DAQ toolbox and Simulink in MATLAB were used to obtain test signals and perform analysis based on the nonlinear least square method. The extracted motor parameters produced consistent simulation results with experimental data. It was concluded that the proposed approach is simple, fast and accurate. 16 refs., 4 tabs., 9 figs.
Investigation of a New Flux-Modulated Permanent Magnet Brushless Motor for EVs
Directory of Open Access Journals (Sweden)
Ying Fan
2014-01-01
Full Text Available This paper presents a flux-modulated direct drive (FMDD motor. The key is to integrate the magnetic gear with the PM motor while removing the gear inner-rotor. Hence, the proposed FMDD motor can achieve the low-speed high-torque output and high-speed compact design requirements as well as high-torque density with a simple structure. The output power equation is analytically derived. By using finite element analysis (FEA, the static characteristics of the proposed motor are obtained. Based on these characteristics, the system mathematical model can be established. Hence, the evaluation of system performances is conducted by computer simulation using the Matlab/Simulink. A prototype is designed and built for experimentation. Experimental results are given to verify the theoretical analysis and simulation.
Investigation of a new flux-modulated permanent magnet brushless motor for EVs.
Fan, Ying; Gu, Lingling; Luo, Yong; Han, Xuedong; Cheng, Ming
2014-01-01
This paper presents a flux-modulated direct drive (FMDD) motor. The key is to integrate the magnetic gear with the PM motor while removing the gear inner-rotor. Hence, the proposed FMDD motor can achieve the low-speed high-torque output and high-speed compact design requirements as well as high-torque density with a simple structure. The output power equation is analytically derived. By using finite element analysis (FEA), the static characteristics of the proposed motor are obtained. Based on these characteristics, the system mathematical model can be established. Hence, the evaluation of system performances is conducted by computer simulation using the Matlab/Simulink. A prototype is designed and built for experimentation. Experimental results are given to verify the theoretical analysis and simulation.
DC Home Appliances for DC Distribution System
Directory of Open Access Journals (Sweden)
MUHAMMAD KAMRAN
2017-10-01
Full Text Available This paper strengthens the idea of DC distribution system for DC microgrid consisting of a building of 50 apartments. Since the war of currents AC system has been dominant because of the paucity of research in the protection of the DC system. Now with the advance research in power electronics material and components, generation of electricity is inherently DC as by solar PV, fuel cell and thermoelectric generator that eliminates the rectification process. Transformers are replaced by the power electronics buck-boost converters. DC circuit breakers have solved the protection problems for both DC transmission and distribution system. In this paper 308V DC microgrid is proposed and home appliances (DC internal are modified to operate on 48V DC from DC distribution line. Instead of using universal and induction motors in rotary appliances, BLDC (Brushless DC motors are proposed that are highly efficient with minimum electro-mechanical and no commutation losses. Proposed DC system reduces the power conversion stages, hence diminishes the associated power losses and standby losses that boost the overall system efficiency. So in view of all this a conventional AC system can be replaced by a DC system that has many advantages by cost as well as by performance
Forward and Reverse Motoring of DC Hoist Motor on Container Crane (CC) Operation
Rukmini; Nadjamuddin Harun
2015-01-01
Container cranes (CC) become the highest electric energy consumption equipment in container terminal. Therefore it is important to study and analyze the hoist motor as the largest motor on container crane operation to look for opportunities in use energy efficiently. Lifting and lowering the container as the fixed operation of CC. Lifting the container as forward operating of hoist motor and lowering the container as reverse operating of hoist motor. The type of DC motor have used...
DC motors and servo-motors controlled by Raspberry Pi 2B
Directory of Open Access Journals (Sweden)
Šustek Michal
2017-01-01
Full Text Available The expanding capabilities of today’s microcontrollers and other devices lead to an increased utilization of these technologies in diverse fields. The automation and issue of remote control of moving objects belong to these fields. In this project, a microcontroller Raspberry Pi 2B was chosen for controlling DC motors and servo-motors. This paper provides basic insight into issue of controlling DC motors and servo-motors, connection between Raspberry and other components on breadboard and programming syntaxes for controlling motors in Python programming language.
Design of a ZVS PWM inverter for a brushless DC motor in an EMA application
Bell, J. Brett; Nelms, R. M.; Shepherd, Michael T.
1993-01-01
The Component Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently investigating the use of electromechanical actuators for use in space transportation applications such as Thrust Vector Control (TVC). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 Vdc. This paper will discuss the design and implementation of a zero-voltage-switched PWM (Pulse Width Modulation) inverter which operates from a 270 Vdc source at currents up to 100 A.
control of a dc motor using fuzzy logic control algorithm
African Journals Online (AJOL)
user
This study sought to establish the impact of a fuzzy logic controller (FLC) and a Proportional-Integral-Derivative (PID) controller in the control performance of an industrial type DC motor using MATLAB. The fuzzy logic controller was developed on the basis of Mamdani type fuzzy inference system (FIS). The centroid method ...
Design of dual DC motor control system based on DSP
Shi, Peicheng; Wang, Suo; Xu, Zengwei; Xiao, Ping
2017-08-01
Multi-motor control systems are widely used in actual production and life, such as lifting stages, robots, printing systems. This paper through serial communication between PC and DSP, dual DC motor control system consisting of PC as the host computer, DSP as the lower computer with synchronous PWM speed regulation, commutation and selection functions is designed. It sends digital control instructions with host computer serial debugger to lower computer, to instruct the motor to complete corresponding actions. The hardware and software design of the control system are given, and feasibility and validity of the control system are verified by experiments. The expected design goal is achieved.
Increasing Mud Pump Motor Reliability against Malfunctions of DC Motor Excitation System
Nikulin, O. V.; Shabanov, V. A.
2017-10-01
The most widely used drilling machinery, such as mud pumps, draw-works, and rotors, use direct-current (DC) motors with independent excitation as the electric drive. Drilling machinery drives operate in harsh ambient conditions, including those with the presence of moisture, dust and vibration, which increases the malfunction rate of both drilling equipment and their electric drives. One of the frequently encountered malfunctions are DC motor excitation coil faults, which disrupt the normal functioning of electric drives, often leading to shutdown of the drilling process. In a four-pole DC motor, the malfunction of one coil leads to lack of excitation current in just one coil pair, while the other pair remains functional. In this case, DC motors and drilling equipment can remain operational, which would allow for continuing the drilling process. This paper considers the possibility of operation of a DC motor on a drilling rig in those cases when one pair of excitation coils is non-functional, and describes the device for switching between the excitation coils and the auxiliary winding in a DC motor with independent excitation.
ANALYSIS OF THERMAL STATE OF TRACTION BRUSHLESS PERMANENT MAGNET MOTOR FOR MINE ELECTRIC LOCOMOTIVE
Directory of Open Access Journals (Sweden)
A. V. Matyuschenko
2016-12-01
Full Text Available Purpose. The study was conducted to analyze thermal state of the traction permanent magnet synchronous motor for mine electric battery locomotive when operating in continuous and short-time duty modes. These operating modes are selected for study, as they are typical for mine electric locomotives. Methodology. Thermal calculation was performed by means of FEM in three-dimensional formulation of problem using Jmag-Designer. Results. The modeling results of thermal state of the PMSM in continuous and short-time duty operation modes showed good agreement with experimental results. The results showed that the temperature of PM is higher than temperature of the stator winding in continuous operation mode. It was found that PM temperature might reach excessive values because of the high presence of eddy current losses in neodymium PM. Therefore, special attention in the design and testing of PMSM should be paid to the temperature of PM in various operation modes. Practical value. It was recommended to use high temperature permanent magnets in traction PMSM to avoid demagnetization of PM and performance degradation.
Directory of Open Access Journals (Sweden)
Jingxiong ZHANG
2014-01-01
Full Text Available In this paper, a transient simulation model of a variable speed doubly fed brushless motor (DFBM using back-to-back converter is described. Based on analysis of rotor flux oriented vector control theory of doubly fed induction motor, the control of the currents in DFBM that produce the magnetic flux and the torque is achieved by a digital controller, the speed is regulated by a PI controller which is tuned by a genetic algorithm. According to the state equation of DFBM and the control schemes, the system simulation module is established in MATLAB/ SIMULINK. An extensive simulation study is performed to examine the control characteristics of the machine-side converter under different operation conditions in variable-speed DFBM driver system.
Estimation of Nonlinear DC-Motor Models Using a Sensitivity Approach
DEFF Research Database (Denmark)
Knudsen, Morten; Jensen, J.G.
1995-01-01
A nonlinear model structure for a permanent magnet DC-motor, appropriate for simulation and controller design, is developed.......A nonlinear model structure for a permanent magnet DC-motor, appropriate for simulation and controller design, is developed....
Ozgenel, Mehmet Cihat; Bal, Gungor; Uygun, Durmus
2017-03-01
This study presents a precise speed control method for Brushless Direct Current (BLDC) Motors using an electronic tachogenerator (ETg) instead of an electro-mechanical tachogenerator. Most commonly used three-phase BLDC motors have three position sensors for rotor position data to provide commutation among stator windings. Aforementioned position sensors are usually Hall-effect sensors delivering binary-high and binary-low data as long as the motor rotates. These binary sets from three Hall-effect sensors can be used as an analogue rotor speed signal for closed loop applications. Each position sensor signal is apart from 120 electrical degrees. By using an electronic circuitry, a combination of position sensor signals is converted to the analogue signal providing an input to a PI speed controller. To implement this, a frequency to voltage converter has been used in this study. Then, the analogue speed signal has been evaluated as rotor speed data in comparison with the reference speed. So, an ETg system has been successfully achieved in place of an electro-mechanical tachogenerator for BLDC motor speed control. The proposed ETg has been tested under various speed conditions on an experimental setup. Employed tests and obtained results show that the proposed low-cost speed feedback sub-system can be effectively used in BLDC motor drive systems. Through the proved method and designed sub-system, a new motor controller chip with a speed feedback capability has been aimed.
Rapid Control Prototyping Plataform for Didactic Plant Motor DC
Directory of Open Access Journals (Sweden)
Cristian Bazán-Orobio
2013-06-01
Full Text Available In this paper a design, implementation and validation of a Rapid Control Prototype platform for a plant based on a DC motor is proposed. This low-cost prototype provides of an electronic card (with a motor DC and sensors manipulated by PC with free software tools using Linux, Scilab / Scicos and RTAI-Lab. This RCP System allows developing speed -position control trainings by using different types of PID industrial controllers with anti – wind up and bump less transfer schemes. We develop a speed control application structured in four steps: identification, controller design, simulation and real time control, where there are pedagogical advantages of a platform that not only allows simulation but also real-time control of a plant.
Perancangan HMI (Human Machine Interface Untuk Pengendalian Kecepatan Motor DC
Directory of Open Access Journals (Sweden)
Heri Haryanto
2016-03-01
Full Text Available HMI (Human Machine Interface adalah sistem yang menghubungkan antara manusia dan mesin. Sistem HMI berupa Graphic user interface (GUI pada suatu tampilan layar komputer yang akan dihadapi oleh operator mesin atau pengguna yang akan memonitoring dan mengendalikan kecepatan motor DC dengan metode PID secara real time. Penelitian dilakukan dengan merancang sebuah sistem HMI menggunakan software Labview 2009. Hasil pengujian sistem monitoring pengendalian motor DC pada fungsi tombol knop dan tombol on/off yang divisualisasikan sudah berperan sesuai dengan fungsinya dengan waktu sampling 70 ms. Kendali PID yang sesuai dengan karakteristik sistem yang telah dibuat adalah Kp =1 Ki =4 Kd =0.3 dengan time delay 0,49 detik, rise time sebesar 1,99 detik, settling time sebesar 2,24 detik, dan steady state error sebesar 1,76%
PMBLDC motor drive with power factor correction controller
DEFF Research Database (Denmark)
George, G.J.; Ramachandran, Rakesh; Arun, N.
2012-01-01
This paper presents a boost converter configuration, control scheme and design of single phase power factor controller for permanent magnet brushless DC motor (PMBLDCM) drive. PMBLDC motors are the latest choice of researchers, due to the high efficiency, silent operation, compact size, high...
Active Wheatstone Bridge — A solution of tight speed dc motor control
African Journals Online (AJOL)
Very tight control of the speed of a d.c. motor drive may be achieved by incorporating the machine within a closed loop system. The employed feedback signal is proportional to the motor speed for comparison against a reference quantity. For armature-controlled d.c. motors the difference or error signal provides appropriate ...
Directory of Open Access Journals (Sweden)
Chengde Tong
2017-09-01
Full Text Available In this paper, a novel sensorless control strategy based on the estimation of line back electro-motive force (BEMF is proposed. According to the phase relationship between the ideal commutation points of the brushless direct current motor (BLDCM and the zero-crossing points (ZCPs of the line BEMF, the calculation formula of line BEMF is simplified properly and the commutation rule for different positions of the rotor is presented. The estimation error of line BEMF caused by the freewheeling current of silent phase is analyzed, and the solution is given. With the phase shift of the low-pass filter considered, a compensation method using “60°-α” and “120°-α” is studied in this paper to eliminate the error. Finally, the simulation and experimental results show that the rotor-position-detection error is reduced effectively and the motor driven by the accurate commutation signal can work well at low and high speed.
Graphical User Interface Aided Online Fault Diagnosis of Electric Motor - DC motor case study
POSTALCIOGLU OZGEN, S.
2009-01-01
This paper contains graphical user interface (GUI) aided online fault diagnosis for DC motor. The aim of the research is to prevent system faults. Online fault diagnosis has been studied. Design of fault diagnosis has two main levels: Level 1 comprises a traditional control loop; Level 2 contains knowledge based fault diagnosis. Fault diagnosis technique contains feature extraction module, feature cluster module and fault decision module. Wavelet analysis has been used for the feature extract...
2014-05-01
create light, powerful and controllable motors through dc brushless technology. Unfortunately, some complications are created by the presence of high...have been developed to qualify random-wound induction motors for use with pulse-width-modulated drives to control motor speed and/or torque. This...Systems (Type I) Used in Rotating Electrical Machines Fed From Voltage Converters—Qualification and Quality Control Tests, International Standard
Bravin, E; Sosa, A
2014-01-01
This report summarizes the results of a series of tests performed on the prototype HIE-ISOLDE diagnostic box (HIE-DB) regarding the vibrations and drifts in the transverse position of the scanning blade while moving in and out of beam path in the HIE-ISOLDE short box prototype. To monitor the transverse position of the blade, a series of 0.1 mm diameter holes were drilled on it and their positions were tracked with an optical system. The linear motion actuator was acquired from UHV design (model LSM38-150-SS), and it was adapted to be driven by a brushless EC motor from MAXON. The speed of the scanning blade during the tests was 10 mm/s. The transverse movement of the slit in the direction perpendicular to the movement was lower than 40 m, and is dominated by the displacement of the contact point of the applied force on the lead-screw. An offset on the slit position was observed while changing the direction of movement of the blade, its amplitude being of the order of 30 m. The amplitudes of the displacements...
Implementation of Brushed DC Motor Control in LabVIEW FPGA
Directory of Open Access Journals (Sweden)
K. Lamár
2013-12-01
Full Text Available The paper introduces the fundamentals of motor control. It explains the basic equations and introduces the control diagram of the brushed DC motor. It introduces the four quadrant DC chopper circuit and the basic methods to operate it. After that, it explains the fundamentals of the current control of DC motors and its two basic methods: the pulse width modulation and the hysteresis current control. Finally it gives a short example of the practical implementation of the hysteresis current controller for the four quadrant DC chopper in LabVIEW FPGA.
Development of the Upgraded DC Brush Gear Motor for Spacebus Platforms
Berning, Robert H.; Viout, Olivier
2010-01-01
The obsolescence of materials and processes used in the manufacture of traditional DC brush gear motors has necessitated the development of an upgraded DC brush gear motor (UBGM). The current traditional DC brush gear motor (BGM) design was evaluated using Six-Sigma process to identify potential design and production process improvements. The development effort resulted in a qualified UBGM design which improved manufacturability and reduced production costs. Using Six-Sigma processes and incorporating lessons learned during the development process also improved motor performance for UBGM making it a more viable option for future use as a deployment mechanism in space flight applications.
Dovetail Rotor Construction For Permanent-Magnet Motors
Kintz, Lawrence J., Jr.; Puskas, William J.
1988-01-01
New way of mounting magnets in permanent-magnet, electronically commutated, brushless dc motors. Magnets wedge shaped, tapering toward center of rotor. Oppositely tapered pole pieces, electron-beam welded to rotor hub, retain magnets against centrifugal force generated by spinning rotor. To avoid excessively long electron-beam welds, pole pieces assembled in segments rather than single long bars.
Torque control of a separate excitation DC motor for a dynamometer
Derges, Jonathan R.
2010-01-01
Approved for public release; distribution is unlimited In this thesis, the theory behind a separate-winding excitation direct current (DC) motor and profile of the motor's torque versus rotor speed is studied. The torque versus rotor speed profile results are predictably linear at a given armature voltage. Output torque of a separate-winding excitation DC motor is proportional to the armature current. From this theory, a program was written in Simulink with Xilinx embedded software to enab...
Muniraj, Murali; Arulmozhiyal, Ramaswamy
2015-01-01
A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.
Energy Technology Data Exchange (ETDEWEB)
Edie, P C
1981-10-01
Both straight and chopped dc motor performance data for a General Electric 5BY436A1 motor with a General Electric EV-1 controller are presented in tabular and graphical formats. Effects of motor temperature and operating voltage are also shown. The maximum motor efficiency is approximately 85% at low operating temperatures in the straight dc mode. Chopper efficiency can be assumed to be 95% under all operating conditions. For equal speeds, the motor operated in the chopped mode develops slightly more torque and draws more current than it does in the straight dc mode.
Steady-state time-periodic finite element analysis of a brushless DC motor drive considering motion
Directory of Open Access Journals (Sweden)
Jagieła Mariusz
2015-09-01
Full Text Available This paper aims at providing a framework for comprehensive steady-state time-domain analysis of rotating machines considering motion. The steady-state waveforms of electromagnetic and circuit quantities are computed via iterative solution of the nonlinear field-circuit-and-motion problem with constraints of time periodicity. The cases with forced speed and forced load torque are considered. A comparison of execution times with a conventional time-stepping transient model is carried out for two different machines. The numerical stability of a time-periodic model with forced speed is shown to be worse than that of traditional transient time-stepping one, although the model converges within a reasonable number of iterations. This is not the case if forced load via equation of mechanical balance is accounted for. To ensure convergence of the iterative process the physical equation of motion is replaced by the fixed-point equation. In this way the model delivers time-periodic solutions regarding not only the electromagnetic quantities but also the rotational speed.
Motion Sensorless Control of BLDC PM Motor with Offline FEM Info Assisted State Observer
DEFF Research Database (Denmark)
Stirban, Alin; Boldea, Ion; Andreescu, Gheorghe-Daniel
2010-01-01
This paper describes a new offline FEM assisted position and speed observer, for brushless dc (BLDC) PM motor drive sensorless control, based on the line-to-line PM flux linkage estimation. The zero-crossing of the line-to-line PM flux linkage occurs right in the middle of two commutation points...
Muniraj, Murali; Arulmozhiyal, Ramaswamy
2015-01-01
A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system. PMID:26613102
Directory of Open Access Journals (Sweden)
Murali Muniraj
2015-01-01
Full Text Available A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.
AVR Microcontroller-based automated technique for analysis of DC motors
Kaur, P.; Chatterji, S.
2014-01-01
This paper provides essential information on the development of a 'dc motor test and analysis control card' using AVR series ATMega32 microcontroller. This card can be interfaced to PC and calculates parameters like motor losses, efficiency and plot characteristics for dc motors. Presently, there are different tests and methods available to evaluate motor parameters, but a single and universal user-friendly automated set-up has been discussed in this paper. It has been accomplished by designing a data acquisition and SCR bridge firing hardware based on AVR ATMega32 microcontroller. This hardware has the capability to drive the phase-controlled rectifiers and acquire real-time values of current, voltage, temperature and speed of motor. Various analyses feasible with the designed hardware are of immense importance for dc motor manufacturers and quality-sensitive users. Authors, through this paper aim to provide details of this AVR-based hardware which can be used for dc motor parameter analysis and also for motor control applications.
Development of a New Method for Assembling a Bipolar DC Motor as a Teaching Material
Matsumoto, Yuki; Sakaki, Kei; Sakaki, Mamoru
2017-05-01
A simple handmade motor is a commonly used teaching aid for explaining the theory of the DC motor in science classes around the world. Kits that can be used by children to craft a simple motor are commercially available, and videos of assembling these motors are easily found on the internet. Although the design of this motor is simple, it is unipolar, meaning that the rotor consists of a single dipole. Thus, the Lorentz force acts only on one side of the coil per revolution. This decreases the energy conversion efficiency and requires the learners to turn the rotor using their hands in order to initiate rotation.
Analysis of Engine Propeller Matching of DC Motor as a Main Propulsion
Directory of Open Access Journals (Sweden)
Eddy Setyo Koenhardono
2017-12-01
Full Text Available The development of ship always searches through the most benefits system for reducing costs of propulsion system without increase pollution. Diesel propulsion system or also known as conventional propulsion system is efficient but requires high operating costs and increase high level of marine pollution. Electrical propulsion system is using electric motors as the prime mover of the propeller. There are 2 types of electric motors that will be used for research of electric propulsion system, there are; DC motors and three-phases induction motor. As the use of DC motor as a prime mover for this electrical propulsion system, this study determines the characteristic between voltage terminal with torque and also field current with torque. It results that torque produced by the DC motor is in the same magnitude with the speed (RPM. The higher the speed have shaped the value of the torque. The input and terminal voltages adjusts all variables and results. In this study, different field voltage creates different pattern of motor envelope. Its manner to propeller curve occurs total different results. With field voltage of 50 V, the ranges of motor envelope immoveable in the point of 150% of present speed and 160%. While field voltage of 60 V serves larger ranges of motor envelope which possible to reach further than 50 V curve.
DC torque motor actuated anti-lock brake controller
Energy Technology Data Exchange (ETDEWEB)
Agarwal, P.D.; Kade, A.
1989-02-21
A wheel lock control system is described for limiting the brake pressure applied to the brake of a vehicle wheel traveling over a road surface, the system comprising: an actuator for controlling the brake pressure to the brake of the wheel, the actuator including a torque motor for generating a motor torque in response to motor current to control the applied brake pressure in accordance with the value of the motor torque, the motor torque having a value proportional to the value of the motor current; means for determining the tire torque tending to accelerate the wheel during the application of brake pressure; means for storing the value of motor current corresponding to the maximum determined value of tire torque; means for detecting an incipient wheel lockup condition; and means for establishing the motor current following a detected incipient wheel lockup condition at a value having a predetermined relationship to the stored value of motor current to control the brake pressure at a predetermined braking condition.
performance characteristics of an armature voltage controlled dc motor
African Journals Online (AJOL)
Dr Obe
types. To each of these two control arrangements is added an inner current controller loop. Using developed motor equations, the performance characteristics of a test motor are obtained by digital computer analysis. The results show that closed loop operation, with appropriate control gains, give improved speed regulation ...
Neuro-Fuzzy DC Motor Speed Control Using Particle Swarm Optimization
Directory of Open Access Journals (Sweden)
Boumediene ALLAOUA
2009-12-01
Full Text Available This paper presents an application of Adaptive Neuro-Fuzzy Inference System (ANFIS control for DC motor speed optimized with swarm collective intelligence. First, the controller is designed according to Fuzzy rules such that the systems are fundamentally robust. Secondly, an adaptive Neuro-Fuzzy controller of the DC motor speed is then designed and simulated; the ANFIS has the advantage of expert knowledge of the Fuzzy inference system and the learning capability of neural networks. Finally, the ANFIS is optimized by Swarm Intelligence. Digital simulation results demonstrate that the deigned ANFIS-Swarm speed controller realize a good dynamic behavior of the DC motor, a perfect speed tracking with no overshoot, give better performance and high robustness than those obtained by the ANFIS alone.
Research of Compound Control for DC Motor System Based on Global Sliding Mode Disturbance Observer
Directory of Open Access Journals (Sweden)
He Zhang
2014-01-01
Full Text Available Aiming at the problems of modeling errors, parameter variations, and load moment disturbances in DC motor control system, one global sliding mode disturbance observer (GSMDO is proposed based on the global sliding mode (GSM control theory. The output of GSMDO is used as the disturbance compensation in control system, which can improve the robust performance of DC motor control system. Based on the designed GSMDO in inner loop, one compound controller, composed of a feedback controller and a feedforward controller, is proposed in order to realize the position tracking of DC motor system. The gains of feedback controller are obtained by means of linear quadratic regulator (LQR optimal control theory. Simulation results present that the proposed control scheme possesses better tracking properties and stronger robustness against modeling errors, parameter variations, and friction moment disturbances. Moreover, its structure is simple; therefore it is easy to be implemented in engineering.
A Motor friendly Quasi-resonant DC-link Inverter
Kedarisetti, Jayalakshmi
2012-01-01
Feeding electrical motors by long cables using PWM inverters has become lately problematic due to developments in semiconductor technology. Most used in converters, insulated gate bipolar transistors IGBTs switch voltages with high gradients, about 10kV/μs. On one hand, faster switching transients lead to the reduction of switching losses and therefore, permissible higher switching frequencies, reduction of harmonics and audible noise at motors. On the other hand, bigger voltage gradients com...
Static and dynamic wind turbine simulator using a converter controlled dc motor
Energy Technology Data Exchange (ETDEWEB)
Monfared, Mohammad; Rastegar, Hasan [Department of Electrical Engineering, Amirkabir University of Technology, Tehran (Iran); Madadi Kojabadi, Hossein [Department of Electrical Engineering, Sahand University of Technology, Tabriz 51335-1996 (Iran)
2008-05-15
This paper describes a new wind turbine simulator for dynamic conditions. The authors have developed an experimental platform to simulate the static and dynamic characteristics of real wind energy conversion system. This system consists of a 3 kW dc motor, which drives a synchronous generator. The converter is a 3 kW single-phase half-controlled converter. MATLAB/Simulink real time control software interfaced to I/O board and a converter controlled dc motor are used instead of a real wind turbine. A MATLAB/Simulink model is developed that obtains wind profiles and, by applying real wind turbine characteristics in dynamics and rotational speed of dc motor, calculates the command shaft torque of a real wind turbine. Based on the comparison between calculated torques with command one, the shaft torque of dc motor is regulated accordingly by controlling armature current demand of a single-phase half-controlled ac-dc converter. Simulation and experimental results confirm the effectiveness of proposed wind turbine simulator in emulating and therefore evaluating various turbines under a wide variety of wind conditions. (author)
Incorporation of fractional-order dynamics into an existing PI/PID DC motor control loop.
Tepljakov, Aleksei; Gonzalez, Emmanuel A; Petlenkov, Eduard; Belikov, Juri; Monje, Concepción A; Petráš, Ivo
2016-01-01
The problem of changing the dynamics of an existing DC motor control system without the need of making internal changes is considered in the paper. In particular, this paper presents a method for incorporating fractional-order dynamics in an existing DC motor control system with internal PI or PID controller, through the addition of an external controller into the system and by tapping its original input and output signals. Experimental results based on the control of a real test plant from MATLAB/Simulink environment are presented, indicating the validity of the proposed approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Graphical User Interface Aided Online Fault Diagnosis of Electric Motor - DC motor case study
Directory of Open Access Journals (Sweden)
POSTALCIOGLU OZGEN, S.
2009-10-01
Full Text Available This paper contains graphical user interface (GUI aided online fault diagnosis for DC motor. The aim of the research is to prevent system faults. Online fault diagnosis has been studied. Design of fault diagnosis has two main levels: Level 1 comprises a traditional control loop; Level 2 contains knowledge based fault diagnosis. Fault diagnosis technique contains feature extraction module, feature cluster module and fault decision module. Wavelet analysis has been used for the feature extraction module. For the feature cluster module, fuzzy cluster has been applied. Faults effects are examined on the system using statistical analysis. In this study Fault Diagnosis technique obtains fault detection, identification and halting the system. In the meantime graphical user interface (GUI is opened when fault is detected. GUI shows the measurement value, fault time and fault type. This property gives some information about the system to the personnel. As seen from the simulation results, faults can be detected and identified as soon as fault appears. In summary, if the system has a fault diagnosis structure, system dangerous situations can be avoided.
Predictive diagnostic system for DC motor drives: Forest Products Project fact sheet
Energy Technology Data Exchange (ETDEWEB)
NREL
2000-02-01
This report is a fact sheet on new sensor and control technology written for the NICE3 Program. ENVATEC has addressed a major problem for paper producers with its ENVAIR 4000, a sensor and control technology that optimizes DC motor drive operations by simultaneously monitoring and analyzing eight inputs on DC motors. Attributes, such as motor air temperature, speed, vibration, relative humidity, presence of corrosive gases, airflow, and amperage, are measured for irregularities and then a signal is transmitted across the customer's facility on any network interface. This eliminates unscheduled motor shutdowns, thereby cutting energy costs tied to restarting. Based on successful prototype testing, the ENVAIR 4000 promises a 70% reduction in repair and replacement costs, an 80% reduction in unscheduled downtime and pulp waste, and a 43% drop in CO{sub 2} emissions.
Adaptive fuzzy control of DC motors using state and output feedback
Energy Technology Data Exchange (ETDEWEB)
Rigatos, Gerasimos G. [Unit of Industrial Automation, Industrial Systems Institute, Stadiou str., 26504 Rion Patras (Greece)
2009-11-15
Conventional PID of state feedback controllers for DC motors have poor performance when changes of the motor or load dynamics take place. To handle this shortcoming adaptive fuzzy control of DC motors is proposed. Neuro-fuzzy networks are used to approximate the unknown motor dynamics. The information needed to generate the control signal comes from feedback of the full state vector or from feedback of only the system's output. In the latter case a state observer is used to estimate the parameters of the state vector. The stability of the closed-loop system is proved with the use of Lyapunov analysis. The performance of the proposed control approach is evaluated through simulation tests. (author)
Dual Brushless Resolver Rate Sensor
Howard, David E. (Inventor)
1997-01-01
A resolver rate sensor is disclosed in which dual brushless resolvers are mechanically coupled to the same output shaft. Diverse inputs are provided to each resolver by providing the first resolver with a DC input and the second resolver with an AC sinusoidal input. A trigonometric identity in which the sum of the squares of the sin and cosine components equal one is used to advantage in providing a sensor of increased accuracy. The first resolver may have a fixed or variable DC input to permit dynamic adjustment of resolver sensitivity thus permitting a wide range of coverage. In one embodiment of the invention the outputs of the first resolver are directly inputted into two separate multipliers and the outputs of the second resolver are inputted into the two separate multipliers, after being demodulated in a pair of demodulator circuits. The multiplied signals are then added in an adder circuit to provide a directional sensitive output. In another embodiment the outputs from the first resolver is modulated in separate modulator circuits and the output from the modulator circuits are used to excite the second resolver. The outputs from the second resolver are demodulated in separate demodulator circuit and added in an adder circuit to provide a direction sensitive rate output.
A Novel Method for Sensorless Speed Detection of Brushed DC Motors
Directory of Open Access Journals (Sweden)
Ernesto Vazquez-Sanchez
2016-12-01
Full Text Available Many motor applications require accurate speed measurement. For brushed dc motors, speed can be measured with conventional observers or sensorless observers. Sensorless observers have the advantage of not requiring any external devices to be attached to the motor. Instead, voltage and/or current are measured and used to estimate the speed. The sensorless observers are usually divided into two groups: those based on the dynamic model, and those based on the ripple component. This paper proposes a method that measures the current of brushed dc motors and analyses the position of its spectral components. From these spectral components, the method estimates the motor speed. Three tests, performed each with the speeds ranging from 2000 to 3000 rpm either at constant-speed, at slowly changing speeds, or at rapidly changing speeds, showed that the average error was below 1 rpm and that the deviation error was below 1.5 rpm. The proposed method: (i is a novel method that is not based on either the dynamic model or on the ripple component; (ii requires only the measurement of the current for the speed estimation; (iii can be used for brushed dc (direct current motors with a large number of coils; and (iv achieves a low error in the speed estimation.
Controlling the Dc-link Midpoint Potential in a Six-phase Motor-drive
DEFF Research Database (Denmark)
Bendixen, Flemming Buus; Blaabjerg, Frede; Rasmussen, Peter Omand
2004-01-01
Traditionally electrical motors have three phases, but multiphase motors have shown to improve motor performance and efficiency. This paper concentrates about the control algorithm for a six-phase induction motor with third harmonic current injection. The problem is that typically a seventh...... inverter branch and filter inductances is needed for stabilizing the midpoint potential of the series connected dc-capacitor link. A new control strategy that pre-calculates the allowed voltage ripple and controls the motor voltage accordingly (using two standard three phase inverter modules) is suggested....... With this new control strategy the seventh branch and an inductance can be saved. It also opens the possibility to use two standard three-phase inverters to supply the six-phase motor. An experimental setup is build and the theory is verified in the test case. The proposed control strategy works satisfactory...
Control of a dc motor using fuzzy logic control algorithm | Usoro ...
African Journals Online (AJOL)
This study sought to establish the impact of a fuzzy logic controller (FLC) and a Proportional-Integral-Derivative (PID) controller in the control performance of an industrial type DC motor using MATLAB. The fuzzy logic controller was developed on the basis of Mamdani type fuzzy inference system (FIS). The centroid method ...
Low-Cost Undergraduate Control Systems Experiments Using Microcontroller-Based Control of a DC Motor
Gunasekaran, M.; Potluri, R.
2012-01-01
This paper presents low-cost experiments for a control systems laboratory module that is worth one and a third credits. The experiments are organized around the microcontroller-based control of a permanent magnet dc motor. The experimental setups were built in-house. Except for the operating system, the software used is primarily freeware or free…
Active Wheatstone Bridge — A solution of tight speed dc motor control
African Journals Online (AJOL)
This paper describes a technical application in which the armature of a d.c. motor is connected as one of the arms of a Wheatstone bridge, now becoming an active Wheatstone bridge. By analyzing the operation of the active Wheatstone bridge, its transfer function is derived. The active Wheatstone bridge is incorporated in ...
Implementation of FPGA based PID Controller for DC Motor Speed Control System
Directory of Open Access Journals (Sweden)
Savita SONOLI
2010-03-01
Full Text Available In this paper, the implementation of software module using ‘VHDL’ for Xilinx FPGA (XC3S400 based PID controller for DC motor speed control system is presented. The tools used for building and testing the software modules are Xilinx ISE 9.2i and ModelSim XE III 6.3c. Before verifying the design on FPGA the complete design is simulated using Modelsim Simulation tool. A test bench is written where the set speed can be changed for the motor. It is observed that the motor speed gradually changes to the set speed and locks to the set speed.
Analysis and Stabilization of Chaos in Permanent Magnet DC Motor Driver
Tahir, Fadhil Rahma; Abdul-Hassan, Khalid M.; Abdullah, Mohammed Abbas; Pham, Viet-Thanh; Hoang, Thang Manh; Wang, Xiong
In this paper, the nonlinear dynamics of permanent magnet (PM) DC motor drive with proportional (P) controller have been investigated. The drive system shows different dynamical behaviors; periodic, quasi-periodic, and chaotic behaviors, and those are characterized by using bifurcation diagram, phase portrait, and time series. The stability analysis of period-1 behavior is studied by using Filippov’s method, the analytic results show good agreement with simulation ones. Then, the stabilization of chaos to fixed point is carried out by using the sliding mode control (SMC). In addition, experimentally the nonlinear dynamics and the proposed stabilization method to PM DC motor drive system have been achieved by using a microcontroller. For the first time, it is noted that when the system is in chaotic dynamics, the vibration of the motor is increased approximately 400% compared with the system in periodic dynamical behavior.
Two-phase induction motor drives
DEFF Research Database (Denmark)
Blaabjerg, Frede; Lungeanu, Florin; Skaug, Kenneth
2004-01-01
There is a continuous debate today concerning the ?motor of the future? for low-power applications requiring less than 1-2 kW. The specialists are focusing on superior motors [1] like brushless-dc, permanent-magnet synchronous, or electronically commutated types, because they show improvements...... in efficiency, reliability, torque-per-volume/mass ratio, maintenance, and service life. Despite this effort, the industry seems to be responding with manifest rigidity in changing standard induction motor solutions when considering the installed volume into the field, the investment in manufacturing base...
Application brushless machines with combine excitation for a hybrid car and an electric car
Gandzha S.A.; Kiessh I.E.
2015-01-01
This article shows advantages of application the brushless machines with combined excitation (excitation from permanent magnets and excitation winding) for the hybrid car and the electric car. This type of electric machine is compared with a typical brushless motor and an induction motor. The main advantage is the decrease of the dimensions of electric machine and the reduction of the price for an electronic control system. It is shown the design and the principle of operation of the electric...
16,000-rpm Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation
Energy Technology Data Exchange (ETDEWEB)
Hsu, J.S.; Burress, T.A.; Lee, S.T.; Wiles, R.H.; Coomer, C.L.; McKeever, J.W.; Adams, D.J.
2007-10-31
The reluctance interior permanent magnet (RIPM) motor is currently used by many leading auto manufacturers for hybrid vehicles. The power density for this type of motor is high compared with that of induction motors and switched reluctance motors. The primary drawback of the RIPM motor is the permanent magnet (PM) because during high-speed operation, the fixed PM produces a huge back electromotive force (emf) that must be reduced before the current will pass through the stator windings. This reduction in back-emf is accomplished with a significant direct-axis (d-axis) demagnetization current, which opposes the PM's flux to reduce the flux seen by the stator wires. This may lower the power factor and efficiency of the motor and raise the requirement on the alternate current (ac) power supply; consequently, bigger inverter switching components, thicker motor winding conductors, and heavier cables are required. The direct current (dc) link capacitor is also affected when it must accommodate heavier harmonic currents. It is commonly agreed that, for synchronous machines, the power factor can be optimized by varying the field excitation to minimize the current. The field produced by the PM is fixed and cannot be adjusted. What can be adjusted is reactive current to the d-axis of the stator winding, which consumes reactive power but does not always help to improve the power factor. The objective of this project is to avoid the primary drawbacks of the RIPM motor by introducing brushless field excitation (BFE). This offers both high torque per ampere (A) per core length at low speed by using flux, which is enhanced by increasing current to a fixed excitation coil, and flux, which is weakened at high speed by reducing current to the excitation coil. If field weakening is used, the dc/dc boost converter used in a conventional RIPM motor may be eliminated to reduce system costs. However, BFE supports a drive system with a dc/dc boost converter, because it can further
Identification of the parameters of a DC motor state space model
Directory of Open Access Journals (Sweden)
Momir Ranislav Stanković
2013-06-01
Full Text Available A method for the identification of the DC state space model parameters based on the minimization of the error function using the least squares method is described in this paper. The algorithm is practically applied in the laboratory environment on an industrial DC motor. The verification of the results was performed by comparing the characteristic signals of real and modeled systems. The results show that the quality of the identification is satisfactory. Introduction The identification of system parameters is the first step in the analysis and synthesis of control systems. Identification Quality strongly impacts on the results of all other computations. In the theory of automatic control, many methods of identification are developed. Which method will be applied depends on the characteristics of the system. In this paper, we described an identification algorithm based on the least squares method. A practical test of this algorithm of estimation is done on a DC motor. parameter estimation with the least squares method A DC motor is a second-order system described with two differential equations: one which describes electrical and one which describes mechanical parts of the motor. The idea is to analyse the motor as two first-order systems. The main signals are responses of two first order sub-systems on appropriate inputs. Using a discrete state-space model of the motor and applying the least square method on the recorded signals, we get straightforward equations for the computation of all the necessary parameters: Rr, Lr , Je , Fe , Kme and Kem (Eykhoff, Wilsoons, 1974. Experimental results The practical application was realized in the laboratory where a DC middle-power motor was used as a control object. It is coupled with a DC generator which serves as a load. Generation of the input signals and measure of the responses were performed with the acquisition system based on the appropriate acquisition card and the MATLAB
Peng, Jinzhu; Dubay, Rickey
2011-10-01
In this paper, an adaptive control approach based on the neural networks is presented to control a DC motor system with dead-zone characteristics (DZC), where two neural networks are proposed to formulate the traditional identification and control approaches. First, a Wiener-type neural network (WNN) is proposed to identify the motor DZC, which formulates the Wiener model with a linear dynamic block in cascade with a nonlinear static gain. Second, a feedforward neural network is proposed to formulate the traditional PID controller, termed as PID-type neural network (PIDNN), which is then used to control and compensate for the DZC. In this way, the DC motor system with DZC is identified by the WNN identifier, which provides model information to the PIDNN controller in order to make it adaptive. Back-propagation algorithms are used to train both neural networks. Also, stability and convergence analysis are conducted using the Lyapunov theorem. Finally, experiments on the DC motor system demonstrated accurate identification and good compensation for dead-zone with improved control performance over the conventional PID control. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Brushed permanent magnet DC MLC motor operation in an external magnetic field.
Yun, J; St Aubin, J; Rathee, S; Fallone, B G
2010-05-01
Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450 +/- 10 G. The carriage motor tolerated up to 2000 +/- 10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600 +/- 10 G. The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance levels determined, some form of
PID Fuzzy Logic Controller System for DC Motor Speed Control
Directory of Open Access Journals (Sweden)
H Samsul Bachri
2010-10-01
Full Text Available A good controller system must have resilience to disturbance and must be able to response quickly and accurately. Problem usually appears when PID controller system was built sensitively hence the system's respon to the disturbance will yield big overshot/undershot then the possibility of oscillation to be happened is excelsior. When the controller system was built insensitively, the overshot/undershot will be small but the recovery time will be longer. Hybrid controller system could overcome those problems by combining PID control system with fuzzy logic. The main control of this system is PID controller while the fuzzy logic acts to reduce an overshot/undershot and a recovery time. The fuzzy logic controller is designed with two input error and delta error and one output of the motor speed. The output of fuzzy logic controller should be only half of the PID controller for limiting entirely fuzzy output. This hybrid system design has a better respon time controller system than PID controller without fuzzy logic.
A vector modulated three-phase four-quadrant rectifier - Application to a dc motor drive
Energy Technology Data Exchange (ETDEWEB)
Jussila, Matti; Salo, Mika; Kaehkoenen, Lauri; Tuusa, Heikki
2004-07-01
This paper introduces a theory for a space vector modulation of a three-phase four-quadrant PWM rectifier (FQR). The presented vector modulation method is simple to realize with a microcontroller and it replaces the conventional modulation methods based on the analog technology. The FQR may be used to supply directly a dc load, e.g. a dc machine. The vector modulated FQR is tested in simulations supplying a 4.5 kW dc motor. The simulations show the benefits of the vector modulated FQR against thyristor converters: the supply currents are sinusoidal and the displacement power factor of the supply can be controlled. Furthermore the load current is smooth. (author)
Demonstrative fractional order - PID controller based DC motor drive on digital platform.
Khubalkar, Swapnil W; Junghare, Anjali S; Aware, Mohan V; Chopade, Amit S; Das, Shantanu
2017-09-21
In industrial drives applications, fractional order controllers can exhibit phenomenal impact due to realization through digital implementation. Digital fractional order controllers have created wide scope as it possess the inherent advantages like robustness against the plant parameter variation. This paper provides brief design procedure of fractional order proportional-integral-derivative (FO-PID) controller through the indirect approach of approximation using constant phase technique. The new modified dynamic particle swarm optimization (IdPSO) technique is proposed to find controller parameters. The FO-PID controller is implemented using floating point digital signal processor. The building blocks are designed and assembled with all peripheral components for the 1.5kW industrial DC motor drive. The robust operation for parametric variation is ascertained by testing the controller with two separately excited DC motors with the same rating but different parameters. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Allaoua, Boumediene; Laoufi, Abdellah; Gasbaoui, Brahim; Abdelfatah NASRI; Abdessalam ABDERRAHMANI
2008-01-01
In this paper, an intelligent controller of the DC (Direct current) Motor drive is designed using fuzzy logic-genetic algorithms optimization. First, a controller is designed according to fuzzy rules such that the systems are fundamentally robust. To obtain the globally optimal values, parameters of the fuzzy controller are improved by genetic algorithms optimization model. Computer MATLAB work space demonstrate that the fuzzy controller associated to the genetic algorithms approach became ve...
speed control of dc motor on load using fuzzy logic controller
African Journals Online (AJOL)
HP
This paper presents the development of a fuzzy logic controller for the driver DC motor in the lube oil system of the H25. Hitachi gas turbine generator. The turbine generator is required to run at an operating pressure of 1.5bar with the low and the high pressure trip points being 0.78 bar and 1.9 bar respectively. However ...
Adaptive Neuro-Fuzzy Controller Experimental Design for DC Motor Connected to Unbalanced Load
Reza Nejati; Rahmat Hooshamnd
2007-01-01
In two recent decades, fuzzy controllers have been used in controlling different systems successfully. In this article, a new method is given for controlling of permanent magnetic DC motor connected to unbalanced load. Imbalance of load leads to machine vibrations, fluctuation of power, making exhaustion in machine shaft, and equipment depreciation. In this article neuro-fuzzy controllers are used for controlling unbalanced load. Because of non-linear nature of load and machine, machine fluct...
speed control of dc motor on load using fuzzy logic controller
African Journals Online (AJOL)
This paper presents the development of a fuzzy logic controller for the driver DC motor in the lube oil system of the H25 Hitachi gas turbine generator. The turbine generator is required to run at an operating pressure of 1.5bar with the low and the high pressure trip points being 0.78 bar and 1.9 bar respectively. However, the ...
Brushless Low-Speed dc Tachometer
Handlykken, M. B.
1984-01-01
Proposed tachometer produces voltages proportional to shaft angular velocity and (by differentiation) acceleration. Coil moving in homopolar field generates emf proportional to shaft angular velocity.
The Impact of Grid Unbalances on the Reliability of DC-link Capacitors in a Motor Drive
DEFF Research Database (Denmark)
Wang, Huai; Davari, Pooya; Kumar, Dinesh
2017-01-01
and ripple currents are presented. The relationship between the DC-link capacitor lifetime and the level of unbalances and loads are discussed based on a 7.5 kW motor drive system. The results serve as a guideline to size the DC-link capacitors to be robust enough at the presence of grid unbalance conditions.......DC-link capacitor is one of the reliability-critical components in motor drive applications, which contributes to a considerable cost, size and failure. Its reliability performance depends on both inherent physical strength and external loading. The grid unbalances could alter the electro......-thermal stresses of key components in a motor drive. Therefore, this digest investigates the impact of grid voltage amplitude and phase unbalances on the lifetime of DC-link capacitors used in a standard three-phase motor drive. The theoretical stress models and experimental measurements of the capacitor voltages...
A Modified High-Efficient Step-Up Sepic for DC Motor Drives
Directory of Open Access Journals (Sweden)
P. Dhanasekaran
2013-12-01
Full Text Available In this paper, Single-Ended Primary Inductor Converter (SEPIC fed DC motor is proposed. Soft-switching technique such as Zero-Voltage-Switching (ZVS and Zero-Current-Switching (ZCS operation plays a vital role in high voltage applications. Zero-Current-Switching (ZCS operation achieved due to resonance between the resonant inductor and the capacitor by using output diode and its reverse-recovery loss is subsequently reduced. Zero-Voltage-Switching (ZVS operation is achieved by using coupled inductor and auxiliary inductor. The model has been simulated through MATLAB/SIMULINK using Diode Bridge, SEPIC topology and closed loop DC motor load and it is modeled analytically. The proposed system is modeled with input side Diode Bridge Rectifier and SEPIC Topology with Proportional Integral (PI controller. The soft switching scheme for the proposed topology is developed with closed loop motor load. The motor voltage is achieved twice the rated voltage. The results are generated in MATLAB/SIMULINK and are shown.
APPLICATION FEATURES OF FUZZY CONTROLLERS ON EXAMPLE OF DC MOTOR SPEED CONTROL
Directory of Open Access Journals (Sweden)
G. L. Demidova
2016-09-01
Full Text Available A prerequisite for the use of intelligent control methods, including algorithms of fuzzy logic, is increasing complexity in all industries, especially when parameters of technical systems while in operation vary in wide range. The paper provides comparative analysis of the basic types of common fuzzy direct action controllers on the example of speed control system in the DC motor drive. Design features of these types of fuzzy controllers are shown. Their comparison with traditional PI controller is carried out through the use of simulation, including the conditions of uncertainty expressed in changing of equivalent moment of inertia of the motor shaft. As a result, the conclusion about the feasibility of fuzzy PID-type controller application is made. The features of fuzzy controllers outlined in the paper can be summarized to more complex motor drive systems and to other non-linear systems that require the maintenance of any parameter within a given range.
The Impact of Grid Unbalances on the Reliability of DC-link Capacitors in a Motor Drive
DEFF Research Database (Denmark)
Wang, Huai; Davari, Pooya; Kumar, Dinesh
2017-01-01
DC-link capacitor is one of the reliability-critical components in motor drive applications, which contributes to a considerable cost, size and failure. Its reliability performance depends on both inherent physical strength and external loading. The grid unbalances could alter the electro...... and ripple currents are presented. The relationship between the DC-link capacitor lifetime and the level of unbalances and loads are discussed based on a 7.5 kW motor drive system. The results serve as a guideline to size the DC-link capacitors to be robust enough at the presence of grid unbalance conditions....
Energy Technology Data Exchange (ETDEWEB)
Biechl, H. [Werner-von-Siemens-Labor fuer Elektrische Antriebe und Mechatronik, Hochschule Kempten (Germany)
2008-07-15
This first contribution on d.c. motors starts by describing a very simple motor to illustrate its functional principle. The commutator, the starting and idle speed conditions are described. Some equations and characteristics are presented to illustrate the operating characteristics. (orig.)
Efficiency consideration of DC link soft-switching inverters for motor drive applications
Energy Technology Data Exchange (ETDEWEB)
Lai, J.S.; Young, R.W.; McKeever, J.W.
1994-12-31
This paper critically evaluates efficiency of soft switching inverters including an actively clamped resonant dc link inverter and a clamped-mode resonant pole inverter. An analytical approach to evaluating efficiency of the clamped-mode soft switching inverter has been developed. The evaluation results are compared with that of the standard pulse-width-modulation (PWM) inverter. A 50-kW induction motor is used as the variable load, and the inverter efficiency is evaluated under different speed and torque conditions. The clamped-mode soft-switching inverter, although eliminating the switching loss, shows poor efficiency over the entire load range. Under low load conditions, the efficiency profile is even worse. The actively clamped resonant dc link inverter shows highest efficiency over the entire speed and torque range. However, its energy saving over the standard PWM inverter is marginal under full load or high speed conditions.
Efficiency consideration of DC link soft-switching inverters for motor drive applications
Lai, J. S.; Young, R. W.; McKeever, J. W.
?his paper critically evaluates efficiency of soft switching inverters including an actively clamped resonant DC link inverter and a clamped-mode resonant pole inverter. An analytical approach to evaluating efficiency of the clamped-mode soft switching inverter has been developed. The evaluation results are compared with that of the standard pulse-width-modulation (PWM) inverter. A 50-kW induction motor is used as the variable load, and the inverter efficiency is evaluated under different speed and torque conditions. The clamped-mode soft-switching inverter, although eliminating the switching loss, shows poor efficiency over the entire load range. Under low load conditions, the efficiency profile is even worse. The actively clamped resonant DC link inverter shows highest efficiency over the entire speed and torque range. However, its energy saving over the standard PWM inverter is marginal under full load or high speed conditions.
Directory of Open Access Journals (Sweden)
Indra Ranu Kusuma
2017-03-01
Full Text Available Electric propulsion is the ship system using propulsion motor to replace performance of main engine. The application of diesel engine as propulsion system have some problems and weaknesses such as diesel engine unability to operate when submersible vessel is operating under sea. To overcome that problems in submersible vessel, alternative solution of ship propulsion is required. DC Motor can be used as this alternative solution. Submersible vessel use electric propulsion system with DC Motor because DC Motor has advantages of easy rotation setting and does not cause noise when submersible vessel is diving. This bachelor thesis will study the application of DC Motor as an electric propulsion system on submersible vessel with length 59,57 m in series and parallel circuit by simulation using MATLAB software. The simulation data obtained are rotation and torque of DC Motor. From these simulation, it can be concluded that parallel circuit rotation is greater than series circuit rotation. It caused the greater speed and lower power in parallel circuit.
One hospital's clinical evaluation of brushless scrubbing.
Berman, Mara
2004-02-01
BRUSHLESS SCRUBBING rapidly is becoming an accepted method for surgical hand scrubbing. AN EVALUATION was undertaken at an acute care hospital in the southeastern United States to examine brushless scrubbing before laminectomy, craniotomy, and colectomy procedures. PATIENTS DID NOT SHOW an increase in postoperative surgical site infections when the brushless scrubbing product was used. SATISFACTION AND COMPLIANCE among users of the product was positive.
DC Motor Drive for Small Autonomous Robots with Educational and Research Purpose
Krklješ, Damir; Babković, Kalman; Nagy, László; Borovac, Branislav; Nikolić, Milan
Many student robot competitions have been established during the last decade. One of them, and the most popular in Europe, is the European competition EUROBOT. The basic aim of this competition is to promote the robotics among young people, mostly students and high school pupils. The additional outcome of the competition is the development of faculty curriculums that are based on this competition. Such curriculum has been developed at the Faculty of Technical Science in Novi Sad. The curriculum duration is two semesters. During the first semester the theoretical basis is presented to the students. During the second semester the students, divided into teams of three to five students, develop the robots which will take part in the incoming EUROBOT competition. Since the time for the robot development is short, the basic electronic kit is provided for the students. The basic parts of the kit are two DC motor drives dedicated to the robot locomotion. The drives will also be used in the research concerning the multi segment robot foot. This paper presents the DC motor drive and its features. The experimental results concerning speed and position regulations and also the current limiting is presented too.
Jimbo Tacuri, Jaime Eduardo
2015-01-01
El documento consiste en la caracterización de un motor eléctrico BLDC, mostrando la secuencia lógica de activación de las bobinas, así como sus curvas características de funcionamiento a determinadas rpm, el ancho de pulso de sensores hall y de los Gate de activación de los transistores Mosfet para llegar a determinar el algoritmo de control trapezoidal. The document consists of the characterization of a BLDC electric motor, showing the logic sequence of activation of the coils and their ...
Youn-Sung Kim; Jin-Ho Jo; Mi-Sung Kim; Jae-Kun Lee
2017-01-01
Accelerated life cycle test is applied to various products or components in order to reduce the time of life cycle test in industry. It must be considered for many test conditions according to the product characteristics for the test and the selection of acceleration parameter is especially very important. We have carried out the general life cycle test and the accelerated life cycle test by applying the acceleration factor (AF) considering the characteristics of brushless DC (BLDC) motor for...
DEFF Research Database (Denmark)
Soliman, Hammam Abdelaal Hammam; Davari, Pooya; Wang, Huai
2017-01-01
to industry. In this digest, a condition monitoring methodology that estimates the capacitance value of the dc-link capacitor in a three phase Front-End diode bridge motor drive is proposed. The proposed software methodology is based on Artificial Neural Network (ANN) algorithm. The harmonics of the dc......-link voltage are used as training data to the Artificial Neural Network. Fast Fourier Transform (FFT) of the dc-link voltage is analysed in order to study the impact of capacitance variation on the harmonics order. Laboratory experiments are conducted to validate the proposed methodology and the error analysis...
Highlighting the harmonic regime generated by electric locomotives equipped with DC motors
Baciu, I.; Cunţan, C. D.
2018-01-01
The paper presents the results of measurements made using the C.A. 8334 power quality analyzer on an electric locomotive equipped with DC motors. We carried out determinations of the current-voltage regime using a locomotive motor. The harmonic regime of the other motors being identical to the analysed one, we could easily deduce the effects caused by the entire locomotive. The data measured with the analyzer were firstly transferred into a computer system using the Qualistar software, followed by data processing in Excel, enabling therefore a graphical representation of the characteristic parameters of power quality. Based on the acquired data, we determined the power factor, as well as the active, reactive and apparent power. The measurements revealed high values of the current harmonics, fact that required some measures to be taken for reducing the values of these harmonics. For this, we ran a simulation using the PSCAD/EMTDC software, by introducing LC filters in tune with the harmonic frequencies. The result was a significant reduction in the harmonic regime, either in the harmonics values or the power factor and reactive power.
Directory of Open Access Journals (Sweden)
G. Sakthivel
2010-10-01
Full Text Available Fuzzy logic control has met with growing interest in many motor control applications due to its non-linearity, handling features and independence of plant modelling. The hardware implementation of fuzzy logic controller (FLC on FPGA is very important because of the increasing number of fuzzy applications requiring highly parallel and high speed fuzzy processing. Implementation of a fuzzy logic controller and conventional PI controller on an FPGA using VHDL for DC motor speed control is presented in this paper. The proposed scheme is to improve tracking performance of D.C. motor as compared to the conventional (PI control strategy .This paper describes the hardware implementation of two inputs (error and change in error, one output fuzzy logic controller based on PI controller and conventional PI controller using VHDL. Real time implementation FLC and conventional PI controller is made on Spartan-3A DSP FPGA (XC3SD1800A FPGA for the speed control of DC motor. It is observed that fuzzy logic based controllers give better responses than the conventional PI controller for the speed control of dc motor.
High performance stepper motors for space mechanisms
Sega, Patrick; Estevenon, Christine
1995-01-01
Hybrid stepper motors are very well adapted to high performance space mechanisms. They are very simple to operate and are often used for accurate positioning and for smooth rotations. In order to fulfill these requirements, the motor torque, its harmonic content, and the magnetic parasitic torque have to be properly designed. Only finite element computations can provide enough accuracy to determine the toothed structures' magnetic permeance, whose derivative function leads to the torque. It is then possible to design motors with a maximum torque capability or with the most reduced torque harmonic content (less than 3 percent of fundamental). These later motors are dedicated to applications where a microstep or a synchronous mode is selected for minimal dynamic disturbances. In every case, the capability to convert electrical power into torque is much higher than on DC brushless motors.
Directory of Open Access Journals (Sweden)
Mikhov M.
2009-12-01
Full Text Available The performance of a two-coordinate drive system with permanent magnet synchronous motors is analyzed and discussed in this paper. Both motors have been controlled in brushless DC motor mode in accordance with the rotor positions. Detailed study has been carried out by means of mathematical modeling and computer simulation for the respective transient and steady-state regimes at various load and work conditions. The research carried out as well as the results obtained can be used in the design, optimization and tuning of such types of drive systems. They could be also applied in the teaching process.
A Comparison Between Fuzzy-PSO Controller and PID-PSO Controller for Controlling a DC Motor
Ghareaghaji, Ali
2015-01-01
The Direct current motors are in different types and there are several methods for controlling of their speed. In this paper two ways for speed controlling suggested. First a fuzzy logic speed controller for DC motor is designed and it's parameter calculated by Particle Sward Optimization (PSO). The speed controller designed according to fuzzy rules, then for having better performance, the controller optimized with PSO. Secondly a PID controller that it's parameter find by PSO, is used for sp...
Dynamic Characteristic Analysis of Linear DC Motor by 3D EMCN Considering Input Voltage
Energy Technology Data Exchange (ETDEWEB)
Ha, Kyung Ho; Yeom, Sang Bu [Changwon National University, Changwon(Korea); Hong, JUNG Pyo; Hur Jin; Kang Do Hyunc [Hanyang University(Seoul Campus), Seoul(Korea)
2002-02-01
In order to design the Linear DC Motor (LDM) With improved characteristics, transient and steady state analysis are required. Furthermore, 3D analysis is also needed to analyze the precise characteristics like thrust, time harmonics. This paper deals with the transient and dynamic characteristic analysis if LDM by coupling of external circuit and motion equation using 3D Equivalent Magnetic Circuit Network Method (EMCN). For the three dimensional analysis of electric machine, EMCN is very effective method that ensures high accuracy similar to FEM and short computation time. Also, The modeling by EMCN easily allows the mover to move with respect to the Sartre at each time Also, and the spatial moving step is determined by the solution of the mechanical motion equation and the computed electromagnetic thrust. The results are compared with experimental ones to clarify the usefulness and verify the accuracy of the proposed method. (author). 11 refs., 20 figs., 2 tabs.
Directory of Open Access Journals (Sweden)
R. Abdollahi
2015-02-01
Full Text Available This paper presents the design and analysis of a transformer based 36-pulse ac-dc converters which supplies direct torque controlled induction motor drives (DTCIMD's in order to have better power quality conditions at the point of common coupling. The converters output voltage is accomplished via two paralleled eighteen-pulse ac-dc converters each of them consisting of nine-phase diode bridge rectifier. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. The 36-pulse structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6-pulse and 36-pulse converters (Polygon, Fork, and Hexagon from view point of power quality indices. Results show that input current total harmonic distortion (THD is less than 4% for the 36-pulse topologies at variable loads. The Delta/Hexagon connected platform could simplify the resulted configuration for the converters and reducing the costs.
Application brushless machines with combine excitation for a hybrid car and an electric car
Directory of Open Access Journals (Sweden)
Gandzha S.A.
2015-08-01
Full Text Available This article shows advantages of application the brushless machines with combined excitation (excitation from permanent magnets and excitation winding for the hybrid car and the electric car. This type of electric machine is compared with a typical brushless motor and an induction motor. The main advantage is the decrease of the dimensions of electric machine and the reduction of the price for an electronic control system. It is shown the design and the principle of operation of the electric machine. The machine was modeled using Solidworks program for creating design and Maxwell program for the magnetic field analysis. The result of tests is shown as well.
DEFF Research Database (Denmark)
Munteanu, A.; Agarlita, S. C.; Blaabjerg, Frede
2012-01-01
The present paper introduces a novel six-step commutation strategy for sensorless control applied for a surface permanent magnet synchronous motor that implies only dc link measurement (battery current and battery voltage). The control strategy makes use of a modified I-f starting procedure...
Directory of Open Access Journals (Sweden)
Li Zhai
2016-12-01
Full Text Available The large dv/dt and di/dt outputs of power devices in DC-fed motor drive systems in electric vehicles (EVs always introduce conducted electromagnetic interference (EMI emissions and may lead to motor drive system energy transmission losses. The effect of distributed parameters on conducted EMI from the DC-fed high voltage motor drive systems in EVs is studied. A complete test for conducted EMI from the direct current fed(DC-fed alternating current (AC motor drive system in an electric vehicle (EV under load conditions is set up to measure the conducted EMI of high voltage DC cables and the EMI noise peaks due to resonances in a frequency range of 150 kHz–108 MHz. The distributed parameters of the motor can induce bearing currents under low frequency sine wave operation. However the impedance of the distributed parameters of the motor is very high at resonance frequencies of 500 kHz and 30 MHz, and the effect of the bearing current can be ignored, so the research mainly focuses on the distributed parameters in inverters and cables at 500 kHz and 30 MHz, not the effect of distributed parameters of the motor on resonances. The corresponding equivalent circuits for differential mode (DM and common mode (CM EMI at resonance frequencies of 500 kHz and 30 MHz are established to determine the EMI propagation paths and analyze the effect of distributed parameters on conducted EMI. The dominant distributed parameters of elements responsible for the appearing resonances at 500 kHz and 30 MHz are determined. The effect of the dominant distributed parameters on conducted EMI are presented and verified by simulation and experiment. The conduced voltage at frequencies from 150 kHz to 108 MHz can be mitigated to below the limit level-3 of CISPR25 by changing the dominant distributed parameters.
Kuruppu, Sandun
2010-01-01
Research related to electrical vehicles is gaining importance due to the, energy crisis. An electric vehicle itself is far ahead of an internal combustion, engine based vehicle due to its efficiency. Using regenerative braking when, braking, improves the efficiency of an electric vehicle as it recovers energy that, could go to waste if mechanical brakes were used. A novel regenerative braking, system for neighborhood electric vehicles was designed, prototyped and tested., The proposed system ...
DEFF Research Database (Denmark)
Soliman, Hammam Abdelaal Hammam; Davari, Pooya; Wang, Huai
2017-01-01
to industry. In this digest, a condition monitoring methodology that estimates the capacitance value of the dc-link capacitor in a three phase Front-End diode bridge motor drive is proposed. The proposed software methodology is based on Artificial Neural Network (ANN) algorithm. The harmonics of the dc......-link voltage are used as training data to the Artificial Neural Network. Fast Fourier Transform (FFT) of the dc-link voltage is analysed in order to study the impact of capacitance variation on the harmonics order. Laboratory experiments are conducted to validate the proposed methodology and the error analysis......In modern design of power electronic converters, reliability of dc-link capacitors is one of the critical considered aspects. The industrial field have been attracted to the monitoring of their health condition and the estimation of their ageing process status. However, the existing condition...
Brushless tachometer gives speed and direction
Nola, F. J.
1977-01-01
Brushless electronic tachometer measures rotational speed and rotational direction, maintaining accuracy at high or low speeds. Unit is particularly useful in vacuum environments requiring low friction.
Directory of Open Access Journals (Sweden)
Hadeed Ahmed Sher
2016-07-01
Full Text Available Induction motors are widely used in industrial power plants due to their robustness, reliability and high performance under variable operating conditions in the electrical power system. Modern industrial progress is dependent on these ruggedly constructed induction motors. Almost every sophisticated process of the industry is based on induction motors. Most of these motors are controlled by means of inverters that change the line frequency. The change in parameters of inverter makes it possible to control the motor according to the design requirements. The reliability of inverter based motor control is an important issue for industrial applications and therefore, it becomes very vital for design engineers to have comprehensive analysis of the inverter fed induction machine. This paper investigates one of the faults that may occur on the DC link of an inverter fed induction motor. The effect of the capacitor short circuit is presented in this paper. It also deals with the effects of short circuited capacitor on freewheeling diode. DC link capacitors are well designed and even the probability of capacitor failure is high, it is always a rare case if they puncture, however this analysis will add to the reliability of the induction machine under variable operating condition.
Directory of Open Access Journals (Sweden)
Marhaposan Situmorang
2011-06-01
Full Text Available The DC motor speed controller using AT89S52 microcontroller with stepper motor attached into potentiometer in variable regulated power supply had been evaluated. The voltage across DC motor is varied using program subroutine in microcontroller. The reference speed was determined using keypad and actual speed measured using rotating disc with holes in optocoupler sensor. The actual speed in rpm was determined after running time base 1 second and substracted with reference speed. The error was used to turn right stepper motor if actual speed less than reference speed and vice versa. The number of step of stepper motor rotation in one cycle execution was varied using subroutine starting from 1 step, 3 step, 5 step and using approximation of difference value between actual speed and reference speed. It was observed that the best performance of controller was achieved if number of step of turning stepper motor was not constant but depending on the difference between actual speed and reference speed.
Implementation of PID Controller in MATLAB for Real Time DC Motor Speed Control System
Directory of Open Access Journals (Sweden)
Manjunatha Reddy H. K.
2011-03-01
Full Text Available In this paper the implementation of PIDC (proportional + integral + derivative controller in MATLAB environment for real time DC motor speed control is presented. The MATLAB environment is chosen because of availability of tool boxes which allows the effective way of implementation and analysis of the control system. The performance of PID controller for different inputs is studied. To establish a communication between PC and process parameter, an indigenous Analog to digital and digital to analog (AD-DA board is designed. This board consists of 12-bit A/D converter and 12-bit D/A converter to facilitate the data acquisition and control. In the present study Advantech make PCI-1751 DIOT card is used to interface AD-DA board to PC externally. The data between the AD-DA board and the PC is communicated through the script file written in MATLAB environment. By applying different standard test commands such as step, square, staircase and triangular, the performance of PID controller is studied. The PID controller provides better system response in terms of transient as well as steady-state performances. The controller parameters are manually tuned (kp=0.232, ki=0.078 and kd=0.035 and the results of the best tuned PID controller are presented.
Energy Technology Data Exchange (ETDEWEB)
Markadeh, Gholamreza Arab [Faculty of Engineering, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Hajian, Masood, E-mail: m.hajian@ec.iut.ac.i [Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Soltani, Jafar; Hosseinia, Saeed [Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)
2010-07-15
Field orientation control of induction machine (IM) drives is a well-known strategy which has a fast dynamic response. In this paper, the direct rotor flux field orientation control of speed sensorless IM drive is presented. A two level space vector modulation inverter is employed to generate the command stator voltage. In proposed control scheme, a maximum torque per ampere strategy is achieved using a so-called fast flux search method. Based on this method, for a given load torque and rotor speed, the magnitude of rotor reference flux is adjusted step by step until the effective value of stator current becomes minimized finally. In addition, using the IM fifth order model in the stationary reference frame, a nonlinear rotor flux observer is developed which is also capable of motor resistances and rotor speed simultaneously estimation. Moreover, a useful method is introduced for dc offset compensation which is a major problem of ac drives especially at low speeds. The proposed control idea is experimentally implemented in real time using a CPLD board synchronized with a personal computer. Simulation and experimental results are finally presented to confirm the validity and effectiveness of the proposed method.
Fuzzy PID control algorithm based on PSO and application in BLDC motor
Lin, Sen; Wang, Guanglong
2017-06-01
A fuzzy PID control algorithm is studied based on improved particle swarm optimization (PSO) to perform Brushless DC (BLDC) motor control which has high accuracy, good anti-jamming capability and steady state accuracy compared with traditional PID control. The mathematical and simulation model is established for BLDC motor by simulink software, and the speed loop of the fuzzy PID controller is designed. The simulation results show that the fuzzy PID control algorithm based on PSO has higher stability, high control precision and faster dynamic response speed.
Finite-Element Model-Based Design Synthesis of Axial Flux PMBLDC Motors
DEFF Research Database (Denmark)
Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech
2016-01-01
This paper discusses design synthesis of a permanent magnet brushless DC (PMBLDC) machine using a finite element (FE) model. This work differentiates itself from the past studies by following a synthesis approach, in which many designs that satisfy performance criteria are considered instead...... of a unique solution. The designer can later select a design, based on comparing parameters of the designs, which are critical to the application that the motor will be used. The presented approach makes it easier to define constraints for a design synthesis problem. A detailed description of the setting up...... is demonstrated by designing a segmented axial torus PMBLDC motor for an electric two-wheeler....
Real Time Speed Control of a DC Motor Based on its Integer and Non-Integer Models Using PWM Signal
Directory of Open Access Journals (Sweden)
A. W. Nasir
2017-10-01
Full Text Available This paper exploits the advantage of non-integer order modeling of a process over integer order, in those cases where the process model is required for control purpose. The present case deals with speed control of a DC motor. Based on the real time open loop response, DC motor is being modeled as integer and non-integer order first order plus delay system. Both these models are then separately used for determining two sets of Proportional-Integral-Derivative (PID controller parameters through Ziegler Nichols (ZN closed loop tuning method. In addition to this, a model based control technique i.e. Internal Model Control (IMC is also implemented using both integer and non-integer model respectively. For carrying out the real time speed control of DC motor, LabVIEW platform has been used. After going through the results, it is observed that the controller performance considerably improves, if non-integer order model is used for controller design rather than integer order model.
Brushless exciters using a high temperature superconducting field winding
Garces, Luis Jose [Schenectady, NY; Delmerico, Robert William [Clifton Park, NY; Jansen, Patrick Lee [Scotia, NY; Parslow, John Harold [Scotia, NY; Sanderson, Harold Copeland [Tribes Hill, NY; Sinha, Gautam [Chesterfield, MO
2008-03-18
A brushless exciter for a synchronous generator or motor generally includes a stator and a rotor rotatably disposed within the stator. The rotor has a field winding and a voltage rectifying bridge circuit connected in parallel to the field winding. A plurality of firing circuits are connected the voltage rectifying bridge circuit. The firing circuit is configured to fire a signal at an angle of less than 90.degree. or at an angle greater than 90.degree.. The voltage rectifying bridge circuit rectifies the AC voltage to excite or de-excite the field winding.
Diagnostics of DC and Induction Motors Based on the Analysis of Acoustic Signals
Directory of Open Access Journals (Sweden)
Glowacz A.
2014-10-01
Full Text Available In this paper, a non-invasive method of early fault diagnostics of electric motors was proposed. This method uses acoustic signals generated by electric motors. Essential features were extracted from acoustic signals of motors. A plan of study of acoustic signals of electric motors was proposed. Researches were carried out for faultless induction motor, induction motor with one faulty rotor bar, induction motor with two faulty rotor bars and flawless Direct Current, and Direct Current motor with shorted rotor coils. Researches were carried out for methods of signal processing: log area ratio coefficients, Multiple signal classification, Nearest Neighbor classifier and the Bayes classifier. A pattern creation process was carried out using 40 samples of sound. In the identification process 130 five-second test samples were used. The proposed approach will also reduce the costs of maintenance and the number of faulty motors in the industry.
Hybrid I-f starting and observer-based Ssnsorless control of single-phase BLDC-PM motor drives
DEFF Research Database (Denmark)
Iepure, Liviu Ioan; Boldea, Ion; Blaabjerg, Frede
2012-01-01
A motion sensorless control for single-phase permanent magnet brushless dc motor based on an I-f starting sequence and a real-time permanent magnet flux estimation is proposed here. The special calculation for extracting the position and speed used here implies the generating of an orthogonal flux...... system, the atan2 trigonometric function, and a phase-locked loop observer. The influence of the permanent magnet flux harmonic content is presented by analytical expressions and digital simulations. The proposed sensorless control is validated by complete experimental results on a commercial small high......-speed blower-motor (40 W, 10 krpm, 12 Vdc)....
Nonlinear Dynamic Model of PMBLDC Motor Considering Core Losses
DEFF Research Database (Denmark)
Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech
2017-01-01
The phase variable model is used commonly when simulating a motor drive system with a three-phase permanent magnet brushless DC (PMBLDC) motor. The phase variable model neglects core losses and this affects its accuracy when modelling fractional-slot machines. The inaccuracy of phase variable model...... of fractional-slot machines can be attributed to considerable armature flux harmonics, which causes an increased core loss. This study proposes a nonlinear phase variable model of PMBLDC motor that considers the core losses induced in the stator and the rotor. The core loss model is developed based...... on the detailed analysis of the flux path and the variation of flux in different components of the machine. A prototype of fractional slot axial flux PMBLDC in-wheel motor is used to assess the proposed nonlinear dynamic model....
Reversible thyristor converters of brushless synchronous compensators
Directory of Open Access Journals (Sweden)
А.М.Galynovskiy
2013-12-01
Full Text Available Behavior of models of three-phase-to-single-phase rotary reversible thyristor converters of brushless synchronous compensators in a circuit simulation system is analyzed. It is shown that combined control mode of opposite-connected thyristors may result in the exciter armature winding short circuits both at the thyristor feed-forward and lagging current delay angles. It must be taken into consideration when developing brushless compensator excitation systems.
Directory of Open Access Journals (Sweden)
Y. A. Petrov
2014-01-01
Full Text Available The work concerns the constructive characteristics optimization of brushless D.C. (direct current motors used in electromechanical spacecraft drives.The spacecraft electromechanical drives and units use rather widely the brushless D.C. motors in which a motor commutator is replaced with more reliable semiconductor commutator controlled by the rotor position sensors. However, these motors are of low power.Electrohydraulic actuators (EHA use simple permanent-magnet motors (PMM of rather high power and commutator motors with graphite brush variable contacts.High reliability of brush motors, and, therefore a reliability of EHA in general, substantially depends on the quality of motor commutator operation. There are different reasons for a possible impact on the normal motor commutator operation. One of them is brush wear. Sparking brushes and burning commutator bars are possible in case brushes are poorly grinded to fit, brushes cannot freely move true in the brush holder box, and in case an incorrect force to clamp brushes to the commutator is chosen.It is established that drive wear resistance and operability depends on the gas environment composition being under sealed motor housing. In dry nitrogen environment brush wear suddenly raises because of the changing tribological performances of the commutator thus leading to essentially falling isolation resistance and no motor start.It is recommended to fill a space under sealed motor housing with air. Positive experience of operating spacecraft device containers with mobile electromechanical couples allowed us to find that in this case a dew point of filled air must be minus 20˚C.The paper offers an electromechanical alternative of design to the electrohydraulic actuators, with a ball-screw gear of the actuation mechanism, possessing a number of advantages.
Control electrónico de velocidad de un motor DC para vehículo eléctrico
Montalvo Ramírez, Luis; Banda Gamboa, Hugo A.
1983-01-01
Se presenta el análisis y diseño del circuito troceador tipo JONES, asÍ como del cir- cuito digital, que son empleados en el sistema electrónico que controla la velocidad del motor D.C. del vehículo eléctrico construido en la Politécnica Nacional. Los resultados experimentales obtenidos con el prototipo construido son presentados y analizados, llegándose a conclusiones muy importantes para el futuro desarrollo de estos sistemas.
Diseño de un observador y un controlador de velocidad de un motor DC por modos deslizantes
Directory of Open Access Journals (Sweden)
Jesse Mauricio Beltrán Soto
2014-07-01
Full Text Available En este artículo se presenta una estructura de estimación y control de estados mediante modos deslizantes para un modelo lineal. Se presenta un sistema mecánico de un Motor DC, al cual se le diseñaran un observador y un controlador deslizante de primer y segundo orden. Los resultados se comparan con un diseño de un PID. Los dos diseños se prueban ante cambios de referencia, perturbaciones y ruido.
Energy Technology Data Exchange (ETDEWEB)
Flynn, Charles Joseph
2018-02-13
The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design, development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all
Finite Control Set Model Predictive Speed Control of a DC Motor
Directory of Open Access Journals (Sweden)
Viktor Šlapák
2016-01-01
Full Text Available The paper describes the design procedure for a finite control set model predictive control (FCS-MPC of brushed permanent magnet DC (PMDC machine supplied from DC-DC converter. Full order linear Kalman filter is used for estimation of an unmeasured load torque and reduction of speed measurement noise. A new cost function has been introduced with a feedforward dynamic current component and a feedforward static load current component. The performance of the proposed control strategy is compared to the conventional PI-PWM cascade speed control through the experimental verification on the 250 W laboratory prototype. Obtained results show excellent dynamic behaviour and indicate possible energy savings of the proposed speed control.
Double Motor Coordinated Control Based on Hybrid Genetic Algorithm and CMAC
Cao, Shaozhong; Tu, Ji
A novel hybrid cerebellar model articulation controller (CMAC) and online adaptive genetic algorithm (GA) controller is introduced to control two Brushless DC motor (BLDCM) which applied in a biped robot. Genetic Algorithm simulates the random learning among the individuals of a group, and CMAC simulates the self-learning of an individual. To validate the ability and superiority of the novel algorithm, experiments have been done in MATLAB/SIMULINK. Analysis among GA, hybrid GA-CMAC and CMAC feed-forward control is also given. The results prove that the torque ripple of the coordinated control system is eliminated by using the hybrid GA-CMAC algorithm.
Performance Variation of Ferrite Magnet PMBLDC Motor with Temperature
DEFF Research Database (Denmark)
Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech
2015-01-01
The price fluctuations of rare earth metals and the uncertainty in their availability has generated an increased interest in ferrite magnet machines. The influence of temperature on BH characteristics of the ferrite magnet differ considerably from that of the rare earth magnet and hence, requires...... a different approach when deciding their operating point. In this work, laboratory measured BH curves of a ferrite magnet are used for estimating the possibility of demagnetization in a segmented axial torus (SAT) permanent magnet brushless DC (PMBLDC) motor. The BH characteristics for different temperatures...... have been used to study the performance variation of the ferrite magnet SAT PMBLDC motor with temperature. A detailed analysis is carried out to ensure that, the designed ferrite magnet motor is capable of delivering the specified torque throughout the operating speed, without any irreversible...
High torque density permanent magnet brushless machines with similar slot and pole numbers
Ishak, D.; Zhu, Z. Q.; Howe, D.
2004-05-01
The paper describes a theoretical and experimental investigation into the electromagnetic performance of permanent magnet brushless machines having similar slot and pole numbers. Finite element analysis is employed to predict the airgap flux density distribution, the cogging torque and emf waveforms, and the winding inductances. It is shown that such machines exhibit a high torque density and is conducive to fault tolerance. The results are validated on two experimental motors.
The speed control of DC motor under the load condition using PI and PID controllers
Corapsiz, Muhammed Reşit; Kahveci, Hakan
2017-04-01
In this study, it was aimed to compare PI (Proportional-Integral) and PID (Proportional-Integral-Derivative) controllers for speed control of Permanent Magnet Direct Current (PMDC) motor under both load and without load. For this purpose, firstly, the mathematical model was obtained from the dynamic equations of the PMDC motor and the obtained mathematical model was transferred to the simulation environment and modeled using Matlab/SIMULINK. Following the modeling process, PI and PID controller structures were formed, respectively. Secondly, after these structures were formed, the PMDC motor was run without any controller. Then, the control of the PMDC motor with no load was provided by using PI and PID controllers. Finally, the PMDC motor were loaded under the constant load (TL = 3 N.m.) for each condition and selected time period (t = 3 s). The obtained result for each control operations was comparatively given by observing effects of loading process on systems. When the obtained results were evaluated for each condition, it was observed that PID controller have the best performance with respect to PI controller.
Speed Control of Separately Excited D.C. Motor using Self-Tuned Parameters of PID Controller
Directory of Open Access Journals (Sweden)
A. K. Mansoor
2013-05-01
Full Text Available This paper presents a simulation and hardware implementation of a closed loop control of a separately excited D.C. motor using a self-tuning PID controller. The PID controller design is based on using the Field Programmable Analog Array (FPAA technology. Parameters tuning of the PID controller is achieved by using the genetic algorithm (GA. The FPAA controller based technology gives the advantage of low power, no quantization noise, high bandwidth and high speed response. The practical results show that a self-tuning controller can outperform a hand-tuned solution and demonstrate adaptability to plant drift; also it gives very acceptable results in the reduction of overshoot, stability time and the steady-state transient response of the controlled plant.
Neelakantan, Vijay A.; Washington, Gregory N.; Bucknor, Norman K.
2005-05-01
High bandwidth actuation systems that are capable of simultaneously producing relatively large forces and displacements are required for use in automobiles and other industrial applications. Conventional hydraulic actuation mechanisms used in automotive brakes and clutches are complex, inefficient and have poor control robustness. These lead to reduced fuel economy, controllability issues and other disadvantages. This paper involves the design, development, testing and control of a two-stage hybrid actuation mechanism by combining classical actuators like DC motors and advanced smart material actuators like piezoelectric actuators. The paper also discusses the development of a robust control methodology using the Internal Model Control (IMC) principle and emphasizes the robustness property of this control methodology by comparing and studying simulation and experimental results.
DEFF Research Database (Denmark)
Dal, Mehmet; Teodorescu, Remus
2011-01-01
In order to achieve and maintain the prospective benefits of sliding mode control (SMC) methodology, the phenomenon known as “chattering”, the main obstacle encountered in real-time applications, has to be suppressed. In this study, two promising switching control gain adaptation and chattering...... in order to find the best solution for chattering reduction. To find a practical solution a tunable low-pass filter (LPF) was used to average the discontinuous control term. The validity of the existing conditions for the gain adaptation methods are examined and observer gain value was determined through...... simulations. To demonstrate the effectiveness of each method, several experiments were performed on a DSP-based PM DC motor drive system. Then, the newly proposed combinations of these methods were implemented. The hardware implementation results are comparatively presented and discussed....
Directory of Open Access Journals (Sweden)
Paul Cepeda
2014-01-01
Full Text Available How can students be given experience in the confused realities of engineering processes? How can undergraduate students be convinced that processes can be analyzed and improved? Computer simulations properly designed and applied could answer these challenges revolutionizing education in Power Electronics. In recent years, computer simulation has been commonly used in education to motivate students in their learning and help teachers to improve their teaching level. The present paper focuses on developing a speed controller for DC motors starting from theoretical aspects, passing through simulations, and finally reaching a control prototype. The control theory is based on a nonlinear technique known as Sliding Mode Control (SMC involving artificial intelligence for optimization such as Fuzzy Logic (FL, Adaptive Neurofuzzy Inference Systems (ANFIS, and Genetic Algorithms (GAs.
Energy Technology Data Exchange (ETDEWEB)
Heidrich, Tobias; Moeckel, Andreas [Technische Univ. Ilmenau (Germany). FG Kleinmaschinen
2011-07-01
Electronically commutated motors are used to increase the power efficiency of electric drives. They can also improve the utilization of the construction volume. Especially in small drives, the replacement of asynchronous and commutator motors has become a development trend. Compared to established solutions, the permanent-magnet synchronous motor and the brushless DC motor offer additional degrees of freedom regarding the design of the magnetic circuit and the control method. This complicates the development of an optimal drive for a given application. The paper discusses aspects of the rotor and stator design. Different motors of the same volume are calculated and their torque, power and efficiency is compared. Additionally, the material usage is analyzed in terms of production costs and the opportunities for substitution. (orig.)
Directory of Open Access Journals (Sweden)
Andreas WALDSCHIK
2008-12-01
Full Text Available In this work, we report on the development of several synchronous motors with rotatory or linear movements. The synchronous micro motors are brushless DC motors or stepper motors with electrically controlled commutation consisting of a stator and a rotor. The rotor is mounted onto the stator and is adjusted by an integrated guidance. Inside the stator different coil systems are realized, like double layer sector coils or special nested coils. The coil systems can be controlled by three or six phases depending on the operational mode. Furthermore, inorganic insulation layers were used in order to reduce the thickness of the system. By this means four layers of electrical conductors can be realized especially for the 2D devices. The smallest diameter of the rotatory motor is 1 mm and could be successfully driven.
SUTTON, MACK C.
THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF DIRECT CURRENT MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 15 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, AND STEP-BY-STEP SOLUTIONS OF THE…
Simulation of an Electromechanical Spin Motor System of a Control Moment Gyroscope
Inampudi, Ravi; Gordeuk, John
2016-01-01
A two-phase brushless DC motor (BDCM) with pulse-width modulated (PWM) voltage drive is simulated to control the flywheel speed of a control moment gyroscope (CMG). An overview of a double-gimballed control moment gyroscope (DGCMG) assembly is presented along with the CMG torque effects on the spacecraft. The operating principles of a two-phase brushless DC motor are presented and the system's electro-mechanical equations of motion are developed for the root-mean-square (RMS) currents and wheel speed. It is shown that the system is an extremely "stiff" set of first-order equations for which an implicit Euler integrator is required for a stable solution. An adaptive proportional voltage controller is presented which adjusts the PWM voltages depending on several control modes for speed, current, and torque. The simulation results illustrate the interaction between the electrical system and the load dynamics and how these influence the overall performance of the system. As will be shown, the CMG spin motor model can directly provide electrical power use and thermal power output to spacecraft subsystems for effective (average) calculations of CMG power consumption.
Axial Field Electric Motor and Method
National Research Council Canada - National Science Library
Cho, Chahee P
2007-01-01
.... A hybrid field, brushless, permanent magnet electric motor utilizing a rotor with two sets of permanent magnets oriented such that the flux produced by the two sets of magnets is perpendicular to each...
An improved iron loss estimation for permanent magnet brushless machines
Fang, D
1999-01-01
This paper presents an improved approach for predicting iron losses in permanent magnet brushless machines. The new approach is based on the fundamental concept that eddy current losses are proportional to the square of the time rate of change of flux density. Expressions are derived for predicting hysteresis and eddy current losses in the stator teeth and yoke. The so-called anomalous or excess losses, caused by the induced eddy current concentration around moving magnetic domain walls and neglected in the conventional core loss calculation, are also included in the proposed approach. In addition, the model is also capable of accounting for the stator skewing, if present. The core losses obtained from the proposed approach are compared with those measured on an existing PM motor at several operating speeds, showing very good agreement. (14 refs).
Design and Analysis of an Axially Laminated Reluctance Motor for Variable-Speed Applications
Directory of Open Access Journals (Sweden)
BESER, E. K.
2013-02-01
Full Text Available In this paper, an axially laminated reluctance motor is presented. First, a set of a finite element analysis (FEA on three different axially laminated rotor geometries was carried out and torque profiles of the rotors were predicted. The effect of the stator slot skewing on the torque profiles were also examined in the analysis. After deciding the rotor geometry, the mathematical model of the proposed motor was formed in terms of a,b,c variables and simulations were performed. Motor prototype and motor drive were introduced. Torque profiles of the motor were measured for different current values and load test were realized. Experimental results were compared to analysis and simulation results. There is a good accordance between experimental and simulation results. When the proposed motor is operated with electrical 120? mode as a brushless DC motor, the torque versus speed characteristic shows a DC series motor characteristic and speed of the motor can be easily controlled by regulating the bus voltage. These features make the proposed motor convenient for variable-speed applications such as electrical vehicles.
Design and evaluation of brushless electrical generators
Collins, F. A.; Ellis, J. N.
1970-01-01
Ten design manuals assembled and nine computer programs are developed for evaluation of proposed designs of brushless rotating electrical generators. Design manual package provides all information required for generator design, and computer programs permit calculation of performance of specific designs including effects of materials.
Directory of Open Access Journals (Sweden)
S. Mahdiuon-Rad
2013-08-01
Full Text Available This paper investigates both static and dynamic eccentricities in single phase brushless DC (BLDC motors and analyzes the effect of the PM magnetization field on unbalanced magnetic forces acting on the rotor. Three common types of PM magnetization field patterns including radial, parallel and sinusoidal magnetizations are considered. In both static and dynamic eccentricities, harmonic components of the unbalanced magnetic forces on the rotor are extracted and analyzed. Based on simulation results, the magnetization fields that produce the lowest and highest unbalanced magnetic forces are determined in rotor eccentricity conditions.
Pedersen, F.
2008-09-01
The presented bidirectional DC/DC converter design concept is a further development of an already existing converter used for low battery voltage operation.For low battery voltage operation a high efficient low parts count DC/DC converter was developed, and used in a satellite for the battery charge and battery discharge function.The converter consists in a bidirectional, non regulating DC/DC converter connected to a discharge regulating Buck converter and a charge regulating Buck converter.The Bidirectional non regulating DC/DC converter performs with relatively high efficiency even at relatively high currents, which here means up to 35Amps.This performance was obtained through the use of power MOSFET's with on- resistances of only a few mille Ohms connected to a special transformer allowing paralleling several transistor stages on the low voltage side of the transformer. The design is patent protected. Synchronous rectification leads to high efficiency at the low battery voltages considered, which was in the range 2,7- 4,3 Volt DC.The converter performs with low switching losses as zero voltage zero current switching is implemented in all switching positions of the converter.Now, the drive power needed, to switch a relatively large number of low Ohm , hence high drive capacitance, power MOSFET's using conventional drive techniques would limit the overall conversion efficiency.Therefore a resonant drive consuming considerable less power than a conventional drive circuit was implemented in the converter.To the originally built and patent protected bidirectional non regulating DC/DC converter, is added the functionality of regulation.Hereby the need for additional converter stages in form of a Charge Buck regulator and a Discharge Buck regulator is eliminated.The bidirectional DC/DC converter can be used in connection with batteries, motors, etc, where the bidirectional feature, simple design and high performance may be useful.
An Improved Power Quality BIBRED Converter-Based VSI-Fed BLDC Motor Drive
Singh, Bhim; Bist, Vashist
2014-01-01
This paper presents an IHQRR (integrated high-quality rectifier regulator) BIBRED (boost integrated buck rectifier energy storage DC-DC) converter-based VSI (voltage source inverter)-fed BLDC (brushless DC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the VSI using a single voltage sensor. This allows VSI to operate in fundamental frequency switching mode for electronic commutation of BLDC motor which reduces the switching losses due to high-frequency switching used in conventional approach of PWM (pulse width modulation)-based VSI-fed BLDC motor drive. A BIBRED converter is operated in a dual-DCM (discontinuous conduction mode) thus using a voltage follower approach for PFC (power factor correction) and DC link voltage control. The performance of the proposed drive is evaluated for improved power quality over a wide range of speed control and supply voltage variation for demonstrating the behavior of proposed drive. The power quality indices thus obtained are within the recommended limits by international PQ (power quality) standards such as IEC 61000-3-2.
ESCRIVÀ ARLANDIS, JOAN
2013-01-01
Este proyecto presenta el diseño de un prototipo que permitirá el control total de la transmisión de potencia en un motor DC (corriente continua), de tal manera, que se pueda ajustar la respuesta de aceleración y frenado del motor mediante cuatro parámetros, ajustándose a las necesidades del usuario, que en la aplicación final se utilizará, para regular la respuesta, a través de un sensor magnético, que actuará como acelerador y freno. La transmisión de potencia al motor, se reali...
Directory of Open Access Journals (Sweden)
Ali Asghar Memon
2013-04-01
Full Text Available This paper presents a gate driver circuit for the switching devices used in the asymmetrical converter for a switched reluctance machine with reduced number of isolated dc/dc converters. Isolation required in the gate driver circuit of switching devices is indispensable. For the purpose of isolation different arrangements may be used such as pulse transformers. The dc/dc converter for isolation and powering the gate drive circuits is suitable, cheaper in cost and simple to implement. It is also significant that required number of isolation converters is much less than the switches used in converter. In addition, a simple logic circuit has been presented for producing the gate signals at correct phase sequence which is compared with the gated signals directly obtained from the encoder of an existing machine.
A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles
Hua, Wei; Wu, Zhongze; Cheng, Ming; Wang, Baoan; Zhang, Jianzhong; Zhou, Shigui
2012-04-01
The flux-switching permanent magnet (FSPM) motor is a relatively novel brushless machine having both magnets and concentrated windings in the stator, which exhibits inherently sinusoidal PM flux-linkage, back-EMF waveforms, and high torque capability. However, in the application of hybrid electric vehicles, it is essential to prevent magnets and armature windings moving in radial direction due to the possible vibration during operation, and to ensure fault-tolerant capability. Hence, in this paper based on an original FSPM motor, a dual-channel FSPM (DC-FSPM) motor with modified structure to fix both armature windings and magnets and improved reliability is proposed for a practical 10 kW integral starter/generator (ISG) in hybrid electric vehicles. The influences of different solutions and the end-effect on the static characteristics, are evaluated based on the 2D and 3D finite element analysis, respectively. Finally, both the predicted and experimental results, compared with a prototype DC-FSPM motor and an interior PM motor used in Honda Civic, confirm that the more sinusoidal back-EMF waveform and lower torque ripple can be achieved in the DC-FSPM motor, whereas the torque is smaller under the same coil current.
Axial flux permanent magnet brushless machines
Gieras, Jacek F; Kamper, Maarten J
2008-01-01
Axial Flux Permanent Magnet (AFPM) brushless machines are modern electrical machines with a lot of advantages over their conventional counterparts. They are being increasingly used in consumer electronics, public life, instrumentation and automation system, clinical engineering, industrial electromechanical drives, automobile manufacturing industry, electric and hybrid electric vehicles, marine vessels and toys. They are also used in more electric aircrafts and many other applications on larger scale. New applications have also emerged in distributed generation systems (wind turbine generators
AUTOMATED MEASURING COMPLEX FOR ACCEPTANCE TESTING OF DC AND UNDULATED-CURRENT TRACTION MOTORS
Directory of Open Access Journals (Sweden)
A. Yu. Drubetskyi
2016-12-01
Full Text Available Purpose. In the paper it is necessary: 1 to familiarize the reader with the modern classification of measurement and diagnostics, familiarize with problems of automating the measurement of basic parameters during program execution of qualification tests of traction motors; 2 to make recommendations to improve the measurement ac-curacy, reduce labor intensity of work for carrying out measurements, and reduce the requirements for the qualification of the staff; 3 to provide practical implementation of measurement system, built on the basis of the practical recommendations contained in the article. Methodology. The work presents the classification of measurement and diagnostic tools. The author considered a list of equipment that can be used in measurement systems, as well as third-party options for measuring complex and measuring complex using stand management system. Their functional schemes were proposed. The author compared the advantages and disadvantages of these schemes to make recommendations on areas of their optimal use. Findings. Having analyzed the functional scheme of measuring systems, it was found that the use of the control system microcontroller as a measuring complex is expedient if the measurements have largely a test process control function. The use of a third-party measuring complex is more appropriate in cases when it is required: to eliminate dependence on the stand management system, to provide high mobility and reduce the requirements for the qualification of the staff. Originality. The work presents a brief over-view of the measurement means. The author developed the functional schemes of measuring systems using stand management system and third-party measuring complex, proposed the criteria for evaluating their optimal use. Practical value. Based on the proposed functional diagram, the measuring system on National Instruments hard-ware and software basis was set up. The sensors by LEM Company were used as primary
DEFF Research Database (Denmark)
Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Busquets-Monge, S.
2012-01-01
The size of passive components in an adjustable speed drive can be reduced by using small dc-link capacitors. The EMI filter in the drive also consists of passive components. The size of the filter can be reduced by using a three-level inverter, which can have low output voltage distortion. However......, the three-level inverter based on small dc-link capacitors requires a PWM strategy to maintain neutral-point voltage balance. In this paper, the common mode voltage, which is the determining factor for the EMI filter size, is analyzed for a virtual-vector-based PWM strategy. The common mode voltage....... Results show that the conducted emission from the three-level inverter is lower than that of the two-level inverter. Thus, a three-level inverter requires a smaller EMI filter in motor drives with small dc-link capacitors....
Ozgenel, Mehmet Cihat
2017-09-01
Permanent magnet brushless dc (BLDC) motors are very convenient for many applications such as industrial, medical, robotic, aerospace, small electric vehicles, and home applications because of their inherent satisfying dynamic characteristics. There are numerous studies about these motors and their control schemes such as sensorless control and different speed and torque control schemes. All electric motors need commutation in order to produce speed and torque. Commutation in brushed DC motors is performed by means of a brush and collector. In BLDC motors, commutation is provided electronically in contrast to the brushed dc motors. In BLDC motors, motor phase windings are energized according to the information of the rotor position by inverter transistors. Rotor position information is used for commutation. Therefore, rotor position information is required to produce speed and torque for BLDC motors. The easiest and cheapest way to obtain rotor position information is to use Hall-effect or optical sensors. BLDC motor manufacturers generally produce BLDC motors equipped with three Hall-effect position sensors. Having three position sensors on BLDC motors provides six-step commutation which ensures two phase windings are energized in each moment. The third phase is empty. In this study, all phase windings are energized in the same time. This commutation method is twelve-step or 150 degrees commutation. So that more speed can be achieved from the same BLDC motor by comparison with six-step commutation. In this paper, both six-step and twelve-step commutation methods applied to the same BLDC motor and obtained experimental results from this study were presented, examined, and discussed.
Broad Application of a Reconfigurable Motor Controller Project
National Aeronautics and Space Administration — An ultra-miniature (<50 grams) high-performance brushless-motor controller, code named 'Puck', has been developed by Barrett for Earth-based mobile-manipulation...
Modeling and simulation of inverter-fed induction motors using the natural ABC frame of reference
Hijazi, T. M.; Alhamadi, M. A.; Arkadan, A. A.; Demerdash, N. A.
A time-domain equivalent network model is presented, in the natural ABC frame of reference, for computer-aided prediction of the performance of dc source-inverter fed induction motor systems and verified experimentally. The choice of this frame of reference for stator representation facilitates the integration of the machine and the electronic dc source-inverter models into one global equivalent network for the entire system. This model is most suited for the propulsion and actuation class of drives in which induction motors may substitute for brushless DC motors as prime movers. The model was used to simulate the performance of a 204-V, 1/3-hp, 60-Hz, 8-pole induction motor-inverter system, and the results were verified by test results obtained in the laboratory. The model was applied to a 440-V, 15-hp, 60-Hz, 8-pole induction motor-inverter system for purposes of evaluating the effects of 180 deg e and 120 deg e inverter conduction periods on the currents and torque profiles of the drive system.
Power-Quality Improvement in PFC Bridgeless SEPIC-Fed BLDC Motor Drive
Singh, Bhim; Bist, Vashist
2013-06-01
This article presents a design of a power factor correction (PFC)-based brushless DC (BLDC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the voltage source inverter (VSI) feeding BLDC motor using a single voltage sensor. A front-end bridgeless single-ended primary inductance converter (SEPIC) is used for DC link voltage control and PFC operation. A bridgeless SEPIC is designed to operate in discontinuous inductor current mode (DICM) thus utilizing a simple control scheme of voltage follower. An electronic commutation of BLDC motor is used for VSI to operate in a low-frequency operation for reduced switching losses in the VSI. Moreover, a bridgeless topology offers less conduction losses due to absence of diode bridge rectifier for further increasing the efficiency. The proposed BLDC motor drive is designed to operate over a wide range of speed control with an improved power-quality at the AC mains under the recommended international power-quality standards such as IEC 61000-3-2.
Energy Technology Data Exchange (ETDEWEB)
Lindegger, M. [Circle Motor AG, Guemligen (Switzerland); Biner, H. P.; Evequoz, B. [Haute Ecole valaisanne, Sion (Switzerland); Salathe, D. [Hochschule Luzern, Technik und Architektur, Horw (Switzerland)
2008-04-15
Efficient permanent-magnet motors achieve in the area up to 100 kW a higher efficiency than induction machines (standard motors). A simple and fast energy saving option is the exchange of inefficient standard motors. The objective of this work is to install a 3 kW permanent-magnet motor in a standard IEC housing and the optimization of the design for high efficiency. Another objective is the development and the realization of an efficient variable speed control. The efficiency of the motor and the inverter with the control system must be demonstrated by tests. These tasks have been split between Circle Motor AG and the universities of applied sciences of Valais and Lucerne. Considering high-efficiency and low manufacturing cost, a brushless DC solution was adopted. This resulted in an optimum design of the motor and the control system realized with a three-phase rectifier, a buck converter with variable DC voltage, and a three-phase inverter feeding full positive and negative current to two of the legs simultaneously. The maximum measured efficiency is about 96.5% for the inverter and 92% for the motor. With the advantage of the variable speed operation, the efficiency of the realized 3 kW permanent magnet motor together with the control system is always higher than the efficiency of a measured class EFF1 induction motor, even with a direct connection to the grid. The permanent-magnet motor is also about 10 kg lighter. The cost calculation shows that the permanent-magnet motor can be competitive with the induction motor when speed control is desired. This is also the domain with the largest potential for energy savings from variable speed pumps, compressors, fans. (author)
Modeling Of Permanent Magnet Motor Drives
Pillay, P.; Krishnan, R.
1987-10-01
Recent research has indicated that the permanent magnet motor drives which include the permanent magnet synchronous motor (PMSM) and the brushless DC motor (BDCM) could become serious competitors to the induction motor for servo applications. The PMSM has a sinusoidal back emf and requires sinusoidal stator currents to produce constant torque while the BDCM has a trapezoidal back emf and requires rectangular stator currents to produce constant torque. The PMSM is very similar to the wound rotor synchronous machine except that the PMSM that is used for servo applications tend not to have any damper windings and excitation is provided by a permanent magnet instead of a field winding. Hence the d,q model of the PMSM can be derived from the well known model of the synchronous machine with the equations of the damper windings and field current dynamics removed. Because of the nonsinusoidal variation of the mutual inductances between the stator and rotor in the BDCM, it is also shown in this paper that no particular advantage exists in transforming the abc equations of the BCDM to the d,q frame. Hence the solution of the original abc equations is proposed for the BDCM.
Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps
Directory of Open Access Journals (Sweden)
Deep Parikh
2015-08-01
Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM. Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.
Motor Drive Technologies for the Power-by-Wire (PBW) Program: Options, Trends and Tradeoffs
Elbuluk, Malik E.; Kankam, M. David
1995-01-01
Power-By-Wire (PBW) is a program involving the replacement of hydraulic and pneumatic systems currently used in aircraft with an all-electric secondary power system. One of the largest loads of the all-electric secondary power system will be the motor loads which include pumps, compressors and Electrical Actuators (EA's). Issues of improved reliability, reduced maintenance and efficiency, among other advantages, are the motivation for replacing the existing aircraft actuators with electrical actuators. An EA system contains four major components. These are the motor, the power electronic converters, the actuator and the control system, including the sensors. This paper is a comparative literature review in motor drive technologies, with a focus on the trends and tradeoffs involved in the selection of a particular motor drive technology. The reported research comprises three motor drive technologies. These are the induction motor (IM), the brushless dc motor (BLDCM) and the switched reluctance motor (SRM). Each of the three drives has the potential for application in the PBW program. Many issues remain to be investigated and compared between the three motor drives, using actual mechanical loads expected in the PBW program.
Tachometer Derived From Brushless Shaft-Angle Resolver
Howard, David E.; Smith, Dennis A.
1995-01-01
Tachometer circuit operates in conjunction with brushless shaft-angle resolver. By performing sequence of straightforward mathematical operations on resolver signals and utilizing simple trigonometric identity, generates voltage proportional to rate of rotation of shaft. One advantage is use of brushless shaft-angle resolver as main source of rate signal: no brushes to wear out, no brush noise, and brushless resolvers have proven robustness. No switching of signals to generate noise. Another advantage, shaft-angle resolver used as shaft-angle sensor, tachometer input obtained without adding another sensor. Present circuit reduces overall size, weight, and cost of tachometer.
Simplified Model of Brushless Synchronous Generator for Real Time Simulation
Lopez, M D; Rebollo, E; Blanquez, F R
2015-01-01
This paper presents a simplified model of brushless synchronous machine for saving hardware resources in a real time simulation system. Firstly, a brushless excitation system model is described. Thereafter, the simplified transfer function of an AC exciter and rotating diodes of the brushless excitation system is estimated. Finally, the complete system is simulated, comparing the main generator's voltage with both detailed and simplified excitation systems in several scenarios. These results show the accuracy of the simplified model against the detailed simulation model, resulting on an important hardware resources savings.
Shark, new motor design concept for energy saving applied to switched reluctance motor
Energy Technology Data Exchange (ETDEWEB)
Tataru Kjaer, A.M.
2005-07-01
measurement of efficiencies proved that the Shark air gap improves the efficiency of a specified machine by two to four % point with respect to a corresponding cylindrical air gap machine. Furthermore, the two Switched Reluctance Machines are compared with other motor technologies such as Induction Motor and Brushless DC Motor. Analysis of the forces produced in the Shark SRM reveals particular aspects, adding some difficulties to assembly the Shark motor. However, the latest assembly technologies provide solution for a simplified assembly of a Shark machine. Calculations of economical aspects demonstrate a small difference in saving between the Shark Switched Reluctance Motor and the Brushless DC Motor considered in this project. (au)
Directory of Open Access Journals (Sweden)
Tilmann H. Sander
2010-01-01
Full Text Available Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG and time-resolved near-infrared spectroscopy (trNIRS. The finger movements were monitored with electromyography (EMG. Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF, which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds.
Distributed Motor Controller (DMC) for Operation in Extreme Environments
McKinney, Colin M.; Yager, Jeremy A.; Mojarradi, Mohammad M.; Some, Rafi; Sirota, Allen; Kopf, Ted; Stern, Ryan; Hunter, Don
2012-01-01
This paper presents an extreme environment capable Distributed Motor Controller (DMC) module suitable for operation with a distributed architecture of future spacecraft systems. This motor controller is designed to be a bus-based electronics module capable of operating a single Brushless DC motor in extreme space environments: temperature (-120 C to +85 C required, -180 C to +100 C stretch goal); radiation (>;20K required, >;100KRad stretch goal); >;360 cycles of operation. Achieving this objective will result in a scalable modular configuration for motor control with enhanced reliability that will greatly lower cost during the design, fabrication and ATLO phases of future missions. Within the heart of the DMC lies a pair of cold-capable Application Specific Integrated Circuits (ASICs) and a Field Programmable Gate Array (FPGA) that enable its miniaturization and operation in extreme environments. The ASICs are fabricated in the IBM 0.5 micron Silicon Germanium (SiGe) BiCMOS process and are comprised of Analog circuitry to provide telemetry information, sensor interface, and health and status of DMC. The FPGA contains logic to provide motor control, status monitoring and spacecraft interface. The testing and characterization of these ASICs have yielded excellent functionality in cold temperatures (-135 C). The DMC module has demonstrated successful operation of a motor at temperature.
Utilizing Sequential Action Control Method in GaN-Based High-Speed Drive for BLDC Motor
Directory of Open Access Journals (Sweden)
Payam Niknejad
2017-11-01
Full Text Available This paper presents a hybrid model–based control algorithm that combines Model Predictive Control (MPC and Sequential Action Control (SAC deployed in a high-speed drive for Brushless DC (BLDC motor by using a DC-DC converter with Gallium Nitride (GaN switches. GaN FETs are selected because of their higher speed and lower power loss as compared with traditional Si switches. In the proposed framework, SAC processes the initial values of the control variables as well as their time of application and their duration in MPC loop. After receiving the underlying estimation of future contribution from SAC, MPC consolidates it with current input and predicts future control values by using the system state space model. This hybrid control conserves control effort and reduces sensitivity to initial conditions. In this way, converter’s output voltage is controlled to produce the reference speed at the motor output. National Instrument PXIe-6356 module is utilized as the interface between software and hardware that is a multi-function, LabVIEW-compatible data acquisition device. The viability of the proposed hybrid optimization for the high-speed drive is confirmed numerically by utilizing MATLAB/Simulink and approved experimentally using a Gallium Nitride (GaN half-bridge DC-DC converter.
Testing a Low-Influence Spindle Drive Motor
Energy Technology Data Exchange (ETDEWEB)
Hale, L; Wulff, T; Sedgewick, J
2003-11-05
Precision spindles used for diamond turning and other applications requiring low error motion generally require a drive system that ideally applies a pure torque to the rotating spindle. Frequently a frameless motor, that is, one without its own bearings, is directly coupled to the spindle to make a compact and simple system having high resonant frequencies. Although in addition to delivering drive torque, asymmetries in the motor cause it to generate disturbance loads (forces and moments) which influence the spindle error motion of the directly coupled system. This paper describes the tests and results for a particular frameless, brushless DC motor that was originally developed for military and space applications requiring very low torque ripple. Because the construction of the motor should also lead to very low disturbance loads, it was selected for use on a new diamond turning and grinding machine under developed at Lawrence Livermore National Laboratory. The level of influence for this motor-spindle combination is expected to be of order one nanometer for radial and axial error motion.
High Temperature All Silicon-Carbide (SiC) DC Motor Drives for Venus Exploration Vehicles Project
National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project seeks to prove the feasibility of creating high-temperature silicon-carbide (SiC) based motor drives for...
Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.
Hwang, Sangmoon
. The effect of various design parameters on the output torque and torque ripple are discussed. Design parameters include winding patterns, magnetization direction, magnet arc length, number of segments in poles and magnet pole shaping. New designs of trapezoidal BEMF motors are proposed to reduce the electromagnetic torque ripple. Magnet stepping and magnet edge shaping with reduced arc length, significantly reduce torque ripple, with minimal sacrifice of the maximum output torque. Acoustic noise of electromagnetic origin is investigated using a magnetic frame which emulates a DC motor. The driving electromagnetic force is calculated using finite element analysis and the resulting vibration and acoustic noise is measured. Acoustic noise of purely electromagnetic origin was also tested with a DC brushless motor to confirm the results of the magnetic frame. The mechanism of noise generation in a DC motor is a quasi-static response of a stator not only at the fundamental frequency but also at higher harmonic frequencies of alternating switched DC, which is a current characteristic of a DC motor. Noise generation is significantly aggravated when some of those harmonics are close to the resonant frequencies of the stator. Therefore, acoustic noise is highly dependent upon the excitation current shape, as higher harmonics may match with resonant frequencies of the stator.
Noise Source Identification of Small Fan-BLDC Motor System for Refrigerators
Directory of Open Access Journals (Sweden)
Yong-Han Kim
2006-01-01
Full Text Available Noise levels in household appliances are increasingly attracting attention from manufacturers and customers. Legislation is becoming more severe on acceptable noise levels and low noise is a major marketing point for many products. The latest trend in the refrigerator manufacturing industry is to use brushless DC (BLDC motors instead of induction motors in order to reduce energy consumption and noise radiation. However, cogging torque from BLDC motor is an undesirable effect that prevents the smooth rotation of the rotor and results in noise. This paper presents a practical approach for identifying the source of excessive noise in the small fan-motor system for household refrigerators. The source is presumed to a mechanical resonance excited by torque ripple of the BLDC motor. By using finite element analysis, natural frequencies and mode shapes of the rotating part of the system are obtained and they are compared with experimental mode shapes obtained by electronic torsional excitation test which uses BLDC motor itself as an exciter. Two experimental validations are carried out to confirm the reduction of excessive noise.
A Novel BLDC-Like DTC Control Technique for Induction Motors
Directory of Open Access Journals (Sweden)
Andrea Rossi
2012-01-01
Full Text Available DC brushless motors are widely adopted for their simplicity of control, even in sensorless configuration, and their high torque density. On the other hand, induction motors are very economical due to the absence of permanent magnets; for the same reason they can easily be driven in the flux-weakening region to attain a wide speed range. Nevertheless, high dynamic induction motors drives, based on field-oriented (FOC or predictive control, require large amounts of computing power and are rather sensitive to motor parameter variations. This paper presents a simple DTC induction motor control algorithm based on a well-known BLDC control technique, which allows to realize a high dynamic induction motor speed control with wide speed range. The firmware implementation is very compact and occupies a low amount of program memory, comparable to volt-per-Hertz- (V/f- based control algorithms. The novel control algorithm presents also good performance and low current ripple and can be implemented on a low-cost motion control DSP without resorting to high-frequency PWM.
Safaa M. Z. Al-Ubaidi; Maher M. F. Algreer
2012-01-01
This paper presents an implementation of conventional PID (CPID) controller using Ziegler-Nichols rules and fuzzy PD (FPD) controller for position servo motor control based on Lab View (Laboratory Virtual Instrument Engineering Workbench Environment) through Data Acquisition (DAQ) Device PCI- 6521 of National Instrument's and Data Acquisition Accessory Board Model (CB-68LP).CPID controller is perhaps the most well-known and most widely used in industrial applications. However, it has been kno...
Directory of Open Access Journals (Sweden)
Safaa M. Z. Al-Ubaidi
2012-06-01
Full Text Available This paper presents an implementation of conventional PID (CPID controller using Ziegler-Nichols rules and fuzzy PD (FPD controller for position servo motor control based on Lab View (Laboratory Virtual Instrument Engineering Workbench Environment through Data Acquisition (DAQ Device PCI- 6521 of National Instrument's and Data Acquisition Accessory Board Model (CB-68LP.CPID controller is perhaps the most well-known and most widely used in industrial applications. However, it has been known that CPID controller generally don’t work well for non-linear systems, higher order and time-delayed linear system and particularly complex and vague system. To overcome these difficulties, this paper proposes to use the FPD controller for a servo motor system instead of CPID. The parameters of servo motor used are completely unknown. The FPD structure has two-input single-output and fairly similar characteristic to its conventional counterpart and provides good performance. Simple rules base are used for FPD (nine rules only. Performance evaluation was carried out via a comparison study for the proposed control scheme and other existing control scheme, such as CPID controller. The critical point for this experiment on position system is a steady state error and settling time. The performance showing that the FPD has less settling time and zero steady state error over its CPID. The algorithms of FPD and CPID controllers are implemented using PID, Fuzzy Logic and simulation toolkits of the Lab View environment.
Directory of Open Access Journals (Sweden)
M. A. Inayathullaah
2014-01-01
Full Text Available In order to achieve high torque at low power with high efficiency, a new five-phase permanent magnet brushless DC (PMBLDC motor design was analyzed and optimized. A similar three-phase motor having the same D/L ratio (inner diameter (D and length of the stator (L is compared for maximum torque and torque ripple of the designed five-phase PMBLDC motor. Maxwell software was used to build finite element simulation model of the motor. The internal complicated magnetic field distribution and dynamic performance simulation were obtained in different positions. No load and load characteristics of the five-phase PMBLDC motor were simulated, and the power consumption of materials was computed. The conformity of the final simulation results indicates that this method can be used to provide a theoretical basis for further optimal design of this new type of motor with its drive so as to improve the starting torque and reduce torque ripple of the motor.
Center for Micro Air Vehicle Studies
2013-02-01
model are four bearings, two crankshafts, a brushless DC motor, a pushrod, and a large reduction gear. The main components, namely the two crankshafts...for public release; distribution unlimited. The first attempt at combining the specialized Brushless DC motors from Doman’s team to the WSU...public release; distribution unlimited. Finally, a motor survey was conducted to find a high power-to-weight ratio brushless DC motor. The motor
A Recommended New Approach on Motorization Ratio Calculations of Stepper Motors
Nalbandian, Ruben; Blais, Thierry; Horth, Richard
2014-01-01
Stepper motors are widely used on most spacecraft mechanisms requiring repeatable and reliable performance. The unique detent torque characteristics of these type of motors makes them behave differently when subjected to low duty cycle excitations where the applied driving pulses are only energized for a fraction of the pulse duration. This phenomenon is even more pronounced in discrete permanent magnet stepper motors used in the space industry. While the inherent high detent properties of discrete permanent magnets provide desirable unpowered holding performance characteristics, it results in unique behavior especially in low duty cycles. Notably, the running torque reduces quickly to the unpowered holding torque when the duty cycle is reduced. The space industry's accepted methodology of calculating the Motorization Ratio (or Torque Margin) is more applicable to systems where the power is continuously applied to the motor coils like brushless DC motors where the cogging torques are low enough not to affect the linear performance of the motors as a function of applied current. This paper summarizes the theoretical and experimental studies performed on a number of space qualified motors under different pulse rates and duty cycles. It is the intention of this paper to introduce a new approach to calculate the Motorization Ratios for discrete permanent magnet steppers under all full and partial duty cycle regimes. The recommended approach defines two distinct relationships to calculate the Motorization Ratio for 100 percent duty cycle and partial duty cycle, when the motor detent (unpowered holding torque) is the main contributor to holding position. These two computations reflect accurately the stepper motor physical behavior as a function of the command phase (ON versus OFF times of the pulses), pointing out how the torque contributors combine. Important points highlighted under this study are the torque margin computations, in particular for well characterized
Dhere, Neelkanth G.; Schleith, Susan
2014-10-01
Improvement of energy efficiency in the SunSmart Schools Emergency Shelters requires new methods for optimizing the energy consumption within the shelters. One major limitation in current systems is the requirement of converting direct current (DC) power generated from the PV array into alternating current (AC) power which is distributed throughout the shelters. Oftentimes, this AC power is then converted back to DC to run certain appliances throughout the shelters resulting in a significant waste of energy due to DC to AC and then again AC to DC conversion. This paper seeks to extract the maximum value out of PV systems by directly powering essential load components within the shelters that already run on DC power without the use of an inverter and above all to make the system reliable and durable. Furthermore, additional DC applications such as LED lighting, televisions, computers and fans operated with DC brushless motors will be installed as replacements to traditional devices in order to improve efficiency and reduce energy consumption. Cost of energy storage technologies continue to decline as new technologies scale up and new incentives are put in place. This will provide a cost effective way to stabilize the energy generation of a PV system as well as to provide continuous energy during night hours. It is planned to develop a pilot program of an integrated system that can provide uninterrupted DC power to essential base load appliances (heating, cooling, lighting, etc.) at the Florida Solar Energy Center (FSEC) command center for disaster management. PV arrays are proposed to be installed on energy efficient test houses at FSEC as well as at private homes having PV arrays where the owners volunteer to participate in the program. It is also planned to monitor the performance of the PV arrays and functioning of the appliances with the aim to improve their reliability and durability. After a successful demonstration of the hybrid DC microgrid based emergency
Directory of Open Access Journals (Sweden)
Yee-Pien Yang
2015-12-01
Full Text Available This paper proposes an optimal design of a middle motor integrated into a mid-drive unit for pedal electric cycles. This middle motor is an axial-flux permanent magnet brushless DC motor with a stator plate. Facing this plate is a rotor plate that acts as an eccentric component of a cycloidal reducer next to the stator. Both the middle motor and cycloidal reducer are easily installed on the same axle of the bike crankset. In the preliminary design, driving requirements are used to make the middle motor specifications. The numbers of stator slots and magnet poles on the rotor were chosen to achieve the best winding factor, and the winding layout was determined accordingly. A one-dimensional magnetic circuit model of the middle motor was built, and its shape was optimized utilizing a multifunctional optimization system tool. Finally, the resulting design was verified and refined by a finite element analysis. A prototype of the middle motor was fabricated with a stator made of a soft magnetic composite and integrated with a cycloidal reducer. Experimental results show that the motor has a sinusoidal back electromotive force. Additionally, it is easily controlled by sinusoidal currents with acceptable torque and speed curves.
Torque linearizing hardware for the electric joint motors of a direct-drive robot
Muir, P. F.; Bryan, J. R.
Many emerging high-performance robot control algorithms require the command of the joint torques, yet no known commercial robots provide such a capability. We describe the design, development, testing, and application of a VMEbus-based torque linearizing joint interface board (JIB). One JIB resides between the robot control processor and each joint motor amplifier. The JIB provides the control processor with the capability to read the motor position and apply accurate motor torques. The torque command capability derives from the application of a 128k x 8 EPROM lookup table for each motor phase. Because joint motor torque is dependent upon the torque command and the motor position, the hardware is designed to utilize the torque command and the current motor position as the address to retrieve the proper pulse-width for the PWM motor amplifier. The table look-up cycle operates independently of the robot controller at a 40KHz rate to provide constant joint torque as the motor rotates. We identify the proper table entries by an automated in situ data collection procedure. Static torque generation results show that the torque deviations are reduced from as much as 76 percent to below 5 percent for each of the three direct-drive motors (two are variable reluctance motors and one is brushless DC) on an AdeptTwo robot. These torque deviations are reduced below 2.5 percent if only the upper 90 percent of the torque range is considered. The torque deviations of the non-direct-drive joint are reduced by 50 percent. Dynamic robot edge following experiments show that the robot speed of operation can be more than doubled for a given applied force accuracy by utilizing the joint torque linearizing boards.
Measuring Speed Of Rotation With Two Brushless Resolvers
Howard, David E.
1995-01-01
Speed of rotation of shaft measured by use of two brushless shaft-angle resolvers aligned so electrically and mechanically in phase with each other. Resolvers and associated circuits generate voltage proportional to speed of rotation (omega) in both magnitude and sign. Measurement principle exploits simple trigonometric identity.
Characteristics of a half-wave rectified brushless synchronous generator
Hirakawa, Yuki; Higuchi, Tsuyoshi; Yokoi, Yuichi; Abe, Takashi
2014-01-01
The paper proposes the half-wave rectified brushless synchronous generator and analyzes the basic characteristics using the finite element method. It is based on the half-wave rectified excitation theory and doesn't need brush and slip ring system or permanent magnets for field excitation.
Directory of Open Access Journals (Sweden)
Alfonso A Jimenez-Garibay
2018-01-01
Full Text Available The main advantages of the Brushless Direct Current Motor (BLDCM are high efficiency, low maintenance, long life, low noise, control simplicity, low weight, and compact construction. However, the traditional driver has power quality issues related to harmonic current injection and poor power factor. This paper presents an alternative for power factor improvement and harmonic content reduction, by means of an isolated converter that supplies the DC-AC voltage source inverter of a traditional BLDCM driver. The proposed converter operates in discontinuous-conduction mode. The design and performance of the driver are validated experimentally in a prototype, in order to comply with the IEC 61000-3-2 international standard.
Energy Technology Data Exchange (ETDEWEB)
Hurst, R.W.; Feltham, P. (eds.)
2004-05-01
This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.
Richards, John
2014-01-01
Motor Music II (2014) for small group and motors What happens when an AC or DC motor is plugged raw into a mixing desk or connected directly to a speaker? Motor Music II explores ‘low level’ instrument design and a reductionist approach. The piece also sets up a proposition concerning electronic music: ‘How can it be done simpler?’ The motor as ‘instrument’ encourages an objection-orientated approach to sound and music making: the motor itself has inherent musical qualities and po...
Ultra-Compact Motor Controller
Townsend, William T.; Crowell, Adam; Hauptman, Traveler; Pratt, Gill Andrews
2012-01-01
This invention is an electronically commutated brushless motor controller that incorporates Hall-array sensing in a small, 42-gram package that provides 4096 absolute counts per motor revolution position sensing. The unit is the size of a miniature hockey puck, and is a 44-pin male connector that provides many I/O channels, including CANbus, RS-232 communications, general-purpose analog and digital I/O (GPIO), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier. This controller replaces air cooling with conduction cooling via a high-thermal-conductivity epoxy casting. A secondary advantage of the relatively good heat conductivity that comes with ultra-small size is that temperature differences within the controller become smaller, so that it is easier to measure the hottest temperature in the controller with fewer temperature sensors, or even one temperature sensor. Another size-sensitive design feature is in the approach to electrical noise immunity. At a very small size, where conduction paths are much shorter than in conventional designs, the ground becomes essentially isopotential, and so certain (space-consuming) electrical noise control components become unnecessary, which helps make small size possible. One winding-current sensor, applied to all of the windings in fast sequence, is smaller and wastes less power than the two or more sensors conventionally used to sense and control winding currents. An unexpected benefit of using only one current sensor is that it actually improves the precision of current control by using the "same" sensors to read each of the three phases. Folding the encoder directly into the controller electronics eliminates a great deal of redundant electronics, packaging, connectors, and hook-up wiring. The reduction of wires and connectors subtracts substantial bulk and eliminates their role in behaving as EMI (electro-magnetic interference) antennas. A shared
Modeling and Design of Brushless Doubly-Fed Induction Machines
Wang, X.
2017-01-01
The rapid increase of wind power in the power grid results in high grid connection requirements for wind turbines. Moreover, the reliability of wind turbines becomes more and more important, especially in offshore applications. One potential solution for these demands is the wind turbine drive-train based on the brushless doubly-fed induction machine (DFIM). This machine type has no brushes or slip-rings on the rotor side which provides an attractive alternative to the DFIM which is commonly ...
Control aspects of the brushless doubly-fed machine
Lauw, H. K.; Krishnan, S.
1990-09-01
This report covers the investigations into the control aspects of a variable-speed generation (VSG) system using a brushless double-fed generator excited by a series-resonant converter. The brushless double-fed machine comprises two sets of stator 3-phase systems which are designed with common windings. The rotor is a cage rotor resembling the low-cost and robust squirrel cage of a conventional induction machine. The system was actually designed and set up in the Energy Laboratory of the Department of Electrical and Computer Engineering at Oregon State University. The series-resonant converter designed to achieve effective control for variable-speed generation with the brushless doubly-fed generator was adequate in terms of required time response and regulation as well as in providing for adequate power quality. The three elements of the VSG controller, i.e., voltage or reactive power controller, the efficiency maximizer and the stabilizer, could be designed using conventional microprocessor elements with a processing time well within the time period required for sampling the variables involved with executing the control tasks. The report treats in detail the stability problem encountered in running the machine at certain speed regions, even if requirements for steady-state stability are satisfied. In this unstable region, shut down of the VSG system is necessary unless proper stabilization controls are provided for. The associated measures to be taken are presented.
Directory of Open Access Journals (Sweden)
N. Nishiyama
2016-05-01
Full Text Available Recently updated nanocrystalline soft magnetic Fe-Co-Si-B-P-Cu alloys “NANOMET®” exhibit high saturation magnetic flux density (Bs > 1.8 T, low coercivity (Hc < 10 A/m and low core loss (W1.7/50 ∼ 0.4 W/kg even in a ribbon form with a thickness of up to 40 μm. By utilize excellent magnetic softness, several products such as motors or transformers for electrical appliances are now under developing by industry-academia collaboration. In particular, it is found that a brushless DC motor using NANOMET® core exhibited remarkable improvement in energy consumption. The prototype motor with an outer core diameter of 70 mm and a core thickness of 50 mm was constructed using laminated nano-crystallized NANOMET® ribbons. Core-loss for the constructed motor was improved from 1.4 W to 0.4 W only by replacing the non-oriented Si-steel core with NANOMET® one. The overall motor efficiency is evaluated to be 3% improvement. In this work, the relation between processing and resulting magnetic properties will be presented. In addition, feasibility for commercialization will also be discussed.
Advanced single permanent magnet axipolar ironless stator ac motor for electric passenger vehicles
Beauchamp, E. D.; Hadfield, J. R.; Wuertz, K. L.
1983-01-01
A program was conducted to design and develop an advanced-concept motor specifically created for propulsion of electric vehicles with increased range, reduced energy consumption, and reduced life-cycle costs in comparison with conventional systems. The motor developed is a brushless, dc, rare-earth cobalt, permanent magnet, axial air gap inductor machine that uses an ironless stator. Air cooling is inherent provided by the centrifugal-fan action of the rotor poles. An extensive design phase was conducted, which included analysis of the system performance versus the SAE J227a(D) driving cycle. A proof-of-principle model was developed and tested, and a functional model was developed and tested. Full generator-level testing was conducted on the functional model, recording electromagnetic, thermal, aerodynamic, and acoustic noise data. The machine demonstrated 20.3 kW output at 1466 rad/s and 160 dc. The novel ironless stator demonstated the capability to continuously operate at peak current. The projected system performance based on the use of a transistor inverter is 23.6 kW output power at 1466 rad/s and 83.3 percent efficiency. Design areas of concern regarding electric vehicle applications include the inherently high windage loss and rotor inertia.
Elimination of output voltage oscillations in DC-DC converter using PWM with PI controller
Directory of Open Access Journals (Sweden)
Sreenivasappa Veeranna Bhupasandra
2010-01-01
Full Text Available In this paper the SIMULINK model of a PWM controlled DC-DC converter is modeled using switching function concept to control the speed of the DC motor. The presence of the voltage oscillation cycles due to higher switching frequency in the DC-DC converter is identified. The effect of these oscillations on the output voltage of the converter, Armature current, Developed torque and Speed of the DC motor is analyzed. In order to minimize the oscillation cycles the PI controller is proposed in the PWM controller.
Energy Technology Data Exchange (ETDEWEB)
Fassenet, M.
2001-05-01
This work deals with the study of low power electric motors manufactured in mass production by the car industry with particularly strong technical and economical constraints. The application concerns more precisely dc commutator motors with permanent magnet driving a fan in an engine cooling system. Faced with the multiplication of electrical system per car, the manufacturers objective is to, decrease each motor bulk and as far as possible to rise their efficiency. The aim of this thesis lies in the development of a software for optimisation and design assistance. A first phase concerns the development of an analytical model which allows, from motor geometry and the characterisation of its materials, to predict magnetic and electromechanical performances for a running point or on an operating range. The principal originality of the modelling is to take into account the phenomena related to commutation and more particularly the fact that some coils are short-circuited by brushes during the armature rotation. The results obtained by the analytical model are confirmed by numerical simulations and validated by experimental results on an automated bench developed in the laboratory. The results are in very good agreement and thus allow, in a second phase, the implementation of the analytical model in an optimising procedure PASCOSMA (optimisation software developed at the laboratory of electrical engineering of Grenoble) to generate a design application. The performances expected for a running point as well as the constraints on various parameters are introduced by a convivial user interface. Automatic design of the motor is realised by respecting all the constraints and by minimising the objective function. The optimisation procedure, applied to a. given motor, allowed an increase of 3.5 points of its efficiency with a reduction of 45% of its axial bulk, in accordance with the design specifications. This work is finalized by the product of an assistance software for
Directory of Open Access Journals (Sweden)
Yi-Chang Wu
2013-01-01
Full Text Available The aim of this paper is to present an innovative electromechanical device which integrates a brushless DC (BLDC hub motor with a speed-changing wheel hub stored on the rear wheel of an electric bicycle. It combines a power source and a speed-changing mechanism to simultaneously provide functions of power generation and transmission for electric bicycles. As part of the proposed integrated device, the wheel hub consists of a basic planetary gear train providing three forward speeds including a low-speed gear, a direct drive, and a high-speed gear. Each gear is manually controlled by the shift control sleeve to selectively engage or disengage four pawl-and-ratchet clutches based on its clutching sequence table. The number of gear teeth of each gear element of the wheel hub is synthesized. The BLDC hub motor is an exterior-rotor-type permanent-magnet synchronous motor. Two-dimensional finite-element analysis (FEA software is employed to facilitate the motor design and performance analysis. An analysis of the power transmission path at each gear is provided to verify the validity of the proposed design. The results of this work are beneficial to the embodiment, design, and development of novel electromechanical devices for the power and transmission systems of electric bicycles.
Development of a brushless HTS exciter for a 10 kW HTS synchronous generator
Bumby, Chris W.; Badcock, Rodney A.; Sung, Hae-Jin; Kim, Kwang-Min; Jiang, Zhenan; Pantoja, Andres E.; Bernardo, Patrick; Park, Minwon; Buckley, Robert G.
2016-02-01
HTS synchronous generators, in which the rotor coils are wound from high-T c superconducting wire, are exciting attention due to their potential to deliver very high torque and power densities. However, injection of the large DC currents required by the HTS rotor coils presents a technical challenge. In this paper we discuss the development of a brushless HTS exciter which operates across the cryostat wall to inject a superconducting DC current into the rotor coil circuit. This approach fundamentally alters the thermal load upon the cryogenic system by removing the need for thermally inefficient normal-conducting current leads. We report results from an experimental laboratory device and show that it operates as a constant voltage source with an effective internal resistance. We then discuss the design of a prototype HTS-PM exciter based on our experimental device, and describe its integration with a demonstration HTS generator. This 200 RPM, 10 kW synchronous generator comprises eight double pancake HTS rotor coils which are operated at 30 K, and are energised to 1.5 T field through the injection of 85 A per pole. We show how this excitation can be achieved using an HTS-PM exciter consisting of 12 stator poles of 12 mm YBCO coated-conductor wire and an external permanent magnet rotor. We demonstrate that such an exciter can excite the rotor windings of this generator without forming a thermal-bridge across the cryostat wall. Finally, we provide estimates of the thermal load imposed by our prototype HTS-PM exciter on the rotor cryostat. We show that duty cycle operation of the device ensures that this heat load can be minimised, and that it is substantially lower than that of equivalently-rated conventional current leads.
Design Considerations for the Brushless Doubly-Fed (Induction) Machine
McMahon, R A; Mathekga, M. E.; Wang, X.; Tatlow, M. R.
2015-01-01
This is the author accepted manuscript. The final version is available from The Institution of Engineering and Technology via https://doi.org/10.1049/iet-epa.2015.0405 A design procedure for the Brushless Doubly Fed machine is based on equations derived from a simplified equivalent circuit. The method allows the many variables in the design of this machine to be handled in straightforward way. Relationships are given for the division of slot area between the two stator windings and for the...
The MVAD pump: motor stator core loss characterization.
Mesa, Kelly J; Ferreira, Antonio; Castillo, Samir; Reyes, Carlos; Wolman, Justin; Casas, Fernando
2015-01-01
Investigation of the miniature ventricular assist device (MVAD) pump motor stator core loss behavior was conducted. During operation, the ferromagnetic core in the pump's motor is magnetized by alternating magnetic fields, which, in turn, create intrinsic energy losses in the core material; these losses are known as core losses. A core loss fixture and a method to characterize the magnetic behavior of the MVAD pump stator over a range of frequencies were developed. The MVAD pump motor design features a three phase brushless DC stator with ferromagnetic laminations and copper wire windings arranged in a six slot configuration. The stator's magnetic behavior is important because its core magnetic losses impact pump system efficiency. A system to measure the core loss of MVAD pump stators was developed using a custom core loss fixture consisting of 16 copper wire turns wound in a closed loop geometry bundle; the stator under test was then placed within this bundle. The instrumentation consisted of a signal generator, a power amplifier, and a power analyzer. Power analyzer parameters of current, voltage, and power were collected for several runs with a sinusoidal frequency sweep of 0 to 50 kHz; data were collected for the fixture with and without stators. The magnetic losses inherent to the fixture were characterized independently as a baseline presenting a flat frequency response. The core loss power measurements of individual stators yielded a characteristic bandpass frequency response morphology with a peak core loss found around 2.3 to 2.5 kHz. In conclusion, this method could be used to describe the transfer function of the stator's core magnetic behavior. It also has the potential to be used for future motor evaluation and for investigation of core loss performance variability between different stators during manufacturing operations. Investigational device. Limited by United States law to investigational use.
DEFF Research Database (Denmark)
Haxthausen, Anne
1996-01-01
This document gives some initial ideas of how the Duration Calculus (DC) can be integrated with the RAISE Specification Language (RSL).......This document gives some initial ideas of how the Duration Calculus (DC) can be integrated with the RAISE Specification Language (RSL)....
Hamilton, H. B.; Strangas, E.
1980-01-01
The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.
Radial-Gap Permanent Magnet Motor and Drive Research FY 2004
Energy Technology Data Exchange (ETDEWEB)
McKeever, J.W.
2005-02-11
The objective of this task was to study permanent magnet (PM) radial-gap traction drive systems that could meet the U.S. Department of Energy FreedomCAR Program's 2010 goals to expose weaknesses or identify strengths. Initially, the approach was to compare attributes such as physical deformations during operation, performance (torque, power, efficiency versus speed), material requirements (strength), material costs, manufacturability, weight, power density, specific power, reliability, and drivability for specific motors. Three motors selected were the commercially available 60-kW radial-gap surface-mounted PM motor manufactured by UQM Technologies, Inc.; a hypothetical PM motor with rotor-supported magnets similar to the Honda MCF-21; and Delphi's automotive electric machine drive motor, whose rotor is a ferromagnetic cylinder, held at one end by a shaft that supports the magnets on its inner surface. Potential problems have appeared related to PM motors, such as (1) high no-load spin losses and high operational power losses, probably from eddy current losses in the rotor; (2) the undemonstrated dual mode inverter control (DMIC) for driving a brushless dc motor (BDCM) (UQM and Delphi motors); (3) uncertainty about the potential for reducing current with DMIC; and (4) uncertainty about the relation between material requirements and maximum rotor speed. Therefore, the approach was changed to study in detail three of the comparison attributes: drivability, performance, and material requirements. Drivability and related problems were examined by demonstrating that DMIC may be used to drive an 18-pole 30-kW PM motor to 6000 rpm, where the maximum electrical frequency is 900 Hz. An available axial-gap test motor with 18 poles was used because its control is identical to that of a radial gap PM motor. Performance was analytically examined, which led to a derivation showing that DMIC controls a PM motor so that the motor uses minimum current to produce any power
Directory of Open Access Journals (Sweden)
А.М. Galynovskiy
2015-11-01
Full Text Available The comparative analysis of direct frequency converters with artificial and natural- switching term of the cyclical control algorithm is presented; the recommendations for their using in brushless asynchronized machines with three-phase winding are developed. Converters with a limited number of full-controlled valves have large losses in safety circuits of gates, they can be used in system of automatic excitation control. The best quality of voltage and current load are provided by converters with natural commutation using modulated input voltage, the combined potential compounds windings supply and the combined method of thyristor controlling. When the load is divided into two three-phase groups, an even number of phases of the power supply for single phase of the load are applied the bridge converter circuit. Regulation of the load current is carried out by the excitation current of field exciters and by the control angle of thyristor. Converters can be used in high-power asynchronized motors and generators. In asynchronized compensators it is possible to use diode-thyristor converters without transmitting the control signals to the rotating part. The frequency converters without modulation of input voltage have the smallest increase in rated capacity of power supply. However, they have a low quality form of the output voltage at high power factor of load.
Development of Ulta-Efficient Electric Motors
Energy Technology Data Exchange (ETDEWEB)
Shoykhet, B. (Baldor Comp.); Schiferl, R. (Baldor Comp.); Duckworth, R.; Rey, C.M.; Schwenterly, S.W.; Gouge, M.J.
2008-05-01
. Between the HTS field winding and the physical air gap is a series of concentric cylinders that act as vacuum insulation space walls as well as conducting paths for induced currents to flow in order to shield the HTS winding and the rotor cold space from time dependent fields. These time dependent fields may be caused by rotor hunting, during a change in motor load, or by non-fundamental component voltages and currents applied by the inverter. These motors are variable speed controlled by the inverter. Common large motor utility and industrial applications are pump and fan drives that are best suited by a variable speed motor. Inverter control of the HTS motor eliminates the need to design the rotor for line starting, which would dump a large amount of heat into the rotor that would then heavily tax the cryogenic cooling system. The field winding is fed by a brushless exciter that provides DC current to the HTS rotor winding. The stator winding is air or water cooled. Technical and commercial hurdles to industrial HTS motor product introduction and customer acceptance include (1) the high cost of HTS wire and the cryogenic cooling system components, (2) customer concerns about reliability of HTS motors, and (3) the ability to attain the loss reduction potential of large HTS motors. Reliance Electric has demonstrated a number of HTS based electric motors up to a 1000 hp, variable speed synchronous motor with an HTS field winding in the year 2000. In 2001 this motor was tested to 1600 hp with a sinusoidal (constant frequency) supply. Figure 1-2 shows the HTS motor on the dynamometer test stand in the Reliance Electric test lab. The extensive test program of the 1000 hp motor successfully demonstrated the technical feasibility of large HTS motors and the basic technologies involved, however the test results did indicate the need for design refinements. In addition, test results served to identify other more fundamental critical technology issues, and revealed the need to
Bidirectional DC-DC converter fed drive for electric vehicle system
African Journals Online (AJOL)
ATHARVA
During acceleration and normal modes the power flow is from battery to motor where as during braking or regenerative mode the kinetic energy of the motor is converted into electrical energy and fed back to battery. The DC-DC converter is required to perform mainly two functions: first to match the battery voltage to the ...
FreedomCAR Advanced Traction Drive Motor Development Phase I
Energy Technology Data Exchange (ETDEWEB)
Ley, Josh (UQM Technologies, Inc.); Lutz, Jon (UQM Technologies, Inc.)
2006-09-01
The overall objective of this program is to design and develop an advanced traction motor that will meet the FreedomCAR and Vehicle Technologies (FCVT) 2010 goals and the traction motor technical targets. The motor specifications are given in Section 1.3. Other goals of the program include providing a cost study to ensure the motor can be developed within the cost targets needed for the automotive industry. The program has focused on using materials that are both high performance and low costs such that the performance can be met and cost targets are achieved. In addition, the motor technologies and machine design features must be compatible with high volume manufacturing and able to provide high reliability, efficiency, and ruggedness while simultaneously reducing weight and volume. Weight and volume reduction will become a major factor in reducing cost, material cost being the most significant part of manufacturing cost at high volume. Many motor technology categories have been considered in the past and present for traction drive applications, including: brushed direct current (DC), PM (PM) brushless dc (BLDC), alternating current (AC) induction, switched reluctance and synchronous reluctance machines. Of these machine technologies, PM BLDC has consistently demonstrated an advantage in terms of power density and efficiency. As rare earth magnet cost has declined, total cost may also be reduced over the other technologies. Of the many different configurations of PM BLDC machines, those which incorporate power production utilizing both magnetic torque as well as reluctance torque appear to have the most promise for traction applications. There are many different PM BLDC machine configurations which employ both of these torque producing mechanisms; however, most would fall into one of two categories--some use weaker magnets and rely more heavily on reluctance torque (reluctance-dominant PM machines), others use strong PMs and supplement with reluctance torque
Comparing the Brushless DFIM to other Generator Systems for Wind Turbine Drive-Trains
National Research Council Canada - National Science Library
Strous, T.D; Shipurkar, U; Polinder, H; Ferreira, J.A
2016-01-01
In this paper, the brushless DFIM based wind turbine drive-train topology is compared to the DFIG based and PM generator based drive-train topologies, that are most commonly applied in modern wind turbines...
Malik, Naveed ur Rehman
2015-01-01
This thesis deals with the modeling, analysis and control of a novel brushlessgenerator for wind power application. The generator is named as rotatingpower electronic brushless doubly-fed induction machine/generator (RPEBDFIM/G). A great advantage of the RPE-BDFIG is that the slip power recoveryis realized in a brushless manner. This is achieved by introducing an additionalmachine termed as exciter together with the rotating power electronicconverters, which are mounted on the shaft of a DFIG...
Performance Analysis of a Brushless Double Fed Cage Induction Generator
Energy Technology Data Exchange (ETDEWEB)
Ruencos, F. [WEG S.A., Jaragua do Sul (Brazil); Carlson, R.; Oliveira, A.M.; Kuo-Peng, P.; Sadowski, N. [GRUCAD-UFSC, Florianopolis (Brazil)
2004-07-01
This paper analyses design and performance aspects of a brushless double fed cage induction generator as an economic and technical alternative to the classical wound rotor induction generator used in wind power generation. It focuses firstly on the machine operational characteristics and main design criteria and secondly on steady state and dynamic analytical and numerical models for efficient prediction of machine behavior. The analytical dynamic model is obtained by transforming the equations written in machine variables into equations written in an arbitrary reference frame. In the finite element approach the electrical machine is modeled in a 2D domain, using the Maxwell equations to formulate the field behavior and the FE method to discretize the domain of study. A prototype was built and tested to validate the simulation models and to verify the design criteria.
African Journals Online (AJOL)
Abstract · Vol 9, No 2 (2011) - Articles Implementation of a Fuzzy Logic Speed Controller for a Permanent Magnet Brushless DC Motor Drive System Abstract · Vol 9, No 1 (2011) - Articles Application of Adaptive Sliding Mode Position Controller with PI Tuning to Permanent Magnet Brushless DC Motor Drive System Abstract.
Concepts for using trapped-flux bulk high-temperature superconductor in motors and generators
Energy Technology Data Exchange (ETDEWEB)
Hull, John R; Strasik, Michael [Boeing Research and Technology, PO Box 3707, MC 2T-50, Seattle, WA 98124-2207 (United States)
2010-12-15
We review previous concepts for using bulk high-temperature superconductors (HTSs) in motors and generators and discuss methods for using trapped-flux (TF) HTSs in motors and generators that have been recently investigated in our laboratory. We examine the expected performance of a brushless motor/generator that uses TF bulk HTSs to provide magnetomotive force, where the stator windings are used to create the TF. A key feature is the use of dysprosium for the stator and rotor cores.
Concepts for using trapped-flux bulk high-temperature superconductor in motors and generators
Hull, John R.; Strasik, Michael
2010-12-01
We review previous concepts for using bulk high-temperature superconductors (HTSs) in motors and generators and discuss methods for using trapped-flux (TF) HTSs in motors and generators that have been recently investigated in our laboratory. We examine the expected performance of a brushless motor/generator that uses TF bulk HTSs to provide magnetomotive force, where the stator windings are used to create the TF. A key feature is the use of dysprosium for the stator and rotor cores.
DC electric springs with DC/DC converters
DEFF Research Database (Denmark)
Wang, Qingsong; Cheng, Ming; Jiang, Yunlei
2016-01-01
The concept of DC electric spring (DCES) was recently proposed to solve the stability issue caused by integrating intermittent renewable energy sources (RESs) to DC microgrids. In this paper, a new topology of DCES is proposed based on DC/DC converters. The proposed DCES consists of a bi-directio......The concept of DC electric spring (DCES) was recently proposed to solve the stability issue caused by integrating intermittent renewable energy sources (RESs) to DC microgrids. In this paper, a new topology of DCES is proposed based on DC/DC converters. The proposed DCES consists of a bi...
Method and machine for high strength undiffused brushless operation
Hsu, John S.
2003-06-03
A brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34), the rotor (32) having pairs of rotor pole portions (22b, 22c, 32f, 32l) disposed at least partly around the axis of rotation (32p) and facing the main air gap (24b, 24c, 34), at least one stationary winding (20b, 20c, 33b) separated from the rotor (22b, 22c, 32) by a secondary air gap (23b, 23c, 35) so as to induce a rotor-side flux in the rotor (22b, 22c, 32) which controls a resultant flux in the main air gap (24b, 24c, 34). PM material (27b, 27c) is disposed in spaces between the rotor pole portions (22b, 22c, 32f, 32l) to inhibit the rotor-side flux from leaking from said pole portions (22b, 22c, 32f, 32l) prior to reaching the main air gap (24b, 24c, 34). By selecting the direction of current in the stationary winding (20b, 20c, 33b) both flux enhancement and flux weakening are provided for the main air gap (24b, 24c, 34). The stationary windings (31a, 33b) which are used for both primary and secondary excitation allow for easier adaptation to cooling systems as described. A method of non-diffused flux enhancement and flux weakening is also disclosed.
Rotor apparatus for high strength undiffused brushless electric machine
Hsu, John S [Oak Ridge, TN
2006-01-24
A radial gap brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34) also has at least one stationary excitation coil (35a, 36a) separated from the rotor (32) by a secondary air gap (35e, 35f, 36e, 36f) so as to induce a secondary flux in the rotor (32) which controls a resultant flux in the main air gap (34). Permanent magnetic (PM) material (38) is disposed in spaces between the rotor pole portions (39) to inhibit the second flux from leaking from the pole portions (39) prior to reaching the main air gap (34). By selecting the direction of current in the stationary excitation coil (35a, 36a) both flux enhancement and flux weakening are provided for the main air gap (34). Improvements of a laminated rotor, an end pole structure, and an arrangement of the PM elements for providing an arrangement of the flux paths from the auxiliary field coil assemblies are also disclosed.
Rairán Antolines, José Danilo; Guerrero Cifuentes, Cindy Estéfany; Mateus Pineda, Jaime Alfredo
2010-01-01
En este artículo se compara el desempeño de dos controladores —el proporcional integral derivativo (PID) y el difuso— sobre una plataforma comercial, utilizada normalmente en aeromodelismo, el servomotor Futaba S3004. Antes de realizar la identificación sobre el motor, se modifican el circuito de control, la etapa de potencia y el sensor. Enseguida se utiliza el método del lugar de las raíces para sintonizar el PID en el control de la posición angular. Las simulaciones y el control se realiza...
Malik, Naveed ur Rehman
2012-01-01
This thesis deals with the steady-state, dynamic and control aspects of new type of brushless configuration of a doubly-fed induction machine in which the slip rings and carbon brushes are replaced by rotating power electronics and a rotating exciter. The aim is to study the stability of this novel configuration of the generator under mechanical and grid disturbances for wind power applications. The derivation, development and analysis of the steady-state model of the brushless doubly-fed ind...
Isolated step-down DC -DC converter for electric vehicles
Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.
2018-02-01
Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.
Directory of Open Access Journals (Sweden)
Liwen Pan
2016-06-01
Full Text Available This paper presents an on-board vehicular battery charger that integrates bidirectional AC/DC converter and DC/DC converter to achieve high power density for application in electric vehicles (EVs. The integrated charger is able to transfer electrical energy between the battery pack and the electric traction system and to function as an AC/DC battery charger. The integrated charger topology is presented and the design of passive components is discussed. The control schemes are developed for motor drive system and battery-charging system with a power pulsation reduction circuit. Simulation results in MATLAB/Simulink and experiments on a 30-kW motor drive and 3.3-kW AC/DC charging prototype validate the performance of the proposed technology. In addition, power losses, efficiency comparison and thermal stress for the integrated charger are illustrated. The results of the analyses show the validity of the advanced integrated charger for electric vehicles.
DEFF Research Database (Denmark)
Forouzesh, Mojtaba; Siwakoti, Yam P.; Gorji, Saman A.
2017-01-01
on the general law and framework of the development of next-generation step-up dc-dc converters, this paper aims to comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage...
Enhanced pid vs model predictive control applied to bldc motor
Gaya, M. S.; Muhammad, Auwal; Aliyu Abdulkadir, Rabiu; Salim, S. N. S.; Madugu, I. S.; Tijjani, Aminu; Aminu Yusuf, Lukman; Dauda Umar, Ibrahim; Khairi, M. T. M.
2018-01-01
BrushLess Direct Current (BLDC) motor is a multivariable and highly complex nonlinear system. Variation of internal parameter values with environment or reference signal increases the difficulty in controlling the BLDC effectively. Advanced control strategies (like model predictive control) often have to be integrated to satisfy the control desires. Enhancing or proper tuning of a conventional algorithm results in achieving the desired performance. This paper presents a performance comparison of Enhanced PID and Model Predictive Control (MPC) applied to brushless direct current motor. The simulation results demonstrated that the PSO-PID is slightly better than the PID and MPC in tracking the trajectory of the reference signal. The proposed scheme could be useful algorithms for the system.
Directory of Open Access Journals (Sweden)
Tianxun Chen
2016-01-01
Full Text Available This paper presents a computationally efficient loss prediction procedure and thermal analysis of surface-mounted brushless AC permanent magnet (PM machine considering the UDDS driving duty cycle by using a lumped parameters’ thermal model. The accurate prediction of loss and its variation with load are essential for thermal analysis. Employing finite element analysis (FEA to determine loss at every load point would be computationally intensive. Here, the finite element analysis and/or experiment based computationally efficient winding copper and iron loss and permanent magnet (PM power loss models are employed to calculate the electromagnetic loss at every operation point, respectively. Then, the lumped parameter thermal method is used to analyse the thermal behaviour of the driving PM machine. Experiments have been carried out to measure the temperature distribution in a motor prototype. The calculation and experiment results are compared and discussed.
Comparison of Nested-Loop Rotors in Brushless Doubly-Fed Induction Machines
Wang, X.; Liu, D.; Lahaye, D.J.P.; Polinder, H.; Ferreira, J.A.
2017-01-01
The brushless doubly-fed induction machine (DFIM) has great potential as a variable-speed generator for wind turbine applications. This special machine has a richer space-harmonic spectrum due to its special nested-loop rotor construction compared with conventional induction machines. It may result
Computer Simulation of a Three-phase Brushless Self-Excited Synchronous Generator
Cingoski, Vlatko; Mikami, Mitsuru; Yamashita, Hideo
1999-01-01
Computer simulation of the operating characteristics of a three-phase brushless synchronous generator with self-excited is presented. A voltage driven nonlinear time-periodic FEA is utilized to compute accurately the magnetic field distribution and the induced voltage and currents simultaneously.
Comparing the Brushless DFIM to other Generator Systems for Wind Turbine Drive-Trains
Strous, T.D.; Shipurkar, U.; Polinder, H.; Ferreira, J.A.
2016-01-01
In this paper, the brushless DFIM based wind turbine drive-train topology is compared to the DFIG based and PM generator based drive-train topologies, that are most commonly applied in modern wind turbines. The comparison will be based on a 3:2MW case study wind turbine. By using FE based
A resonant dc-dc power converter assembly
DEFF Research Database (Denmark)
2015-01-01
The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the s......The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor...
Youngquist, Robert C.; Ihlefeld, Curtis M.; Starr, Stanley O.
2013-01-01
A component level dc transformer is described in which no alternating currents or voltages are present. It operates by combining features of a homopolar motor and a homopolar generator, both de devices, such that the output voltage of a de power supply can be stepped up (or down) with a corresponding step down (or up) in current. The basic theory for this device is developed, performance predictions are made, and the results from a small prototype are presented. Based on demonstrated technology in the literature, this de transformer should be scalable to low megawatt levels, but it is more suited to high current than high voltage applications. Significant development would be required before it could achieve the kilovolt levels needed for de power transmission.
Lyapunov exponent for aging process in induction motor
Bayram, Duygu; Ünnü, Sezen Yıdırım; Şeker, Serhat
2012-09-01
focused on the controlling the mechanical parameters of the electrical machines. Brushless DC motor (BLDCM) and the other general purpose permanent magnet (PM) motors are the most widely examined motors [1, 8, 9]. But the researches, about Lyapunov Exponent, subjected to the induction motors are mostly focused on the control theory of the motors. Flux estimation of rotor, external load disturbances and speed tracking and vector control position system are the main research areas for induction motors [10, 11, 12-14]. For all the data sets which can be collected from an induction motor, vibration data have the key role for understanding the mechanical behaviours like aging, bearing damage and stator insulation damage [15-18]. In this paper aging of an induction motor is investigated by using the vibration signals. The signals consist of new and aged motor data. These data are examined by their 2 dimensional phase portraits and the geometric interpretation is applied for detecting the Lyapunov Exponents. These values are compared in order to define the character and state estimation of the aging processes.
Directory of Open Access Journals (Sweden)
Ghazanfar SHAHGHOLIAN
2016-09-01
Full Text Available Bu makalede, model referans uyarlamalı kontrol (MRAC ve model referans bulanık uyarlanabilir kontrol (MRFAC için geleneksel performans sunulmuştur. Çalışmanın amaçları: a sistemin tanımlı referans model hızı ile motor hızının uyumunun arttırılması, b yükleme değişimi ve bozuklukları durumunda gürültünün azaltılması ve c sistemin kararlılığının arttırılması. Böylece, model referans uyarlamalı kontrol yerine uyarlanabilir olmayan veya geleneksel kontrol uygulanır.Ayrıca bulanık kontrolör, PI kontrolör gibi klasik kontrolörlerin yerine kullanılmıştır. Uyarlanır olmayan kontrolün işletimi ve model referans bulanık kontrol ve geleneksel uyarlanabilir kontrol, dc motor hızının türetilmesi ve ayarlanmasında çalışılmıştır. Ardından bunlar birbirleriyle karşılaştırılmıştır. Model referans ve bulanık kontrolör, tüm sistemin kararlılık güvencesine dayanarak tasarlanmıştır. Simülasyon, sabit ve değişken yükler ile yapılmıştır. Elde edilen sonuçlara göre, uyarlanabilir kontrol, uyarlanabilir olmayana göre daha gözdedir. Ayrıca bulanık uyarlanabilir kontrol geleneksel uyarlanabilir kontrolden daha tatmin edicidir.Simülasyonlar, Matlab-Simulink kullanılarak yapılmıştır
Electric vehicle motors and controllers
Secunde, R. R.
1981-01-01
Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.
A Study on the Development of BLDC Motor with High Power Density
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyun Cheol; Kong, Yeong Kyung; Choi, Tae In [Agency for Defense Development (Korea); Song, Jong Hwan [Hyosung Ltd., (Korea)
2000-05-01
The motor for torpedo propulsion is needed the compact and short rating high power characteristics. This paper describes the development of the motor through the theory and Finite Element Method(FEM) analysis for Brushless Direct Current Motor(BLDCM) of 7 phase 6 poles. Back EMF, inductance and eddy current loss were analyzed. The proposed methods like magnetic wedge acquired by these FEM analysis were introduced. Phase-leading angle using encoder was used. Test results on the motor of 7 phases 6 poles were showed the validity of proposed methods and phase-leading angle. (author). 9 refs., 12 figs., 5 tabs.
Metamodels for New Designs of Outer-Rotor Brushless Synchronous Electric Motors
Directory of Open Access Journals (Sweden)
Dirba J.
2014-04-01
Full Text Available Rakstā ir apskatītas metamodeļu iegūšanas iespējas to izmantošanai bezkontaktu sinhrono dzinēju analīzē un optimizācijā. Ir iegūti metamodeļi sinhronam dzinējam ar pastāvīgajiem magnētiem un reaktīvam dzinējam ar ārējo rotoru. Sintezēto metamodeļu iegūšanai izmantoti elektrisko dzinēju magnētiskā lauka skaitlisko aprēķinu rezultāti, ievērojot magnētiskās ķēdes piesātinājumu. Metamodeļu pārbaude aprēķinu un starppunktos parādīja, ka to iegūšanai dārgo reālo eksperimentu vietā var izmantot magnētiskā lauka aprēķinu rezultātus.
Advanced Health Management of a Brushless Direct Current Motor/Controller
Pickett, R. D.
2003-01-01
This effort demonstrates that health management can be taken to the component level for electromechanical systems. The same techniques can be applied to take any health management system to the component level, based on the practicality of the implementation for that particular system. This effort allows various logic schemes to be implemented for the identification and management of failures. By taking health management to the component level, integrated vehicle health management systems can be enhanced by protecting box-level avionics from being shut down in order to isolate a failed computer.
Comparing the Brushless DFIM to other Generator Systems for Wind Turbine Drive-Trains
Strous, Tim D.; Shipurkar, Udai; Polinder, Henk; Ferreira, Jan A.
2016-09-01
In this paper, the brushless DFIM based wind turbine drive-train topology is compared to the DFIG based and PM generator based drive-train topologies, that are most commonly applied in modern wind turbines. The comparison will be based on a 3.2 MW case study wind turbine. By using FE based multi-objective optimization, optimized generator designs for the different topologies are generated. Then the capital expenditures of the resulting drive-train topologies are calculated and compared. Additionally, wind turbine drive-train configurations with 1, 2 and 3 stage gearboxes as well as a direct-drive configuration are taken into account. The resulting comparison shows that the brushless DFIM based drive-train with a 2 stage gearbox configuration provides a feasible alternative in commercial wind turbine drive-train applications.
Dynamic Performance of a Single Machine Brushless DFIG during Wind Speed Variation
Mona N. Eskander; Saleh, Mahmoud A.; Maged N. F. Nashed
2015-01-01
In this paper, the dynamic performance of the specially-designed Single Machine Brushless Doubly-Fed Induction Generator "SM-BDFIG" coupled to variable speed wind turbine is investigated. The rotor voltage of the SM-BDFIG during super-synchronous operation is used to charge a number of batteries, connected to the rotor via a 3- phase bridge rectifier. The number of charged battery cells are changed, by parallel and series connections, according to the wind speed variat...
Influence of Voltage Dips on the Operation of Brushless Exciter System of Synchronous Machines
Directory of Open Access Journals (Sweden)
Fedotov A.
2016-06-01
Full Text Available This paper presents a mathematical model with continuous variables for brushless exciter system of synchronous machines, containing the thyristor elements. Discrete Laplace transform is used for transition from a mathematical model of a system with variable structure in continuous variables to equation finite difference with permanent structure. Then inverse transition is made to a mathematical model in continuous variables with permanent structure.
Yingchao Zhang
2012-01-01
In this paper, a novel doubly excited brushless generator (DEBG) with outer radial laminated magnetic barrier rotor (RLMB-rotor) for wind power application was designed and analyzed. The DEBG has 10 rotor pole numbers with outer rotor. Its performance is investigated using the 2D transient finite element method. The magnetic fields, torque capability, end winding voltage characteristics, radial magnetic force and energy efficiency were analyzed. All studies in this paper show that the simplic...
Rectifier Fault Diagnosis and Fault Tolerance of a Doubly Fed Brushless Starter Generator
Liwei Shi; Zhou Bo
2015-01-01
This paper presents a rectifier fault diagnosis method with wavelet packet analysis to improve the fault tolerant four-phase doubly fed brushless starter generator (DFBLSG) system reliability. The system components and fault tolerant principle of the high reliable DFBLSG are given. And the common fault of the rectifier is analyzed. The process of wavelet packet transforms fault detection/identification algorithm is introduced in detail. The fault tolerant performance and output voltage experi...
Computer Simulation and Operating Characteristics of a Three-Phase Brushless Synchronous Generator
Cingoski, Vlatko; Mikami, Mitsuru; Inoue, Kenji; Kaneda, Kazufumi; Yamashita, Hideo
1998-01-01
This paper deals with numerical computation and simulation of the operating conditions of a three-phase brushless synchronous generator. A voltage driven nonlinear time-periodic finite element analysis is utilized to compute accurately the magnetic field distribution and the induced voltage and currents. The computation procedure is briefly addressed followed by the computed results and their comparison with experimental ones. The agreement between results is very good verifying the computati...
Comparison of Nested-Loop Rotors in Brushless Doubly-Fed Induction Machines
Wang, X.; Liu, D; Lahaye, D.J.P.; Polinder, H.; Ferreira, J. A.
2017-01-01
The brushless doubly-fed induction machine (DFIM) has great potential as a variable-speed generator for wind turbine applications. This special machine has a richer space-harmonic spectrum due to its special nested-loop rotor construction compared with conventional induction machines. It may result in higher iron losses, higher torque ripple and more time-harmonics adding to the grid total harmonic distortion (THD). This paper applies the 2D finite element (FE) model to investigate several di...
Characterization of the Rotor Magnetic Field in a Brushless Doubly Fed Induction Machine.
Blázquez García, Francisco; Veganzones Nicolas, Carlos; Ramírez Prieto, Dionisio; Platero Gaona, Carlos Antonio
2009-01-01
The large increase in wind generation could improve the final development of wind systems with brushless doubly-fed induction machines (BDFIM) as an alternative to the doubly-fed asynchronous machines. For this reason, a detailed study of several aspects of the BDFIM design, as well as of its rotor configuration, is absolutely essential. In this paper, the authors present an alternative formulation of the BDFIM operating principle in synchronous mode. Besides the basic equation of the machine...
Jovanović, Milutin G.
2006-01-01
The brushless doubly-fed machine (BDFM) allows the use of a partially rated inverter and represents an attractive cost-effective candidate for variable speed applications with limited speed ranges. In its induction machine form (BDFIM), the BDFM has significant rotor losses and poor efficiency due to the cage rotor design which makes the machine dynamic models heavily parameter dependent and the resulting controller configuration complicated and difficult to implement. A reluctance version of...
Soft commutated direct current motor [summary of proposed paper
Energy Technology Data Exchange (ETDEWEB)
Hsu, John S.
1998-10-22
A novel soft commutated direct current (DC) motor is introduced. The current of the commutated coil is intentionally drained before the brush disconnects the coil. This prevents the spark generation that normally occurs in conventional DC motors. A similar principle can be applied for DC generators.
Design and Optimization of Permanent Magnet Brushless Machines for Electric Vehicle Applications
Directory of Open Access Journals (Sweden)
Weiwei Gu
2015-12-01
Full Text Available In this paper, by considering and establishing the relationship between the maximum operating speed and d-axis inductance, a new design and optimization method is proposed. Thus, a more extended constant power speed range, as well as reduced losses and increased efficiency, especially in the high-speed region, can be obtained, which is essential for electric vehicles (EVs. In the first step, the initial permanent magnet (PM brushless machine is designed based on the consideration of the maximum speed and performance specifications in the entire operation region. Then, on the basis of increasing d-axis inductance, and meanwhile maintaining constant permanent magnet flux linkage, the PM brushless machine is optimized. The corresponding performance of the initial and optimal PM brushless machines are analyzed and compared by the finite-element method (FEM. Several tests are carried out in an EV simulation model based on the urban dynamometer driving schedule (UDDS for evaluation. Both theoretical analysis and simulation results verify the validity of the proposed design and optimization method.
Fractional-Slot Surface Mounted PM Motors with Concentrated Windings for HEV Traction Drives
Energy Technology Data Exchange (ETDEWEB)
Bailey, J.M.
2005-10-24
High-power density and efficiency resulting from elimination of rotor windings and reduced magnetic-flux losses have made the rare earth permanent magnet (PM) motor a leading candidate for the Department of Energy's Office of FreedomCAR and Vehicle Technologies (FCVTs) traction drive motor. These traction drives are generally powered by radial-gap motors, having the magnets on or embedded in a rotating cylinder separated from the inside surface of a slotted cylindrical stator by an annular gap. The two main types of radial-gap PM rotors are those with magnets mounted on the surface of a supporting back iron, called PM surface mounted (PMSM) motors, and those with magnets mounted in slots in the rotor, called interior PM (IPM) motors. Most early PM motor research was on the PMSM motor, which was thought to have an inherently low stator inductance. A low stator inductance can lead to currents dangerously exceeding rated current as the back-emf across the inductance increases with speed; consequently, part of the attempted solution has been to increase the stator inductance to reduce the rate of current rise. Although analysis suggested that there should be no problem designing sufficiently high stator inductance into PMSMs, attempts to do so were often not successful and a motor design was sought that would have a higher intrinsic inductance. Commercial research at Toyota has focused on IPM motors because they can achieve a high-saliency ratio, which helps them operate over a high constant power speed ratio (CPSR), but they are more difficult to fabricate. The Oak Ridge National Laboratory's (ORNL) position has been to continue research on brushless direct current (dc) motors (BDCMs) because of ease of fabrication and increased power output. Recently there has been a revival of interest in a fractional-slot PMSMs [15] made with concentrated windings because they possess three important features. First, they can increase the motor's inductance
Subramanian, K.; Kavitha, K. V. N.; Saravanan, K.
2017-11-01
A soft switched single switch isolated dc-dc conveys proposed in this paper. This converter works on the principle of zero current switching (zcs) and zero voltage switching (zvs). The circuit comprises lossless snubber with low rating. The switch works on zcs during turn on and zvs during turnoff. The diodes are based on zcs turn on and turnoff conditions. This paper presents the concept of soft switching and its applications to dc-dc converter. The losses due to soft switching and hard switching are compared.
Directory of Open Access Journals (Sweden)
M. Akherraz
1997-12-01
Full Text Available This paper presents an in-depth analytical and experimental investigation of an indirect DC-DC converter. The DC-AC conversion is a full bridge based on IGBT power modules, and the AC-DC conversion is done via a high frequency AC link and a first diode bridge. The AC link, which consists of snubbing capacitors and a variable air-gap transformer, is analytically designed to fulfill Zero Voltage commutation requirement. The proposed converter is simulated using PSPICE and a prototype is designed built and tested in the laboratory. PSPICE simulation and experimental results are presented and compared.
Pengaturan Kecepatan Putaran Motor Dc Berbasis Komputer
Anshori, Yusuf
2009-01-01
The development of industrial world needs an instrumentation automation that to support production process. For a true intelligent and flexible automated manufacturing system, the system should be able to respond to changing conditions by changing the manufacturing process all by itself. Computers can be programmed to "read" external conditions and to execute different parts of their programs depending on the sensed conditions. Computers will require additional interface cards like PPI 8255 a...
CSIR Research Space (South Africa)
Coetzer, A
2016-01-01
Full Text Available The design and implementation of a bidirectional current-controlled voltage-regulated DC-DC converter is presented. The converter is required to connect a battery of electrochemical cells (the battery) to an asynchronous motor-drive unit via a...
UNIFIED CONTROL STRUCTURE OF MULTI-TYPE INTERIOR PERMANENT MAGNET MOTOR
Directory of Open Access Journals (Sweden)
M. NORHISAM
2015-03-01
Full Text Available This paper presents the control strategy structure to extract the speed torque characteristic for the newly designed three phase Multi Type Interior Permanent Magnet Motor. The proposed structure with the driving circuits exhibit the performance of torque characteristics of the stepper motor and brushless motor with independent coil winding per phase especially used as an in-wheel motor in agricultural applications. Brushless Direct Current motors exhibit characteristics of generating high torque at high speed while the Permanent Magnet Stepper motors has characteristic of generating high torque at low speed. The typical characteristics of the above two are integrated in the proposed structure with a complex control structure that handle the switching complexity and speed control in real time. Thus, a specially designed driving system is essential to drive and control this special motor. The evaluation of the motor mechanical characteristics when applying load torque is also presented. The result determines the practical torque range applicable for each motor configuration and as combined machine.
Directory of Open Access Journals (Sweden)
Jehun Hahm
2015-01-01
Full Text Available This paper proposes an integrated photovoltaic (PV and proton exchange membrane fuel cell (PEMFC system for continuous energy harvesting under various operating conditions for use with a brushless DC motor. The proposed scheme is based on the incremental conductance (IncCond algorithm combined with the sliding mode technique. Under changing atmospheric conditions, the energy conversion efficiency of a PV array is very low, leading to significant power losses. Consequently, increasing efficiency by means of maximum power point tracking (MPPT is particularly important. To manage such a hybrid system, control strategies need to be established to achieve the aim of the distributed system. Firstly, a Matlab/Simulink based model of the PV and PEMFC is developed and validated, as well as the incremental conductance sliding (ICS MPPT technique; then, different MPPT algorithms are employed to control the PV array under nonuniform temperature and insolation conditions, to study these algorithms effectiveness under various operating conditions. Conventional techniques are easy to implement but produce oscillations at MPP. Compared to these techniques, the proposed technique is more efficient; it produces less oscillation at MPP in the steady state and provides more precise tracking.
Variable speed ac motor - A continuous pole printing technology
Morash, R. T.; Barber, R. J.; Roesel, J. F., Jr.
A description is given of a simply constructed, brushless, commutatorless ac motor that offers significant improvements over conventional induction or synchronous motors. The design makes it possible for the speed to be precisely and readily varied and for the motor to operate with ac currents of any reasonable frequency over a wide range of voltages. In essence, it is a synchronous motor that can operate at speeds well above and below 'normal speed' synchronous conditions. When operated as a constant speed machine, its efficiency is such that it holds promise for reducing electrical energy consumption in the U.S. by 3 to 4 percent. Underlying the design is a magnetizable layer on the surface of the rotor that can be continuously remagnetized while the machine is in operation. A 25-hp motor developed for use with high inertia loads is discussed.
Simple Motor Control Concept Results High Efficiency at High Velocities
Starin, Scott; Engel, Chris
2013-09-01
The need for high velocity motors in space applications for reaction wheels and detectors has stressed the limits of Brushless Permanent Magnet Motors (BPMM). Due to inherent hysteresis core losses, conventional BPMMs try to balance the need for torque verses hysteresis losses. Cong-less motors have significantly less hysteresis losses but suffer from lower efficiencies. Additionally, the inherent low inductance in cog-less motors result in high ripple currents or high switching frequencies, which lowers overall efficiency and increases performance demands on the control electronics.However, using a somewhat forgotten but fully qualified technology of Isotropic Magnet Motors (IMM), extremely high velocities may be achieved at low power input using conventional drive electronics. This paper will discuss the trade study efforts and empirical test data on a 34,000 RPM IMM.
2011-06-01
... Model DC-10-10, DC- 10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F.... Applicability (c) This AD applies to all The Boeing Company Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10- 40, DC-10-40F, MD-10-10F, MD-10-30F, MD-11, and MD-11F airplanes...
Concepts for using trapped-flux HTS in motors and generators
Hull, John R.; Strasik, Michael
2013-01-01
We examine the expected performance of a brushless motor/generator that uses trapped-flux (TF) bulk high-temperature superconductors (HTSs) to provide magnetomotive force, where the stator windings are used to create the TF. A key feature is the use of dysprosium (Dy) for the stator and rotor cores. We also examine methods to energize TF in HTS for generators used in pulsed-power applications.
National Research Council Canada - National Science Library
Manikandan Ramasamy; Rajendran Somasundram; Arulmozhiyal Ramasamy
2017-01-01
.... Multiple robotic arms are used to handle materials for lifting in flexible directions. The vertical rotation of a 360 degree single arm is considered in this research on a position servo drive with brushless DC motor...
Journal of Research in National Development - Vol 9, No 1 (2011)
African Journals Online (AJOL)
Application of Adaptive Sliding Mode Position Controller with PI Tuning to Permanent Magnet Brushless DC Motor Drive System · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. JA Oyedepo, A Folaponmile, 71-78 ...
Automated Clutch of AMT Vehicle Based on Adaptive Generalized Minimum Variance Controller
National Research Council Canada - National Science Library
Ze Li; Xinhao Yang
2014-01-01
... of the automated clutch of automatic mechanical transmission vehicle. In this paper, an adaptive generalized minimum variance controller is applied to the automated clutch, which is driven by a brushless DC motor...
Directory of Open Access Journals (Sweden)
IVAN ALCALÁ
2014-01-01
Full Text Available Este artículo describe el análisis, modelado y simulación de un vehículo eléctrico (EV enfocado al desarrollo de un banco de pruebas para reproducir la dinámica del EV. El banco está formado por un drive de motor de inducción (IM acoplado directamente a una máquina de DC y a un volante de inercia a través de una transmisión. El volante de inercia y la máquina de DC reproducen la dinámica y las fuerzas que actúan en el vehículo. Se propone una metodología para diseñar un banco de pruebas de EV para estudiar el comportamiento de vehículos eléctricos cercano a las condiciones de operación reales. El análisis de las fuerzas en el EV en conjunto con la máquina DC define las condiciones de operación del EV. El modelado y la simulación son desarrollados en MATLAB/Simulink, el banco de pruebas implementado es controlado por un DSP. Finalmente, los resultados de simulación y experimentales obtenidos validan el funcionamiento del banco de prueba.
Simulation model for a seven-phase BLDCM drive system
Park, Sang-Hoon; Lee, Won-Cheol; Lee, Jung-Hyo; Yu, Jae-Sung; Kim, Gyu-Sik; Won, Chung-Yuen
2007-12-01
BLDC motors have many advantages over brushed DC motors and induction motors. So, BLDC motors extend their application to many industrial fields. In this paper, the digital simulation and modeling of a 7-phase brushless DC motor have been presented. The 14-switch inverter and a 7-phase brushless DC motor drive system are simulated using hysteresis current controller and logic of switching pattern with the BooleanÂ¡s function. Through some simulations, we found that our modeling and analysis of a 7-phase BLDCM with PWM inverter would be helpful for the further studies of the multi-phase BLDCM drive systems.
Comparing the Brushless DFIM to other Generator Systems for Wind Turbine Drive-Trains
Strous, T.D.; Shipurkar, U.; Polinder, H.; Ferreira, J. A.
2016-01-01
In this paper, the brushless DFIM based wind turbine drive-train topology is compared to the DFIG based and PM generator based drive-train topologies, that are most commonly applied in modern wind turbines. The comparison will be based on a 3:2MW case study wind turbine. By using FE based multi-objective optimization, optimized generator designs for the dierent topologies are generated. Then the capital expenditures of the resulting drive-train topologies are calculated and compared. Addition...
A new rotor speed observer for stand-alone brushless doubly-fed induction generators
DEFF Research Database (Denmark)
Liu, Yi; Xu, Wei; Long, Teng
2017-01-01
Brushless doubly-fed induction generator (BDFIG) is a new type of ac induction machine and can be used for both grid-connected and stand-alone power generation. The conventional control methods for the BDFIG almost all rely on the encoder, which brings many limitations in terms of cost, complexity......, reliability, and so on. This paper presents a new rotor speed observer (RSO) for the encoderless operation of the stand-alone BDFIG, which is based on a rotor position phase-locked loop (PLL) and a second-order generalized integrator (SOGI) and independent of any other machine parameters except for the pole...
Directory of Open Access Journals (Sweden)
Yingchao Zhang
2012-09-01
Full Text Available In this paper, a novel doubly excited brushless generator (DEBG with outer radial laminated magnetic barrier rotor (RLMB-rotor for wind power application was designed and analyzed. The DEBG has 10 rotor pole numbers with outer rotor. Its performance is investigated using the 2D transient finite element method. The magnetic fields, torque capability, end winding voltage characteristics, radial magnetic force and energy efficiency were analyzed. All studies in this paper show that the simplicity, reliability, high efficiency and low vibration and noise of the DEBG with outer rotor are attractive for variable speed constant frequency (VSCF wind power generation system.
A General Model for Describing the Performance of Brushless Doubly-Fed Induction Machines
Directory of Open Access Journals (Sweden)
S. M. Allam
2010-12-01
Full Text Available This paper presents a generalized model, by which the dynamic and steady-state behaviour of the Brushless Doubly-Fed Induction Machine (BDFIM can be precisely predicted. The investigated doubly-fed machine has two sets of three-phase stator windings with different pole numbers. The rotor is a squirrel-cage type with a simple modification in order to support the two air-gap rotating fields that are produced by the stator windings and have different pole numbers. The machine model is derived in the qdo-axis variables. The qdoaxes are attached to rotor and hence, it rotates at the rotor speed (
Directory of Open Access Journals (Sweden)
Gerasimos G. Rigatos
2011-12-01
Full Text Available The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor
Variable-frequency inverter controls torque, speed, and braking in ac induction motors
Nola, F. J.
1974-01-01
Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.
Special-Purpose High-Torque Permanent-Magnet Motors
Doane, George B., III
1995-01-01
Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.
Directory of Open Access Journals (Sweden)
Mehrdad Jafarboland
2014-09-01
Full Text Available Designing a two-phase brushless direct current motor (BLDC and analyzing effects of stator slots structure on the motor operation are main objectives of this paper. At first BLDC motor with three different structures for stator slots is designed by using RMxprt software and efficiency of BLDC motor for different structures in full-load condition has been presented, then the BLDC motor in different conditions by using Maxwell 3D software is designed and with finite element method is analyzed electromagnetically. The results of simulations show that by varying stator slots structure efficieny and operation of motor have changed significantly therefore with correct choosing of stator slots structure intersted operation can be found.
Directory of Open Access Journals (Sweden)
Milutin G. Jovanović
2006-12-01
Full Text Available The brushless doubly-fed machine (BDFM allows the use of a partially rated inverter and represents an attractive cost-effective candidate for variable speed applications with limited speed ranges. In its induction machine form (BDFIM, the BDFM has significant rotor losses and poor efficiency due to the cage rotor design which makes the machine dynamic models heavily parameter dependent and the resulting controller configuration complicated and difficult to implement. A reluctance version of the BDFM, the brushless doubly-fed reluctance machine (BDFRM, ideally has no rotor losses, and therefore offers the prospect for higher efficiency and simpler control compared to the BDFIM. A detailed study of this interesting and emerging machine is very important to gain a thorough understanding of its unusual operation, control aspects and compromises between optimal performance and the size of the inverter and the machine. This paper will attempt to address these issues specifically concentrating on developing conditions for various control properties of the machine such as maximum power factor, maximum torque per inverter ampere and minimum copper losses, as well as analysing the associated trade-offs.
Design and Optimization of a Brushless Wound-Rotor Vernier Machine
Directory of Open Access Journals (Sweden)
Qasim Ali
2018-02-01
Full Text Available In this paper, a permanent magnet (PM-less, brushless, wound-rotor vernier machine (BL-WRVM is proposed for variable speed applications such as electric vehicles and washing machines. The wound rotor is excited through an already existing brushless topology, which requires a dual inverter configuration to generate an additional subharmonic component in the stator magnetomotive force (MMF. Different from permanent magnet vernier machines (PMVMs, the proposed BL-WRVM provides easy regulation of the rotor flux for variable speed operation. A 24-slot, 4-pole stator, and 44-pole outer rotor were designed, and 2D finite element analysis (FEA was carried out to determine the performance of the proposed machine. To improve the performance of the proposed machine, optimization of the rotor and stator winding turns was done. The optimized model was further analyzed for wide-speed operation, and its performance was then compared with that of an equivalent permanent magnet vernier machine (PMVM. The proposed machine has the advantage of low cost due to its PM-less structure and is suitable for variable speed applications.
Cuk, Slobodan M. (Inventor); Middlebrook, Robert D. (Inventor)
1980-01-01
A dc-to-dc converter having nonpulsating input and output current uses two inductances, one in series with the input source, the other in series with the output load. An electrical energy transferring device with storage, namely storage capacitance, is used with suitable switching means between the inductances to DC level conversion. For isolation between the source and load, the capacitance may be divided into two capacitors coupled by a transformer, and for reducing ripple, the inductances may be coupled. With proper design of the coupling between the inductances, the current ripple can be reduced to zero at either the input or the output, or the reduction achievable in that way may be divided between the input and output.
DC-Link Compensation Method for Slim DC Link Drives Fed by Soft Grid
DEFF Research Database (Denmark)
Mathe, Laszlo; Rosendahl Andersen, Henrik; Lazar, Radu
2010-01-01
Slim DC-link PWM (AC) drives for lowperformance applications are emerging on the market. Such drives equipped with a small DC-link capacitance exhibit instability tendencies, if installed on a soft line, giving a degraded performance. The total harmonic distortion (THD) and the partially weighted...... method, which ensures the stability of the slim DC-link on a soft grid. The proposed compensation method may be used for open- and closedloop control schemes, requiring a small overhead in the digital implementation.......Slim DC-link PWM (AC) drives for lowperformance applications are emerging on the market. Such drives equipped with a small DC-link capacitance exhibit instability tendencies, if installed on a soft line, giving a degraded performance. The total harmonic distortion (THD) and the partially weighted...... harmonic distortion (PWHD) of the line current are degraded, if resonance between the line impedance and the DC-link capacitance occurs. Likewise, the motor performance is affected negatively giving extra torque ripple, vibration and acoustic-noise emission. This paper proposes a novel DC-link compensation...
2010-07-07
... Corporation Model DC- 10-10, DC-10-10F, DC-10-30, DC-10-30F (KDC-10), DC-10-40, and DC-10-40F Airplanes AGENCY... propose to adopt a new airworthiness directive (AD) for certain Model DC-10-10, DC-10-10F, DC-10-30, DC-10-30F (KDC-10), DC-10- 40, and DC-10-40F airplanes. This proposed AD would require installing a support...
2010-10-14
... Corporation Model DC- 10-10, DC-10-10F, DC-10-30, DC-10-30F (KDC-10), DC-10-40, and DC-10-40F Airplanes AGENCY... (b) None. Applicability (c) This AD applies to McDonnell Douglas Corporation Model DC- 10-10, DC-10-10F, DC-10-30, DC-10-30F (KDC-10), DC-10-40, and DC-10- 40F airplanes, certificated in any category...
Design And Construction Of A Miniaturized Motor Controller For Interplanetary Rover
Lofgren, Henrik; Lijemark, Tomas; Lamoureux, Enrique; Bruhn, Fredrik; Hagstrom, Maria; Hall, Karin; Ljunggren, Anders; Habinc, Sandi; Gruener, Gabriel; Rusconi, Andrea; Boyes, Ben; Wagenbach, Susanne; Poulakis, Pantelis; Kohler, Johan
2011-10-01
providing the software for the MCC, which includes PID position, velocity, and torque control for brushed and brushless DC motors, as well as telecommand, telemetry and housekeeping through SpaceWire and CAN bus. Astrium UK is in charge of the definition of requirements for rover locomotion applications of the MCC. Astrium UK has experience from the Beagle project and is responsible for the Exomars rover development. Selex Galileo is in charge of the definition of requirements for three major applications of the MCC: robotic arms, complex motorized payloads (as drills and sample distribution systems) and exoskeletons. DLR Institute of Space Systems contributes to the definition of requirements related to rover locomotion drives and is furthermore in charge of environmental testing of the MCC prototype.
A flux-mnemonic permanent magnet brushless machine for wind power generation
Yu, Chuang; Chau, K. T.; Jiang, J. Z.
2009-04-01
In this paper, the concept of flux mnemonics is newly extended to the wind power generator. By incorporating a small magnetizing winding into an outer-rotor doubly salient AlNiCo permanent magnet (PM) machine, a new flux-mnemonic PM brushless wind power generator is proposed and implemented. This generator can offer effective and efficient air-gap flux control. First, the characteristics of the proposed generator are analyzed by using the finite element method. Second, the closed-loop flux control is devised to achieve a constant generated voltage under time-varying wind speeds. Finally, the experimental results are given to verify the validity of the proposed generator and control system.
Method and radial gap machine for high strength undiffused brushless operation
Hsu, John S.
2006-10-31
A radial gap brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34) also has at least one stationary excitation coil (35a, 36a) separated from the rotor (32) by a secondary air gap (35e, 35f, 36e, 36f) so as to induce a secondary flux in the rotor (32) which controls a resultant flux in the main air gap (34). Permanent magnetic (PM) material (38) is disposed in spaces between the rotor pole portions (39) to inhibit the second flux from leaking from the pole portions (39) prior to reaching the main air gap (34). By selecting the direction of current in the stationary excitation coil (35a, 36a) both flux enhancement and flux weakening are provided for the main air gap (34). A method of non-diffused flux enhancement and flux weakening for a radial gap machine is also disclosed.
Design and development of a brushless, direct drive solar array reorientation system
Jessee, R. D.
1972-01-01
This report covers the design and development of the laboratory model, and is essentially a compilation of reports covering the system and its various parts. To enhance completeness, the final report of Phase 1 covering circuit development of the controller is also included. A controller was developed for a brushless, direct-drive, single axis solar array reorientation system for earth-pointed, passively-stabilized spacecraft. A control systems was designed and breadboard circuits were built and tested for performance. The controller is designed to take over automatic control of the array on command after the spacecraft is stabilized in orbit. The controller will orient the solar array to the sun vector and automatically track to maintain proper orientation. So long as the orbit is circular, orientation toward the sun is maintained even though the spacecraft goes into the shadow of the earth. Particular attention was given in the design to limit reaction between the array and the spacecraft.
Wang, Hao; Zhang, Fengge; Guan, Tao; Yu, Siyang
2017-09-01
A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.
Brushless Slip-Power Recovery System Simulation by Using Modified Nodal Analysis
Kato, Shinji; Hoshi, Nobukazu; Oguchi, Kuniomi
A novel simulation model for multiphase induction machines formulated by the modified nodal analysis is proposed. In the proposed model, the voltage and the torque equations for an elementary induction machine are used to formulate a multiphase induction machine. It is not necessary to derive the state equations for the multiphase induction machine corresponding to the conduction modes of a power electronics circuit. Thus, it is easy to simulate the complex systems including the multiphase induction machines and many power devices. Two brushless slip-power recovery systems are discussed in this paper to verify the effectiveness of the proposed model. The simulation results show good agreements with the experimental results. The proposed model enables to simulate the systems consisting of the multiphase induction machines and many power devices without derivations of the state equations for multiphase induction machines corresponding to the conduction modes of a power electronics circuit.
Three new DC-to-DC Single-Switch Converters
Directory of Open Access Journals (Sweden)
Barry W. Williams
2017-06-01
Full Text Available This paper presents a new family of three previously unidentified dc-to-dc converters, buck, boost, and buck-boost voltage-transfer-function topologies, which offer advantageous transformer coupling features and low capacitor dc voltage stressing. The three single-switch, single-diode, converters offer the same features as basic dc-to-dc converters, such as the buck function with continuous output current and the boost function with continuous input current. Converter time-domain simulations and experimental results (including transformer coupling support and extol the dc-to-dc converter concepts and analysis presented.
Development of a high-efficiency motor/generator for flywheel energy storage
Lashley, Christopher; Anand, Dave K.; Kirk, James A.; Zmood, Ronald B.
This study addresses the design changes and extensions necessary to construct and test a working prototype of a motor/generator for a magnetically suspended flywheel energy storage system. The brushless motor controller for the motor was specified and the electronic commutation arrangement designed. The laminations were redesigned and fabricated using laser machining. Flux density measurements were made and the results used to redesign the armature windings. A test rig was designed and built, and the motor/generator was installed and speed tested to 9000 rpm. Experimental methods of obtaining the machine voltage and torque constants Kv and Kt, obtaining the useful air-gap flux density, and characterizing the motor and other system components are described. The measured Kv and Kt were approximately 40 percent greater than predicted by theory and initial experiment.
Motor Bourn Magnetic Noise Filtering for Magnetometers in Micro-Rotary Aerial Vehicles
Directory of Open Access Journals (Sweden)
Nathan J. UNWIN
2015-10-01
Full Text Available Avionics systems of micro aerial vehicles (MAV pose unique problems in system design, sensor signal handling and control. This is evident in micro-rotary aircraft as their whole body rotates with the sensors of the flight control. The precise calculation of attitude and heading from magnetometer readings is complex due to the body rotation. It is made even more difficult by noise induced in the geomagnetic signal by fluctuating magnetic field of the closely positioned motors. Filtering that noise is challenging since the rotation speed of motors and the vehicle can be very close. This paper presents analysis of motor induced noise, based on experimental data of brushless micro motors. A novel time domain filter is proposed, designed, implemented in FPGA hardware, tested and compared to other filters. This filter provides good performance even when the rotational rate of the motor and vehicle are close and traditional frequency domain filters would perform poorly.
Three new DC-to-DC Single-Switch Converters
Barry W. Williams; Mona Fouad Moussa
2017-01-01
This paper presents a new family of three previously unidentified dc-to-dc converters, buck, boost, and buck-boost voltage-transfer-function topologies, which offer advantageous transformer coupling features and low capacitor dc voltage stressing. The three single-switch, single-diode, converters offer the same features as basic dc-to-dc converters, such as the buck function with continuous output current and the boost function with continuous input current. Converter time-domain simulations ...
Gerasimos G. Rigatos; Pierluigi Siano
2011-01-01
The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor's angular velocity is estimated by an Extended Kalman Filter which processes measurements of the rotor's angle. Sensorless control of the induction motor is again implemented through feedback of the estimated state vec...
Moazen, Maryam; Kazemzadeh, Rasool; Azizian, Mohammad-Reza
2016-01-01
In this paper, a predictive direct power control (PDPC) method for the brushless doubly fed reluctance generator (BDFRG) is proposed. Firstly, the BDFRG active and reactive power equations are derived and then the active and reactive power variations have been predicted within a fixed sampling period. The predicted power variations are used to calculate the required voltage of the secondary winding so that the power errors at the end of the following sampling period are eliminated. Switching ...
VALVE DIRECT CURRENT MOTOR ON THE BASIS OF THE SYNCHRONOUS MACHINE OF INVERSE DESIGN
National Research Council Canada - National Science Library
D. I. Morozov; I. S. Shevchenko
2014-01-01
.... It is shown that the switching frequency is determined by the armature rotation speed. Static mechanical characteristic of the rectifying DC machine is similar to that of the independent excitation of DC motor...
VALVE DIRECT CURRENT MOTOR ON THE BASIS OF THE SYNCHRONOUS MACHINE OF INVERSE DESIGN
Directory of Open Access Journals (Sweden)
D. I. Morozov
2014-12-01
Full Text Available A mechanical collector of conventional DC machine is the element that limits the current and the armature speed and increases inertia. DC machine rectification realized on the basis of conventional DC machine is described; it externally rectifies the switch which is the analogue of the collector. The armature has a design similar to a phase-wound rotor of induction machine. It is shown that the switching frequency is determined by the armature rotation speed. Static mechanical characteristic of the rectifying DC machine is similar to that of the independent excitation of DC motor. The proposed variant of the DC motor is actually a synchronous machine of inverse design with armature regulation frequency. The motor is described as traditional salient pole synchronous machine. Starting dynamics simulation shows that the rectifying DC machine has better dynamic properties compared to the conventional DC motor due to overload capability and reduces the inertia of the armature
2010-11-05
... Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F... to supersede an existing airworthiness directive (AD) that applies to all Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F, MD-10- 10F, MD-10-30F, MD-11...
2010-04-21
... Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F... (AD) for certain Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC- 10A and KDC-10), DC-10-40, DC-10-40F, MD-10-10F, MD-10-30F, MD-11, and MD-11F airplanes. This proposed AD would require...
2010-05-04
... Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F.... ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F, MD-10-10F, MD...
2010-10-01
... Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F.... ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F, MD-10-10F, MD...
Brown, Gerald V.; Kascak, Albert F.
2004-01-01
A scaled blade-tip-drive test rig was designed at the NASA Glenn Research Center. The rig is a scaled version of a direct-current brushless motor that would be located in the shroud of a thrust fan. This geometry is very attractive since the allowable speed of the armature is approximately the speed of the blade tips (Mach 1 or 1100 ft/s). The magnetic pressure generated in the motor acts over a large area and, thus, produces a large force or torque. This large force multiplied by the large velocity results in a high-power-density motor.
Three-port DC-DC converter with new integrated transformer for DC Distribution Systems
DEFF Research Database (Denmark)
Ouyang, Ziwei; Andersen, Michael A. E.
2014-01-01
A new integrated transformer for three-port dc-dc converter is proposed to overcome the power coupling effect existed in some known multiple inputs dc-dc converters. Orthogonal primary windings arrangement and in series connection of diagonal secondary Windings enables a fully power decoupling...
Directory of Open Access Journals (Sweden)
Boumediène Allaoua
2013-01-01
Full Text Available The development of electric vehicles power electronics system control comprising of DC-AC inverters and DC-DC converters takes a great interest of researchers in the modern industry. A DC-AC inverter supplies the high power electric vehicle motors torques of the propulsion system and utility loads, whereas a DC-DC converter supplies conventional low-power, low-voltage loads. However, the need for high power bidirectional DC-DC converters in future electric vehicles has led to the development of many new topologies of DC-DC converters. Nonlinear control of power converters is an active area of research in the fields of power electronics. This paper focuses on a fuzzy sliding mode strategy (FSMS as a control strategy for boost DC-DC converter power supply for electric vehicle. The proposed fuzzy controller specifies changes in the control signal based on the surface and the surface change knowledge to satisfy the sliding mode stability and attraction conditions. The performances of the proposed fuzzy sliding controller are compared to those obtained by a classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variation of the load resistance and the input voltage of the studied converter.
SIMULATION MODELS OF HEAVY TRUCKS TRAFFIC CONTROL WITH ELECTRIC DC DRIVE
Directory of Open Access Journals (Sweden)
N. N. Hurski
2015-01-01
Full Text Available A model of the straight course of movement of the mobile machine with a traction electric motor DC. Traffic management controller provides a closed classical scheme with feedback. The mathematical model of the electric DC motor with the energy dissipation in the rotor bearings. Design scheme of mobile machines include speed dial controller, traction electric motor, gearbox, transmission and progressively moving mass on the elasticdissipative wheel. The results of the simulation of the machine in the form of temporary processes of change control signals, voltage and current in the windings of the motor and traction power developed on the wheel.
Adaptive Fuzzy Logic Controllers for DC Drives: A Survey of the State of the art
Directory of Open Access Journals (Sweden)
E. E. El-kholy
2006-09-01
Full Text Available Fuzzy Logic Control (FLC has gained a great demand in process control applications. Fuzzy Logic (FL technology enables the use of engineering experience and experimental results in designing an expert system capable of handling uncertain or fuzzy quantities. This paper presents a comprehensive review of FLC in the field of Direct Current (DC motor drive systems. Firstly, the principles of fuzzy logic theory will be briefly presented. Secondly, the employment of the FL techniques in a control system will be outlined. The concept of FLC can be extended for application to different DC motor drives such as: series, separately, shunt and permanent magnet DC motor. The limitations of FLC when applied to DC motor drives have been widely reported in the literature. This article also cites these limitations as well as the advancements in solving them through, for example, the genetic algorithms and the neural networks techniques.
Overview of Multi-DC-Bus Solutions for DC Microgrids
DEFF Research Database (Denmark)
Ricchiuto, D.; Mastromauro, R.A.; Liserre, Marco
2013-01-01
DC Microgrids have recently received a lot of attention in the last years due to high penetration of renewable energy sources as well as distributed energy storage systems. In the future DC microgrids could be preferable respect to AC microgrids in terms of redundancy since multi-DC-Bus solutions...... could provide a continuative power supply to the loads. An overview of Multi-DC-Bus solutions is presented in this paper. The performances are compared on the basis of possible DC microgrid configurations, redundancy, different DC voltage levels....
Campiotti, Richard H.; Hopwood, James E.
1990-01-01
A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.
Energy Technology Data Exchange (ETDEWEB)
Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)
1997-12-31
In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.
DEFF Research Database (Denmark)
Hounsgaard, Jorn
2017-01-01
Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...
Early Oscillation Detection for DC/DC Converter Fault Diagnosis
Wang, Bright L.
2011-01-01
The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.
Efficiency Measurement Using a Motor-Dynamo Module
Ng, Pun-hon; Wong, Siu-ling; Mak, Se-yuen
2009-01-01
In this article, we describe a simple method which can be used to measure the efficiency of a low power dc motor, a motor-converted dynamo and a coupled motor-dynamo module as a function of the speed of rotation. The result can also be used to verify Faraday's law of electromagnetic induction. (Contains 1 table and 8 figures.)
Rectifier Fault Diagnosis and Fault Tolerance of a Doubly Fed Brushless Starter Generator
Directory of Open Access Journals (Sweden)
Liwei Shi
2015-01-01
Full Text Available This paper presents a rectifier fault diagnosis method with wavelet packet analysis to improve the fault tolerant four-phase doubly fed brushless starter generator (DFBLSG system reliability. The system components and fault tolerant principle of the high reliable DFBLSG are given. And the common fault of the rectifier is analyzed. The process of wavelet packet transforms fault detection/identification algorithm is introduced in detail. The fault tolerant performance and output voltage experiments were done to gather the energy characteristics with a voltage sensor. The signal is analyzed with 5-layer wavelet packets, and the energy eigenvalue of each frequency band is obtained. Meanwhile, the energy-eigenvalue tolerance was introduced to improve the diagnostic accuracy. With the wavelet packet fault diagnosis, the fault tolerant four-phase DFBLSG can detect the usual open-circuit fault and operate in the fault tolerant mode if there is a fault. The results indicate that the fault analysis techniques in this paper are accurate and effective.
Research on an Axial Magnetic-Field-Modulated Brushless Double Rotor Machine
Directory of Open Access Journals (Sweden)
Bin Yu
2013-09-01
Full Text Available Double rotor machine, an electronic continuously variable transmission, has great potential in application of hybrid electric vehicles (HEVs, wind power and marine propulsion. In this paper, an axial magnetic-field-modulated brushless double rotor machine (MFM-BDRM, which can realize the speed decoupling between the shaft of the modulating ring rotor and that of the permanent magnet rotor is proposed. Without brushes and slip rings, the axial MFM-BDRM offers significant advantages such as excellent reliability and high efficiency. Since the number of pole pairs of the stator is not equal to that of the permanent magnet rotor, which differs from the traditional permanent magnet synchronous machine, the operating principle of the MFM-BDRM is deduced. The relations of corresponding speed and toque transmission are analytically discussed. The cogging toque characteristics, especially the order of the cogging torque are mathematically formulated. Matching principle of the number of pole pairs of the stator, that of the permanent magnet rotor and the number of ferromagnetic pole pieces is inferred since it affects MFM-BDRM’s performance greatly, especially in the respect of the cogging torque and electromagnetic torque ripple. The above analyses are assessed with the three-dimensional (3D finite-element method (FEM.
2010-02-08
... Douglas Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F, MD-10-10F, MD-10-30F, MD-11, and MD-11F Airplanes AGENCY: Federal Aviation... airworthiness directive (AD) for certain Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC- 10A and...
Design of a kilowatt DC-DC converter
Directory of Open Access Journals (Sweden)
Liu Hongxing
2017-01-01
Full Text Available In view of the low power of traditional DC-DC converters, a DC-DC converter with a kilowatt power is designed. The input signal's frequency is 1 kHz and the duty cycle is 5%. The PWM signal controls the high-speed conduction or cut-off of the switch tube. The input DC voltage is 36V, and the output voltage is twice as high as the input voltage. The output power is greater than 1 KW; the circuit conversion efficiency is 87.21%.
Simulink-aided Design and Implementation of Sensorless BLDC Motor Digital Control System
Zhilenkov, A. A.; Tsvetkov, Y. N.; Chistov, V. B.; Nyrkov, A. P.; Sokolov, S. S.
2017-07-01
The paper describes the process of creating of brushless direct current motor’s digital control system. The target motor has no speed sensor, so back-EMF method is used for commutation control. Authors show how to model the control system in MatLab/Simulink and to test it onboard STM32F4 microcontroller.This technology allows to create the most flexible system, which will control possible with a personal computer by communication lines. It is possible to examine the signals in the circuit of the actuator without any external measuring instruments - testers, oscilloscopes, etc. - and output waveforms and measured values of signals directly on the host PC.
Mia, Gredelj
2014-01-01
The conventional electrical system in place today sees our electrical devices powered by AC mains. But as renewable technologies such as solar photovoltaic and wind power become more prevalent at a household level, DC micro-grids could be a cheaper and more efficient alternative. New lighting devices (LED) can reduce the electricity consumption substantially. Two alternatives are envisioned in this paper: A stand-alone alternative in which there is no grid connection, that would require local...
Directory of Open Access Journals (Sweden)
Wang Jixiang
2017-01-01
Full Text Available Precise electro-magnetic parameters are significant in the investigation of characteristic for brushless synchronous starter/generator system, especially the inductance during the starting process.This paper presented an analytical method for inductance calculation, which analysed the influence of stator windings’ parallel structure on inductance calculation and took the skewed slot structure into consideration. Due to the skewed slot structure, applicable two-dimensional coordinate systems were established .This proposed method could save time in calculation according to the simplification to some extent. The results of analytical method were presented and compared with the simulation results. The reason for the differences has been analyzed.
DEFF Research Database (Denmark)
Han, Peng; Cheng, Ming; Chen, Zhe
2016-01-01
This paper presents a dual-electrical-port control scheme of cascaded brushless doubly-fed induction machine (CBDFIM) for EV/HEV applications aiming at achieving doubled constant torque and constant power regions compared to its singly-fed counterpart with the same equivalent pole pair number....... The proposed control method enables the synchronous control of both current inputs of power winding and control winding and as a consequence, not only the control complexity, but also slip frequency and core loss are significantly reduced in comparison with the single-electrical-port control scheme. Computer...
Modeling and control of a novel dual-stator brushless doubly-fed wind power generation system
DEFF Research Database (Denmark)
Cheng, Ming; Wei, Xinchi; Han, Peng
2014-01-01
A novel dual-stator brushless doubly-fed induction generator-based wind power generation system (DSBDFIG-WPGS), with the merits of reduced converter scale, compact structure and high reliability, is proposed in this paper. System topology, operational principle and power flow of the DSBDFIG......-WPGS are analyzed. Based on the modelling of the system, a vector control scheme is proposed to realize decoupled control of the reactive power and the speed. Furthermore, a speed based maximum power point tracking method is adopted in the system. The simulation results demonstrate stable operation of the DSBDFIG...
Robust method for stator current reconstruction from DC link in a ...
African Journals Online (AJOL)
... induction motor drive, using a dSPACE 1104 controller board is presented to validate the proposed algorithm. Keywords: Algorithm, current-reconstruction, current-sensor, dc-link, hysteresis modulation, three-phase induction motor. International Journal of Engineering, Science and Technology, Vol. 2, No. 10, 2010, pp.
Dynamic Evolution Control for Fuel Cell DC-DC Converter
Directory of Open Access Journals (Sweden)
Ahmad Saudi Samosir
2011-04-01
Full Text Available Fuel cells are new alternative energy resource that has a great promise for distributed generation and electric vehicle application. However, fuel cells have a slow response due to their slow internal electromechanical and thermodynamic response. To optimize the fuel cell system performance, a fuel cell DC-DC converter with an appropriate controller which can regulate the power flow and automatically adjust the converter output voltage is needed. This paper proposes a new control technique for fuel cell DC-DC power converter. Design of the proposed control method for fuel cell DC-DC power converter is provided. A new approach for converter controllers synthesis based on dynamic evolution control theory is presented. In this paper, synthesis example of boost DC-DC converter is discussed. Performance of the proposed dynamic evolution control under step load variation condition is simulated under Matlab-Simulink environment. Simulation results show that the proposed techniques are capable for controlling fuel cell DC-DC converter.
A new optimum topology switching dc-to-dc converter
Cuk, S.; Middlebrook, R. D.
1977-01-01
A novel switching dc-to-dc converter is presented, which has the same general conversion property (increase or decrease of the input dc voltage) as does the conventional buck-boost converter, and which offers through its new optimum topology higher efficiency, lower output voltage ripple, reduced EMI, smaller size and weight, and excellent dynamic response. One of its most significant advantages is that both input and output current are not pulsating but are continuous (essentially dc with small superimposed switching current ripple), thus resulting in a close approximation to the ideal physically nonrealizable dc-to-dc transformer. The converter retains the simplest possible structure with the minimum number of components which, when interconnected in its optimum topology, yield the maximum performance.
Scientific Laboratory Platform for Testing the Electric Vehicle Equipped with DC Drive
Directory of Open Access Journals (Sweden)
Brazis V.
2014-12-01
Full Text Available The authors present a test platform for the low-power DC electric motor of a traction vehicle or a high-power motor scaled in the traction and braking modes. The load emulator of the traction drive is made using an induction motor controlled by a frequency converter. A microcontroller controls the bi-directional DC/DC converter and sends a speed reference signal to the frequency converter. The test bench is meant for determination of the power consumption by motor in various speed cycles, and will be used to demonstrate the operation of electric vehicle to students and to investigate the charging/discharging strategies of energy sources.
PENGGUNAAN FUZZY LOGIC UNTUK KONTROL PARALLEL CONVERTER DC-DC
Directory of Open Access Journals (Sweden)
Bambang Prio Hartono
2012-09-01
Full Text Available Abstract: Using system fuzzy logic as control technology have been used on low load dc-dc converter with combined parallel compiled dc-dc converter can obtain big load. With existence of differrence of component parameter and each parallel compiled converter can obtained different current and voltage output. Function of controller for to do adjustment, so that current which is applied to load by each converter can be obtained difference error as small as possible or same. The object of research is developing design of large signal dc-dc converter which is combined with using FLC so that obtain better performance. To get better performance have been made plant model and simulation with CDE method. The more systematic system and design is needed to overcome bigger load on dc-dc converter, so that parallel compiled current master slave control system on dc-dc converter with using fuzzy logic controller is used. Result of research showed that error or difference of current which is applied to load can handled by fuzzy logic controller. Technic of current and voltage controller co to do adjustment current and voltage distribution equally to load. Distribution of iL1,iL2 and output voltage Vo on dc-dc converter with load 2,25 until 7,875 and voltage 100 until 120 volt, load current beetwen 12 until 48, % relatif error Vo 0,4% until 0,9%.
Direct Sensitivity Analysis of the DC-to-DC Converters
Directory of Open Access Journals (Sweden)
Elena Niculescu
2009-05-01
Full Text Available The mathematical principle of the directsensitivity analysis of the dynamic systems and itsapplication to the DC-to-DC PWM converters arepresented. The model of the dynamic system associatedto the PWM Sepic converter with parasitic includedand continuous conduction mode (CCM, and coupledinductors was used in this study. The modelling of theconverter and the state sensitivity analysis with respectto some parameters of the converter have beenperformed with MATLAB environment. The algorithmcarried out for computing the state sensitivity functionsof converter can be applied to other configurations ofDC-to-DC PWM converters, for the two operatingmodes (CCM and DCM, with parasitic included andwith coupled or separate inductors, regardless ofsystem order.
Directory of Open Access Journals (Sweden)
Ping Zheng
2017-05-01
Full Text Available The magnetic-field-modulated brushless double-rotor machine (MFM-BDRM, composed of a stator, a modulating ring rotor, and a PM rotor, is a kind of power-split device for hybrid electric vehicles (HEVs. In this paper, a new MFM-BDRM with sinusoidal-permeance modulating ring named Sinusoidal-Permeance-Modulating-Ring Brushless Double-Rotor Machine (SPMR-BDRM is proposed to solve the problem of poor mechanical strength and large iron loss. The structure and the operating principle of the MFM-BDRM are introduced. The design principle of the sinusoidal-permeance modulating ring is analyzed and derived. The main idea of that is to minimize the harmonic permeance of air gap, thereby the harmonic magnetic fields can be restrained. There are comparisons between a MFM-BDRM with sinusoidal-permeance modulating ring and a same size MFM-BDRM with traditional modulating ring, including magnetic field distributions and electromagnetic performances. Most importantly, the iron losses are compared under six different conditions. The result indicates that the harmonic magnetic fields in the air gap are restrained; the electromagnetic torque and power factor are almost the same with same armature current; the torque ripples of the modulating ring rotor and the PM rotor are reduced; the stator loss is reduced by 13% at least and the PM loss is reduced by 20% at least compared with the same size traditional MFM-BDRM under the same operating conditions.
Zheng, Ping; Liu, Jiaqi; Bai, Jingang; Song, Zhiyi; Liu, Yong
2017-05-01
The magnetic-field-modulated brushless double-rotor machine (MFM-BDRM), composed of a stator, a modulating ring rotor, and a PM rotor, is a kind of power-split device for hybrid electric vehicles (HEVs). In this paper, a new MFM-BDRM with sinusoidal-permeance modulating ring named Sinusoidal-Permeance-Modulating-Ring Brushless Double-Rotor Machine (SPMR-BDRM) is proposed to solve the problem of poor mechanical strength and large iron loss. The structure and the operating principle of the MFM-BDRM are introduced. The design principle of the sinusoidal-permeance modulating ring is analyzed and derived. The main idea of that is to minimize the harmonic permeance of air gap, thereby the harmonic magnetic fields can be restrained. There are comparisons between a MFM-BDRM with sinusoidal-permeance modulating ring and a same size MFM-BDRM with traditional modulating ring, including magnetic field distributions and electromagnetic performances. Most importantly, the iron losses are compared under six different conditions. The result indicates that the harmonic magnetic fields in the air gap are restrained; the electromagnetic torque and power factor are almost the same with same armature current; the torque ripples of the modulating ring rotor and the PM rotor are reduced; the stator loss is reduced by 13% at least and the PM loss is reduced by 20% at least compared with the same size traditional MFM-BDRM under the same operating conditions.
A high efficiency motor/generator for magnetically suspended flywheel energy storage system
Niemeyer, W. L.; Studer, P.; Kirk, J. A.; Anand, D. K.; Zmood, R. B.
1989-01-01
The authors discuss the theory and design of a brushless direct current motor for use in a flywheel energy storage system. The motor design is optimized for a nominal 4.5-in outside diameter operating within a speed range of 33,000-66,000 revolutions per minute with a 140-V maximum supply voltage. The equations which govern the motor's operation are used to compute a series of acceptable design parameter combinations for ideal operation. Engineering tradeoffs are then performed to minimize the irrecoverable energy loss while remaining within the design constraint boundaries. A final integrated structural design whose features allow it to be incorporated with the 500-Wh magnetically suspended flywheel is presented.
Control of a Dual-Stator Flux-Modulated Motor for Electric Vehicles
Directory of Open Access Journals (Sweden)
Xinhua Guo
2016-07-01
Full Text Available This paper presents the control strategies for a novel dual-stator flux-modulated (DSFM motor for application in electric vehicles (EVs. The DSFM motor can be applied to EVs because of its simple winding structure, high reliability, and its use of two stators and rotating modulation steels in the air gap. Moreover, it outperforms conventional brushless doubly-fed machines in terms of control performance. Two stator-current-oriented vector controls with different excitation in the primary winding, direct and alternating current excitation, are designed, simulated, and evaluated on a custom-made DSFM prototype allowing the decoupled control of torque. The stable speed response and available current characteristics strongly validate the feasibility of the two control methods. Furthermore, the proposed control methods can be employed in other applications of flux-modulated motors.
Energy Technology Data Exchange (ETDEWEB)
Kunze, G.
2002-04-01
Three-phase commutator motors are speed-controlled motors which have been used for many years in application where exact electronic contro is not required, although they are more complex than d.c. shunt motors. [German] Als drehzahlsteuerbarer Motor hat sich insbesondere in Anwendungen, bei denen es nicht auf exakte elektronische Steuerung ankommt, ueber viele Jahre hinweg auch der Drehstrom-Kommutatormotor einen Namen gemacht. Dessen Innenleben ist allerdings komplizierter als das des vergleichbaren Gleichstrom-Nebenschlussmotors. (orig.)
Fiabilidad de un motor de corriente continua
Flotats Villagrasa, Carles
2009-01-01
El objetivo del proyecto “Fiabilidad de un motor de corriente continua” consiste en estudiar los modos de fallo de un motor DC empleado en un automatismo para poder determinar idóneamente el mantenimiento preventivo; en encontrar recomendaciones de uso y diseño para reducir la severidad de los fallos y en desarrollar soluciones para aquellos modos de difícil cuantificación. Como pasos previos, se da una introducción al producto que usará el motor y al motor en si mismo, a los modos de uso ...
Stepper motor instabilities in an aerospace application
Kackley, Russell; Mccully, Sean
1992-01-01
Stepper motors are frequently used in positioning mechanisms because they have several advantages over ordinary DC motors. However, there is frequently no feedback loop and the motor may exhibit instabilities under some conditions. A stepper motor in an aerospace positioning mechanism was investigated. During testing, the motor exhibited unstable behavior, such as backrunning and forward running. The instability was dependent on voltage pulse characteristics, temperature, positioning angle, step rate, and interaction between the two motors in the system. Both testing and analysis results verified the instability. A special purpose FORTRAN code was written to simulate the system. This code was combined with another simpler code to show the performance of the system in the phase plane so that instability boundaries could be displayed along with the motor performance. The analysis was performed to verify that proposed modifications would produce stable performance before implementation in the hardware. Subsequent testing verified the analytic stability predictions.
DC Distribution Systems and Microgrids
DEFF Research Database (Denmark)
Dragicevic, Tomislav; Anvari-Moghaddam, Amjad; Quintero, Juan Carlos Vasquez
2017-01-01
A qualitative overview of different hardware topologies and control systems for DC MGs has been presented in this chapter. Some challenges and design considerations of DC protections systems have also been discussed. Finally, applications of DC MGs in emerging smart grid applications have been su...... in different industries and gradually lead to new ways of rethinking of the future power distribution philosophies, especially with the emergence of SSTs. Research in DC systems, especially in the power electronics-based technologies will be highly attractive in the future....
Integrated Multimotor Electrical DC Drive for Metallurgical Rolling Table
Directory of Open Access Journals (Sweden)
Gała Marek
2015-06-01
Full Text Available A drive system of a section of a metallurgical rolling table consisting of six dc motors, 2220 amperes of total current, fed from a single ABB reversible thyristor converter has been described in this paper. Autonomous excitation circuits of the motors are fed from independent thyristor converters working in the so called MULTIFEX system linked with a supervisory high power converter. There are presented schemes of the DSL communication realized by FEX excitation cards of the motors using the SDSC card of the DCS-800-S02 converter and logic control system based on a PLC controller. The parameterization of the DCS-800 converter and the DCF 803 excitation systems was conducted using the DriveWindow software tool. Significant waveforms of voltages, currents and the estimated motor velocity are described and presented for the idle run as well as during transporting sheets discharged from a pusher furnace.
Soft-commutated direct current motor
Energy Technology Data Exchange (ETDEWEB)
Hsu, J.S.
1999-07-27
A method and circuit is disclosed for soft-commutation of a direct current (DC) motor. An attenuation circuit is connected through auxiliary brushes A, A[prime], B and B[prime] to the commutator (16) to drain circuit from successive armature coils (15) before the main brushes (27, 28) disconnects from each of the coils (15). This prevents the spark generation that normally occurs in conventional DC motors. The attenuation circuit may also be connected before energization of the coil (15) for a soft turning on operation. 13 figs.
Soft-commutated direct current motor
Energy Technology Data Exchange (ETDEWEB)
Hsu, John S. (Oak Ridge, TN)
1999-01-01
A method and circuit is disclosed for soft-commutation of a direct current (DC) motor. An attenuation circuit is connected through auxiliary brushes A, A', B and B' to the commutator (16) to drain circuit from successive armature coils (15) before the main brushes (27, 28) disconnects from each of the coils (15). This prevents the spark generation that normally occurs in conventional DC motors. The attenuation circuit may also be connected before energization of the coil (15) for a soft turning on operation.
SCM Handbooks for dc-to-dc Converters
Lee, F.; Mohmoud, M.; Yu, Y.
1984-01-01
Two documents aid in design of control modules for dc-to-dc converters. Features of SCM include: Adaptive stability, power component stress limiting, implementation of various control laws, unified design approach. Analysis and quidelines contained in handbooks enable engineer to design SCM circuit and confidently predict resulting overall performance.
Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's
Gruber, Robert P.; Gott, Robert W.
1991-01-01
In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.
Early Oscillation Detection Technique for Hybrid DC/DC Converters
Wang, Bright L.
2011-01-01
Oscillation or instability is a situation that must be avoided for reliable hybrid DC/DC converters. A real-time electronics measurement technique was developed to detect catastrophic oscillations at early stages for hybrid DC/DC converters. It is capable of identifying low-level oscillation and determining the degree of the oscillation at a unique frequency for every individual model of the converters without disturbing their normal operations. This technique is specially developed for space-used hybrid DC/DC converters, but it is also suitable for most of commercial and military switching-mode power supplies. This is a weak-electronic-signal detection technique to detect hybrid DC/DC converter oscillation presented as a specific noise signal at power input pins. It is based on principles of feedback control loop oscillation and RF signal modulations, and is realized by using signal power spectral analysis. On the power spectrum, a channel power amplitude at characteristic frequency (CPcf) and a channel power amplitude at switching frequency (CPsw) are chosen as oscillation level indicators. If the converter is stable, the CPcf is a very small pulse and the CPsw is a larger, clear, single pulse. At early stage of oscillation, the CPcf increases to a certain level and the CPsw shows a small pair of sideband pulses around it. If the converter oscillates, the CPcf reaches to a higher level and the CPsw shows more high-level sideband pulses. A comprehensive stability index (CSI) is adopted as a quantitative measure to accurately assign a degree of stability to a specific DC/DC converter. The CSI is a ratio of normal and abnormal power spectral density, and can be calculated using specified and measured CPcf and CPsw data. The novel and unique feature of this technique is the use of power channel amplitudes at characteristic frequency and switching frequency to evaluate stability and identify oscillations at an early stage without interfering with a DC/DC converter s
Development of a DC propulsion system for an electric vehicle
Kelledes, W. L.
1984-01-01
The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.
Hybrid Switch Reluctance Drives For Pump Applications
DEFF Research Database (Denmark)
Jakobsen, Uffe
The initial research problem is to investigate an alternative motor drive to the existing permanent magnet synchronous and brushless DC-motor drives for pump applications. A review of different motor types showed that a possible candidate for another low cost permanent magnet motor may be the sin......The initial research problem is to investigate an alternative motor drive to the existing permanent magnet synchronous and brushless DC-motor drives for pump applications. A review of different motor types showed that a possible candidate for another low cost permanent magnet motor may...... magnet motors. The focus of this thesis is regarding the design and control of a single phase hybrid switched reluctance motor (HSRM) intended to drive e.g. a centrifugal pump. A single phase hybrid switched reluctance motor was designed with a novel stator pole shaping method and a new arrangement...
Modular Power System Configured with Standard Product Hybrid DC-DC Converters Project
National Aeronautics and Space Administration — VPT proposes an innovative concept whereby complex, multiple-output, DC-DC converter systems can be configured through use of only 2 standard product hybrid DC-DC...
Triple voltage dc-to-dc converter and method
Su, Gui-Jia
2008-08-05
A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.
Bi-Directional DC-DC Converter for PHEV Applications
Energy Technology Data Exchange (ETDEWEB)
Abas Goodarzi
2011-01-31
Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.
Evaluation of Retrofit Variable-Speed Furnace Fan Motors
Energy Technology Data Exchange (ETDEWEB)
Aldrich, R. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Williamson, J. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)
2014-01-01
In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3™ replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost effectiveness. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Results indicate that BPM replacement motors will be most cost effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.
Directory of Open Access Journals (Sweden)
Maryam Moazen
2016-09-01
Full Text Available In this paper, a predictive direct power control (PDPC method for the brushless doubly fed reluctance generator (BDFRG is proposed. Firstly, the BDFRG active and reactive power equations are derived and then the active and reactive power variations have been predicted within a fixed sampling period. The predicted power variations are used to calculate the required voltage of the secondary winding so that the power errors at the end of the following sampling period are eliminated. Switching pulses are produced using space vector pulse width modulation (SVPWM approach which causes to a fixed switching frequency. The BDFRG model and the proposed control method are simulated in MATLAB/Simulink software. Simulation results indicate the good performance of the control system in tracking of the active and reactive power references in both power step and speed variation conditions. In addition, fast dynamic response and lower output power ripple are other advantages of this control method.
DEFF Research Database (Denmark)
Han, Peng; Cheng, Ming; Jiang, Yunlei
2017-01-01
with a full set of geometrical, electromagnetic, and thermal constraints is developed based on the power flow of generating operation. The optimized results exhibit comparable torque per volume and torque per weight to standard industrial induction machines with the similar size, synchronous speed, and power...... and spatial harmonic distortion. This paper presents a simple design optimization approach for torque/power density optimization of a dual-stator brushless doubly-fed induction generator, which, unlike the modulation types, is inherently free of harmonic-related issues. An analytical average torque model...... loss per-unit area. Mechanical considerations, manufacturing costs, and control aspects are also discussed to show the high potential in superseding existing doubly-fed induction generators. Finite-element analysis and experimental results of a 3.7-kW prototype are used to validate the effectiveness...
Implementation of a Fuzzy Logic Speed Controller for a Permanent ...
African Journals Online (AJOL)
The purpose is to achieve accurate trajectory control of the speed of permanent magnet brushless DC Motor, especially when the motor and load parameters are unknown. Based on the mathematic model of BLDCM, a fuzzy logic controller is designed, and the membership function is composed by Gauss function.
DEFF Research Database (Denmark)
2015-01-01
capacitor coupled between the positive and negative input terminals and the secondary side circuit comprises an output capacitor chargeable to a converter output voltage between a first positive electrode and a second negative electrode. A switched energy storage network is configured for alternatingly...... being charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier in accordance with a switch control signal to produce the converter output voltage. The step-up DC-DC power converter comprises an electrical short-circuit connection across the galvanic......The present invention relates to a step-up DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage and an input...
Active pre-filters for dc/dc Boost regulators
Directory of Open Access Journals (Sweden)
Carlos Andrés Ramos-Paja
2014-05-01
Full Text Available This paper proposes an active pre-filter to mitigate the current harmonics generated by classical dc/dc Boost regulators, which generate current ripples proportional to the duty cycle. Therefore, high output voltage conditions, i.e., high voltage conversion ratios, produce high current harmonics that must be filtered to avoid damage or source losses. Traditionally, these current components are filtered using electrolytic capacitors, which introduce reliability problems because of their high failure rate. The solution introduced in this paper instead uses a dc/dc converter based on the parallel connection of the Boost canonical cells to filter the current ripples generated by the Boost regulator, improving the system reliability. This solution provides the additional benefits of improving the overall efficiency and the voltage conversion ratio. Finally, the solution is validated with simulations and experimental results.
Fuzzy Control of DC-DC Converters with Input Constraint
Directory of Open Access Journals (Sweden)
D. Saifia
2012-01-01
Full Text Available This paper proposes a method for designing fuzzy control of DC-DC converters under actuator saturation. Because linear control design methods do not take into account the nonlinearity of the system, a T-S fuzzy model and a controller design approach is used. The designed control not only handles the external disturbance but also the saturation of duty cycle. The input constraint is first transformed into a symmetric saturation which is represented by a polytopic model. Stabilization conditions for the state feedback system of DC-DC converters under actuator saturation are established using the Lyapunov approach. The proposed method has been compared and verified with a simulation example.
Decentralized Interleaving of Paralleled Dc-Dc Buck Converters
Energy Technology Data Exchange (ETDEWEB)
Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sinha, Mohit [University of Minnesota; Dhople, Sairaj [University of Minnesota; Poon, Jason [University of California at Berkeley
2017-08-21
We present a decentralized control strategy that yields switch interleaving among parallel-connected dc-dc buck converters. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform and no communication between different controllers is needed. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work presents the first fully decentralized strategy for switch interleaving in paralleled dc-dc buck converters.
Decentralized Interleaving of Paralleled Dc-Dc Buck Converters: Preprint
Energy Technology Data Exchange (ETDEWEB)
Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sinha, Mohit [University of Minnesota; Dhople, Sairaj [University of Minnesota; Poon, Jason [University of California at Berkeley
2017-09-01
We present a decentralized control strategy that yields switch interleaving among parallel connected dc-dc buck converters without communication. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work represents the first fully decentralized strategy for switch interleaving of paralleled dc-dc buck converters.
RESONANT STEP-DOWN DC-DC POWER CONVERTERS
DEFF Research Database (Denmark)
2015-01-01
The present invention relates to a resonant step-down DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage...... charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier by a semiconductor switch arrangement in accordance with a switch control signal to produce the converter output voltage. The resonant step-down DC-DC power converter comprises an electrical short......-circuit connection across the galvanic isolation barrier connecting, in a first case, the second negative electrode of the output capacitor to the positive input terminal of the primary side circuit or, in a second case, connecting the second positive electrode of the output capacitor to the negative input terminal...
Sensorless induction motor drive for electric vehicle application ...
African Journals Online (AJOL)
This approach is applied to an existing commercial utility electric vehicle where previously used direct current (DC) series motor was replaced by the new AC induction ... induction motor, field oriented control, sensorless control. International Journal of Engineering, Science and Technology, Vol. 2, No. 10, 2010, pp. 20-34 ...
DC BLOWER MOTOR OPERATED COOLER WITH SOLAR PANEL
Krishan Kumar*, Naresh
2016-01-01
cooler with solar panel for residential Cooling is very important during the summer as well as in the life to maintain the food, fish, and many items at constant temperature to avoid the bad effect of viruses’. But air cooling is very important part during the summer for a man. Cooling process employs the different method to cool the air. Today air cooling methods are very expensive for AC coolers, air conditioning, fans and dehumidifiers. To running these products required Ac supply/el...
DC-Compensated Current Transformer.
Ripka, Pavel; Draxler, Karel; Styblíková, Renata
2016-01-20
Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component.