Chiral Stationary Phases Based on Silica Modified by Helicenes
Czech Academy of Sciences Publication Activity Database
Bernard, Martin; Církva, Vladimír; Sýkora, Jan; Storch, Jan
- : -, 2014, s. 74. ISBN N. [Belgian Organic Synthesis Symposium (BOSS XIV) /14./. Louvain-la-Neuve (BE), 13.07.2014-18.07.2014] R&D Projects: GA TA ČR TA01010646 Institutional support: RVO:67985858 Keywords : chiral stationary phase * helicene * chiral resolution Subject RIV: CC - Organic Chemistry
[Enantioseparation behavior of chiral stationary phases AD, AS and OD].
Li, Liqun; Fan, Jun; Zhang, Jing; Chen, Xiaodong; Wang, Tai; He, Jianfeng; Zhang, Weiguang
2016-01-01
Over the past decades, HPLC enantioseparation with chiral stationary phases (CSPs) has been widely applied in chiral analysis and preparation of new pharmaceuticals, pesticides, food, etc. Herein, enantioseparation of 20 chiral compounds have been carried out on three polysaccharide-based CSPs (EnantioPak AD, AS and OD) with normal phases by HPLC, separately. The influences of skeletal structure and the kinds of derivative groups on separation behaviors of these CSPs have been studied in detail. As results indicated, except for compound 13, the other compounds were baseline separated on EnantioPak AD, with most of resolution over 2. 0; in addition, better separation for acidic or basic compounds was achieved through adding acidic/basic additives into the mobile phase of hexane-alcohol. For four aromatic alcohols (compounds 13-16), their retention in the EnantioPak AD column showed a weakening tendency with increase of carbon number in side chain group, and the reverse trend of their resolution was observed. Furthermore, EnantioPak AD showed much better separation performance for eight compounds (13-20) than the others. In short, these results have provided some references for further investigation of separation behavior and applications of polysaccharide-based CSPs. PMID:27319174
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Several kinds of racemic naproxen ester were successfully separated on CTMB chiral stationary phase with hexane-ethanol (98:2, vol./vol.) as the mobile phase. The influence of mobile phase composition and structure of racemic naproxen ester on chiral separation was studied and the chiral recognition mechanism of CTMB was discussed.
Institute of Scientific and Technical Information of China (English)
BaoHaiSHAO; XiuZhuXU; 等
2002-01-01
Several kinds of racemic naproxen ester were successfully separated on CTMB chiral stationary phase with hexane-ethanol(98:2,vol./vol.) as the mobile phase. The influence of mobile phase composition and structure of racemic naproxen ester on chiral separation was studied and the chiral recognition mechanism of CTMB was discussed.
Cancelliere; D'Acquarica; Gasparrini; Misiti; Villani
1999-12-01
This review provides an overview of the synthesis and application of stable and versatile HPLC chiral stationary phases (CSPs), with emphasis placed on the binding strategies developed to anchor several structurally different chiral selectors to silica-gel microparticles. In addition, selected applications relating to the use of these CSPs for the direct resolution of racemates of biological and pharmaceutical relevance will be described. This review discusses enantioselective molecular recognition and dynamic stereochemistry of stereolabile compounds with reference to receptor-based chiral stationary phases (CSPs) and dynamic HPLC on CSPs, respectively. PMID:10603466
De Klerck, Katrijn; Vander Heyden, Yvan; Mangelings, Debby
2014-02-01
Since their introduction on the market the applicability of immobilized polysaccharide-based chiral stationary phases in high-performance liquid chromatography has been thoroughly investigated. These immobilized phases have the benefit to be applicable with a wide range of modifiers, potentially extending the application range of the polysaccharide-based stationary phases. Because an increasing number of stationary phases are being introduced in the field of chiral chromatography it is important to evaluate their enantioselectivity in different techniques in order to get an idea about their applicability. In this study, three immobilized chiral polysaccharide-based stationary phases (Chiralpak IA, IB, and IC) are evaluated in supercritical fluid chromatography (SFC) with a test set of pharmaceutical racemates. This is done in a three-fold manner: their performance is evaluated (1) using traditional modifiers, (2) using mixtures of atypical modifiers, and (3) the results were compared to those on coated stationary phases with an equivalent chiral selector. To get a visual overview of the enantioselective patterns of the different chromatographic systems (mobile and stationary phase combinations), a Principal Component Analysis is performed, which allows determining the (dis)similarity between individual systems. To assess the complementarity cumulative success rates are determined. The immobilized chiral stationary phases prove to yield high cumulative success rates. PMID:24438871
Energy Technology Data Exchange (ETDEWEB)
Park, Soohyun; Kim, Sang Jun; Hyun, Myung Ho [Pusan National Univ., Busan (Korea, Republic of)
2012-10-15
Optically active chiral amines are important as building blocks for pharmaceuticals and as scaffolds for chiral ligands and, consequently, many efforts have been devoted to the development of efficient methods for their preparation. For example, reduction of amine precursors with chiral catalysts, enzymatic kinetic resolution or dynamic kinetic resolution of racemic amines and the direct amination of ketones with transaminases have been developed as the efficient methods for the preparation of optically active chiral amines. During the process of developing or utilizing optically active chiral amines, the methods for the determination of their enantiomeric composition are essential. Among various methods, liquid chromatographic resolution of enantiomers on chiral stationary phases (CSPs) have been known to be one of the most accurate and economic means for the determination of the enantiomeric composition of optically active chiral compounds. Especially, CSPs based on chiral crown ethers have been successfully used for the resolution of racemic primary amines. For example, CSPs based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (CSP 1, Figure 1) or (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 (CSP 2 and CSP 3, Figure 1) have been known to be quite effective for the resolution of cyclic and non-cyclic amines, various fluoroquinolone antibacterials containing a primary amino group, tocainide (antiarrhythmic agent) and its analogues, aryl-a-amino ketones and 3-amino-1,4-benzodiazepin-2-ones.
Xiaoli Zhang; Litao Wang; Shuqing Dong; Xia Zhang; Qi Wu; Liang Zhao; Yanping Shi
2016-01-01
Core-shell silica microspheres with a nanocellulose derivative in the hybrid shell were successfully prepared as a chiral stationary phase by a layer-by-layer self-assembly method. The hybrid shell assembled on the silica core was formed using a surfactant as template by the copolymerization reaction of tetraethyl orthosilicate and the nanocellulose derivative bearing triethoxysilyl and 3,5-dimethylphenyl groups. The resulting nanocellulose hybrid core-shell chiral packing materials (CPMs) we...
Zhang, Xiaoli; Wang, Litao; Dong, Shuqing; Zhang, Xia; Wu, Qi; Zhao, Liang; Shi, Yanping
2016-05-01
Nanocrystalline cellulose (NCC) with high surface area and high ordered crystalline structure was prepared from microcrystalline cellulose (MCC) under the hydrolysis of sodium hypochlorite. NCC was further reacted with 3,5-dimethylphenyl isocyanate to obtain the nanocellulose derivative, and then coated successfully on the surface of silica gel to a prepared NCC-coated chiral stationary phase (CSP) as a new kind of chiral separation material. Similarly, MCC derivative-coated CSP was also prepared as contrast. The chiral separation performance of NCC-based CSP was evaluated and compared with MCC-based CSP by high-performance liquid chromatography. Moreover, the effects of the alcohol modifiers, mobile phase additives, and flow rates on chiral separations were investigated in detail. The results showed that 10 chiral compounds were separated on NCC-based CSP with better peak shape and higher column efficiency than MCC-based CSP, which confirmed that NCC-based CSP was a promising packing material for the resolution of chiral compounds.Chirality 28:376-381, 2016. © 2016 Wiley Periodicals, Inc. PMID:26949227
HPLC SEPARATION OF CHIRAL ORGANOPHOSPHORUS PESTICIDES ON POLYSACCHARIDE CHIRAL STATIONARY PHASES
High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) were obtained on polysaccharide chiral HPLC columns using an alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, dyfonate, fenamiphos, ...
Comparative Optical Separation of Racemic Ibuprofen by Using Chiral Stationary Phase
Institute of Scientific and Technical Information of China (English)
Dalkeun; PARK; Joong; Kee; LEE; 等
2002-01-01
Ibprofen is widely used as a non-steroidal anti-inflammatory drug and poduced as racemic mixture.Its pharmacological activity resides only is S-(+)-enantiomer,and R-(-)-enantiomer is not only inactive but also has many side effects.Thus it is necessary to separate Renantiomer from racemic ibuprofen.We studied optical separation of racemic Ibuprofen with chiral high performance liquid chromatography(HPLC).,Out of three different chiral stationary phases,which were selected on the basis of structure and availability,two were found to be effective.There was optimum eluent composition for each stationary phase for good resolution in optical separation.Resolution decreased with increase of eluent flow rate,but effect of injection volume on resolution was insignificant at high eluent flow rate.
Zhao, Licong; Yang, Limin; Wang, Qiuquan
2016-05-13
Glutathione (GSH)-, somatostatin acetate (ST)- and ovomucoid (OV)-functionalized silica-monolithic stationary phases were designed and synthesized for HILIC and chiral separation using capillary electrochromatography (CEC). GSH, ST and OV were covalently incorporated into the silica skeleton via the epoxy ring-opening reaction between their amino groups and the glycidyl moiety in γ-glycidoxypropyltrimethoxysilane (GPTMS) together with polycondensation and copolymerization of tetramethyloxysilane and GPTMS. Not only could the direction and electroosmotic flow magnitude on the prepared GSH-, ST- and OV-silica hybrid monolithic stationary phases be controlled by the pH of the mobile phase, but also a typical HILIC behavior was observed so that the nucleotides and HPLC peptide standard mixture could be baseline separated using an aqueous mobile phase without any acetonitrile during CEC. Moreover, the prepared monolithic columns had a chiral separation ability to separate dl-amino acids. The OV-silica hybrid monolithic column was most effective in chiral separation and could separate dl-glutamic acid (Glu) (the resolution R=1.07), dl-tyrosine (Tyr) (1.57) and dl-histidine (His) (1.06). Importantly, the chiral separation ability of the GSH-silica hybrid monolithic column could be remarkably enhanced when using gold nanoparticles (AuNPs) to fabricate an AuNP-mediated GSH-AuNP-GSH-silica hybrid monolithic column. The R of dl-Glu, dl-Tyr and dl-His reached 1.19, 1.60 and 2.03. This monolithic column was thus applied to separate drug enantiomers, and quantitative separation of all four R/S drug enantiomers were achieved with R ranging from 4.36 to 5.64. These peptide- and protein-silica monolithic stationary phases with typical HILIC separation behavior and chiral separation ability implied their promise for the analysis of not only the future metabolic studies, but also drug enantiomers recognition. PMID:27083263
sprotocols
2015-01-01
Authors: Ren-Qi Wang, Teng-Teng Ong, Ke Huang, Weihua Tang & Siu-Choon Ng ### Abstract We described a facile and effective protocol wherein radical copolymerization is employed to covalently bond cationic β-cyclodextrin (β-CD) onto silica particles with extended linkage, resulting in a chiral stationary phase (IMPCSP) that can be used for the enantioseparation of racemic drugs in both high-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). Start...
Directory of Open Access Journals (Sweden)
Xiaoli Zhang
2016-05-01
Full Text Available Core-shell silica microspheres with a nanocellulose derivative in the hybrid shell were successfully prepared as a chiral stationary phase by a layer-by-layer self-assembly method. The hybrid shell assembled on the silica core was formed using a surfactant as template by the copolymerization reaction of tetraethyl orthosilicate and the nanocellulose derivative bearing triethoxysilyl and 3,5-dimethylphenyl groups. The resulting nanocellulose hybrid core-shell chiral packing materials (CPMs were characterized and packed into columns, and their enantioseparation performance was evaluated by high performance liquid chromatography. The results showed that CPMs exhibited uniform surface morphology and core-shell structures. Various types of chiral compounds were efficiently separated under normal and reversed phase mode. Moreover, chloroform and tetrahydrofuran as mobile phase additives could obviously improve the resolution during the chiral separation processes. CPMs still have good chiral separation property when eluted with solvent systems with a high content of tetrahydrofuran and chloroform, which proved the high solvent resistance of this new material.
Zhang, Xiaoli; Wang, Litao; Dong, Shuqing; Zhang, Xia; Wu, Qi; Zhao, Liang; Shi, Yanping
2016-01-01
Core-shell silica microspheres with a nanocellulose derivative in the hybrid shell were successfully prepared as a chiral stationary phase by a layer-by-layer self-assembly method. The hybrid shell assembled on the silica core was formed using a surfactant as template by the copolymerization reaction of tetraethyl orthosilicate and the nanocellulose derivative bearing triethoxysilyl and 3,5-dimethylphenyl groups. The resulting nanocellulose hybrid core-shell chiral packing materials (CPMs) were characterized and packed into columns, and their enantioseparation performance was evaluated by high performance liquid chromatography. The results showed that CPMs exhibited uniform surface morphology and core-shell structures. Various types of chiral compounds were efficiently separated under normal and reversed phase mode. Moreover, chloroform and tetrahydrofuran as mobile phase additives could obviously improve the resolution during the chiral separation processes. CPMs still have good chiral separation property when eluted with solvent systems with a high content of tetrahydrofuran and chloroform, which proved the high solvent resistance of this new material. PMID:27153055
Wagdy, Hebatallah A; Hanafi, Rasha S; El-Nashar, Rasha M; Aboul-Enein, Hassan Y
2013-09-01
Pharmaceutical companies worldwide tend to apply chiral chromatographic separation techniques in their mass production strategy rather than asymmetric synthesis. The present work aims to investigate the predictability of chromatographic behavior of enantiomers using DryLab HPLC method development software, which is typically used to predict the effect of changing various chromatographic parameters on resolution in the reversed phase mode. Three different types of chiral stationary phases were tested for predictability: macrocyclic antibiotics-based columns (Chirobiotic V and T), polysaccharide-based chiral column (Chiralpak AD-RH), and protein-based chiral column (Ultron ES-OVM). Preliminary basic runs were implemented, then exported to DryLab after peak tracking was accomplished. Prediction of the effect of % organic mobile phase on separation was possible for separations on Chirobiotic V for several probes: racemic propranolol with 97.80% accuracy; mixture of racemates of propranolol and terbutaline sulphate, as well as, racemates of propranolol and salbutamol sulphate with average 90.46% accuracy for the effect of percent organic mobile phase and average 98.39% for the effect of pH; and racemic warfarin with 93.45% accuracy for the effect of percent organic mobile phase and average 99.64% for the effect of pH. It can be concluded that Chirobiotic V reversed phase retention mechanism follows the solvophobic theory. PMID:23775938
Engineering Cyclodextrin Clicked Chiral Stationary Phase for High-Efficiency Enantiomer Separation
Tang, Jian; Zhang, Shapopeng; Lin, Yuzhou; Zhou, Jie; Pang, Limin; Nie, Xuemei; Zhou, Baojing; Tang, Weihua
2015-08-01
The separation of racemic molecules is of crucial significance not only for fundamental research but also for technical application. Enantiomers remain challenging to be separated owing to their identical physical and chemical properties in achiral environments. Chromatographic techniques employing chiral stationary phases (CSPs) have been developed as powerful tools for the chiral analysis and preparation of pure enantiomers, most of which are of biological and pharmaceutical interests. Here we report our efforts in developing high-performance phenylcarbamated cyclodextrin (CD) clicked CSPs. Insights on the impact of CD functionalities in structure design are provided. High-efficiency enantioseparation of a range of aryl alcohols and flavanoids with resolution values (Rs) over 10 were demonstrated by per(3-chloro-4-methyl)phenylcarbamated CD clicked CSP. Comparison study and molecular simulations suggest the improved enantioselectivity was attributed to higher interactions energy difference between the complexes of enantiomers and CSPs with phenylcarbamated CD bearing 3-chloro and 4-methyl functionalities.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Amylose tris (phenylcarbamate) chiral stationary phase (ATPC-CSP) was prepared and used for optical resolution of clusters 1 and 2. n-Hexane/2-propanol ( 99/1; v/v) were found to be the most suitable mobile phase on ATPC-CSP.
Institute of Scientific and Technical Information of China (English)
秦峰; 陈小明; 刘月启; 邹汉法; 王俊德
2005-01-01
The classical method for preparation of covalently boned cellulose derivative chiral stationary phases (CSP) with diisocyanate as spacer was improved. Diisocyanate was firstly allowed to react with 3-aminopropyltriethoxysilane, and the resulting product was then applied as the spacer reagent to immobilize cellulose derivatives onto silica gel. Influences of the amount and the length of the spacer on the optical resolution ability of the CSP were investigated. Comparing improved procedure to classical diisocyanate method, the cross-linking between the glucose units of the cellulose derivatives was avoided to the most extent. With the improved procedure, regio-nonselective ways could be adooted to prepare covalently bonded CSP, which showed an advantage for the rapid preparation.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Using four β-cyclodextrin derivatives, 2,6-di-O-benzyl-3-O-heptanonyl-β-CD, 2,6-di-O-benzyl-3-O-octanonyl-β-CD, 2,3-di-O-benzyl-6-O-heptanonyl-β-CD, and 2,3-di-O-benzy1-6-O-octanonyl-β-CD, as chiral stationary phases of capillary gas chromatography (CGC), the enantiomers of Sharpless epoxides were well separated. The enantiomer excess values (e.e.%) of some chiral Sharpless epoxides were also determined successfully using these CDs.
Lu, Yangfang; Wang, Hui; Wang, Guiming; Wang, Yan; Gu, Xue; Yan, Chao
2015-03-01
Non-porous C18 silica gel stationary phase (1 µm) was prepared and applied to chiral separation in pressurized capillary electrochromatography (pCEC) for the enantioseparation of various basic compounds. The non-porous silica particles (1 µm) were synthesized using modified St6ber method. C18 stationary phase (1 µm) was prepared by immobilization of chloro-dimethyl-octadecylsilane. Using carboxymethyl-β-cyclodextrin (CM-β-CD) as the chiral additive, the pCEC conditions including the content of acetonitrile (ACN), concentration of buffer, pH, the concentration of chiral additive and flow rate as well as applied voltage were investigated to obtain the optimal pCEC conditions for the separation of four basic chiral compounds. The column provided an efficiency of up to 190,000 plates/m. Bupropion hydrochloride, clenbuterol hydrochloride, metoprolol tartrate, and esmolol hydrochloride were baseline separated under the conditions of 5 mmol/L ammonium acetate buffer at pH 4. 0 with 20% (v/ v) acetonitrile, and 15 mmol/L CM-β-CD as the chiral additive. The applied voltage was 2 kV and flow rate was 0.03 mL/min with splitting ratio of 300:1. The resolution were 1.55, 2.82, 1. 69, 1. 70 for bupropion hydrochloride, clenbuterol hydrochloride, metoprolol tartrate, esmolol hydrochloride, respectively. The C18 coverage was improved by repeating silylation method. The synthesized 1 µm C18 packings have better mechanical strength and longer service life because of the special, non-porous structure. The column used in pCEC mode showed better separation of the racemates and a higher rate compared with those used in the capillary liquid chromatography (cLC) mode. This study provided an alternative way for the method of pCEC enantioseparation with chiral additives in the mobile phase and demonstrated the feasibility of micron particle stationary phase in chiral separation. PMID:26182460
Institute of Scientific and Technical Information of China (English)
GE,Jin; ZHAO,Liang; SHI,Yan-Ping
2008-01-01
A novel cellulose tris(N-3,5-dimethylphenylcarbamate) (CDMPC) chiral stationary phase (CSP) was prepared by coating CDMPC on TiO2/SiO2, which was prepared by coating titania nanoparticles on silica through a self-assemble technique. At first, 2-hydroxyl-phenyl acetonitrile and α-phenylethanol were separated on this new CSP to evaluate the chiral separation ability. Then, two pesticides, matalaxyl and diclofop-methyl were separated.The influence of the mobile phase composition on the enantioselectivity was discussed, and the repeatability and stability of the CSP were studied too.
Yan, Jin; Zhang, Renke; Wang, Xinru; Wang, Yao; Wang, Dezhen; Zhou, Zhiqiang; Zhu, Wentao
2016-05-01
Enantiomeric separation of six chiral pesticides by high-performance liquid chromatography with permethylated β-cyclodextrin (β-PM) chiral stationary phase were tested under reversed phase conditions. The influences of water composition from 10% to 45% in the mobile phase and column temperatures from 0°C to 40°C on the separation were investigated. Baseline separation was obtained for diclofop-methyl, fenoxaprop-ethyl, tebuconazole and triticonazole, and Rs of these pesticides were greater than 1.5. However, etoxazole and lactofen were partially separated in all experiments. PMID:26992448
Siódmiak, Tomasz; Mangelings, Debby; Heyden, Yvan Vander; Ziegler-Borowska, Marta; Marszałł, Michał Piotr
2015-01-01
Lipases form Candida rugosa and Candida antarctica were tested for their application in the enzymatic kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification. Successful chromatographic separation with well-resolved peaks of (R)- and (S)-flurbiprofen and their esters was achieved in one run on chiral stationary phases by high-performance liquid chromatography (HPLC). In this study screening of enzymes was performed, and Novozym 435 was selected as an optimal catalyst for o...
Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Sierra, Isabel
2014-01-15
New hybrid materials were prepared as novel chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). Pure mesoporous silica (SM) and ethylene-bridged periodic mesostructured organosilica (PMO) were functionalized, by a post-synthesis method, with derivates of erythromycin and vancomycin. N2 adsorption-desorption measurements, XRD, FT-IR, MAS NMR, SEM, TEM and elemental analysis were used to characterize the physico-chemical properties of these mesostructured materials, before and after the modification process. The synthesized particles had non-symmetrical 3-D wormhole-like mesostructure, spherical morphology, and a mean pore diameter between 53 and 59 Å. CSPs prepared were tested for the separation of four chiral β-blockers (atenolol, metoprolol, pindolol and propranolol) in normal phase (NP) and polar organic phase (PO) elution modes. Much stronger chiral interaction was observed in vancomycin-modified silicas. Results obtained in these preliminary studies will permit in future works to improve the synthesis route in order to design mesoporous materials with better performance as a chiral stationary phase for HPLC. PMID:24231079
Zhang, L; Gedicke, K; Kuznetsov, M A; Staroverov, S M; Seidel-Morgenstern, A
2007-08-24
Recently a new chiral stationary phase (CSP) was introduced, based on the immobilization of the macrocyclic glycopeptide eremomycin to epoxy-activated silica. The application of this new CSP to preparative enantioseparation using simulated moving bed (SMB) chromatography will be presented. MeOH-H(2)O (0.1M NaH(2)PO(4))=20/80 (v/v) was used as the mobile phase to separate the enantiomers of methionine. Successful separation was realized providing productivities around 15 g(product)/l(stat)/h for both l and d-methionine under nonlinear conditions. In such delicate continuous chromatographic separation processes, besides productivity, the long-term stability of the applied stationary phases is of importance. Column to column fluctuations were negligible and long-term stability of the preparative stationary phase was satisfactory according to the results of perturbation experiments performed before and after long-term SMB runs. PMID:17482626
Directory of Open Access Journals (Sweden)
Yan Wang
2012-10-01
Full Text Available The enantiomers separation of eight pharmaceutical racemates collected in Chinese Pharmacopoeia 2010 (Ch.P2010, including nitrendipine, felodipine, omeprazole, praziquantel, sulpiride, clenbuterol hydrochloride, verapamil hydrochloride and chlorphenamine maleate, was performed on chiral stationary phase of amylose ramification by high performance liquid chromatography (HPLC on Chiralpak AD-H column and Chiralpak AS-H column with the mobile phase consisted of isopropanol and n-hexane. The detection wavelength and the flow rate were set at 254 nm and 0.7 mL/min, respectively. The effects of proportion of organic additives, alcohol displacer and temperature on the separation were investigated. The results indicated that eight chiral drugs were separated on chiral stationary phase of amylase ramification in normal phase chromatographic system. The chromatographic retention and resolution of enantiomers were adjusted by factors, including the changes of the concentration of alcohol displacer in mobile phase, organic alkaline modifier and column temperature. It was shown that the resolution was improved with reducing concentration of alcohol displacer. When the concentration of organic alkaline modifier was 0.2%, the resolution and the peak shape were fairly good. Most racemates mentioned above had the best resolution at column temperature of 25 °C. The best temperature should be kept unchanged in the process of separation so as to obtain stable separation results.
Yamaki, Masahiro; Teranishi, Yoshiaki; Nakamura, Hiroki; Lin, Sheng Hsien; Fujimura, Yuichi
2016-01-21
The electron angular momentum is a fundamental quantity of high-symmetry aromatic ring molecules and finds many applications in chemistry such as molecular spectroscopy. The stationary angular momentum or unidirectional rotation of π electrons is generated by the excitation of a degenerated electronic excited state by a circularly-polarized photon. For low-symmetry aromatic ring molecules having non-degenerate states, such as chiral aromatic ring molecules, on the other hand, whether stationary angular momentum can be generated or not is uncertain and has not been clarified so far. We have found by both theoretical treatments and quantum optimal control (QOC) simulations that a stationary angular momentum can be generated even from a low-symmetry aromatic ring molecule. The generation mechanism can be explained in terms of the creation of a dressed-state, and the maximum angular momentum is generated by the dressed state with an equal contribution from the relevant two excited states in a simple three-electronic state model. The dressed state is formed by inducing selective nonresonant transitions between the ground and each excited state by two lasers with the same frequency but having different polarization directions. The selective excitation can be carried out by arranging each photon-polarization vector orthogonal to the electronic transition moment of the other transition. We have successfully analyzed the results of the QOC simulations of (P)-2,2'-biphenol of axial chirality in terms of the analytically determined optimal laser fields. The present findings may open up new types of chemical dynamics and spectroscopy by utilizing strong stationary ring currents and current-induced magnetic fields, which are created at a local site of large compounds such as biomolecules. PMID:26670839
Ferretti, Rosella; Zanitti, Leo; Casulli, Adriano; Cirilli, Roberto
2016-04-01
A simple and environmentally friendly reversed-phase high-performance liquid chromatography method for the separation of the enantiomers of lansoprazole has been developed. The chromatographic resolution was carried out on the cellulose-based Chiralpak IC-3 chiral stationary phase using a green and low-toxicity ethanol-aqueous mode. The effects of water content in the mobile phase and column temperature on the retention of the enantiomers of lansoprazole and its chiral and achiral related substances have been carefully investigated. A mixed-mode hydrophilic interaction liquid chromatography and reversed-phase retention mechanism operating on the IC-3 chiral stationary phase allowed us to achieve simultaneous enantioselective and chemoselective separations in water-rich conditions. The enantiomers of lansoprazole were baseline resolved with a mobile phase consisting of ethanol/water 50:50 without any interference coming from chiral and achiral impurities within 10 min. PMID:26910378
Kurka, Ondřej; Kučera, Lukáš; Bednář, Petr
2016-07-01
cis-Itraconazole is a chiral antifungal drug administered as a racemate. The knowledge of properties of individual cis-itraconazole stereoisomers is vital information for medicine and biosciences as different stereoisomers of cis-itraconazole may possess different affinity to certain biological pathways in the human body. For this purpose, either chiral synthesis of enantiomers or chiral separation of racemate can be used. This paper presents a two-step high-performance liquid chromatography approach for the semipreparative isolation of four stereoisomers (two enantiomeric pairs) of itraconazole using polysaccharide stationary phases and volatile organic mobile phases without additives in isocratic mode. The approach used involves the separation of the racemate into three fractions (i.e. two pure stereoisomers and one mixed fraction containing the remaining two stereoisomers) in the first run and consequent separation of the collected mixed fraction in the second one. For this purpose, combination of cellulose tris-(4-methylbenzoate) and cellulose tris-(3,5-dimehylphenylcarbamate) columns with complementary selectivity for cis-itraconazole provided full separation of all four stereoisomers (with purity of each isomer > 97%). The stereoisomers were collected, their optical rotation determined and their identity confirmed based on the results of a previously published study. Pure separated stereoisomers are subjected to further biological studies. PMID:27240968
Khater, Syame; Zhang, Yingru; West, Caroline
2013-08-16
Since the expiration of the patent protection of Chiralcel OD, similar chiral stationary phases (CSPs), all based on the same chiral selector, have been introduced on the market with the promise to reproduce or improve the performance of the original cellulose tris-(3,5-dimethylphenylcarbamate) CSP. We report here-in an in-depth evaluation of four generic versions of Chiralcel OD (CelluCoat, RegisCell, Lux Cellulose-1, Reprosil-OM) and the immobilized version (Chiralpak IB) in comparison to the original Chiralcel OD in terms of retention and enantioselectivity, with the help of chemometrics. First of all, the CSPs are compared based on the retentions of 230 achiral compounds. Agglomerative hierarchical clustering and quantitative structure-retention relationships based on a modified version of the solvation parameter model are used to assess the differences in non-enantioselective interactions contributing to retention. Secondly, the CSPs are compared based on the separation factors measured for 130 racemates. Discriminant analysis is then used to unravel the structural features contributing to the successful enantioselective separations. Chiralcel OD is shown to be the most versatile of the six tested CSPs, and involves a unique and unequalled mechanism to achieve enantioseparation. PMID:23838300
Institute of Scientific and Technical Information of China (English)
LU Ping; ZHANG Yu-Ping; SONG Bao-An; YANG Song; BHADURY Shankar Pinaki; HU De-Yu; XUE Wei; CHEN Zhuo; JIN Lin-Hong
2008-01-01
The present report describes a chiral HPLC method for the enantiomeric separation of a-aminophosphonate derivatives using two new coated and immobilized amylose-based chiral stationary phases (CSP,Chiralpak IA and Chiralpak AD-H).The chromatographic parameters such as retention factor (k),separation factor (a),and resolution (Rs) of the solutes were investigated on these two CSPs.Reasonably good baseline separation for these compounds was achieved using Chiralpak IA column.The influences of temperature,content of ethanol modifier and the structure of analyte were also studied.THF,EtOAc and CH2Cl2 were used as ehients on analytical and semi-preparative columns.Highly enriched enantiomers with purities of up to 96.4%--100% (ee) and yields of 90.2%--95.5% were obtained,respectively.The proposed methods were found to be suitable and accurate for rapid separation and semi-preparation of enantiomeric a-aminophosphonate derivatives available.
Shi, Xueyan; Liu, Feipeng; Mao, Jianyou
2016-03-17
Chiral 2-arylcarboxylic acid esters are important intermediates in preparation of enantioenriched 2-arylpropionic acids type Non-steroidal anti-inflammatory drugs (NSAIDs). Enantiomer separation of 2-arylcarboxylic acid esters is crucial for evaluation of the asymmetric synthesis efficiency and the enantiomer excess of chiral 2-arylcarboxylic acid derivatives. The capillary gas chromatography (CGC) enantiomer separation of 17 pairs of 2-arylcarboxylic acid esters enantiomers was conducted by using seven different β-cyclodextrin derivatives (CDs) as chiral stationary phases. It was found that for the 7 pairs of 2-phenylpropionates enantiomers, CDs with both alkyl and acyl substituents especially 2,6-di-O-pentyl-3-O-butyryl-β-cyclodextrin exhibited better enantiomer separation abilities than the other CDs examined. For the 7 pairs of 2-(4-substituted phenyl)propionates enantiomers, 2,3,6-tri-O-methyl-β-cyclodextrin possessed better enantiomer separation abilities than the other CDs. Among the 3 pairs of 2-phenylbutyrates enantiomers examined, only methyl 2-phenylbutyrate enantiomers could be separated by three CDs among the 7 CDs tested, while enantiomers of ethyl 2-phenylbutyrate and isopropyl 2-phenylbutyrate couldn't be separated by any of the 7 CDs tested. Besides the structures of CDs, the structures of 2-arylcarboxylic acid esters including different ester moieties, substituents of phenyl, and different carboxylic acids moieties in 2-arylcarboxylic acid esters also affected the enantiomer separation results greatly. The CGC enantiomer separation results of 2-arylcarboxylic acid esters on different CDs are useful for solving the enantiomer separation problem of 2-arylcarboxylic acid esters. PMID:26920785
Lévai, Sándor; Németh, Tamás; Fődi, Tamás; Kupai, József; Tóth, Tünde; Huszthy, Péter; Balogh, György Tibor
2015-11-10
This paper reports the enantioseparation ability of a pyridino-18-crown-6 ether-based chiral stationary phase [(S,S)-CSP-1]. The enantiomeric discrimination of chiral stationary phase (S,S)-CSP-1 was evaluated by HPLC using the mixtures of enantiomers of various protonated primary aralkylamines [1-phenylethylamine hydrogen perchlorate (PEA), 2,3-dihydro-1H-inden-1-amine (1-aminoindan), 2,2'-(1,2-diaminoethane-1,2-diyl) diphenol (HPEN)] and perchlorate salts of α-amino acid esters [alanine benzyl ester (Ala-OBn), phenylalanine benzyl ester (Phe-OBn), phenylalanine methyl ester (Phe-OMe), phenylglycine methyl ester (PhGly-OMe), glutamic acid dibenzyl ester (Glu-diOBn), and valine benzyl ester (Val-OBn)]. The best enantioseparation was achieved in the case of PEA. The high enantioselectivity was rationalized by the strong π-π interaction of the extended π system of the aryl-substituted pyridine unit. PMID:26218505
Directory of Open Access Journals (Sweden)
Runqiang Liu
2014-04-01
Full Text Available A chiral selector of cellulose-2,3-bis(3,5-dimethylphenylcarbamate (CBDMPC was synthesized by reacting 3,5-dimethylphenyl isocyanate with microcrystalline cellulose dissolved in an ionic liquid of 1-allyl-3-methyl-imidazolium chloride (AMIMCl. The obtained chiral selector was effectively characterized by infrared spectroscopy, elemental analysis and 1H NMR. The selector was reacted with 3-aminopropylsilanized silica gel and the CBDMPC bonded chiral stationary phase (CSP was obtained. Chromatographic evaluation of the prepared CSPs was conducted by high performance liquid chromatographic (HPLC and baseline separation of three typical fungicides including hexaconazole, metalaxyl and myclobutanil was achieved using n-hexane/isopropanol as the mobile phase with a flow rate 1.0 mL/min. Experimental results also showed that AMIMCl could be recycled easily and reused in the preparation of CSPs as an effective reaction media.
Liu, Runqiang; Zhang, Yijun; Bai, Lianyang; Huang, Mingxian; Chen, Jun; Zhang, Yuping
2014-01-01
A chiral selector of cellulose-2,3-bis(3,5-dimethylphenylcarbamate) (CBDMPC) was synthesized by reacting 3,5-dimethylphenyl isocyanate with microcrystalline cellulose dissolved in an ionic liquid of 1-allyl-3-methyl-imidazolium chloride (AMIMCl). The obtained chiral selector was effectively characterized by infrared spectroscopy, elemental analysis and 1H NMR. The selector was reacted with 3-aminopropylsilanized silica gel and the CBDMPC bonded chiral stationary phase (CSP) was obtained. Chromatographic evaluation of the prepared CSPs was conducted by high performance liquid chromatographic (HPLC) and baseline separation of three typical fungicides including hexaconazole, metalaxyl and myclobutanil was achieved using n-hexane/isopropanol as the mobile phase with a flow rate 1.0 mL/min. Experimental results also showed that AMIMCl could be recycled easily and reused in the preparation of CSPs as an effective reaction media. PMID:24733066
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
The enantiomers separation of thirteen drugs collected in Ch.P2010 was performed on chiral stationary phase of cellulose ramification (chiralpak OD and chiralpak OJ) by high performance liquid chromatographic (HPLC) methods, which included ibuprofen (C1), ketoprofen (C2), nitrendipine (C3), nimodipine (C4), felodipine (C5), omeprazole (C6), praziquantel (C7), propranolol hydrochloride (C8), atenolol (C9), sulpiride (C10), clenbuterol hydrochloride (C11), verapamil hydrochloride (C12), and chlorphenamine mal...
Institute of Scientific and Technical Information of China (English)
MaJianbiao; ChenLi; 等
1995-01-01
The L-proline-functionalized polystyrene with 1-methyldecylene spacer was synthesized from 2% divinylbenzene-crosslinked polystyrene gel via 10-bromo-1-methyldecyl polystyrene intermediate.After complexed with copper(Ⅱ） ion,the polymer with L-proline ligand was used as the chiral stationary phase (CSP) for ligand exchange chromatography of amino acid racemates.The results showed that the CSP possessed powerful enantioselectivity and all racemates of the fifteen tried amino acids were completely separated.
Auditore, Roberta; Santagati, Natale A; Aturki, Zeineb; Fanali, Salvatore
2013-09-01
In this work, a novel polysaccharide-based chiral stationary phase, cellulose tris(4-chloro-3-methylphenylcarbamate), also called Sepapak 4 has been evaluated for the chiral separation of amlodipine (AML) and its two impurities. AML is a powerful vasodilatator drug used for the treatment of hypertension. Capillary columns of 100 μm id packed with the chiral stationary phase were used for both nano-LC and CEC experiments. The optimization of the mobile phase composed of ACN/water, (90:10, v/v) containing 15 mM ammonium borate pH 10.0 in nano-LC allowed the chiral separation of AML and the two impurities, but not in a single run. With the purpose to obtain the separation of the three pairs of enantiomers simultaneously, CEC analyses were performed in the same conditions achieving better enantioresolution and higher separation efficiencies for each compound. To fully resolve the mixture of six enantiomers, parameters such as buffer pH and concentration sample injection have been then investigated. A mixture of ACN/water (90:10, v/v) containing 5 mM ammonium borate buffer pH 9.0 enabled the complete separation of the three couples of enantiomers in less than 30 min. The optimized CEC method was therefore validated and applied to the analysis of pharmaceutical formulation declared to contain only AML racemate. PMID:23775281
Pérez-Fernández, Virginia; Dominguez-Vega, Elena; Chankvetadze, Bezhan; Crego, Antonio L; García, Maria Ángeles; Marina, Maria Luisa
2012-04-20
Two novel polysaccharide-based chiral stationary phases (CSPs), known as Sepapak-2 (cellulose tris(3-chloro-4-methylphenylcarbamate)) and Sepapak-4 (cellulose tris(4-chloro-3-methylphenylcarbamate)), have been evaluated in this work for the chiral separation of a group of 16 pesticides including herbicides, insecticides and fungicides. The optimization of the mobile phase employed in nano-liquid chromatography (nano-LC) enabled the chiral separation of seven pesticides on Sepapak-2 and of nine pesticides on Sepapak-4. Due to the fact that Sepapak-4 gave better results, this column was selected to compare nano-LC and capillary electrochromatography (CEC) under the same conditions that consisted in the use of a 90/9/1 (v/v/v) ACN/H₂O/ammonium formate (pH 2.5) background electrolyte (BGE). As expected, both the efficiency and the chiral resolution obtained in CEC experiments were higher than in nano-LC for all the analyzed compounds. The analytical characteristics of the CEC developed methodology were evaluated in terms of linearity, LODs, LOQs, precision, selectivity, and accuracy allowing its application to the quantitation of metalaxyl and its enantiomeric impurity in a commercial fungicide product marketed as enantiomerically pure (metalaxyl-M) and in soil and tap water samples after solid phase extraction (SPE). The determined amount of metalaxyl-M was found to be a 26% above the labeled content and it contained an enantiomeric impurity of a 3.7% of S-metalaxyl was determined. PMID:22321947
Li, Yuanyuan; Wei, Manman; Chen, Tong; Zhu, Nan; Ma, Yulong
2016-11-01
A facile strategy based on self-assembly of Au nanoparticles (AuNPs) (60±10nm in size) on the surfaces of amino-functionalized porous silica spheres under mild conditions was proposed. The resulting material possessed a core-shell structure in which AuNPs were the shell and silica spheres were the core. Then, thiolated-β-cyclodextrin (SH-β-CD) was covalently attached onto the AuNPs as chiral selector for the enantioseparation. The resultant packing material was evaluated by high-performance liquid chromatography (HPLC). The separations of nine pairs of enantiomers were achieved by using the new chiral stationary phase (CSP) in the reversed-phase liquid chromatography (RPLC) mode, respectively. The results showed the new CSP have more sufficient interaction with the analytes due to the existence of AuNPs on silica surfaces, resulting in faster mass transfer rate, compared with β-CD modified silica column. The result shed light on potential usage of chemical modified NPs as chiral selector for enantioseparation based on HPLC. In addition, the new phase was also used in hydrophilic interaction liquid chromatography (HILIC) to separate polar compounds and highly hydrophilic compounds. PMID:27591589
Grecsó, Nóra; Kohout, Michal; Carotti, Andrea; Sardella, Roccaldo; Natalini, Benedetto; Fülöp, Ferenc; Lindner, Wolfgang; Péter, Antal; Ilisz, István
2016-05-30
The enantiomers of trans-paroxetine were separated on four chiral stationary phases (CSPs) based on chiral zwitterionic Cinchona alkaloids fused with (R,R)- or (S,S)-trans-2-aminocyclohexanesulfonic acid. The enantioseparations were carried out in polar-ionic or in hydro-organic mobile phases with MeOH/THF, MeCN/THF, MeCN/THF/H2O and MeOH/MeCN/THF containing organic acid and base additives, in the temperature range 0-50°C. The effects of the mobile phase composition, the natures and concentrations of the additives and temperature on the separations were investigated. Thermodynamic parameters were calculated from plots of ln α vs 1/T. Δ(ΔH°) ranged between -3.0 and +1.5 kJ mol(-1), and Δ(ΔS°) between -8.8 and +5.9 J mol(-1)K(-1). The enantioseparation was generally enthalpically controlled, the retention factor and separation factor decreasing with increasing temperature, but entropically controlled separation was also observed. The elution sequences of the paroxetine enantiomers on the two pairs of pseudo-enantiomeric CSPs were investigated, and an attempt was made to explain the observed anomalies in silico in order to gain an insight into the underlying molecular recognition events between the four chiral selectors and the analyte enantiomers. PMID:26955754
Szabó, Zoltán-István; Szőcs, Levente; Horváth, Péter; Komjáti, Balázs; Nagy, József; Jánoska, Ádám; Muntean, Daniela-Lucia; Noszál, Béla; Tóth, Gergő
2016-08-01
A sensitive and validated liquid chromatography with mass spectrometry method was developed for the enantioseparation of the racemic mixture of pomalidomide, a novel, second-generation immunomodulatory drug, using β-cyclodextrin-bonded stationary phases. Four cyclodextrin columns (β-, hydroxypropyl-β-, carboxymethyl-β-, and sulfobutyl-β-cyclodextrin) were screened and the effects of eluent composition, flow rate, temperature, and organic modifier on enantioseparation were studied. Optimized parameters, offering baseline separation (resolution = 2.70 ± 0.02) were the following: β-cyclodextrin stationary phase, thermostatted at 15°C, and mobile phase consisting of methanol/0.1% acetic acid 10:90 v/v, delivered with 0.8 mL/min flow rate. For the optimized parameter at multiple reaction monitoring mode 274.1-201.0 transition with 20 eV collision energy and 100 V fragmentor voltage the limit of detection and limit of quantitation were 0.75 and 2.00 ng/mL, respectively. Since enantiopure standards were not available, elution order was determined upon comparison of the circular dichroism signals of the separated pomalidomide enantiomers with that of enantiopure thalidomide. The mechanisms underlying the chiral discrimination between the enantiomers were also investigated. Pomalidomide-β-cyclodextrin inclusion complex was characterized using nuclear magnetic resonance spectroscopy and molecular modeling. The thermodynamic aspects of chiral separation were also studied. PMID:27279456
Hamper, Bruce C; Mannino, Michael P; Mueller, Melissa E; Harrison, Liam T; Spilling, Christopher D
2016-09-01
Chromatographic separation of the enantiomers of parent compounds dimethyl α-hydroxyallyl phosphonate and 1-(dimethoxyphosphoryl) allyl methyl carbonate was demonstrated by high-performance liquid chromatography (HPLC) using Chiralpak AS-H and ad-H chiral stationary phases (CSP), respectively, using a combination of UV, polarimetric, and refractive index detectors. A comparison was made of the separation efficiency and elution order of enantiomeric α-hydroxyallyl phosphonates and their carbonate derivatives on commercially available polysaccharide AS, ad, OD, IC-3, and Whelk-O 1 CSPs. In general, the α-hydroxyallyl phosphonates were resolved on the AS-H CSP, whereas the carbonate derivatives and were preferentially resolved on the ad-H CSP. The impact of aryl substitution on the resolution of analytes and was evaluated. Thermodynamic parameters determined for enantioselective adsorption hydroxyphosphonates and on the AS-H CSP and carbonate on the ad-H CSP demonstrated enthalpic control for separation of the enantiomers. Chirality 28:656-662, 2016. © 2016 Wiley Periodicals, Inc. PMID:27516372
Pereira, Ana Carolina; Magalhães, Lizandra G; Januário, Ana Helena; Pauletti, Patrícia M; Cunha, Wilson Roberto; Bastos, Jairo Kenupp; Nanayakkara, Dhammika N P; Silva, Márcio Luis A e
2011-09-28
(±)-Licarin A (1), a neolignan obtained by the oxidative coupling reaction of isoeugenol, had in this study its enantiomers resolved. A novel, quick and efficient enantiomeric resolution of 1 was directly performed by chiral high-performance liquid chromatography (HPLC-PDA) protocol (CHIRALPACK(®) AD column; 9:1 (v/v) n-hexane:2-propanol; 1.0 mL/min). This method provided a chromatogram profile with a well-resolved peak separation. After isolation of each enantiomer with ee>99.9%, they were analysed in a polarimeter. Compound 2, which showed a retention time (t(r)) of 12.13 min, was the (+)-enantiomer and compound 3 (t(r)=18.90 min) was the (-)-enantiomer. PMID:21868019
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Ibuprofen is widely used as a non-steroidal anti-inflammatory drug and produced as racemic mixture. Its pharmacological activity resides only in S-(+)-enantiomer, and R-(-)-enantiomer is not only inactive but also has many side effects. Thus it is necessary to separate Renanfiomer from racemic ibuprofen. We studied optical separation of racemic Ibuprofen with chiral high performance liquid chromatography (HPLC). Out of three different chiral stationary phases, which were selected on the basis of structure and availability, two were found to be effective. There was optimum eluent composition for each stationary phase for good resolution in optical separation. Resolution decreased with increase of eluent flow rate, but effect of injection volume on resolution was insignificant at high eluent flow rate.
Jadaud, P; Wainer, I W
1990-01-01
The enantioselective and diastereoselective resolutions of the stereoisomers of N alpha-aspartyl-phenylalanine 1-methyl ester (APME) have been accomplished on an HPLC chiral stationary phase based upon alpha-chymotrypsin (the ACHT-CSP) with observed enantioselectivities (alpha 1) for the DL-/LD-enantiomer of as high as 29.17 and for the DD-/LL-enantiomers of as high as 28.97. In addition, the effect on the chromatographic retention of the APME stereoisomers of the activity of the ACHT and the composition of the mobile phase--structure of the anionic component, molarity, and pH--have been studied. The results of this study suggest that the aspartyl moiety and/or the aspartyl-phenylalanine amide linkage play key roles in the observed enantioselectivity; the APME stereoisomers containing L-phenylalanine, i.e., DL- and LL-APME, bind at a different site in the ACHT molecule (the L-Phe site) than the APME stereoisomers containing D-phenylalanine (the D-Phe site); and the observed enantioselectivity is a measure of the difference in the binding affinities at the two sites rather than the consequence of differential affinities at a single site. PMID:2400637
Zafirova, Biljana; Landek, Goran; Kontrec, Darko; Šunjić, Vitomir; Vinković, Vladimir
2004-01-01
Enantioseparation ability and enantiopreference of chiral stationary phases CSP 1–CSP 3, containing a terminal N-3,5-dinitrobenzoyl (N-DNB) unit, and CSP 4, containing a terminal N-benzoyl (N-B) unit, are studied. Separation factors (α) for the two sets of test racemates (TR) that structurally match the chiral selector of these CSPs have been determined. The first set consists of seven N-DNB α-amino acid isopropylesters (TR 1A–TR 7A), and the second one of their N-B analogues (TR ...
一种新型手性配体交换色谱键合固定相%A Novel Bonded Stationary Phase for Chiral Ligand Exchange-Chromatography
Institute of Scientific and Technical Information of China (English)
龙远德; 王群标; 等
2001-01-01
A novel chiral bonded stationary phase(CBSP) for ligand exchange chromatography was prepared by bonding (S)-1,2,3,4-tetrahydro-3-isoquinoline carboxylic acid prepared from L-Phe to YWG-80 silica gel via 3-glycidyloxypropyltrimethoxysilane as a coupling agent. Chromatographic resolutions of some DL-amino acids were achieved on the CBSP by using an aqueous solution of 2 mmol/L N(C2H5)3, 2 mmol/L HAc and 0.2 mmol/L Cu(Ac)2 as the mobile phase with a flow rate 1.0 mL/min, column temperature 50 ℃ and detection at 254 nm. The enantioselectivity α of the DL-amino acids on the CBSP was found to be between 1.11 and 1.51. The elution order of D-isomer before L-isomer on the CBSP was observed for all the DL-amino acids resolved except DL-Val. For DL-Pro, DL-Val and DL-Leu the elution order through the CBSP was different from that through the chiral ligand exchange phases prepared from L-Pro or L-hydroxyl proline with a five-membered ring structure.
Ismail, Omar H; Ciogli, Alessia; Villani, Claudio; De Martino, Michela; Pierini, Marco; Cavazzini, Alberto; Bell, David S; Gasparrini, Francesco
2016-01-01
A new ultra-high performance teicoplanin-based stationary phase was prepared starting from sub-2 μm totally porous silica particles of narrow size distribution. Columns of different lengths were packed at high pressure and a deep and systematic evaluation of kinetic performance, in terms of van Deemter analysis, was performed under different elution conditions (HILIC, POM, RP and NP) by using both achiral and chiral probes. For the achiral probes, the efficiency of the columns at the minimum of the van Deemter curves were very high leading to some 278,000, 270,000, 262,000 and 232,000 plates/m in hydrophilic interaction liquid chromatography (HILIC), polar organic mode (POM), normal phase (NP) and reversed phase (RP) respectively. The lowest plate height, Hmin=3.59 μm (h(/)=1.89), was obtained under HILIC conditions at a flow rate of 1.4 mL/min. Efficiency as high as 200,000-250,000 plates/m (at the optimum flow rate) was obtained in the separation of the enantiomers of chiral probes under HILIC/POM conditions. N-protected amino acids, α-aryloxy acids, herbicides, anti-inflammatory agents were baseline separated on short (2-cm) and ultra-short (1-cm) columns, with analysis time in the order of 1 min. The enantiomers of N-BOC-d,l-methionine were successfully baseline separated in only 11s in HILIC mode. Several examples of fast and efficient resolutions in sub/supercritical fluid chromatography were also obtained for a range of chiral carboxylic acids. PMID:26687167
Mohr, Stefan; Taschwer, Magdalena; Schmid, Martin G
2012-06-01
Cathinone derivatives gained high popularity on the recreational drugs market during the past 10 years. All these compounds are chiral, and the pharmacological potency of the enantiomers of these stimulants is supposed to differ. The goal of this research was to develop a reliable and easy-to-perform high-performance liquid chromatography ultraviolet method for the chiral separation of a set of 24 cathinone derivatives. A commercially available CHIRALPAK® AS-H column consisting of amylose tris [(S)-α-methylbenzylcarbamate] coated on 5-µm silica gel was found to be suitable to resolve a majority of the tested compounds. High-performance liquid chromatography measurements were performed in normal phase mode under isocratic conditions with a mobile phase consisting of hexane, isopropanol, and triethylamine at a flowrate of 1 ml/min. The ratio between hexane and isopropanol was optimized by means of three model substances. Under final conditions with a mobile phase of hexane, isopropanol, and triethylamine (97:3:0.1), 19 out of 24 compounds were successfully resolved into their enantiomers and detected at a wavelength of 254 nm. A correlation between the substituents of the nitrogen atom and the separation results are shown. Furthermore, enantiomer separation results of four cathinone derivatives were compared with the results of their amphetamine analogs. PMID:22544697
Institute of Scientific and Technical Information of China (English)
汪秋兰; 施春阳; 王文清; 谢斌; 林蒙; 方建国
2013-01-01
目的:建立测定阿托伐他汀钙片中对映异构体含量的方法.方法:采用手性固定相高效液相色谱法.色谱柱为Chiralpak AD-H手性柱,流动相为正己烷-无水乙醇-三氟乙酸(93∶7∶0.1,V/V/V),检测波长为246 nm,流速为1 ml/min,柱温为30 ℃,进样量为10μl.结果:对映异构体检测质量浓度在0.63～3.15 μg/ml范围内与峰面积积分值呈良好的线性关系(r=0.999 8)；平均加样回收率为102.07％,RSD=1.53％(n=9)；4批试样和1批市售样品均来检出对映异构体.结论:该方法专属性强、重复性好、准确度高,适用于阿托伐他汀钙片中对映异构体的检测.%OBJECTIVE: To establish a method for the content determination of the enantiomer in Atorvastatin calcium tablet. METHODS: Chiral stationary phase HPLC was adopted. The determination was performed on Chiralpak AD-H chiral column with mobile phase consisted of hexane-dehydrated alcohol-trifluoroacetic acid (93:7:0.1, V/V/V) at the flow rate of 1 ml/min. The detective wavelength was set at 246 nm, and column temperature was 30 ℃. The sample size was 10 μl. RESULTS: The linear range of enantiomer was 0.63-3.15 μg/ml (r=0.999 8) with an average recovery of 102.07% (RSD=1.53%, n = 9); None of enantiomer was found in 4 batches of samples and 1 batches of market samples. CONCLUSION: The method is specific, reproducible and accurate , and it is suitable for the determination of enantiomer in Atorvastatin calcium tablet.
Inoue, Yoshihisa
2004-01-01
Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S
Kharzeev, Dmitri E.; Yee, Ho-Ung
2012-01-01
We consider the properties of electric circuits involving Weyl semimetals. The existence of the anomaly-induced chiral magnetic current in a Weyl semimetal subjected to magnetic field causes an interesting and unusual behavior of such circuits. We consider two explicit examples: i) a circuit involving the "chiral battery" and ii) a circuit that can be used as a "quantum amplifier" of magnetic field. The unique properties of these circuits stem from the chiral anomaly and may be utilized for c...
Kallin, Catherine; Berlinsky, John
2016-05-01
Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.
Energy Technology Data Exchange (ETDEWEB)
Hong, Jongseong; Park, Jung Hag [Yeungnam Univ., Gyeongsan (Korea, Republic of)
2013-06-15
Sulfated β-cyclodextrin (SCD)-coated zirconia monolith was used as the chiral stationary phase in capillary electrochromatography for enantiomeric separation of basic chiral compounds. SCD adsorbed on the zirconia surface provided a stable chiral stationary phase in reversed-phase eluent. Retention, chiral selectivity and resolution of a set of six basic chiral compounds were measured in eluent of varying pH, composition of methanol and buffer. Optimum mobile phase condition for the separation of the compounds was found to be methanol content of 30%, buffer concentration of 30 mM and pH of 4.0.
Energy Technology Data Exchange (ETDEWEB)
Floss, H.G. [Univ. of Washington, Seattle, WA (United States)
1994-12-01
This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.
Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari
2008-12-01
Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively L-amino acids, while only D-sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life’s homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.
Gleiser, Marcelo; Walker, Sara Imari
2008-01-01
Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.
Chang, N P
1994-01-01
Chiral symmetry undergoes a metamorphosis at T.sub(c). For T < T.sub(c), the usual Noether charge, \\Qa, is dynamically broken by the vacuum. Above T.sub(c), chiral symmetry undergoes a subtle change, and the Noether charge \\underline{{\\em morphs}} into \\Qbeta, with the thermal vacuum now becoming invariant under \\Qbeta. This vacuum is however not invariant under the old \\Qa transformations. As a result, the pion remains strictly massless at high T. The pion propagates in the early universe with a halo. New order parameters are proposed to probe the structure of the new thermal vacuum.
International Nuclear Information System (INIS)
Color transparency is the vanishing of initial and final state interactions, predicted by QCD to occur in high momentum transfer quasielastic nuclear reactions. For specific reactions involving nucleons, the initial and final state interactions are expected to be dominated by exchanges of pions. We argue that these interactions are also suppressed in high momentum transfer nuclear quasielastic reactions; this is open-quotes chiral transparency.close quotes We show that studies of the e3He→e'Δ++nn reaction could reveal the influence of chiral transparency. copyright 1997 The American Physical Society
Chiral Nanoscience and Nanotechnology
Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao
2008-01-01
The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology describes the nanoscale appr...
International Nuclear Information System (INIS)
We present many varied chiral symmetry models at the quark level which consistently describe strong interaction hadron dynamics. The pattern that emerges is a nonstrange current quark mass scale mcur ≅ (34-69) MeV and a current quark mass ratio (ms/m)cur ≅ 5-6 along with no strange quark content in nucleons. (orig./WL)
Atroposelective Synthesis of Axially Chiral Thiohydantoin Derivatives.
Sarigul, Sevgi; Dogan, Ilknur
2016-07-15
Nonracemic axially chiral thiohydantoins were synthesized atroposelectively by the reaction of o-aryl isothiocyanates with amino acid ester salts in the presence of triethylamine (TEA). The synthesis of the nonaxially chiral derivatives, however, gave thiohydantoins racemized at C-5 of the heterocyclic ring. The micropreparatively resolved enantiomers of the nonaxially chiral derivatives from the racemic products were found to be optically stable under neutral conditions. On formation of the 5-methyl-3-arylthiohydantoin ring, bulky o-aryl substituents at N3 were found to suppress the C-5 racemization and in this way enabled the transfer of chirality from the α-amino acid to the products. The corresponding 5-isopropylthiohydantoins turned out to be more prone to racemization at C-5 during the ring formation. The isomer compositions of the synthesized axially chiral thiohydantoins have been determined through HPLC analyses with chiral stationary phases. In most cases a high prevalence of the P isomers over the M isomers has been obtained. The barriers to rotation determined around the Nsp(2)-Caryl chiral axis were found to be dependent upon the size of the o-halo aryl substituents. PMID:27322739
Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari
2008-01-01
Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high int...
Energy Technology Data Exchange (ETDEWEB)
Zou, Dandan; Cao, Xin [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, Xinpei, E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Ostrikov, Kostya [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Comonwealth Scientific and Industrial Research Organization, P.O. Box 218, Sydney, New South Wales 2070 (Australia)
2015-10-15
The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.
Zou, Dandan; Cao, Xin; Lu, Xinpei; Ostrikov, Kostya Ken
2015-10-01
The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.
Institute of Scientific and Technical Information of China (English)
于兆文; 李梅晔; 陶偌偈; 倪林
2001-01-01
用直链淀粉-三(3，5-二甲基苯基氨基甲酸酯)手性固定相，在正相条件下首次拆分了6种咔唑羧酸衍生物对映异构体。考察了流动相中不同的酸性添加剂、不同的正丙醇浓度对样品保留和拆分的影响。%Six pairs of enantiomeric compounds of carbazole derivatives were separated by high performance liquid chromatography using an amylosetris (3,5-dimethylphenylcarbamate) chiral column made in our laboratory. The mob I le phases were mixtrues of different content ofn-hexane, n-propanol and a little amount of acidic additives. It was found that the stronger the acid added, the better the separation. All the enantiomers were baseline separated with a mobile phase comtaining 1% trifluoroacetic acid and 5% n-propanol. The effect of sam ple structure on the retention factor was discussed. When the carboxylic chain of the sample became longer, the retention factor became smaller. When the sample was halogenated, the retention factor increased along with the increasing of the molecular weight of the samples.
Chiral geometry in multiple chiral doublet bands
Zhang, Hao
2015-01-01
The chiral geometry of the multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters $\\gamma$ in the particle rotor model with $\\pi h_{11/2}\\otimes \
Scalemic and racemic imprinting with a chiral crosslinker.
Hebert, Britney; Meador, Danielle S; Spivak, David A
2015-08-26
The development of molecularly imprinted chiral stationary phases has traditionally been limited by the need for a chiral pure template. Paradoxically, availability of a chiral pure template largely defeats the purpose of developing a chiral stationary phase. To solve this paradox, imprinting of scalemic and racemic template mixtures was investigated using both chiral (N-α-bismethacryloyl-L-alanine) and achiral (N,O-bisacrylamide ethanolamine) crosslinkers. Imprinting of scalemic mixtures provided polymers capable of partial separation of Boc-tyrosine enantiomers with virtually the same results when using either the chiral or achiral crosslinker. However, the chiral crosslinker was required for chiral differentiation by the racemic imprinted polymers which were evaluated in both batch rebinding and chromatographic modes. Batch rebinding analysis revealed intersecting binding isotherms for the L- and D-Boc-tyrosine, indicating bias for the D or L enantiomer is concentration dependent. Partial chromatographic separation was achieved by the racemic imprinted polymers providing variable D or L bias in equal probability over multiple replicates of polymer synthesis. Correlation of enantiomer bias with the batch rebinding results and optimization of HPLC parameters are discussed. PMID:26347178
Institute of Scientific and Technical Information of China (English)
李来生; 马海萍; 陈红; 方奕珊
2012-01-01
β-CD-mono-6-(N-aminoethyl)-3-aminoprbpyltrimethoxy silane was synthesized and used together with 1,2-bis(triethoxysilyl) -ethane (BTEE) as silica resources templated by cetyltriethyl-ammnonium bromide (CTAB) for preparing mesoporous chiral materials via hydrothermal processes. After phenylcarbamated with phenyl isocyanate an organo-inorganic chiral silica composite(β-CD PMOs) was obtained, in whichy β-CD was incorporated to the wall of the channels while ethyl groups were located in the framework. The periodic mesporous organosilicas (PMOs) was utilized as chiral stationary phase (CSP) for enantioseparartion of some alkaline medicines containing nitrogen under reverse-phase high-performance liquid chromatography ( RP-HPLC) and normal-phase high-performance liquid chromatography ( NP-HPLC ) conditions. The results showed that the enantioseparartion of these medicines could be effectively achieved by β-CD PMOs using common mobile phases at the similar pH value (pH =4. 15). The maximal enantioseparartion selectivity factor (α) was 2.42. In addition, excellent permeability and reproducibility facilitate the establishment of a new enantioseparation method for chiral medicines. The chromatographic data indicated that β-CD PMOs are promising for the enantioseparation of medicines.%制备了β-环糊精-6-单取代氨乙基氨丙基三甲氧基硅烷手性单体(β-CD siloxane),以该手性单体和1,2-双(三乙氧基硅基)乙烷(BTEE)为硅源,十六烷基三甲基溴化铵(CTAB)为模板,采用水热合成法直接制得孔道中含有环糊精的手性介孔材料.再对该产物进行苯基异氰酸酯化得到杂合β-环糊精的有机-无机介孔分离材料(β-CD PMOs).在反相-HPLC及正相-HPLC条件下,分别考察该填料柱对常见含氮碱性药物对映体的拆分效果.结果表明,不管在反相或正相分离模式下,采用常见的流动相在pH =4.15条件实现了11个碱性药物的手性分离,手性选择因子(α)最高可达2.42.
Chiral symmetry and chiral-symmetry breaking
International Nuclear Information System (INIS)
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed
Energy Technology Data Exchange (ETDEWEB)
Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)
2015-06-01
Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.
Spontaneous chiral symmetry breaking in metamaterials
Liu, Mingkai; Powell, David A.; Shadrivov, Ilya V.; Lapine, Mikhail; Kivshar, Yuri S.
2014-07-01
Spontaneous chiral symmetry breaking underpins a variety of areas such as subatomic physics and biochemistry, and leads to an impressive range of fundamental phenomena. Here we show that this prominent effect is now available in artificial electromagnetic systems, enabled by the advent of magnetoelastic metamaterials where a mechanical degree of freedom leads to a rich variety of strong nonlinear effects such as bistability and self-oscillations. We report spontaneous symmetry breaking in torsional chiral magnetoelastic structures where two or more meta-molecules with opposite handedness are electromagnetically coupled, modifying the system stability. Importantly, we show that chiral symmetry breaking can be found in the stationary response of the system, and the effect is successfully demonstrated in a microwave pump-probe experiment. Such symmetry breaking can lead to a giant nonlinear polarization change, energy localization and mode splitting, which provides a new possibility for creating an artificial phase transition in metamaterials, analogous to that in ferrimagnetic domains.
Electron quantum optics in ballistic chiral conductors
Bocquillon, E.; Freulon, V.; Parmentier, F. D.; Berroir, J.-M.; Plaçais, B.; Wahl, C.; Rech, J.; Jonckheere, T.; Martin, T; Grenier, C.; Ferraro, D.; Degiovanni, P.; Fève, G.
2014-01-01
The edge channels of the quantum Hall effect provide one dimensional chiral and ballistic wires along which electrons can be guided in optics like setup. Electronic propagation can then be analyzed using concepts and tools derived from optics. After a brief review of electron optics experiments performed using stationary current sources which continuously emit electrons in the conductor, this paper focuses on triggered sources, which can generate on-demand a single particle state. It first ou...
Lateral shift in one-dimensional quasiperiodic chiral photonic crystal
Energy Technology Data Exchange (ETDEWEB)
Da, Jian, E-mail: dajian521@sina.com [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Mo, Qi, E-mail: moqiyueyang@163.com [School of Software, Yunnan University, Cuihu Bai Road, Kunming City, Yunnan Province 650091 (China); Cheng, Yaokun [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Liu, Taixiang [Taishan Vocational College of Nursing, Shandong Province 271000 (China)
2015-02-01
We investigate the lateral shift of a one-dimensional quasiperiodic photonic crystal consisting of chiral and conventional dielectric materials. The effect of structural irregularity on lateral shift is evaluated by stationary-phase approach. Our results show that the lateral shift can be modulated by varying the structural irregularity in quasiperiodic structure. Besides, the position of peak in lateral shift spectrum stays sensitive to the chiral factor of chiral materials. In comparison with that of periodic structure, quasiperiodic structure provides an extra degree of freedom to manipulate the lateral shift.
No-Drag Frame for Anomalous Chiral Fluid
Stephanov, Mikhail A.; Yee, Ho-Ung
2016-03-01
We show that for an anomalous fluid carrying dissipationless chiral magnetic and/or vortical currents there is a frame in which a stationary obstacle experiences no drag, but energy and charge currents do not vanish, resembling superfluidity. However, unlike ordinary superfluid flow, the anomalous chiral currents can transport entropy in this frame. We show that the second law of thermodynamics completely determines the amounts of these anomalous nondissipative currents in the "no-drag frame" as polynomials in temperature and chemical potential with known anomaly coefficients. These general results are illustrated and confirmed by a calculation in the chiral kinetic theory and in the quark-gluon plasma at high temperature.
The no-drag frame for anomalous chiral fluid
Stephanov, Mikhail A
2015-01-01
We show that for an anomalous fluid carrying dissipationless chiral magnetic and/or vortical currents there is a frame in which a stationary obstacle experiences no drag, but energy and charge currents do not vanish, resembling superfluidity. However, unlike ordinary superfluid flow, the anomalous chiral currents do transport entropy in this frame. We show that the second law of thermodynamics completely determines the amounts of these anomalous non-dissipative currents in the "no-drag frame" as polynomials in temperature and chemical potential with known anomaly coefficients. These general results are illustrated and confirmed by a calculation in the chiral kinetic theory and quark-gluon plasma at high temperature.
Chiral gas chromatography for the determination of 1,2-O-isopropylidene-sn-glycerol stereoisomers
Dröge, M.J; Bos, R.; Woerdenbag, H.J.; Quax, Wim; Droge, MJ
2003-01-01
A stereospecific gas chromatography (GC) method using a (6-O-tButyldimethylsilyl-2,3-di-O-methyl)-beta-cyclodextrin as the chiral stationary phase has been developed and validated for the determination of the enantiomers of 1,2-O-isopropylidene-sn-glycerol (IPG), an important chiral synthon, in kine
Lateral shifting in one dimensional chiral photonic crystal
International Nuclear Information System (INIS)
We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.
International Nuclear Information System (INIS)
The concept of chirality is extended to cover systems that exhibit enantiomorphism on account of motion. This is achieved by applying time reversal in addition to space inversion and leads to a more precise definition of a chiral system. Although spatial enantiomorphism is sufficient to guarantee chirality in a stationary system such as a finite helix, enantiomorphous systems are not necessarily chiral when motion is involved, which leads to the concept of true and false chirality associated with time-invariant and time-noninvariant enantiomorphism, respectively. Only a truly chiral influence can induce an enantiomeric excess in a reaction that has reached true thermodynamic equilibrium (i.e., when all possible interconversion pathways have equilibrated); however, false chirality can suffice in a reaction under kinetic control due to a breakdown of microscopic reversibility analogous to that observed in particle-antiparticle processes involving the neutral K-meason as a result of CP violation, with the apparently contradictory kinetic and thermodynamic aspects being reconciled by an appeal to unitarity. This reveals that CP violation is analogous to chemical catalysis since it affects the rates of certain particle-antiparticle interconversion pathways without affecting the initial and final particle energies and hence the equilibrium thermodynamics. Consideration of falsely chiral influences, including the open-quote ratchet effect close-quote arising from the associated breakdown in microscopic reversibility, greatly enlarges the range of possible chiral advantage factors in prebiotic chemical processes if far from equilibrium. copyright 1996 American Institute of Physics
Chiral Gravitational Waves from Chiral Fermions
Anber, Mohamed M
2016-01-01
We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.
Anomalous Chiral Superfluidity
Lublinsky, Michael(Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel); Zahed, Ismail
2009-01-01
We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavour anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is ...
Introduction to chiral symmetry
International Nuclear Information System (INIS)
These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
@@ Capillary zone electrophoresis (CZE) is a very pronising analytical technique for the optical isomer resolution of the compounds studied. The drawbacks of the techniques such as HPLC [1] were sophisticated stationary phases and/or the relatively high quantity of the chiral agent in the mobile phase, which do not exist in CZE. The capillary electrophoresis (CE) method can offer advantages on lower consumption of analyte and background electrolyte (BGE), shorter analysis time, and higher efficiencies [2-3
Liu, Keh-Fei
2016-01-01
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
Haupert, Levi M.; Simpson, Garth J.
2009-05-01
The past decade has witnessed the emergence of new measurement approaches and applications for chiral thin films and materials enabled by the observations of the high sensitivity of second-order nonlinear optical measurements to chirality. In thin films, the chiral response to second harmonic generation and sum frequency generation (SFG) from a single molecular monolayer is often comparable with the achiral response. The chiral specificity also allows for symmetry-allowed SFG in isotropic chiral media, confirming predictions made ˜50 years ago. With these experimental demonstrations in hand, an important challenge is the construction of intuitive predictive models that allow the measured chiral response to be meaningfully related back to molecular and macromolecular structure. This review defines and considers three distinct mechanisms for chiral effects in uniaxially oriented assemblies: orientational chirality, intrinsic chirality, and isotropic chirality. The role of each is discussed in experimental and computational studies of bacteriorhodopsin films, binaphthol, and collagen. Collectively, these three model systems support a remarkably simple framework for quantitatively recovering the measured chiral-specific activity.
Chiral Rotational Spectroscopy
Cameron, Robert P; Barnett, Stephen M
2015-01-01
We introduce chiral rotational spectroscopy: a new technique that enables the determination of the individual optical activity polarisability components $G_{XX}'$, $G_{YY}'$, $G_{ZZ}'$, $A_{X,YZ}$, $A_{Y,ZX}$ and $A_{Z,XY}$ of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample whilst yielding an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral by virtue of their isotopic constitution and molecules with multiple chiral centres. The principles that underpin chiral rotational spectroscopy can also be exploited in the search for molecular chirality in space, which, if found, may add weight to hypotheses that biological homochirality and indeed life itself are of cosmic origin.
Chiral Stationary Phases Based on Silica Modified by Helicenes
Czech Academy of Sciences Publication Activity Database
Bernard, Martin
Prague : Institute of Chemical Process Fundamentals of the ASCR, v. v. i, 2014 - (Bendová, M.; Wagner, Z.), s. 19-20 ISBN 978-80-86186-61-0. [Bažant Postgraduate Conference 2014. Prague (CZ), 19.06.2014] R&D Projects: GA TA ČR TA01010646 Institutional support: RVO:67985858 Keywords : helicenes * polyaromatic compounds * separation techniques Subject RIV: CC - Organic Chemistry
On chiral and non chiral 1D supermultiplets
Energy Technology Data Exchange (ETDEWEB)
Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica
2011-07-01
In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)
Chiral symmetry and chiral-symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)
Understanding complex chiral plasmonics
Duan, Xiaoyang; Yue, Song; Liu, Na
2015-10-01
Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant
Kalaydzhyan, Tigran
2014-01-01
We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.
Mechanical separation of chiral dipoles by chiral light
Canaguier-Durand, Antoine; Genet, Cyriaque; Ebbesen, Thomas W
2013-01-01
Optical forces take on a specific form when involving chiral light fields interacting with chiral objects. We show that optical chirality density and flow can have mechanical effects through reactive and dissipative components of chiral forces exerted on chiral dipoles. Remarkably, these force components are directly related to standard observables: optical rotation and circular dichroism, respectively. As a consequence, resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This leads to promising strategies for the mechanical separation of chiral objects using chiral light forces.
Doped Chiral Polymer Metamaterials Project
National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...
Chiral geometry in multiple chiral doublet bands
Zhang, Hao; Chen, Qibo
2016-02-01
The chiral geometry of multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters γ in the particle rotor model with . The energy spectra, electromagnetic transition probabilities B(M1) and B(E2), angular momenta, and K-distributions are studied. It is demonstrated that the chirality still remains not only in the yrast and yrare bands, but also in the two higher excited bands when γ deviates from 30°. The chiral geometry relies significantly on γ, and the chiral geometry of the two higher excited partner bands is not as good as that of the yrast and yrare doublet bands. Supported by Plan Project of Beijing College Students’ Scientific Research and Entrepreneurial Action, Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002), National Fund for Fostering Talents of Basic Science (NFFTBS) (J1103206), Research Fund for Doctoral Program of Higher Education (20110001110087) and China Postdoctoral Science Foundation (2015M580007)
International Nuclear Information System (INIS)
In this paper, Lorentzian wormholes with a phantom field and chiral matter fields have been obtained. In addition, it is shown that for different values of the gravitational coupling of the chiral fields, the wormhole geometry changes. Finally, the stability of the corresponding wormholes is studied and it is shown that are unstable (eg. Ellis's wormhole instability)
Spectral signatures of chirality
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Mortensen, Asger
2009-01-01
We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast to the...
Chiral Magnetic "Superfluidity"
Sadofyev, Andrey V
2015-01-01
We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for superfluidity, that the "anomalous component" which gives rise to the anomalous transport will {\\it not} contribute to the drag experienced by an impurity. We argue on very general basis that those systems with a strong magnetic field would exhibit the behavior of 'superfluidity" -- the motion of the heavy impurity is frictionless, in analog to the case of a superfluid. However, this "superfluidity" exists even for chiral media at finite temperature and only in the directional longitudinal with the magnetic field, in contrast to the ordinary superfluid. We will call this novel phenomenon as the Chiral Magnetic "Superfluidity". We demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion ...
Chiral Magnetic Effect and Chiral Phase Transition
Institute of Scientific and Technical Information of China (English)
FU Wei-Jie; LIU Yu-Xin; WU Yue-Liang
2011-01-01
We study the influence of the chiral phase transition on the chiral magnetic effect.The azimuthal chargeparticle correlations as functions of the temperature are calculated.It is found that there is a pronounced cusp in the correlations as the temperature reaches its critical value for the QCD phase transition.It is predicted that there will be a drastic suppression of the charge-particle correlations as the collision energy in RHIC decreases to below a critical value.We show then the azimuthal charge-particle correlations can be the signal to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.
Chiral String-Soliton Model for the light chiral baryons
Pavlovsky, Oleg
2010-01-01
The Chiral String-Soliton Model is a joining of the two notions about the light chiral baryons: the chiral soliton models (like the Skyrme model) and the Quark-Gluon String models. The ChSS model is based on the Effective Chiral Lagrangian which was proposed in [arXiv:hep-ph/0306216]. We have studied the physical properties of the light chiral baryon within the framework of this ChSS model.
Applications of chiral symmetry
International Nuclear Information System (INIS)
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature Tχ implies that the ρ and a1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, mρ(Tχ) > mρ(0). The author conjectures that at Tχ the thermal ρ - a1, peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by Tχ. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates
Chiral supergravity and anomalies
Mielke, E W; Macias, Alfredo; Mielke, Eckehard W.
1999-01-01
Similarily as in the Ashtekar approach, the translational Chern-Simons term is, as a generating function, instrumental for a chiral reformulation of simple (N=1) supergravity. After applying the algebraic Cartan relation between spin and torsion, the resulting canonical transformation induces not only decomposition of the gravitational fields into selfdual and antiselfdual modes, but also a splitting of the Rarita-Schwinger fields into their chiral parts in a natural way. In some detail, we also analyze the consequences for axial and chiral anomalies.
Synthesis of Chiral Cyclopentenones.
Simeonov, Svilen P; Nunes, João P M; Guerra, Krassimira; Kurteva, Vanya B; Afonso, Carlos A M
2016-05-25
The cyclopentenone unit is a very powerful synthon for the synthesis of a variety of bioactive target molecules. This is due to the broad diversity of chemical modifications available for the enone structural motif. In particular, chiral cyclopentenones are important precursors in the asymmetric synthesis of target chiral molecules. This Review provides an overview of reported methods for enantioselective and asymmetric syntheses of cyclopentenones, including chemical and enzymatic resolution, asymmetric synthesis via Pauson-Khand reaction, Nazarov cyclization and organocatalyzed reactions, asymmetric functionalization of the existing cyclopentenone unit, and functionalization of chiral building blocks. PMID:27101336
Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential
Braguta, V V
2016-01-01
In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.
No-Drag Frame for Anomalous Chiral Fluid.
Stephanov, Mikhail A; Yee, Ho-Ung
2016-03-25
We show that for an anomalous fluid carrying dissipationless chiral magnetic and/or vortical currents there is a frame in which a stationary obstacle experiences no drag, but energy and charge currents do not vanish, resembling superfluidity. However, unlike ordinary superfluid flow, the anomalous chiral currents can transport entropy in this frame. We show that the second law of thermodynamics completely determines the amounts of these anomalous nondissipative currents in the "no-drag frame" as polynomials in temperature and chemical potential with known anomaly coefficients. These general results are illustrated and confirmed by a calculation in the chiral kinetic theory and in the quark-gluon plasma at high temperature. PMID:27058072
Energy Technology Data Exchange (ETDEWEB)
Bonner, W.A. [Department of Chemistry Stanford University, Stanford, California 94305 (United States)
1996-07-01
The indispensable role played by homochirality and chiral homogeneity in the self-replication of crucial biomolecules is stressed, with the conclusion that life could neither exist nor originate without these chiral molecular attributes. Hypotheses historically proposed for the origin of chiral molecules on Earth are reviewed, including biogenic theories as well as abiotic theories embracing both indeterminate and determinate mechanisms. Indeterminate mechanisms, including autocatalytic symmetry breaking, asymmetric adsorption on quartz and clay minerals, and asymmetric syntheses in chiral crystals, are discussed and evaluated in the context of the prebiotic environment. Abiotic determinate mechanisms based on electric, magnetic and gravitational fields, on circularly polarized light (CPL), and on parity violation effects are summarized, with the emphasis that only CPL has proved practicable experimentally, but that it would be implausible on the primitive Earth. Mechanisms for the amplification of small, indigenous enantiomeric excesses are discussed, with one involving the partial polymerization of amino acids and the partial hydrolysis of polypeptides suggested as potentially viable prebiotically. Aspects of the turbulent, chirality-destructive primeval environment are described, with the conclusion that all of the above mechanisms for the {ital terrestrial} prebiotic origin of chirality would be non-viable, and that an alternative extraterrestrial source for the accumulation of chiral molecules on primitive Earth must have been operative. A scenario for this is outlined, in which we postulate that asymmetric photolysis of the organic mantles on interstellar grains in molecular clouds by circularly polarized ultraviolet synchrotron radiation from the neutron star remnants of supernovae produces chiral molecules in the grain mantles. (Abstract Truncated)
Chiral separation in microflows
Kostur, Marcin; Schindler, Michael; Talkner, Peter; Hänggi, Peter
2005-01-01
Molecules that only differ by their chirality, so called enantiomers, often possess different properties with respect to their biological function. Therefore, the separation of enantiomers presents a prominent challenge in molecular biology and belongs to the ``Holy Grail'' of organic chemistry. We suggest a new separation technique for chiral molecules that is based on the transport properties in a microfluidic flow with spatially variable vorticity. Because of their size the thermal fluctua...
Directory of Open Access Journals (Sweden)
Goldstein Gary R.
2015-01-01
Full Text Available Nucleon spin structure, transversity and the tensor charge are of central importance to understanding the role of QCD in hadronic physics. A new approach to measuring orbital angular momenta of quarks in the proton via twist 3 GPDs is shown. The “flexible parametrization” of chiral even GPDs is reviewed and its transformation into the chiral odd sector is discussed. The resulting parametrization is applied to recent data on π0 and η electroproduction.
Institute of Scientific and Technical Information of China (English)
HOU; JingGuo
2001-01-01
Capillary zone electrophoresis (CZE) is a very pronising analytical technique for the optical isomer resolution of the compounds studied. The drawbacks of the techniques such as HPLC [1] were sophisticated stationary phases and/or the relatively high quantity of the chiral agent in the mobile phase, which do not exist in CZE. The capillary electrophoresis (CE) method can offer advantages on lower consumption of analyte and background electrolyte (BGE), shorter analysis time, and higher efficiencies [2-3] ……
Dirac brackets for the chiral Schwinger model with chiral constraint
International Nuclear Information System (INIS)
Dirac brackets for the chiral Schwinger model with chiral constraint are derived perturbatively from the correlation function by the BJL limit method. The results show that the Poissons brackets are not consistent in this theory. (author)
International Nuclear Information System (INIS)
Chirality has recently been proposed as a novel feature of rotating nuclei [1]. Because the chiral symmetry is dichotomic, its spontaneous breaking by the axial angular momentum vector leads to doublets of closely lying rotational bands of the same parity. To investigate nuclear chirality, next to establish the existence of almost degenerate rotational bands, it is necessary to measure also other observables and compare them to the model predictions. The crucial test for the suggested nuclei as candidates to express chirality is based on precise lifetime measurements. Two lifetime experiments and theoretical approaches for the description of the experimental results will be presented. Lifetimes of exited states in 134Pr were measured [2,3] by means of the recoil distance Doppler-shift and Doppler-shift attenuation techniques. The branching ratios and the electric or magnetic character of the transitions were also investigated [3]. The experiments were performed at IReS, Strasbourg, using the EUROBALL IV spectrometer, in conjunction with the inner bismuth germanate ball and the Cologne coincidence plunger apparatus. Exited states in 134Pr were populated in the fusion-evaporation reaction 119Sn(19F, 4n)134Pr. The possible chiral interpretation of twin bands was investigated in the two-quasiparticle triaxial rotor [1] and interacting boson-fermion-fermion models [4]. Both theoretical approaches can describe the level-scheme of 134Pr. The analysis of the wave functions has shown that the possibility for the angular momenta of the proton, neutron, and core to find themselves in the favorable, almost orthogonal geometry, is present but is far from being dominant [3,5]. The structure is characterized by large β and γ fluctuations. The existence of doublets of bands in 134Pr can be attributed to weak chirality dominated by shape fluctuations. In a second experiment branching ratios and lifetimes in 136Pm were measured by means of the recoil distance Doppler-shift and
Ceramic stationary gas turbine
Energy Technology Data Exchange (ETDEWEB)
Roode, M. van [Solar Turbines Inc., San Diego, CA (United States)
1995-10-01
The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.
Chiral anomalies and differential geometry
Energy Technology Data Exchange (ETDEWEB)
Zumino, B.
1983-10-01
Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)
Kojo, Toru; McLerran, Larry; Pisarski, Robert D
2009-01-01
We consider the formation of chiral density waves in Quarkyonic matter, which is a phase where cold, dense quarks experience confining forces. We model confinement following Gribov and Zwanziger, taking the gluon propagator, in Coulomb gauge and momentum space, as 1/(p^2)^2. We assume that the number of colors, N, is large, and that the quark chemical potential, mu, is much larger than renormalization mass scale, Lambda_QCD. To leading order in 1/N and Lambda_QCD, a gauge theory with Nf flavors of massless quarks in 3+1 dimensions naturally reduces to a gauge theory in 1+1 dimensions, with an enlarged flavor symmetry of SU(2Nf). Through an anomalous chiral rotation, in two dimensions a Fermi sea of massless quarks maps directly onto the corresponding theory in vacuum. A chiral condensate forms locally, and varies with the spatial position, z, as . Following Schon and Thies, we term this two dimensional pion condensate a (Quarkyonic) chiral spiral. Massive quarks also exhibit chiral spirals, with the magnitude...
Fok, R
2011-01-01
We calculate the two-body decay rates of "quirkonium" states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N)_ic infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the Standard Model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vector-like representation. The differences in the dominant decay channels between "chiral quirkonia" versus "vector-like quirkonia" are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, t\\bar{t}, t\\bar{b} / b\\bar{t}, and gamma+H, which never dominate for vector-like quirkonia. Additionally, the channels WW, WZ, ZZ, and W+gamma, are shared among both chiral and vector-like quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vector-like quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the ...
International Nuclear Information System (INIS)
We calculate the two-body decay rates of quirkonium states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N)ic infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the standard model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vectorlike representation. The differences in the dominant decay channels between 'chiral quirkonia' versus 'vectorlike quirkonia' are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, tt, tb/bt, and γH, which never dominate for vectorlike quirkonia. Additionally, the channels WW, WZ, ZZ, and Wγ, are shared among both chiral and vectorlike quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vectorlike quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the decays into pairs of gauge or Higgs bosons are kinematically forbidden.
Chiral Invariance of Massive Fermions
Das, A.(University of Arizona, Tucson, AZ, 85721, USA); Hott, M
1994-01-01
We show that a massive fermion theory, while not invariant under the conventional chiral transformation, is invariant under a $m$-deformed chiral transformation. These transformations and the associated conserved charges are nonlocal but reduce to the usual transformations and charges when $m=0$. The $m$-deformed charges commute with helicity and satisfy the conventional chiral algebra.
Chiral Synthons in Pesticide Syntheses
Feringa, Bernard
1988-01-01
The use of chiral synthons in the preparation of enantiomerically pure pesticides is described in this chapter. Several routes to chiral synthons based on asymmetric synthesis or on natural products are illustrated. Important sources of chiral building blocks are reviewed. Furthermore the implicatio
Chiral Electroweak Currents in Nuclei
Riska, D O
2016-01-01
The development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown's role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.
Holographic Chiral Magnetic Spiral
International Nuclear Information System (INIS)
We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)
Lodahl, Peter; Stobbe, Søren; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno; Pichler, Hannes; Zoller, Peter
2016-01-01
At the most fundamental level, the interaction between light and matter is manifested by the emission and absorption of single photons by single quantum emitters. Controlling light--matter interaction is the basis for diverse applications ranging from light technology to quantum--information processing. Many of these applications are nowadays based on photonic nanostructures strongly benefitting from their scalability and integrability. The confinement of light in such nanostructures imposes an inherent link between the local polarization and propagation direction of light. This leads to {\\em chiral light--matter interaction}, i.e., the emission and absorption of photons depend on the propagation direction and local polarization of light as well as the polarization of the emitter transition. The burgeoning research field of {\\em chiral quantum optics} offers fundamentally new functionalities and applications both for single emitters and ensembles thereof. For instance, a chiral light--matter interface enables...
Baryon chiral perturbation theory
International Nuclear Information System (INIS)
We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order O(q6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.
Baryon chiral perturbation theory
Scherer, Stefan
2011-01-01
We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order ${\\cal O}(q^6)$ and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.
Indian Academy of Sciences (India)
H Weigel
2003-11-01
In this talk I review studies of hadron properties in bosonized chiral quark models for the quark ﬂavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.
Baryon chiral perturbation theory
Scherer, S.
2012-03-01
We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order Script O(q6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.
International Nuclear Information System (INIS)
After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)
Chiral Heat Wave and wave mixing in chiral media
Chernodub, M N
2016-01-01
We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective excitation associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This excitation, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. We find that the coupled waves - which are coherent fluctuations of the vector, axial and energy currents - have generally different velocities compared to the velocities of the individual waves. We also demonstrate that rotating chiral systems subjected to external magnetic field possess non-propagating metastable thermal excitations, the Dense Hot Spots.
Stationary and Transient Response Statistics
DEFF Research Database (Denmark)
Madsen, Peter Hauge; Krenk, Steen
1982-01-01
The covariance functions for the transient response of a linear MDOF-system due to stationary time limited excitation with an arbitrary frequency content are related directly to the covariance functions of the stationary response. For rational spectral density functions closed form expressions fo...
Chiral forces and molecular dissymmetry
International Nuclear Information System (INIS)
Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected
Kojo, Toru; Fukushima, Kenji; McLerran, Larry; Pisarski, Robert D
2011-01-01
We elaborate how to construct the interweaving chiral spirals in (2+1) dimensions, that is defined as a superposition of differently oriented chiral spirals. We divide the two-dimensional Fermi sea into distinct wedges characterized by the opening angle 2 Theta and the depth Q \\simeq pF, where pF is the Fermi momentum. Each wedge earns an energy gain by forming a single chiral spiral. The optimal values for Theta and Q are chosen by the balance between this energy gain and the energy costs from the deformed Fermi surface (dominant at large Theta) and patch-patch interactions (dominant at small Theta). We estimate these energy gains and costs by means of the expansions in terms of 1/Nc, Lambda_QCD/Q, and Theta using a non-local four-Fermi interaction model: At small 1/Nc the mass gap (chiral condensate) is large enough and the interaction among quarks and the condensate is local in momentum space thanks to the form factor in our non-local model. The fact that patch-patch interactions lie only near the patch bo...
Roussel, Christian; Del Rio, Alberto; Pierrot-Sanders, Johanna; Piras, Patrick; Vanthuyne, Nicolas
2004-05-28
The review covers examples in which chiral HPLC, as a source of pure enantiomers, has been combined with classical methods (X-ray, vibrational circular dichroism (VCD), enzymatic resolutions, nuclear magnetic resonance (NMR) techniques, optical rotation, circular dichroism (CD)) for the on- or off-line determination of absolute configuration of enantiomers. Furthermore, it is outlined that chiral HPLC, which associates enantioseparation process and classical purification process, opens new perspectives in the classical determination of absolute configuration by chemical correlation or chemical interconversion methods. The review also contains a discussion about the various approaches to predict the absolute configuration from the retention behavior of the enantiomers on chiral stationary phases (CSPs). Some examples illustrate the advantages and limitations of molecular modeling methods and the use of chiral recognition models. The assumptions underlying some of these methods are critically analyzed and some possible emerging new strategies are outlined. PMID:15214673
International Nuclear Information System (INIS)
The high-performance liquid chromatographic (HPLC) separation of enantiomers is preferentially performed using chiral stationary phases (CSPs). If the chiral auxiliary (selector, SO) contains charged or ionizable groups one gets ion exchanger type CSPs which may bind and retain oppositely charged analytes (selectands, SAs). We prepared anion exchanger type CSPs with various quinine and quinidine carbarnates as chiral SOs immobilized either on porous or non-porous silica. These CSPs are able to resolve the enantiomers of a wide spectrum of chiral carboxylic, sulfonic, phosphonic, phosphoric acids and of many other chiral acidic solutes (e.g. N-derivatized alpha-, beta- , gamma-amino acids as 2,4-dinitrophenyl, 3,5-dinitrobenzoyl, benzoyl, acetyl, formyl, t.-butoxycarbonyl, benzyloxycarbonyl, 9-fluorenylmethoxycarbonyl, dansyl amino acids and peptides, alpha-arylalkylcarboxylic acids as profens, alpha-aryloxyalkylcarboxylic acids, alpha-arylthioalkylcarboxylic acids and acidic drugs like etodolac, proglumide, acenocournarol, leucovorin, omeprazole, pantoprazole) employing buffered aqueous mobile phases or non-aqueous mobile phases with buffer dissolved in the organic solvent. The influence of mobile phase parameters and other experimental conditions on retention and enantioselectivity has been evaluated for isocratic and gradient elution techniques, aided by the commercial method development computer software DryLab. Several 'Quantitative Structure-Retention Relationships' (QSRR) have been derived, which allowed prediction of enantioselectivity of new analytes and moreover the optimization of the SO-structure. Spectroscopic investigations as H-NMR, FTIR of certain SO-SA-complexes have been exerted to unveil the mechanism of chiral recognition. (author)
Chiral Biomarkers in Meteorites
Hoover, Richard B.
2010-01-01
The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be
Tsai, J.-C.; Ye, Fangfu; Rodriguez, Juan; Gollub, J. P.; Lubensky, T. C.
2005-05-01
Inspired by rattleback toys, we created small chiral wires that rotate in a preferred direction on a vertically oscillating platform and quantified their motion with experiment and simulation. We demonstrate experimentally that angular momentum of rotation about particle centers of mass is converted to collective angular momentum of center-of-mass motion in a granular gas of these wires, and we introduce a continuum model that explains our observations.
Chiral Crystal Growth under Grinding
Saito, Yukio; Hyuga, Hiroyuki
2008-01-01
To study the establishment of homochirality observed in the crystal growth experiment of chiral molecules from a solution under grinding, we extend the lattice gas model of crystal growth as follows. A lattice site can be occupied by a chiral molecule in R or S form, or can be empty. Molecules form homoclusters by nearest neighbor bonds. They change their chirality if they are isolated monomers in the solution. Grinding is incorporated by cutting and shafling the system randomly. It is shown ...
Chiral squaring and KLT relations
Schreiber, Anders
2016-01-01
We demonstrate that amplitudes based on matter supermultiplets can be combined to provide amplitudes of vector supermultiplets by means of KLT relations. In practice we do this by developing a procedure for removing supersymmetry supercharges from super Yang-Mills theory and supergravity supermultiplets, reducing them to vector and chiral supermultiplets respectively. This way, we reduce the super KLT relations to chiral KLT relations making chiral squaring of amplitudes manifest. We study th...
Chiral dynamics and baryon resonances
Hyodo, Tetsuo
2010-01-01
The structure of baryon resonance in coupled-channel meson-baryon scattering is studied from the viewpoint of chiral dynamics. The meson-baryon scattering amplitude can be successfully described together with the properties of the resonance in the scattering, by implementing the unitarity condition for the amplitude whose low energy structure is constrained by chiral theorem. Recently, there have been a major progress in the study of the structure of the resonance in chiral dynamics. We revie...
Fiorilla, Salvatore; Weise, Wolfram
2011-01-01
We calculate the equation of state of nuclear matter for arbitrary isospin-asymmetry up to three loop order in the free energy density in the framework of in-medium chiral perturbation theory. In our approach 1\\pi- and 2\\pi-exchange dynamics with the inclusion of the \\Delta-isobar excitation as an explicit degree of freedom, corresponding to the long- and intermediate-range correlations, are treated explicitly. Few contact terms fixed to reproduce selected known properties of nuclear matter encode the short-distance physics. Two-body as well as three-body forces are systematically included. We find a critical temperature of about 15 MeV for symmetric nuclear matter. We investigate the dependence of the liquid-gas first-order phase transition on isospin-asymmetry. In the same chiral framework we calculate the chiral condensate of isospin-symmetric nuclear matter at finite temperatures. The contribution of the \\Delta-isobar excitation is essential for stabilizing the condensate. As a result, we find no indicati...
Generalized simplicial chiral models
Alimohammadi, M
2000-01-01
Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, we generalize the simplicial chiral models by replacing the term Tr$(AA^{\\d})$ in the Lagrangian of these models, by an arbitrary class function of $AA^{\\d}; V(AA^{\\d})$. This is the same method that has been used in defining the generalized two-dimensional Yang-Mills theories (gYM_2) from ordinary YM_2. We call these models, the " generalized simplicial chiral models ". With the help of the results of one-link integral over a U(N) matrix, we compute the large-N saddle-point equations for eigenvalue density function $\\ro (z)$ in the weak ($\\b >\\b_c$) and strong ($\\b <\\b_c$) regions. In d=2, where the model somehow relates to gYM_2 theory, we solve the saddle-point equations and find $\\ro (z)$ in two region, and calculate the explicit value of critical point $\\b_c$ for $V(B)=TrB^n (B=AA^{\\d})$. For $V(B)=Tr B^2,Tr B^3$ and Tr$B^4$, we study the critical behaviour of the model at d=2, and by calculating t...
Generalized simplicial chiral models
International Nuclear Information System (INIS)
Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, the simplicial chiral models are generalized through replacing the term Tr(AA†) in the Lagrangian of these models by an arbitrary class function of AA†; V(AA†). This is the same method used in defining the generalized two-dimensional Yang-Mills theories (gYM2) from ordinary YM2. We call these models the 'generalized simplicial chiral models'. Using the results of the one-link integral over a U(N) matrix, the large-N saddle-point equations for eigenvalue density function ρ(z) in the weak (β>βc) and strong (βc) regions are computed. In d=2, where the model is in some sense related to the gYM2 theory, the saddle-point equations are solved for ρ(z) in the two regions, and the explicit value of critical point βc is calculated for V(B)=Tr Bn (B=AA†). For V(B)=Tr B2,Tr B3, and TrB4, the critical behaviour of the model at d=2 is studied, and by calculating the internal energy, it is shown that these models have a third order phase transition
Energy Technology Data Exchange (ETDEWEB)
Kwiecinska, Joanna I; Cieplak, Marek [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland)
2005-05-11
There are several simple criteria of folding to a native state in model proteins. One of them involves crossing of a threshold value of the root mean square deviation distance away from the native state. Another checks whether all native contacts are established, i.e. whether the interacting amino acids come closer than some characteristic distance. We use Go-like models of proteins and show that such simple criteria may prompt one to declare folding even though fragments of the resulting conformations have a wrong sense of chirality. We propose that a better condition of folding should augment the simple criteria with the requirement that most of the local values of the chirality should be nearly native. The kinetic discrepancy between the simple and compound criteria can be substantially reduced in the Go-like models by providing the Hamiltonian with a term which favours native values of the local chirality. We study the effects of this term as a function of its amplitude and compare it to other models such as ones with side groups and ones with angle-dependent potentials.
Kwiecinska, Joanna I.; Cieplak, Marek
2005-05-01
There are several simple criteria of folding to a native state in model proteins. One of them involves crossing of a threshold value of the root mean square deviation distance away from the native state. Another checks whether all native contacts are established, i.e. whether the interacting amino acids come closer than some characteristic distance. We use Go-like models of proteins and show that such simple criteria may prompt one to declare folding even though fragments of the resulting conformations have a wrong sense of chirality. We propose that a better condition of folding should augment the simple criteria with the requirement that most of the local values of the chirality should be nearly native. The kinetic discrepancy between the simple and compound criteria can be substantially reduced in the Go-like models by providing the Hamiltonian with a term which favours native values of the local chirality. We study the effects of this term as a function of its amplitude and compare it to other models such as ones with side groups and ones with angle-dependent potentials.
Progress in Helicene Stationary Phases
Czech Academy of Sciences Publication Activity Database
Bernard, Martin
Prague : Institute of Chemical Process Fundamental of the CAS, v. v. i, 2015 - (Bendová, M.; Wagner, Z.), s. 34-35 ISBN 978-80-86186-70-2. [Bažant Postgraduate Conference 2015. Prague (CZ)] Institutional support: RVO:67985858 Keywords : helicenes * silica * chiral racemic compounds Subject RIV: CC - Organic Chemistry
Chiral squaring and KLT relations
Schreiber, Anders
2016-01-01
We demonstrate that amplitudes based on matter supermultiplets can be combined to provide amplitudes of vector supermultiplets by means of KLT relations. In practice we do this by developing a procedure for removing supersymmetry supercharges from super Yang-Mills theory and supergravity supermultiplets, reducing them to vector and chiral supermultiplets respectively. This way, we reduce the super KLT relations to chiral KLT relations making chiral squaring of amplitudes manifest. We study these chiral KLT relations, discussing permutation symmetry and vanishing relations. Finally some explicit calculations are done to show how the relations work in detail.
The chiral magnetic effect in hydrodynamical approach
Sadofyev, A. V.; Isachenkov, M. V.
2010-01-01
In quark-gluon plasma nonzero chirality can be induced by the chiral anomaly. When a magnetic field is applied to a system with nonzero chirality an electromagnetic current is induced along the magnetic field. This phenomenon is called the chiral magnetic effect. In this paper appearance of the chiral magnetic effect in hydrodynamical approximation is shown. We consider a hydrodynamical model for chiral liquid with two independent currents of left and right handed particles in the presence of...
Capillary electrochromatographic fast enantioseparation based on a chiral metal-organic framework.
Fei, Zhi-Xin; Zhang, Mei; Xie, Sheng-Ming; Yuan, Li-Ming
2014-12-01
Metal-organic frameworks (MOFs) have received great attention because of their unusual properties and fascinating structures in separation sciences. However, to the best of our knowledge, there has been no attempt to utilize chiral MOFs as stationary phases in packed-CEC. Here, a chiral MOF [In3 O(obb)3 (HCO2 )(H2 O)]·solvent (4,4'-oxybisbenzoic acid) was explored as the chiral stationary phase in packed-CEC for separation of chiral compounds and isomers. The fabricated [In3 O(obb)3 (HCO2 )(H2 O)]·solvent packed capillary columns gave fast enantioseparation of (±)-hydrobenzoin, (±)-1-phenyl-1,2-ethanediol, and clenbuterol within 3 min in CEC. Besides, the baseline separations of nitrophenol isomers within 6 min were also achieved. The RSDs for the retention time of run-to-run, day-to-day, and column-to-column reproducibility were 1.51-3.63, 1.83-3.98, and 3.42-5.66%, respectively. These results demonstrate that chiral MOFs are promising for enantioseparation in CEC. PMID:25223618
Stationary surgical smoke evacuation systems.
2001-03-01
Two types of systems are available for evacuating the surgical smoke created by electrosurgery and laser surgery: portable and stationary surgical smoke evacuation systems. While portable systems dominate the market today, stationary systems are an alternative worth considering--even though they are still in their infancy, with fewer than 90 systems installed to date. Stationary systems represent a major commitment on the part of the healthcare facility. Several system components must be installed as part of the physical plant (for instance, within the walls), making the system a permanent fixture in the surgical suite. Installation of these systems is often carried out during building construction or major renovation--although the systems can be cost-effective even if no renovations are planned. For this Evaluation, we tested three stationary systems. All three are adequate to capture surgical smoke and evacuate it from the operating room. These systems are easy to use, are quietter than their portable counterparts, and require minimal user maintenance. They represent an excellent option for most hospitals actively evacuating surgical smoke. In this article, we discuss the factors to consider when selecting from among these systems. We also offer guidance on choosing between stationary systems and portable ones. PMID:11321758
CHIRAL SYMMETRIES IN NUCLEAR PHYSICS
International Nuclear Information System (INIS)
The theoretical concepts of a chirally symmetric meson field theory are reviewed and an overview of the most relevant applications in nuclear physics is given. This includes a unified description of the vacuum properties of hadrons, finite nuclei and hot, dense and strange nuclear matter in an extended chiral SU(3)L/SU(3)R σ-ω model
Two-chiral component microemulsion EKC - chiral surfactant and chiral oil. Part 2: diethyl tartrate.
Kahle, Kimberly A; Foley, Joe P
2007-08-01
In this second study on dual-chirality microemulsions containing a chiral surfactant and a chiral oil, a less hydrophobic and lower interfacial tension chiral oil, diethyl tartrate, is employed (Part 1, Foley, J. P. et al.., Electrophoresis, DOI: 10.1002/elps.200600551). Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and diethyl tartrate (D, L, or racemic, 0.88% v/v) were examined as pseudostationary phases (PSPs) for the enantioseparation of six chiral pharmaceutical compounds: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Average efficiencies increased with the addition of a chiral oil to R-DDCV PSP formulations. Modest improvements in resolution and enantioselectivity (alpha(enant)) were achieved with two-chiral-component systems over the one-chiral-component microemulsion. Slight enantioselective synergies were confirmed using a thermodynamic model. Results obtained in this study are compared to those obtained in Part 1 as well as those obtained with chiral MEEKC using an achiral, low-interfacial-tension oil (ethyl acetate). Dual-chirality microemulsions with the more hydrophobic oil dibutyl tartrate yielded, relative to diethyl tartrate, higher efficiencies (100,000-134,000 vs. 80,800-94,300), but lower resolution (1.64-1.91 vs. 2.08-2.21) due to lower enantioselectivities (1.060-1.067 vs. 1.078-1.081). Atenolol enantiomers could not be separated with the dibutyl tartrate-based microemulsions but were partially resolved using diethyl tartrate microemulsions. A comparable single-chirality microemulsion based on the achiral oil ethyl acetate yielded, relative to diethyl tartrate, lower efficiency (78 300 vs. 91 600), higher resolution (1.99 vs. 1.83), and similar enantioselectivities. PMID:17597467
Mass-Selective Chiral Analysis.
Boesl, Ulrich; Kartouzian, Aras
2016-06-12
Three ways of realizing mass-selective chiral analysis are reviewed. The first is based on the formation of diastereomers that are of homo- and hetero- type with respect to the enantiomers of involved chiral molecules. This way is quite well-established with numerous applications. The other two ways are more recent developments, both based on circular dichroism (CD). In one, conventional or nonlinear electronic CD is linked to mass spectrometry (MS) by resonance-enhanced multiphoton ionization. The other is based on CD in the angular distribution of photoelectrons, which is measured in combination with MS via photoion photoelectron coincidence. Among the many important applications of mass-selective chiral analysis, this review focuses on its use as an analytical tool for the development of heterogeneous enantioselective chemical catalysis. There exist other approaches to combine chiral analysis and mass-selective detection, such as chiral chromatography MS, which are not discussed here. PMID:27070181
Mass-Selective Chiral Analysis
Boesl, Ulrich; Kartouzian, Aras
2016-06-01
Three ways of realizing mass-selective chiral analysis are reviewed. The first is based on the formation of diastereomers that are of homo- and hetero- type with respect to the enantiomers of involved chiral molecules. This way is quite well-established with numerous applications. The other two ways are more recent developments, both based on circular dichroism (CD). In one, conventional or nonlinear electronic CD is linked to mass spectrometry (MS) by resonance-enhanced multiphoton ionization. The other is based on CD in the angular distribution of photoelectrons, which is measured in combination with MS via photoion photoelectron coincidence. Among the many important applications of mass-selective chiral analysis, this review focuses on its use as an analytical tool for the development of heterogeneous enantioselective chemical catalysis. There exist other approaches to combine chiral analysis and mass-selective detection, such as chiral chromatography MS, which are not discussed here.
Rho, Mannque
2008-01-01
This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and
Entwicklung neuer chiraler Metathesekatalysatoren
Schlesiger, David Alexander
2012-01-01
Diese Arbeit befasst sich im ersten Teil mit der Synthese chiraler Rutenium-Metathesekatalysatoren. Diese zeichnen sich durch eine Monosubstitution im Rückgrat des N-heterocyclischen Carben-Liganden (NHC-Liganden) aus. Der Katalysator wurde hierbei ausgehend von L-Valin hergestellt. Der Weg verlief über eine Sulfamidat-Zwischenstufe und war bezüglich Ausbeute und Flexibilität dem ursprünglichen Syntheseweg überlegen. Die hoch flexible Route über das Sulfamidat ermöglichte die Herstellung des ...
Conformal extensions for stationary spacetimes
Aceña, Andrés E
2011-01-01
The construction of the cylinder at spatial infinity for stationary spacetimes is considered. Using a specific conformal gauge and frame, it is shown that the tensorial fields associated to the conformal Einstein field equations admit expansions in a neighbourhood of the cylinder at spatial infinity which are analytic with respect to some suitable time, radial and angular coordinates. It is then shown that the essentials of the construction are independent of the choice of conformal gauge. As a consequence, one finds that the construction of the cylinder at spatial infinity and the regular finite initial value problem for stationary initial data sets are, in a precise sense, as regular as they could be.
The stationary neutron radiography system
International Nuclear Information System (INIS)
To provide the high intensity neutron beam and support systems necessary for radiography, the Stationary Neutron Radiography System was constructed at McClellan Air Force Base. The Stationary Neutron Radiography System utilizes a one megawatt TRIGA reactor contained in an Aluminium tank surrounded by eight foot thick concrete walls. There are four neutron beam tubes at inclined angles from the reactor core to separate radiography bays. In three of the bays, robotic systems manipulate aircraft components in the neutron beam, while real-time imaging systems provide images concurrent with the irradiation. Film radiography of smaller components is performed in the remaining bay
On Chiral and Nonchiral 1D Supermultiplets
Toppan, Francesco
2011-01-01
In this talk I discuss and clarify some issues concerning chiral and nonchiral properties of the one-dimensional supermultiplets of the N-Extended Supersymmetry. Quaternionic chirality can be defined for N=4,5,6,7,8. Octonionic chirality for N=8 and beyond. Inequivalent chiralities only arise when considering several copies of N=4 or N=8 supermultiplets.
Constructing Self-Dual Chiral Polytopes
Cunningham, Gabe
2011-01-01
An abstract polytope is chiral if its automorphism group has two orbits on the flags, such that adjacent flags belong to distinct orbits. There are still few examples of chiral polytopes, and few constructions that can create chiral polytopes with specified properties. In this paper, we show how to build self-dual chiral polytopes using the mixing construction for polytopes.
Repulsive Casimir Force in Chiral Metamaterials
Energy Technology Data Exchange (ETDEWEB)
Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E.N.; Soukoulis, C.M.
2009-09-04
We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.
Repulsive Casimir Force in Chiral Metamaterials
Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E. N.; Soukoulis, C. M.
2009-01-01
We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.
Energy Technology Data Exchange (ETDEWEB)
Gupta, R.
1994-12-31
This talk contains an analysis of quenched chiral perturbation theory and its consequences. The chiral behavior of a number of quantities such as the pion mass m{sub pi}{sup 2}, the Bernard-Golterman ratios R and {sub X}, the masses of nucleons, and the kaon B-parameter are examined to see if the singular terms induced by the additional Goldstone boson, {eta}{prime}, are visible in present data. The overall conclusion (different from that presented at the lattice meeting) of this analysis is that even though there are some caveats attached to the indications of the extra terms induced by {eta}{prime} loops, the standard expressions break down when extrapolating the quenched data with m{sub q} < m{sub s}/2 to physical light quarks. I then show that due to the single and double poles in the quenched {eta}{prime}, the axial charge of the proton cannot be calculated using the Adler-Bell-Jackiw anomaly condition. I conclude with a review of the status of the calculation of light quark masses from lattice QCD.
International Nuclear Information System (INIS)
The suggestion by Jaffe that if σ is a light q2q-bar2 state 0++ then even the fundamental chiral transformation properties of the σ becomes unclear, has stimulated much interest. Adler pointed out that in fact the seminal work on chiral symmetry via PCAC consistency, is really quite consistent with the σ being predominantly q2q-bar2. This interpretation was actually backed by subsequent work on effective Lagrangian methods for linear and non linear realizations. More recent work of Achasov suggests that intermediate four-quark states determine amplitudes involving other scalars a0(980) and f0(980) below 1 GeV, and the report by Ning Wu that study on σ meson in J/ψ → ωπ+π- continue to support a non qq-bar σ with mass as low as 390 MeV. It is also noted that more recent re-analysis of πK scattering by S. Ishida et al. together with the work of the E791 Collaboration, support the existence of the scalar κ particle with comparatively light mass as well
Kopp, Victor I.; Zhang, Guoyin; Zhang, Sheng; Genack, Azriel Z.; Neugroschl, Dan
2009-02-01
We propose an in-fiber chiral optical isolator based on chiral fiber polarizer technology and calculate its performance by incorporating the magnetic field into the scattering matrix. The design will be implemented in a special preform, which is passed through a miniature heat zone as it is drawn and twisted. The birefringence of the fiber is controlled by adjusted the diameter of a dual-core optical fiber. By adjusting the twist, the fiber can convert linear to circular polarization and reject one component of circular polarization. In the novel central portion of the isolator, the fiber diameter is large. The effective birefringence of the circular central core with high Verdet constant embedded in an outer core of slightly smaller index of refraction is small. The central potion is a non-reciprocal polarization converter which passes forward traveling left circularly polarized (LCP) light as LCP, while converting backward propagating LCP to right circularly polarized (RCP) light. Both polarizations of light traveling backwards are scattered out of the isolator. Since it is an all-glass structure, we anticipate that the isolator will be able to handle several watts of power and will be environmentally robust.
Condensational theory of stationary tornadoes
Makarieva, Anastassia M; Nefiodov, Andrei V; 10.1016/j.physleta.2011.04.023
2012-01-01
Using the Bernoulli integral for air streamline with condensing water vapor a stationary axisymmetric tornado circulation is described. The obtained profiles of vertical, radial and tangential velocities are in agreement with observations for the Mulhall tornado, world's largest on record and longest-lived among the three tornadoes for which 3D velocity data are available. Maximum possible vortex velocities are estimated.
Chiral perturbation theory with nucleons
International Nuclear Information System (INIS)
I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon
Quarks, baryons and chiral symmetry
Hosaka, Atsushi
2001-01-01
This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w
Gómez-Rocha, María
2012-01-01
In this article we point out that the unitary transformation that relates the chiral basis $\\{R; I J^{PC}\\}$ and the $\\{I; ^{2S+1}L_J \\}$ basis, which was already derived for canonical spin in instant form, is also applicable in light-cone representations. From the most general expression for the Clebsch-Gordan coefficients of the Poincar\\'e group one can see that the chiral limit brings the angular momentum coupling into a simple form that permits a clear relation in terms of SU(2) Clebsch-Gordan coefficients. It provides a tool of measurement of chiral symmetry in relativistic composite systems.
Chiral Fermions on the Lattice
Bietenholz, Wolfgang
2010-01-01
In the last century the non-perturbative regularization of chiral fermions was a long-standing problem. We review how this problem was finally overcome by the formulation of a modified but exact form of chiral symmetry on the lattice. This also provides a sound definition of the topological charge of lattice gauge configurations. We illustrate a variety of applications to QCD in the p-, the epsilon- and the delta-regime, where simulation results can now be related to Random Matrix Theory and Chiral Perturbation Theory. The latter contains Low Energy Constants as free parameters, and we comment on their evaluation from first principles of QCD.
Field induced spin chirality and chirality switching in magnetic multilayers
International Nuclear Information System (INIS)
The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman–Kittel–Kasuya–Yosida and the Dsyaloshinsky–Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness. - Highlights: • Field-induced spin chirality in magnetic multilayers is explained. • The roles of the RKKY, the DM and the Zeeman interactions are clarified. • Theoretical analysis of the chirality factor is in agreement with experimental data
Chiral Relaxation Time at the Chiral Crossover of Quantum Chromodynamics
Ruggieri, M; Chernodub, M
2016-01-01
We study microscopic processes responsible for chirality flips in the thermal bath of Quantum Chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely $T \\simeq (150, 200)$ MeV. The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and $\\sigma$-meson, hence we refer to these processes simply as \\sugg{to} one-pion (one-$\\sigma$) exchange\\sugg{s}. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time $\\tau$. We find $\\tau\\simeq 0.1 \\div 1$ fm/c around the chiral crossover.
Chiral allyl silane additions to chiral α-substituted aldehydes
International Nuclear Information System (INIS)
Chiral allyl silane 3 reacted with chiral α-methyl-β-siloxy-aldehydes to afford the corresponding 1,4-syn-products with good diastereo-selectivities independent of the absolute stereochemistry of these aldehydes. The best selectivities are observed when the reactions are carried out by trans metallation of the allyl silane 3 using Tin (IV) Chloride in CH2 CL2 at -78 deg C, before addition of the aldehydes. (author)
Spectral study of a chiral limit without chiral condensate
Bietenholz, Wolfgang; Hip, Ivan
2009-01-01
Random Matrix Theory (RMT) has elaborated successful predictions for Dirac spectra in field theoretical models. However, a generic assumption by RMT has been a non-vanishing chiral condensate $\\Sigma$ in the chiral limit. Here we consider the 2-flavour Schwinger model, where this assumption does not hold. We simulated this model with dynamical overlap hypercube fermions, and entered terra incognita by analysing this Dirac spectrum. The usual RMT prediction for the unfolded level spacing distr...
DEFF Research Database (Denmark)
Nuermaimaiti, Ajiguli; Bombis, Christian; Knudsen, Martin Markvard;
2014-01-01
" mechanism for an oligo(phenylene ethynylene) based chiral conformational switch by coadsorbing it with an intrinsically chiral seed on Au(111). Through statistical analysis of scanning tunneling microscopy (STM) data we demonstrate successful chiral induction with a very low concentration of seeding...... molecules down to 3%. The microscopic mechanism for the observed chiral induction is suggested to involve nucleation of the intrinsically chiral seeds, allowing for effective transfer and amplification of chirality to large numbers of soldier target molecules....
International Nuclear Information System (INIS)
Sulfonated cellulose tris(3,5-dimethylphenyl carbamate) (SCDMPC)-coated zirconia monolith (ZM) was used as the chiral stationary phase in capillary electro chromatography for separation of enantiomers of ten chiral compounds in acetonitrile (ACN)-phosphate buffer mixtures as the eluent. Influences of the ACN content, buffer concentration and pH on chiral separation have been investigated. Separation data on SCDMPC-ZM have been compared with those on CDMPC-ZM. Resolution factors were better on SCDMPC-ZM than CDMPC-ZM while retention factors were in general shorter on the former than the latter. Best chiral resolutions on SCDMPC-ZM were obtained with the eluent of 50% ACN containing 50 mM phosphate at pH around 4
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In normal phase condition, a series of chiral phosphorus organic compounds have been separated by high-performance liquid chromatography. In order to study the retention and chiral recognition mechanism, the method of quantitative structure-enantioselectivity retention relationships (QSERRs) has been investigated from the quantitative equations established between the chromatographic retention of enantiomers and their molecular descriptors of physicochemical properties. The results show that on the Pirkle-type chiral stationary phase (CSP) of Sumichiral OA4700, it is the parameter of LUMO that gives the most contribution to the chromatographic re-tention of O-ethyl O-(substituted) phenyl N-isopropyl phosphoroamidothioates resulting from the interaction of hydrogen bond and (or) p-p interaction. Meanwhile, the chiral recognition is formed from the contribution of logP and LUMO.
Mori, Tadashi; Inoue, Yoshihisa
The chiroptical properties, such as electronic and vibrational circular dichroism and optical rotation, of planar chiral cyclophanes have attracted much attention in recent years. Although the chemistry of cyclophanes has been extensively explored for more than 60 years, the studies on chiral cyclophanes are rather limited. Experimentally, the use of chiral stationary phases in HPLC becomes more popular and facilitates the enantiomer separation of chiral cyclophanes of interest. Almost all chiral cyclophanes can be readily separated, in analytical and preparative scales, most typically on a Daicel OD type column, which is based on cellulose tris(3,5-dimethylphenylcarbamate). The CD spectra of chiral cyclophanes are unique in their fairly large, significantly coupled Cotton effects observed in all the 1 B b, 1 L a, and 1 L b band regions. Theoretically, the time-dependent density functional theory, or TD-DFT, method becomes a cost-efficient, yet accurate, theoretical method to reproduce the electronic circular dichroisms and the absorption spectra of a variety of cyclophanes. The direct comparison of the experimental CD spectra with the theoretical ones readily leads to the unambiguous assignment of the absolute configuration of cyclophanes. In addition, the analysis of configuration interaction and molecular orbitals allows detailed interpretation of the electronic transitions and Cotton effects in the UV and CD spectra. Through the study of the CD spectra of chiral cyclophanes as model systems, the effects of intra- and intermolecular interactions on the chiroptical properties of molecules can be explored, and the results thus obtained are valuable in comprehensively elucidating the structure-chiroptical property relationship. In this review the recent progress in experimental and theoretical investigations of the electronic CD spectra of chiral cyclophanes is discussed.
Direct Optical Resolution of Chiral Pesticides by High Performance Liquid Chromatography
Institute of Scientific and Technical Information of China (English)
LI Xiaogang; LIU Yiping; HU Changdi; BAI Lianyang; GAO Bida; HUANG Kelong
2011-01-01
Enantiomer separation is one of the most important prerequisites for the investigation of environmental enantioselective behavior for chiral pesticides.The enantiomeric separation of three chiral pesticides,indoxacarb,lambda-cyhalothrin,and simeconazole,were studied on cellulose tris-（3,5-dimethylphenyl-carbamate）-coated chiral stationary phase（CDMPC-CSP） using high-performance liquid chromatography under normal phase condition.The effects of chromatographic conditions,such as the mobile phase composition including the concentration and type of alcohol modifiers in hexane,flow rate and column temperature,on enantiomer separation were examined.The thermodynamical mechanism of enantioseparation and chiral recognition mechanism were discussed.Better separation were achieved using 20% n-propanol for indoxacarb,2% iso-butanol for lambda-cyhalothrin,and 20% iso-propanol for simeconazole as modifiers in hexane at 25℃ with the selectivity factor（a） of 1.69,1.82 and 1.70,respectively.The resolution factor（Rs） decreased as the flow rate increased from 0.4 to 1.1 ml·min-1.The retention factor（k＇） and selectivity factor for the enantiomers of analytes decreased as temperature increased.The lna-1/T plots for racemic chiral pesticides were linear in the range of 15-35℃ in hexane/iso-propanol and the chiral separation was controlled by enthalpy.Hydrogen bonding,π-π and dipole-dipole interactions between enantiomers and CDMPC-CSP play an important role in chiral identification,and the fitting of the asymmetric portion of solutes in a chiral cavity or channel of the CSP is also important.
Life's chirality from prebiotic environments
Gleiser, Marcelo; Walker, Sara Imari
2012-10-01
A key open question in the study of life is the origin of biomolecular homochirality: almost every life-form on Earth has exclusively levorotary amino acids and dextrorotary sugars. Will the same handedness be preferred if life is found elsewhere? We review some of the pertinent literature and discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events. In one scenario, autocatalytic prebiotic reactions undergo stochastic fluctuations due to environmental disturbances, in a mechanism reminiscent of evolutionary punctuated equilibrium: short-lived destructive events may lead to long-term enantiomeric excess. In another, chiral-selective polymerization reaction rates influenced by environmental effects lead to substantial chiral excess even in the absence of autocatalysis. Applying these arguments to other potentially life-bearing platforms has implications to the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic (chirally neutral) on average.
Review of chiral perturbation theory
Indian Academy of Sciences (India)
B Ananthanarayan
2003-11-01
A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.
Mickelsson, J
1996-01-01
A calculation of the chiral anomaly on a finite lattice without fermion doubling is presented . The lattice gauge field is defined in the spirit of noncommutative geometry. Standard formulas for the continuum anomaly are obtained as a limit.
Chiral thermodynamics of nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Fiorilla, Salvatore
2012-10-23
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Chiral thermodynamics of nuclear matter
International Nuclear Information System (INIS)
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Chiral symmetry and lattice fermions
Creutz, Michael
2013-01-01
Lattice gauge theory and chiral perturbation theory are among the primary tools for understanding non-perturbative aspects of QCD. I review several subtle and sometimes controversial issues that arise when combining these techniques. Among these are one failure of partially quenched chiral perturbation theory when the valence quarks become lighter than the average sea quark mass and a potential ambiguity in comparisons of perturbative and lattice properties of non-degenerate quarks.
Non-Stationary Kriging For Design Optimization
Toal, D. J.J.; Keane, A. J.
2011-01-01
Abstract Traditional surrogate modelling techniques, such as kriging, have been employed quite effectively within design optimizations. However, such models can fail to accurately reproduce non-stationary responses. The following paper explores the application of non-stationary kriging to design optimization and attempts to determine its applicability with regard to the optimization of both stationary and non-stationary objective functions. A series of analytical test problems and ...
Stationary plasma accelerator - ATON engine
International Nuclear Information System (INIS)
The principles of a stationary plasma accelerator (engine) with closed electron drift are described. The accelerator has record integral characteristics. A method for analysis of operating process features in the integral characteristics is proposed. Results are presented of local measurements of the plasma parameters in the accelerator channel and in the leaving plasma jet Main attention is paid to determination of the part of twice ionized ions in the plasma flow
Are stationary hyperinflation paths learnable?
Adam, Klaus; W., George; Honkapohja, Seppo
2003-01-01
Earlier studies of the seigniorage inflation model have found that the high-inflation steady state is not stable under adaptive learning. We reconsider this issue and analyze the full set of solutions for the linearized model. Our main focus is on stationary hyperinflationary paths near the high-inflation steady state. The hyperinflationary paths are stable under learning if agents can utilize contemporaneous data. However, in an economy populated by a mixture of agents, some of whom only hav...
Restoration of Chiral Symmetry in Excited Hadrons
International Nuclear Information System (INIS)
Physics of the low-lying and high-lying hadrons in the light flavor sector is reviewed. While the low-lying hadrons are strongly affected by the spontaneous breaking of chiral symmetry, in the high-lying hadrons the chiral symmetry is restored. A manifestation of the chiral symmetry restoration in excited hadrons is a persistence of the chiral multiplet structure in both baryon and meson spectra. Meson and baryon chiral multiplets are classified. A relation between the chiral symmetry restoration and the string picture of excited hadrons is discussed. (author)
High efficiency stationary hydrogen storage
Energy Technology Data Exchange (ETDEWEB)
Hynek, S.; Fuller, W.; Truslow, S. [Arthur D. Little, Inc., Cambridge, MA (United States)
1995-09-01
Stationary storage of hydrogen permits one to make hydrogen now and use it later. With stationary hydrogen storage, one can use excess electrical generation capacity to power an electrolyzer, and store the resultant hydrogen for later use or transshipment. One can also use stationary hydrogen as a buffer at fueling stations to accommodate non-steady fueling demand, thus permitting the hydrogen supply system (e.g., methane reformer or electrolyzer) to be sized to meet the average, rather than the peak, demand. We at ADL designed, built, and tested a stationary hydrogen storage device that thermally couples a high-temperature metal hydride to a phase change material (PCM). The PCM captures and stores the heat of the hydriding reaction as its own heat of fusion (that is, it melts), and subsequently returns that heat of fusion (by freezing) to facilitate the dehydriding reaction. A key component of this stationary hydrogen storage device is the metal hydride itself. We used nickel-coated magnesium powder (NCMP) - magnesium particles coated with a thin layer of nickel by means of chemical vapor deposition (CVD). Magnesium hydride can store a higher weight fraction of hydrogen than any other practical metal hydride, and it is less expensive than any other metal hydride. We designed and constructed an experimental NCM/PCM reactor out of 310 stainless steel in the form of a shell-and-tube heat exchanger, with the tube side packed with NCMP and the shell side filled with a eutectic mixture of NaCL, KCl, and MgCl{sub 2}. Our experimental results indicate that with proper attention to limiting thermal losses, our overall efficiency will exceed 90% (DOE goal: >75%) and our overall system cost will be only 33% (DOE goal: <50%) of the value of the delivered hydrogen. It appears that NCMP can be used to purify hydrogen streams and store hydrogen at the same time. These prospects make the NCMP/PCM reactor an attractive component in a reformer-based hydrogen fueling station.
Institute of Scientific and Technical Information of China (English)
Chao CHE; Zhong Ning ZHANG; Gui Lan HUANG; Xin Xing WANG; Zhao Hai QIN
2004-01-01
The use of chiral organophosphorus derivatizing agents prepared in situ from chiral tartrate or chiral diamine for the 31PNMR determination of the enantiomeric composition of chiral carboxylic acids is described. The method is accurate, reliable and convenient.
Chiral symmetry in rotating systems
Malik, Sham S.
2015-08-01
The triaxial rotating system at critical angular momentum I ≥Iband exhibits two enatiomeric (the left- and right-handed) forms. These enatiomers are related to each other through dynamical chiral symmetry. The chiral symmetry in rotating system is defined by an operator χ ˆ =Rˆy (π) T ˆ, which involves the product of two distinct symmetries, namely, continuous and discrete. Therefore, new guidelines are required for testing its commutation with the system Hamiltonian. One of the primary objectives of this study is to lay down these guidelines. Further, the possible impact of chiral symmetry on the geometrical arrangement of angular momentum vectors and investigation of observables unique to nuclear chiral-twins is carried out. In our model, the angular momentum components (J1, J2, J3) occupy three mutually perpendicular axes of triaxial shape and represent a non-planar configuration. At certain threshold energy, the equation of motion in angular momentum develops a second order phase transition and as a result two distinct frames (i.e., the left- and right-handed) are formed. These left- and right-handed states correspond to a double well system and are related to each other through chiral operator. At this critical angular momentum, the centrifugal and Coriolis interactions lower the barrier in the double well system. The tunneling through the double well starts, which subsequently lifts the degeneracy among the rotational states. A detailed analysis of the behavior of rotational energies, spin-staggering, and the electromagnetic transition probabilities of the resulting twin-rotational bands is presented. The ensuing model results exhibit similarities with many observed features of the chiral-twins. An advantage of our formalism is that it is quite simple and it allows us to pinpoint the understanding of physical phenomenon which lead to chiral-twins in rotating systems.
Hashimoto, Koji; Yoshida, Kentaroh
2016-01-01
Assigning a chaos index for vacua of generic quantum field theories is a challenging problem. We find chaotic behavior of chiral condensates of a quantum gauge theory at strong coupling limit, by using the AdS/CFT correspondence. We evaluate the time evolution of homogeneous quark condensates and in an N=2 supersymmetric QCD with the SU(N_c) gauge group at large N_c and at large 't Hooft coupling lambda. At an equivalent classical gravity picture, a Lyapunov exponent is readily defined. We show that the condensates exhibit chaotic behavior for energy density E > (6x10^2) (N_c/lambda^2) (m_q)^4 where m_q is the quark mass. The energy region of the chaotic vacua of the N=2 supersymmetric QCD increases for smaller N_c or larger lambda. The Lyapunov exponent is calculated as a function of the theory (N_c,lambda,E), showing that the N=2 supersymmetric QCD is more chaotic for smaller N_c.
Stationary bubbles: information loss paradox?
Domènech, Guillem
2016-01-01
The main purpose of this work is to build classically stationary bubbles, within the thin-shell formalism, which are unstable under quantum effects; they either collapse into a black hole or expand. Thus, the final state can be thought of a superposition of geometries. We point out that, from a quantum mechanical point of view, there is no issue with a loss of information in such configuration. A classical observer sees a definite geometry and, hence, finds an effective loss of information. Although it does not cover all possible cases, we emphasise the role of semi-classical gravitational effects, mediated by instatons, in alleviating/solving the information loss paradox.
Rahaman, Anisur
2015-01-01
The vector type of interaction of the Thirring-Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring-Wess model in \\cite{THAR}. The model was studied there with a Faddeevian class of regularization that contained few ambiguity parameters with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring-Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remain exactly solvable but also does not loose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model has been determined in the present scenario through Dirac's method of quantization of constraint system. The theoretical spectrum is found to ...
Water-soluble chiral metallopeptoids.
Baskin, Maria; Maayan, Galia
2015-09-01
Metal ions play a significant role in the activity of biological systems including catalysis, recognition and folding. Therefore, introducing metal ions into peptidomimetic oligomers is a potential way for creating biomimetic metal complexes toward applications in sensing, recognition, drug design and catalysis. Herein we report the design, synthesis and characterization of water-soluble chiral N-substituted glycine oligomers, "peptoids," with one and two distinct intramolecular binding sites for metal ions such as copper and cobalt. We demonstrate for the first time the incorporation of the chiral hydrophilic group (S)-(+)-1-methoxy-2-propylamine (Nsmp) within peptoid sequences, which provides both chirality and water solubility. Two peptoids, a heptamer, and a dodecamer bearing two and four 8-hydroxyquinoline (HQ) groups respectively as metal-binding ligands, were synthesized on solid support using the submonomer approach. Using UV-titrations and ESI-MS analysis we demonstrate the creation of a novel metallopeptoid bearing two metal ions in distinct binding sites via intramolecular chelation. Exciton couplet circular dichroism (ECCD) demonstrated chiral induction from the chiral non-helical peptoids to the metal centers. PMID:25969151
Chiral dynamics of baryons in the perturbative chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Pumsa-ard, K.
2006-07-01
In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints
Repulsive Casimir force in chiral metamaterials.
Zhao, R; Zhou, J; Koschny, Th; Economou, E N; Soukoulis, C M
2009-09-01
We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients. PMID:19792309
Chiral gap effect in curved space
Flachi, Antonino
2014-01-01
We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.
Chiral measurements with the Fixed-Point Dirac operator and construction of chiral currents
International Nuclear Information System (INIS)
In this preliminary study, we examine the chiral properties of the parametrized Fixed-Point Dirac operator DFP, see how to improve its chirality via the Overlap construction, measure the renormalized quark condensate Σ-circumflex and the topological susceptibility χt, and investigate local chirality of near zero modes of the Dirac operator. We also give a general construction of chiral currents and densities for chiral lattice actions
Yangfang, Lu; Hui, Wang; Yun, Xue; Xue, Gu; Yan, Wang; Chao, Yan
2015-09-01
Submicron, non-porous, chiral silica stationary phase has been prepared by the immobilization of functionalized β-CD derivatives to isocyanate-modified silica via chemical reaction and applied to the pressurized capillary electrochromatography (pCEC) enantio-separation of various chiral compounds. The submicron, non-porous, cyclodextrin-based chiral stationary phases (sub_μm-CSP2) exhibited excellent chiral recognition of a wide range of analytes including clenbuterol hydrochloride, mexiletine hydrochloride, chlorpheniramine maleate, esmolol hydrochloride, and metoprolol tartrate. The synthesized submicron particles were regularly spherical and uniformly non-porous with an average diameter of around 800 nm and a mean pore size of less than 2 nm. The synthesized chiral stationary phase was packed into 10 cm × 100 μm id capillary columns. The sub_μm-CSP2 column used in the pCEC system showed better separation of the racemates and at a higher rate compared to those used in the capillary liquid chromatography mode (cLC) system. The sub_μm-CSP2 possessed high mechanical strength, high stereoselectivity, and long lifespan, demonstrating rapid enantio-separation and good resolution of samples. The column provided an efficiency of up to 170,000 plates/m for n-propylbenzene. PMID:25990895
Shear Viscosity of Turbulent Chiral Plasma
Kumar, Avdhesh; Das, Amita; Kaw, P K
2016-01-01
It is well known that the difference between the chemical potentials of left-handed and right-handed particles in a parity violating (chiral) plasma can lead to an instability. We show that the chiral instability may drive turbulent transport. Further we estimate the anomalous viscosity of chiral plasma arising from the enhanced collisionality due to turbulence.
Lattice QCD with dynamical chirally improved quarks
International Nuclear Information System (INIS)
Full text: We simulate lattice QCD with two flavors of chirally improved dynamical (sea) quarks. The chirally improved lattice action allows to address some of the questions concerning chiral symmetry in lattice QCD.We discuss the status and prospects of our simulations as well as recent results. (author)
Quenched Chiral Perturbation Theory to one loop
Colangelo, G.; Pallante, E.
1998-01-01
The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral powe
Neutrino Oscillation Induced by Chiral Phase Transition
Institute of Scientific and Technical Information of China (English)
MU Cheng-Fu; SUN Gao-Feng; ZHUANG Peng-Fei
2009-01-01
Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars.Due to the sudden drop of the electron density at the first-order chiral phase transition,the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.
Nonequilibrium Chiral Dynamics and Effective Lagrangians
Nicola, A G
2001-01-01
We review our recent work on Chiral Lagrangians out of thermal equilibrium, which are introduced to analyse the pion gas formed after a Relativistic Heavy Ion Collision. Chiral Perturbation Theory is extended by letting $\\fpi$ be time dependent and allows to describe explosive production of pions in parametric resonance. This mechanism could be relevant if hadronization occurs at the chiral phase transition.
Solutions of ward's modified chiral model
International Nuclear Information System (INIS)
We discuss the adaptation of Uhlenbeck's method of solving the chiral model in 2 Euclidean dimensions to Ward's modified chiral model in (2+1) dimensions. We show that the method reduces the problem of solving the second-order partial differential equations for the chiral field to solving a sequence of first-order partial differential equations for time dependent projector valued fields
Chiral interaction and biomolecular evolution
International Nuclear Information System (INIS)
Recent developments in the concept of chiral interaction open now new options and dynamical possibilities for biomolecules which have so far been overlooked. A few of these possibilities are mentioned, such as the control mechanism of enzymatic activity and the role played by non-ergodicity in evolutionary processes. It is shown that chiral interaction, being a surface phenomenon, does not obey Barron's symmetry constraints, which are suitable for force fields present in bulk interactions. In particular, the situation at the ocean-air surface in the prebiotic era is described, as well as the possible role played by chiral interaction in conjunction with the terrestrial magnetic field normal to the ocean surface, which could have lead to a process of deracernization at the ocean-air interface. (author)
Chiral symmetry on the lattice
International Nuclear Information System (INIS)
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model
Chiral Baryon with Quantized Pions
McNeil, J A
1993-01-01
We study a hybrid chiral model for the nucleon based on the linear sigma model with explicit quarks. We solve the model using a Fock-space configuration consisting of three quarks plus three quarks and a pion as the ground state ansatz in place of the ``hedgehog'' ansatz. We minimize the expectation value of the chiral hamiltonian in this ground state configuration and solve the resulting equations for nucleon quantum numbers. We calculate the canonical set of nucleon observables and compare with previous work.
Collisions in Chiral Kinetic Theory.
Chen, Jing-Yuan; Son, Dam T; Stephanov, Mikhail A
2015-07-10
Using a covariant formalism, we construct a chiral kinetic theory Lorentz invariant to order O(ℏ), which includes collisions. We find a new contribution to the particle number current due to the side jumps required by the conservation of angular momentum during collisions. We also find a conserved symmetric stress-energy tensor as well as the H function obeying Boltzmann's H theorem. We demonstrate their use by finding a general equilibrium solution and the values of the anomalous transport coefficients characterizing the chiral vortical effect. PMID:26207458
Collisions in Chiral Kinetic Theory
Chen, Jing-Yuan; Stephanov, Mikhail A
2015-01-01
Using a covariant formalism, we construct a chiral kinetic theory Lorentz invariant to order $\\mathcal O(\\hbar)$ which includes collisions. We find a new contribution to the particle number current due to the side jumps required by the conservation of angular momentum during collisions. We also find a conserved symmetric stress-energy tensor as well as the $H$-function obeying Boltzmann's $H$-theorem. We demonstrate their use by finding a general equilibrium solution and the values of the anomalous transport coefficients characterizing chiral vortical effect.
Holographic Chiral Electric Separation Effect
Pu, Shi; Wu, Shang-Yu; Yang, Di-Lun
2014-01-01
We investigate the chiral electric separation effect, where an axial current is induced by an electric field in the presence of both vector and axial chemical potentials, in a strongly coupled plasma via the Sakai-Sugimoto model with an $U(1)_R\\times U(1)_L$ symmetry. By introducing different chemical potentials in $U(1)_R$ and $U(1)_L$ sectors, we compute the axial direct current (DC) conductivity stemming from the chiral current and the normal DC conductivity. We find that the axial conduct...
Chiral symmetry on the lattice
Energy Technology Data Exchange (ETDEWEB)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.
Mechanical chirality: A chiral catalyst with a ring to it
Goldup, Stephen M.
2016-05-01
A chiral [2]rotaxane in which the asymmetry is derived from the way in which the two components are mechanically interlocked -- rather than being encoded in the covalent connectivity of the components themselves -- has been shown to act as an enantioselective organocatalyst.
Strong Stationary Duality for Diffusion Processes
fill, james Allen; Lyzinski, Vince
2014-01-01
We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the diffusion setting by linking the separation distance in the primal diffusion to the absorption time in the dual diffusion. We also exhibit our strong stationary dual as the natural limiting process of the strong stationary dual sequence of a well ch...
Scaling laws in chiral hydrodynamic turbulence
Yamamoto, Naoki
2016-01-01
We study the turbulent regime of chiral (magneto)hydrodynamics for charged and neutral matter with chirality imbalance. We find that the chiral magnetohydrodynamics for charged plasmas possesses a unique scaling symmetry only without fluid helicity under the local charge neutrality. We also find a different type of unique scaling symmetry in the chiral hydrodynamics for neutral matter with fluid helicity in the inertial range. We show that these symmetries dictate the self-similar inverse cascade of the magnetic and kinetic energies. Our results imply the possible inverse energy cascade in core-collapse supernovae due to the chiral transport of neutrinos.
Chiral magnetic effect in the PNJL model
Fukushima, Kenji; Gatto, Raoul
2010-01-01
We study the two-flavor Nambu--Jona-Lasinio model with the Polyakov loop (PNJL model) in the presence of a strong magnetic field and a chiral chemical potential $\\mu_5$ which mimics the effect of imbalanced chirality due to QCD instanton and/or sphaleron transitions. Firstly we focus on the properties of chiral symmetry breaking and deconfinement crossover under the strong magnetic field. Then we discuss the role of $\\mu_5$ on the phase structure. Finally the chirality charge, electric current, and their susceptibility, which are relevant to the Chiral Magnetic Effect, are computed in the model.
K stability and stability of chiral ring
Collins, Tristan C; Yau, Shing-Tung
2016-01-01
We define a notion of stability for chiral ring of four dimensional N=1 theory by introducing test chiral rings and generalized a maximization. We conjecture that a chiral ring is the chiral ring of a superconformal field theory if and only if it is stable. We then study N=1 field theory derived from D3 branes probing a three-fold singularity X, and show that the K stability which implies the existence of Ricci-flat conic metric on X is equivalent to the stability of chiral ring of the corresponding field theory.
Scaling laws in chiral hydrodynamic turbulence
Yamamoto, Naoki
2016-06-01
We study the turbulent regime of chiral (magneto)hydrodynamics for charged and neutral matter with chirality imbalance. We find that the chiral magnetohydrodynamics for charged plasmas possesses a unique scaling symmetry, only without fluid helicity under the local charge neutrality. We also find a different type of unique scaling symmetry in the chiral hydrodynamics for neutral matter with fluid helicity in the inertial range. We show that these symmetries dictate the self-similar inverse cascade of the magnetic and kinetic energies. Our results imply the possible inverse energy cascade in core-collapse supernovae due to the chiral transport of neutrinos.
Condensational theory of stationary tornadoes
International Nuclear Information System (INIS)
Using the Bernoulli integral for air streamline with condensing water vapor a stationary axisymmetric tornado circulation is described. The obtained profiles of vertical, radial and tangential velocities are in agreement with observations for the Mulhall tornado, world's largest on record and longest-lived among the three tornadoes for which 3D velocity data are available. Maximum possible vortex velocities are estimated. -- Highlights: → Water vapor condensation causes a logarithmic drop of air pressure towards tornado center. → The first ever theoretical description of tornado velocities is obtained. → The maximum vortex velocity grows logarithmically with decreasing tornado eye radius. → Air motion with high velocities can only develop in sufficiently large condensation areas.
Microdynamics in stationary complex networks
Gautreau, Aurelien; Barthelemy, Marc
2008-01-01
Many complex systems, including networks, are not static but can display strong fluctuations at various time scales. Characterizing the dynamics in complex networks is thus of the utmost importance in the understanding of these networks and of the dynamical processes taking place on them. In this article, we study the example of the US airport network in the time period 1990-2000. We show that even if the statistical distributions of most indicators are stationary, an intense activity takes place at the local (`microscopic') level, with many disappearing/appearing connections (links) between airports. We find that connections have a very broad distribution of lifetimes, and we introduce a set of metrics to characterize the links' dynamics. We observe in particular that the links which disappear have essentially the same properties as the ones which appear, and that links which connect airports with very different traffic are very volatile. Motivated by this empirical study, we propose a model of dynamical net...
Thermal chiral vortical and magnetic waves: new excitation modes in chiral fluids
Kalaydzhyan, Tigran
2016-01-01
In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark-gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in a external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density, the chiral vortical and chiral magnetic waves. We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the excitation reduces to a charge diffusion mode or is completely absent. We also correct the dispersion relation for the chiral magnetic wave.
Casimir-Polder Forces between Chiral Objects
Butcher, David T; Scheel, Stefan
2012-01-01
The chiral component of the Casimir-Polder potential is derived within the framework of macroscopic quantum electrodynamics. It is shown to exist only if the particle and the medium are both chiral. Furthermore, the chiral component of the Casimir-Polder potential can be attractive or repulsive, depending on the chirality of the molecule and the medium. The theory is applied to a cavity geometry in the non-retarded limit with the intention of enantiomer separation. For a ground state molecule the chiral component is dominated by the electric component and thus no explicit separation will happen. If the molecule is initially in an excited state the electric component of the Casimir-Polder force can be suppressed by an appropriate choice of material and the chiral component can select the molecule based on its chirality, allowing enantiomeric separation to occur.
Casimir–Polder forces between chiral objects
International Nuclear Information System (INIS)
The chiral component of the Casimir–Polder potential is derived within the framework of macroscopic quantum electrodynamics. It is shown to exist only if the particle and the medium are both chiral. Furthermore, the chiral component of the Casimir–Polder potential can be attractive or repulsive, depending on the chirality of the molecule and the medium. The theory is applied to a cavity geometry in the non-retarded limit with the intention of enantiomer separation. For a ground state molecule the chiral component is dominated by the electric component and thus no explicit separation will happen. If the molecule is initially in an excited state the electric component of the Casimir–Polder force can be suppressed by an appropriate choice of material and the chiral component can select the molecule based on its chirality, allowing enantiomeric separation to occur. (paper)
Chiral Cosmological Models: Dark Sector Fields Description
Chervon, S V
2014-01-01
The present review is devoted to a Chiral Cosmological Model as the self-gravitating nonlinear sigma model with the potential of (self)interactions employed in cosmology. The chiral cosmological model has successive applications in descriptions of the inflationary epoch of the Universe evolution; the present accelerated expansion of the Universe also can be described by the chiral fields multiplet as the dark energy in wide sense. To be more illustrative we are often addressed to the two-component chiral cosmological model. Namely, the two-component chiral cosmological model describing the phantom field with interaction to a canonical scalar field is analyzed in details. New generalized model of quintom character is proposed and exact solutions are founded out. In the review we represented the perturbation theory for chiral cosmological model with the aim to describe the structure formation using the progress achieved in the inflation theory. It was shown that cosmological perturbations from chiral fields can...
Chirality effect in disordered graphene ribbon junctions
International Nuclear Information System (INIS)
We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)
The chiral symplectic universality class
Asada, Yoichi; Slevin, Keith; Ohtsuki, Tomi
2003-01-01
We report a numerical investigation of localization in the SU(2) model without diagonal disorder. At the band center, chiral symmetry plays an important role. Our results indicate that states at the band center are critical. States away from the band center but not too close to the edge of the spectrum are metallic as expected for Hamiltonians with symplectic symmetry.
Chiral symmetry in perturbative QCD
International Nuclear Information System (INIS)
The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant
Dynamics of the chiral transition
International Nuclear Information System (INIS)
Measurements of disoriented chiral condensates (DCC) in heavy ion collisions at RHIC can yield fundamental information on the nature of the QCD phase transition. I review theoretical efforts to understand DCC formation and present work in progress on possible experimental ramifications
Instantons and chiral symmetry breaking
International Nuclear Information System (INIS)
A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation. (orig.)
Algebraic study of chiral anomalies
Indian Academy of Sciences (India)
Juan Mañes; Raymond Stora; Bruno Zumino
2012-06-01
The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a ﬁxed background connection. Some of the techniques used in the study of the anomaly are improved or generalized, including a systematic way of generating towers of ‘descent equations’.
Asymmetric Synthesis via Chiral Aziridines
DEFF Research Database (Denmark)
Tanner, David Ackland; Harden, Adrian; Wyatt, Paul; Andersson, Pher G.; Johansson, Fredrik
1996-01-01
A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the...
Stationary Rotating Strings as Relativistic Particle Mechanics
Ogawa, Kouji; Ishihara, Hideki; Kozaki, Hiroshi; Nakano, Hiroyuki; Saito,Shinya
2008-01-01
Stationary rotating strings can be viewed as geodesic motions in appropriate metrics on a two-dimensional space. We obtain all solutions describing stationary rotating strings in flat spacetime as an application. These rotating strings have infinite length with various wiggly shapes. Averaged value of the string energy, the angular momentum and the linear momentum along the string are discussed.
High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) was obtained on polysaccharide enantioselective HPLC columns using alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, fonofos, fenamiph...
Chiral Lagrangian and chiral quark model from confinement in QCD
Simonov, Yu A
2015-01-01
The effective chiral Lagrangian in both nonlocal form $L_{ECCL}$ and standard local form $L_{ECL}$ are derived in QCD using the confining kernel, obtained in the vacuum correlator formalism. As a result all coefficients of $L_{ECL}$ can be computed via $q\\bar q$ Green's functions. In the $p^2$ order of $L_{ECL}$ one obtains GOR relations and quark decay constants $f_a$ are calculated $a=1,...8$, while in the $p^4$ order the coefficients $L_1, L_2, L_3,L_4, L_5, L_6$ are obtained in good agreement with the values given by data. The chiral quark model is shown to be a simple consequence of $L_{ECCL}$ with defined coefficients. It is demonstrated that $L_{ECCL}$ gives an extension of the limiting low-energy Lagrangian $L_{ECL}$ to arbitrary momenta.
Spectral study of a chiral limit without chiral condensate
Bietenholz, Wolfgang
2009-01-01
Random Matrix Theory (RMT) has elaborated successful predictions for Dirac spectra in field theoretical models. However, a generic assumption by RMT has been a non-vanishing chiral condensate $\\Sigma$ in the chiral limit. Here we consider the 2-flavour Schwinger model, where this assumption does not hold. We simulated this model with dynamical overlap hypercube fermions, and entered terra incognita by analysing this Dirac spectrum. The usual RMT prediction for the unfolded level spacing distribution in a unitary ensemble is precisely confirmed. The microscopic spectrum does not perform a Banks-Casher plateau. Instead the obvious expectation is a density of the lowest eigenvalue $\\lambda_{1}$ which increases $\\propto \\lambda_{1}^{1/3}$. That would correspond to a scale-invariant parameter $\\propto \\lambda V^{3/4}$, which is, however, incompatible with our data. Instead we observe to high precision a scale-invariant parameter $z \\propto \\lambda V^{5/8}$. This surprising result implies a microscopic spectral den...
Chiral logarithms in quenched QCD
International Nuclear Information System (INIS)
The quenched chiral logarithms are examined on a 163x28 lattice with Iwasaki gauge action and overlap fermions. The pion decay constant fpi is used to set the lattice spacing, a = 0.200(3) fm. With pion mass as low as ∼180 MeV, we see the quenched chiral logarithms clearly in mpi2/m and fP, the pseudoscalar decay constant. The authors analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory (chiPT) to apply. With the constrained curve-fitting method, they are able to extract the quenched chiral logarithmic parameter delta together with other low-energy parameters. Only for mpi<=300 MeV do we obtain a consistent and stable fit with a constant delta which they determine to be 0.24(3)(4) (at the chiral scale Lambdachi = 0.8 GeV). By comparing to the 123x28 lattice, they estimate the finite volume effect to be about 2.7% for the smallest pion mass. They also fitted the pion mass to the form for the re-summed cactus diagrams and found that its applicable region is extended farther than the range for the one-loop formula, perhaps up to mpi ∼500-600 MeV. The scale independent delta is determined to be 0.20(3) in this case. The authors study the quenched non-analytic terms in the nucleon mass and find that the coefficient C1/2 in the nucleon mass is consistent with the prediction of one-loop chiPT. They also obtain the low energy constant L5 from fpi. They conclude from this study that it is imperative to cover only the range of data with the pion mass less than ∼300 MeV in order to examine the chiral behavior of the hadron masses and decay constants in quenched QCD and match them with quenched one-loop chiPT
Shah, Syed Touseef Hussain; Syed, Aqeel A; Naqvi, Qaisar Abbas
2013-01-01
Focusing of electromagnetic plane wave from a large size paraboloidal reflector, composed of layers of chiral and/or chiral nihility metamaterials, has been studied us- ing Maslov's method. First, the transmission and reflection of electromagnetic plane wave from two parallel layers of chiral and/or chiral nihility metamaterials are cal- culated using transfer matrix method. The effects of change of angle of incidence, chirality parameters and impedances of layers are noted and discussed. Special cases by taking very large and small values of permittivity of second layer, while assuming value of corresponding chirality equal to zero, are also treated. These special cases are equivalent to reflection from a perfect electric conductor backed chiral layer and nihility backed chiral layer, respectively. Results of reflection from parallel layers have been utilized to study focusing from a large size paraboloidal reflector. The present study, on focusing from a paraboloidal re{\\deg}ector, not only unifies several ...
The Role Seemingly of Amorphous Silica Gel Layers in Chiral Separations by Planar Chromatography
Directory of Open Access Journals (Sweden)
Teresa Kowalska
2007-12-01
Full Text Available In planar chromatography, silica gel appears as the most frequently used adsorbent. Its preference as planar chromatographic stationary phase is due to its high specific surface area (ca. 700 m2 g-1 and relatively simple active sites (silanol groups, Si-OH. The high specific surface area of silica gel and a high density of coverage of its surface with the silanol active sites contribute jointly to an excellent separation performance of this adsorbent. In our experiments on chiral separation of the enantiomer pairs by planar chromatography, contradictory behavior of the silica gel layers versus the chiral compounds was observed. The migration tracks of chiral compounds in the ascending planar chromatographic mode were not vertical but bent on either side being a function of analyte chirality. This deviation of the analyte’s migration track was noticed, when using the densitometric scanner to quantify the respective chromatograms. In order to confirm the hypothesis as to the microcrystalline nature of silica gel used in liquid chromatography, it was further investigated through circular dichroism (CD and the data thereof confirmed that the ‘chromatographic’ silica gels are not amorphous but microcrystalline, contributing to the (partial horizontal enantioseparation of the antimer pairs. This paper summarizes the results of our investigation on the microcrystalline nature of silica gels used in planar chromatography and their impact on enantioseparation of the selected pairs of antimers.
Chiral Negative-Index Metamaterials in Terahertz
Zhang, Shuang; Li, Jensen; Lu, Xinchao; Zhang, Weili; Zhang, Xiang
2008-01-01
Negative index metamaterials (NIMs) give rise to unusual and intriguing properties and phenomena, which may lead to important applications such as superlens, subwavelength cavity and slow light devices. However, the negative refractive index in metamaterials normally requires a stringent condition of simultaneously negative permittivity and negative permeability. A new class of negative index metamaterials - chiral NIMs, have been recently proposed. In contrast to the conventional NIMs, chiral NIMs do not require the above condition, thus presenting a very robust route toward negative refraction. Here we present the first experimental demonstration of a chiral metamaterial exhibiting negative refractive index down to n=-5 at terahertz frequencies, with only a single chiral resonance. The strong chirality present in the structure lifts the degeneracy for the two circularly polarized waves and relieves the double negativity requirement. Chiral NIM are predicted to possess intriguing electromagnetic properties t...
Stable Pentaquarks from Strange Chiral Multiplets
Energy Technology Data Exchange (ETDEWEB)
Silas Beane
2004-12-01
The assumption of strong diquark correlations in the QCD spectrum suggests flavor multiplets of hadrons that are degenerate in the chiral limit. Generally it would be unnatural for there to be degeneracy in the hadron spectrum that is not protected by a QCD symmetry. Here we show--for pentaquarks constructed from diquarks--that these degeneracies can be naturally protected by the full chiral symmetry of QCD. The resulting chiral multiplet structure recovers the ideally-mixed pentaquark mass spectrum of the diquark model, and interestingly, requires that the axial couplings of the pentaquarks to states outside the degenerate multiplets vanish in the chiral limit. This result suggests that if these hadrons exist, they are stable in the chiral limit and therefore have widths that scale as the fourth power of the kaon mass over the chiral symmetry breaking scale. Natural-size widths are of order a few MeV.
Anomalous Maxwell equations for inhomogeneous chiral plasma
Gorbar, E V; Vilchinskii, S; Rudenok, I; Boyarsky, A; Ruchayskiy, O
2016-01-01
Using the chiral kinetic theory we derive the electric and chiral current densities in inhomogeneous relativistic plasma. We also derive equations for the electric and chiral charge chemical potentials that close the Maxwell equations in such a plasma. The analysis is done in the regimes with and without a drift of the plasma as a whole. In addition to the currents present in the homogeneous plasma (Hall current, chiral magnetic, chiral separation, and chiral electric separation effects, as well as Ohm's current) we derive several new terms associated with inhomogeneities of the plasma. Apart from various diffusion-like terms, we find also new dissipation-less terms that are independent of relaxation time. Their origin can be traced to the Berry curvature modifications of the kinetic theory.
Chiral Symmetry Restoration from a Boundary
Tiburzi, B C
2013-01-01
The boundary of a manifold can alter the phase of a theory in the bulk. We explore the possibility of a boundary-induced phase transition for the chiral symmetry of QCD. In particular, we investigate the consequences of imposing homogeneous Dirichlet boundary conditions on the quark fields. Such boundary conditions are employed on occasion in lattice gauge theory computations, for example, when including external electromagnetic fields, or when computing quark propagators with a reduced temporal extent. Homogeneous Dirichlet boundary conditions force the chiral condensate to vanish at the boundary, and thereby obstruct the spontaneous breaking of chiral symmetry in the bulk. As the restoration of chiral symmetry due to a boundary is a non-perturbative phenomenon, we utilize the sigma model to exemplify the issues. Using this model, we find that chiral symmetry is completely restored if the length of the compact direction is less than 2.0 fm. For lengths greater than about 4 fm, an approximately uniform chiral...
Asymmetric synthesis using chiral-encoded metal.
Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander
2016-01-01
The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity. PMID:27562028
Phases of chiral gauge theories
International Nuclear Information System (INIS)
We discuss the behavior of two non-supersymmetric chiral SU(N) gauge theories, involving fermions in the symmetric and antisymmetric two-index tensor representations respectively. In addition to global anomaly matching, we employ a recently proposed inequality constraint on the number of effective low energy (massless) degrees of freedom of a theory, based on the thermodynamic free energy. Several possible zero temperature phases are consistent with the constraints. A simple picture for the phase structure emerges if these theories choose the phase, consistent with global anomaly matching, that minimizes the massless degree of freedom count defined through the free energy. This idea suggests that confinement with the preservation of the global symmetries through the formation of massless composite fermions is in general not preferred. While our discussion is restricted mainly to bilinear condensate formation, higher dimensional condensates are considered for one case. We conclude by commenting briefly on two related supersymmetric chiral theories. (c) 2000 The American Physical Society
Bootstrapping N=2 chiral correlators
Lemos, Madalena; Liendo, Pedro
2016-01-01
We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.
Bootstrapping N=2 chiral correlators
Energy Technology Data Exchange (ETDEWEB)
Lemos, Madalena [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Liendo, Pedro [Humboldt-Univ. Berlin (Germany). IMIP
2015-12-15
We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.
Homogenization of resonant chiral metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten;
2010-01-01
Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size a...... critical density exists above which increasing coupling between neighboring meta-atoms prevails a reasonable homogenization. On the contrary, a dilution in excess will induce features reminiscent to photonic crystals likewise prevailing a homogenization. Based on Bloch mode dispersion we introduce an...... analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....
Bootstrapping N=2 chiral correlators
International Nuclear Information System (INIS)
We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.
Dimonte, Alice; Adamatzky, Andrew; Erokhin, Victor; Levin, Michael
2016-02-01
Left-right patterning and lateralised behaviour is an ubiquitous aspect of plants and animals. The mechanisms linking cellular chirality to the large-scale asymmetry of multicellular structures are incompletely understood, and it has been suggested that the chirality of living cells is hardwired in their cytoskeleton. We examined the question of biased asymmetry in a unique organism: the slime mould Physarum polycephalum, which is unicellular yet possesses macroscopic, complex structure and behaviour. In laboratory experiment using a T-shape, we found that Physarum turns right in more than 74% of trials. The results are in agreement with previously published studies on asymmetric movement of muscle cells, neutrophils, liver cells and growing neural filaments, and for the first time reveal the presence of consistently-biased laterality in the fungi kingdom. Exact mechanisms of the slime mould's direction preference remain unknown. PMID:26747637
An epistemological note on chirality
International Nuclear Information System (INIS)
The terms ''chiral'' and ''achiral'' are sharply defined when applied to geometric figures or models. The same terms are also commonly used to refer to the real systems to which these models have been adjoined. e.g., molecules, solvents, or reagents. Here, the terms are not sharply defined but depend upon conditions or measurement. The contrast between the geometric and operational usages is discussed in detail
Chiral Primaries in Strange Metals
Isachenkov, Mikhail(DESY Hamburg, Theory Group, Notkestrasse 85, D-22607 Hamburg, Germany); Kirsch, Ingo; Schomerus, Volker
2014-01-01
It was suggested recently that the study of 1-dimensional QCD with fermions in the adjoint representation could lead to an interesting toy model for strange metals and their holographic formulation. In the high density regime, the infrared physics of this theory is described by a constrained free fermion theory with an emergent N=(2,2) superconformal symmetry. In order to narrow the choice of potential holographic duals, we initiate a systematic search for chiral primaries in this model. We a...
Chiral Lagrangians and the SSC
International Nuclear Information System (INIS)
In the event that the SSC does not observe any resonances such as a Higgs boson or a techni-rho meson, we would like to know if the SSC can still discover something about the nature of the electroweak symmetry breaking. We will use chiral Lagrangian techniques to address this question and analyze their utility for studying events containing W and Z gauge bosons at the SSC. 20 refs., 4 figs
Chiral symmetry and nucleon structure
Energy Technology Data Exchange (ETDEWEB)
Holstein, B.R. (Massachusetts Univ., Amherst, MA (United States). Dept. of Physics and Astromony Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory)
1992-01-01
Recently it has been realized that significant tests of the validity of QCD are available in low energy experiments (E < 500 MeV) by exploiting the property of (broken) chiral symmetry. This technique has been highly developed in The Goldstone boson sector by the work of Gasser and Leutwyler. Application to the nucleon system is much more difficult and is now being carefully developed.
Chiral solitons a review volume
1987-01-01
This review volume on topological and nontopological chiral solitons presents a global view on the current developments of this field in particle and nuclear physics. The book addresses problems in quantization, restoration of translational and rotational symmetry, and the field theoretical approach to solitons which are common problems in the field of solitons. Primarily aimed for graduate students and the novice in the field, the collected articless cover a broad spectrum of topics in formalism as well as phenomenology.
Majorana Neutrino: Chirality and Helicity
Dvoeglazov, Valeriy V
2012-01-01
We introduce the Majorana spinors in the momentum representation. They obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). Particular attention has been paid to the questions of chirality and helicity (two concepts which frequently are confused in the literature) for Dirac and Majorana states.
Staggered chiral random matrix theory
International Nuclear Information System (INIS)
We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.
Chiral Particle Separation by a Nonchiral Microlattice
Bogunovic, Lukas; Fliedner, Marc; Eichhorn, Ralf; Wegener, Sonja; Regtmeier, Jan; Anselmetti, Dario; Reimann, Peter
2012-09-01
We conceived a model experiment for a continuous separation strategy of chiral molecules (enantiomers) without the need of any chiral selector structure or derivatization agents: Microparticles that only differ by their chirality are shown to migrate along different directions when driven by a steady fluid flow through a square lattice of cylindrical posts. In accordance with our numerical predictions, the transport directions of the enantiomers depend very sensitively on the orientation of the lattice relative to the fluid flow.
Enantiomeric Separations using Chiral Counter-Ions
Haglöf, Jakob
2010-01-01
This thesis describes the use of chiral counter-ions for the enantiomeric separation of amines in non-aqueous capillary electrophoresis. The investigations have been concentrated on studies of the influence, of the chiral counter-ion, the solvent, the electrolyte and the analyte, on the enantioselective separation. Modified divalent dipeptides have been introduced in capillary electrophoresis for the separation of amino alcohols and chiral resolution of amines. Association constants for the i...
Chiral Seismic Attenuation with Acoustic Metamaterials
Hector Torres-Silva; Diego Torres Cabezas
2013-01-01
We study the analogy between the linear elasticity theory equations and classical Maxwell equation with chiral effects and we propose a new method of an earthquake-resistant design to support conventional aseismic designs using acoustic metamaterials. We suggest a simple and practical method to reduce the amplitude of a seismic wave exponentially. Our device is like an attenuator of a chiral seismic wave. Constructing a cylindrical shell-type waveguide that creates a stop-band for the chiral...
Chiral magnetic effect by synthetic gauge fields
Hayata, Tomoya
2016-01-01
We study the dynamical generation of the chiral chemical potential in a Weyl metal constructed from a three-dimensional optical lattice and subject to synthetic gauge fields. By numerically solving the Boltzmann equation with the Berry curvature in the presence of parallel synthetic electric and magnetic fields, we find that the spectral flow and the ensuing chiral magnetic current emerge. We show that the spectral flow and the chiral chemical potential can be probed by time-of-flight imaging.
Random Matrix Theory and Chiral Logarithms
Berbenni-Bitsch, M. E.; Göckeler, M.; Hehl, H.; Meyer, S.; Rakow, P. E. L.; Schäfer, A.; Wettig, T.
1999-01-01
Abstract: Recently, the contributions of chiral logarithms predicted by quenched chiral perturbation theory have been extracted from lattice calculations of hadron masses. We argue that a detailed comparison of random matrix theory and lattice calculations allows for a precise determination of such corrections. We estimate the relative size of the m log(m), m, and m^2 corrections to the chiral condensate for quenched SU(2).
The chirality operators for Heisenberg spin systems
International Nuclear Information System (INIS)
The ground state of closed Heisenberg spin chains with an odd number of sites has a chiral degeneracy, in addition to a two-fold Kramers degeneracy. A non-zero chirality implies that the spins are not coplanar, and is a measure of handedness. The chirality operator, which can be treated as a spin-1/2 operator, is explicitly constructed in terms of the spin operators, and is given as commutator of permutation operators. (author). 3 refs
Initial-condition problem for a chiral Gross-Neveu system
International Nuclear Information System (INIS)
A time-dependent projection technique is used to treat the initial-value problem for self-interacting fermionic fields. On the basis of the general dynamics of the fields, we derive formal equations of kinetic-type for the set of one-body dynamical variables. A nonperturbative mean-field expansion can be written for these equations. We treat this expansion in lowest order, which corresponds to the Gaussian mean-field approximation, for a uniform system described by the chiral Gross-Neveu Hamiltonian. Standard stationary features of the model, such as dynamical mass generation due to chiral symmetry breaking and a phenomenon analogous to dimensional transmutation, are reobtained in this context. The mean-field time evolution of nonequilibrium initial states is discussed. copyright 1996 The American Physical Society
Chiral symmetry breaking and monopoles
Di Giacomo, Adriano; Pucci, Fabrizio
2015-01-01
To understand the relation between the chiral symmetry breaking and monopoles, the chiral condensate which is the order parameter of the chiral symmetry breaking is calculated in the $\\overline{\\mbox{MS}}$ scheme at 2 [GeV]. First, we add one pair of monopoles, varying the monopole charges $m_{c}$ from zero to four, to SU(3) quenched configurations by a monopole creation operator. The low-lying eigenvalues of the Overlap Dirac operator are computed from the gauge links of the normal configurations and the configurations with additional monopoles. Next, we compare the distributions of the nearest-neighbor spacing of the low-lying eigenvalues with the prediction of the random matrix theory. The low-lying eigenvalues not depending on the scale parameter $\\Sigma$ are compared to the prediction of the random matrix theory. The results show the consistency with the random matrix theory. Thus, the additional monopoles do not affect the low-lying eigenvalues. Moreover, we discover that the additional monopoles increa...
Chiral symmetry and functional integral
Energy Technology Data Exchange (ETDEWEB)
Gamboa Saravi, R.E.; Muschietti, M.A.; Schaposnik, F.A.; Solomin, J.E.
1984-10-15
The change in the fermionic functional integral measure under chiral rotations is analyzed. Using the zeta-function method, the evaluation of chiral Jacobians to theories including non-hermitian Dirac operators D, can be extended in a natural way. (This being of interest, for example, in connection with the Weinberg-Salam model or with the relativistic string theory). Results are compared with those obtained following other approaches, the possible discrepancies are analyzed and the equivalence of the different methods under certain conditions on D is proved. Also shown is how to compute the Jacobian for the case of a finite chiral transformation and this result is used to develop a sort of path-integral version of bosonization in d = 2 space-time dimensions. This result is used to solve in a very simple and economical way relevant d = 2 fermionic models. Furthermore, some interesting features in connection with the theta-vacuum in d = 2,4 gauge theories are discussed.
Descendents on local curves: Stationary theory
Pandharipande, R
2011-01-01
The stable pairs theory of local curves in 3-folds (equivariant with respect to the scaling 2-torus) is studied with stationary descendent insertions. Reduction rules are found to lower descendents when higher than the degree. Factorization then yields a simple proof of rationality in the stationary case and a proof of the functional equation related to inverting q. The method yields an effective determination of stationary descendent integrals. Particular descendent series in the cap geometry play a special role and are calculated exactly using the stable pairs vertex and an analysis of the solution of the quantum differential equation for the Hilbert scheme of points of the plane.
Lateral chirality-sorting optical forces
Hayat, Amaury; Mueller, J. P. Balthasar; Capasso, Federico
2015-01-01
The transverse component of the spin angular momentum of evanescent waves gives rise to lateral optical forces on chiral particles, which have the unusual property of acting in a direction in which there is neither a field gradient nor wave propagation. Because their direction and strength depends on the chiral polarizability of the particle, they act as chirality-sorting and may offer a mechanism for passive chirality spectroscopy. The absolute strength of the forces also substantially exceeds that of other recently predicted sideways optical forces. PMID:26453555
Implications of Local Chiral Symmetry Breaking
La, H S
2003-01-01
The spontaneous symmetry breaking of a local chiral symmetry to its diagonal vector symmetry naturally realizes a complete geometrical structure more general than that of Yang-Mills (YM) theory, rather similar to that of gravity. A good example is the Quantum Chromodynamics (QCD) with respect to the Chiral Color model. Also, a new anomaly-free particle content for a Chiral Color model is introduced: the Chiral Color can be realized without introducing whole new generations of quarks and leptons, but by simply enlarging each generation with new exotic fermions.
Genetics Home Reference: autosomal dominant congenital stationary night blindness
... stationary night blindness autosomal dominant congenital stationary night blindness Enable Javascript to view the expand/collapse boxes. ... Close All Description Autosomal dominant congenital stationary night blindness is a disorder of the retina , which is ...
Genetics Home Reference: X-linked congenital stationary night blindness
... stationary night blindness X-linked congenital stationary night blindness Enable Javascript to view the expand/collapse boxes. ... Close All Description X-linked congenital stationary night blindness is a disorder of the retina , which is ...
The Optical Chirality Flux as a Useful Far-Field Probe of Chiral Near Fields
Poulikakos, Lisa V; McPeak, Kevin M; Burger, Sven; Niegemann, Jens; Hafner, Christian; Norris, David J
2016-01-01
To optimize the interaction between chiral matter and highly twisted light, quantities that can help characterize chiral electromagnetic fields near nanostructures are needed. Here, by analogy with Poynting's theorem, we formulate the time-averaged conservation law of optical chirality in lossy dispersive media and identify the optical chirality flux as an ideal far-field observable for characterizing chiral optical near fields. Bounded by the conservation law, we show that it provides precise information, unavailable from circular dichroism spectroscopy, on the magnitude and handedness of highly twisted fields near nanostructures.
Scaling behaviour of the effective chiral action and stability of the chiral soliton
International Nuclear Information System (INIS)
The effective chiral action is evaluated within a novel improved heat-kernel expansion, which includes gradients of the chiral field in a non-perturbative way. The exact scaling behaviour of the effective action of a localized chiral field with respect to changing its spatial size is found. From this it is proved that the radiatively induced derivative terms cannot absolutely stabilize the chiral soliton against collapsing. The collapsing of the soliton is, however, accompanied by a vanishing of the baryon charge. It is argued that the effective chiral action constrained to a fixed baryon number may still admit stable soliton configurations. (orig.)
Synthesis and Chiral Recognition of a New Type of Chiral Calix[4]arene Derivatives
Institute of Scientific and Technical Information of China (English)
HE,Yong-Bing; LI,Jian-Feng; XIAO,Yuan-Jing; WEI,Lan-Hua; WU,Xiao-Jun; MENG,Ling-Zhi
2003-01-01
Two new chiral calix[4] arenes bearing chiral pendants, which were from by-product of the antibiotic industry, were synthesized and characterized by 1H NMR, MS-FAB and elemental analysis. Studies of 1H NMR of the two calix [4] arene derivatives indicate that they exist in cone conformation in solution. Results of chiral recognition of the two chiral ligands 2a and 2b towards the tartaric acid derivative 3 show that ligand 2a exhibited good chiral recognition abilities compared to ligand 2b.
Direct Georeferencing of Stationary LiDAR
Ahmed Mohamed; Benjamin Wilkinson
2009-01-01
Unlike mobile survey systems, stationary survey systems are given very little direct georeferencing attention. Direct Georeferencing is currently being used in several mobile applications, especially in terrestrial and airborne LiDAR systems. Georeferencing of stationary terrestrial LiDAR scanning data, however, is currently performed indirectly through using control points in the scanning site. The indirect georeferencing procedure is often troublesome; the availability of control stations w...
Adaptive covariance estimation of locally stationary processes
Mallat, Stéphane; Papanicolaou, George; Zhang, Zhifeng
1998-01-01
It is shown that the covariance operator of a locally stationary process has approximate eigenvectors that are local cosine functions. We model locally stationary processes with pseudo-differential operators that are time-varying convolutions. An adaptive covariance estimation is calculated by searching first for a "best" local cosine basis which approximates the covariance by a band or a diagonal matrix. The estimation is obtained from regularized versions of the diagonal coefficients in the...
Self-Organized Stationary States of Tokamaks.
Jardin, S C; Ferraro, N; Krebs, I
2015-11-20
We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping." PMID:26636854
Self-Organized Stationary States of Tokamaks
Energy Technology Data Exchange (ETDEWEB)
Jardin, S. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. [General Atomics, San Diego, CA (United States); Krebs, I. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Max-Plank-Institut fur Plasmaphysik, Garching, Germany
2015-11-01
We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."
Chirally-modified metal surfaces: energetics of interaction with chiral molecules.
Dementyev, Petr; Peter, Matthias; Adamovsky, Sergey; Schauermann, Swetlana
2015-09-21
Imparting chirality to non-chiral metal surfaces by adsorption of chiral modifiers is a highly promising route to create effective heterogeneously catalyzed processes for the production of enantiopure pharmaceuticals. One of the major current challenges in heterogeneous chiral catalysis is the fundamental-level understanding of how such chirally-modified surfaces interact with chiral and prochiral molecules to induce their enantioselective transformations. Herein we report the first direct calorimetric measurement of the adsorption energy of chiral molecules onto well-defined chirally-modified surfaces. Two model modifiers 1-(1-naphthyl)ethylamine and 2-methylbutanoic acid were used to impart chirality to Pt(111) and their interaction with propylene oxide was investigated by means of single-crystal adsorption calorimetry. Differential adsorption energies and absolute surface uptakes were obtained for the R- and S-enantiomers of propylene oxide under clean ultrahigh vacuum conditions. Two types of adsorption behavior were observed for different chiral modifiers, pointing to different mechanisms of imparting chirality to metal surfaces. The results are analyzed and discussed in view of previously reported stereoselectivity of adsorption processes. PMID:26256836
Stationary Liquid Fuel Fast Reactor
International Nuclear Information System (INIS)
For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel
Stationary Liquid Fuel Fast Reactor
Energy Technology Data Exchange (ETDEWEB)
Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Grandy, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Boroski, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, Lubomir [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, Terry [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-09-30
For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel
Hydrodynamics of Liquids of Chiral Molecules and Suspensions Containing Chiral Particles
Andreev, A. V.; Son, D. T.; Spivak, B.
2010-05-01
We obtain hydrodynamic equations describing a fluid consisting of chiral molecules or a suspension of chiral particles in a Newtonian fluid. The hydrodynamic velocity and stresses arising in a flowing chiral liquid have components that are forbidden by symmetry in a Newtonian liquid. For example, a chiral liquid in a Poiseuille flow between parallel plates exerts forces on the plates, which are perpendicular to the flow. A generic flow results in spatial separation of particles of different chirality. Thus even a racemic suspension will exhibit chiral properties in a generic flow. A suspension of particles of random shape in a Newtonian liquid is described by equations which are similar to those describing a racemic mixture of chiral particles in a liquid.
Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures
Tian, Xiaorui; Sun, Mengtao
2015-01-01
Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of...
A spectral route to determining chirality
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Mortensen, Asger
2009-01-01
We show how one-dimensional structured media can be used to measure chirality, via the spectral shift of the photonic band gap edges. Analytically, we show that a chiral contrast can, in some cases, be mapped unto an index contrast, thereby greatly simplifying the analysis of such structures. Using...
Is chiral symmetry manifested in nuclear structure?
Furnstahl, R. J.; Schwenk, A
2010-01-01
Spontaneously broken chiral symmetry is an established property of low-energy quantum chromodynamics, but finding direct evidence for it from nuclear structure data is a difficult challenge. Indeed, phenomenologically successful energy-density functional approaches do not even have explicit pions. Are there smoking guns for chiral symmetry in nuclei?
Partial quenching and chiral symmetry breaking
Creutz, Michael
2014-01-01
Partially quenched chiral perturbation theory assumes that valence quarks propagating on gauge configurations prepared with sea quarks of different masses will form a chiral condensate as the valence quark mass goes to zero. I present a counterexample involving non-degenerate sea quarks where the valence condensate does not form.
Generalized electromagnetic fields in a chiral medium
Energy Technology Data Exchange (ETDEWEB)
Bisht, P S [Department of Physics, Kumaun University, Soban Singh Jeena Campus, Almora-263601 (Uttarakhand) (India); Singh, Jivan [Department of Physics, Govt. Post Graduate College, Pithoragarh (Uttarakhand) (India); Negi, O P S [Department of Physics, Kumaun University, Soban Singh Jeena Campus, Almora-263601 (Uttarakhand) (India)
2007-09-14
The time-dependent Dirac-Maxwell's equations in the presence of electric and magnetic sources are reformulated in a chiral medium, and the solutions for the classical problem are obtained in a unique, simple and consistent manner. The quaternion reformulation of generalized electromagnetic fields in the chiral medium has also been discussed in a compact, simple and consistent manner.
LINEARLY POLARIZED PROBES OF SURFACE CHIRALITY
VERBIEST, T; KAURANEN, M; MAKI, JJ; TEERENSTRA, MN; SCHOUTEN, AJ; NOLTE, RJM; PERSOONS, A
1995-01-01
We present a new nonlinear optical technique to study surface chirality. We demonstrate experimentally that the efficiency of second-harmonic generation from isotropic chiral surfaces is different for excitation with fundamental light that is +45 degrees and -45 degrees linearly polarized with respe
Chiral Anomaly in Toroidal Carbon Nanotubes
Sasaki, K.
2001-01-01
It is pointed out that the chiral anomaly in 1+1 dimensions should be observed in toroidal carbon nanotubes on a planar geometry with varying magnetic field. We show that the chiral anomaly is closely connected with the persistent current in a one-dimensional metallic ring.
Chirally-sensitive electron-molecule interactions
Dreiling, J. M.; Gay, T. J.
2015-09-01
All molecular forms of life have chemically-specific handedness. However, the origin of these asymmetries is not understood. A possible explanation was suggested by Vester and Ulbricht immediately following the discovery of parity violation in 1957: chiral beta radiation in cosmic rays may have preferentially destroyed one enantiomeric form of various biological precursors. In the experiments reported here, we observed chiral specificity in two electron- molecule interactions: quasi-elastic scattering and dissociative electron attachment. Using low- energy longitudinally spin-polarized (chiral) electrons as substitutes for beta rays, we found that chiral bromocamphor molecules exhibited both a transmission and dissociative electron attachment rate that depended on their handedness for a given direction of incident electron spin. Consequently, these results, especially those with dissociative electron attachment, connect the universal chiral asymmetry of the weak force with a molecular breakup process, thereby demonstrating the viability of the Vester-Ulbricht hypothesis.
Radiative meson decays in chiral perturbation theory
International Nuclear Information System (INIS)
Radiative meson decays are a fertile field for chiral perturbation theory. Chiral symmetry together with gauge invariance yield stringent constraints on radiative decay amplitudes. In addition to predicting decay rates and spectra, the chiral approach allows for a unified description of CP violation in radiative K decays. The chiral viewpoint in the recent controversy over the magnitude of two-photon exchange in the decay KL→ π0e+e- is exposed. The radiative decay η→π0γγ is discussed as an intriguing case where the leading result of chiral perturbation theory seems to be too small by two orders of magnitude in rate. 32 refs., 3 figs. (Author)
Principal chiral model on superspheres
International Nuclear Information System (INIS)
We investigate the spectrum of the principal chiral model (PCM) on odd-dimensional superspheres as a function of the curvature radius R. For volume-filling branes on S3verticalstroke2, we compute the exact boundary spectrum as a function of R. The extension to higher dimensional superspheres is discussed, but not carried out in detail. Our results provide very convincing evidence in favor of the strong-weak coupling duality between supersphere PCMs and OSP(2S+2 vertical stroke 2S) Gross-Neveu models that was recently conjectured by Candu and Saleur. (orig.)
Liquids with Chiral Bond Order
Kamien, Randall
1995-01-01
I describe new phases of a chiral liquid crystal with nematic and hexatic order. I find a conical phase, similar to that of a cholesteric in an applied magnetic field for Frank elastic constants $K_2>K_3$. I discuss the role of fluctuations in the context of this phase and the possibility of satisfying the inequality for sufficiently long polymers. In addition I discuss the topological constraint relating defects in the bond order field to textures of the nematic and elucidate its physical me...
Principal chiral model on superspheres
Energy Technology Data Exchange (ETDEWEB)
Mitev, V.; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quella, T. [Amsterdam Univ. (Netherlands). Inst. for Theoretical Physics
2008-09-15
We investigate the spectrum of the principal chiral model (PCM) on odd-dimensional superspheres as a function of the curvature radius R. For volume-filling branes on S{sup 3} {sup vertical} {sup stroke} {sup 2}, we compute the exact boundary spectrum as a function of R. The extension to higher dimensional superspheres is discussed, but not carried out in detail. Our results provide very convincing evidence in favor of the strong-weak coupling duality between supersphere PCMs and OSP(2S+2 vertical stroke 2S) Gross-Neveu models that was recently conjectured by Candu and Saleur. (orig.)
Chiral Anomaly in Contorted Spacetimes
Mielke, E W
1999-01-01
The Dirac equation in Riemann-Cartan spacetimes with torsion is reconsidered. As is well-known, only the axial covector torsion $A$, a one-form, couples to massive Dirac fields. Using diagrammatic techniques, we show that besides the familiar Riemannian term only the Pontrjagin type four-form $dA\\wedge dA$ does arise additionally in the chiral anomaly, but not the Nieh-Yan term $d ^* A$, as has been claimed recently. Implications for cosmic strings in Einstein-Cartan theory as well as for Ashtekar's canonical approach to quantum gravity are discussed.
Teleporting Superpositions of Chiral Amplitudes
Maierle, C S; Harris, R A; Maierle, Christopher S.; Lidar, Daniel A.; Harris, Robert A.
1998-01-01
Chiral molecules may exist in superpositions of left- and right-handed states. We show how the amplitudes of such superpositions may be teleported to the polarization degrees of freedom of a photon. Two experimental schemes are proposed, one leading to perfect, the other to state-dependent teleportation. Both methods yield complete information about the amplitudes. This is the first explicit example of "inter-species" teleportation, where the amplitudes of the quantum superposition of one species are transferred at the end of the process to a different species. The latter is then easily accessible for measurement.
Nuclear chiral dynamics and thermodynamics
Holt, J. W.; Kaiser, N.; Weise, W.
2013-01-01
This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exch...
Status of chiral meson physics
Energy Technology Data Exchange (ETDEWEB)
Bijnens, Johan [Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE 22362 Lund (Sweden)
2016-01-22
This talk includes a short introduction to Chiral Perturbation Theory in the meson sector concentrating on a number of recent developments. I discuss the latest fit of the low-energy constants. Finite volume corrections are discussed for the case with twisted boundary conditions for form-factors and first results at two-loops for three flavours for masses. The last part discusses the extension to other symmetry breaking patterns relevant for technicolour and related theories as well as the calculation of leading logarithms to high loop orders.
Synthesis and characterization of mixed ligand chiral nanoclusters
Güven, Zekiye Pelin; Guven, Zekiye Pelin; Üstbaş, Burçin; Ustbas, Burcin; Harkness, Kellen M.; Coşkun, Hikmet; Coskun, Hikmet; Joshi, Chakra P.; Besong, Tabot M. D.; Stellacci, Francesco; Bakr, Osman M.; Akbulut, Özge; Akbulut, Ozge
2015-01-01
Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. The ratio of the ligands was changed to track the formation of these clusters. While the chiral ligand lead to nanoparticles, Presence of the achiral ligand induced the formation of nanoclusters with chiral properties.
Chiral Symmetry Breaking and Cooling in Lattice QCD
Woloshyn, R. M.; Lee, F. X.
1995-01-01
Chiral symmetry breaking is calculated as a function of cooling in quenched lattice QCD. A non-zero signal is found for the chiral condensate beyond one hundred cooling steps, suggesting that there is chiral symmetry breaking associated with instantons. Quantitatively, the chiral condensate in cooled gauge field configurations is small compared to the value without cooling.
Chlorophylls, Symmetry, Chirality, and Photosynthesis
Directory of Open Access Journals (Sweden)
Mathias O. Senge
2014-09-01
Full Text Available Chlorophylls are a fundamental class of tetrapyrroles and function as the central reaction center, accessory and photoprotective pigments in photosynthesis. Their unique individual photochemical properties are a consequence of the tetrapyrrole macrocycle, the structural chemistry and coordination behavior of the phytochlorin system, and specific substituent pattern. They achieve their full potential in solar energy conversion by working in concert in highly complex, supramolecular structures such as the reaction centers and light-harvesting complexes of photobiology. The biochemical function of these structures depends on the controlled interplay of structural and functional principles of the apoprotein and pigment cofactors. Chlorophylls and bacteriochlorophylls are optically active molecules with several chiral centers, which are necessary for their natural biological function and the assembly of their supramolecular complexes. However, in many cases the exact role of chromophore stereochemistry in the biological context is unknown. This review gives an overview of chlorophyll research in terms of basic function, biosynthesis and their functional and structural role in photosynthesis. It highlights aspects of chirality and symmetry of chlorophylls to elicit further interest in their role in nature.
Yanagisawa, Takashi
2016-02-01
We investigate the chiral sine-Gordon model using the renormalization group method. The chiral sine-Gordon model is a model for G-valued fields and describes a new class of phase transitions, where G is a compact Lie group. We show that the model is renormalizable by means of a perturbation expansion and we derive beta functions of the renormalization group theory. The coefficients of beta functions are represented by the Casimir invariants. The model contains both asymptotically free and ultraviolet strong-coupling regions. The beta functions have a zero which is a bifurcation point that divides the parameter space into two regions; they are the weak-coupling region and the strong-coupling region. A large-N model is also considered. This model is reduced to the conventional sine-Gordon model that describes the Kosterlitz-Thouless transition near the fixed point. In the strong-coupling limit, the model is reduced to a U(N) matrix model.
On the early chiral unification
International Nuclear Information System (INIS)
A unified model of electromagnetic, strong and weak interactions based on the semisimple gauge group G=SU(8)sub(L)xSU(8)sub(R) is presented. Leptons and fractionally charged quarks are asigned to fundamental representations Fsub(L)=(usub(i)dsub(i)νsub(e)e)sub(L), Fsub(R)(usub(i)dsub(i)νsub(e)e)sub(R) and similarly for the other families. The model leads to low unification mass M=106-108 GeV and admissible value for the Weinberg parameter sin2THETAsub(W)=1/3. The model contains chiral colour group SU(3)sub(L)xSU(3)sub(R) and permits the existence of light axial gluons (msub(A) approximately 1 GeV) alongside with the massless vector gluons. The barion number is conserved in the model. Triangular anomalies are absent when mirror fermions of opposite chirality are added. The model admits the hierarchy of symmetry breaking and presence of intermediate scales Msub(n) so that Msub(W)<< Msub(n)<< M. In the low energy region the results of Salam-Weinberg model are reproduced
Yanagisawa, Takashi
2016-01-01
We investigate the chiral sine-Gordon model using the renormalization group method. The chiral sine-Gordon model is a model for $G$-valued fields and describes a new class of phase transitions, where $G$ is a compact Lie group. We show that the model is renormalizable by means of a perturbation expansion and we derive beta functions of the renormalization group theory. The coefficients of beta functions are represented by the Casimir invariants. The model contains both asymptotically free and ultraviolet strong coupling regions. The beta functions have a zero which is a bifurcation point that divides the parameter space into two regions; they are the weak coupling region and the strong coupling region. A large-$N$ model is also considered. This model is reduced to the conventional sine-Gordon model that describes the Kosterlitz-Thouless transition near the fixed point. In the strong-coupling limit, the model is reduced to a $U(N)$ matrix model.
Chiral transition with magnetic fields
Ayala, Alejandro; Mizher, Ana Julia; Rojas, Juan Cristobal; Villavicencio, Cristian
2014-01-01
We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling const...
Chiral polarization scale of QCD vacuum and spontaneous chiral symmetry breaking
International Nuclear Information System (INIS)
It has recently been found that dynamics of pure glue QCD supports the low energy band of Dirac modes with local chiral properties qualitatively different from that of a bulk: while bulk modes suppress chirality relative to statistical independence between left and right, the band modes enhance it. The width of such chirally polarized zone – chiral polarization scale bigwedgech – has been shown to be finite in the continuum limit at fixed physical volume. Here we present evidence that bigwedgech remains non-zero also in the infinite volume, and is therefore a dynamical scale in the theory. Our experiments in Nf = 2+1 QCD support the proposition that the same holds in the massless limit, connecting bigwedgech to spontaneous chiral symmetry breaking. In addition, our results suggest that thermal agitation in quenched QCD destroys both chiral polarization and condensation of Dirac modes at the same temperature Tch > Tc.
Full Counting Statistics of Stationary Particle Beams
Kiukas, J; Werner, R F
2010-01-01
We present a general scheme for treating particle beams, including stationary beams, as many particle systems. This includes the full counting statistics and the requirements of Bose/Fermi symmetry. We treat in detail a model of a source, creating particles in a fixed state, which then evolve under the free time evolution, and we determine the resulting stationary beam in the far field. In comparison to the one-particle picture we obtain a correction from Bose/Fermi statistics, which depends on the emission rate.
Stationary Scalar Clouds Around Rotating Black Holes
Hod, Shahar
2012-01-01
Motivated by novel results in the theory of wave dynamics in black-hole spacetimes, we analyze the dynamics of a massive scalar field surrounding a rapidly rotating Kerr black hole. In particular, we report on the existence of stationary (infinitely long-lived) regular field configurations in the background of maximally rotating black holes. The effective height of these scalar "clouds" above the central black hole is determined analytically. Our results support the possible existence of stationary scalar field dark matter distributions surrounding rapidly rotating black holes.
Structure of stationary and axisymmetric metrics
International Nuclear Information System (INIS)
We study the structure of stationary and axisymmetric metrics solving the vacuum Einstein equations of general relativity in four and higher dimensions, building on recent work in Phys. Rev. D 70, 124002 (2004). We write the Einstein equations in a new form that naturally identifies the sources for such metrics. The sources live in a one-dimensional subspace and the entire metric is uniquely determined by them. We study in detail the structure of stationary and axisymmetric metrics in four dimensions, and consider as an example the sources of the Kerr black hole
Stationary occultations from low Earth orbit
Percival, Jeffrey W.
1993-01-01
The process of stationary lunar occultations is considered for observers in LEO. The orbit of the Hubble Space Telescope (HST) is used as a prototype. The noncoplanarity of the HST and lunar orbits disrupts many of the expected stationary events, and orbital drag complicates the prediction problem. In a typical year, the apparent speed of the lunar limb seen by the HST is slower than a typical ground-based event only about 0.7 percent of the time. The orbit prediction can be wrong by as much as 20 deg in 53 days, with most of the error lying in the plane of the orbit.
Dirac operator normality and chiral properties
International Nuclear Information System (INIS)
Normality and γ5-hermiticity are what gives rise to chiral properties and rules. The Ginsparg-Wilson (GW) relation is only one of the possible spectral constraints. The sum rule for chiral differences of real modes has important consequences. The alternative transformation of Luescher gives the same Ward identity as the usual chiral one (if zero modes are properly treated). Imposing normality on a general function of the hermitean Wilson-Dirac operator H leads at same time to the GW relation and to the Neuberger operator
Enhanced Chiral Recognition by Cyclodextrin Dimers
Directory of Open Access Journals (Sweden)
Bart Jan Ravoo
2011-07-01
Full Text Available In this article we investigate the effect of multivalency in chiral recognition. To this end, we measured the host-guest interaction of a β-cyclodextrin dimer with divalent chiral guests. We report the synthesis of carbohydrate-based water soluble chiral guests functionalized with two borneol, menthol, or isopinocampheol units in either (+ or (– configuration. We determined the interaction of these divalent guests with a β-cyclodextrin dimer using isothermal titration calorimetry. It was found that—in spite of a highly unfavorable conformation—the cyclodextrin dimer binds to guest dimers with an increased enantioselectivity, which clearly reflects the effect of multivalency.
Effective action in general chiral superfield model
Petrov, A. Yu.
2000-01-01
The effective action in general chiral superfield model with arbitrary k\\"{a}hlerian potential $K(\\bar{\\Phi},\\Phi)$ and chiral (holomorphic) potential $W(\\Phi)$ is considered. The one-loop and two-loop contributions to k\\"{a}hlerian effective potential and two-loop (first non-zero) contribution to chiral effective potential are found for arbitrary form of functions $K(\\bar{\\Phi},\\Phi)$ and $W(\\Phi)$. It is found that despite the theory is non-renormalizable in general case two-loop contributi...
Dynamics and Stability of Chiral Fluid
Mishustin, Igor N.; Koide, Tomoi; Denicol, Gabriel S.; Torrieri, Giorgio
2014-01-01
Starting from the linear sigma model with constituent quarks we derive the chiral fluid dynamics where hydrodynamic equations for the quark fluid are coupled to the equation of motion for the order-parameter field. In a static system at thermal equilibrium this model leads to a chiral phase transition which, depending on the choice of the quark-meson coupling constant, could be a crossover or a first order one. We investigate the stability of the chiral fluid in the static and expanding backg...
The Macromolecular Route to Chiral Amplification.
Green; Park; Sato; Teramoto; Lifson; Selinger; Selinger
1999-11-01
Cooperative phenomena, described by one-dimensional statistical physical methods, are observed between the enantiomeric characteristics of monomeric materials and the polymers they produce. The effect of minute energies associated with this amplified chirality, although currently not interpretable, can be easily measured. Nonlinear relationships between enantiomeric excess or enantiomeric content and polymer properties may offer the possibility of developing chiral catalysts and chiral chromatographic materials in which the burden of large enantiomeric excess or content may be considerably alleviated. New approaches to information and sensor technology may become possible. PMID:10556885
Ribó, Josep M; El-Hachemi, Zoubir; Moyano, Albert; Blanco, Celia; Hochberg, David; 10.1089/ast.2012.0904
2013-01-01
The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution nor in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continous internal flow. In such conditions the system can evolve, for certain reaction and system parameters, towards a chiral stationary state, i.e., the system is able to reach a bifurcation point leading to SMSB. Numerical simulations using reasonable ch...
Chiral particle separation by a non-chiral micro-lattice
Bogunovic, Lukas; Fliedner, Marc; Eichhorn, Ralf; Wegener, Sonja; Regtmeier, Jan; Anselmetti, Dario; Reimann, Peter
2012-01-01
We conceived a model experiment for a continuous separation strategy of chiral molecules (enantiomers) without the need of any chiral selector structure or derivatization agents: Micro-particles that only differ by their chirality are shown to migrate along different directions when driven by a steady fluid flow through a square lattice of cylindrical posts. In accordance with our numerical predictions, the transport directions of the enantiomers depend very sensitively on the orientation of ...
Double chiral logarithms of Generalized Chiral Perturbation Theory for low-energy pi-pi scattering
L. GirlandaPadua U. & INFN
2015-01-01
We express the two-massless-flavor Gell-Mann--Oakes--Renner ratio in terms of low-energy pi-pi observables, including the O(p^6) double chiral logarithms of generalized chiral perturbation theory. Their contribution is sizeable and tends to compensate the one from the single chiral logarithms. However it is not large enough to spoil the convergence of the chiral expansion. As a signal of reduced theoretical uncertainty, we find that the scale dependence from the one-loop single logarithms is ...
New Chiral Metal Cluster Systems for Catalytic Asymmetric Syntheses of Chiral Alcohols
Institute of Scientific and Technical Information of China (English)
LI Yan-yun; CHEN Jian-shan; YANG Chuan-bo; DONG Zhen-rong; LI Bao-zhu; ZHANG Hui; GAO Jing-xing; TAKAO Ikariya
2004-01-01
The efficient chiral Ru3(CO)12 systems were prepared in situ from Ru3(CO)12 and various chiral diiminoor diamino-diphosphine tetradentate ligands. The systems have been used for the asymmetric transfer hydrogenation of propiophenone in 2-propanol, leading to 1-phenyl-1-propanol in a 98% yield and 96% e.e. The IR study suggests that the carbonyl hydride anion [HRu3(CO)11]- most probably exists as a principal species under the reaction conditions. The high chiral efficiency may be due to the synergetic effect produced by the neighboring ruthenium atoms and a special chiral micro-environment involving the polydentate ligand and the Ru3 framework.
Chiral magnetic effect and holography
International Nuclear Information System (INIS)
The chiral magnetic effect (CME) is a highly discussed effect in heavy-ion collisions stating that, in the presence of a magnetic field B, an electric current is generated in the background of topologically nontrivial gluon fields. We present a holographic (AdS/CFT) description of the CME in terms of a fluid-gravity model which is dual to a strongly-coupled plasma with multiple anomalous U(1) currents. In the case of two U(1) charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We will holographically compute this coefficient at strong coupling and compare it with the hydrodynamic result. Finally, we will discuss an anisotropic variant of the model and study a possible dependence of the CME on the elliptic flow coefficient ν2.
Resolution of the Chiral Drugs
Institute of Scientific and Technical Information of China (English)
DENG JinGen; ZHU Jin
2001-01-01
@@ Chiral drugs are generally not permitted to be used in racemic form so that unintended side effects and unnecessary environmental hazards are avoided. Moreover, homochiral molecules are required immediately to progress key toxicological and clinical studies in the drug discovery. One series of technologies which can rapidly supply homochiral compounds is the separation of racemates, and of those the technique of crystallization of diastereomers is extremely effective-principally because it is simple to operate and it affords both enantiomers. In classical resolution via diastereoisomeric salt formation, the resolved compounds are limited to a given racemic acid or base and the choice of a suitable resolving agent for a racemic target compound is achieved by time-consuming trial-and-error procedure.
Resolution of the Chiral Drugs
Institute of Scientific and Technical Information of China (English)
DENG; JinGen
2001-01-01
Chiral drugs are generally not permitted to be used in racemic form so that unintended side effects and unnecessary environmental hazards are avoided. Moreover, homochiral molecules are required immediately to progress key toxicological and clinical studies in the drug discovery. One series of technologies which can rapidly supply homochiral compounds is the separation of racemates, and of those the technique of crystallization of diastereomers is extremely effective-principally because it is simple to operate and it affords both enantiomers. In classical resolution via diastereoisomeric salt formation, the resolved compounds are limited to a given racemic acid or base and the choice of a suitable resolving agent for a racemic target compound is achieved by time-consuming trial-and-error procedure. ……
Chiral supergravity actions and superforms
Gates, S J; Tartaglino-Mazzucchelli, G
2009-01-01
The superform construction of supergravity actions, christened the "ectoplasm method," is based on the use of a closed super d-form in the case of d space-time dimensions. In known examples, such superforms are obtained by iteratively solving nontrivial cohomological problems. The latter usually makes this scheme no less laborious than the normal coordinate method for deriving component actions for matter-coupled supergravity. In this note we present an alternative procedure to generate required superforms in four space-time dimensions, which makes use of self-dual vector multiplets. It provides the shortest derivation of chiral actions in two different theories: (i) N = 1 old minimal supergravity; and (ii) N = 2 conformal supergravity. The N = 2 superform construction is developed here for the first time. Although our consideration is restricted to the case of four dimensions, a generalization to higher dimensions is plausible.
Chiral magnetic effect and holography
Energy Technology Data Exchange (ETDEWEB)
Kirsch, Ingo; Kalaydzhyan, Tigran
2013-01-15
The chiral magnetic effect (CME) is a highly discussed effect in heavy-ion collisions stating that, in the presence of a magnetic field B, an electric current is generated in the background of topologically nontrivial gluon fields. We present a holographic (AdS/CFT) description of the CME in terms of a fluid-gravity model which is dual to a strongly-coupled plasma with multiple anomalous U(1) currents. In the case of two U(1) charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We will holographically compute this coefficient at strong coupling and compare it with the hydrodynamic result. Finally, we will discuss an anisotropic variant of the model and study a possible dependence of the CME on the elliptic flow coefficient {nu}{sub 2}.
Chiral Lagrangians and proton decay
International Nuclear Information System (INIS)
The phenomenological Lagrangian method is employed to obtain nucleon decay branching ratio sin conventional and supersymmetric Grand Unified Theories. After a brief survey of the theory of nucleon decay, the dominant effective baryon-number violating operators in supergravity models are derived where the observed sector is described by an SU(5) SUSY GUT. It is shown how the phenomenological Lagrangian technique may be understood from a mathematical viewpoint. This technique is then applied to calculate two- and three-body nucleon decay branching ratios in SUGRA models. Finally, the author answers criticism of the usual phenomenological Lagrangian approach when used for nucleon decay calculations by developing a hybrid chiral quark model. With this model, branching ratios for conventional and SUSY GUTs are calculated. (author)
Binary mixtures of chiral gases
Presilla, Carlo
2015-01-01
A possible solution of the well known paradox of chiral molecules is based on the idea of spontaneous symmetry breaking. At low pressure the molecules are delocalized between the two minima of a given molecular potential while at higher pressure they become localized in one minimum due to the intermolecular dipole-dipole interactions. Evidence for such a phase transition is provided by measurements of the inversion spectrum of ammonia and deuterated ammonia at different pressures. In particular, at pressure greater than a critical value no inversion line is observed. These data are well accounted for by a model previously developed and recently extended to mixtures. In the present paper, we discuss the variation of the critical pressure in binary mixtures as a function of the fractions of the constituents.
Research progress in Cellulose-based Chiral Selectors%纤维素手性拆分剂的研究进展
Institute of Scientific and Technical Information of China (English)
宋洪浪
2013-01-01
文章介绍了几种纤维素类手性拆分剂以及其制备方法相关分离机理，综述了纤维素手性拆分剂的分离机理及其应用，重点地介绍纤维素手性固定相和纤维素膜的应用。%In this paper, several kinds of cellulose-based chiral selectors and its preparation methods were introduced , the application and separation mechanism of cellulose-based chiral selectors were summarized, and intensively emphasized on the applications of cellulose chiral stationary phase and cellulose membrane.
Biaxiality of chiral liquid crystals
International Nuclear Information System (INIS)
Using extended deGennes-Ginzburg-Landau free energy expansion in terms of the anisotropic part of the dielectric tensor field Qαβ(χ) a connection between the phase biaxiality and the stability of various chiral liquid crystalline phases is studied. In particular the cholesteric phase, the cubic Blue Phases and the phases characterized by an icosahedral space group symmetry are analysed in detail. Also a general question concerning the applicability of the mean-field approximation in describing the chiral phases is addressed. By an extensive study of the model over a wide range of the parameters a new class of phenomena, not present in the original deGennes-Ginzburg-Landau model, has been found. These include: a) re-entrant phase transitions between the cholesteric and the cubic blue phases and b) the existence of distinct phases of the same symmetry but of different biaxialities. The phase biaxiality serves here as an extra scalar order parameter. Furthermore, it has been shown that due to the presence of the competing bulk terms in the free energy, the stable phases may acquire a large degree of biaxiality, also in liquid crystalline materials composed of effectively uniaxial molecules. A study of icosahedral space group symmetries gives a partial answer to the question as to whether an icosahedral quasicrystalline liquid could be stabilized in liquid crystals. Although, in general, the stability of icosahedral structures could be enhanced by the extra terms in the free energy no absolutely stable icosahedral phase has been found. (author). 16 refs, 3 figs, 1 tab
Directory of Open Access Journals (Sweden)
Ivanildo José da Silva Jr.
2009-01-01
Full Text Available In this work the separation of the chiral anesthetic compounds ketamine and bupivacaine was development using two chiral stationary phases (CSP. Ketamine enantiomers were well separate in the polysaccharide-based CSP (microcrystalline cellulose triacetate - MCTA while bupivacaine in the tartardiamide-based CSP (Kromasil CHI-TBB. In both cases, the effect of temperature was investigated under analytical conditions. An improvement in the separation performance with temperature was observed. Thermodynamic parameters were evaluated by the van't Hoff plot. We concluded that enthalpic effects controlled the retention in these chiral columns. The enantiomers of ketamine and bupivacaine were separated under overloaded conditions with a good performance.
Charged particle tunnels from the stationary and non-stationary Kerr-Newman black holes
Chen, Deyou; Yang, Shuzheng
2007-09-01
Considering the unfixed background space-time and self-gravitational interaction, we view the Hawking radiation of a stationary Kerr-Newman black hole by Hamilton-Jacobi method. Meanwhile, extending this work to non-stationary black holes, we attempt to investigate the Hawking radiation of the non-stationary Kerr-Newman black hole. Both of the results show the tunneling probabilities are related to the change of Bekenstein- Hawking entropy and the radiation spectrums deviate from the purely thermal one, which is in accordance with the known result.
Markov Chains with Stochastically Stationary Transition Probabilities
Orey, Steven
1991-01-01
Markov chains on a countable state space are studied under the assumption that the transition probabilities $(P_n(x,y))$ constitute a stationary stochastic process. An introductory section exposing some basic results of Nawrotzki and Cogburn is followed by four sections of new results.
Danish emission inventories for stationary combustion plants
DEFF Research Database (Denmark)
Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt
Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, PCDD/F, HCB and PAH. The CO2 emission in 2011...
Danish emission inventories for stationary combustion plants
DEFF Research Database (Denmark)
Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt;
Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2008...
Danish emission inventories for stationary combustion plants
DEFF Research Database (Denmark)
Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt;
Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2007 was 10...
Surrogate data for non-stationary signals
Schmitz, A; Schmitz, Andreas; Schreiber, Thomas
1999-01-01
Standard tests for nonlinearity reject the null hypothesis of a Gaussian linear process whenever the data is non-stationary. Thus, they are not appropriate to distinguish nonlinearity from non-stationarity. We address the problem of generating proper surrogate data corresponding to the null hypothesis of an ARMA process with slowly varying coefficients.
Stationary Double Layers in a Collisionless Magnetoplasma
DEFF Research Database (Denmark)
Noriyoshi, Sato; Mieno, Tetsu; Hatakeyama, Rikizo;
1983-01-01
plate on the low-potential side, being accompanied with current limitation. This localized potential drop moves along the plasma column, but finally stops and results in the formation of the stationary double layer in the presence of sufficient plasma supply from the plate on the high-potential side....
Polarization fluctuations in stationary light beams
International Nuclear Information System (INIS)
For stationary beams the degree of polarization contains only limited information on time dependent polarization. Two approaches towards assessing a beams polarization dynamics, one based on Poincare and the other on Jones vector formalism, are described leading to the notion of polarization time. Specific examples of partially temporally coherent electromagnetic beams are discussed. (Author)
Damping device for a stationary labyrinth seal
El-Aini, Yehia M. (Inventor); Mitchell, William S. (Inventor); Roberts, Lawrence P. (Inventor); Montgomery, Stuart K. (Inventor); Davis, Gary A. (Inventor)
2010-01-01
A stationary labyrinth seal system includes a seal housing having an annular cavity, a plurality of damping devices, and a retaining ring. The damping devices are positioned within the annular cavity and are maintained within the annular cavity by the retaining ring.
What is "stationary" deformation of pure Cu?
Czech Academy of Sciences Publication Activity Database
Blum, W.; Dvořák, Jiří; Král, Petr; Eisenlohr, P.; Sklenička, Václav
2014-01-01
Roč. 49, č. 8 (2014), s. 2987-2997. ISSN 0022-2461 R&D Projects: GA ČR(CZ) GAP108/11/2260 Institutional support: RVO:68081723 Keywords : creep * Cu * recrystallization * stationary deformation resistances Subject RIV: JJ - Other Materials Impact factor: 2.371, year: 2014
The General Stationary Gaussian Markov Process
Brown, Larry; Ernst, Philip; Shepp, Larry; Wolpert, Bob
2013-01-01
We find the class, ${\\cal{C}}_k, k \\ge 0$, of all zero mean stationary Gaussian processes, $Y(t), ~t \\in \\reals$ with $k$ derivatives, for which \\begin{equation} Z(t) \\equiv (Y^{(0)}(t), Y^{(1)}(t), \\ldots, Y^{(k)}(t) ), ~ t \\ge 0 \\end{equation} \
Chiral Schwinger model at finite temperature
International Nuclear Information System (INIS)
We discuss the chiral Schwinger model at finite temperature using Fujikawa's method. We solve this model exactly and show that the axial anomaly and the dynamically generated mass for the gauge field are temperature independent. (author). 20 refs
Chiral transition of fundamental and adjoint quarks
Energy Technology Data Exchange (ETDEWEB)
Capdevilla, R.M. [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Doff, A., E-mail: agomes@utfpr.edu.br [Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR (Brazil); Natale, A.A., E-mail: natale@ift.unesp.br [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil)
2014-01-20
The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagator and in the coupling constant. In this case the chiral and deconfinement transition temperatures are approximately the same. For quarks in the adjoint representation, due to the larger Casimir eigenvalue, the gluon exchange is operative and the chiral transition happens at a larger temperature than the deconfinement one.
Chiral transition of fundamental and adjoint quarks
International Nuclear Information System (INIS)
The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagator and in the coupling constant. In this case the chiral and deconfinement transition temperatures are approximately the same. For quarks in the adjoint representation, due to the larger Casimir eigenvalue, the gluon exchange is operative and the chiral transition happens at a larger temperature than the deconfinement one
Personal recollections on chiral symmetry breaking
Kobayashi, Makoto
2016-07-01
The author's work on the mass of pseudoscalar mesons is briefly reviewed. The emergence of the study of CP violation in the renormalizable gauge theory from consideration of chiral symmetry in the quark model is discussed.
Chirality and angular momentum in optical radiation
Coles, Matt M
2012-01-01
This paper develops, in precise quantum electrodynamic terms, photonic attributes of the "optical chirality density", one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive "superchiral" phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multi-mode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin angular momentum of light is engaged in such...
Parity doublers in chiral potential quark models
International Nuclear Information System (INIS)
The effect of spontaneous breaking of chiral symmetry over the spectrum of highly excited hadrons is addressed in the framework of a microscopic chiral potential quark model (Generalised Nambu-Jona-Lasinio model) with a vectorial instantaneous quark kernel of a generic form. A heavy-light quark-antiquark bound system is considered, as an example, and the Lorentz nature of the effective light-quark potential is identified to be a pure Lorentz-scalar, for low-lying states in the spectrum, and to become a pure spatial Lorentz vector, for highly excited states. Consequently, the splitting between the partners in chiral doublets is demonstrated to decrease fast in the upper part of the spectrum so that neighboring states of an opposite parity become almost degenerate. A detailed microscopic picture of such a 'chiral symmetry restoration' in the spectrum of highly excited hadrons is drawn and the corresponding scale of restoration is estimated
Staggered Heavy Baryon Chiral Perturbation Theory
Bailey, Jon A
2007-01-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms the order of the cubed pion mass, which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms the order of the squared lattice spacing. The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in d...
BRST Reduction of the chiral Hecke Algebra
Shapiro, I
2006-01-01
We explore the relationship between de Rham and Lie algebra cohomologies in the finite dimensional and affine settings. As an application, we describe the BRST reduction of the chiral Hecke algebra as a vertex super algebra.
Chiral chemistry of metal-camphorate frameworks.
Gu, Zhi-Gang; Zhan, Caihong; Zhang, Jian; Bu, Xianhui
2016-06-01
This critical review presents the various synthetic approaches and chiral chemistry of metal-camphorate frameworks (MCamFs), which are homochiral metal-organic frameworks (MOFs) constructed from a camphorate ligand. The interest in this unique subset of homochiral MOFs is derived from the many interesting chiral features for both materials and life sciences, such as asymmetrical synthesis or crystallization, homochiral structural design, chiral induction, absolute helical control and ligand handedness. Additionally, we discuss the potential applications of homochiral MCamFs. This review will be of interest to researchers attempting to design other homochiral MOFs and those engaged in the extension of MOFs for applications such as chiral recognition, enantiomer separation, asymmetric catalysis, nonlinear sensors and devices. PMID:27021070
Nuclear Chiral EFT in the Precision Era
Epelbaum, Evgeny
2015-01-01
Chiral effective field theory has established itself as the method of choice to study nuclear forces and low-energy nuclear dynamics. I review the status and prospects of this approach and discuss ongoing efforts to advance the precision frontier for ab initio description of few-nucleon systems. Special emphasis is put on the precise determination of the two-nucleon force at fifth order in the chiral expansion, role of the chiral symmetry, the convergence pattern of the chiral expansion and the quantification of the theoretical uncertainties. The discussed topics are essential for ongoing studies towards elucidating the structure of the three-nucleon force which will be briefly addressed as well.
Chirally motivated K{sup -} nuclear potentials
Energy Technology Data Exchange (ETDEWEB)
Cieply, A. [Nuclear Physics Institute, 25068 Rez (Czech Republic); Friedman, E. [Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); Gal, A., E-mail: avragal@vms.huji.ac.il [Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); Gazda, D.; Mares, J. [Nuclear Physics Institute, 25068 Rez (Czech Republic)
2011-08-26
In-medium subthreshold K-bar N scattering amplitudes calculated within a chirally motivated meson-baryon coupled-channel model are used self consistently to confront K{sup -} atom data across the periodic table. Substantially deeper K{sup -} nuclear potentials are obtained compared to the shallow potentials derived in some approaches from threshold K-bar N amplitudes, with ReV{sub K}{sup chiral}=-(85{+-}5) MeV at nuclear matter density. When K-bar NN contributions are incorporated phenomenologically, a very deep K{sup -} nuclear potential results, ReV{sub K}{sup chiral+phen.}=-(180{+-}5) MeV, in agreement with density dependent potentials obtained in purely phenomenological fits to the data. Self consistent dynamical calculations of K{sup -}-nuclear quasibound states generated by V{sub K}{sup chiral} are reported and discussed.
New Advances in Chiral Catalyst Immobilization
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
@@ Asymmetric catalysis of organic reactions is one of the most efficient ways to obtain optically pure chiral compounds, which are crucially important to the development of modern pharmaceutical and fine chemical industries, as well as material science.
Chiral Magnetic Effect in Heavy Ion Collisions
Liao, Jinfeng
2016-01-01
The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|\\vec{\\bf B}|\\sim m_\\pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.
Insights on some chiral smectic phases
Indian Academy of Sciences (India)
B Pansu
2003-08-01
Combining layered positional order as smectic order and chirality can generate complex architectures since twist parallel to the layers is not allowed. This paper will review some new experimental results on different phases resulting from the competition between smectic positional order and twist orientational order. It concerns the TGBA and the NL*, that is the liquid line phase as well as the SmQ phase. Chiral effects in the isotropic phase will also be discussed.
Is the chiral U(1) theory trivial?
International Nuclear Information System (INIS)
The chiral U(1) theory differs from the corresponding vector theory by an imaginary contribution to the effective action which amounts to a phase factor in the partition function. The vector theory, i.e. QED, is known to be trivial in the continuum limit. It is argued that the presence of the phase factor will not alter this result and the chiral theory is non-interacting as well. (orig.)
Chiral gauge theories on a lattice
International Nuclear Information System (INIS)
The authors formulate a chiral gauge invariant theory of lattice fermions by introducing extra degrees of freedom. It is applied to the chiral U(1) gauge theories in two and four dimensions and the effective actions of the gauge fields are calculated which indicate the mass generation of the gauge bosons. The difficulty is pointed out to execute the perturbation with a finite gauge boson mass in four dimensions
Chiral transition of fundamental and adjoint quarks
Capdevilla, R. M.; Doff, A.(Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR, Brazil); Natale, A. A.
2014-01-01
The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagat...
Super Virasoro Algebras From Chiral Supergravity
Hyakutake, Yoshifumi
2015-01-01
In this note, we construct Noether charges for the chiral supergravity, which contains the Lorentz Chern-Simons term, by applying Wald's prescription to the vielbein formalism. We investigate the AdS3/CFT2 correspondence by using the vielbein formalism. The asymptotic symmetry group is carefully examined by taking into account the local Lorentz transformation, and we construct super Virasoro algebras with central extensions from the chiral supergravity.
Chiral effective model with the Polyakov loop
Fukushima, Kenji
2003-01-01
We discuss how the simultaneous crossovers of deconfinement and chiral restoration can be realized. We propose a dynamical mechanism assuming that the effective potential gives a finite value of the chiral condensate if the Polyakov loop vanishes. Using a simple model, we demonstrate that our idea works well for small quark mass, though there should be further constraints to reach the perfect locking of two phenomena.
Unphysical phases in staggered chiral perturbation theory
Aubin, Christopher; Colletti, Katrina; Davila, George
2016-04-01
We study the phase diagram for staggered quarks using chiral perturbation theory. In beyond-the-standard-model simulations using a large number (>8 ) of staggered fermions, unphysical phases appear for coarse enough lattice spacing. We argue that chiral perturbation theory can be used to interpret one of these phases. In addition, we show that only three broken phases for staggered quarks exist, at least for lattice spacings in the regime a2≪ΛQCD2 .
Attomolar DNA detection with chiral nanorod assemblies
Ma, Wei; Kuang, Hua; Xu, Liguang; Ding, Li; Xu, Chuanlai; Wang, Libing; Kotov, Nicholas A.
2013-01-01
Nanoscale plasmonic assemblies display exceptionally strong chiral optical activity. So far, their structural design was primarily driven by challenges related to metamaterials whose practical applications are remote. Here we demonstrate that gold nanorods assembled by the polymerase chain reaction into DNA-bridged chiral systems have promising analytical applications. The chiroplasmonic activity of side-by-side assembled patterns is attributed to a 7–9 degree twist between the nanorod axes. ...
Chiral quantum mechanics (CQM) for antihydrogen systems
Van hooydonk, G.
2005-01-01
A first deception of QM on antiH already appears in one-center integrals for two-center systems (G. Van Hooydonk, physics/0511115). In reality, full QM is a theory for chiral systems but the QM establishment was wrong footed with a permutation of reference frames. With chiral quantum mechanics (CQM), the theoretical ban on natural antiH must be lifted as soon as possible.
Chiral Symmetry in algebraic and analytic approaches
Vereshagin, V.; Dillig, M.; Vereshagin, A.
1996-01-01
We compare among themselves two different methods for the derivation of results following from the requirement of polynomial boundedness of tree-level chiral amplitudes. It is shown that the results of the algebraic approach are valid also in the framework of the analytical one. This means that the system of Sum Rules and Bootstrap equations previously obtained with the help of the latter approach can be analyzed in terms of reducible representations of the unbroken Chiral group with the know...
Chiral bags, skyrmions and quarks in nuclei
International Nuclear Information System (INIS)
Recent developments on an intriguing connection between the quark-bag description of the baryons (nucleons in particular) and the Skyrmion model are discussed in terms of the constraints coming from chiral anomalies. Topics treated are the leaking baryon charge, axial charge and energy density; the role of chiral anomalies; the role of Skyrme's quartic term and the connection to the meson degrees of freedom; and finally some qualitative implications in nuclei. The presentation is purposely descriptive and intuitive instead of mathematically precise
Center vortices, confinement and chiral symmetry breaking
International Nuclear Information System (INIS)
The center vortex model, proposed as an explanation of confinement in non-abelian gauge theories is introduced. Some checks of the confinement properties of center vortices in SU(2) lattice gauge theory with improved Luescher-Weisz gauge action are presented. Phenomena related to chiral symmetry, such as topological charge and spontaneous chiral symmetry breaking (SCSB) are studied within the vortex model. In particular the influence of center vortices on the low-lying spectrum of the Dirac operator is analyzed. (author)
Nondipole Photoemission from Chiral Enantiomers of Camphor
Bowen, K. P.; Stolte, W. C.; Young, J. A.; Demchenko, I. N.; Guillemin, R.; Hemmers, O.; Piancastelli, M. N.; Lindle, D. W.
2010-03-01
K-shell photoemission from the carbonyl carbon in the chiral molecule camphor has been studied in the region just above the core-shell ionization threshold. Differences between angular distributions of emitted photoelectrons from the two enantiomers are attributed to the influence of chirality combined with nondipole effects in the photoemission process, despite the fact the measurements were taken using linearly polarized x-rays. The results suggest the possibility of a new form of linear dichroism.
Probing molecular chirality via electronic transport
International Nuclear Information System (INIS)
We investigate electronic molecular transport in several conjugated organic oligomers by means of ab initio calculations and nonequilibrium Green's functions method. We demonstrate that the I-V characteristics of these molecules constitute a direct manifestation of their degree of molecular chirality, which is calculated using group theory and depends exclusively on the atomic positions. This result shows that electronic current through these specific molecules is strongly correlated with their geometrical degree of chirality.
Tests of Chiral Perturbation Theory with COMPASS
Friedrich, Jan
2010-01-01
The COMPASS experiment at the CERN SPS studies with high precision pion-photon induced reactions via the Primakoff effect on nuclear targets. This offers the test of chiral perturbation theory (ChPT) in various channels: Pion Compton scattering allows to clarify the long-standing question of the pion polarisabilities, single neutral pion production is related to the chiral anomaly, and for the two-pion production cross sections exist as yet untested ChPT predictions.
Tests of Chiral Perturbation Theory with COMPASS
International Nuclear Information System (INIS)
The COMPASS experiment at CERN studies with high precision pion-photon induced reactions on nuclear targets via the Primakoff effect. This offers the possibility to test chiral perturbation theory (ChPT) in various channels: Pion Compton scattering allows to clarify the longstanding question of the pion polarisabilities, single neutral pion production is related to the chiral anomaly, and for the two-pion production cross sections exist as yet untested ChPT predictions.
A Cross-chiral RNA Polymerase Ribozyme
Sczepanski, Jonathan T.; Joyce, Gerald F.
2014-01-01
Thirty years ago it was shown that the non-enzymatic, template-directed polymerization of activated mononucleotides proceeds readily in a homochiral system, but is severely inhibited by the presence of the opposing enantiomer. 1 This finding poses a severe challenge for the spontaneous emergence of RNA-based life, and has led to the suggestion that either RNA was preceded by some other genetic polymer that is not subject to chiral inhibition 2 or chiral symmetry was broken through chemical pr...
Interfacial energies of systems of chiral molecules
Braides, Andrea; Garroni, Andrea; Palombaro, Mariapia
2016-01-01
We consider a simple model for the assembly of chiral molecules in two dimensions driven by maximization of the contact area. We derive a macroscopic model described by a parameter taking nine possible values corresponding to the possible minimal microscopic patterns and modulated phases of the chiral molecules. We describe the overall behaviour by means of an interaction energy of perimeter type between such phases. This energy is a crystalline perimeter energy, highlighting preferred direct...
Proton Spin Based On Chiral Dynamics
Weber, H. J.
1999-01-01
Chiral spin fraction models agree with the proton spin data only when the chiral quark-Goldstone boson couplings are pure spinflip. For axial-vector coupling from soft-pion physics this is true for massless quarks but not for constituent quarks. Axial-vector quark-Goldstone boson couplings with {\\bf constituent} quarks are found to be inconsistent with the proton spin data.
Lattice quantum chromodynamics with approximately chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Hierl, Dieter
2008-05-15
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
Lattice quantum chromodynamics with approximately chiral fermions
International Nuclear Information System (INIS)
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the Θ+ pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
Chiral symmetry and lattice gauge theory
International Nuclear Information System (INIS)
I review the problem of formulating chiral symmetry in lattice gauge theory. I discuss recent approaches involving an infinite tower of additional heavy states to absorb Fermion doublers. For hadronic physics this provides a natural scheme for taking quark masses to zero without requiring a precise tuning of parameters. A mirror Fermion variation provides a possible way of extending the picture to chirally coupled light Fermions
Large Enhancement of Circular Dichroism Using an Embossed Chiral Metamaterial
Mousavi, S Hamed Shams; El-Sayed, Mostafa A; Eftekhar, Ali A; Adibi, Ali
2016-01-01
In the close vicinity of a chiral nanostructure, the circular dichroism of a biomolecule could be greatly enhanced, due to the interaction with the local superchiral fields. Modest enhancement of optical activity using a planar metamaterial, with some chiral properties, and achiral nanoparticles has been previously reported. A more substantial chirality enhancement can be achieved in the local filed of a chiral nanostructure with a three-dimensional arrangement. Using an embossed chiral nanostructure designed for chiroptical sensing, we measure the circular dichroism spectra of two biomolecules, Chlorophylls A and B, at the molecular level, using a simple polarization resolved reflection measurement. This experiment is the first realization of the on-resonance surface-enhanced circular dichroism, achieved by matching the chiral resonances of a strongly chiral metamaterial with that of a chiral molecule, resulting in an unprecedentedly large differential CD spectrum from a monolayer of a chiral material.
Analysis of rainbow scattering by a chiral sphere.
Shang, Qing-Chao; Wu, Zhen-Sen; Qu, Tan; Li, Zheng-Jun; Bai, Lu; Gong, Lei
2013-09-23
Based on the scattering theory of a chiral sphere, rainbow phenomenon of a chiral sphere is numerically analyzed in this paper. For chiral spheres illuminated by a linearly polarized wave, there are three first-order rainbows, with whose rainbow angles varying with the chirality parameter. The spectrum of each rainbow structure is presented and the ripple frequencies are found associated with the size and refractive indices of the chiral sphere. Only two rainbow structures remain when the chiral sphere is illuminated by a circularly polarized plane wave. Finally, the rainbows of chiral spheres with slight chirality parameters are found appearing alternately in E-plane and H-plane with the variation of the chirality. PMID:24104080
Bringing chiral optical forces to dominance with optical nanofibers
Alizadeh, M H
2016-01-01
Transverse spin angular momentum (SAM) of light and associated transverse chiral optical forces have received tremendous attention recently as the latter may lead to an optical separation of chiral biomolecules. Previous schemes to generate chiral forces are plagued by the fact that the chiral optical forces are orders of magnitude smaller than conventional gradient and scattering forces. The relative magnitude of chiral and non-chiral forces represents a fundamental challenge for the implementation of chiral separation schemes. In this work we demonstrate that, by spatially separating the maxima of transverse spin density from the gradient of field intensity, in the vicinity of optical nanofibers and nanowires, chiral optical forces can emerge that are stronger than gradient and scattering forces. This finding has important implications for the design of improved optical separation schemes for chiral biomolecules.
Interplay between chiral and deconfinement phase transitions
Directory of Open Access Journals (Sweden)
Mukherjee T.K.
2011-04-01
Full Text Available By using the dressed Polyakov loop or dual chiral condensate as an equivalent order parameter of the deconfinement phase transition, we investigate the relation between the chiral and deconfinement phase transitions at finite temperature and density in the framework of three-flavor Nambu-Jona-Lasinio (NJL model. It is found that in the chiral limit, the critical temperature for chiral phase transition coincides with that of the dressed Polyakov loop in the whole (T,µ plane. In the case of explicit chiral symmetry breaking, it is found that the phase transitions are flavor dependent. For each flavor, the transition temperature for chiral restoration $T^{mathcal{X}}_c$ is smaller than that of the dressed Polyakov loop $T^{mathcal{D}}_c$ in the low baryon density region where the transition is a crossover, and, the two critical temperatures coincide in the high baryon density region where the phase transition is of first order. Therefore, there are two critical end points, i.e, $T^{u,d}_{CEP}$ and $T^{s}_{CEP}$ at finite density. We also explain the feature of $T^{mathcal{X}}_c$ = $T^{mathcal{D}}_c$ in the case of 1st and 2nd order phase transitions, and $T^{mathcal{X}}_c$ < $T^{mathcal{D}}_c$ in the case of crossover, and expect this feature is general and can be extended to full QCD theory.
Chiral symmetry restoration in effective Lagrangian models
International Nuclear Information System (INIS)
The restoration is studied of chiral symmetry in dense baryon matter using effective lagrangian models of QCD, in which baryons are described as topological solitons. Starting from the breaking of scale invariance and chiral symmetry in the QCD vacuum, the foundations are discussed of effective lagrangians and their relevance for applications to dense matter. Soliton models, such a the Skyrme model, show a phase transition at high densities, whose order parameter is the average scalar field. The properties are investigated of the two phases of the effective theory and show that the phase transition corresponds to the restoration of the chiral symmetry of QCD. It is argued that it should not be understood as deconfinement. The author then considers this phase transition in the context of the Cheshire Cat principle, which provides the link to the underlying quarks of QCD. An analogue of the Cheshire Cat property of this chiral bag model for baryons is found in solitons of effective lagrangians with a scalar glueball field. The Cheshire Cat interpretation of the results of effective lagrangians provides a consistent picture of chiral symmetry restoration at high densities. To verify this interpretation explicitly, the author finally generalizes the effective lagrangian approach to dense matter to a chiral bag model description with quark degrees of freedom
Staggered heavy baryon chiral perturbation theory
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(mπ3), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a2). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.
Chiral Magnetic Effect in Hydrodynamic Approximation
Zakharov, Valentin I
2012-01-01
We review derivations of the chiral magnetic effect (ChME) in hydrodynamic approximation. The reader is assumed to be familiar with the basics of the effect. The main challenge now is to account for the strong interactions between the constituents of the fluid. The main result is that the ChME is not renormalized: in the hydrodynamic approximation it remains the same as for non-interacting chiral fermions moving in an external magnetic field. The key ingredients in the proof are general laws of thermodynamics and the Adler-Bardeen theorem for the chiral anomaly in external electromagnetic fields. The chiral magnetic effect in hydrodynamics represents a macroscopic manifestation of a quantum phenomenon (chiral anomaly). Moreover, one can argue that the current induced by the magnetic field is dissipation free and talk about a kind of "chiral superconductivity". More precise description is a ballistic transport along magnetic field taking place in equilibrium and in absence of a driving force. The basic limitat...
Interplay between chiral and deconfinement phase transitions
Xu, Fukun; Chen, Huan; Huang, Mei
2011-01-01
By using the dressed Polyakov loop or dual chiral condensate as an equivalent order parameter of the deconfinement phase transition, we investigate the relation between the chiral and deconfinement phase transitions at finite temperature and density in the framework of three-flavor Nambu--Jona-Lasinio (NJL) model. It is found that in the chiral limit, the critical temperature for chiral phase transition coincides with that of the dressed Polyakov loop in the whole $(T,\\mu)$ plane. In the case of explicit chiral symmetry breaking, it is found that the phase transitions are flavor dependent. For each flavor, the transition temperature for chiral restoration $T_c^{\\chi}$ is smaller than that of the dressed Polyakov loop $T_c^{{\\cal D}}$ in the low baryon density region where the transition is a crossover, and, the two critical temperatures coincide in the high baryon density region where the phase transition is of first order. Therefore, there are two critical end points, i.e, $T_{CEP}^{u,d}$ and $T_{CEP}^{s}$ a...
Guo, Zhen; Du, Yu; Liu, Xianbin; Ng, Siu-Choon; Chen, Yuan; Yang, Yanhui
2010-04-01
Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.
Energy Technology Data Exchange (ETDEWEB)
Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail: du_yu@jlu.edu.cn, E-mail: yhyang@ntu.edu.sg [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)
2010-04-23
Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.
International Nuclear Information System (INIS)
Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.
Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions
Institute of Scientific and Technical Information of China (English)
ZHANG; XuMu
2001-01-01
Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals ……
Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions
Institute of Scientific and Technical Information of China (English)
ZHANG XuMu
2001-01-01
@@ Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals
Chiral dynamics in U(3) unitary chiral perturbation theory
International Nuclear Information System (INIS)
We perform a complete one-loop calculation of meson-meson scattering, and of the scalar and pseudoscalar form factors in U(3) chiral perturbation theory with the inclusion of explicit resonance fields. This effective field theory takes into account the low-energy effects of the QCD UA(1) anomaly explicitly in the dynamics. The calculations are supplied by non-perturbative unitarization techniques that provide the final results for the meson-meson scattering partial waves and the scalar form factors considered. We present thorough analyses on the scattering data, resonance spectroscopy, spectral functions, Weinberg-like sum rules and semi-local duality. The last two requirements establish relations between the scalar spectrum with the pseudoscalar and vector ones, respectively. The NC extrapolation of the various quantities is studied as well. The fulfillment of all these non-trivial aspects of the QCD dynamics by our results gives a strong support to the emerging picture for the scalar dynamics and its related spectrum.
Stability of stationary and periodic solutions equations in Banach space
Directory of Open Access Journals (Sweden)
A. Ya. Dorogovtsev
1997-01-01
Full Text Available Linear difference and differential equations with operator coefficients and random stationary (periodic input are considered. Conditions are presented for the mean stability of stationary (periodic solutions under small perturbation of the coefficients.
Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures.
Tian, Xiaorui; Fang, Yurui; Sun, Mengtao
2015-01-01
Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule. PMID:26621558
Universal portfolios generated by weakly stationary processes
Tan, Choon Peng; Pang, Sook Theng
2014-12-01
Recently, a universal portfolio generated by a set of independent Brownian motions where a finite number of past stock prices are weighted by the moments of the multivariate normal distribution is introduced and studied. The multivariate normal moments as polynomials in time consequently lead to a constant rebalanced portfolio depending on the drift coefficients of the Brownian motions. For a weakly stationary process, a different type of universal portfolio is proposed where the weights on the stock prices depend only on the time differences of the stock prices. An empirical study is conducted on the returns achieved by the universal portfolios generated by the Ornstein-Uhlenbeck process on selected stock-price data sets. Promising results are demonstrated for increasing the wealth of the investor by using the weakly-stationary-process-generated universal portfolios.
Stationary processes with pure point diffraction
Lenz, Daniel
2011-01-01
We consider the construction and classification of some new mathematical objects, called ergodic spatial stationary processes, on locally compact Abelian groups, which provide a natural and very general setting for studying diffraction and the famous inverse problems associated with it. In particular we can construct complete families of solutions to the inverse problem from any given pure point measure that is chosen to be the diffraction. In this case these processes can be classified by the dual of the group of relators based on the set of Bragg peaks, and this gives a solution to the homometry problem for pure point diffraction. An ergodic spatial stationary process consists of a measure theoretical dynamical system and a mapping linking it with the ambient space in which diffracting density is supposed to exist. After introducing these processes we study their general properties and link pure point diffraction to almost periodicity. Given a pure point measure we show how to construct from it and a given ...
The stationary Maxwell-Dirac equations
International Nuclear Information System (INIS)
The Maxwell-Dirac equations are the equations for electronic matter, the 'classical' theory underlying QED. The system combines the Dirac equations with the Maxwell equations sourced by the Dirac current. A stationary Maxwell-Dirac system has ψ = e-iEtφ, with φ independent of t. The system is said to be isolated if the dependent variables obey quite weak regularity and decay conditions. In this paper, we prove the following strong localization result for isolated, stationary Maxwell-Dirac systems, - there are no embedded eigenvalues in the essential spectrum, i.e. -m ≤ E ≤ m; - if vertical bar E vertical bar < m then the Dirac field decays exponentially as vertical bar x vertical bar → ∞; - if vertical bar E vertical bar = m then the system is 'asymptotically' static and decays exponentially if the total charge is non-zero
Relativistic elasticity of stationary fluid branes
Armas, Jay; Obers, Niels A.
2013-02-01
Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.
Relativistic Elasticity of Stationary Fluid Branes
Armas, Jay
2012-01-01
Fluid mechanics can be formulated on dynamical surfaces of arbitrary co-dimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.
Chiral dynamics and peripheral transverse densities
Energy Technology Data Exchange (ETDEWEB)
Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)
2014-01-01
In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.
International Nuclear Information System (INIS)
Complete text of publication follows. The existence of nuclear chirality is one of the most intriguing questions of contemporary high-spin nuclear structure studies. Rotational doublet-band candidates for chiral structures have been observed mostly in two regions of the nuclear chart: around 134Pr, and around 104Rh. In this second region chirality in the Rh isotopes are rather well studied, chiral doubling have also been observed in 100Tc, however, results obtained for chirality in the studied Ag nuclei (105Ag and 106Ag) look rather contradictory. Thus, it is interesting to study these doublet bands in the nearby higher-mass Ag nuclei. In order to search for a chiral-candidate partner band to the yrast πg9/2v(h11/2)2 band in 109Ag, high-spin states of this nucleus have been studied using the 96Zr(18O,p4n) reaction. The experiment was performed at iThemba LABS using 8 Clover detectors of the AFRODITE array and the DIAMANT charged-particle array to detect the γ-rays and the charged particles, respectively. Altogether ∼140 million γγ-coincidence events were collected. Approximately 10 million events of them correspond to the reaction channel producing 109Ag. No chiral candidate partner band has been found to the πg9/2v(h11/2)2 band with this statistics, however, the level scheme could be extended by several new levels and γ-transitions. A preliminary level scheme of 109Ag obtained from the ongoing data analysis is shown in Fig. 1
Real Indeterminacy of Stationary Monetary Equilibria in Centralized Economies
Kamiya, Kazuya; Kubota, So; Nakajima, Kayuna
2011-01-01
In this paper, we present a new logic of indeterminacy of stationary monetary equilibria. We rst show that, in a class of dynamic Walrasian market models with at money, stationary equilibria are indeterminate; that is, there exists a continuum of stationary equilibria, where the value of money varies across the stationary equilibria. Then we explore the logic of the indeterminacy, and show that it can be applied not only to dynamic Walrasian market models but also to Jean et al. (2010)'s sear...
Stationary nonlinear Alfven waves and solitons
Hada, T.; Kennel, C. F.; Buti, B.
1989-01-01
Stationary solutions of the derivative nonlinear Schroedinger equation are discussed and classified by using a pseudopotential formulation. The solutions consist of a rich family of nonlinear Alfven waves and solitons with parallel and oblique propagation directions. Expressions for the envelope and the phase of nonlinear waves with periodic envelope modulation, and 'hyperbolic' and 'algebraic' solitons are given. The propagation angle for the slightly modulated elliptic, periodic waves and for oblique solitons is evaluated.
Stationary plume induced by carbon dioxide dissolution
International Nuclear Information System (INIS)
In this paper, laminar convection flows induced by carbon dioxide absorption are addressed from experimental, numerical and theoretical points of view. A vertical glass tube (of centimetre scale) filled with distilled water is subjected to a sudden increase in the partial pressure of carbon dioxide. As a result of the diffusion of the gas into the unsaturated solution, a thin layer of fluid located underneath the surface becomes heavier. This initial density gradient first destabilizes to form a plume, which goes downwards through the entire cell. After a first transient pulsating regime (periodic succession of such Rayleigh-Benard plumes), a stationary flow settles in the tube, which is maintained by the constant supply of gas at the surface. At late stages, this stationary regime is followed by an aperiodic regime, which lasts until the complete saturation of the solution (thermodynamic equilibrium). The present study only focuses on the stationary regime, whose characteristics appear to be almost independent of the Bond number and the aspect ratio but strongly dependent on the chemical Rayleigh number. Three decades of Rayleigh numbers are explored using particle image velocimetry measurements, which allows for a precise determination of the scaling exponents for the vertical velocity amplitude and the plume width. The assumption that gravity and a constant pressure gradient balance the viscous effects enables us to derive an analytic expression for the stationary vertical velocity on the axis, which scales as Ra2/3 (ln Ra)1/3. As a consequence, the width of the plume scales as Ra-1/6 (ln Ra)-1/3 and the mass Nusselt number as (Ra= ln Ra)1/3. These scalings are in excellent agreement with the experimental and numerical results. The multiplicative constants of these scalings can also be calculated and show a fairly good agreement if a rigid boundary condition (no-slip) is assumed at the free surface. (authors)
Generalized stationary phase approximations for mountain waves
Knight, H.; Broutman, D.; Eckermann, S. D.
2016-04-01
Large altitude asymptotic approximations are derived for vertical displacements due to mountain waves generated by hydrostatic wind flow over arbitrary topography. This leads to new asymptotic analytic expressions for wave-induced vertical displacement for mountains with an elliptical Gaussian shape and with the major axis oriented at any angle relative to the background wind. The motivation is to understand local maxima in vertical displacement amplitude at a given height for elliptical mountains aligned at oblique angles to the wind direction, as identified in Eckermann et al. ["Effects of horizontal geometrical spreading on the parameterization of orographic gravity-wave drag. Part 1: Numerical transform solutions," J. Atmos. Sci. 72, 2330-2347 (2015)]. The standard stationary phase method reproduces one type of local amplitude maximum that migrates downwind with increasing altitude. Another type of local amplitude maximum stays close to the vertical axis over the center of the mountain, and a new generalized stationary phase method is developed to describe this other type of local amplitude maximum and the horizontal variation of wave-induced vertical displacement near the vertical axis of the mountain in the large altitude limit. The new generalized stationary phase method describes the asymptotic behavior of integrals where the asymptotic parameter is raised to two different powers (1/2 and 1) rather than just one power as in the standard stationary phase method. The vertical displacement formulas are initially derived assuming a uniform background wind but are extended to accommodate both vertical shear with a fixed wind direction and vertical variations in the buoyancy frequency.
Stationary phase in the yeast Saccharomyces cerevisiae.
Werner-Washburne, M; Braun, E.; Johnston, G C; Singer, R A
1993-01-01
Growth and proliferation of microorganisms such as the yeast Saccharomyces cerevisiae are controlled in part by the availability of nutrients. When proliferating yeast cells exhaust available nutrients, they enter a stationary phase characterized by cell cycle arrest and specific physiological, biochemical, and morphological changes. These changes include thickening of the cell wall, accumulation of reserve carbohydrates, and acquisition of thermotolerance. Recent characterization of mutant c...
BISTATIC SONOBUOY DEPLOYMENT CONFIGURATION FOR STATIONARY TARGETS
KARATAŞ, Mümtaz; Gülşen AKMAN
2015-01-01
Countering submerged targets using bistatic and multistatic sonobuoy systems is a fundamental problem in Anti-Submarine Warfare. A key question is: what is the best deployment geometry of sensors to successfully detect a submarine threat in a field of interest? The unique properties of these systems distinguish this problem from the conventional ones. This paper examines the optimum deployment strategies of bistatic sonobuoys against stationary or low speed targets.
L1-stability of stationary discrete shocks
International Nuclear Information System (INIS)
The nonlinear stability in the Lp-norm, p ≥ 1, of stationary weak discrete shocks for the Lax-Friedrichs scheme approximating general m x m systems of nonlinear hyperbolic conservation laws is proved, provided that the summations of the initial perturbations equal zero. The result is proved by using a both weighted estimate and characteristic energy method based on the internal structures of the discrete shocks and the essential monotonicity of the Lax-Friedrichs scheme. 13 refs
Direct Georeferencing of Stationary LiDAR
Directory of Open Access Journals (Sweden)
Ahmed Mohamed
2009-12-01
Full Text Available Unlike mobile survey systems, stationary survey systems are given very little direct georeferencing attention. Direct Georeferencing is currently being used in several mobile applications, especially in terrestrial and airborne LiDAR systems. Georeferencing of stationary terrestrial LiDAR scanning data, however, is currently performed indirectly through using control points in the scanning site. The indirect georeferencing procedure is often troublesome; the availability of control stations within the scanning range is not always possible. Also, field procedure can be laborious and involve extra equipment and target setups. In addition, the conventional method allows for possible human error due to target information bookkeeping. Additionally, the accuracy of this procedure varies according to the quality of the control used. By adding a dual GPS antenna apparatus to the scanner setup, thereby supplanting the use of multiple ground control points scattered throughout the scanning site, we mitigate not only the problems associated with indirect georeferencing but also induce a more efficient set up procedure while maintaining sufficient precision. In this paper, we describe a new method for determining the 3D absolute orientation of LiDAR point cloud using GPS measurements from two antennae firmly mounted on the optical head of a stationary LiDAR system. In this paper, the general case is derived where the orientation angles are not small; this case completes the theory of stationary LiDAR direct georeferencing. Simulation and real world field experimentation of the prototype implementation suggest a precision of about 0.05 degrees (~1 milli-radian for the three orientation angles.
Relativistic elasticity of stationary fluid branes
DEFF Research Database (Denmark)
Armas, J.; Obers, N.A.
2013-01-01
under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of...... the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations. © 2013 American Physical Society....
Stationary Scalar Clouds Around Rotating Black Holes
Hod, Shahar
2012-01-01
Motivated by novel results in the theory of wave dynamics in black-hole spacetimes, we analyze the dynamics of a massive scalar field surrounding a rapidly rotating Kerr black hole. In particular, we report on the existence of stationary (infinitely long-lived) regular field configurations in the background of maximally rotating black holes. The effective height of these scalar "clouds" above the central black hole is determined analytically. Our results support the possible existence of stat...
Gravitating Stationary Dyons and Rotating Vortex Rings
Kleihaus, B; Neemann, U; Kleihaus, Burkhard; Kunz, Jutta; Neemann, Ulrike
2005-01-01
We construct dyons, and electrically charged monopole-antimonopole pairs and vortex rings in Yang-Mills-Higgs theory coupled to Einstein gravity. The solutions are stationary, axially symmetric and asymptotically flat. The dyons with magnetic charge $n\\ge 2$ represent non-static solutions with vanishing angular momentum. The electrically charged monopole-antimonopole pairs and vortex rings, in contrast, possess vanishing magnetic charge, but finite angular momentum, equaling $n$ times their electric charge.
Starosta, K.; Chiara, C. J.; Fossan, D. B.; Koike, T.; Beausang, C. W.; Hecht, A. A.; Boston, A. J.; Chantler, H. J.; Paul, E. S.; Scraggs, H. C.; Simons, A.; Wadsworth, R.; Clark, R. M.
2001-04-01
The πh_11/2νh_11/2 doublet bands in ^134Pr, which represent the best evidence to date for chiral symmetry breaking in odd-odd nuclei [1], were investigated with the GAMMASPHERE array using the ^116Cd(^23Na,5n) reaction at 115 MeV. From thin-target data, the nearly degenerate ΔI=1 side band was extended from a 9^+ bandhead up to a spin of 24^+ with E2 crossovers, a total of 15 units of spin, while the main yrast band was observed from an 8^+ bandhead to 24^+. Measured γ-ray intensities suggest a staggering of the B(M1)/B(E2) ratios in the main band with the ratio smaller for even-spin initial states; these compare well with those of other N=75 isotones. Relative transition rates for γ-rays linking the doublet bands have also been extracted. Analysis of backed-target data aimed at absolute transition rates is underway. The results will be compared to calculations with particle-hole triaxial-rotor and 3-D TAC models. [1mm] [1] C.M.Petrache, et al., Nucl.Phys.A597(1996)106; V.I.Dimitrov, et al., PRL 84(2000)5732; K. Starosta, et al., PRL 86(2001).
Magnetohydrodynamics of Chiral Relativistic Fluids
Boyarsky, Alexey; Ruchayskiy, Oleg
2015-01-01
We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.
Height Fluctuations for the Stationary KPZ Equation
Borodin, Alexei; Corwin, Ivan; Ferrari, Patrik; Vető, Bálint
2015-12-01
We compute the one-point probability distribution for the stationary KPZ equation (i.e. initial data , for B( X) a two-sided standard Brownian motion) and show that as time T goes to infinity, the fluctuations of the height function grow like T 1/3 and converge to those previously encountered in the study of the stationary totally asymmetric simple exclusion process, polynuclear growth model and last passage percolation. The starting point for this work is our derivation of a Fredholm determinant formula for Macdonald processes which degenerates to a corresponding formula for Whittaker processes. We relate this to a polymer model which mixes the semi-discrete and log-gamma random polymers. A special case of this model has a limit to the KPZ equation with initial data given by a two-sided Brownian motion with drift ß to the left of the origin and b to the right of the origin. The Fredholm determinant has a limit for ß > b, and the case where ß = b (corresponding to the stationary initial data) follows from an analytic continuation argument.
30 CFR 75.1723 - Stationary grinding machines; protective devices.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines; protective devices. 75.1723 Section 75.1723 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF....1723 Stationary grinding machines; protective devices. (a) Stationary grinding machines other...
30 CFR 57.9311 - Anchoring stationary sizing devices.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Anchoring stationary sizing devices. 57.9311 Section 57.9311 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Dumping Sites § 57.9311 Anchoring stationary sizing devices. Grizzlies and other stationary sizing...
30 CFR 56.9311 - Anchoring stationary sizing devices.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Anchoring stationary sizing devices. 56.9311 Section 56.9311 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Dumping Sites § 56.9311 Anchoring stationary sizing devices. Grizzlies and other stationary sizing...
30 CFR 57.4561 - Stationary diesel equipment underground.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary diesel equipment underground. 57... Fire Prevention and Control Installation/construction/maintenance § 57.4561 Stationary diesel equipment underground. Stationary diesel equipment underground shall be— (a) Supported on a noncombustible base; and...
30 CFR 77.401 - Stationary grinding machines; protective devices.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines; protective... OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.401 Stationary grinding machines; protective devices. (a) Stationary grinding machines other than special bit grinders shall be equipped...
30 CFR 57.14115 - Stationary grinding machines.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines. 57.14115 Section... and Equipment Safety Devices and Maintenance Requirements § 57.14115 Stationary grinding machines. Stationary grinding machines, other than special bit grinders, shall be equipped with— (a) Peripheral...
About chiral models of dense matter and its magnetic properties
International Nuclear Information System (INIS)
The chiral models of dense nucleon matter are discussed. The quark matter with broken chiral symmetry is described. The magnetic properties of dense matter are presented and conclusions are given. 37 refs. (A.S.)
Enantioselective catalytic syntheses of alpha-branched chiral amines
DEFF Research Database (Denmark)
Brase, S.; Baumann, T.; Dahmen, S.;
2007-01-01
Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials.......Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials....
Institute of Scientific and Technical Information of China (English)
MI; AiQiao
2001-01-01
(S)-or (R)-2-Amino-4-phenylbutyric acid and (S)-or (R)-2-hydroxy-4-phenylbutyric acid and their ethyl esters are key chiral intermediates for the preparation of angiotensin converting enzyme inhibitors (ACEI) and other chiral drugs. Their practically asymmetric synthetic methods in large scale from four-carbon chiral pool, commercially available L-aspartic acid and L-malic acid, will be presented (as scheme). (S)-2-Amino-4-phenylbutyric acid and its ethyl ester hydrochloride were prepared from the easily available L-aspartic acid via activation by forming anhydride hydrochloride, Friedel-Crafts reaction with benzene, hydrogenolysis and esterification with ethanol in the presence of thionyl chloride in overall yield of 80% and 73.6% respectively with 99% ee. We first used amino acid anhydride hydrochloride as the acylating agent in Friedel-Crafts reaction without racemization. [1]……
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
@@ (S)-or (R)-2-Amino-4-phenylbutyric acid and (S)-or (R)-2-hydroxy-4-phenylbutyric acid and their ethyl esters are key chiral intermediates for the preparation of angiotensin converting enzyme inhibitors (ACEI) and other chiral drugs. Their practically asymmetric synthetic methods in large scale from four-carbon chiral pool, commercially available L-aspartic acid and L-malic acid, will be presented (as scheme). (S)-2-Amino-4-phenylbutyric acid and its ethyl ester hydrochloride were prepared from the easily available L-aspartic acid via activation by forming anhydride hydrochloride, Friedel-Crafts reaction with benzene, hydrogenolysis and esterification with ethanol in the presence of thionyl chloride in overall yield of 80% and 73.6% respectively with 99% ee. We first used amino acid anhydride hydrochloride as the acylating agent in Friedel-Crafts reaction without racemization. [1
Two chiral nonet model with massless quarks
Fariborz, Amir H; Schechter, Joseph
2007-01-01
We present a detailed study of a linear sigma model containing one chiral nonet transforming under U(1)$_A$ as a quark-antiquark composite and another chiral nonet transforming as a diquark-anti diquark composite (or, equivalently from a symmetry point of view, as a two meson molecule). The model provides an intuitive explanation of a current puzzle in low energy QCD: Recent work has suggested the existence of a lighter than 1 GeV nonet of scalar mesons which behave like four quark composites. On the other hand, the validity of a spontaneously broken chiral symmetric description would suggest that these states be chiral partners of the light pseudoscalar mesons, which are two quark composites. The model solves the problem by starting with the two chiral nonets mentioned and allowing them to mix with each other. The input of physical masses in the SU(3) invariant limit for two scalar octets and an "excited" pion octet results in a mixing pattern wherein the light scalars have a large four quark content while t...
Two chiral nonet model with massless quarks
International Nuclear Information System (INIS)
We present a detailed study of a linear sigma model containing one chiral nonet transforming under U(1)A as a quark-antiquark composite and another chiral nonet transforming as a diquark-antidiquark composite (or, equivalently from a symmetry point of view, as a two meson molecule). The model provides an intuitive explanation of a current puzzle in low energy QCD: Recent work has suggested the existence of a lighter than 1 GeV nonet of scalar mesons which behave like four quark composites. On the other hand, the validity of a spontaneously broken chiral symmetric description would suggest that these states be chiral partners of the light pseudoscalar mesons, which are two quark composites. The model solves the problem by starting with the two chiral nonets mentioned and allowing them to mix with each other. The input of physical masses in the SU(3) invariant limit for two scalar octets and an excited pion octet results in a mixing pattern wherein the light scalars have a large four quark content while the light pseudoscalars have a large two quark content. One light isosinglet scalar is exceptionally light. In addition, the pion pion scattering is also studied and the current algebra theorem is verified for massless pions which contain some four quark admixture
Chiral dynamics of heavy-light mesons
International Nuclear Information System (INIS)
This thesis focuses on the physics of heavy-light mesons, i.e. quark-antiquark systems composed of a heavy (c or b) and a light (u, d or s) quark. The light-quark sector is treated within the framework of chiral effective field theory. Recent lattice QCD computations have progressed in determining the decay constants of charmed mesons and the scattering lengths of Nambu-Goldstone bosons (pions, kaons) off D mesons. These computations are performed for light quark masses larger than the physical ones. A chiral extrapolation down to physical masses is necessary. It is commonly performed using chiral perturbation theory. The related systematical uncertainties have to be examined carefully. In this thesis it is shown how these uncertainties can be reduced significantly by taking into account relativistic effects in the chiral extrapolations. As a byproduct, estimates are presented for several physical quantities that are related by heavy-quark spin and flavor symmetry. Furthermore, the investigation of the light-quark mass dependence of the scattering lengths of Nambu-Goldstone bosons off D mesons provides important information on the nature of one of the intriguing newly discovered resonances, the D*s0(2317). It is shown that this resonance can be dynamically generated from the coupled-channels DK interaction without a priori assumption of its existence. Finally we demonstrate how the underlying framework, unitarized chiral perturbation theory, can be improved by the inclusion of intermediate states with off-the-mass-shell kinematics.
On the chiral imbalance and Weibel instabilities
Kumar, Avdhesh; Bhatt, Jitesh R.; Kaw, P. K.
2016-06-01
We study the chiral-imbalance and the Weibel instabilities in presence of the quantum anomaly using the Berry-curvature modified kinetic equation. We argue that in many realistic situations, e.g. relativistic heavy-ion collisions, both the instabilities can occur simultaneously. The Weibel instability depends on the momentum anisotropy parameter ξ and the angle (θn) between the propagation vector and the anisotropy direction. It has maximum growth rate at θn = 0 while θn = π / 2 corresponds to a damping. On the other hand the pure chiral-imbalance instability occurs in an isotropic plasma and depends on difference between the chiral chemical potentials of right and left-handed particles. It is shown that when θn = 0, only for a very small values of the anisotropic parameter ξ ∼ξc, growth rates of the both instabilities are comparable. For the cases ξc < ξ ≪ 1 or ξ ≳ 1 at θn = 0, the Weibel modes dominate over the chiral-imbalance instability if μ5 / T ≤ 1. However, when μ5 / T ≥ 1, it is possible to have dominance of the chiral-imbalance modes at certain values of θn for an arbitrary ξ.
Chiral superfluidity for the heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)
2013-02-15
We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model. By considering probe quarks one can show that the fermionic spectrum at the intermediate temperatures (T{sub c}
Chiral density wave in nuclear matter
International Nuclear Information System (INIS)
Inspired by recent work on inhomogeneous chiral condensation in cold, dense quark matter within models featuring quark degrees of freedom, we investigate the chiral density-wave solution in nuclear matter at zero temperature and nonvanishing baryon number density in the framework of the so-called extended linear sigma model (eLSM). The eLSM is an effective model for the strong interaction based on the global chiral symmetry of quantum chromodynamics (QCD). It contains scalar, pseudoscalar, vector, and axial-vector mesons as well as baryons. In the latter sector, the nucleon and its chiral partner are introduced as parity doublets in the mirror assignment. The eLSM simultaneously provides a good description of hadrons in vacuum as well as nuclear matter ground-state properties. We find that an inhomogeneous phase in the form of a chiral density wave is realized, but only for densities larger than 2.4ρ0, where ρ0 is the nuclear matter ground-state density
Chirality dependent spin polarization of carbon nanotubes
Wang, Jia; Jiang, Wanrun; Wang, Bo; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin
2016-02-01
The spin polarization of carbon nanotubes (CNTs) offers a tunable building block for spintronic devices and is also crucial for realizing carbon-based electronics. However, the effect of chiral CNTs is still unclear. In this paper, we use the density functional theory (DFT) method to investigate the spin polarization of a series of typical finite-length chiral CNTs (9, m). The results show that the spin density of chiral CNTs (9, m) decreases gradually with the increase in m and vanishes altogether when m is larger than or equal to 6. The armchair edge units on both ends of the (9, m) CNTs exhibit a clear inhibition of spin polarization, allowing control of the spin density of (9, m) CNTs by adjusting the number of armchair edge units on the tube end. Furthermore, analysis of the orbitals shows that the spin of the ground state for (9, m) CNTs mainly comes from the contributions of the frontier molecular orbitals (MOs), and the energy gap decreases gradually with the spin density for chiral CNTs. Our work further develops the study of the spin polarization of CNTs and provides a strategy for controlling the spin polarization of functional molecular devices through chiral vector adjustment.
Chiral heat wave and mixed waves in kinetic theory
Frenklakh, D
2016-01-01
We study collective excitations in hot rotating chiral media in presence of magnetic field in kinetic theory, namely Chiral Heat Wave and its' mixings with Chiral Vortical Wave and Chiral Magnetic Wave. Our results for velocities of these waves have slight alterations from those obtained earlier. We explain the origin of these alterations and also give the most general expressions for the velocities of all these waves in hydrodynamic approach.
Chirality - The forthcoming 160th Anniversary of Pasteur's Discovery
Molčanov, Krešimir; Kojić-Prodić, Biserka
2007-01-01
The presented review on chirality is dedicated to the centennial birth anniversary of Nobel laureate Vladimir Prelog and 160 years of Pasteur's discovery of chirality on tartrates. Chirality has been recognized in nature by artists and architects, who have used it for decorations and basic constructions, as shown in the Introduction. The progress of science through history has enabled the gathering of knowledge on chirality and its many ways of application. The key historical discoveries abou...
Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates
Energy Technology Data Exchange (ETDEWEB)
Hayata, Tomoya, E-mail: hayata@riken.jp [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Yamamoto, Arata [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)
2015-05-11
We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.
Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates
Directory of Open Access Journals (Sweden)
Tomoya Hayata
2015-05-01
Full Text Available We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.
Two-color QCD with chiral chemical potential
Braguta, V. V.; Goy, V. A.; Ilgenfritz, E.-M.; Kotov, A. Yu.; Molochkov, A. V.; Müller-Preussker, M.; Petersson, B.; Schreiber, A.
2016-01-01
The phase diagram of two-color QCD with a chiral chemical potential is studied on the lattice. The focus is on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulations are carried out with dynamical staggered fermions without rooting. The dependence of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented.
Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates
Hayata, Tomoya; Yamamoto, Arata
2015-05-01
We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.
Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates
Tomoya Hayata; Arata Yamamoto
2015-01-01
We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement...
Novel Lifshitz point for chiral transition in the magnetic field
Directory of Open Access Journals (Sweden)
Toshitaka Tatsumi
2015-04-01
Full Text Available Based on the generalized Ginzburg–Landau theory, chiral phase transition is discussed in the presence of magnetic field. Considering the chiral density wave we show that chiral anomaly gives rise to an inhomogeneous chiral phase for nonzero quark-number chemical potential. Novel Lifshitz point appears on the vanishing chemical potential line, which may be directly explored by the lattice QCD simulation.
Directory of Open Access Journals (Sweden)
Davood Mousanezhad
2016-03-01
Full Text Available The effects of two geometric refinement strategies widespread in natural structures, chirality and self-similar hierarchy, on the in-plane elastic response of two-dimensional honeycombs were studied systematically. Simple closed-form expressions were derived for the elastic moduli of several chiral, anti-chiral, and hierarchical honeycombs with hexagon and square based networks. Finite element analysis was employed to validate the analytical estimates of the elastic moduli. The results were also compared with the numerical and experimental data available in the literature. We found that introducing a hierarchical refinement increases the Young’s modulus of hexagon based honeycombs while decreases their shear modulus. For square based honeycombs, hierarchy increases the shear modulus while decreasing their Young’s modulus. Introducing chirality was shown to always decrease the Young’s modulus and Poisson’s ratio of the structure. However, chirality remains the only route to auxeticity. In particular, we found that anti-tetra-chiral structures were capable of simultaneously exhibiting anisotropy, auxeticity, and remarkably low shear modulus as the magnitude of the chirality of the unit cell increases.
Chiral symmetry in hadron physics methods and ideas of chiral symmetry
International Nuclear Information System (INIS)
Methods and ideas of chiral symmetry is presented based on a lecture note to help the future researches in hadron dynamics along with the chiral symmetry. The chiral symmetry was originally developed as the symmetry between currents before the discovery of QCD. It has come to be understood in principle by now that the symmetry is spontaneously broken and only the part of flavor symmetry remains explicitly. In QCD, however, the chiral symmetry has come to be regarded as the base of the symmetry of the global flavor space of quarks. One of the recent topics of the lattice gauge theory is how the hadron properties will change when the broken symmetry is going to be restored. Since the chiral symmetry is global, it is different from gauge symmetry which is local. It explains the degeneracy of hadron masses and relations between the elements of S-matrix in which same number of particles are included. In practice, however, the symmetry of the axial part is spontaneously broken and pions which behave like gauge particles come to play. Chiral symmetry is defined as the (internal) flavor symmetry for the two independent chirality states of quarks. It discriminates two different fundamental quarks defined for the Lorentz groups O(4) - SL(2, C). The symmetry transformation itself is, however, different from the chirality. They should not be confused. In this lecture note, fundamental properties of pions are described on the basis of the interaction with nucleons at first. General properties of the chiral symmetry and some of the low energy theorems on current algebra are introduced. Then, linear sigma model and nonlinear sigma model are introduced. Then the Skyrme-model, which provides an idea as important as quarks, is explained. One of the interesting topics at present is to restore the broken axial symmetry experimentally to investigate the mechanism of symmetry breaking. (S. Funahashi)
A strict QCD inequality and mechanisms for chiral symmetry breaking
International Nuclear Information System (INIS)
A strict QCD inequality allows one to discuss mechanisms proposed for breaking the chiral symmetry in QCD. ''Order parameters'' are identified such that if sufficiently many gauge field configurations contribute to them, spontaneous chiral symmetry breaking follows. As an application the role of instantons is discussed in chiral symmetry breaking in QCD. (orig.)
How is chiral symmetry restored at finite density?
Tatsumi, T.; Nakano, E.
2005-01-01
Taking into account pseudoscalar as well as scalar condensates, we reexamine the chiral restoration path on the chiral manifold. We shall see both condensates coherently produce a density wave at a certain density, which delays chiral restoration as density or temperature is increased.
Quantized chiral magnetic current from reconnections of magnetic flux
Hirono, Yuji; Yin, Yi
2016-01-01
We introduce a new mechanism for the chiral magnetic effect that does not require an initial chirality imbalance. The chiral magnetic current is generated by reconnections of magnetic flux that change magnetic helicity of the system. The resulting current is entirely determined by the change of magnetic helicity, and is therefore quantized.
Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes
Institute of Scientific and Technical Information of China (English)
FENG; XiaoMing
2001-01-01
Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes. ……
Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
@@ Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.
Chiral Ordering in the Four-Dimensional XY Spin Glass
Jain, S.
1997-01-01
The chiral glass behaviour of the nearest-neighbour random-bond XY spin glass in four dimensions is studied by Monte Carlo simulations. A chiral glass transition at $T_{cg}=0.90\\pm 0.05$ is found by a finite-size scaling analysis of the results. The associated chiral correlation-length exponent is estimated to be $\
Chiral doublet bands and energy-level crossing
Institute of Scientific and Technical Information of China (English)
QI Bin; MENG Jie; ZHANG Shuang-Quan; WANG Shou-Yu; PENG Jing
2009-01-01
Different definitions for chiral doublet bands based on excitation energies, B(E2) and B(M1) respectively are discussed in the triaxial particle rotor model. For the ideal chiral geometry, the selection rules of the electromagnetic transitions in different band definitions are illustrated. It is also shown that the energy-level crossings between chiral doublet bands may occur.
Viscoelastic modes in chiral liquid crystals
Indian Academy of Sciences (India)
K A Suresh
2003-08-01
Viscoelastic properties of liquid crystals are very important for applications like display technology. However, there are not many direct techniques to study them. In this review, we describe our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic modes corresponding to the C director ﬂuctuations in the chiral smectic C phase and the behaviour of the Goldstone-mode near the chiral smectic C–smectic A phase transition. In cholesteric liquid crystals, we consider the director ﬂuctuations in a wavevector range comparable to the inverse pitch of the cholesteric. Here, the study of the scattered light in the vicinity of the Bragg reﬂection using a novel geometry will be presented.
Magnetic test of chiral dynamics in QCD
International Nuclear Information System (INIS)
Strong magnetic fields in the range eB≫mπ2 effectively probe internal quark structure of chiral mesons and test basic parameters of the chiral theory, such as 〈q-barq〉,fπ. We argue on general grounds that 〈q-barq〉 should grow linearly with eB when charged quark degrees of freedom come into play. To make explicit estimates we extend the previously formulated chiral theory, including quark degrees of freedom, to the case of strong magnetic fields and show that the quark condensate |〈q-barq〉|u,d grows quadratically with eB for eB<0.2 GeV2 and linearly for higher field values. These results agree quantitatively with recent lattice data and differ from χPT predictions
Chiral symmetry breaking in brane models
International Nuclear Information System (INIS)
We discuss the chiral symmetry breaking in general intersecting Dq/Dp brane models consisting of Nc Dq-branes and a single Dp-brane with an s-dimensional intersection. There exists a QCD-like theory localized at the intersection and the Dq/Dp model gives a holographic description of it. The rotational symmetry of directions transverse to both of the Dq and Dp-branes can be identified with a chiral symmetry, which is non-Abelian for certain cases. The asymptotic distance between the Dq-branes and the Dp-brane corresponds to a quark mass. By studying the probe Dp-brane dynamics in a Dq-brane background in the near horizon and large Nc limit we find that the chiral symmetry is spontaneously broken and there appear (pseudo-)Nambu-Goldstone bosons. We also discuss the models at finite temperature
Chiral symmetry and strangeness at SIS energies
International Nuclear Information System (INIS)
In this talk we review the consequences of the chiral SU(3) symmetry for strangeness propagation in nuclear matter. Objects of crucial importance are the meson-baryon scattering amplitudes obtained within the chiral coupled-channel effective field theory. Results for antikaon and hyperon-resonance spectral functions in cold nuclear matter are presented and discussed. The importance of the Σ(1385) resonance for the subthreshold antikaon production in heavy-ion reaction at SIS is pointed out. The in-medium properties of the latter together with an antikaon spectral function based on chiral SU(3) dynamics suggest a significant enhancement of the π Λ → anti Κ N reaction in nuclear matter. (orig.)
Chiral light by symmetric optical antennas
Mekonnen, Addis; Zubritskaya, Irina; Jönsson, Gustav Edman; Dmitriev, Alexandre
2014-01-01
Chirality is at the origin of life and is ubiquitous in nature. An object is deemed chiral if it is non-superimposable with its own mirror image. This relates to how circularly polarized light interacts with such object, a circular dichroism, the differential absorption of right and left circularly polarized light. According to the common understanding in biology, chemistry and physics, the circular dichroism results from an internal chiral structure or external symmetry breaking by illumination. We show that circular dichroism is possible with simple symmetric optical nanoantennas at symmetric illumination. We experimentally and theoretically demonstrate that two electromagnetic dipole-like modes with a phase lag, in principle, suffice to produce circular dichroism in achiral structure. Examples of the latter are all visible spectrum optical nanoantennas, symmetric nanoellipses and nanodimers. The simplicity and generality of this finding reveal a whole new significance of the electromagnetic design at a nan...
Analysis of chiral symmetry breaking mechanism
International Nuclear Information System (INIS)
The renormalization group invariant quark condensate μ is determinate both from the consistent equation for quark condensate in the chiral limit and from the Schwinger-Dyson (SD) equation improved by the intermediate range QCD force singular like δ (q) which is associated with the gluon condensate. The solutions of μ in these two equations are consistent. We also obtain the critical strong coupling constant αc above which chiral symmetry breaks in two approaches. The nonperturbative kernel of the SD equation makes αc smaller and μ bigger. An intuitive picture of the condensation above αc is discussed. In addition, with the help of the Slavnov-Taylor-Ward (STW) identity we derive the equations for the nonperturbative quark propagator from SD equation in the presence of the intermediate-range force is also responsible for dynamical chiral symmetry breaking. (author)
Planar Chiral, Ferrocene-Stabilized Silicon Cations.
Schmidt, Ruth K; Klare, Hendrik F T; Fröhlich, Roland; Oestreich, Martin
2016-04-01
The preparation of a series of planar chiral, ferrocenyl-substituted hydrosilanes as precursors of ferrocene-stabilized silicon cations is described. These molecules also feature stereogenicity at the silicon atom. The generation and (29) Si NMR spectroscopic characterization of the corresponding silicon cations is reported, and problems arising from interactions of the electron-deficient silicon atom and adjacent C(sp(3) )-H bonds or aromatic π donors are discussed. These issues are overcome by tethering another substituent at the silicon atom to the ferrocene backbone. The resulting annulation also imparts conformational rigidity and steric hindrance in such a way that the central chirality at the silicon atom is set with complete diastereocontrol. These chiral Lewis acid catalysts were then tested in difficult Diels-Alder reactions, but no enantioinduction was seen. PMID:26929105
Weighted power counting and chiral dimensional regularization
Anselmi, Damiano
2014-01-01
We define a modified dimensional-regularization technique that overcomes several difficulties of the ordinary technique, and is specially designed to work efficiently in chiral and parity violating quantum field theories, in arbitrary dimensions greater than 2. When the dimension of spacetime is continued to complex values, spinors, vectors and tensors keep the components they have in the physical dimension, therefore the gamma matrices are the standard ones. Propagators are regularized with the help of evanescent higher-derivative kinetic terms, which are of Majorana type in the case of chiral fermions. If the new terms are organized in a clever way, weighted power counting provides an efficient control on the renormalization of the theory, and allows us to show that the resulting chiral dimensional regularization is consistent to all orders. The new technique considerably simplifies the proofs of properties that hold to all orders, and makes them suitable to be generalized to wider classes of models. Typica...
Chiral Bosons as solutions of the BV master equation 2D chiral gauge theories
Braga, N. R. F.; Montani, H.
1994-01-01
We construct the chiral Wess-Zumino term as a solution for the Batalin-Vilkovisky master equation for anomalous two-dimensional gauge theories, working in an extended field-antifield space, where the gauge group elements are introduced as additional degrees of freedom. We analyze the Abelian and the non-Abelian cases, calculating in both cases the BRST generator in order to show the physical equivalence between this chiral solution for the master equation and the usual (non-chiral) one.
Tian, Ailin; Qi, Jing; Liu, Yating; Wang, Fengkang; Ito, Yoichiro; Wei, Yun
2013-01-01
Separation of enantiomers still remains a challenge due to their identical physical and chemical properties in a chiral environment, and the research on specific chiral selector along with separation techniques continues to be conducted to resolve individual enantiomers. In our laboratory the promising magnetic chiral microspheres Fe3O4@SiO2@cellulose-2, 3-bis (3, 5-dimethylphenylcarbamate) have been developed to facilitate the resolution using both its magnetic property and chiral recognitio...
Physical properties of the chiral quantum baryon
International Nuclear Information System (INIS)
It is presented an account to understand the quantum chiral baryon, which a stable chiral soliton with baryon number one obtained after first quantization by collective coordinates. Starting from the exact series solution to the non-linear sigma model with the hedge-hog configuration, the values of several physical quantities (mass, axial weak coupling, gyromagnetic ratios and radii) as a function of the order of Pade approximants used as approximanted representations of the solution, are calculated. It turns out that consistent results may be obtained, but a better approximation should be developed. (author)
Disoriented chiral condensate: Theory and phenomenology
International Nuclear Information System (INIS)
These notes are an abbreviated version of lectures given at the 1997 Zakopane School. They contain two topics. The first is a description in elementary terms of the basic ideas underlying the speculative hypothesis that pieces of strong-interaction vacuum with a rotated chiral order parameter, disoriented chiral condensate or DCC, might be produced in high energy elementary particle collisions. The second topic is a discussion of the phenomenological techniques which may be applied to data in order to experimentally search for the existence of DCC
Chiral logarithms in the massless limit tamed.
Kivel, Nikolai; Polyakov, Maxim V; Vladimirov, Alexei
2008-12-31
We derive nonlinear recursion relations for the leading chiral logarithms (LLs) in massless theories. These relations not only provide a very efficient method of computation of LLs (e.g., the 33-loop contribution is calculated in a dozen of seconds on a PC) but also equip us with a powerful tool for the summation of the LLs. Our method is not limited to chiral perturbation theory only; it is pertinent to any nonrenormalizable effective field theory such as, for instance, the theory of critical phenomena, low-energy quantum gravity, etc. PMID:19437635
Probing Chiral Interactions in Light Nuclei
Energy Technology Data Exchange (ETDEWEB)
Nogga, A; Barrett, B R; Meissner, U; Witala, H; Epelbaum, E; Kamada, H; Navratil, P; Glockle, W; Vary, J P
2004-01-08
Chiral two- and three-nucleon interactions are studied in a few-nucleon systems. We investigate the cut-off dependence and convergence with respect to the chiral expansion. It is pointed out that the spectra of light nuclei are sensitive to the three-nucleon force structure. As an example, we present calculations of the 1{sup +} and 3{sup +} states of {sup 6}Li using the no-core shell model approach. The results show contributions of the next-to-next-to-leading order terms to the spectra, which are not correlated to the three-nucleon binding energy prediction.
Absence of equilibrium chiral magnetic effect
Zubkov, M A
2016-01-01
We analyse the $3+1$ D equilibrium chiral magnetic effect (CME). We apply derivative expansion to the Wigner transform of the two - point Green function. This technique allows us to express the response of electric current to external electromagnetic field strength through the momentum space topological invariant. We consider the wide class of the lattice regularizations of quantum field theory (that includes, in particular, the regularization with Wilson fermions) and also certain lattice models of solid state physics (including those of Dirac semimetals). It appears, that in these models the mentioned topological invariant vanishes identically at nonzero chiral chemical potential. That means, that the bulk equilibrium CME is absent in those systems.
Going chiral: overlap versus twisted mass fermions
International Nuclear Information System (INIS)
We compare the behavior of overlap fermions, which are chirally invariant, and of Wilson twisted mass fermions at full twist in the approach to the chiral limit. Our quenched simulations reveal that with both formulations of lattice fermions pion masses of O (250 MeV) can be reached in practical applications. Our comparison is done at a fixed value of the lattice spacing a ≅ 0.123 fm. A number of quantities are measured such as hadron masses, pseudoscalar decay constants and quark masses obtained from Ward identities. We also determine the axial vector renormalization constants in the case of overlap fermions. (author)
Going chiral: overlap versus twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, Wolfgang [Institut fuer Physik, Humboldt Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Capitani, Stefano [Institut fuer Physik/Theoretische Physik, Universitaet Graz, A-8010 Graz (Austria); Chiarappa, Thomas [NIC/DESY Zeuthen, Platanenallee 6, D-15738 Zeuthen (Germany)] [and others
2004-12-01
We compare the behavior of overlap fermions, which are chirally invariant, and of Wilson twisted mass fermions at full twist in the approach to the chiral limit. Our quenched simulations reveal that with both formulations of lattice fermions pion masses of O (250 MeV) can be reached in practical applications. Our comparison is done at a fixed value of the lattice spacing a {approx_equal} 0.123 fm. A number of quantities are measured such as hadron masses, pseudoscalar decay constants and quark masses obtained from Ward identities. We also determine the axial vector renormalization constants in the case of overlap fermions. (author)
Relating lattice QCD and chiral perturbation theory
International Nuclear Information System (INIS)
We present simulation results for lattice QCD using chiral lattice fermions, which obey the Ginsparg Wilson relation. After discuss first conceptual issues, and then numerical results. In the epsilon regime we evaluated the low lying modes in Dirac spectrum and the axial correlation functions for very light quarks. These provide information about the leading low energy constants in chiral perturbation theory: the pion decay constant and the scalar condensate. In the p regime we measured light meson masses, the PCAC quark mass and the renormalisation constant ZA
Possible chiral bands in 194Tl
International Nuclear Information System (INIS)
High spin states in 194Tl, excited through the 181Ta(18O,5n) fusion evaporation reaction, were studied using the AFRODITE array at iThemba LABS. Candidate chiral bands built on the πh9/2 x νi13/21 configuration were found. Furthermore these bands were observed through a band crossing caused by the excitation of a νi13/2 pair. Above the band crossing the excitation energies remain close, suggesting that chirality may persist for the four quasiparticle configuration too.
Anomalous Hall effect for semiclassical chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Zhang, Pengming, E-mail: zhpm@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Horváthy, P.A., E-mail: horvathy@lmpt.univ-tours.fr [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Laboratoire de Mathématiques et de Physique Théorique, Université de Tours (France)
2015-03-06
Semiclassical chiral fermions manifest the anomalous spin-Hall effect: when put into a pure electric field they suffer a side jump, analogous to what happens to their massive counterparts in non-commutative mechanics. The transverse shift is consistent with the conservation of the angular momentum. In a pure magnetic field, instead, spiraling motion is found. Motion in Hall-type perpendicular electric and magnetic fields is also studied. - Highlights: • Chiral fermions exhibit an anomalous spin-Hall effect. • Transverse shift appears in a pure electric field. • In a pure magnetic field spiraling motion is found.
Pentaquarks in chiral color dielectric model
Indian Academy of Sciences (India)
S C Pathak
2006-04-01
Recent experiments indicate that a narrow baryonic state having strangeness +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is about 30 MeV. I find that the mass of the state can be fitted to the experimentally observed mass by invoking a color neutral vector field and its interaction with the quarks.
Charged pion condensation in the chiral limit
International Nuclear Information System (INIS)
We examine, in the chiral limit where the up and down quark masses are vanishingly small, the stability of the pure neutron ground state to small fluctuations due to charge and baryon number conserving strong interactions. It is shown that the ground state energy density as a function of pion field expectation value is determined by Weinberg's baryon two-body potential and by a calculable neutron-proton mass difference in the medium. This provides some insight into the competing physical effects that play a role in determining whether a charged pion condensate forms in dense nuclear matter. We find that in the chiral limit these effects suppress charged pion condensation. (orig.)
Chiral pesticides: Identification, description, and environmental implications
Ulrich, Elin M.; Morrison, Candice N.; Goldsmith, Michael R.; Foreman, William T.
2012-01-01
Anthropogenic chemicals, including pesticides, are a major source of contamination and pollution in the environment. Pesticides have many positive uses: increased food production, decreased damage to crops and structures, reduced disease vector populations, and more. Nevertheless, pesticide exposure can pose risks to humans and the environment, so various mitigation strategies are exercised to make them safer, minimize their use, and reduce their unintended environment effects. One strategy that may help achieve these goals relies on the unique properties of chirality or molecular asymmetry. Some common terms related to chirality are defined in Table 1.
Chiral Symmetry Breaking from Center Vortices
Höllwieser, Roman; Schweigler, Thomas; Heller, Urs M
2014-01-01
We analyze the creation of near-zero modes from would-be zero modes of various topological charge contributions from classical center vortices in SU(2) lattice gauge theory. We show that colorful spherical vortex and instanton configurations have very similar Dirac eigenmodes and also vortex intersections are able to give rise to a finite density of near-zero modes, leading to chiral symmetry breaking via the Banks-Casher formula. We discuss the influence of the magnetic vortex fluxes on quarks and how center vortices may break chiral symmetry.
Heavy-tailed chiral random matrix theory
Kanazawa, Takuya
2016-01-01
We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.
Phenomenology of chiral damping in noncentrosymmetric magnets
Akosa, Collins Ashu
2016-06-21
A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.
Energy Technology Data Exchange (ETDEWEB)
Knecht, M. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire
1996-12-31
Chiral perturbation theory enables to link some hadronic processes at low energy involving {pi},K and {eta} pseudo scalar mesons with some non-perturbative QCD observables which reflect chiral symmetry breaking. The possibilities of investigating the chiral structure of QCD emptiness in several experimental projects within the field of hadronic physics are reviewed 44 refs.
Speciation and gene flow between snails of opposite chirality.
Directory of Open Access Journals (Sweden)
Angus Davison
2005-09-01
Full Text Available Left-right asymmetry in snails is intriguing because individuals of opposite chirality are either unable to mate or can only mate with difficulty, so could be reproductively isolated from each other. We have therefore investigated chiral evolution in the Japanese land snail genus Euhadra to understand whether changes in chirality have promoted speciation. In particular, we aimed to understand the effect of the maternal inheritance of chirality on reproductive isolation and gene flow. We found that the mitochondrial DNA phylogeny of Euhadra is consistent with a single, relatively ancient evolution of sinistral species and suggests either recent "single-gene speciation" or gene flow between chiral morphs that are unable to mate. To clarify the conditions under which new chiral morphs might evolve and whether single-gene speciation can occur, we developed a mathematical model that is relevant to any maternal-effect gene. The model shows that reproductive character displacement can promote the evolution of new chiral morphs, tending to counteract the positive frequency-dependent selection that would otherwise drive the more common chiral morph to fixation. This therefore suggests a general mechanism as to how chiral variation arises in snails. In populations that contain both chiral morphs, two different situations are then possible. In the first, gene flow is substantial between morphs even without interchiral mating, because of the maternal inheritance of chirality. In the second, reproductive isolation is possible but unstable, and will also lead to gene flow if intrachiral matings occasionally produce offspring with the opposite chirality. Together, the results imply that speciation by chiral reversal is only meaningful in the context of a complex biogeographical process, and so must usually involve other factors. In order to understand the roles of reproductive character displacement and gene flow in the chiral evolution of Euhadra, it will be
Numerical Methods for Finding Stationary Gravitational Solutions
Dias, Oscar J C; Way, Benson
2015-01-01
The wide applications of higher dimensional gravity and gauge/gravity duality have fuelled the search for new stationary solutions of the Einstein equation (possibly coupled to matter). In this topical review, we explain the mathematical foundations and give a practical guide for the numerical solution of gravitational boundary value problems. We present these methods by way of example: resolving asymptotically flat black rings, singly-spinning lumpy black holes in anti-de Sitter (AdS), and the Gregory-Laflamme zero modes of small rotating black holes in AdS$_5\\times S^5$. We also include several tools and tricks that have been useful throughout the literature.
On D = 4 Stationary Black Holes
International Nuclear Information System (INIS)
We review some recent results concerning non-extremal and extremal stationary, asymptotically flat black hole solutions in extended D = 4 supergravities, and their properties with respect to the global symmetries of the theory. More specifically we refer to the effective three-dimensional description of these solutions and their classification within orbits with respect to the action of the global symmetry group, illustrating, for single-center solutions, the general mathematical relation between the orbits of non-extremal and extremal black holes
Stability estimates in stationary inverse transport
Bal, Guillaume
2008-01-01
We study the stability of the reconstruction of the scattering and absorption coefficients in a stationary linear transport equation from knowledge of the full albedo operator in dimension $n\\geq3$. The albedo operator is defined as the mapping from the incoming boundary conditions to the outgoing transport solution at the boundary of a compact and convex domain. The uniqueness of the reconstruction was proved in [M. Choulli-P. Stefanov, 1996 and 1999] and partial stability estimates were obtained in [J.-N. Wang, 1999] for spatially independent scattering coefficients. We generalize these results and prove an $L^1$-stability estimate for spatially dependent scattering coefficients.
Stationary Black Holes: Uniqueness and Beyond
Directory of Open Access Journals (Sweden)
Heusler Markus
1998-01-01
Full Text Available The spectrum of known black hole solutions to the stationary Einstein equations has increased in an unexpected way during the last decade. In particular, it has turned out that not all black hole equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black hole space-times ceases to exist in self-gravitating non-linear field theories. This text aims to review some of the recent developments and to discuss them in the light of the uniqueness theorem for the Einstein-Maxwell system.
Numerical methods for finding stationary gravitational solutions
Dias, Óscar J. C.; Santos, Jorge E.; Way, Benson
2016-07-01
The wide applications of higher dimensional gravity and gauge/gravity duality have fuelled the search for new stationary solutions of the Einstein equation (possibly coupled to matter). In this topical review, we explain the mathematical foundations and give a practical guide for the numerical solution of gravitational boundary value problems. We present these methods by way of example: resolving asymptotically flat black rings, singly spinning lumpy black holes in anti-de Sitter (AdS), and the Gregory–Laflamme zero modes of small rotating black holes in AdS{}5× {S}5. We also include several tools and tricks that have been useful throughout the literature.
Stationary Black Holes: Uniqueness and Beyond
Directory of Open Access Journals (Sweden)
Piotr T. Chruściel
2012-05-01
Full Text Available The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.
Stationary stochastic processes for scientists and engineers
Lindgren, Georg; Sandsten, Maria
2013-01-01
""This book is designed for a first course in stationary stochastic processes in science and engineering and does a very good job in introducing many concepts and ideas to students in these fields. … the book has probably been tested in the classroom many times, which also manifests itself in its virtual lack of typos. … Another great feature of the book is that it contains a wealth of worked example from many different fields. These help clarify concepts and theorems and I believe students will appreciate them-I certainly did. … The book is well suited for a one-semester course as it contains
Comment on "Conformally flat stationary axisymmetric metrics"
Barnes, A; Senovilla, José MM
2003-01-01
Garcia and Campuzano claim to have found a previously overlooked family of stationary and axisymmetric conformally flat spacetimes, contradicting an old theorem of Collinson. In both these papers it is tacitly assumed that the isometry group is orthogonally transitive. Under the same assumption, we point out here that Collinson's result still holds if one demands the existence of an axis of symmetry on which the axial Killing vector vanishes. On the other hand if the assumption of orthogonal transitivity is dropped, a wider class of metrics is allowed and it is possible to find explicit counterexamples to Collinson's result.
Chiral-field microwave antennas (Chiral microwave near fields for far-field radiation)
Kamenetskii, E O; Shavit, R
2015-01-01
In a single-element structure we obtain a radiation pattern with a squint due to chiral microwave near fields originated from a magnetostatic-mode ferrite disk. At the magnetostatic resonances, one has strong subwavelength localization of energy of microwave radiation. Magnetostatic oscillations in a thin ferrite disk are characterized by unique topological properties: the Poynting-vector vortices and the field helicity. The chiral-topology near fields allow obtaining unique phase structure distribution for far-field microwave radiation.
Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts
Directory of Open Access Journals (Sweden)
Hironori Izawa
2010-07-01
Full Text Available Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.
Eddy current inspection of stationary blade rings
International Nuclear Information System (INIS)
Stationary turbine blade rings in a US power plant have experienced chloride-induced cracking. Failure analysis determined two types of cracking mechanisms: corrosion fatigue cracking confined to the leading edge of the outer shroud; and stress corrosion cracking present all over the blade surface. Fluorescent dye penetrant is typically used to detect and size cracks. However, it requires cleaning the blade rings by sandblasting to obtain reliable inspection results. Sand blasting in turn requires sealing the lower half of the turbine housing to prevent sand from contaminating the rest of the power plant components. Furthermore, both the penetrant examination and the removal of the sand are time consuming and costly. An alternative NDE technique is desirable which requires no pre-cleaning of the blade and a quick go/no-go inspection with the capability of estimating the crack length. This paper presents an innovative eddy current technique which meets the desired objectives by incorporating the use of specially designed contoured scanners equipped with an array of pancake coils. A set of eddy current pancake coils housed in three different scanners is used to manually scan and inspect the convex side of the stationary blade rings. The pancake coils are operated in a transmit/receive mode using two separate eddy current instruments. This paper presents the inspection concept, including scanner and probe designs, and test results from the various stages of multiple blade rings
Feasibility of a stationary micro-SQUID
Berger, Jorge
2016-01-01
The standard operation of a dc SQUID leads to oscillatory electric fields that emit electromagnetic radiation and can change the state of the measured sample. A stationary SQUID could be advantageous when back action on the measured sample has to be avoided. We study a superconducting loop that encloses a magnetic flux, connected to a superconducting and to a normal electrode, when a fixed electric current between the electrodes flows through the loop. The considered circuit does not contain Josephson junctions. We find that in a very broad range of parameters the current flow converges to a stationary regime. The potential difference between the electrodes depends on the magnetic flux, so that measuring this voltage would provide information on the enclosed flux. The influence of thermal noise was estimated. The sizes of the voltage and of the power dissipation could be appropriate for the design of a practical fluxmeter. We found narrow ranges of flux at which the voltage varies sharply with the flux.
Chirality in nuclei: where do we stand today?
International Nuclear Information System (INIS)
The chirality in nuclear rotation was proposed by S. Frauendorf and J. Meng in 1997. Since then, a lot of effort, both from the experimental and theoretical side, has been devoted to explore and understand this rare exotic nuclear phenomenon. Over the years, chiral bands were proposed in several nuclei, mainly, in A ∼ 100 and A ∼ 130 mass regions. But, while looking for more observable experimental fingerprints other than just the energy spectra, the chiral interpretation of bands became doubtful. With the pouring in of more experimental data on absolute B(M1) and B(E2), and innovative theoretical calculations, the chiral character of bands in a few nuclei have been firmly established, and even the transition from chiral vibration to static chirality has been observed. The discovery, progress and recent updates in nuclear chirality, which continues to be a subject of intense discussion, have been reviewed. (author)
Negative reflections of electromagnetic waves in chiral media
Zhang, C; Cui, Tie Jun; Zhang, Chao
2006-01-01
We investigate the reflection properties of electromagnetic/optical waves in isotropic chiral media. When the chiral parameter is strong enough, we show that an unusual \\emph{negative reflection} occurs at the interface of the chiral medium and a perfectly conducting plane, where the incident wave and one of reflected eigenwaves lie in the same side of the boundary normal. Using such a property, we further demonstrate that such a conducting plane can be used for focusing in the strong chiral medium. The related equations under paraxial optics approximation are deduced. In a special case of chiral medium, the chiral nihility, one of the bi-reflections disappears and only single reflected eigenwave exists, which goes exactly opposite to the incident wave. Hence the incident and reflected electric fields will cancel each other to yield a zero total electric field. In another word, any electromagnetic waves entering the chiral nihility with perfectly conducting plane will disappear.
Stationary versus non-stationary (13)C-MFA: a comparison using a consistent dataset.
Noack, Stephan; Nöh, Katharina; Moch, Matthias; Oldiges, Marco; Wiechert, Wolfgang
2011-07-10
Besides the well-established (13)C-metabolic flux analysis ((13)C-MFA) which characterizes a cell's fluxome in a metabolic and isotopic stationary state a current area of research is isotopically non-stationary MFA. Non-stationary (13)C-MFA uses short-time isotopic transient data instead of long-time isotopic equilibrium data and thus is capable to resolve fluxes within much shorter labeling experiments. However, a comparison of both methods with data from one single experiment has not been made so far. In order to create a consistent database for directly comparing both methods a (13)C-labeling experiment in a fed-batch cultivation with a Corynebacterium glutamicum lysine producer was carried out. During the experiment the substrate glucose was switched from unlabeled to a specifically labeled glucose mixture which was immediately traced by fast sampling and metabolite quenching. The time course of labeling enrichments in intracellular metabolites until isotopic stationarity was monitored by LC-MS/MS. The resulting dataset was evaluated using the classical as well as the isotopic non-stationary MFA approach. The results show that not only the obtained relative data, i.e. intracellular flux distributions, but also the more informative quantitative fluxome data significantly depend on the combination of the measurements and the underlying modeling approach used for data integration. Taking further criteria on the experimental and computational part into consideration, the current limitations of both methods are demonstrated and possible pitfalls are concluded. PMID:20638432
Chiral symmetry breaking and chiral polarization: Tests for finite temperature and many flavors
Directory of Open Access Journals (Sweden)
Andrei Alexandru
2015-02-01
Full Text Available It was recently conjectured that, in SU(3 gauge theories with fundamental quarks, valence spontaneous chiral symmetry breaking is equivalent to condensation of local dynamical chirality and appearance of chiral polarization scale Λch. Here we consider more general association involving the low-energy layer of chirally polarized modes which, in addition to its width (Λch, is also characterized by volume density of participating modes (Ω and the volume density of total chirality (Ωch. Few possible forms of the correspondence are discussed, paying particular attention to singular cases where Ω emerges as the most versatile characteristic. The notion of finite-volume “order parameter”, capturing the nature of these connections, is proposed. We study the effects of temperature (in Nf=0 QCD and light quarks (in Nf=12, both in the regime of possible symmetry restoration, and find agreement with these ideas. In Nf=0 QCD, results from several volumes indicate that, at the lattice cutoff studied, the deconfinement temperature Tc is strictly smaller than the overlap–valence chiral transition temperature Tch in real Polyakov line vacuum. Somewhat similar intermediate phase (in quark mass is also seen in Nf=12. It is suggested that deconfinement in Nf=0 is related to indefinite convexity of absolute X-distributions.
Role of Chiral symmetry in nuclear physics
International Nuclear Information System (INIS)
Spurred by some recent experiments in electron scattering, we reassess the role that chiral symmetry plays in nuclear structure. Though difficult to formulate precisely, some of the ideas put forward many years ago, combined with the recent revival of the Skyrmion picture of the nucleon, are seen to be move relevant now than ever
Effective action for supersymmetrical chiral anomaly
International Nuclear Information System (INIS)
It is proved that the consistency conditions of the type of Wess-Zumino conditions are necessary and sufficient for local integrability of supersymmetrical chiral anomaly. The global integrability condition implies discreteness of the coefficient in anomalous action. Explicit formulas for consistent anomalies and corresponding functional depending on superfields of various types are obtained
ISOSPIN BREAKING AND THE CHIRAL CONDENSATE.
Energy Technology Data Exchange (ETDEWEB)
CREUTZ, M.
2005-07-25
With two degenerate quarks, the chiral condensate exhibits a jump as the quark masses pass through zero. I discuss how this single transition splits into two Ising like transitions when the quarks are made non-degenerate. The order parameter is the expectation of the neutral pion field. The transitions represent long distance coherent phenomena occurring without the Dirac operator having vanishingly small eigenvalues.
Chiral electron transport in CVD bilayer graphene
Lee, Kyunghoon; Eo, Yun Suk; Kurdak, Cagliyan; Zhong, Zhaohui
2014-03-01
Charge carriers in bilayer graphene have a parabolic energy spectrum. Due to this band structure they are massive quasiparticles having a finite density of state at zero energy like other non-relativistic charge carriers in conventional two dimensional materials. However, they are massive Dirac fermions which have a chiral nature similar to the case of massless Dirac fermions in single layer graphene. Coupling of pseudospin and motion of charge carrier via chirality can result in dramatic consequence for transport in bipolar regime like Klein tunneling, Fabry-Perot interference, collimation of charge carrier, Veslago lens, etc. However, little attention has been paid to chiral dependent electron transport in bilayer graphene. Here we study these properties by probing phase coherent transport behavior in CVD bilayer graphene devices with sub-200nm channel length. Complex Fabry-Perot interference patterns are observed in resonant cavities defined by local gating. By applying Fourier analysis technique, we successfully analyze and identify the origin of each individual interference pattern in bipolar and monopolar regime. Our initial results also hint at the observation of cloaking of electronic states against chiral electrons in bilayer graphene.
Crystal Chirality Selected by Mutual Antagonism
Yukio Saito,; Hiroyuki Hyuga,
2010-08-01
To explore the mechanism of chiral symmetry breaking in a process of crystal growth under grinding, we propose a simple irreversible growth model of a lattice-gas with four possible states on a site: occupied by an achiral molecule A, or by a chiral enantiomer R or S, or empty. After two A molecules on neighboring sites form a chiral dimer R2 or S2, clusters grow by incorporating A’s at cluster periphery, irreversibly. Only the grinding recycles products R or S back to A. It is then demonstrated in kinetic Monte Carlo (KMC) simulations that chirality selection takes place in the presence of the grinding. The cause for this realization is attributed to mutual antagonistic inhibition: that is, clusters of opposite enantiomeric types are brought into contact through stirring, and they block crystallization sites on cluster peripheries each other. The density evolution obtained by time integration of the rate equations with this antagonistic inhibition fits well with results of KMC simulations.
Cranking the chiral soliton bag model
Energy Technology Data Exchange (ETDEWEB)
Stern, J.; Bourenane, M.; Clement, G.
1988-10-01
The nucleon-delta mass difference is computed in the chiral soliton bag model with soft confinement of gluons by the cranking method. The resulting value of the effective strong fine structure constant is ..cap alpha../sub s/ approx. 0.7.
Chiral Fermi liquid description of nuclear matter
International Nuclear Information System (INIS)
We employ Landau's theory of normal Fermi liquids to study the bulk properties of nuclear matter with high-precision two- and three-nucleon interactions derived within the framework of chiral effective field theory. The L=0,1 Landau parameters, characterizing the isotropic and p-wave interaction between two quasiparticles on the Fermi surface, are computed to second order in many-body perturbation theory (MBPT) with chiral and low-momentum two-nucleon forces. Already at this order a number of observables are well described in the theory, including the nuclear isospin asymmetry energy, the quasiparticle effective mass and the spin-isospin response. An adequate description of the nuclear compression modulus (encoded in the Landau parameter F0) requires the inclusion of the leading-order (N2LO) chiral three-nucleon force, which we include to first order in MBPT. The remaining L=0 Landau parameters receive only small corrections from the chiral three-nucleon force, and the L=1 parameters are all reduced, resulting in an effective interaction of apparent short range. We then employ renormalization group techniques to study the scale dependence of the quasiparticle interaction, which allows for an estimation of theoretical uncertainties.
On chiral symmetry breaking, topology and confinement
Energy Technology Data Exchange (ETDEWEB)
Shuryak, Edward
2014-08-15
We start with the relation between the chiral symmetry breaking and gauge field topology. New lattice results further enhance the notion of Zero Mode Zone, a very narrow strip of states with quasizero Dirac eigenvalues. Then we move to the issue of “origin of mass” and Brown–Rho scaling: a number of empirical facts contradicts to the idea that masses of quarks and such hadrons as ρ,N decrease near T{sub c}. We argue that while at T=0 the main contribution to the effective quark mass is chirally odd m{sub χ/}, near T{sub c} it rotates to chirally-even component m{sub χ}, because “infinite clusters” of topological solitons gets split into finite ones. Recent progress in understanding of topology require introduction of nonzero holonomy 〈A{sub 0}〉≠0, which splits instantons into N{sub c} (anti)selfdual “instanton–dyons”. Qualitative progress, as well as first numerical studies of the dyon ensemble are reported. New connections between chiral symmetry breaking and confinement are recently understood, since instanton–dyons generate holonomy potential with a minimum at confining value, if the ensemble is dense enough.
Electroweak Chiral Lagrangian for Neutral Higgs Boson
Institute of Scientific and Technical Information of China (English)
WANG Shun-Zhi; WANG Qing
2008-01-01
A neutral Higgs boson is added into the traditional electroweak chiral Lagrangian by writing down all possible high dimension operators. The matter part of the Lagrangian is investigated in detail. We find that if Higgs field dependence of Yukawa couplings can be factorized out, there will be no flavour changing neutral couplings; neutral Higgs can induce coupling between light and heavy neutrinos.
On the Chiral imbalance and Weibel Instabilities
Kumar, Avdhesh; Kaw, Predhiman K
2016-01-01
We study the chiral-imbalance and the Weibel instabilities in presence of the quantum anomaly using the Berry-curvature modified kinetic equation. We argue that in many realistic situations, e.g. relativistic heavy-ion collisions, both the instabilities can occur simultaneously. The Weibel instability depends on the momentum anisotropy parameter $\\xi$ and the angle ($\\theta_n$) between the propagation vector and the anisotropy direction. It has maximum growth rate at $\\theta_n=0$ while $\\theta_n=\\pi/2$ corresponds to a damping. On the other hand the pure chiral-imbalance instability occurs in an isotropic plasma and depends on difference between the chiral chemical potentials of right and left-handed particles. It is shown that when $\\theta_n=0$, only for a very small values of the anisotropic parameter $\\xi\\sim \\xi_c$, growth rates of the both instabilities are comparable. For the cases $\\xi_c<\\xi\\ll1$, $\\xi\\approx 1$ or $\\xi \\geq 1$ at $\\theta_n=0$, the Weibel modes dominate over the chiral-imbalance ins...
Anomalous Hall Effect for chiral fermions
Zhang, P -M
2014-01-01
Semiclassical chiral fermions manifest the anomalous spin-Hall effect: when put into a pure electric field, they suffer a side jump, analogous to what happens to their massive counterparts in non-commutative mechanics. The transverse shift is consistent with the conservation of the angular momentum. In a pure magnetic field a cork-screw-like, spiraling motion is found.