WorldWideScience

Sample records for brunswick steam electric

  1. 75 FR 16871 - Carolina Power & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Exemption

    Science.gov (United States)

    2010-04-02

    ... COMMISSION Carolina Power & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Exemption 1.0 Background Carolina Power & Light Company (CP&L, the licensee) is the holder of Facility Operating Renewed License Nos. DPR-71 and DPR-62, which authorize operation of the Brunswick Steam Electric Plant...

  2. 77 FR 66875 - Brunswick Steam Electric Plant, Units 1 and 2

    Science.gov (United States)

    2012-11-07

    ... COMMISSION Brunswick Steam Electric Plant, Units 1 and 2 AGENCY: Nuclear Regulatory Commission. ACTION... copetitioners on behalf of the North Carolina Waste Awareness & Reduction Network, the Nuclear Information and....Gallagher@nrc.gov . NRC's Agencywide Documents Access and Management System (ADAMS): You may access...

  3. 75 FR 8753 - Carolina Power & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Environmental...

    Science.gov (United States)

    2010-02-25

    ... part 73 as discussed in a Federal Register notice dated March 27, 2009 (74 FR 13967). There will be no... Requirements, 74 FR 13926, 13967 (March 27, 2009)). The licensee currently maintains a security system... Electric Plant, Units 1 and 2 (BSEP), located in Brunswick County, North Carolina. In accordance with...

  4. Brunswick Steam Electric Plant, Units 1 and 2. Annual operating report for 1976

    International Nuclear Information System (INIS)

    Net electrical energy generated by Unit 1 was 30,399 MWH with the generator on line 334.5 hrs. Unit 2 generated 2,481,014 MWH with the generator on line 4,915.53 hrs. Information is presented concerning operations, shutdowns and power reductions, maintenance, power generation, modifications, changes to operational procedures, radiation exposures, and leak rate testing

  5. New Brunswick electricity market rules : summary

    International Nuclear Information System (INIS)

    The electricity market rules for New Brunswick were reviewed with particular reference to two broad classifications. The first classification is based on the roles and responsibilities of the system operator (SO) in facilitating the Bilateral Contract market, as well as the role of market participants in participating in the Bilateral Contract market. The second classification is based on the roles and responsibilities of each of the SO, market participants and transmitters in maintaining the reliability of the integrated electricity system and ensuring a secure supply of electricity for consumers in New Brunswick. The market rules consist of 10 chapters entitled: (1) introduction to the market rules and administrative rules of general application, (2) market participation and the use of the SO-controlled grid, (3) market administration, (4) technical and connection requirements, testing and commissioning, (5) system reliability, (6) operational requirements, (7) settlement, (8) connection of new or modified facilities, (9) transmission system planning, investment and operation, and (10) definitions and interpretation

  6. Advisory panel on the proposed New Brunswick - Quebec electricity transaction

    Energy Technology Data Exchange (ETDEWEB)

    Ganong, D.A. (comp.) [Ganong Bros. Ltd., St. Stephen, NB (Canada)

    2010-02-01

    NB Power was faced with major financial and technical challenges in generation that would lead to significant rate increases over several years to come. In 2009, the governments of New Brunswick and Quebec proposed an agreement whereby Hydro-Quebec would acquire most of the assets of NB Power and provide a guaranteed electricity supply at a set price to the province. The proposal involved the sale of NB Power's hydro generation facilities, 2 diesel peaking plants and the Point Lepreau nuclear generating facility. It also included a guaranteed bulk electricity supply of 14 Terawatt-hours per year by Hydro-Quebec at a blended rate of 7.35 cents per kilowatt-hour. The new Brunswick government would retain ownership of the fossil-fuelled power plants, the NB Power transmission assets and the NB Power distribution assets and customer sales. A 6-person independent panel was asked to examine the proposal. This report addresses the proposed agreement as presented to the Panel up to January 26, 2010. The panel conducted an independent and objective examination of the financial implications; long-term effects on electricity rates; New Brunswick's control of energy policies; environmental impacts; short-and long-term risks and avoided risks; and benefits and costs to the provincial economy. The Panel drew its conclusions and recommendations on the basis of available information. The Panel concluded that the benefits to New Brunswick contribute to real and positive value to New Brunswick over business as usual. tabs., figs.

  7. 78 FR 64207 - Application To Export Electric Energy; New Brunswick Energy Marketing Corporation (f/k/a New...

    Science.gov (United States)

    2013-10-28

    ... Application To Export Electric Energy; New Brunswick Energy Marketing Corporation (f/k/a New Brunswick Power... Application. SUMMARY: New Brunswick Energy Marketing Corporation (NBEMC), formerly known as New Brunswick... by email to Lamont.Jackson@hq.doe.gov . SUPPLEMENTARY INFORMATION: Exports of electricity from...

  8. Brunswick Steam Electric Plant, Unit 2. Annual operating report, 1975

    International Nuclear Information System (INIS)

    Initial criticality occurred in March and start-up testing continued for most of the year. Information is presented concerning operations, shutdowns, maintenance, design changes, personnel radiation exposures, thermal transients, safety/relief valve malfunctions, condenser tube leaks, and recirculation pump seal failures

  9. Severe accident insights from the Brunswick IPE

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.L. (Carolina Power and Light Company, Raleigh, NC (United States))

    1993-01-01

    Insights gained from the development of the level-2 analysis for a Brunswick individual plant examination (IPE) have led to severe accident insights that take advantage of the unique design of the containment structure. The Brunswick steam electric plant (BSEP) consists of two General Electric BWR-4 boiling water reactors (BWRS) with Mark I containments. The containments are unique among BWR Mark I's because the construction of the drywell and torus is reinforced concrete with steel liners. The typical Mark I is a steel shell construction. Both units are rated at 2436 MW(thermal) and [approximately]760 MW(electric). The Brunswick IPE, representing both units, was submitted to the US Nuclear Regulatory Commission in August 1992 (Ref. 1). The estimated mean core damage frequency (CDF) for the level-1 IPE is 2.7 x 10[sup [minus]5]/yr. Station blackout accident sequences contribute 66% to the overall CDF. Transient initiated sequences that involve loss of decay heat removal contribute 30% to the overall CDF. Accident sequences involving anticipated transients without scram (3%), transients with loss of high-pressure injection (I%), loss-of-coolant accidents (LOCAs) (< 1 %), and interfacing LOCAs (< 1 %) constituted the remainder of the accident sequences, which were above the analytical truncation level of 1 X 10 [sup [minus]8]/yr.

  10. Cogeneration of steam and electric power

    International Nuclear Information System (INIS)

    This study is concerned with the production of ethanol from sugar cane itself and not from molasses, which, when blended with gasoline, reduces the import bill for gasoline. The bagasse obtained after juice extraction is used as a fuel for the process. Under this scheme, some extra steam economy can be made because alcohol production does not need as much steam as sugar production. The surplus bagasse can be used to generate additional electric power to be fed into the utility grid. This can be termed as the ethanol/cogeneration solution to the tough growing energy problem. A scheme for the processing of sugar cane in to ethanol, electrical energy and other by-product is also given in this article. (orig./A.B.)

  11. Steam-Electric Power-Plant-Cooling Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  12. 76 FR 28481 - Carolina Power & Light Company; Brunswick Steam Electric Plant, Units 1 and 2; Environmental...

    Science.gov (United States)

    2011-05-17

    ... to public health and safety; (2) performing health physics or chemistry duties required as a member... Reading Room on the Internet at the NRC Web site: http://www.nrc.gov/reading-rm/adams.html . Persons...

  13. Brunswick Steam Electric Plant, Units 1 and 2. Annual operating report No. 3

    International Nuclear Information System (INIS)

    After a month-by-month summary of operations and maintenance activities, data are presented concerning modifications, procedure changes, and man-rem radiation doses. Appendices include information on the main generator outage, leak rate testing, refueling outage, recirculation pump modifications, and instrument drift

  14. Electric-arc steam plasma generator

    Science.gov (United States)

    Anshakov, A. S.; Urbakh, E. K.; Radko, S. I.; Urbakh, A. E.; Faleev, V. A.

    2015-01-01

    Investigation results on the arc plasmatorch for water-steam heating are presented. The construction arrangement of steam plasma generator with copper electrodes of the stepped geometry was firstly implemented. The energy characteristics of plasmatorch and erosion of electrodes reflect the features of their behavior at arc glow in the plasma-forming environment of steam. The results of numerical study of the thermal state of the composite copper-steel electrodes had a significant influence on optimization of anode water-cooling aimed at improvement of its operation life.

  15. Environmental codes of practice for steam electric power generation

    International Nuclear Information System (INIS)

    The Design Phase Code is one of a series of documents being developed for the steam electric power generation industry. This industry includes fossil-fuelled stations (gas, oil and coal-fired boilers), and nuclear-powered stations (CANDU heavy water reactors). In this document, environmental concerns associated with water-related and solid waste activities of steam electric plants are discussed. Design recommendations are presented that will minimize the detrimental environmental effects of once-through cooling water systems, of wastewaters discharged to surface waters and groundwaters, and of solid waste disposal sites. Recommendations are also presented for the design of water-related monitoring systems and programs. Cost estimates associated with the implementation of these recommendations are included. These technical guides for new or modified steam electric stations are the result to consultation with a federal-provincial-industry task force

  16. 1990 production costs operating steam-electric plants

    International Nuclear Information System (INIS)

    In 1990 U.S. electric utilities generated more than 2.8 billion net megawatt hours (MWhr) of electricity from all sources--a slight increase of 0.8% from the 1989 total of 2.78 billion MWhr, but substantially less than the 1989 increase of 2.8% over 1988. Steam-electric plants, which produce electricity by burning fossil fuels or by nuclear fission, typically generate 90% of all U.S. electricity. Utilization of the nation's fossil-fueled steam-electric power plants during 1990 was down about 2% from 1989, primarily because nuclear plant generation increased 9%. (Hydroelectric plant output was up 6% from 1989.) Nuclear power's 1990 contribution to total electric utility generation was up about 1% from 1989 to 20.5%. This paper includes specific 1990 production cost data for 798 steam-electric plants, of which 428 are fueled with coal or lignite, 284 are gas- and/or oil-fired, 73 are nuclear, 6 are geothermal, 4 are wood-fired, and 3 burn refuse or refuse-derived fuel (RDF)

  17. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

    Energy Technology Data Exchange (ETDEWEB)

    HOGELAND, STEVE R.; NELSON, LLOYD S.; ROTH, THOMAS CHRISTOPHER

    1999-07-01

    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives.

  18. 76 FR 53970 - Carolina Power & Light; Brunswick Steam Electric Plant, Units 1 and 2; Independent Spent Fuel...

    Science.gov (United States)

    2011-08-30

    ... to install a Web browser plug-in from the NRC Web site. Further information on the Web-based submission form, including the installation of the Web browser plug-in, is available on the NRC's public Web... by any one of the following methods: Federal Rulemaking Web Site: Go to...

  19. Numerical simulation on coupling performance of steam flow field and electric field in capacitance sensor measuring steam wetness

    International Nuclear Information System (INIS)

    Based on the theory of dielectric polarization and hydrodynamics, using the FLUENT UDF code, the coupling performances of the steam flow field and the electric field in the capacitance sensor were numerically simulated. The standard k-ε model, wall function and SIMPLE way were used. The results show that the voltage decreases gradually from positive plate to negative plate, and the change is even; water molecule is polarized, the polarized charge appears near the plates, and there is no polarized charge in the center of sensor when the dry saturation steam flows through the capacitance sensor; the radial velocity is different from with and without electric field in the capacitance sensor, and the difference is max near the outmost plate; the electric field near the plate is smaller when there is no flow field. The results of numerical simulation match with the results of experiment. The numerical simulation model is feasibility. (authors)

  20. Asbestos exposure in a steam-electric generating plant

    Energy Technology Data Exchange (ETDEWEB)

    Scansetti, G.; Pira, E.; Botta, G.C.; Turbiglio, M.; Piolatto, G. (Turin Univ. (Italy). Inst. of Occupational Health)

    1993-12-01

    A study on asbestos risk in an old multi-fuel-fired steam-electric power station was carried out. In spite of the presence of large amounts of asbestos-containing materials (20 km of asbestos insulated pipes), the mean airborne concentration of asbestos was as low as 1.55 fibres 1.[sup -1](SD 2.05) under normal operating conditions. Much higher concentrations may obviously occur during maintenance or renovation operations. Man-made mineral fibres (MMMF) were detected only occasionally in some samples. Three non-consecutive sputum samples were collected for all the 521 workers included in the study: 3.1% had asbestos bodies (AB), but in no case were there more than four AB per gramme sputum. Small opacities, in most cases irregular of mixed type, were presented in 15 out of 470 radiograms of acceptable quality (3.2%). No AB were found in these cases. Pleural changes were less common: two out of five bilateral cases had AB in the sputum. It is concluded that repeated AB counts in the sputum turned out to be more useful than the search of pleural abnormalities by traditional postero-anterior (PA) view in detecting the signs of low asbestos exposure. (Author)

  1. New Brunswick Market Design Committee : final report

    International Nuclear Information System (INIS)

    This report presents a plan for implementing New Brunswick's electricity restructuring. It includes two resolutions and 95 recommendations to help achieve the main policy objectives of the White Paper, the New Brunswick Energy Policy. The most significant policy goal outlined in the White Paper is the restructuring of the electricity sector, with initial competition being only at the wholesale and large industrial retail level. The Board of Commissioners of Public Utilities will regulate many aspects of the new electricity market. In addition, green pricing options will be made available. The Market Design Committee recommends that the government set up a bilateral contract market for wholesale and large industrial customers to contract with alternate providers for electrical power. Power generators would have the freedom to sell by contract to customers both within and outside the province. The report describes the requirements for establishing a bilateral contract market and how it functions. The Committee also recommends designating a Heritage Pool of electricity available from the existing generation assets in the province. Other recommendations include the creation of programs that will help meet environmental protection goals. The programs include net metering, support of embedded generation, renewable portfolio standards, energy efficiency programs, green pricing, broad-based carbon dioxide emissions trading, emission performance standards, and the promotion of cogeneration. 37 refs., 2 figs

  2. Strategic elements of steam cycle chemistry control practices at TXU's Comanche Peak steam electric station

    International Nuclear Information System (INIS)

    Early industry experience defined the critical importance of Chemistry Control Practices to maintaining long-term performance of PWR steam generators. These lessons provided the impetus for a number of innovations and alternate practices at Comanche Peak. For example, advanced amine investigations and implementation of results provided record low iron transport and deposition. The benefits of the surface-active properties of dimethyl-amine exceeded initial expectations. Operation of pre-coat polishers and steam generator blowdown demineralizers in the amine cycle enabled optimization of amine concentrations and stable pH control. The strategy for coordinated control of oxygen and hydrazine dosing complemented the advanced amine program for protective oxide stabilization. Additionally, a proactive chemical cleaning was performed on Unit 1 to prevent degradations from general fouling of steam generator tube-tube support plate (TSP) and top-of-tubesheet (TTS) crevices. This paper shares the results of these innovations and practices. Also, the bases, theory, and philosophy supporting the strategic elements of program will be presented. (authors)

  3. Technical and economic studies of small reactors for supply of electricity and steam

    Energy Technology Data Exchange (ETDEWEB)

    Spiewak, I.; Klepper, O. H.; Fuller, L. C.

    1977-02-01

    Several years ago conventional opinion held that nuclear power plants must be very large to be competitive with fossil fuels. This situation has changed markedly in most countries within recent years, as oil and gas supplies have become more scarce and costly. Studies have been carried out for several nuclear steam supply systems in the small and intermediate size range. Detail studies are reported of the Consolidated Nuclear Steam Generator (CNSG), a 365 MW(th) pressurized water reactor being developed by Babcock and Wilcox, as applied to industrial energy needs. Both conventional and barge-mounted nuclear steam supply systems are considered. Conceptual studies have been started of pressurized and boiling water reactors in the range of 1000 MW(th), which are envisioned for utility operation for supply of electric power and steam. Design studies of a 500 MW(th) high temperature reactor are also reported. The small reactors are expected to have higher unit costs than the large commercial plants, but to have compensating advantages in higher plant availability, shorter construction schedule, and greater siting flexibility. Studies are also reported of power cycle parameters and cost allocations for extraction of steam from steam turbine plants. This steam could be used for industrial energy, district heating, or desalination.

  4. Technical and economic studies of small reactors for supply of electricity and steam

    International Nuclear Information System (INIS)

    Several years ago conventional opinion held that nuclear power plants must be very large to be competitive with fossil fuels. This situation has changed markedly in most countries within recent years, as oil and gas supplies have become more scarce and costly. Studies have been carried out for several nuclear steam supply systems in the small and intermediate size range. Detail studies are reported of the Consolidated Nuclear Steam Generator (CNSG), a 365 MW(th) pressurized water reactor being developed by Babcock and Wilcox, as applied to industrial energy needs. Both conventional and barge-mounted nuclear steam supply systems are considered. Conceptual studies have been started of pressurized and boiling water reactors in the range of 1000 MW(th), which are envisioned for utility operation for supply of electric power and steam. Design studies of a 500 MW(th) high temperature reactor are also reported. The small reactors are expected to have higher unit costs than the large commercial plants, but to have compensating advantages in higher plant availability, shorter construction schedule, and greater siting flexibility. Studies are also reported of power cycle parameters and cost allocations for extraction of steam from steam turbine plants. This steam could be used for industrial energy, district heating, or desalination

  5. Procedure for estimating nonfuel operation and maintenance costs for large steam-electric power plants

    International Nuclear Information System (INIS)

    Revised guidelines are presented for estimating annual nonfuel operation and maintenance costs for large steam-electric power plants, specifically light-water-reactor plants and coal-fired plants. Previous guidelines were published in October 1975 in ERDA 76-37, a Procedure for Estimating Nonfuel Operating and Maintenance Costs for Large Steam-Electric Power Plants. Estimates for coal-fired plants include the option of limestone slurry scrubbing for flue gas desulfurization. A computer program, OMCOST, is also presented which covers all plant options

  6. 75 FR 82414 - Carolina Power & Light Company; H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption

    Science.gov (United States)

    2010-12-30

    ... COMMISSION Carolina Power & Light Company; H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption 1.0 Background Carolina Power & Light Company (CP&L, the licensee) is the holder of Renewed Facility Operating License No. DPR-23, which authorizes operation of the H.B. Robinson Steam Electric Plant, Unit 2...

  7. 75 FR 11579 - Carolina Power & Light Company H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption

    Science.gov (United States)

    2010-03-11

    ... COMMISSION Carolina Power & Light Company H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption 1.0 Background Carolina Power & Light Company (the licensee) is the holder of Facility Operating License No. DPF-23, which authorizes operation of the H. B. Robinson Steam Electric Plant, Unit 2 (HBRSEP)....

  8. Combined cycle electric power plant with a steam turbine having an improved valve control system

    Energy Technology Data Exchange (ETDEWEB)

    Uram, R.; Marano, R.T.; Heiser, R.S.; Surh, J.Y.

    1977-03-22

    A combined cycle electric power plant includes two gas turbines, a steam turbine, and a digital control system with an analog or manual backup. Each of the gas turbines has an exhaust heat recovery steam generator connected to a common header from which the steam is supplied by one or both of the steam generators for operating the steam turbine. Both the digital and the analog systems provide a digital input to an interface for controlling the steam turbine valves. The analog system is controlled to operate a respective valve by an input to its interface which determines valve position in accordance with its duration. The digital system is controlled to operate a respective valve by an input to the interface in accordance with the repetitive duration of the signal. The analog system input and digital system input is applied to an interface for each valve. A plurality of the valves are operated singly through parallel connected interfaces in response to plant conditions, and a plurality of the valves are operated sequentially through respective individual disconnected interfaces in response to plant physical conditions.

  9. Draft environmental statement related to steam generator repair at H.B. Robinson Steam Electric Plant Unit No. 2, (Docket No. 50-261)

    International Nuclear Information System (INIS)

    The staff has considered the environmental impacts and economic costs of the proposed steam generator repair at the H.B. Robinson Steam Electric Plant Unit No. 2 along with reasonable alternatives to the proposed action. The staff has concluded that the proposed repair will not significantly affect the quality of the human environment and that there are no preferable alternatives to the proposed action. Furthermore, any impacts from the repair program are outweighted by its benefits

  10. System and method for coproduction of activated carbon and steam/electricity

    Science.gov (United States)

    Srinivasachar, Srivats; Benson, Steven; Crocker, Charlene; Mackenzie, Jill

    2011-07-19

    A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity generation plant, said boiler comprising a combustion zone, a boiler-produced steam outlet and at least one flue gas outlet.

  11. CDIO – The steam engine powering the electric grid

    DEFF Research Database (Denmark)

    Træholt, Chresten; Holbøll, Joachim; Thomsen, Ole Cornelius;

    2011-01-01

    and formulation, experimental inquiry and modelling, finally leading to planning and solution. The goal is to acquire the skills that are needed for an engineer within electric power engineering to analyse a given task, define the necessary steps to solve the task, organize him/her self and others and finally...

  12. Draft environmental impact statement for construction and operation of the proposed Bangor Hydro-Electric Company`s second 345-kV transmission tie line to New Brunswick

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-01

    This Draft Environmental Impact Statement (DEIS) was prepared by the US Department of Energy (US DOE). The proposed action is the issuance of Presidential Permit PP-89 by DOE to Bangor Hydro-Electric Company to construct and operate a new international transmission line interconnection to New Brunswick, Canada that would consist of an 83.8 mile (US portion), 345-kilovolt (kV) alternating current transmission line from the US-Canadian border at Baileyville, Maine to an existing substation at Orrington, Maine. The principal environmental impacts of the construction and operation of the transmission line would be incremental in nature and would include the conversion of forested uplands (mostly commercial timberlands) and wetlands to right-of-way (small trees, shrubs, and herbaceous vegetation). The proposed line would also result in localized minor to moderate visual impacts and would contribute a minor incremental increase in the exposure of some individuals to electromagnetic fields. This DEIS documents the purpose and need for the proposed action, describes the proposed action and alternatives considered and provides a comparison of the proposed and alternatives routes, and provides detailed information on analyses of the environmental consequences of the proposed action and alternatives, as well as mitigative measures to minimize impacts.

  13. Fatigue damage of steam turbine shaft at asynchronous connections of turbine generator to electrical network

    Science.gov (United States)

    Bovsunovsky, A. P.

    2015-07-01

    The investigations of cracks growth in the fractured turbine rotors point out at theirs fatigue nature. The main reason of turbine shafts fatigue damage is theirs periodical startups which are typical for steam turbines. Each startup of a turbine is accompanied by the connection of turbine generator to electrical network. During the connection because of the phase shift between the vector of electromotive force of turbine generator and the vector of supply-line voltage the short-term but powerful reactive shaft torque arises. This torque causes torsional vibrations and fatigue damage of turbine shafts of different intensity. Based on the 3D finite element model of turbine shaft of the steam turbine K-200-130 and the mechanical properties of rotor steel there was estimated the fatigue damage of the shaft at its torsional vibrations arising as a result of connection of turbine generator to electric network.

  14. Technical Specifications, Comanche Peak Steam Electric Station, Unit 1 (Docket No. 50-445)

    International Nuclear Information System (INIS)

    The Technical Specifications for Comanche Peak Steam Electric Station, Unit 1 were prepared by the US Nuclear Regulatory Commission. They set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility, as set forth in Section 50.36 of Title 10 of the Code of Federal Regulations Part 50, for the protection of the health and safety of the public

  15. 蓄热式电热蒸汽锅炉%Heat storage type electric steam boilers

    Institute of Scientific and Technical Information of China (English)

    庄正宁; 唐桂华; 叶永强

    2001-01-01

    介绍了蓄热式电热蒸汽锅炉供热系统的供热原理、装置配置和设计要点,该供热系统具有广阔的应用前景。%The heat supply principle, unit arrangement, and desigh factor of the heat supply system of the heat storage type electric steam boilers were presented, the heat supply system could be widely applied.

  16. Safety evaluation report related to steam generator repair at H.B. Robinson Steam Electric Plant, Unit No. 2. Docket No. 50-261

    International Nuclear Information System (INIS)

    A Safety Evaluation Report was prepared for the H.B. Robinson Steam Electric Plant Unit No. 2 by the Office of Nuclear Reactor Regulation. This report considers the safety aspects of the proposed steam generator repair at H.B. Robinson Steam Electric Plant Unit No. 2. The report focuses on the occupational radiation exposure associated with the proposed repair program. It concludes that there is reasonable assurance that the health and safety on the public will not be endangered by the conduct of the proposed action, such activities will be conducted in compliance with the Commission's regulations, and the issuance of this amendment will not be inimical to the common defense and security or the health and safety of the public

  17. Application of steam injection and electrical heating for enhanced in situ soil and ground water treatment

    International Nuclear Information System (INIS)

    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by an increase in soil temperature. Of the various methods of delivery of thermal energy to soils and ground water, steam injection appears to be the most economical and versatile technique for soils with sufficient permeability. The use of steam injection to recovery volatile semivolatile, and nonvolatile contaminants from the sub-surface also allows the exploitation of various thermodynamic and hydrodynamic mechanisms. These mechanisms include vaporization of liquids with boiling points below that of water, enhanced evaporation rates of semivolatile components, physical displacement of low viscosity liquids, dilution and displacement of aqueous contaminants, and removal of residual contaminants from low permeability zones by depressurization and vacuum drying. Electrical heating provides a means of preferentially heating the low permeability zones. A recently completed field-scale demonstration of the patented combined steam injection and electrical heating enhanced extraction technology (Dynamic Underground Stripping) to remove gasoline at a site at Lawrence Livermore National Laboratory confirms the effectiveness of this technique and its applicability to contaminants found above and below the water table

  18. Nuclear power in New Brunswick

    International Nuclear Information System (INIS)

    New Brunswick Power is a medium-utility with gross production for the past fiscal year for domestic and external sales of about 16.5 billion kilowatt hours. Of this figure 33.5% was supplied through nuclear generation. The financial risks involved with the production of the Point Lepreau nuclear generating station were discussed. Further, questions of assurances given for schedule and cost, licencing, and long-term plant performance of the Point Lepreau no. 2 unit were addressed. These were discussed with particular emphasis on the competition for the New England market

  19. Comparing the steam and electric heat tracing solutions for petrochemical or refining facilities

    Energy Technology Data Exchange (ETDEWEB)

    Young, Joseph G.; McQueen, Greg [Tyco Thermal Controls, Belgie (Belgium)

    2012-07-01

    In this era of energy conservation and cost reduction, the ability to effectively select the optimal solution to meet the heat management system needs of petrochemical or refining facilities is becoming increasingly important. Depending on the type and location of the plant, a heat management system (HMS) can comprise a significant portion of the overall capital expenditure, as well as the ongoing operating and maintenance costs. Several important heat management system design decisions affect the financial operations of a facility, including the selection of the heat tracing technology, the utility distribution scheme, and the insulation system criteria, among others. However, most of these decisions are made early in the project life-cycle without thorough analysis of the various options available. From a high level perspective, numerous heat trace media should be considered, including electric, steam, tempered water, and glycol. These systems also have different impacts on piping systems within the plant battery limits (ISBL) and transfer lines outside of the battery limits (OSBL). This paper takes a careful look at two of the predominant heat tracing technologies - electric heat tracing and steam tracing - and compares these within the larger framework of the heat management system, and relative to petrochemical or refining facilities within the general Brazil geography. In the broader context, a heat management system is defined as the heat tracing technology itself, the utility distribution associated with that technology, the control and monitoring scheme associated with that technology, and the insulation system. We will evaluate the capital expenditure cost, operating expenditure cost, and overall reliability of the electric and steam tracing mediums in both the ISBL and OSBL environments within this broader context. (author)

  20. Regulator of a plant for joint production of electrical energy and steam

    Energy Technology Data Exchange (ETDEWEB)

    Granelli, G.P. (Pavia Univ. (IT). Ist. di Elettrotecnica); Montagna, M.; Salomone, R.; Sarti, E.; Silvestri, A.

    1986-03-01

    The paper shows the new design of a regulation system for joint production of electrical power and steam for technological use. The regulation concerns both with steam pressure and electrical frequency, as the plant (although connectable with the Italian network) runs normally stand-alone. The design was developed on a linearized model for small variations around a normal operating state and, as for the nonlinear characteristics of turbine valves, around a maximum gain condition. The controller now in use carries out the decoupling between pressure and frequency regulation unsatisfactorily: in particular, the latter one causes unacceptable frequency steady state error both for electrical and thermal load changes. The new design aims to avoid such effects: this is done by adding an integrating term to the frequency regulator, and resetting the propotional gain of the actual amplifiers, as to decouple the pressure and frequency feedbach loops. Parameters are set up, too, for pole assignment of the decoupled subsystems. The improvement of control response has been tested by computer simulation, even in conditions different from the design's.

  1. A comparison of two thermal recovery methods for heavy oil reservoirs : steam flood and electric resistive heating

    Energy Technology Data Exchange (ETDEWEB)

    Barillas, J.L. [Federal Univ. of Rio Grande do Norte, Natal (Brazil). Dept. of Petroleum Engineering; Oliveira, H.J.; Rodrigues, M.A. [Federal Univ. of Rio Grande do Norte, Natal (Brazil). Post Graduation Program in Petroleum Engineering Science; Mata, W. [Federal Univ. of Rio Grande do Norte, Natal (Brazil). Dept. of Electrical Engineering; Dutra, T.V. [Federal Univ. of Rio Grande do Norte, Natal (Brazil). Dept. of Chemical Engineering

    2009-07-01

    This paper discussed electromagnetic resistive heating (ERH) processes for reducing oil viscosity in heavy oil reservoirs. The method applied electrical currents through the formation in order to increase temperature by Joule effect. The process was modelled using the characteristics of a heavy oil reservoir in Brazil in order to compare results obtained with steam injection processes. Net cumulative oil rates were used to compare the 2 technologies. The results of the study showed that EHR can be used to obtain high cumulative oil rates, while steam flooding increases oil rates after a period of several years due to oil bank displacements. The profitability of both technologies depends on energy, steam, and oil prices. It was concluded that electrical resistive heating results in lower water production rates when compared with steam flood processes. 5 refs., 9 tabs., 11 figs.

  2. Summary of the research and development effort on steam plants for electric-utility service

    Energy Technology Data Exchange (ETDEWEB)

    Fraas, A.P.

    1981-06-01

    The development of steam power plants for electric utility service over the past century is reviewed with particular emphasis on the prime problems and their solution. Increases in steam pressure and temperature made possible by developments in metallurgy led to an increase in thermal efficiency by a factor of 8 between 1880 and 1955. Further improvements have not been made because the use of still more expensive alloys is not economically justified, even with the much higher fuel prices of the latter 1970's. In fact, EPA regulations on waste heat and sulfur emissions have led to the use of cooling towers and wet limestone stack gas scrubbers that cause a degradation in plant thermal efficiency. The various possibilities for further improvements in efficiency and their problems are examined. The development of steam power plants in the past has been carried out in sufficiently small steps that the utilities and the equipment manufacturers have been able to assume the financial risk involved; but the fluidized-bed combustion system, which appears to be the most promising area, presents such a large step with major uncertainties that U.S. government financial support of the research and development effort appears to be required. The potential benefits appear to justify the research and development cost many times over.

  3. Beyond steam

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Pat

    2011-09-15

    Over the past decades, steam assisted gravity drainage (SAGD) has been the technology of choice for new in situ oilsands projects. Although the process had spectacular successes, it also met with disappointments and it is now conceded that further technological development is needed to harvest Alberta's oilsands resources. The aim of this article is to present the use of electric power instead of steam to reduce bitumen viscosity. Five different technologies are presented, these are based on the use of: radio waves, electric mineral insulated heaters, mineral insulated cable, induction stove technology and electric current between electrodes installed in heater wells. The use of electric power would be easier to control than steam and would not require the construction of water-handling infrastructures. Using electricity over steam would be beneficial in terms of both environmental footprint and capital cost and the tests underway on the technologies presented will help to determine their operating costs.

  4. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 11: Advanced steam systems. [energy conversion efficiency for electric power plants using steam

    Science.gov (United States)

    Wolfe, R. W.

    1976-01-01

    A parametric analysis was made of three types of advanced steam power plants that use coal in order to have a comparison of the cost of electricity produced by them a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric study and to ascertain problem areas which will require development effort. Also considered are pollution control measures such as scrubbers and separates for particulate emissions from stack gases.

  5. Toxicity of sediments and pore water from Brunswick Estuary, GA

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A chlor-alkali plant in Brunswick, Ga, discharged >2 kg mercury/day into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury...

  6. Effects of electric current upon catalytic steam reforming of biomass gasification tar model compounds to syngas

    International Nuclear Information System (INIS)

    Highlights: • ECR technique was proposed to convert biomass gasification tar model compounds. • Electric current enhanced the reforming efficiency remarkably. • The highest toluene conversion reached 99.9%. • Ni–CeO2/γ-Al2O3 exhibited good stability during the ECR performance. - Abstract: Electrochemical catalytic reforming (ECR) technique, known as electric current enhanced catalytic reforming technique, was proposed to convert the biomass gasification tar into syngas. In this study, Ni–CeO2/γ-Al2O3 catalyst was prepared, and toluene was employed as the major feedstock for ECR experiments using a fixed-bed lab-scale setup where thermal electrons could be generated and provided to the catalyst. Several factors, including the electric current intensity, reaction temperature and steam/carbon (S/C) ratio, were investigated to reveal their effects on the conversion of toluene as well as the composition of the gas products. Moreover, toluene, two other tar model compounds (benzene and 1-methylnaphthalene) and real tar (tar-containing wastewater) were subjected to the long period catalytic stability tests. All the used catalysts were analyzed to determine their carbon contents. The results indicated that the presence of electric current enhanced the catalytic performance remarkably. The toluene conversion reached 99.9% under the electric current of 4 A, catalytic temperature of 800 °C and S/C ratio of 3. Stable conversion performances of benzene, 1-methylnaphthalene and tar-containing wastewater were also observed in the ECR process. H2 and CO were the major gas products, while CO2 and CH4 were the minor ones. Due to the promising capability, the ECR technique deserves further investigation and application for efficient tar conversion

  7. Evaluation of a sulfur oxide chemical heat storage process for a steam solar electric plant

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, J.; Lynn, S.; Foss, A.

    1979-07-01

    The purpose of this study was to develop and evaluate technically feasible process configurations for the use of the sulfur oxide system, 2 SO/sub 3/ reversible 2 SO/sub 2/ + O/sub 2/, in energy storage. The storage system is coupled with a conventional steam-cycle power plant. Heat for both the power plant and the storage system is supplied during sunlit hours by a field of heliostats focussed on a central solar receiver. When sunlight is not available, the storage system supplies the heat to operate the power plant. A technically feasible, relatively efficient configuration is proposed for incorporating this type of energy storage system into a solar power plant. Complete material and energy balances are presented for a base case that represents a middle range of expected operating conditions. Equipment sizes and costs were estimated for the base case to obtain an approximate value for the cost of the electricity that would be produced from such an installation. In addition, the sensitivity of the efficiency of the system to variations in design and operating conditions was determined for the most important parameters and design details. In the base case the solar tower receives heat at a net rate of 230 MW(t) for a period of eight hours. Daytime electricity is about 30 MW(e). Nighttime generation is at a rate of about 15 MW(e) for a period of sixteen hours. The overall efficiency of converting heat into electricity is about 26%. The total capital cost for the base case is estimated at about $68 million, of which about 67% is for the tower and heliostats, 11% is for the daytime power plant, and 22% is for the storage system. The average cost of the electricity produced for the base case is estimated to be about 11 cents/kW(e)-hr.

  8. Accurate calibration of steam turbine speed control system and its influence on primary regulation at electric grid

    Energy Technology Data Exchange (ETDEWEB)

    Irrazabal Bohorquez, Washington Orlando; Barbosa, Joao Roberto [Technological Institute of Aeronautics (ITA/CTA), Sao Jose dos Campos, SP (Brazil). Center for Reference on Gas Turbine and Energy], E-mail: barbosa@ita.br

    2010-07-01

    In an interconnected electric system there are two very important parameters: the field voltage and the frequency system. The frequency system is very important for the primary regulation of the electric grid. Each turbomachine actuating as generator interconnected to the grid has an automatic speed regulator to keep the rotational speed and mechanical power of the prime machine operating at the set conditions and stable frequency. The electric grid is a dynamical system and in every moment the power units are exposed to several types of disturbances, which cause unbalance of the mechanical power developed by prime machine and the consumed electric power at the grid. The steam turbine speed control system controls the turbine speed to support the electric grid primary frequency at the same time it controls the frequency of the prime machine. Using a mathematical model for the speed control system, the transfer functions were calculated, as well as the proportionality constants of each element of the steam turbine automatic speed regulator. Among other parameters, the droop characteristic of steam turbine and the dynamic characteristics of the automatic speed regulator elements were calculated. Another important result was the determination of the behavior of the speed control when disturbances occur with the improvement of the calibration precision of the control system. (author)

  9. A 15kWe (nominal) solar thermal electric power conversion concept definition study: Steam Rankine reheat reciprocator system

    Science.gov (United States)

    Fuller, H.; Demler, R.; Poulin, E.; Dantowitz, P.

    1979-01-01

    An evaluation was made of the potential of a steam Rankine reheat reciprocator engine to operate at high efficiency in a point-focusing distributed receiver solar thermal-electric power system. The scope of the study included the engine system and electric generator; not included was the solar collector/mirror or the steam generator/receiver. A parametric analysis of steam conditions was completed leading to the selection of 973 K 12.1 MPa as the steam temperature/pressure for a conceptual design. A conceptual design was completed for a two cylinder/ opposed engine operating at 1800 rpm directly coupled to a commercially available induction generator. A unique part of the expander design is the use of carbon/graphite piston rings to eliminate the need for using oil as an upper cylinder lubricant. The evaluation included a system weight estimate of 230 kg at the mirror focal point with the condenser mounted separately on the ground. The estimated cost of the overall system is $1932 or $90/kW for the maximum 26 kW output.

  10. Assessment of the once-through cooling alternative for central steam-electric generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Paddock, R. A.; Ditmars, J. D.

    1978-12-01

    The efficacy of the disposal of waste heat from steam-electric power generation by means of once-through cooling systems was examined in the context of the physical aspects of water quality standards and guidelines for thermal discharges. Typical thermal standards for each of the four classes of water bodies (rivers, lakes, estuaries, and coastal waters) were identified. The mixing and dilution characteristics of various discharge modes ranging from simple, shoreline surface discharges to long, submerged multiport diffusers were examined in terms of the results of prototype measurements, analytical model predictions, and physical model studies. General guidelines were produced that indicate, for a given plant capacity, a given type of receiving water body, and a given discharge mode, the likelihood that once-through cooling can be effected within the restrictions of typical thermal standards. In general, it was found that shoreline surface discharges would not be adequate for large power plants (greater than or equal to 500 MW) at estuarine and marine coastal sites, would be marginally adequate at lake sites, and would be acceptable only at river sites with large currents and river discharges. Submerged multiport diffusers were found to provide the greatest likelihood of meeting thermal standards in all receiving water environments.

  11. Performance of a direct steam generation solar thermal power plant for electricity production as a function of the solar multiple

    OpenAIRE

    Montes Pita, María José; Abánades Velasco, Alberto; Martínez-Val Peñalosa, Jose Maria

    2009-01-01

    This paper describes the influence of the solar multiple on the annual performance of parabolic trough solar thermal power plants with direct steam generation (DSG). The reference system selected is a 50 M We DSG power plant, with thermal storage and auxiliary natural gas-fired boiler. It is considered that both systems are necessary for an optimum coupling to the electricity grid. Although thermal storage is an opening issue for DSG technology, it gives an additional degree of freedom for pl...

  12. Second nuclear reactor, Point Lepreau, New Brunswick

    International Nuclear Information System (INIS)

    This is a report of the findings, conclusions and recommendations of the Environmental Assessment Panel appointed by the Ministers of Environment of New Brunswick and Canada to review the proposal to build a seond nuclear unit at Point Lepreau, New Brunswick. The Panel's mandate was to assess the environmental and related social impacts of the proposal. The Panel concludes that the project can proceed without significant adverse effects provided certain recommendations are followed. In order to understand the impacts of Lepreau II, it was necessary to review, to the extent possible, the actual effects of Lepreau I before estimating the incremental effects of Lepreau II. In so doing, the Panel made a number of recommendations that should be implemented now. The information gathered and experience gained can be applied to Lepreau II to ensure that potential impacts are reduced to a minimum and existing concerns associated with Lepreau I can be corrected

  13. Scram reduction at the Brunswick nuclear project

    International Nuclear Information System (INIS)

    Achieving the Nuclear Management and Resources Council goal of no more than 1.5 scrams per plant year by 1990 promises to be a formidable challenge for domestic utilities. However, after experiencing a less-than-desirable scram frequency in its early years of operation, the two-unit Brunswick plant began a scram reduction program that has contributed to early accomplishment of that goal. To accomplish this significant reduction in scram frequency, Brunswick found that three steps are essential: (1) determine root cause(s) of events, learn from past plant experiences, and (3) learn from other plant's experiences. In 1988, the Boiling Water Reactor Owners' Group's Scram Frequency Reduction Committee (SFRC) developed its own data-base software for BWR scrams. The data base is updated following the quarterly operations activity meetings and is distributed to each participating member of the SFRC. Thus, each plant has the ability to perform its own studies using a complete BWR scram data base. Each of the above actions has aided the Brunswick plant in significantly reducing its number of scrams

  14. Quantifying heat requirements for SAGD start up phase: steam injection and electrical heating

    Energy Technology Data Exchange (ETDEWEB)

    Moini, Behdad; Edmunds, Neil [Laricina Energy Ltd. (Canada)

    2011-07-01

    In the heavy oil industry, thermal recovery methods such as steam assisted gravitydrainage (SAGD) are often used to enhance oil recovery. The SAGD process employs two horizontal wells stacked on top of each other, the top one being the steam injection well and the lower one the production well. For this process to perform as planned, start up has to be carried out in an effective manner to reach the required temperature. This paper aimed at defining a method to calculate the heat flux required inside the wellbore to obtain a certain temperature outside the liner. A model was developed and then applied to different scenarios. Results showed that the model can predict the heat requirements for the start up phase of a SAGD well pair in a simple manner. The model developed herein enables operators to assess the heat requirements of the start up phase and thus to design steam capacity adequately.

  15. Impact on the steam electric power industry of deleting Section 316(a) of the Clean Water Act: Capital costs

    International Nuclear Information System (INIS)

    Many power plants discharge large volumes of cooling water. In some cases, the temperature of the discharge exceeds state thermal requirements. Section 316(a) of the Clean Water Act (CWA) allows a thermal discharger to demonstrate that less stringent thermal effluent limitations would still protect aquatic life. About 32% of total US steam electric generating capacity operates under Section 316(a) variances. In 1991, the US Senate proposed legislation that would delete Section 316(a) from the CWA. This study, presented in two companion reports, examines how this legislation would affect the steam electric power industry. This report describes alternatives available to nuclear and coal-fired plants currently operating under variances. Data from 38 plants representing 14 companies are used to estimate the national cost of implementing such alternatives. Although there are other alternatives, most affected plants would be retrofitted with cooling towers. Assuming that all plants currently operating under variances would install cooling towers, the national capital cost estimate for these retrofits ranges from $22.7 billion to $24.4 billion (in 1992 dollars). The second report quantitatively and qualitatively evaluates the energy and environmental impacts of deleting the variance. Little justification has been found for removing the Section 316(a) variance from the CWA

  16. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    Energy Technology Data Exchange (ETDEWEB)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir

  17. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Unit 2 (Docket No. 50-446)

    International Nuclear Information System (INIS)

    Supplement 26 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Unit 2, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, 23, 24, and 25 to that report were published. This supplement deals primarily with Unit 2 issues; however, it also references evaluations for several licensing issues that relate to Unit 1, which have been resolved since Supplement 25 was issued

  18. Improved HYLIFE-II heat transport system and steam power plant: Impact on performance and cost of electricity

    International Nuclear Information System (INIS)

    The HYLIFE-II conceptual design has evolved and improved continually over the past four years to its present form. This paper describes the latest FY92 versions, Reference Case H1 (nominally 1 GWe net output) and the Enhanced Case HE (nominally 2 GWe net output), which take advantage of improvements in the tritium management system to eliminate the intermediate loop and the intermediate heat exchangers (IHX's). The improvements in the heat transport system and the steam power plant are described and the resulting cost reductions are evaluated. The new estimated cost of electricity (in 1990 dollars) is 6.6 cents/kWh for Reference Case H1 and 4.7 cents/kWh for the Enhanced Case

  19. New Brunswick Laboratory progress report, October 1992--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The mission of the New Brunswick Laboratory of the US Department of Energy (DOE) is to provide and maintain a nuclear material measurements and standards laboratory as a technical response to DOE`s statutory responsibility to assure the safeguarding of nuclear materials. This report summarizes the mission-fulfilling activities of the New Brunswick Laboratory for the period of October 1992 through September 1993.

  20. Why Not Me? Women Immigrants and Unemployment in New Brunswick

    OpenAIRE

    Doyle, Judith; Nicola MOONEY; Jane KU

    2006-01-01

    This article examines the experience of women immigrants and refugees in New Brunswick, Canada. In focus groups, employment, or rather the lack of employment, was a central concern for the women. Many were skilled immigrants who urgently wished to be working in their field of expertise and felt disappointed with Canadian immigration processes and settlement in New Brunswick. Their emphasis on employ-ment contrasted with their classification as dependent spouses by Citizenship and Immigration ...

  1. Technical specifications: Susquehanna Steam Electric Station, Unit No. 2 (Docket No. 50-388). Appendix A to License No. NPF-22

    International Nuclear Information System (INIS)

    Susquehanna Steam Electric Station, Unit 2 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  2. Effectiveness of The Development And Expansion of The Steam Power Station Condensate To Centers Thermoelectric Dedicated To The Production of Electric Power And Water Desalination

    Directory of Open Access Journals (Sweden)

    Gamal Yaseen Salman

    2014-04-01

    Full Text Available This research includes a mathematical form to study the effectiveness of development of basic design form condensation steam powers to dual pressure thermoelectric centers allocated for production of electric power and distillation water with the aspect of thermal effectiveness scale and preserving the lowest level of pollution for the surrounding media, in this study the scale of saving is used in the amount of fuel saved in the electric network due to the joint process of production for electric power and distillation water in suggested design compared to a separate production process for electric power and distillation water via a replacement station and distillation unit from the type of reverse osmosis. Hence the effect of design the multiple effect evaporation distillation unit and the gas turbine unit were studied, and so basic thermodynamic characteristics for this unit on the scale of effectiveness for development of basic design of steam st ation. Study findings provided the following:

  3. Direct generation of steam and electricity in a open cycle Rankine; Generacion directa de vapor y electricidad en un ciclo Rankine abierto

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Alvaro; Almanza, Rafael; Flores, Vicente [UNAM, Mexico, D.F. (Mexico)

    2000-07-01

    In this work the results of the experimental tests about steam and electricity generation are presented. This work carried out in the solar thermal power plant of the Institute of Engineering with direct steam generation in parabolic through. The global efficiency of the system is studied as for the conversion solar-electricity. The efficiency is determined and it describes the obtaining process of the main plant components, like they are, the solar steam generator, the steam motor and the electric generator. [Spanish] En este trabajo se presentan los resultados de las pruebas experimentales de la generacion de vapor y electricidad realizadas en la planta solar del Instituto de Ingenieria con generacion directa de vapor en concentradores de canal parabolico. Se estudia la eficiencia global del sistema en cuanto a la conversion de energia solar-electricidad. Se determina la eficiencia y describe el proceso de obtencion de la misma y de los principales componentes de la planta como son, el generador de vapor solar, el motor de pistones de vapor y el alternador electrico.

  4. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  5. [New Brunswick Power] Fifteen year load forecast, 1990-2005

    International Nuclear Information System (INIS)

    A fifteen-year forecast of the electric requirements of the in-province customers of New Brunswick Power Commission is prepared each year based on a cause and effect analysis of past loads, combined with data gathered through customer surveys and an assessment of economic, demographic, technological and other factors which affect the utilization of electrical energy. In addition to the forecast requirements of each sales classification and total energy supply by month, a forecast of the monthly peak hour demand is also presented. The forecast results are used in overall short and long term planning, particularly the financial and facilities planning. Since variations from the forecast can significantly affect the future financial and facilities requirements, a forecast range is included which indicates the sensitivity of the forecast to various input parameters and their resulting impact on the final results. Total power demand is forecast to increase from 13,183 GWh to 19,703 GWh or 2.8%/y over the 15-year period; in the same period, the maximum peak demand is forecast to increase from 2637 MW to 3818 MW. These results are generally the same as in the previous year's forecast. Nevertheless, the latest forecast shows a trend toward lower energy consumption, a phenomenon which responds to the short term economic situation. By end-use sector, power demand is forecast to grow from 4316 GWh to 6240 GWh in the residential sector, from 2169 GWh to 3454 GWh in the general sector, and from 5247 GWh to 8319 GWh in the industrial sector. 15 figs., 18 tabs

  6. New Brunswick Site annual environmental report for calendar year 1991, New Brunswick, New Jersey

    International Nuclear Information System (INIS)

    This document describes the environmental monitoring program at the New Brunswick Site (NBS) and surrounding area, implementation of the program, and monitoring results for 1991. The site, near New Brunswick,, New Jersey, is a 5.6-acre vacant, fenced, and grass-covered area. Environmental monitoring of NBS began in 1981 when the site was part of the US Department of Energy's (DOE) Surplus Facilities Management Program. In 1990 responsibility for NBS was transferred to the Formerly Utilized Sites Remedial Action Program (FUSP.4P). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the,early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at NBS includes sampling networks for radon and thoron in air; external gamma radiation exposure; and radium-226, radium-228, thorium-228, thorium-230, thorium-232, americium-241, cesium-137, plutonium-239, and total uranium in surface water, sediment, and groundwater. Several nonradiological parameters are also measured in groundwater, surface water, and sediments. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides, dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment

  7. Geology of uranium and associated elements in New Brunswick

    International Nuclear Information System (INIS)

    Eighty-two uranium occurrences have been identified in New Brunswick. Most of the data describing these occurrences is contained within assessment reports by claim holders to the provincial Department of Natural Resources and Energy. Additional information is contained within publications of the Geological Survey of Canada and in university theses. Seven metallogenic uraniferous domains are identified in New Brunswick: the Gaspe Synclinorium, Aroostook-Matapedia Anticlinorium, Chaleur Bay Synclinorium, Miramichi Anticlinorium, Fredericton Trough, Avalonian Platform and the Carboniferous Basin. Of these seven domains, the Miramichi Anticlinorium, Fredericton Trough and the Carboniferous Basin appear to be the most promising. The uranium occurrences in New Brunswick are preferentially associated with the Devono-Carboniferous rocks and appear to be related to deformational, magmatic and hydrothermal processes associated with the Acadian Orogeny. (numerous refs)

  8. Final Environmental Statement related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    In September 1981, the staff of the Nuclear Regulatory Commission (NRC) issued its Final Environmental Statement (NUREG-0775) related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446), located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. The NRC has prepared this supplement to NUREG-0775 to present its evaluation of the alternative of operating Comanche Peak with the installation of further severe-accident-mitigation design features. The NRC has discovered no substantial changes in the proposed action as previously evaluated in the Final Environmental Statement that are relevant to environmental concerns and bearing on the licensing of Comanche Peak Steam Electric Station, Units 1 and 2. 6 refs., 3 tabs

  9. Safety evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement No. 7

    International Nuclear Information System (INIS)

    Supplement 7 to the Safety Evaluation Report for Louisiana Power and Light's application for a license to operate Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Region IV Office of the US Nuclear Regulatory Commission. This supplement provides the results to date of the staff's evaluation of approximately 350 allegations and concerns of poor construction practices at the Waterford 3 facility

  10. Steam-electric plant air and water quality control data. Summary report for the year ended December 31, 1975, based on FPC Form No. 67

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Data relating to nationwide impacts of steam-electric power plants on the environment are discussed with regard to growth of the industry; fuel quality; air pollution control; water pollution control; and cost of cooling facilities. Tables are presented to show the following: air quality data aggregated by state and geographic region and by air quality control region; water quality data aggregated by state and geographic region and by water resource region; and individual plant data. (HLW)

  11. New Coleoptera records from New Brunswick, Canada: Lycidae

    Directory of Open Access Journals (Sweden)

    Reginald Webster

    2012-04-01

    Full Text Available Eight species of Lycidae are newly recorded from New Brunswick, Canada, bringing the total number of species known from the province to 16. The first documented records from New Brunswick are provided for Greenarius thoracicus (Randall Erotides scuptilis (Say, and Calopteron terminale (Say reported by Majka et al. (2011. Eropterus arculus Green, Lopheros crenatus (Germar, and Calochromus perfacetus (Say are reported for the first time in the Maritime provinces. Collection data, habitat data, and distribution maps are presented for all these species.

  12. Final environmental statement related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2: (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    The proposed action is the issuance of operating licenses to the Texas Utilities Generating Company for the startup and operation of Units 1 and 2 of the Comanche Peak Steam Electric Station located on Squaw Creek Reservoir in Somervell County, Texas, about 7 km north-northeast of Glen Rose, Texas, and about 65 km southwest of Fort Worth in north-central Texas. The information in this environmental statement represents the second assessment of the environmental impact associated with the Comanche Peak Steam Electric Station pursuant to the guidelines of the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51 of the Commission's Regulations. After receiving an application to construct this station, the staff carried out a review of impact that would occur during its construction and operation. This evaluation was issued as a Final Environmental Statement -- Construction Phase. After this environmental review, a safety review, an evaluation by the Advisory Committee on Reactor Safeguards, and public hearings in Glen Rose, Texas, the US Atomic Energy Commission (now US Nuclear Regulatory Commission) issued construction permits for the construction of Units 1 and 2 of the Comanche Peak Steam Electric Station. 16 figs., 34 tabs

  13. Safety evaluation report related to the operation of Susquehanna Steam Electric Station, Units 1 and 2 (Docket Nos. 50-387 and 50-388). Suppl.6

    International Nuclear Information System (INIS)

    In April 1981, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0776) regarding the application of the Pennsylvania Power and Light Company (the applicant and/or licensee) and the Allegheny Electric Cooperative, Inc. (co-applicant) for licenses to operate the Susquehanna Steam Electric Station, Units 1 and 2, located on a site in Luzerne County, Pennsylvania. This supplement to NUREG-0776 addresses the remaining issues that required resolution before licensing operation of Unit 2 and closes them out

  14. The progress of retail marketing in New Brunswick

    International Nuclear Information System (INIS)

    Enbridge Atlantic Energy Services began commercial operation in New Brunswick in September 2001. Its objective was to provide all customer sectors with competitively priced and quality natural gas services. It was noted that while much progress has been made in the province regarding the pace of natural gas growth, there are many challenges to resolve before homeowners, businesses and the economy of New Brunswick obtain the same benefits as their neighbouring provinces. Prior to September 2001, much of the focus on gas retailing was on vertically integrated suppliers. This design was probably a contributor to the slower than anticipated growth of natural gas in the province. Another option, a fully deregulated model, may be a good end objective, but it may not be suitable for New Brunswick because it is only in the early stages of a growing market. An effective option would be to allow local distribution companies with the flexibility of implementing a system of gas supply for customers. This is the option that Nova Scotia has recently adopted. It allows the competitive natural gas marketers to participate in the industry growth by offering customers different incentives. Some of the key areas that still need constructive changes in New Brunswick are: (1) increased government support of natural gas as an emerging fuel choice, (2) relaxing some of the regulatory pressure on the industry, (3) improved consistency in applying codes and standards for equipment installations, and (4) creating a flexible environment for companies to add skilled technicians to their businesses

  15. Feasibility study: comparison of coal- and nuclear-fueled alternatives for process steam and by product electrical power generation for the PPG Industries, Incorporated Plant Site, Lake Charles, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    The purpose of the study was to evaluate the technical and economic feasibility of a small, (365 MWt) nuclear reactor for supplying process steam and electricity as a replacement for energy sources using increasingly scarce natural gas or oil. The PPG Industries, Incorporated Plant Site at Lake Charles, Louisiana, was chosen as representative of industrial installations that require sizeable amounts of process steam and electricity. For comparison purposes conventional coal-fired boilers were also evaluated. It was determined that both nuclear- and coal-based process energy supply systems are technically feasible. For the specific steam/electricity demands at the reference site, the coal-fired plant proved to be economically more attractive than the nuclear units. For an application requiring a base-loaded supply of saturated steam, utilizing full reactor capacity, the nuclear option appears competitive for coal costing $40/ton in 1978 dollars.

  16. Digital implementation, simulation and tests in MATLAB of the models of Steam line, the turbines, the pressure regulator of a BWR type nucleo electric power plant

    International Nuclear Information System (INIS)

    In this phase of the project they were carried out exhaustive tests to the models of the steam lines, turbines and pressure regulator of a BWR type nucleo electric central for to verify that their tendencies and behaviors are it more real possible. For it, it was necessary to also analyze the transfer functions of the different components along the steam line until the power generator. Such models define alone the dominant poles of the system, what is not limitation to reproduce a wide range of anticipated transitoriness of a power station operation. In the same manner, it was integrated and proved the integrated model form with the models of feeding water of the SUN-RAH, simulating the nuclear reactor starting from predetermined entrances of the prospective values of the vessel. Also it was coupled with the graphic interface developed with the libraries DirectX implementing a specific monitoring panel for this system. (Author)

  17. Safety evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Suppl.6

    International Nuclear Information System (INIS)

    Supplement 6 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its five previous supplements were issued

  18. The ANF [Advanced Nuclear Fuels Corporation]-RELAP small-break LOCA [loss-of-coolant accident] analysis for the Comanche Peak steam electric station

    International Nuclear Information System (INIS)

    The system response code RELAP/MOD2 Idaho National Engineering Laboratory cycle 36.02, with modifications developed by Advanced Nuclear Fuels Corporation (ANF), was used to perform small-break loss-of-coolant accident (SBLOCA) calculations for the Comanche Peak steam electric station (CPSES) unit 1. The ability of the ANF-RELAP code to calculate the SBLOCA system response for the four-loop pressurized water reactor is presented by discussing the overall system response, the system mass distribution, and the core response

  19. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement 9

    International Nuclear Information System (INIS)

    Supplement 9 to the Safety Evaluation Report for Louisiana Power and Light's application for a license to operate Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Region IV Office of the US Nuclear Regulatory Commission. This supplement provides the results of the staff's completion of its evaluation of approximately 350 allegations and concerns of poor construction practices at the Waterford 3 facility

  20. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement No. 8

    International Nuclear Information System (INIS)

    Supplement 8 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its seven previous supplements were issued

  1. New Brunswick Laboratory progress report, October 1994--September 1995

    International Nuclear Information System (INIS)

    The mission of the New Brunswick Laboratory (NBL) of the A. S. Department of Energy (DOE) is to serve as the National Certifying Authority for nuclear reference materials and to provide an independent Federal technical staff and laboratory resource performing nuclear material measurement, safeguards, and non-proliferation functions in support of multiple program sponsors. This annual report describes accomplishments achieved in carrying out NBL's assigned missions

  2. New Brunswick Laboratory progress report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The mission of the New Brunswick Laboratory (NBL) of the A. S. Department of Energy (DOE) is to serve as the National Certifying Authority for nuclear reference materials and to provide an independent Federal technical staff and laboratory resource performing nuclear material measurement, safeguards, and non-proliferation functions in support of multiple program sponsors. This annual report describes accomplishments achieved in carrying out NBL`s assigned missions.

  3. Care of the newborn in perinatal units in New Brunswick

    OpenAIRE

    Stephen, David L.

    1986-01-01

    A survey of 23 perinatal units in New Brunswick hospitals was conducted by means of a mailed questionnaire to determine the type of care provided to newborns. The results showed various degrees of conformity with published guidelines for the care of newborns. Deficiencies were noted in several areas of care: failing to give or improperly giving vitamin K1 prophylaxis (in 7 of the units), flushing the eyes after silver nitrate prophylaxis (in 10), using hexachlorophene to bathe newborns (in 11...

  4. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  5. Electric waste gas purification of a waste wood fired steam generator. Final report. Elektrische Abgasreinigung eines 'Abfallholzbefeuerten Dampfkessels'. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, W.

    1984-11-01

    The crude gas dust content of smoke gases from waste wood fired steam generators is influenced considerably by the type and quality of the waste combustibles. When firing wood waste with a high proportion of fine particles and ash, the smoke gases normally have a higher crude gas content compared to clean wood waste combustibles consisting of coarse particles. It was necessary to provide documents for the design of a suitable smoke gas dedusting system by means of corresponding firing and measuring programmes. After having evaluated the documents provided, it became clear that the use of an electric filter system is the most suitable for smoke gas dedusting of steam boilers fired by wood waste combustibles in the broadest sense, in the form of particles as well as in a blowable form. After putting the system into operation, it was possible to prove that the pure gas dust content was certainly lower than requested in the 'TA air' in all operating stages. (orig.).

  6. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2. Docket Nos. 50-445 and 50-446

    International Nuclear Information System (INIS)

    Supplement No. 3 to the Safety Evaluation Report (SER) related to the operation of the Comanche Peak Steam electric Station, Units 1 and 2, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. the facility is located in Somervell County, Texas. Subject to favorable resolution of the items identified in this supplement, the staff concludes that the facility can be operated by the applicatn without endangering the health and safety of the public. This document provides the NRC staff's evaluation of the outstanding and confirmatory issues that have been resolved since Supplement No. 2 was issued in January 1982, and addresses changes to the SER and its earlier supplements which have resulted from the receipt of additonal information from the applicant during the period of January throught October 1982

  7. Final environmental statement related to the operation of H.B. Robinson Nuclear Steam-Electric Plant, Unit 2: (Docket No. 50-261)

    International Nuclear Information System (INIS)

    The proposed action is the continuation of Facility Operating License DPR-23 to Carolina Power and Light Company for H.B. Robinson Unit 2. Unit 2, located adjacent to Lake Robinson in Darlington County, near Hartsville, South Carolina, employs a pressurized water reactor to produce up to 2200 megawatts thermal (MWt). A steam turbine-generator uses this heat to provide 700 megawatts electric (MWe) of net electrical power capacity. A design power level of 2300 MWt (730 MWe) has been requested and is considered in the assessments contained in this statement. The exhaust steam is cooled by a flow of water obtained from the discharged to a 2250-acre cooling lake, Lake Robinson. Land areas disturbed during construction of the plant, but not used, have been seeded to native grasses, trees, and shrubs. Construction of a cooling water discharge canal extension resulted in alteration of about 100 acres of wildlife habitat. Subsequently, the canal banks were seeded with pines and legumes. Some erosion has taken place in the pine-seeded areas. Some small fish are killed by impingement on the water intake screens. Organisms passing through the screens very likely do not survive their passage through the circulating water system. Operation of the plant will cause an increase in the temperature of Black Creek below Lake Robinson. A small impact exists due to production and, after processing, disposal or release of sanitary and chemical wastes. Unit 2 may discharge up to 500 pounds/day of chemicals (primarily sulfates). Under conditions of low flow into and out of the lake, this increases the sulfate concentration in the lake by less than 1 ppM over the normal 7.7 ppM

  8. Steam turbine

    OpenAIRE

    Vališ, Petr

    2010-01-01

    The master´s thesis concentrates on a project of steam turbine with controlled extraction points destined for a communal waste incineration plant. First, there the history of devices using steam as a moving medium is introduced and than follows the description of computing program, where the calculation was running. The master´s thesis subject consists in the thermodynamic project of turbine vaning, in basic project of gearbox including the check calculations and in technical economic compari...

  9. New Brunswick Power Corporation annual report, 1993/94

    International Nuclear Information System (INIS)

    Net income for New Brunswick Power in the year 1993/94 was $23.7 million, up from $1.1 million the previous year. Total revenues decreased by $7.4 million as decreases in export sales were greater than in-province load growth and due to the impacts of a 5% rate increase in 1992 and 2.9% increase in January 1994. In-province energy sales revenues totalled $732.8 million, an increase of $25.1 million from 1992/93. Residential energy sales increased by 2.1% while the those to industrial customers declined by 1.4%, due to continuing economic difficulties in the pulp and paper and mining sector. Out of province revenues decreased by $33.3 million or 19.7%, with total energy exports decreasing by 688.6 GWh to 2453.6 GWh. A significant highlight of the year was integration of the Belledune generating station onto the New Brunswick sytem in October. A state-of-the-art coal fired facility, Belledune will contribute 450 MW to the system. Its flue gas scrubber will reduce sulfur dioxide emissions by 90%. 6 figs., 9 tabs

  10. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2: Docket No. 50-445 and 50-446

    International Nuclear Information System (INIS)

    Supplement 20 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of CPRT implementation of the Comanche Peak Response Team (CPRT) Program Plan and the issue-specific action plans (ISAPs), as well as the CPRT's investigations to determine the adequacy of various types of programs and hardware at CPSES. The results and conclusions of the CPRT activities are documented in a results report for each ISAP, a Collective Evaluation Report (CER), and a Collective Significance Report (CSR). This supplement also presents the staff's safety evaluation of TU Electric's root cause assessment of past CPSES design deficiencies and weaknesses. The NRC staff concludes that the CPRT has adequately implemented its investigative activities related to the design, construction, construction quality assurance/quality control, and testing at CPSES. The NRC staff further concludes that the CPRT evaluation of the results of its investigation is thorough and complete and its recommendations for corrective actions are sufficient to resolve identified deficiencies

  11. Environmental contaminants in fish from Mere Brook - U.S. Naval Air Station, Brunswick, Maine

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Mere Brook bisects three former landfills at the U.S. Naval Air Station in Brunswick, Maine (NASB). Leachate, soil, and sediment analyzed during Superfund remedial...

  12. New Brunswick Market Design Committee : Congestion management issues

    International Nuclear Information System (INIS)

    The restructuring of the New Brunswick wholesale power market comprises a number of issues that need to be resolved concerning transmission system related policy decisions and detailed design issues. The wholesale market structure, ownership structure, and means of preventing market power abuses all have an impact on the resolution of many of those issues. Some transmission related decisions regarding congestion management must be made, and they are examined in this document. The report includes a discussion of the issues related to congestion on the transmission system, a review of the decisions that remain to be made while proposing a number of alternatives, reviews decisions that other jurisdictions have made in somewhat similar circumstances. Finally, the advantages and disadvantages of each alternative are identified. Several high level transmission tariff design issues requiring to be addressed later in greater detail are listed in this document. 1 tab

  13. New Brunswick Power Corporation: Business plan, 1994-1999

    International Nuclear Information System (INIS)

    The first publicly available business plan for the New Brunswick Power Corp. is presented. The five-year plan provides an overview of the Corporation's performance and directions, including possible future rate increases. A review of the corporate history of the utility is followed by a description of the strategic framework under which the Corporation conducts its business operations. The information presented includes customer requirements, power generation and transmission, system operations, personnel management, environmental protection, and external factors affecting operations. This overview demonstrates the complex issues facing the utility, the choices made in the past, and the matters that will have to be faced in the future. The business overview is followed by focused business plans in six key functional areas (facilities, operations, personnel, technology, environment, and finances) and comprehensive financial forecasts that outline a commitment to maintain competitive rates for customers. The reasoning behind the forecasts is explained and a glossary is included. 21 figs., 16 tabs

  14. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    Supplement 24 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, and 23 to that report were published. This supplement also includes the evaluations for licensing items resolved since Supplement 23 was issued. Supplement 5 has not been issued. Supplements 7, 8, 9, 10, and 11 were limited to the staff evaluation of allegations investigated by the NRC Technical Review Team. Supplement 13 represented the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan, which was formulated by the applicant to resolve various construction and design issues raised by sources external to TU Electric. Supplements 14 through 19 presented the staff's evaluation of the CPSES Corrective Action Program: large- and small-bore piping and pipe supports (Supplement 14); cable trays and cable tray hangers (Supplement 15); conduit supports (Supplement 16); mechanical, civil/structural, electrical, instrumentation and controls, and systems portions of the heating, ventilation, and air conditioning (HVAC) system workscopes (Supplement 17); HVAC structural design (Supplement 18); and equipment qualification (Supplement 19). Supplement 20 presented the staff's evaluation of the CPRT implementation of its Program Plan and the issue-specific action plans, as well as the CPRT's investigations to determine the adequacy of various types of programs and hardware at CPSES

  15. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    Supplement 23 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and supplements 1, 2, 3, 4, 6, 12, 21, and 22 to that report were published. This supplement also includes the evaluations for licensing items resolved since Supplement 22 was issued. Supplement 5 has not been issued. Supplements 7, 8, 9, 10, and 11 were limited to the staff evaluation of allegations investigated by the NRC Technical Review Team. Supplement 13 presented the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan, which was formulated by the applicant to resolve various construction and design issues raised by sources external to TU Electric. Supplements 14 through 19 presented the staff's evaluation of the CPSES Corrective Action Program: large- and small-bore piping and pipe supports (Supplement 14); cable trays and cable tray hangers (Supplement 15); conduit supports (Supplement 16); mechanical, civil/structural, electrical, instrumentation and controls, and systems portions of the heating, ventilation, and air conditioning (HVAC) system workscopes (Supplement 17); HVAC structural design (Supplement 18); and equipment qualification (Supplement 19). Supplement 20 presented the staff's evaluation of the Comanche Peak Response Team implementation of the CPRT Program

  16. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    Supplement 22 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station, Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, and 21 to that report. This supplement also includes the evaluations for licensing items resolved since Supplement 21 was issued. Supplement 5 has been cancelled. Supplements 7 through 11 were limited to the staff evaluation of allegations investigated by the NRC Technical Review Team. Supplement 13 presented the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan, which was formulated by the applicant to resolve various construction and design issues raised by sources external to the applicant. Supplements 14 through 20 presented the staff's evaluation of the applicant's Corrective Action Program and CPRT activities. Items identified in Supplements 7, 8, 9, 10, 11, 13, 14, and 15 through 20 are not included in this supplement, except to the extent that they affect the applicant's Final Safety Analysis Report. 154 refs., 24 figs., 8 tabs

  17. Measurement of Sr-90 background levels in water, soil and milk around the site of the Comanche Peak Steam Electric Station

    International Nuclear Information System (INIS)

    Background concentrations of Sr-90 in water, soil and milk samples collected from preselected locations around the first nuclear power plant in Texas, the Comanche Peak Steam Electric Station at Glen Rose, were measured in the period 1980-82. Statistical analyses of measured data showed that: 1) in the first approximation, Sr-90 is distributed uniformly in the North Central Texas area; 2) no seasonal variation is observed in the concentrations measured in water, soil and milk; 3) the Sr-90 content of surface water is shown, however, to be higher than that of underground water; this difference might be explained by the atmospheric (fallout) origin of Sr-90 generated in atmospheric nuclear explosions before 1963; 4) in the area under investigation, Sr-90 concentrations turns out to be lower than those measured in northern parts of the US. This difference might be explained by the fact that the majority of atmospheric nuclear explosions were carried out at higher latitudes than that of Texas, and by the approximative conservation of latitude in the atmospheric motion of radioactive clouds

  18. Aerial radiological survey of the Comanche Peak Steam Electric Station and surrounding area, Glen Rose, Texas. Date of Survey: March 1982

    International Nuclear Information System (INIS)

    An aerial radiological survey was performed from 1 to 9 March 1982 over a 260-square-kilometer area centered on the Comanche Peak Steam Electric Station located in Somervell County, Texas. The survey was conducted by the Energy Measurements Group of EG and G for the US Nuclear Regulatory Commission. All gamma ray data were collected by flying parallel lines spaced 152 meters (500 feet) apart at an altitude of 91 meters (300 feet) above ground level. Count rates obtained from the aerial platform were converted to total exposure rates at 1 meter above the ground and are presented in the form of an isoradiation contour map. The observed exposure rates ranged from 6 to 12 microroentgens per hour (μR/h), with the average background ranging from 6 to 8 μR/h. These values include an estimated cosmic ray contribution of 3.8 μR/h. The exposure rates obtained from ground-based measurements taken in typical background locations within the survey area displayed positive agreement with the aerial data

  19. Comparison of food habits of white perch (Morone americana) in the heated effluent canal of a steam electric station and in an adjacent river system

    International Nuclear Information System (INIS)

    Analysis of the stomach contents of 97 white perch, Morone americana, taken from the effluent canal of a steam electric station (S.E.S.) and 106 white perch from adjacent Patuxent River waters indicated similar food habits from September 1970 through August 1971. However, 35 percent of all white perch taken from the heated effluent canal contained small pieces of coal and cinders, whereas only 3 percent of the river specimens contained such items in their stomachs. Fly ash and coal dust are present on the bottom of the S.E.S. canal, whereas little such material, if any, can be found on the river bottom in the study area. This suggests the canal fish were actively feeding in the heated effluent and not simply moving into the canal after feeding in the river. No significant difference (P greater than 0.05) was found between the average wet weight stomach contents of the river and canal fish within the same month

  20. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    Supplement 18 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the applicant's Corrective Action Program (CAP) related to the structural design of the heating, ventilation, and air conditioning (HVAC) systems. The scope and methodologies for the CAP workscope as summarized in Revision 0 to the HVAC project status report and as detailed in related documents referenced in this evaluation were developed to resolve the technical concerns identified in the HVAC area. The NRC staff concludes that the CAP workscope for the HVAC structural design provides a comprehensive program for resolving the associated technical concerns and its implementation ensures that the structural design of the HVAC systems at CPSES satisfies the applicable requirements of 10 CFR Part 50. 32 refs

  1. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    Supplement 19 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the Texas Utilities Electric Company's (lead applicant's) corrective action program (CAP) related to equipment qualification. The scope and methodology for the CAP workscope, as summarized in Revision 0 to the Equipment Qualification Project Status Report and as detailed in related documents, were developed to resolve various issues raised by the Comanche Peak Response Team (CPRT) and the NRC staff to ensure that plant equipment is appropriately environmentally and/or seismically and dynamically qualified and documented in accordance with the validated plant design resulting from other CAP scopes of work for Unit 1 and areas common to Units 1 and 2. The staff concludes that the CAP workscope for equipment qualification provides a comprehensive program for resolving the concerns identified by the CPRT and the NRC staff, including issues raised in the Comanche Peak Safety Evaluation Report and its supplements, and its implementation will ensure that the environmental and/or seismic and dynamic qualification of equipment at CPSES satisfies the validated plant design and the applicable requirements of 10 CFR Part 50. As is routine staff practice, the NRC staff will verify the adequacy of implementation of the environmental and seismic and dynamic equipment qualification program at CPSES during inspections that will take place before fuel loading. 97 refs

  2. Steam boiler technology

    Energy Technology Data Exchange (ETDEWEB)

    Teir, S.

    2002-07-01

    The steam boiler technology e-Book is provided by the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. The book covers the basics and the history of steam generation, modern boilers types and applications, steam/water circulation design, feedwater and steam systems components, heat exchangers in steam boilers, boiler calculations, thermal design of heat exchangers.

  3. New Brunswick Laboratory. Progress report, October 1995--September 1996

    International Nuclear Information System (INIS)

    Fiscal year (FY) 1996 was a very good year for New Brunswick Laboratory (NBL), whose major sponsor is the Office of Safeguards and Security (NN-51) in the US Department of Energy (DOE), Office of Nonproliferation and National Security, Office of Security Affairs. Several projects pertinent to the NBL mission were completed, and NBL's interactions with partners and customers were encouraging. Among the partners with which NBL interacted in this report period were the International Atomic Energy Agency (IAEA), NN-51. Environmental Program Group of the DOE Chicago Operations Office, International Safeguards Project Office, Waste Isolation Pilot Plant (WIPP), Ukraine Working Group, Fissile Materials Assurance Working Group, National Institute of Standards and Technology (NIST), Nuclear Regulatory Commission (NRC), Institute for Reference Materials and Measurements (IRMM) in Belgium, Brazilian/Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), Lockheed Idaho Technologies Company, and other DOE facilities and laboratories. NBL staff publications, participation in safeguards assistance and other nuclear programs, development of new reference materials, involvement in the updating and refinement of DOE documents, service in enhancing the science education of others, and other related activities enhanced NBL's status among DOE laboratories and facilities. Noteworthy are the facts that NBL's small inventory of nuclear materials is accurately accounted for, and, as in past years, its materials and human resources were used in peaceful nuclear activities worldwide

  4. Transforming the New Brunswick Energy Hub: An Analysis on Renewable Energy

    Science.gov (United States)

    Gunter, Christopher

    This research examines the benefits and disadvantages of instituting a shift from fossil fuel dependence to renewable sources of energy in New Brunswick. The New Brunswick Energy Hub is a complex system acting under the mandate of the White Paper New Brunswick Energy Policy. In my research, I consider information derived from statistical indicators developed by Patlitzianas, Doukas, Kagiannas and Psarras (2008) and compare these findings to the efficacy of energy policies in Germany, Denmark and Spain. These countries are similar to New Brunswick in climate and organizational complexity (US Department of Commerce, 2009). Weighing the outcomes of this comparative study, I discuss my recommendations highlighting the environmental and economic benefits. My research investigates subsidies in each country that allowed them early economic and environmental advantages. Specific regional considerations, such as Denmark's trend of selling energy technology for profit over domestic applications, inform my conclusions. The future New Brunswick Energy Policy should focus on creating favorable conditions for renewable energy development to occur. Some proven conditions include infrastructure development subsidies and the development and annual review of a competitive open access transmission tariff. With the expiry of the current White Paper comes the necessity of this investigation, and the opportunity to address the growing financial and environmental concerns that many politicians and policy planners have failed to deal with in past policies.

  5. Steam iron cleaner poisoning

    Science.gov (United States)

    ... cleaner is a substance used to clean steam irons. Poisoning occurs when someone swallows steam iron cleaner. This ... Below are symptoms of steam iron cleaner poisoning in different ... AND THROAT Severe pain in the throat Severe pain in the mouth ...

  6. 76 FR 8720 - Record of Decision for the Disposal and Reuse of Naval Air Station Brunswick, ME

    Science.gov (United States)

    2011-02-15

    ... storm water management plan, as required by the Town of Brunswick. Sediment and Erosion Control: Redevelopment of NAS Brunswick has the potential to cause soil erosion. The developer will be required to utilize mitigation measures in accordance with Maine's Erosion and Sediment Control Law and...

  7. 75 FR 35024 - North Carolina Waters Along the Entire Length of Brunswick and Pender Counties and the Saline...

    Science.gov (United States)

    2010-06-21

    ... AGENCY North Carolina Waters Along the Entire Length of Brunswick and Pender Counties and the Saline... Counties, and the saline waters of the Cape Fear River in Brunswick and New Hanover Counties. The other saline waters of New Hanover County have already been designated as a NDZ. The geographic...

  8. Mathematical modeling of control system for the experimental steam generator

    OpenAIRE

    Podlasek Szymon; Lalik Krzysztof; Filipowicz Mariusz; Sornek Krzysztof; Kupski Robert; Raś Anita

    2016-01-01

    A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units – quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is...

  9. New type steam turbine for cogeneration

    Institute of Scientific and Technical Information of China (English)

    He Jianren; Yang Qiguo; Xu Damao

    2010-01-01

    A concept of energy saving & efficiency improving from cold source for cogeneration steam turbine was discussed herein.A new type"NCB"cogeneration steam turbine was proposed,which could considerably increase heat supply capacity,thermal efficiency and electric power.Taking 300 MW cogeneration steam turbine as an example,the results show that heat supply capacity reaches the maximum,i.e.increases by 30%,thermal efficiency is improved by12%,and electric power is enhanced by 15 MW during peak heat load.

  10. Steam Allocation Plan Considering Production and Electricity Generation%考虑生产与发电的蒸汽配置计划问题

    Institute of Scientific and Technical Information of China (English)

    张小雷; 张颜颜; 唐立新

    2012-01-01

    如何提高蒸汽系统整体的运行效率,减少蒸汽的放散损失,对于钢铁企业的节能减排、降低吨钢成本意义重大.针对蒸汽系统中不同类型的汽源设备运行方式差别较大的特点,以某大型钢铁企业蒸汽系统的实际运行为背景,建立了多汽源、多用户、多产品、分时的动态配置线性规划模型.该模型将不同汽源设备组成的系统作为一个整体进行研究,以更实际更直观的蒸汽发电量最大为目标,并利用约束从客观上保证了余热汽源的充分利用.最后根据现场数据,利用CPLEX得到了最优解.%How to imorove the operating efficiency of whole steam system and reduce the steam diffuion loss are of great significance so as to save energy, reduce emission and reduce the cost of per ton iron. This paper develops a time sharing dynamic linear programming model with multi-steam-source, multi-customer and multi-product by considering the operating differences of various steam source equipments in the steam system and using a real operation of steam system in an iron & steel enterprise as background. The model considers the combined system of different steam source facilities as a whole system. A practical and direct object of maximizing the steam electriciy generation is adopted, and the full use of the residual steam sources is guaranteed by constraint conditions. Finally, CPLEX is adopted to obtain the optimal solution based on the on-the-spot data.

  11. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 7

    International Nuclear Information System (INIS)

    Supplement 7 to the Safety Evaluation Report for the Texas Utilities Electric Company application for a license to operate Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445, 50-446), located in Somervell County, Texas, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Comanche Peak Technical Review of the US Nuclera Regulatory Commission. This supplement provides the results of the staff's evaluation and resolution of approximately 80 technical concerns and allegations in the areas of Electric/Instrumentation and Test Programs regarding construction and plant readiness testing practices at the Comanche Peak facility. Issues raised during Atomic Safety and Licensing Board hearings will be dealt with in future supplements to the Safety Evaluation Report

  12. Recycling of waste steam heat to explore the feasibility of electrical engineering%乏汽余热回收利用电气工程的可行性探究

    Institute of Scientific and Technical Information of China (English)

    杨树丽

    2013-01-01

    The exhaust steam heat recovery project with energy saving target,in order to solve the livelihood problems heating the starting point,after the recovery of a large number of power plants for urban waste steam heat heating heating,the project’s primary energy consumption without increasing the case Next,increase the heating area of the city,reducing the amount of investment,so explore the exhaust steam heat recovery in electrical engineering(including auxiliary power systems, control systems,etc.)is necessary.%  本项目乏汽余热回收利用以节能减排为目标、以解决供热的民生问题为出发点,回收电厂发电后的大量乏汽余热用于城市采暖供热,该项目在不增加一次能源消耗的情况下,加大了城市供热面积、减少了大量投资,所以探讨乏汽余热回收利用的电气工程(包括厂用电系统、控制系统等)很有必要。

  13. The impact research of control modes in steam turbine control system (digital electric hydraulic to the low-frequency oscillation of grid

    Directory of Open Access Journals (Sweden)

    Yanghai Li

    2016-01-01

    Full Text Available Through the analysis of the control theory for steam turbine, the transfer function of the steam turbine control modes in the parallel operation was obtained. The frequency domain analysis indicated that different control modes of turbine control system have different influence on the damping characteristics of the power system. The comparative analysis shows the direction and the degree of the influence under the different oscillation frequency range. This can provide the theory for the suppression of the low-frequency oscillation from turbine side and has a guiding significance for the stability of power system. The results of simulation tests are consistent with the theoretic analysis.

  14. Women's Access to Training in New Brunswick. Training Matters: Working Paper Series.

    Science.gov (United States)

    McFarland, Joan

    A gender-based analysis of training that focuses on barriers to women because of changes in the availability of sponsorship leads to the conclusion that training programs for women in New Brunswick have been spotty at best. Women's training has occurred during the 1970s, 1980s, and 1990s under the aegis of the Canadian Manpower Training Program,…

  15. Environmental contaminants in golden shiners from Picnic Pond, U.S. Naval Air Station, Brunswick, Maine

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — On July 25, 1995, the U.S. Fish and Wildlife Service conducted a contaminant survey of fish from Picnic Pond on the U.S. Naval Air Station in Brunswick, Maine...

  16. Hydrographic observations off Savannah and Brunswick, Georgia, March, May and September 1977 and January 1978

    Energy Technology Data Exchange (ETDEWEB)

    Singer, J J; Atkinson, L P; Chandler, W S; Bishop, S S

    1978-01-01

    Seasonal onshore-offshore sections were run in March, May and September 1977 and January 1978 off Savannah and Brunswick, Georgia. In each instance upwelling was observed at the shelf break with significant nutrient fluxes into the surface and/or shelf waters. There are indications that eddies may have been responsible for some of these observations.

  17. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2007

    Science.gov (United States)

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean groundwater- level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2007. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2007 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 6 of the 11 observation wells, above normal in 1 well, and below normal in the remaining 4 wells.

  18. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2006

    Science.gov (United States)

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean ground-water-level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2006. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2006 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 3 of the 11 observation wells, above normal in 5, and below normal in the remaining 3 wells.

  19. The University of New Brunswick's Renaissance College: Curricular Evolution and Assessment at the Faculty Level

    Science.gov (United States)

    Zundel, Pierre; Mengel, Thomas

    2007-01-01

    The purpose of this chapter is to draw some general lessons on curricular evolution processes and practices at the faculty level emerging from the creation of Renaissance College at the University of New Brunswick and the implementation of its BPhil program. The authors proceed by induction, working from the specific case of Renaissance College to…

  20. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 8

    International Nuclear Information System (INIS)

    Supplement 8 to the Safety Evaluation Report for the Texas Utilities Electric Company application for a license to operate Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445, 50-446), located in Somervell County, Texas, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Comanche Peak Technical Review Team of the US Nuclear Regulatory Commission. This Supplement provides the results of the staff's evaluation and resolution of approximately 80 technical concerns and allegations relating to civil and structural and miscellaneous issues regarding construction and plant readiness testing practices at the Comanche Peak facility. Issues raised during recent Atomic Safety and Licensing Board hearings will be dealt with in future supplements to the Safety Evaluation Report

  1. Methane reforming with fast nuclear reactor steam

    International Nuclear Information System (INIS)

    The paper considers the concept of utilizing nuclear fast reactor (FR) with a sodium coolant for methane steam reforming. Steam conditions of a power FR, e.g. the BN-600 now operating in Russia: steam pressure P=13.2 MPa and steam temperature T=500degC, do not absolutely comply with the catalytic reactor working parameters, which produces a synthetic gas (syngas), a mix of hydrogen and carbon oxide. In this connection, the present paper addresses a possibility of utilizing steam produced in one of three independent the BN-600 loops in an amount of 640 t/h for preparing a gas-steam mixture with T=500degC and its additional heating in a converter up to the operating temperature, T=850degC, at the expense of natural gas burning or electrical energy supplying. In this case, the fraction of burned natural gas burning or electrical energy supplying. In this case, the fraction of burned natural gas significantly decreases. It is estimated that steam parameters of the BN-600 afford to obtain ∼3·105 nm3/h of hydrogen. It is also considered a concept of nuclear heat transfer to remote regions to be achieved with the aid of syngas incoming from the converter, its cooling further and transmitting through a pipeline to the place of its utilization, where it is restored into methane with the heat extraction. (author)

  2. Toxicity tests and sediment chemistry at Site 9 (Neptune Drive Disposal Site) - U.S. Naval Air Station, Brunswick, Maine

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — During a remedial investigation of the U.S. Naval Air Station Superfund Site in Brunswick, Maine (NASB), elevated concentrations of total polycyclic aromatic...

  3. Steam Digest 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-01-01

    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  4. Strategies for steam

    International Nuclear Information System (INIS)

    This article is a review of worldwide developments in the steam turbine and heat recovery steam generator markets. The Far East is driving the market in HRSGs, while China is driving the market in orders placed for steam turbine prime movers. The efforts of several major suppliers are discussed, with brief technical details being provided for several projects

  5. Steam Digest Volume IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  6. Integrated Gasification SOFC Plant with a Steam Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Pierobon, Leonardo

    2011-01-01

    A hybrid Solid Oxide Fuel Cell (SOFC) and Steam Turbine (ST) plant is integrated with a gasification plant. Wood chips are fed to the gasification plant to produce biogas and then this gas is fed into the anode side of a SOFC cycle to produce electricity and heat. The gases from the SOFC stacks...... enter into a burner to burn the rest of the fuel. The offgases after the burner are now used to generate steam in a Heat Recovery Steam Generator (HRSG). The generated steam is expanded in a ST to produce additional power. Thus a triple hybrid plant based on a gasification plant, a SOFC plant...... and a steam plant is presented and studied. The plant is called as IGSS (Integrated Gasification SOFC Steam plant). Different systems layouts are presented and investigated. Electrical efficiencies up to 56% are achieved which is considerably higher than the conventional integrated gasification combined...

  7. More than wind: evaluating renewable energy opportunities for First Nations in Nova Scotia and New Brunswick

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Diana [MREM Canada (Canada)

    2011-04-15

    The Nova Scotia and New Brunswick governments have committed to developing the renewable energy sector in the coming years. However, due to a lack of information, First Nations are not familiar with renewable energy technologies and their economic opportunities. The aim of this paper is to provide First Nations with information on the different renewable energies. It has been noticed that First Nations have not seized either the opportunities offered by the Nova Scotia feed-in tariff nor the New Brunswick community energy policy and an overview of these policies is provided. In addition, information on renewable energy technologies is presented along with potential opportunities specific to each First Nation in the 2 provinces. This paper provides First Nations with useful information on renewable energy and with recommendations for immediate and long term action; it is expected that this document will result in a greater involvement of First Nations in the renewable energy sector.

  8. Sodium-water wastage and reactions program performed by general electric in support of the US. AEC LMFBR steam generator development

    International Nuclear Information System (INIS)

    This paper constitutes an interim report on the sodium-water reaction programs performed, using the GE-SOWAT, GE-SMALL LEAK BEHAVIOR RIG, and GE-PTTR facilities in support of LMFBR steam generator development and its application to the Clinch River Breeder Reactor Plant. Test data from these rigs are presented, including wastage data as a function of water injection rate, sodium temperature, and orifice geometry. Initial results for self-wastage of defects under prototypical conditions, and from proof-of-principle tests of a protected heat transfer tube concept are also presented. An analytical basis for wastage phenomena is suggested. (author)

  9. Nuclear steam-reheat options: Russian experience

    International Nuclear Information System (INIS)

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950s and 1960s in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with SuperCritical Water (SCW) became attractive again as the ultimate development path for water cooling. The main objectives of using SCW in nuclear reactors are: 1) to increase the thermal efficiency of modern Nuclear Power Plants (NPPs) from 30 - 35% to about 45 - 50%, and 2) to decrease capital and operational costs and hence decrease electrical-energy costs. SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625oC), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost due to increased reaction rates. To achieve higher thermal efficiency a nuclear steam reheat has to be introduced inside a reactor. Currently, all supercritical turbines at thermal power plants have a steam-reheat option. In the 60's and 70's, Russia and some other countries have developed and implemented the nuclear steam reheat at subcritical-pressure in experimental reactors. There are some papers, mainly published in the open Russian literature, devoted to this important experience. Analysis of the Russian literature on nuclear steam-reheat option is presented in the current paper. (author)

  10. Carrots and Sticks: New Brunswick and Maine Forest Landowner Perceptions Toward Incentives and Regulations

    Science.gov (United States)

    Quartuch, Michael R.; Beckley, Thomas M.

    2014-01-01

    The governments of countries that allow private land ownership have two main tools to motivate landowner behavior: regulations and incentives. This research examines landowner preferences toward these policy tools and asks specifically: Do private forest landowners in New Brunswick and Maine believe that regulations and/or incentives are effective means to motivate responsible stewardship? Can landowners identify explicit regulations and policies that restrict property rights? Also, we were interested to see if any discernible differences existed between these adjacent jurisdictions from different countries, but that share similar forests and a similar settlement history. We identified and interviewed diverse landowners, recorded and transcribed our discussions, and analyzed the results using a grounded theory approach. Findings suggest that both New Brunswick and Maine participants are fairly comfortable with most regulations and many agreed that a combination of incentives and regulations are in fact useful. Furthermore, landowners in New Brunswick discussed non-monetary incentives as a mechanism to reward "good" stewardship; while Maine respondents articulated a degree of responsible stewardship that transcends a need to incentivize landowners. This study demonstrates that diverse landowners may be more comfortable with environmental regulations than previously understood and may be interested in non-monetary incentives.

  11. New Brunswick Site annual environmental report for calendar year 1991, New Brunswick, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This document describes the environmental monitoring program at the New Brunswick Site (NBS) and surrounding area, implementation of the program, and monitoring results for 1991. The site, near New Brunswick,, New Jersey, is a 5.6-acre vacant, fenced, and grass-covered area. Environmental monitoring of NBS began in 1981 when the site was part of the US Department of Energy`s (DOE) Surplus Facilities Management Program. In 1990 responsibility for NBS was transferred to the Formerly Utilized Sites Remedial Action Program (FUSP.4P). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the,early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at NBS includes sampling networks for radon and thoron in air; external gamma radiation exposure; and radium-226, radium-228, thorium-228, thorium-230, thorium-232, americium-241, cesium-137, plutonium-239, and total uranium in surface water, sediment, and groundwater. Several nonradiological parameters are also measured in groundwater, surface water, and sediments. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides, dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.

  12. Utilization of high CO2 content formation gas for steam and electricity generation; Aprovechamiento del gas de formacion con alto contenido de CO2 para generacion de vapor y electricidad

    Energy Technology Data Exchange (ETDEWEB)

    Villagomez, Paul; Lamino, Marcelo; Jacome, Jose; Pastor, Santiago [EcuadorTLC, Quito (Ecuador). Grupo PETROBRAS

    2008-07-01

    Ecuador TLC SA, as part of the PETROBRAS Group, respecting its mission to act safe, cost-effectiveness, social and environmental responsibility, currently operates an oil production project in the Ecuatorian Amazon, known as Block 18. In Block 18, the process of gas burning is response for launch approximately 10 MMSCF of the gas associated with 77% CO2 in the environment. For this reason it was built a centralized power generation plants (PGE), of 17.38 MW, taking advantage of the gas with 77% CO2 from boilers to burn it, using it as a source of heat in a combined cycle steam turbines, generating electricity. This project is environmentally efficient with reduced emissions of CO2 and as reducing fuel costs to zero. The results of CO2 reduction is a corporate goal of PETROBRAS and this project will contribute to reducing CO2 emissions by approximately 400,000 Ton over the life of the project.

  13. Mathematical modeling of control system for the experimental steam generator

    Directory of Open Access Journals (Sweden)

    Podlasek Szymon

    2016-01-01

    Full Text Available A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units – quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  14. Characterization of a steam plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    An atmospheric steam plasma jet generated by an original dc water plasma torch is investigated using electrical and spectroscopic techniques. Because it directly uses the water used for cooling electrodes as the plasma-forming gas, the water plasma torch has high thermal efficiency and a compact structure. The operational features of the water plasma torch and the generation of the steam plasma jet are analyzed based on the temporal evolution of voltage, current and steam pressure in the arc chamber. The influence of the output characteristics of the power source, the fluctuation of the arc and current intensity on the unsteadiness of the steam plasma jet is studied. The restrike mode is identified as the fluctuation characteristic of the steam arc, which contributes significantly to the instabilities of the steam plasma jet. In addition, the emission spectroscopic technique is employed to diagnose the steam plasma. The axial distributions of plasma parameters in the steam plasma jet, such as gas temperature, excitation temperature and electron number density, are determined by the diatomic molecule OH fitting method, Boltzmann slope method and Hβ Stark broadening, respectively. The steam plasma jet at atmospheric pressure is found to be close to the local thermodynamic equilibrium (LTE) state by comparing the measured electron density with the threshold value of electron density for the LTE state. Moreover, based on the assumption of LTE, the axial distributions of reactive species in the steam plasma jet are estimated, which indicates that the steam plasma has high chemical activity.

  15. Mathematical modeling of control system for the experimental steam generator

    Science.gov (United States)

    Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita

    2016-03-01

    A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  16. The Electrical Design Technology and Practices of Saturated Steam Cogeneration Station in Dongling Zn Industry Co., Ltd.%东岭锌业饱和蒸汽余热发电站电气设计技术与实践

    Institute of Scientific and Technical Information of China (English)

    李元宏

    2013-01-01

      利用锌冶炼生产工艺外富裕的饱和蒸汽,采用低压饱和蒸汽发电技术进行发电是一种新型的先进技术。采用技术先进的饱和蒸汽补汽凝汽式汽轮发电机组,饱和蒸汽利用率高达95%以上,余热发电站电气设计有其独特的一些特点。%Through using the rich saturated steam of zinc smelting production technology, adopting low pressure saturated steam power generation technology to generate electricity is a new type of advanced technology. If we adopt the saturated steam supplement and condensing steam turbonator with advanced technology, the saturated steam utilization rate will be above 95%, and the electrical design of waste heat power station has its unique characteristics.

  17. Generator of steam plasma for gasification of solid fuels

    Science.gov (United States)

    An'shakov, A. S.; Urbakh, E. K.; Rad'ko, S. I.; Urbakh, A. E.; Faleev, V. A.

    2013-12-01

    A structural design of an electric-arc steam plasma torch (plasmatron) with copper tubular electrodes has been proposed and implemented. Operational parameters are determined for the stable generation of steam plasma. Experimental data are presented on the energy characteristics of the plasma generator with the capacity up to 100 kW.

  18. Integrated Gasification SOFC Plant with a Steam Plant

    OpenAIRE

    Rokni, Masoud; Pierobon, Leonardo

    2011-01-01

    A hybrid Solid Oxide Fuel Cell (SOFC) and Steam Turbine (ST) plant is integrated with a gasification plant. Wood chips are fed to the gasification plant to produce biogas and then this gas is fed into the anode side of a SOFC cycle to produce electricity and heat. The gases from the SOFC stacks enter into a burner to burn the rest of the fuel. The offgases after the burner are now used to generate steam in a Heat Recovery Steam Generator (HRSG). The generated steam is expanded in a ST to prod...

  19. Summary and statistical analysis of precipitation and groundwater data for Brunswick County, North Carolina, Water Year 2008

    Science.gov (United States)

    McSwain, Kristen Bukowski; Strickland, A.G.

    2010-01-01

    Groundwater conditions in Brunswick County, North Carolina, have been monitored continuously since 2000 through the operation and maintenance of groundwater-level observation wells in the surficial, Castle Hayne, and Peedee aquifers of the North Atlantic Coastal Plain aquifer system. Groundwater-resource conditions for the Brunswick County area were evaluated by relating the normal range (25th to 75th percentile) monthly mean groundwater-level and precipitation data for water years 2001 to 2008 to median monthly mean groundwater levels and monthly sum of daily precipitation for water year 2008. Summaries of precipitation and groundwater conditions for the Brunswick County area and hydrographs and statistics of continuous groundwater levels collected during the 2008 water year are presented in this report. Groundwater levels varied by aquifer and geographic location within Brunswick County, but were influenced by drought conditions and groundwater withdrawals. Water levels were normal in two of the eight observation wells and below normal in the remaining six wells. Seasonal Kendall trend analysis performed on more than 9 years of monthly mean groundwater-level data collected in an observation well located within the Brunswick County well field indicated there is a strong downward trend, with water levels declining at a rate of about 2.2 feet per year.

  20. Unsteady coupling effects of wet steam in steam turbines flows

    International Nuclear Information System (INIS)

    In addition to conventional turbomachinery problems, both the behavior and performances of steam turbines are highly dependent on the vapour thermodynamic state and the presence of a liquid phase. EDF, the main French electricity producer, is interested in further developing its' modelling capabilities and expertise in this area to allow for operational studies and long-term planning. This PhD thesis explores the modelling of wetness formation and growth in a steam turbine and an analysis of the coupling between the liquid phase and the main flow unsteadiness. To this end, the work in this thesis took the following approach. Wetness was accounted for using a homogeneous model coupled with transport equations to take into account the effects of non-equilibrium phenomena, such as the growth of the liquid phase and nucleation. The real gas attributes of the problem demanded adapted numerical methods. Before their implementation in the 3D elsA solver, the accuracy of the chosen models was tested using a developed one-dimensional nozzle code. In this manner, various condensation models were considered, including both poly-dispersed and monodispersed behaviours of the steam. Finally, unsteady coupling effects were observed from several perspectives (1D, 1D - 3D, 3D), demonstrating the ability of the method of moments to sustain unsteady phenomena which were not apparent in a simple monodispersed model. (author)

  1. Redesign of Steam Strainer

    OpenAIRE

    Jannesson, Ann

    2008-01-01

    This thesis was done at Siemens Industrial Turbomachinery AB in Finspång. Placed in the inlet to a steam turbine is a filter, a steam strainer, which separates particles and larger objects from the steam. These particles and objects will cause solid particle erosion in the actual turbine if they pass by. The strainer is exposed to large pressure drops when clogged, i.e., static loads which require a good creep resistance in the material. The temperature of the steam in the turbines is increas...

  2. Nuclear steam generator

    International Nuclear Information System (INIS)

    A nuclear steam generator has a blowdown pump arranged to pump water from the blowdown line through a filter for return to the steam generator. The piping is arranged so that the pump may operate to reverse the direction of pumping through the blowdown line whereby reverse circulation may be established during wet lay up of the steam generator. A blower is arranged to withdraw nitrogen from an upper elevation in the steam generator and inject the nitrogen into the blowdown line in combination with the pumped reverse circulation during wet lay up. (author)

  3. Improvement in using steam for electric generation at the Los Azufres, Mich., geothermal field; Mejora en el aprovechamiento del vapor para generar energia electrica en el campo geotermico de Los Azufres, Mich.

    Energy Technology Data Exchange (ETDEWEB)

    Torres Rodriguez, Marco A.; Flores Armenta, Magaly; Mendoza Covarrubias, Alfredo [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: magaly.flores@cfe.gob.mx

    2010-01-15

    Commercial exploitation in the Los Azufres geothermal field, Michoacan, Mexico, started in 1982 when the first five backpressure-power units of 5-MW each were commissioned. Nowadays the installed capacity is 188 MW from 14 units: five in the South Zone fed by steam produced from 18 production wells plus two binary-cycle power units fed by residual brines; and seven in the North Zone with steam supplied by 22 production wells. There are seven backpressure-power units with high specific consumption [between 14.5 and 13.6 tons per hour of steam (t/h) per MW]. Three operate in the South Zone and four in the North Zone. This paper shows a way to achieve more efficient use of the geothermal resource by replacing the seven backpressure units, which have completed their useful lifetime-or are close to do it-with two, new condensing power units with lower specific consumption: one unit of 50 MW to be located in the North Zone and the other of 25 MW to be placed in the South Zone. No new wells need be drilled. In this way, the average specific consumption would be reduced to 8.8-7.2 t/h per MW (saving 47% of the steam), the income for electric generation would be increased and the steam-extraction rate would remain the same. [Spanish] En 1982 empezo la explotacion comercial del campo geotermico de Los Azufres, Mich., Mexico, con la instalacion y puesta en servicio de las primeras cinco unidades turbogeneradoras a contrapresion de 5 MW cada una. Actualmente la capacidad instalada es de 188 MW, con catorce unidades: cinco en la zona sur, alimentadas por el vapor de 18 pozos productores, mas dos unidades de ciclo binario que utilizan salmuera residual, y siete unidades en la zona norte, alimentadas por 22 pozos. Hay siete unidades a contrapresion con un consumo especifico elevado [entre 14.5 y 13.6 toneladas por hora (t/h) de vapor por MW], tres de las cuales se localizan en la zona sur y cuatro en la zona norte. En este documento se presenta un proyecto para hacer mas

  4. An Isothermal Steam Expander for an Industrial Steam Supplying System

    OpenAIRE

    Chen-Kuang Lin; Guang-Jer Lai; Yoshiyuki Kobayashi; Masahiro Matsuo; Min-Chie Chiu

    2015-01-01

    Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure) is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator i...

  5. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 11

    International Nuclear Information System (INIS)

    Supplement 11 to the Safety Evaluation Report for the Texas Utilities Electric Company application for a license to operate Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445, 50-446), located in Somervell County, Texas, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Comanche Peak Technical Review Team (TRT) of the US Nuclear Regulatory Commission (NRC) and is in two parts. Part 1 (Appendix 0) of this supplement provides the results of the TRT's evaluation of approximately 124 concerns and allegations relating specifically to quality assurance and quality control (QA/QC) issues regarding construction proctices at the Comanche Peak facility. Part 2 (Appendix P) contains an overall summary and conclusion of the QA/QC aspects of the NRC Technical Review Team efforts as reported in supplemental Safety Evaluation Report SERs 7, 8, 9, and 10. Since QA/QC issues are also contained in each of the other supplements, the TRT considered that such a summary and conclusion from all supplements was necessary for a complete TRT description of QA/QC activities at Comanche Peak

  6. Safety Picks up "STEAM"

    Science.gov (United States)

    Roy, Ken

    2016-01-01

    This column shares safety information for the classroom. STEAM subjects--science, technology, engineering, art, and mathematics--are essential for fostering students' 21st-century skills. STEAM promotes critical-thinking skills, including analysis, assessment, categorization, classification, interpretation, justification, and prediction, and are…

  7. Running Out of Steam.

    Science.gov (United States)

    Kumar, Promod

    2000-01-01

    Explains why schools should evaluate whether their older steam-heating systems are still cost-effective, or need to be repaired or replaced. The symptoms of deterioration are listed along with discussions on repair or replacement decision making on three areas of steam heating systems: boilers; distribution system; and terminal equipment. (GR)

  8. Replacement nuclear steam generators

    International Nuclear Information System (INIS)

    This paper reviews past and current practices in the replacement of nuclear steam generators. Plants where steam generator replacement has occurred are reviewed to see what changes have been made, and how the evolving technology has significantly reduced outage time and man-rem exposures. Current preferences in design and material are reviewed. 3 refs., 3 tabs., 2 figs

  9. Study of Constant Voltage Control on Small Steam Generator Based on PID Algorithm

    Directory of Open Access Journals (Sweden)

    Yanjun Xiao

    2014-03-01

    Full Text Available The object of this study is a kind of 3 kW small steam generator, which can recover waste heat through making use of 0.1~0.3 MPa steam. This can exploit secondary energy efficiently. The electricity generated can be commonly used as factory lighting, heating, fan and emergency power supply. But the generation voltage of the existed steam turbine is instable, especially when the steam pressure and the load of the generator changes suddenly. This can pose a threat to electrical safety and greatly limit the market of small steam generator. In this study, PID control algorithm is used to control the amount of steam into the turbine of generator system. And the closed-loop control system can make a real-time feedback regulation to the steam, so that the generator voltage can be stable. The user's electrical safety requirements are satisfied as well.

  10. An Isothermal Steam Expander for an Industrial Steam Supplying System

    Directory of Open Access Journals (Sweden)

    Chen-Kuang Lin

    2015-01-01

    Full Text Available Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator is replaced by a steam expander. With this steam expander, the pressure will be transformed into mechanical energy and extracted during the expansion process. A new type of isothermal steam expander for an industrial steam supplying system will be presented in the paper. The isothermal steam expander will improve the energy efficiency of a traditional steam expander by replacing the isentropic process with an isothermal expansion process. With this, steam condensation will decrease, energy will increase, and steam quality will be improved. Moreover, the mathematical model of the isothermal steam expander will be established by using the Schmidt theory, the same principle used to analyze Stirling engines. Consequently, by verifying the correctness of the theoretical model for the isothermal steam expander using experimental data, a prototype of 100 c.c. isothermal steam expander is constructed.

  11. Diverse tetrapod trackways in the Lower Pennsylvanian Tynemouth Creek Formation, near St. Martins, southern New Brunswick, Canada

    DEFF Research Database (Denmark)

    Falcon-Lang, Howard J; Gibling, Martin R; Benton, Michael J;

    2010-01-01

    Newly discovered tetrapod trackways are reported from eight sites in the Lower Pennsylvanian Tynemouth Creek Formation of southern New Brunswick, Canada. By far the most abundant and well-preserved tracks comprise pentadactyl footprints of medium size (32–53 mm long) with slender digits and a nar......Newly discovered tetrapod trackways are reported from eight sites in the Lower Pennsylvanian Tynemouth Creek Formation of southern New Brunswick, Canada. By far the most abundant and well-preserved tracks comprise pentadactyl footprints of medium size (32–53 mm long) with slender digits...

  12. Steam generator life management

    International Nuclear Information System (INIS)

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermal hydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. This report shows how recent advances in cleaning technology are integrated into a life management strategy, discusses downcomer flow measurement as a means of monitoring steam generator condition, and describes recent advances in hideout return as a life management tool. The research and development program, as well as operating experience, has identified

  13. Solar steam generation: Steam by thermal concentration

    Science.gov (United States)

    Shang, Wen; Deng, Tao

    2016-09-01

    The solar-driven generation of water steam at 100 °C under one sun normally requires the use of optical concentrators to provide the necessary energy flux. Now, thermal concentration is used to raise the vapour temperature to 100 °C without the need for costly optical concentrators.

  14. Steam boiler technology

    Energy Technology Data Exchange (ETDEWEB)

    Teir, S.

    2003-07-01

    This book is the published version of the e-book with the same name. The interactive lecture slides, which accompany most chapters, exist only in the online version and on the attached CD-Rom. The Steam Boiler Technology e-book is the main course book for the course on steam boiler technology provided by the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. The steam boiler technology e-Book is provided by the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. The book covers the basics and the history of steam generation, modern boilers types and applications, steam/water circulation design, feedwater and steam systems components, heat exchangers in steam boilers, boiler calculations, thermal design of heat exchangers. The chapters of the second edition have been corrected based on reader and reviewer comments, and four new chapters have been added. The user interface of the electronic version has also been updated. The password for the online book will be changed once a year. If you have problems accessing the online book, or need a new password, please contact sebastian.teir@hut.fi.

  15. Steam generator tube failures

    International Nuclear Information System (INIS)

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  16. Steam generator tube failures

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  17. Technical and economic analysis of steam-injected gas-turbine cogeneration

    Science.gov (United States)

    Larson, Eric D.; Williams, Robert H.

    1985-11-01

    Industrial cogeneration is gaining popularity as an energy and money saving alternative to separate steam and electricity generation. Among cogeneration technologies, gas-turbine systems are attractive largely because of their lower capital cost and high thermodynamic efficiency. However, at industrial plants where steam and electricity loads vary daily, seasonally, or unpredictably, the economics of conventional gas turbines are often unfavorable due to low capacity utilization. Steam-injected gas-turbine cogeneration overcomes the part-load problem by providing for excess steam to be injected back into the turbine to raise electrical output and generating efficiency. Under provisions of the Public Utilities Regulatory Policies Act, any excess electricity can be sold to the local grid at the prevailing avoided cost of electricity. Steam-injected gas-turbine cogeneration can result in a consistently high rate of return on investment over a wide range of variation in process steam loads. Moreover, this technology can also give rise to greater annual electricity production and fuel savings per unit of process steam generated, compared to simple-cycle cogeneration, making the technology attractive from the perspective of society, as well as that of the user. Steam-injected gas-turbines may soon find applications in electric utility base-load generation, as well, since it appears that electrical generating efficiencies in excess of 50% can be obtained from turbines producing of the order of 100 MW of electricity at a fully-installed capital cost as low as 500/kW.

  18. New Curculionoidea records from New Brunswick, Canada with an addition to the fauna of Nova Scotia

    Science.gov (United States)

    Webster, Reginald P.; Anderson, Robert S.; Webster, Vincent L.; Alderson, Chantelle A.; Hughes, Cory C.; Sweeney, Jon D.

    2016-01-01

    Abstract This paper presents 27 new records of Curculionoidea for the province of New Brunswick, Canada, including three species new to Canada, and 12 adventive species, as follows: Eusphryrus walshii LeConte, Choragus harrisii LeConte (newly recorded for Canada), Choragus zimmermanni LeConte (newly recorded for Canada) (Anthribidae); Cimberis pallipennis (Blatchley) (Nemonychidae); Nanophyes marmoratus marmoratus (Goeze) (Brentidae); Procas lecontei Bedel (Brachyceridae); Anthonomus pusillus LeConte (newly recorded for Canada), Anthonomus (Cnemocyllus) pictus Blatchley, Archarius salicivorus (Paykull), Dorytomus hirtus LeConte, Ellescus bipunctatus (Linnaeus), Mecinus janthinus (Germar), Myrmex chevrolatii (Horn), Madarellus undulatus (Say), Microplontus campestris (Gyllenhal), Pelenomus waltoni (Boheman), Rhinoncus bruchoides (Herbst), Rhinoncus perpendicularis (Reich), Cossonus impressifrons Boheman, Cossonus pacificus Van Dyke, Rhyncolus knowltoni (Thatcher), Eubulus bisignatus (Say), Polydrusus cervinus (Linnaeus), Magdalis piceae Buchanan, Procryphalus mucronatus (LeConte), Ips grandicollis (Eichhoff), and Xyleborinus attenuatus (Blandford). Recent name changes in the genus Rhinoncus are applied to species known from New Brunswick. In addition, Orchestes alni (Linnaeus) is newly recorded from Nova Scotia. PMID:27110173

  19. Role of the statistician in the decommissioning of the New Brunswick Laboratory and other nuclear facilities

    International Nuclear Information System (INIS)

    This report examines what the statistician can contribute to decommissioning operations, with particular emphasis on the New Brunswick Laboratory (NBL) currently scheduled for decommissioning beginning in FY81. In the opinion of the author, a professional statistician should be a full member of the planning team directing decommissioning operations at the New Brunswick Laboratory. This opinion is based in part on the familiarity with the valuable contributions made by statisticians toward the cleanup of transuranics in soil on the Enewetak Atoll. More generally, however, the professional statistician can help plan the decommissioning effort to help ensure that representative data are obtained, analyzed and, interpreted in appropriate ways so that RA decisions can be made with the required confidence. The statistician's contributions at the NBL could include providing guidance on the number and location of samples and in-situ measurements, analyzing and interpreting these data, designing a data management and documentation system, interfacing with the certification contractor's statistician, and assisting in writing documentation and final reports. In all cases, the statistician should work closely with the professional health physicist and others on the planning team in a closely coordinated effort of planning and data analysis

  20. Physician recruitment in rural Canada: programs in New Brunswick, Newfoundland, and Nova Scotia.

    Science.gov (United States)

    Reamy, J

    1994-01-01

    This paper examines programs used in the Atlantic provinces of New Brunswick, Newfoundland, and Nova Scotia to recruit and retain physicians in rural areas. The provinces have many similarities but have unique characteristics that have shaped recruitment methods. The total number of physicians in each province has grown at a faster rate than the population. Each has problems attracting physicians to underserved areas, although the magnitude of the problems vary. The data for this paper were gathered from documents available from various agencies in each province and a series of personal interviews conducted in the spring of 1993. The provinces have chosen different avenues in attempting to solve the maldistribution of physician resources, ranging from regulatory methods in New Brunswick to moves in Newfoundland to encourage graduates of the province's medical school to locate in the rural areas and lessen the dependence on foreign medical graduates. Nova Scotia, with fewer areas needing physicians, has been able to focus its efforts on selected locations. Reviewing the methods used in the three provinces provides an insight into the attempts to solve the shortage of physicians in rural areas.

  1. Fuel ethanol production using nuclear-plant steam

    International Nuclear Information System (INIS)

    In the United States, the production of fuel ethanol from corn for cars and light trucks has increased from about 6 billion liters per year in 2000 to 19 billion liters per year in 2006. A third of the world's liquid fuel demands could ultimately be obtained from biomass. The production of fuel ethanol from biomass requires large quantities of steam. For a large ethanol plant producing 380 million liters of fuel ethanol from corn per year, about 80 MW(t) of 1-MPa (∼180 deg. C) steam is required. Within several decades, the steam demand for ethanol plants in the United States is projected to be tens of gigawatts, with the worldwide demand being several times larger. This market may become the largest market for cogeneration of steam from nuclear electric power plants. There are strong incentives to use steam from nuclear power plants to meet this requirement. The cost of low-pressure steam from nuclear power plants is less than that of natural gas, which is now used to make steam in corn-to-ethanol plants. Steam from nuclear power plants reduces greenhouse gases compared with steam produced from fossil fuels. While ethanol is now produced from sugarcane and corn, the next-generation ethanol plants will use more abundant cellulose feedstocks. It is planned that these plants will burn the lignin in the cellulosic feedstocks to provide the required steam. Lignin is the primary non-sugar-based component in cellulosic biomass that can not be converted to ethanol. Low-cost steam from nuclear plants creates the option of converting the lignin to other liquid fuels and thus increase the liquid fuel production per unit of biomass. Because liquid fuel production from biomass is ultimately limited by the availability of biomass, steam from nuclear plants can ultimately increase the total liquid fuels produced from biomass. (author)

  2. Inclusion on the Agenda in Four Different School Contexts in Canada (Ontario, Manitoba, New Brunswick and Quebec)

    Science.gov (United States)

    Belanger, Nathalie; Gougeon, Nathalie A.

    2009-01-01

    Four case studies from four different Canadian provinces (Ontario, Manitoba, New Brunswick, and Quebec) are examined in order to better understand meanings given to an inclusive approach in education, as it is defined and experienced by the actors, practitioners, parents, and students. The data examined in this article come from a larger research…

  3. Political Partisanship, Bureaucratic Pragmatism and Acadian Nationalism: New Brunswick, Canada's 1920 History Textbook Controversy

    Science.gov (United States)

    Helyar, Frances

    2014-01-01

    During a time of post-war sensitivity to Canadian nationalism and patriotism, public feeling was aroused in 1920 New Brunswick regarding a world history textbook with a new chapter about the First World War. The American author made no reference to Canada's war efforts. The subsequent public discussion focused on issues of patriotism,…

  4. Backpressure Steam turbine

    OpenAIRE

    Chrástek, Pavel

    2012-01-01

    The diploma works demonstrates the thermodynamic calculation and design of the geometry flow profile of the back-pressure steam turbine for specified inlet and outlet conditions of steam. Next target of the work is to design the drawing of the turbine axial cross section. Structuring of this diploma work calculation is following: - regulating stage thermodynamic calculation - turbine stages calculation - equalizing-balancing piston calculation - entire turbine intrinsic efficiency and power r...

  5. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    Supplement 14 to the Safety Evaluation Report related to the operation of the Comanche Peak Stam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somerville County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the applicants' Corrective Action Program (CAP0 related to large ans small bore piping and pipe supports. The scope and methodologies for CAP workshop as summarized in revision O to the large and small bore piping project status reports and as detailed in related documents referenced in this evaluation were developed to resolve various design issues raised by the Atomic Safety and Licensing Board (ASLB);the intervenor, Citizens Association for Sound Energy (CASE);the Camanche Peak Response Team (CPRT);SYGNA Energy Services (CYGNA);and the NRC staff. The NRC staff concludes that the CAP workscopes for large and small bore piping provide a comprehensive program for resolving the associated technical concerns identified by the ASLB, CASE, CPRT, CYGNA, and the NRC staff and their implementation ensures that the design of large and small bore piping and pipe supports at CPSES satisfies the applicable requirements of 10 CFR 50

  6. Optimum sizing of steam turbines for concentrated solar power plants

    Directory of Open Access Journals (Sweden)

    Andreas Poullikkas, Constantinos Rouvas, Ioannis Hadjipaschalis, George Kourtis

    2012-01-01

    Full Text Available In this work, a selection of the optimum steam turbine type and size for integration in concentrated solar power (CSP plants is carried out. In particular, the optimum steam turbine input and output interfaces for a range of CSP plant capacity sizes are identified. Also, efficiency and electricity unit cost curves for various steam turbine capacities are estimated by using a combination of the Steam Pro software module of the Thermoflow Suite 18 package and the IPP v2.1 optimization software tool. The results indicate that the estimated efficiency and the expected specific capital cost of the power block are very important criteria in choosing the best steam turbine size of a CSP plant. For capacity sizes of 10kWe up to 50MWe, the steam turbine efficiency increases and the steam turbine expected specific capital cost of the power block decreases at a high rate, whereas for larger sizes they remain almost constant. Thus, there is significant efficiency gains to be realized and large cost savings in increasing the turbine size up to 50MWe. Finally, although the cost of electricity of a CSP plant with capacities greater than 1MWe is significantly reduced to less than 1US$/kWh, currently such technology can only become economically viable through supporting schemes.

  7. CANDU energy for steam assisted gravity drainage

    International Nuclear Information System (INIS)

    Traditional open-pit mining has been used by industry for many years to remove oil sands from shallow deposits. To increase production capacity, the industry is looking for new technology to exploit bitumen from deep deposits. Among them, SAGD (Steam-Assisted Gravity Drainage) appears to be the most promising approach. It uses steam to remove bitumen from underground reservoirs. Recently, the SAGD recovery process has been put into commercial operation by major oil companies.Atomic Energy Canada Limited has assessed the use of the ACR-1000 as a source of heat and electricity for oil sand extraction and processing. The ACR-1000 design is an evolutionary development of the familiar CANDU technology, adding innovations to enhance economics, operations, and safety margins. The net electrical output from a standard ACR-1000 will be close to 1100 MWe, depending on local cooling water temperature

  8. The Scholarship of Teaching and Learning (SoTL) at Renaissance College (University of New Brunswick): A Case Study of SoTL at the Faculty Level

    Science.gov (United States)

    Mengel, Thomas

    2016-01-01

    This chapter presents the case study of Renaissance College at the University of New Brunswick, discussing the faculty's achievements, challenges, and outlook for the future in the context of the scholarship of teaching and learning in Canada.

  9. Reconstructing the Avalon continent: Marginal to inner platform transition in the Cambrian of southern New Brunswick

    Science.gov (United States)

    Landing, E.

    1996-01-01

    A west to east, marginal to inner Avalonian platform transition, comparable to that in southeast Newfoundland and southern Britain, is present in the Cambrian of southern New Brunswick. The Saint John - Caton's Island - Hanford Brook area lay on the marginal platform, and its thick, uppermost Precambrian - lower Lower Cambrian is unconformably overlain by trilobite-bearing, upper Lower Cambrian. An inner platform remnant is preserved in the Cradle Brook outlier 60 km northeast of Saint John. In contrast to the marginal platform sequences, the Cradle Brook outlier has a very thin lower Lower Cambrian and has middle Lower Cambrian strata (Bonavista Group) not present on the marginal platform. The Cradle Brook Lower Cambrian closely resembles inner platform successions in eastern Massachusetts and Trinity and Placentia bays, southeast Newfoundland. A limestone with Camenella baltica Zone fossils on Cradle Brook seems to be the peritidal limestone cap of the subtrilobitic Lower Cambrian known in Avalonian North America (Fosters Point Formation) and England (Home Farm Member).

  10. New Staphylinidae (Coleoptera records with new collection data from New Brunswick, Canada. I. Aleocharinae

    Directory of Open Access Journals (Sweden)

    Reginald Webster

    2009-09-01

    Full Text Available Forty-eight species of Aleocharinae are newly reported from New Brunswick, bringing the total number of species known from the province to 149. Two of these species, Ocyusa asperula Casey and Myllaena kaskaskia Klimaszewski, are newly recorded for Canada. Additional locality data are presented for nine species recently recorded from the province. Collection and bionomic data for all these species are presented and discussed. Colour habitus images are presented for all species included in this paper and genital images are presented for closely related Myllaena kaskaskia Klimaszewski, M. procidua Casey and M. vulpina Bernhauer. Photographs of the male genitalia of M. procidua are presented for the first time. The female spermatheca, tergite and sternite eight of Amarochara formicina Assing are illustrated for the first time.

  11. Steam explosion studies review

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Moon Kyu; Kim, Hee Dong

    1999-03-01

    When a cold liquid is brought into contact with a molten material with a temperature significantly higher than the liquid boiling point, an explosive interaction due to sudden fragmentation of the melt and rapid evaporation of the liquid may take place. This phenomenon is referred to as a steam explosion or vapor explosion. Depending upon the amount of the melt and the liquid involved, the mechanical energy released during a vapor explosion can be large enough to cause serious destruction. In hypothetical severe accidents which involve fuel melt down, subsequent interactions between the molten fuel and coolant may cause steam explosion. This process has been studied by many investigators in an effort to assess the likelihood of containment failure which leads to large scale release of radioactive materials to the environment. In an effort to understand the phenomenology of steam explosion, extensive studies has been performed so far. The report presents both experimental and analytical studies on steam explosion. As for the experimental studies, both small scale tests which involve usually less than 20 g of high temperature melt and medium/large scale tests which more than 1 kg of melt is used are reviewed. For the modelling part of steam explosions, mechanistic modelling as well as thermodynamic modelling is reviewed. (author)

  12. Steam explosion studies review

    International Nuclear Information System (INIS)

    When a cold liquid is brought into contact with a molten material with a temperature significantly higher than the liquid boiling point, an explosive interaction due to sudden fragmentation of the melt and rapid evaporation of the liquid may take place. This phenomenon is referred to as a steam explosion or vapor explosion. Depending upon the amount of the melt and the liquid involved, the mechanical energy released during a vapor explosion can be large enough to cause serious destruction. In hypothetical severe accidents which involve fuel melt down, subsequent interactions between the molten fuel and coolant may cause steam explosion. This process has been studied by many investigators in an effort to assess the likelihood of containment failure which leads to large scale release of radioactive materials to the environment. In an effort to understand the phenomenology of steam explosion, extensive studies has been performed so far. The report presents both experimental and analytical studies on steam explosion. As for the experimental studies, both small scale tests which involve usually less than 20 g of high temperature melt and medium/large scale tests which more than 1 kg of melt is used are reviewed. For the modelling part of steam explosions, mechanistic modelling as well as thermodynamic modelling is reviewed. (author)

  13. Study of Constant Voltage Control on Small Steam Generator Based on PID Algorithm

    OpenAIRE

    Yanjun Xiao; Xuewei Ma; Wei Shao; Yuming Guan

    2014-01-01

    The object of this study is a kind of 3 kW small steam generator, which can recover waste heat through making use of 0.1~0.3 MPa steam. This can exploit secondary energy efficiently. The electricity generated can be commonly used as factory lighting, heating, fan and emergency power supply. But the generation voltage of the existed steam turbine is instable, especially when the steam pressure and the load of the generator changes suddenly. This can pose a threat to electrical safety and great...

  14. Safety evaluation report related to the operation of Susquehanna Steam Electric Station, Units 1 and 2. Docket Nos. 50-387 and 50-388, Pennsylvania Power and Light Company, Allegheny Electric Cooperative, Inc

    International Nuclear Information System (INIS)

    Information is presented concerning site characteristics; design criteria for systems and components; reactor thermal and hydraulic characteristics; reactor coolant pressure boundary; engineered safety features; instrumentation and control; electrical power systems; auxiliary systems; conduct of operations; quality assurance; and TMI-2 requirements

  15. Electrical engineer's reference book

    CERN Document Server

    Laughton, M A

    1985-01-01

    Electrical Engineer's Reference Book, Fourteenth Edition focuses on electrical engineering. The book first discusses units, mathematics, and physical quantities, including the international unit system, physical properties, and electricity. The text also looks at network and control systems analysis. The book examines materials used in electrical engineering. Topics include conducting materials, superconductors, silicon, insulating materials, electrical steels, and soft irons and relay steels. The text underscores electrical metrology and instrumentation, steam-generating plants, turbines

  16. Gas--steam turbine combined cycle power plants

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1978-10-01

    The purpose of this technology evaluation is to provide performance and cost characteristics of the combined gas and steam turbine, cycle system applied to an Integrated Community Energy System (ICES). To date, most of the applications of combined cycles have been for electric power generation only. The basic gas--steam turbine combined cycle consists of: (1) a gas turbine-generator set, (2) a waste-heat recovery boiler in the gas turbine exhaust stream designed to produce steam, and (3) a steam turbine acting as a bottoming cycle. Because modification of the standard steam portion of the combined cycle would be necessary to recover waste heat at a useful temperature (> 212/sup 0/F), some sacrifice in the potential conversion efficiency is necessary at this temperature. The total energy efficiency ((electric power + recovered waste heat) divided by input fuel energy) varies from about 65 to 73% at full load to 34 to 49% at 20% rated electric power output. Two major factors that must be considered when installing a gas--steam turbine combines cycle are: the realiability of the gas turbine portion of the cycle, and the availability of liquid and gas fuels or the feasibility of hooking up with a coal gasification/liquefaction process.

  17. Steam generators - problems and prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Tapping, R.L

    1997-05-01

    Steam-generator problems, largely a consequence of corrosion and fouling, have resulted in increased inspection requirements and more regulatory attention to steam-generator integrity. In addition, utilities have had to develop steam-generator life-management strategies, including cleaning and replacement, to achieve design life. This paper summarizes the pertinent data to 1993/1994, and presents an overview of current steam-generator management practices. (author)

  18. Digital implementation, simulation and tests in MATLAB of the models of Steam line, the turbines, the pressure regulator of a BWR type nucleo electric power plant; Implementacion digital, simulacion y pruebas en MATLAB de los modelos de la linea de vapor, las turbinas y el regulador de presion de una central Nucleoelectrica tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lopez R, A. [UNAM, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: andyskamx@yahoo.com.mx

    2004-07-01

    In this phase of the project they were carried out exhaustive tests to the models of the steam lines, turbines and pressure regulator of a BWR type nucleo electric central for to verify that their tendencies and behaviors are it more real possible. For it, it was necessary to also analyze the transfer functions of the different components along the steam line until the power generator. Such models define alone the dominant poles of the system, what is not limitation to reproduce a wide range of anticipated transitoriness of a power station operation. In the same manner, it was integrated and proved the integrated model form with the models of feeding water of the SUN-RAH, simulating the nuclear reactor starting from predetermined entrances of the prospective values of the vessel. Also it was coupled with the graphic interface developed with the libraries DirectX implementing a specific monitoring panel for this system. (Author)

  19. Investigation of the steam-cooled blade in a steam turbine cascade

    Institute of Scientific and Technical Information of China (English)

    Dieter Bohn; Jing Ren; Karsten Kusterer

    2007-01-01

    With the increasing demand for electricity,an efficiency improvement and thereby reduced CO2 emissions of the coal-fired plants are expected in order to reach the goals set in the Kyoto protocol.It can be achieved by a rise of the process parameters.Currently,live steam pressures and temperatures up to 300 bars and 923 K are planned as the next step.Closed circuit steam cooling of blades and vanes in modern steam turbines is a promising technology in order to establish elevated live steam temperatures in future steam turbine cycles.In this paper,a steam-cooled test vane in a cascade with external hot steam flow is analyzed numerically with the in-house code CHTflow.A parametric analysis aiming to improve the cooling effectiveness is carried out by varying the cooling mass flow ratio.The results from two investigated cases show that the steam cooling technique has a good application potential in the steam turbine.The internal part of the vane is cooled homogeneously in both cases.With the increased cooling mass flow rate,there is a significant improvement of cooling efficiency at the leading edge.The results show that the increased cooling mass flow ratio can enhance the cooling effectiveness at the leading edge.With respect to trailing edge,there is no observable improvement of cooling effectiveness with the increased cooling mass flow.This implies that due to the limited dimension at the trailing edge,the thermal stress cannot be decreased by increasing the cooling mass flow rate.Therefore,impingement-cooling configuration at the trailing edge might be a solution to overcome the critical thermal stress there.It is also observed that the performance of the cooling effective differs on pressure side and suction side.It implicates that the equilibrium of the cooling effectiveness on two sides are influenced by a coupled relationship between cooling mass flow ratio and hole geometry.In future work,optimizing the hole geometry and cooling steam supply conditions might

  20. Gas-based electricity production: which possibilities? - Thermal plants with steam generator; Perspectives for mini-cogeneration in collective housing; Electricity production by gas plants: which orientations on a middle term?

    International Nuclear Information System (INIS)

    A set of articles proposes a comparison between coal fired and natural gas fired power stations, discusses the perspectives of low power cogeneration installations for collective housing (some examples are evoked). It also reports interventions of a meeting on middle-term orientation for gas-based electricity production during which interveners addressed several issues such as the opportunity of investment in new infrastructures, the evolution of the gas sector, modulation means

  1. Steam Rankine Solar Receiver, phase 2

    Science.gov (United States)

    Deanda, L. E.; Faust, M.

    1981-01-01

    A steam rankine solar receiver (SRSR) based on a tubular concept was designed and developed. The SRSR is an insulated, cylindrical coiled tube boiler which is mounted at the focal plane of a fully tracking parabolic solar reflector. The concentrated solar energy received at the focal plane is then transformed to thermal energy through steam generation. The steam is used in a small Rankine cycle heat engine to drive a generator for the production of electrical energy. The SRSR was designed to have a dual mode capability, performing as a once through boiler with and without reheat. This was achieved by means of two coils which constitute the boiler. The boiler core size of the SRSR is 17.0 inches in diameter and 21.5 inches long. The tube size is 7/16 inch I.D. by 0.070 inch wall for the primary, and 3/4 inch I.D. by 0.125 inch wall for the reheat section. The materials used were corrosion resistant steel (CRES) type 321 and type 347 stainless steel. The core is insulated with 6 inches of cerablanket insulation wrapped around the outer wall. The aperture end and the reflector back plate at the closed end section are made of silicon carbide. The SRSR accepts 85 kwth and has a design life of 10,000 hrs when producing steam at 1400 F and 2550 psig.

  2. An overview of the applications for early warning and mapping of the flood events in New Brunswick

    DEFF Research Database (Denmark)

    Mioc, Darka; McGillivray, E.; Anton, F.;

    2014-01-01

    , quantified and displayed on digital maps allowing decision makers and the general population to comprehend and visualize the possible area and impact of the flooding. The WebGIS applications that are available from the “River Watch” web site provide snow reports and maps, flood warnings and interactive maps......This paper gives an overview of the on-line flood warning implementation in the province of New Brunswick, Canada. The on-line flood warning applications are available via the “River Watch” website provided by the New Brunswick Department of Environment. Advanced GIS technology combined...... with hydrological modelling, provide a mapping and visualization tool that can be used by emergency managers and the general public to predict possible flood zones. The applications developed for “River Watch” support the processing of large amounts of digital terrain and hydrological data, which are then...

  3. Steam-leak cost estimation using thermographically acquired pipe temperature data

    Science.gov (United States)

    Madding, Robert P.; MacNamara, Neal A.

    1997-04-01

    Predictive maintenance practitioners readily diagnose steam leaks through drain using infrared thermography, often supplemented with ultrasonic probe verification. Typically, a pipe carries the leaking steam to a flash tank or directly to the condenser. Thus, the energy used to create the steam is what is lost, not the steam itself. However, the cost of steam production is not inexpensive. We have found steam leaks we estimate cost $30 K/year. As a part of the Electric Power Research Institute's (EPRI's) Boiler, Condenser and Steam Cycle Applications Project, the EPRI M&D (Monitoring & Diagnostic) Centers have begun acquiring steam leak data at several electric utilities. Estimates of steam leak costs are key to evaluating cost savings and recommendation of corrective action, but are hampered by lack of knowledge of the steam flow in the line. These lines are usually not instrumented because typically there is no flow. Consequently, we must derive an indirect method of estimating steam flow. This can be done for uninsulated pipes given knowledge of the pipe surface temperature gradient over a known distance. For single phase conditions, the mass flow of steam equals the heat lost from a length of pipe divided by the temperature drop along the length and the heat capacity of the steam. Pipe heat loss is calculated knowing the pipe diameter, pipe surface temperature, ambient air temperature and using American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) tabulated values. The temperatures are derived from thermographic data. Distances can also be derived from thermal imaging radiometer data, depending on the type of system employed. To facilitate calculation of steam leak cost estimates, we have developed a Microsoft ExcelTM spreadsheet macro. The user can interface directly with the spreadsheet, entering appropriate temperatures, distances, pipe diameter, heat rate, cost of power, etc. Or, the analyst can use thermal imaging radiometer

  4. Numerical discretization analysis of a HTR steam generator model for the thermal-hydraulics code trace

    OpenAIRE

    Esch Markus; Knoche Dietrich; Hurtado Antonio

    2014-01-01

    For future high temperature reactor projects, e. g., for electricity production or nuclear process heat applications, the steam generator is a crucial component. A typical design is a helical coil steam generator consisting of several tubes connected in parallel forming cylinders of different diameters. This type of steam generator was a significant component used at the thorium high temperature reactor. In the work presented the temperature profile is bein...

  5. Effect of liquid waste discharges from steam generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, H.E. Jr.

    1977-09-01

    This report contains a summary of the effects of liquid waste discharges from steam electric generating facilities on the environment. Also included is a simplified model for use in approximately determining the effects of these discharges. Four basic fuels are used in steam electric power plants: three fossil fuels--coal, natural gas, and oil; and uranium--presently the basic fuel of nuclear power. Coal and uranium are expected to be the major fuels in future years. The following power plant effluents are considered: heat, chlorine, copper, total dissolved solids, suspended solids, pH, oil and grease, iron, zinc, chrome, phosphorus, and trace radionuclides.

  6. Modelling and simulation of the steam line, the high and low pressure turbines and the pressure regulator for the SUN-RAH nucleo electric university simulator; Modelado y simulacion de la linea de vapor, las turbinas de alta y de baja presion y el regulador de presion para el simulador universitario de nucleo electricas SUN RAH

    Energy Technology Data Exchange (ETDEWEB)

    Lopez R, A. [DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos, UNAM (Mexico)]. e-mail: andyskamx@yahoo.com.mx

    2003-07-01

    In the following article the development of a simulator that allows to represent the dynamics of the following systems: steam line, nozzle, vapor separator, reheater, high pressure turbine, low pressure turbine, power generator and the pressure regulator of a nucleo electric power station. We start from the supposition that this plant will be modeled from a nuclear reactor type BWR (Boiling Water Reactor), using models of reduced order that represent the more important dynamic variables of the physical processes that happen along the steam line until the one generator. To be able to carry out the simulation in real time the Mat lab mathematical modeling software is used, as well as the specific simulation tool Simulink. It is necessary to point out that the platform on which the one is executed the simulator is the Windows operating system, to allow the intuitive use that only this operating system offers. The above-mentioned obeys to that the objective of the simulator it is to help the user to understand some of the dynamic phenomena that are present in the systems of a nuclear plant, and to provide a tool of analysis and measurement of variables to predict the desirable behavior of the same ones. The model of a pressure controller for the steam lines, the high pressure turbine and the low pressure turbine is also presented that it will be the one in charge of regulating the demand of the system according to the characteristics and critic restrictions of safety and control, assigned according to those wanted parameters of performance of this system inside the nucleo electric plant. This simulator is totally well defined and it is part of the University student nucleo electric simulator with Boiling Water Reactor (SUN-RAH), an integral project and of greater capacity. (Author)

  7. Failure Analysis of Retired Steam Generator Tubings

    International Nuclear Information System (INIS)

    Since the first commercial operation of Kori-1 in 1978, 20 units of nuclear power plants are operated, and the it covers 40 % of total electricity in Korea as of 2008. A steam generator tube rupture incident occurred in the Ulchin unit 4 in 2002, which made the public sensitive to nuclear power plant. In order to keep the nuclear energy as a main energy source, the integrity of steam generator should be demonstrated. It is important to improve a flaw detection capability of the eddy current testing(ECT) in steam generator(SG) tubings in order to maintain the tube integrity. A quantified evaluation on the flaws on SG tubings, which is crucial for the tube integrity evaluation is not satisfactory. It is necessary to utilize the retired SG having various types of corrosion damages. In addition, an examination of pulled tube from Kori 1 retired steam generator will give us information about effectiveness of a remedial action(TiO2 addition) which was applied to mitigate ODSCC. A crack growth model is also needed to ensure a tube repair criteria for a next fuel cycle based on the ASME safety evaluation code, which has to meet a requirement that the flaws have to sustain under three times of normal operation pressure difference and 1.4 times of severe accident condition. In this project, hardware such as semi hot lab for pulled tube examination and modification of transportation cask for pulled tube and software such as procedure of transportation of radioactive steam generator tube and non-destructive and destructive examination of pulled tube were established. The non-destructive and destructive examination of pulled tubes from Kori 1 retired steam generator were performed in the semi hot lab. An effect of remedial actions applied to Kori 1 retired steam generator, PWSCC trend and bulk water chemistry and crevice chemistry in Kori 1 were evaluated. An electrochemical decontamination technology for pulled tube was developed to reduce a radiation exposure and enhance

  8. Steam separator latch assembly

    Science.gov (United States)

    Challberg, Roy C.; Kobsa, Irvin R.

    1994-01-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  9. Infrared steam laser cleaning

    OpenAIRE

    Frank, Pascal; Lang, Florian; Mosbacher, Mario; Boneberg, Johannes; Leiderer, Paul

    2008-01-01

    Steam Laser Cleaning with a pulsed infrared laser source is investigated. The infrared light is tuned to the absorption maximum of water (λ = 2.94 µm, 10 ns), whereas the substrates used are transparent (glass, silicon). Thus a thin liquid water layer condensed on top of the contaminated substrate is rapidly heated. The pressure generated during the subsequent phase explosion generates a cleaning force which exceeds the adhesion of the particles. We examine the cleaning threshold in single sh...

  10. Steam generator life management

    International Nuclear Information System (INIS)

    'Full-Text:' Steam Generator Life Management responsibility embodies doing whatever is necessary to maintain the steam generation equipment of a nuclear plant in effective, reliable service. All comes together in that most critical deliverable, namely the submission of the documentation which wins approval for return to service after an outage program. Life management must address all aspects of SG reliability over the life of the plant. Nevertheless, the life management activities leading up to return to service approval is where all of it converges. Steam Generator Life Management activities entail four types of work, all equally important in supporting the objective of successful operation. These activities are i) engineering functions; including identification of inspection and maintenance requirements, outage planning and scope definition plus engineering assessment, design and analysis as necessary to support equipment operation, ii) fitness of service work; including the expert evaluation of degradation mechanisms, disposition of defects for return to service or not, and the fitness for service analysis as required to justify ongoing operation with acceptable defects, iii) inspection work; including large scale eddy current inspection of tubing, the definition of defect size and character, code inspections of pressure vessel integrity and visual inspections for integrity and iv) maintenance work; including repairs, retrofits, cleaning and modifications, all as necessary to implement the measures defined during activities i) through iii). The paper discusses the approach and execution of the program for the achievement of the above objectives and particularly of items i) and ii). (author)

  11. Steamed over SAGD

    International Nuclear Information System (INIS)

    Gulf Canada Resources asked the Alberta Energy and Utilities Board (AEUB) to suspend natural gas production by other producers on Gulf's Surmount lease, a huge pool of oilsands, because they were testing a new technology developed by the Alberta Energy Department called SAGD (steam assisted gravity drainage). SAGD recovers bitumen from oilsands through the use of a pair of horizontal wells, placed one above the other. Steam is injected into the upper well, heating and thinning the bitumen which then drains down to the producing well which pumps it to the surface. While drilling the wells, Gulf had noticed pressure variations which they believe are due to gas production. They claim that the reservoir must be free of outside influences while they test combinations of steam pressure, temperature and volume for optimal productivity. The six gas producers in the area claim that their gas production is not affecting Gulf's oilsands reserves. If the suspension takes place, the AEUB could order Gulf to compensate the gas producers for lost production. 1 fig

  12. Wet steam wetness measurement in a 10 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  13. Evolution of Xstrata's tailings dam safety program in New Brunswick and Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Small, C.A. [AMEC Earth and Environmental Ltd., Fredericton, NB (Canada); Yashychyn, D. [Xstrata Copper, Timmins, ON (Canada); Morris, N. [Xstrata Zinc, Miramichi, NB (Canada); Schwenger, R.; Butler, B. [Xstrata Zinc, Bathurst, NB (Canada)

    2007-07-01

    Xstrata mine operations in Ontario and New Brunswick were presented along with a review of the dam safety challenges that the company has faced over the years. In particular, this paper described the initiatives undertaken to ensure the structural stability of mine tailings and water dams that have been constructed at Xstrata's major mining operations in eastern Canada. The tailings and mine water dams at these sites range in height up to 40 metres, and are constructed primarily of earth and rock fill. This paper also included a description of Xstrata's dam safety management program, how it evolved and what is presently in place. The program ensures that the dams are constructed and operated safely, particularly since the service life of these dams is estimated to be hundreds of years. With the advent of the Mining Association of Canada Guidelines for Managing Tailings Facilities, Xstrata has improved its dam safety program to include more frequent inspections, dam safety reviews, peer reviews, and risk assessments.

  14. The use of New Brunswick peat moss to treat contaminated groundwater at solid waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, N. [GEMTEC Ltd., Fredericton, NB (Canada)

    1995-12-31

    Alternative treatment methodology of solid waste disposal sites was investigated in an effort to find a reliable, and cost-effective, means of leachate or impacted groundwater. In particular, the investigation dealt with New Brunswick sphagnum peat moss as an agent capable of removing heavy metals, organics and nutrients. Initially, bench-scale trials were designed to determine optimum operating conditions for full-scale systems. Results of the bench-scale trial showed that increasing the hydraulic loading of the bio-filter did not significantly affect the removal efficiency for most contaminant parameters. On the other hand, incremental reduction of bed depth from 120 cm to 30 cm resulted in a reduction in the removal efficiency of the biochemical oxygen demand, chemical oxygen demand, and dissolved organic carbon. Adjusting the influent to the bio-filter to pH 9 improved removal efficiency, particularly for heavy metals. It was found that the peat bio-filters eventually became ineffective either as a result of bio-fouling or saturation of the adsorption sites with heavy metals. Investigation of options for disposing of the spent peat is in progress.

  15. Sticks and stones: racism as experienced by adolescents in New Brunswick.

    Science.gov (United States)

    Baker, C; Varma, M; Tanaka, C

    2001-12-01

    The purpose of the study was to describe both the nature of racism as experienced by adolescent self-described victims in the province of New Brunswick and their response to the perceived racist incidents. A qualitative methodology based on the constructivist paradigm was used. In-depth interviews were conducted with non-White adolescent victims of racism and with parents of victims. Although the study was initiated in response to an eruption of publicity about teenage racial violence, the findings indicate that racist incidents were not a new phenomenon for the participants. They described a low-key but long-term problem that had begun when they entered the public school system. Name-calling was by far the most common form of racism identified and it played a part in most of the other incidents described; dismissed as harmless by authority figures, it appeared to have long-term consequences for its targets. The participants' response to racism was found to have three phases: splintered universe, spiralling resistance, and disengagement. The results suggest that nurses working in the field of school health should address issues of racism among children and adolescents. PMID:11845626

  16. Acadian biospeleology: composition and ecology of cave fauna of Nova Scotia and southern New Brunswick, Canada.

    Directory of Open Access Journals (Sweden)

    Moseley Max

    2007-01-01

    Full Text Available The vertebrate and invertebrate fauna, environment and habitats of caves and disused mines in Nova Scotia and southern NewBrunswick are provisionally catalogued and described, based on field collections made over many years. The area was glaciatedand the subterranean fauna consists of non-troglobites all of which have arrived and colonised the caves during or following finalrecession of the Pleistocene glaciers. The statistical composition of the fauna at the higher taxonomic level is similar to that inOntario, but is less species rich and there are some notable ecological and other differences. Porcupine dung accumulations are animportant habitat in the region, constituting a cold-temperate analogue of the diverse guano habitats of southern and tropical caves.Parietal assemblages are, as in other cold temperate regions, an important component of the invertebrate fauna but here includespecies derived directly from dung communities: another parallel with tropical guano caves. An unanticipated finding is the numberof non-indigenous species now utilising local caves. These appear to have colonised unfilled ecological niches, suggesting thatpost-glacial recolonisation of the subterranean habitat in Nova Scotia has been relatively delayed. Finally the general and regionalsignificance of the subterranean fauna is briefly discussed.

  17. Wet steam treatment with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Ruehle, W.; Enkler, G. [EnBW Kraftwerke AG, Kernkraftwerk Philippsburg (Germany)

    1999-07-01

    After many years of excellent results using high all volatile treatment (HAVT) for operation of the secondary system of a PWR, flow assisted corrosion in the heating pipes of the intermediate steam reheaters has been experienced. Oxygen addition into the heating steam before the reheater is expected to improve the protective oxide layers formation. The reaction of oxygen with the alkalizing steam ingredients is described. (orig.)

  18. Process for purifying geothermal steam

    Science.gov (United States)

    Li, C.T.

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  19. Regenerative superheated steam turbine cycles

    Science.gov (United States)

    Fuller, L. C.; Stovall, T. K.

    1980-01-01

    PRESTO computer program was developed to analyze performance of wide range of steam turbine cycles with special attention given to regenerative superheated steam turbine cycles. It can be used to model standard turbine cycles, including such features as process steam extraction, induction and feedwater heating by external sources, peaking, and high back pressure. Expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses are used to calculate cycle heat rate and generator output. Program provides power engineer with flexible aid for design and analysis of steam turbine systems.

  20. Steam generator tube performance

    International Nuclear Information System (INIS)

    A survey of steam generator operating experience for 1986 has been carried out for 184 pressurized water and pressurized heavy-water reactors, and 1 water-cooled, graphite-moderated reactor. Tubes were plugged at 75 of the reactors (40.5%). In 1986, 3737 tubes were plugged (0.14% of those in service) and 3148 tubes were repaired by sleeving. A small number of reactors accounted for the bulk of the plugged tubes, a phenomenon consistent with previous years. For 1986, the available tubesheet sludge data for 38 reactors has been compiled into tabular form, and sludge/deposit data will be incorporated into all future surveys

  1. Super critical water reactor for use in steam generation for recovery of bitumen resources

    International Nuclear Information System (INIS)

    The process of recovering the bitumen (oil sand) resources in Alberta requires steam at high pressures. To help reduce the carbon footprint of exploiting these fuel resources, an innovative new design of a CANDU super critical water reactor (CANDU-SCWR) is being considered to provide the high pressure steam required for the steam assisted gravity drainage (SAGD) process. The high temperature and pressure associated with the CANDU-SCWR allow for the high pressure, temperature steam to be produced without supplementary energy. The Petroleum Technology Alliance of Canada (PTAC) has specified the SAGD process requires steam at 11 MPa and near 100% steam quality, and net electrical power of 106 MWe. This paper examines steam cycle and design options to meet the steam and power requirements defined by PTAC. Steam cycle options are examined focusing on the optimization of steam and power conversion. Additionally passive safety and cooling for both the heat transport and moderation systems are considered and their impact on performance are examined. As the CANDU-SCWR is at a preliminary stage of design, basic design parameters have been defined based on preliminary assessments. This paper is focused on a reactor with the following basic design assumptions: Vertical fuel channel; Re-entrant fuel channels; Pu-Th fuel; and Batch refuelling. (author)

  2. Hydrogen-based power generation from bioethanol steam reforming

    International Nuclear Information System (INIS)

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint

  3. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  4. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  5. Materials for advanced ultrasupercritical steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries Of Ohio Inc., Independence, OH (United States); Shingledecker, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Saha, Deepak [Energy Industries Of Ohio Inc., Independence, OH (United States); Thangirala, Mani [Energy Industries Of Ohio Inc., Independence, OH (United States); Booras, George [Energy Industries Of Ohio Inc., Independence, OH (United States); Powers, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Riley, Colin [Energy Industries Of Ohio Inc., Independence, OH (United States); Hendrix, Howard [Energy Industries Of Ohio Inc., Independence, OH (United States)

    2015-12-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using

  6. Cancer Institute of New Jersey: University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Department of Energy (DOE) proposes to authorize the University of Medicine and Dentistry of New Jersey to proceed with the design, construction, and equipping of the proposed Clinical Treatment and Research Facility of the University of New Jersey on the New Brunswick campus. The facility will provide for the integration of new and existing clinical outpatient cancer treatment with basic and clinical research to expedite the application of new discoveries in cancer treatment. Based on the analysis in the environmental assessment, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA).

  7. Mercury concentrations in seabird tissues from Machias Seal Island, New Brunswick, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Alexander L., E-mail: abond@mun.ca [Atlantic Cooperative Wildlife Ecology Research Network, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick, E3B 5A3 (Canada); Department of Biology, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick, E3B 5A3 (Canada); Diamond, Antony W. [Atlantic Cooperative Wildlife Ecology Research Network, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick, E3B 5A3 (Canada); Department of Biology, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick, E3B 5A3 (Canada)

    2009-07-01

    Mercury is a pervasive environmental contaminant, the anthropogenic portion of which is increasing globally, and in northeastern North America in particular. Seabirds frequently are used as indicators of the marine environment, including mercury contamination. We analysed paired samples for total mercury (Hg) concentrations in feathers and blood from adult and chick, albumen, and lipid-free yolk of seven seabirds breeding on Machias Seal Island, New Brunswick, Canada - Arctic Tern (Sterna paradisaea), Atlantic Puffin (Fratercula arctica), Common Eider (Somateria mollissima), Common Murre (Uria aalge), Common Tern (Sterna hirundo), Leach's Storm-petrel (Oceanodroma leucorhoa), and Razorbill (Alca torda). We also used stable-isotope ratios of carbon ({delta}{sup 13}C), and nitrogen ({delta}{sup 15}N) to evaluate the relationship between carbon source and trophic position and mercury. We found high Hg concentrations across tissue types in Leach's Storm-petrels, and Razorbills, with lower concentrations in other species, the lowest being in Common Eiders. Storm-petrels prey on mesopelagic fish that accumulate mercury, and Razorbills feed on larger, older fish that bioaccumulate heavy metals. Biomagnification of Hg, or the increase in Hg concentration with trophic position as measured by {delta}{sup 15}N, was significant and greater in albumen than other tissues, whereas in other tissues, {delta}{sup 15}N explained little of the overall variation in Hg concentration. Hg concentrations in egg components are higher on Machias Seal Island than other sites globally and in the Gulf of Maine region, but only for some species. Further detailed investigations are required to determine the cause of this trend.

  8. Development of site-specific soil cleanup criteria: New Brunswick Laboratory, New Jersey site

    International Nuclear Information System (INIS)

    The potential human exposure which results from the residual soil radioactivity at a decommissioned site is a prime concern during D and D projects. To estimate this exposure, a pathway analysis approach is often used to arrive at the residual soil radioactivity criteria. The development of such a criteria for the decommissioning of the New Brunswick Laboratory, New Jersey site is discussed. Contamination on this site was spotty and located in small soil pockets spread throughout the site area. Less than 1% of the relevant site area was contaminated. The major contaminants encountered at the site were 239Pu, 241Am, normal and natural uranium, and natural thorium. During the development of the pathway analysis to determine the site cleanup criteria, corrections for the inhomogeneity of the contamination were made. These correction factors and their effect upon the relevant pathway parameters are presented. Major pathways by which radioactive material may reach an individual are identified and patterns of use are specified (scenario). Each pathway is modeled to estimate the transfer parameters along the given pathway, such as soil to air to man, etc. The transfer parameters are then combined with dose rate conversion factors (ICRP 30 methodology) to obtain soil concentration to dose rate conversion factors (pCi/g/mrem/yr). For an appropriate choice of annual dose equivalent rate, one can then arrive at a value for the residual soil concentration. Pathway modeling, transfer parameters, and dose rate factors for the three major pathways; inhalation, ingestion and external exposure, which are important for the NBL site, are discussed

  9. An Integrated RFID and Barcode Tagged Item Inventory System for Deployment at New Brunswick Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Younkin, James R [ORNL; Kuhn, Michael J [ORNL; Gradle, Colleen [New Brunswick Laboratory, Argonne, IL; Preston, Lynne [U.S. Department of Energy, Office of Health, Safety and Security; Thomas, Brigham B. [ORNL; Laymance, Leesa K [ORNL; Kuziel, Ron [DOE SC - Chicago Office

    2012-01-01

    New Brunswick Laboratory (NBL) has a numerous inventory containing thousands of plutonium and uranium certified reference materials. The current manual inventory process is well established but is a lengthy process which requires significant oversight and double checking to ensure correctness. Oak Ridge National Laboratory has worked with NBL to develop and deploy a new inventory system which utilizes handheld computers with barcode scanners and radio frequency identification (RFID) readers termed the Tagged Item Inventory System (TIIS). Certified reference materials are identified by labels which incorporate RFID tags and barcodes. The label printing process and RFID tag association process are integrated into the main desktop software application. Software on the handheld computers syncs with software on designated desktop machines and the NBL inventory database to provide a seamless inventory process. This process includes: 1) identifying items to be inventoried, 2) downloading the current inventory information to the handheld computer, 3) using the handheld to read item and location labels, and 4) syncing the handheld computer with a designated desktop machine to analyze the results, print reports, etc. The security of this inventory software has been a major concern. Designated roles linked to authenticated logins are used to control access to the desktop software while password protection and badge verification are used to control access to the handheld computers. The overall system design and deployment at NBL will be presented. The performance of the system will also be discussed with respect to a small piece of the overall inventory. Future work includes performing a full inventory at NBL with the Tagged Item Inventory System and comparing performance, cost, and radiation exposures to the current manual inventory process.

  10. Steam generator module

    International Nuclear Information System (INIS)

    The module of the steam generator is arranged such that the first working medium flows through the tubes of the heat exchange bundle and the second working medium flows through the intertube space. At least one side of the module is provided with a lid which is provided with a system of through-flow apertures. The apertures are expanded and provided with a thread in the direction of the outer side of the lid. They are coaxial with the tubes of the heat exchange bundle at the point of their anchorage in the tube plate. The apertures are closed with plugs with a male thread and the sealing surfaces are formed between the thread joint and the space of the first working medium. The plugs extend into the space of the heat exchange bundle and form a throttle which replaces the classical stop and allow for dismantling. This arrangement of the modular steam generator allows the control of the inner surfaces of heat exchange pipes and also the cleaning of these inner surfaces. (E.S.)

  11. Steam generator materials

    International Nuclear Information System (INIS)

    In order to keep the nuclear power plant(NPP)s safe and increase their operating efficiency, axial stress corrosion cracking(SCC)(IGA/IGSCC, PWSCC, PbSCC) test techniques were developed and SCC property data of the archive steam generator tubing materials having been used in nuclear power plants operating in Korea were produced. The data obtained in this study were data-based, which will be used to clarify the damage mechanisms, to operate the plants safely, and to increase the lifetime of the tubing. In addition, the basic technologies for the improvement of the SCC property of the tubing materials, for new SCC inhibition, for damaged tube repair, and for manufacturing processes of the tubing were developed. In the 1 phase of this long term research, basic SCC test data obtained from the archive steam generator tubing materials used in NPPs operating in Korea were established. These basic technologies developed in the 1 phase will be used in developing process optimization during the 2 phase in order to develop application technologies to the field nuclear power plants

  12. Steam generator tube integrity program

    Energy Technology Data Exchange (ETDEWEB)

    Dierks, D.R.; Shack, W.J. [Argonne National Laboratory, IL (United States); Muscara, J.

    1996-03-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given.

  13. Derivation of guidelines for uranium residual radioactive material in soil at the New Brunswick Site, Middlesex County, New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, D.; Kamboj, S.; Nimmagadda, M.; Yu, C. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-02-01

    Residual radioactive material guidelines for uranium in soil were derived for the New Brunswick Site, located in Middlesex County, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program of the US Department of Energy (DOE). Residual radioactive material guidelines for individual radionuclides of concern and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the New Brunswick Site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. The guidelines derived in this report are intended to apply to the remediation of these remaining residual radioactive materials at the site. The primary radionuclides of concern in these remaining materials are expected to be radium-226 and, to a lesser extent, natural uranium and thorium. The DOE has established generic cleanup guidelines for radium and thorium in soil; however, cleanup guidelines for other radionuclides must be derived on a site-specific basis.

  14. CANDU steam generator life management

    International Nuclear Information System (INIS)

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermalhydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. The research and development program, as well as operating experience, has identified where improvements in operating practices and/or designs can be made in order to ensure steam generator design life at an acceptable capacity factory. (author)

  15. Design and operating experience of 1000MW high-temperature steam turbine

    Energy Technology Data Exchange (ETDEWEB)

    Matsukuma, Masaharu; Magoshi; Ryotaro; Nakano, Takashi; Tashiro; Hikaru; Tanaka, Yoshinori

    1999-07-01

    The applicable steam conditions for large-capacity fossil-fuel thermal power plants over 500 MW in Japan have conventionally been 24.2MPa and 538/566 C. Mitsubishi Heavy Industries, Ltd. (MHI) has established, through wide-scale development programs, the technologies for design and materials of steam turbines with steam temperature 593 C, and has applied the steam conditions of 24.2MPa and 538/593 C to the large-capacity 700 MW turbine, Hekinan No. 3 Unit for Chubu Electric Power Co., Inc. According to the further development of high-temperature design, MHI has successfully developed and manufactured the 1000 MW turbine, Matsuura No. 2 Unit, Electric Power Development Co., Ltd. with a steam condition of 600 C class main steam and reheating steam temperature for the first time in the world. The unit, that was first rolled with steam in January 1997, started commercial operation in July 1997. This paper describes the features of design and operating experience of this unit after about one year's commercial operation.

  16. Advanced technologies on steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kaoru; Nakamura, Yuuki [Mitsubishi Heavy Industry Co., Takasago (Japan); Nakamori, Nobuo; Mizutani, Toshiyuki; Uwagawa, Seiichi; Saito, Itaru [Mitsubishi Heavy Industry Co., Kobe (Japan); Matsuoka, Tsuyoshi [Mitsubishi Heavy Industry Co., Yokohama (Japan)

    1997-12-31

    The thermal-hydraulic tests for a horizontal steam generator of a next-generation PWR (New PWR-21) were performed. The purpose of these tests is to understand the thermal-hydraulic behavior in the secondary side of horizontal steam generator during the plant normal operation. A test was carried out with cross section slice model simulated the straight tube region. In this paper, the results of the test is reported, and the effect of the horizontal steam generator internals on the thermalhydraulic behavior of the secondary side and the circulation characteristics of the secondary side are discussed. (orig.). 3 refs.

  17. General purpose steam table library :

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, John H.; Belcourt, Kenneth Noel; Nourgaliev, Robert

    2013-08-01

    Completion of the CASL L3 milestone THM.CFD.P7.04 provides a general purpose tabular interpolation library for material properties to support, in particular, standardized models for steam properties. The software consists of three parts, implementations of analytic steam models, a code to generate tables from those models, and an interpolation package to interface the tables to CFD codes such as Hydra-TH. Verification of the standard model is maintained through the entire train of routines. The performance of interpolation package exceeds that of freely available analytic implementation of the steam properties by over an order of magnitude.

  18. Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors

    International Nuclear Information System (INIS)

    A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

  19. Detailed design of 700 MWe steam generator features

    Energy Technology Data Exchange (ETDEWEB)

    Korde, M.; John, B. [Nuclear Power Corp. of India Ltd., Mumbai, Maharashtra (India)]. E-mail: bjohn@npcil.co.in

    2006-07-01

    The next stage in the Indian nuclear power programme consists of building 700 MWe Indian Pressurized Heavy Water Reactor (IPHWR) units. This involves up-rating of all the plant equipment like reactor, steam generators (SGs), turbo-generator, major pumps, etc. The SG used in the current generation of IPHWRs, which have an electrical power of 540 MWe, is a mushroom type, inverted U-tube, natural-circulation SG. The 700 MWe SG design has the same the tube diameter, tube pitch and outer diameter of the steam generator sections as the 434 MWth SG, with certain changes in geometry of the feed header, flow restrictor in the downcomer and flow distribution plate. The changes resulted in a 30% increase in steam flow rate while maintaining the same circulation ratio. The paper describes detailing of these changes using a CFD code for optimizing the flow field. (author)

  20. Who Is Using What in the Public Schools: The Interrelationships among Alcohol, Drug and Tobacco Use by Adolescents in New Brunswick Classrooms.

    Science.gov (United States)

    Grobe, Cary; Campbell, Elaine

    1990-01-01

    Attempted to discover patterns of alcohol, drug, and tobacco use among public school children in New Brunswick using Provincial School Drug Survey (PSDS), an existing large-scale assessment. Recoded variables in PSDS dataset to derive profiles of typical tobacco, cannabis, and alcohol users. Found increase in predictive accuracy of regression…

  1. Predicting water temperatures using a deterministic model: Application on Miramichi River catchments (New Brunswick, Canada)

    Science.gov (United States)

    Caissie, Daniel; Satish, Mysore G.; El-Jabi, Nassir

    2007-04-01

    SummaryWater temperature influences many physical, chemical and biological properties of rivers. It also influences the distribution of fish and many aquatic organisms within the river environment. Hence, a good understanding of the thermal regime of rivers is essential for effective management of fisheries and aquatic resources. This study deals with the modelling of river water temperature using a deterministic model. This model calculates the net heat flux at the water surface using meteorological conditions within the study area. The water temperature model was applied on two watercourses of different size and thermal characteristics, but within a similar meteorological region, i.e. the Little Southwest Miramichi River and Catamaran Brook (New Brunswick, Canada). Data from 1992 to 1994 were used to calibrate the model, while data from 1995 to 1999 were used for the model validation. Results showed equally good agreement between observed and predicted water temperatures during the calibration period for both rivers with a root-mean-square error (RMSE) of 1.49 °C for the Little Southwest Miramichi River compared to 1.51 °C for Catamaran brook. During the validation period, RMSEs were calculated at 1.55 °C for the Little Southwest Miramichi River and 1.61 °C for Catamaran Brook. Poorer model performances were generally observed early in the season (e.g. spring), especially for the Little Southwest Miramichi River due to the influence of snowmelt conditions, while late summer to autumn performances showed among the best results for both rivers. Late autumn performances were more variable in Catamaran Brook and presumably influenced by the groundwater, geothermal conditions and potentially riparian shading. The geothermal aspect was further investigated at Catamaran Brook (using 1998 data) and results revealed that although geothermal fluxes are present, they explained very little of the unexplained variability (<0.1 °C). Similar to previous studies, the net

  2. A balanced strategy in managing steam generator thermal performance

    International Nuclear Information System (INIS)

    This paper presents a balanced strategy in managing thermal performance of steam generator designed to deliver rated megawatt thermal (MWt) and megawatt electric (MWe) power without loss with some amount of thermal margin. A steam generator (SG) is a boiling heat exchanger whose thermal performance may degrade because of steam pressure loss. In other words, steam pressure loss is an indicator of thermal performance degradation. Steam pressure loss is mainly a result of either 1) tube scale induced poor boiling or 2) tube plugging historically resulting from tubing corrosion, wear due to flow induced tube vibration or loose parts impact. Thermal performance degradation was historically due to tube plugging but more recently it is due to poor boiling caused by more bad than good constituents of feedwater impurities. The whole SG industry still concentrates solely on maintenance programs towards preventing causes for tube plugging and yet almost no programs on maintaining adequate boiling of fouled tubes. There can be an acceptable amount of tube scale that provides excellent boiling capacity without tubing corrosion, as operational experience has repeatedly demonstrated. Therefore, future maintenance has to come up balanced programs for allocating limited resources in both maintaining good boiling capacity and preventing tube plugging. This paper discusses also thermal performance degradation due to feedwater impurity induced blockage of tube support plate and thus subsequent water level oscillations, and how to mitigate them. This paper provides a predictive management of tube scale for maintaining adequate steam pressure and stable water level without loss in MWt/MWe or recovering from steam pressure loss or water level oscillations. This paper offers a balanced strategy in managing SG thermal performance to fulfill its mission. Such a strategy is even more important in view of the industry trend in pursuing extended power uprate as high as 20 percent

  3. Research program plan: steam generators

    International Nuclear Information System (INIS)

    This document presents a plan for research in Steam Generators to be performed by the Materials Engineering Branch, MEBR, Division of Engineering Technology, (EDET), Office of Nuclear Regulatory Research. It is one of four plans describing the ongoing research in the corresponding areas of MEBR activity. In order to answer the questions posed, the Steam Generator Program has been organized with the three elements of non-destructive examination; mechanical integrity testing; and corrosion, cleaning and decontamination

  4. Options for Steam Generator Decommissioning

    International Nuclear Information System (INIS)

    Selecting the best option for decommissioning steam generators is a key consideration in preparing for decommissioning PWR nuclear power plants. Steam Generators represent a discrete waste stream of large, complex items that can lend themselves to a variety of options for handling, treatment, recycling and disposal. Studsvik has significant experience in processing full size Steam Generators at its metal recycling facility in Sweden, and this paper will introduce the Studsvik steam generator treatment concept and the results achieved to date across a number of projects. The paper will outline the important parameters needed at an early stage to assess options and to help consider the balance between off-site and on-site treatment solutions, and the role of prior decontamination techniques. The paper also outlines the use of feasibility studies and demonstration projects that have been used to help customers prepare for decommissioning. The paper discusses physical, radiological and operational history data, Pro and Contra factors for on- and off-site treatment, the role of chemical decontamination prior to treatment, planning for off-site shipments as well as Studsvik experience This paper has an original focus upon the coming challenges of steam generator decommissioning and potential external treatment capacity constraints in the medium term. It also focuses on the potential during operations or initial shut-down to develop robust plans for steam generator management. (authors)

  5. Detection of the high vibration origin in the body of an electrical generator driven by steam turbine applying diagnostic techniques; Deteccion del origen de alta vibracion en el cuerpo de un generador electrico accionado por turbinas de vapor aplicando tecnicas de diagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Bravo, Fernando (Mexico)

    2007-11-15

    One of the problems that electric generators present is the high vibration due to causes that can go from simple mechanical unbalance, misalignment, mechanical relaxation, resonance or some other interaction that can influence in the system. In this document is presented the vibration analysis of an electric generator with a capacity of 350 MW, driven by a steam turbine composed of three stages (high pressure, intermediate pressure and low pressure) connected to the electric generator through a rigid connection. [Spanish] Uno de los problemas que se presentan en los generadores electricos es la alta vibracion debida a causas que pueden ir desde un simple desbalance mecanico, desalineamiento, aflojamiento mecanico, resonancia o alguna otra interaccion que pueda influir en el sistema. Se presenta en este documento el analisis de vibracion de un generador electrico con una capacidad de 350 MW, impulsado por una turbina de vapor compuesta de tres etapas (alta presion, presion intermedia y baja presion) acopladas al generador electrico a traves de un acoplamiento rigido.

  6. Development of a nuclear steam generator system for gas-cooled reactors for application in oil sands extraction

    International Nuclear Information System (INIS)

    Canada has vast energy reserves in the Oil Sands regions of Alberta and Saskatchewan. Present extraction technologies, such as strip mining, where oil deposits are close to the surface, and Steam Assisted Gravity Drainage (SAGD) technologies for deeper deposits consume significant amounts of energy to produce the bitumen and upgraded synthetic crude oil. Studies have been performed to assess the feasibility of using nuclear reactors as primary energy sources to produce, in particular the steam required for the SAGD deeper deposit extraction process. Presently available reactors fall short of meeting the requirements, in two areas: the steam produced in a 'standard' reactor is too low in pressure and temperature for the SAGD process. Requirements can be for steam as high as 12MPa pressure with superheat; and, 'standard' reactors are too large in total output. Ideally, reactors of output in the range of 400 to 500 MWth, in modules are better suited to Oil Sands applications. The above two requirements can be met using gas-cooled reactors. Generally, newer generation gas-cooled reactors have been designed for power generation, using Brayton Cycle gas turbines run directly from the heated reactor coolant (helium). Where secondary steam is required, heat recovery steam generators have been used. In this paper, a steam generating system is described which uses the high temperature helium from the reactor directly for steam generation purposes, with sufficient quantities of steam produced to allow for SAGD steam injection, power generation using a steam turbine-generator, and with potential secondary energy supply for other purposes such as hydrogen production for upgrading, and environmental remediation processes. It is assumed that the reactors will be in one central location, run by a utility type organization, providing process steam and electricity to surrounding Oil Sands projects, so steam produced is at very high pressure (12 MPa), with superheat, in order to

  7. Centrifugal steam-water separator for steam generators

    International Nuclear Information System (INIS)

    This invention concerns a centrifugal steam-water separator for steam generators, using natural circulation. The turbulence chamber includes a perforated venturi composed of a decreasing cone-shaped convergent duct and a cone-shaped divergent diffuser section increasing from the narrowest part to the turbulence chamber outlet. In this way, the jected liquid phase and any particles of solids it may contain can be discharged through the perforations into the annular space formed between the perforated venturi and the vessel to accumulate at the bottom of this annular space for subsequent removal. The advantages of the invention are that the diffuser of the perforated venturi is used as an additional separation path and with the recovery of pressure in mind, and that the water droplets ejected, as well as any particles contained in these droplets discharged or ejected outside the action area of the rotational flow into the annular space, can flow in a practically free way towards the bottom of the interior edge of the containment wall. Because of this, the pressure drop is reduced and the degree of separation improved. The steam-water separator of the invention is therefore particularly suitable for the high power steam generators of nuclear reactor facilities. For a given steam output, it is possible with the lay-out specified in this invention to reduce the required number of separation units

  8. Using Net-Zero Energy Projects to Enable Sustainable Economic Redevelopment at the Former Brunswick Air Naval Base

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, S.

    2011-10-01

    A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites. The Brunswick Naval Air Station is a naval air facility and Environmental Protection Agency (EPA) Super Fund site that is being cleaned up, and closed down. The objective of this report is not only to look at the economics of individual renewable energy technologies, but also to look at the systemic benefits that can be gained when cost-effective renewable energy technologies are integrated with other systems and businesses in a community; thus multiplying the total monetary, employment, and quality-of-life benefits they can provide to a community.

  9. Inventory of orphan oil and natural gas wells in the Dover and Gautreau Village areas of Westmorland County, New Brunswick

    International Nuclear Information System (INIS)

    In 1997, the Government of New Brunswick conducted an inventory of orphan wells in the vicinity of Dover and Gautreau Village in Westmorland County. The term orphan wells refers to those oil and natural gas wells which have been abandoned and have no owner. An abandoned well refers to those wells that are no longer active and have been properly plugged. A total of 19 orphan wells were discovered with the help of landowners and historical maps. These wells are believed to have dated from 1860 to 1906. The locations of the wells were determined digitally using the Global Positioning System. The environmental conditions around the orphan wells were evaluated and classified according to a proposed system used by the State of Michigan. The wells were separated into three categories based on the amount of petroleum contamination of soil and water. Water contamination was further divided into contamination of groundwater and surface water. 7 refs., 34 figs

  10. The social and policy contexts of the New Brunswick Declaration on Research Ethics, Integrity, and Governance: a commentary.

    Science.gov (United States)

    van den Hoonaard, Will C

    2013-04-01

    This paper explores the social and policy implications of the "New Brunswick Declaration on Research Ethics, Integrity, and Governance" developed at the Ethics Rupture Summit in Fredericton, N.B., Canada, October 2012. It discusses the Declaration and the Summit in relation to the usual criticism and analysis of research ethics regimes, and considers reasons why the immense prior literature has had little impact on regulatory bodies. Because the Declaration, like the Illinois White Paper, has quickly achieved considerable attention relative to most other such documents, and because much further deliberation has evolved since the Summit, we offer here a commentary on each of the eight principles contained in the Declaration in the hope of further stimulating discussion and consolidating the progress that now seems underway. PMID:23651934

  11. The dark knight : Sir Thomas Tait and the rise and fall of New Brunswick's famous coalfields

    Energy Technology Data Exchange (ETDEWEB)

    Woodford, G.

    2010-03-15

    Industrial coal mining in New Brunswick began in the early 1900s. In 1913, a former Canadian Pacific Railway (CPR) manager, Sir Thomas Tait, learned of underexploited coalfields around Grand Lake and negotiated the best coal assets from locals. He used his CPR connections to secure a large government grant to finish an important 50-kilometre railway link between Minto and Fredericton. He kept the coal assets for himself and formed the Minto Coal Company and landed 2 prime contracts to supply coal to a nearby cotton mill and to CPR. This article highlighted Tait's disreputable approach to labour relations. Despite lucrative contracts to Minto Coal during World War 1, Tait did not share the profits with his miners. This coal mining period in New Brunswick was characterized by union busting, evictions from dire company housing, arbitrary pay cuts, strikes and increasingly unsafe conditions in the mines. Two royal commissions were called to look into matters, but the province had no legislation to enforce their many recommendations. However, the government finally passed legislation when in 1932, 5 people died trying to rescue boys who were poisoned while playing in an abandoned mine shaft. That same year, 14 miners were disabled and 2 men killed in accidents at Minto Coal. Legislation forced mines to reduce work hours and improve safety. Women and children were barred from mining. When Tait refused to reduce work hours the miners went on strike again. After a critical situation in 1937 when 1000 miner and 11 colliers walked out, things gradually improved for both the miners and mine owners. New technology in the 1940s led to greater production, safety and profits. In 1944, Minto Coal donated land and money to build the town's first hospital. Credit for this philanthropy did not go to Thomas Tait, who died in 1940.

  12. Steam quality and effective sterilization.

    Science.gov (United States)

    Sedlacek, R S; Rose, E F

    1985-01-01

    Faced with using steam from a commercial utility having boilers greater than 5 miles distant and being the last user on the system resulted in ineffective sterilization. A three phase testing program was established utilizing: Direct physical measurements - an Ellison model 915A portable steam calorimeter. Direct microbiology - Autoclaved feed pellets were aseptically placed in fluid thioglycolate medium and incubated at 37 degrees C. Indirect microbiology - Feces from "defined flora" mice fed the autoclaved pelleted feed were tested. Colorimetric measurements verified that the steam sometimes contained greater than 5% entrained water. During periods of wet steam it was impossible to maintain consistent sterility of the mouse pellets even using a cycle of 126 degrees C for 60 minutes. One spore-forming Gram positive rod, Clostridium perfringens type D was the predominant bacterium isolated. Lactating mice, or mice stressed experimentally came down with diarrhea within days of eating pellets treated with wet steam (calorimetric measurements) and a subsequent positive culture. These mice voided stools predominantly showing Clostridium perfringens type D. PMID:2862643

  13. Steam generator hand hole shielding.

    Science.gov (United States)

    Cox, W E

    2000-05-01

    Seabrook Station is an 1198 MWE Pressurized Water Reactor (PWR) that began commercial operation in 1990. Expensive and dose intensive Steam Generator Replacement Projects among PWR operators have led to an increase in steam generator preventative maintenance. Most of this preventative maintenance is performed through access ports in the shell of the steam generator just above the tube sheet known as secondary side hand holes. Secondary side work activities performed through the hand holes are typically performed without the shielding benefit of water in the secondary side of the steam generator. An increase in cleaning and inspection work scope has led to an increase in dose attributed to steam generator secondary side maintenance. This increased work scope and the station goal of maintaining personnel radiation dose ALARA led to the development of the shielding concept described in this article. This shield design saved an estimated 2.5 person-rem (25 person-Smv) the first time it was deployed and is expected to save an additional 50 person-rem (500 person-mSv) over the remaining life of the plant. PMID:10770158

  14. Hydrogen production from biomass over steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, R.; Potetz, A.; Hofbauer, H. [Vienna Univ. of Technology (Austria). Inst. of Chemical Engineering; Weber, G. [Bioenergy 2020+, Guessing (Austria)

    2010-12-30

    , CO{sub 2} and methane) were used in gas engines to produce electricity and heat. The efficiencies for these cases range from 25 percent, if no gas treatment is done, 40 percent by including steam - reforming and 60 percent for the case, where steam reforming and CO-shift is included. Based on the simulation results an economic analysis of the overall system was done. The main result of the economic evaluation is that hydrogen can be produced at costs between 20-30 Eurocents per Nm{sup ,}3 which is 2.5-3.0 Euro per kg or 6-10 Eurocents per kW. (orig.)

  15. Effect of Low Pressure End Conditions on Steam Power Plant Performance

    OpenAIRE

    Ali Syed Haider; Baheta Aklilu Tesfamichael; Hassan Suhaimi

    2014-01-01

    Most of the electricity produced throughout the world today is from steam power plants and improving the performance of power plants is crucial to minimize the greenhouse gas emissions and fuel consumption. Energy efficiency of a thermal power plant strongly depends on its boiler-condenser operating conditions. The low pressure end conditions of a condenser have influence on the power output, steam consumption and efficiency of a plant. Hence, the objective this paper is to study the effect o...

  16. Optimization of thermoelectric topping combined steam turbine cycles for energy economy

    OpenAIRE

    Yazawa, Kazuaki; Koh, Yee Rui; Shakouri, Ali

    2013-01-01

    A mismatch between the fuel combustion temperature similar to 2250 K (adiabatic) and the high pressure steam temperature up to 900 K, results in a large amount of thermodynamic losses in steam turbine (ST) cycles. A solid-state thermoelectric (TE) placed on top of a ST cycle will produce additional electrical power. By selecting the right materials for the TE generator for high temperature operation, the energy production from the same fuel consumption will increase. Recent nano-structured en...

  17. Steam generator tube laser sleeving

    International Nuclear Information System (INIS)

    ; Weld inspectability through UT examination; Easy and reliable process; Long lifetime of optical equipment (mirrors, lenses, fibers). Considering these criteria we have chosen: working in pseudo-pulsed mode with 50 hz frequency, using nitrogen as protective gas, a welding power of about 600 W, 30 cm/mn advance speed. The laser welding process brings two main additional advantages if we compare it to the GTAW one: Reproducibility of the penetration and resisting cross-section and this, independently of surrounding conditions (fit up strength, tube/plate hard-rolling tightening,...); Flexibility and performances which enable a remote-controlled work with great output. The process consists of five main operations to which two optional ones can be added. These main operations are: Tube cleaning, Sleeve insertion/expansion, Upper and lower joint welding, Weld televisual inspection, Upper assembly stress-relieving process. The optional operations consist of: Tube inlet rework and Weld UT-inspection. The following three main concerns determined the design and installation of industrial laser sleeving means: the reliability, the most reduced dose rate, the output. Outside reactor building you have three containers for: The control-unit consisting of drive and supervision computers as well as video means; The laser unit itself (connected to the welding equipment in steam generator bunker by an optical fiber spreading the power) and its control cabinet; Auxiliary equipments. Inside reactor building you will find the equipments specific to each process (welding-device, brushing-unit, expansion hydraulic generator,...) as well as the electric cabinets connected to control unit. Data flow from outside to inside reactor and vice-versa through an optical fiber. Investigations about these industrial means are not achieved up to now but will be qualified (with EDF collaboration) in the CETIC afterwards and shall be used on a French power plant at the beginning of year 1992

  18. Steam reforming of light oxygenates

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Resasco, Daniel E; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of ethanol, acetic acid, acetone, acetol, 1-propanol, and propanal has been investigated over Ni/MgAl2O4 at temperatures between 400 and 700 degrees C and at a steam-to-carbon-ratio (S/C) of 6. The yield of H-2 and conversion increased with temperature, while the yield of by-...... of CH4. Significant deactivation of the catalyst was observed for all of the compounds and was mainly due to carbon formation. The carbon formation was highest for alcohols due to a high formation of olefins, which are potent coke precursors....

  19. Steam turbines for PWR stations

    International Nuclear Information System (INIS)

    The thermodynamic cycle requirements and mechanical design features applying to modern GEC 3000 rev/min steam turbines for pressurised water reactor power stations are reviewed. The most recent developments include machines of 630 MW and 985 MW output which are currently under construction. The importance of service experience with nuclear wet steam turbines associated with a variety of types of water cooled reactor and its relevance to the design of modern 3000 rev/min turbines for pressurised water reactor applications is emphasised. (author)

  20. Review of Evaluative Mechanisms in the Departments of Advanced Education and Labour and Human Resources Development--New Brunswick = Examen des mecanismes d'evaluation au ministere de l'Enseignement superieur et du Travail et au ministere du Developpement des Ressources humaines du Nouveau-Brunswick.

    Science.gov (United States)

    New Brunswick Labour Force Development Board, Fredericton.

    The evaluative mechanisms in the Department of Advanced Education and Labour and Department of Human Resources Development in the Canadian province of New Brunswick were reviewed. Data were gathered from the following: meetings with key staff in each department, briefing session for all key informants, 19 personal interviews, brief review of the…

  1. Quality Assurance for Consumers of Private Training Programs. Findings and Recommendations from the Consultation on the Regulation and Support of Training Providers in New Brunswick = Assurance de la qualite pour les consommateurs de programmes de formation du secteur prive. Resultats et recommandations a la suite des consultations relativement a la reglementation et au soutien des fournisseurs de cours de formation au Nouveau-Brunswick.

    Science.gov (United States)

    New Brunswick Labour Force Development Board, Fredericton.

    Eighteen key individuals from the business, labor, and training sectors and other organizations concerned with the purchase of private training programs were consulted in an effort to determine the role of Canada's federal government and New Brunswick's provincial government in quality assurance for consumers of private training programs. There…

  2. Business venture-analysis case study relating to the manufacture of gas turbines for the generation of utility electric power. Volume II. Private sector and public sector venture studies. Final report. [Use of coal gasifier with combined gas and steam system

    Energy Technology Data Exchange (ETDEWEB)

    Davison, W.R.

    1978-05-05

    Increasing national attention is being directed toward the search for clean, efficient, and reliable energy-conversion systems, capable of using abundant indigenous fuels such as coal, for generation of utility electric power. A prime candidate in this area is the combined gas and steam (COGAS) system employing a high-temperature gas turbine with a steam-turbine bottoming cycle, fed by a coal gasifier. This program demonstrates the use of a logical and consistent venture-analysis methodology which could also be applied to investigate other high-technology, energy-conversion systems that have yet to reach a state of commercialization but which are of significant interest to the U.S. Government. The venture analysis was performed by using a computer to model the development, production, sales, and in-service development phases of programs necessary to introduce new gas turbines in COGAS systems. The simulations were produced in terms of estimated cash flows, rates of returns, and risks which a manufacturer would experience. Similar simulations were used to estimate public-sector benefits resulting from the lower cost of power and improved environment gained from the use of COGAS systems rather than conventional systems. The study shows that substantial social benefits could be realized and private investment would be made by the gas-turbine manufacturers if an infusion of external funds were made during key portions of the gas-turbine development program. It is shown that there is substantial precedent for such public assistance to make possible economic and environmental benefits that otherwise would not be possible. 42 references.

  3. Steam Digest 2001: Office of Industrial Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-01-01

    Steam Digest 2001 chronicles Best Practices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  4. Hybrid systems to address seasonal mismatches between electricity production and demand in nuclear renewable electrical grids

    International Nuclear Information System (INIS)

    A strategy to enable zero-carbon variable electricity production with full utilization of renewable and nuclear energy sources has been developed. Wind and solar systems send electricity to the grid. Nuclear plants operate at full capacity with variable steam to turbines to match electricity demand with production (renewables and nuclear). Excess steam at times of low electricity prices and electricity demand go to hybrid fuel production and storage systems. The characteristic of these hybrid technologies is that the economic penalties for variable nuclear steam inputs are small. Three hybrid systems were identified that could be deployed at the required scale. The first option is the gigawatt-year hourly-to-seasonal heat storage system where excess steam from the nuclear plant is used to heat rock a kilometer underground to create an artificial geothermal heat source. The heat source produces electricity on demand using geothermal technology. The second option uses steam from the nuclear plant and electricity from the grid with high-temperature electrolysis (HTR) cells to produce hydrogen and oxygen. Hydrogen is primarily for industrial applications; however, the HTE can be operated in reverse using hydrogen for peak electricity production. The third option uses variable steam and electricity for shale oil production. -- Highlights: •A system is proposed to meet variable hourly to seasonal electricity demand. •Variable solar and wind electricity sent to the grid. •Base-load nuclear plants send variable steam for electricity and hybrid systems. •Hybrid energy systems can economically absorb gigawatts of variable steam. •Hybrid systems include geothermal heat storage, hydrogen, and shale-oil production

  5. Dynamic simulation analyzes expanded refinery steam system

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, S.L.; Graham, J.; Duffield, M.A.; Cortes, R.M. [M.W. Kellogg Co., Houston, TX (United States)

    1995-11-01

    There is a rising demand for more-stable process operations with increasing facility modernization and automation. This requires steam system controls that provide effective and stable responses to operational disturbances. Today it is possible to use dynamic simulation analysis for designing steam systems. The main objectives were to: develop a high-fidelity dynamic simulation model of the steam system and its associated controls; develop dynamic system responses to major plant disturbances; and assist in designing new control strategies and modifying existing controls to minimize the impact of plant upsets on system performance. The steam system for this project included two power plant supplying steam and power and a steam pipe network comprising three levels of steam with stream flows to and from process units spread over several square kilometers. Whether the steam system and its controls would respond effectively to major operational upsets, such as boiler, steam turbogenerator or process gas compressor trips, or a steep increase in steam demand, can only be determined from evaluating dynamic responses to these incidents. The model consisted of about 5,000 equations, 1,000 parameters and data items, and was used for evaluating steam system responses to various operational upset scenarios. The responses were used to identify limitations of the as designed control system. The model also proved to be an effective tool for verifying adequacy of the proposed recommendations. These included modifications to control valve letdown stations, steam turbogenerator governor controls and the boiler master-pressure controller.

  6. Parametric study for horizontal steam generator modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ovtcharova, I. [Energoproekt, Sofia (Bulgaria)

    1995-12-31

    In the presentation some of the calculated results of horizontal steam generator PGV - 440 modelling with RELAP5/Mod3 are described. Two nodalization schemes have been used with different components in the steam dome. A study of parameters variation on the steam generator work and calculated results is made in cases with separator and branch.

  7. Containment steam blowdown analysis: experimental and numerical comparisons

    International Nuclear Information System (INIS)

    This paper compares the numerical simulation with the experimental data of a steam blowdown event in a light water reactor containment building. A three step approach was used to analyze the steam jet behavior. First, the temperature and pressure data of a stem blowdown event was measured at the Purdue University Multi-Dimensional Integrated Test Assembly (PUMA), a scaled model of the General Electric Simplified Boiling Water Reactor. Second, a 1-Dimensional, system level RELAP5/Mod3.2 model of the steam blowdown event was created and the results used to set the initial conditions for the PUMA blowdown experiments. Finally, 2-Dimensional and 3-Dimensional CFD models of the discharged steam jets were computed using PHOENICS, a commercially available CFD package. It was found that RELAP5 is reasonably capable in predicting the general temperature and pressure trends in the RPV. However, due to modeling compromises and the code's built-in capabilities, RELAP5 1-Dimensional predictions of containment temperature and pressure did not compare well with measured data. On the other hand, with minor modifications to the k-ε turbulence model, the 2-Dimensional and 3-Dimensional PHOENICS CFD solutions compared extremely well with the measured data. (author)

  8. Burnout in steam-water flow on horizontal tubes

    International Nuclear Information System (INIS)

    The mechanism of the burnout occurrence in a steam-fluid medium flowing about a horizontal steam-generating tube is analysed. The analysis is based on the burnout hydrodynamic nature. A formula for calculation of the critical heat flux is obtained that is correlated with experimental data. The experiments have been performed with horizontal electrically heated tubes, with 6 and 16 mm external diameter. The tube, 6 mm in diameter, was situated in a planar vertical 11 mm wide slit. The experiments have been conducted at the 0.1 MPa pressure, 0.058 and 1.25 m/s steam flow rate and 0.95% void fraction. The 16 mm diameter tube was mounted in the upper row of the horizontal bundle of 32 such tubes arranged at a 40 mm pitch in a vertical slit 37 mm wide. The experiments with this tube have been performed under 7.5 MPa pressure, 0.4 m/s flow rate and 0.65% void fraction. Under operating conditions investigated the suggested formula may be recommended for calculating critical heat fluxes in steam generators and heat exhangers with boiling coolants in the intertube space of horizontal bundles of tubes

  9. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  10. Restoring a Classic Electric Car

    Science.gov (United States)

    Kraft, Thomas E.

    2012-01-01

    One hundred years ago, automobiles were powered by steam, electricity, or internal combustion. Female drivers favored electric cars because, unlike early internal-combustion vehicles, they did not require a crank for starting. Nonetheless, internal-combustion vehicles came to dominate the industry and it's only in recent years that the electrics…

  11. Steam Greenlight for first-time developers : explaining Steam Greenlight from a game developer's perspective

    OpenAIRE

    Eloranta, Minna

    2016-01-01

    The purpose of this thesis is to go through the Steam Greenlight process and clarify misinformation and correct beliefs on the platform. The thesis proposes improvement ideas based on the findings of the research conducted. Steam Greenlight was created in 2012 by Valve Corporation and determines which new games can be available in the Steam Store. Steam users can vote on games which improves the games' chances of getting through Greenlight. Steam Greenlight has been created to enable ...

  12. Further contributions to the staphylinid fauna of New Brunswick, Canada, and the USA, with descriptions of two new Proteinus species (Coleoptera, Staphylinidae).

    Science.gov (United States)

    Webster, Reginald P; Davies, Anthony E; Klimaszewski, Jan; Bourdon, Caroline

    2016-01-01

    This paper treats the discovery of new species and new records of Staphylinidae from the subfamilies Omaliinae, Proteininae, Tachyporinae, Oxytelinae, Scydmaeninae, Steninae, Euaesthetinae, Pseudopsinae, Paederinae, and Staphylininae for the province of New Brunswick and other provinces of Canada, and the USA. We report here two species new to science, three new North American records, nine new Canadian records, two new USA records, and 50 new provincial records. The following are the species new to science: Proteinus hughesi Webster & Davies, sp. n. and Proteinus sweeneyi Webster & Klimaszewski, sp. n. (Proteininae). Sepedophilus immaculatus (Stephens) and Carpelimus erichsoni (Sharp), Carpelimus mundus (Sharp) are newly recorded from North America. New Canadian records are as follows: Carpelimus difficilis (Casey), Carpelimus gracilis (Mannerheim), Carpelimus lacustris (Notman), Carpelimus probus (Casey), Carpelimus pusillus (Gravenhorst), Carpelimus rivularis (Motschulsky), Carpelimus spretus (Casey), Carpelimus weissi (Notman) (Oxytelinae), and Edaphus lederi Eppelsheim (Euaesthetinae). This is the first record of the genus Edaphus for Canada. Bledius basalis LeConte and Carpelimus obesus (Kiesenwetter) (Oxytelinae) are removed from the faunal list of New Brunswick. Proteinus acadiensis Klimaszewski and Proteinus pseudothomasi Klimaszewski are newly recorded from the USA and several provinces of Canada. Habitat data from New Brunswick are provided for most of the species treated in this contribution.

  13. Cycle improvement for nuclear steam power plant

    International Nuclear Information System (INIS)

    A pressure-increasig ejector element is disposed in an extraction line intermediate to a high pressure turbine element and a feedwater heater. The ejector utilizes high pressure fluid from a reheater drain as the motive fluid to increase the pressure at which the extraction steam is introduced into the feedwater heater. The increase in pressure of the extraction steam entering the feedwater heater due to the steam passage through the ejector increases the heat exchange capability of the extraction steam thus increasing the overall steam power plant efficiency

  14. Methane production from steam-exploded bamboo.

    Science.gov (United States)

    Kobayashi, Fumihisa; Take, Harumi; Asada, Chikako; Nakamura, Yoshitoshi

    2004-01-01

    To convert unutilized plant biomass into a useful energy source, methane production from bamboo was investigated using a steam explosion pretreatment. Methane could not be produced from raw bamboo but methane production was enhanced by steam explosion. The maximum amount of methane produced, i.e., about 215 ml, was obtained from 1 g of exploded bamboo at a steam pressure of 3.53 MPa and a steaming time of 5 min. A negative correlation between the amount of methane produced and the amount of Klason lignin was observed in the methane fermentation of steam-exploded bamboo.

  15. Steam plant for producing drinking water from seawater. Dampfkraftanlage zur Erzeugung von Trinkwasser aus Meerwasser

    Energy Technology Data Exchange (ETDEWEB)

    Kuenstle, K.; Lezuo, A.

    1984-04-05

    In order to be able to match a seawater desalination plant to different conditions of the electrical mains supply while maintaining the overall efficiency of the plant, the vapour compressor is driven by a steam turbine, which is coupled via an electric generator or motor to the electrical mains supply; also heat exchangers for cooling the brine and/or the destillate are situated in the seawater feedpipe to a bypass.

  16. Steam generator materials performance in high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    This paper reviews the materials technology aspects of steam generators for HTGRs which feature a graphite-moderated, uranium-thorium, all-ceramic core and utilizes high-pressure helium as the primary coolant. The steam generators are exposed to gas-side temperatures approaching 7600C and produce superheated steam at 5380C and 16.5 MPa (2400 psi). The prototype Peach Bottom I 40-MW(e) HTGR was operated for 1349 EFPD over 7 years. Examination after decommissioning of the U-tube steam generators and other components showed the steam generators to be in very satisfactory condition. The 330-MW(e) Fort St. Vrain HTGR, now in the final stages of startup, has achieved 70% power and generated more than 1.5 x 106 MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, requiring a number of new materials factors including creep-fatigue and water chemistry control. Current designs of larger HTGRs also feature steam generators of helical once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers (ASME) Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of large forgings, etc

  17. Development and validation of advanced oxidation protective coatings for super critical steam power plant

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M.B.; Scheefer, M. [Alstom Power Ltd., Rugby (United Kingdom); Agueero, A. [Instituto Nacional de Tecnica Aerospacial (INTA) (Spain); Allcock, B. [Monitor Coatings Ltd. (United Kingdom); Norton, B. [Indestructible Paints Ltd. (United Kingdom); Tsipas, D.N. [Aristotle Univ. of Thessaloniki (Greece); Durham, R. [FZ Juelich (Germany); Xiang, Z. [Northumbria Univ. (United Kingdom)

    2006-07-01

    Increasing the efficiency of coal-fired power plant by increasing steam temperatures and pressures brings benefits in terms of cheaper electricity and reduced emissions, particularly CO{sub 2}. In recent years the development of advanced 9%Cr ferritic steels with improved creep strength has enabled power plant operation at temperatures in excess of 600 C, such that these materials are being exploited to construct a new generation of advanced coalfired plant. However, the move to higher temperatures and pressures creates an extremely hostile oxidising environment. To enable the full potential of the new steels to be achieved, it is vital that protective coatings are developed, validated under high temperature steam and applied to candidate components from the steam path. This paper reviews recent work conducted within the Framework V project ''Coatings for Supercritical Steam Cycles'' (SUPERCOAT) to develop and demonstrate advanced slurry and thermal spray coatings capable of providing steam oxidation protection at temperatures in excess of 620 C and up to 300 bar. The programme of work has demonstrated the feasibility of applying a number of candidate coatings to steam turbine power plant components and has generated long-term steam oxidation rate and failure data that underpin the design and application work packages needed to develop and establish this technology for new and retrofit plant. (orig.)

  18. 76 FR 3587 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Science.gov (United States)

    2011-01-20

    ... AGENCY 40 CFR Part 60 RIN 2060-AQ46 Standards of Performance for Fossil-Fuel-Fired, Electric Utility... 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel... government 22112 Fossil fuel-fired electric utility steam generating units owned by municipalities....

  19. SO2 pollution of heavy oil-fired steam power plants in Iran

    International Nuclear Information System (INIS)

    Steam power plants using heavy oil provided about 17.4%, equivalent to 35.49 TWh, of electricity in Iran in 2007. However, having 1.55–3.5 weight percentage of sulfur, heavy oil produces SO2 pollutant. Utilization of Flue Gas Desulfurization systems (FGD) in Iran's steam power plants is not common and thereby, this pollutant is dispersed in the atmosphere easily. In 2007, the average emission factor of SO2 pollutant for steam power plants was 15.27 g/kWh, which means regarding the amount of electricity generated by steam power plants using heavy oil, 541,000 Mg of this pollutant was produced. In this study, mass distribution of SO2 in terms of Mg/yr is considered and dispersion of this pollutant in each of the 16 steam power plants under study is modeled using Atmospheric Dispersion Modeling System (ADMS). Details of this study are demonstrated using Geographical Information System (GIS) software, ArcGIS. Finally, the average emission factor of SO2 and the emission of it in Iran's steam power plants as well as SO2 emission reduction programs of this country are compared with their alternatives in Turkey and China.

  20. Repair welding of cracked steam turbine blades

    International Nuclear Information System (INIS)

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER316L austenitic stainless steel filler wire and ER410 martensitic stainless steel filler wire. The repair welding procedure with austenitic filler wire was developed to avoid preheating of the blade as also hydrogen induced cold cracking, and involved evaluation of three different austenitic filler wires, viz. ER309L, ER316L and ERNiCr-3. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microstructural examination. After various trials using different procedures, the procedure of local PWHT using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld, was found to give the most satisfactory results. A similar procedure was used for preheating while using ER410 filler metal. Mechanical testing of weldments before and after PWHT involved tensile tests at room temperature, face and root bend tests, and microhardness measurements across the fusion line and heat affected zone. During procedure qualification, mock-ups and actual repair welding, dye penetrant testing was used at different stages and where ever possible radiography was carried out. These procedures were developed for repair welding of cracked blades in the low-pressure (LP) steam turbines of Indian nuclear power plants. The procedure with ER316 L filler wire has so far been applied for repair welding of 2 cracked blades (made of AISI 410 SS) of LP steam turbines, while the procedure

  1. Repair welding of cracked steam turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)]|[Nuclear Power Corp., Mumbai (India)

    1999-07-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER316L austenitic stainless steel filler wire and ER410 martensitic stainless steel filler wire. The repair welding procedure with austenitic filler wire was developed to avoid preheating of the blade as also hydrogen induced cold cracking, and involved evaluation of three different austenitic filler wires, viz. ER309L, ER316L and ERNiCr-3. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microstructural examination. After various trials using different procedures, the procedure of local PWHT using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld, was found to give the most satisfactory results. A similar procedure was used for preheating while using ER410 filler metal. Mechanical testing of weldments before and after PWHT involved tensile tests at room temperature, face and root bend tests, and microhardness measurements across the fusion line and heat affected zone. During procedure qualification, mock-ups and actual repair welding, dye penetrant testing was used at different stages and where ever possible radiography was carried out. These procedures were developed for repair welding of cracked blades in the low-pressure (LP) steam turbines of Indian nuclear power plants. The procedure with ER316 L filler wire has so far been applied for repair welding of 2 cracked blades (made of AISI 410 SS) of LP steam turbines, while the procedure

  2. Integration of a Gas Fired Steam Power Plant with a Total Site Utility Using a New Cogeneration Targeting Procedure

    Institute of Scientific and Technical Information of China (English)

    Sajad Khamis Abadi; Mohammad Hasan Khoshgoftar Manesh; Marc A.Rosen; Majid Amidpour; Mohammad Hosein Hamedi

    2014-01-01

    A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-tem as a sink of steam and power. Estimation for the cogeneration potential prior to the design of a central utility system for site utility systems is vital to the targets for site fuel demand as well as heat and power production. In this regard, a new cogeneration targeting procedure is proposed for integration of a steam power plant and a site utility consisting of a process plant. The new methodology seeks the optimal integration based on a new cogenera-tion targeting scheme. In addition, a modified site utility grand composite curve (SUGCC) diagram is proposed and compared to the original SUGCC. A gas fired steam power plant and a process site utility is considered in a case study. The applicability of the developed procedure is tested against other design methods (STAR® and Thermoflex software) through a case study. The proposed method gives comparable results, and the targeting method is used for optimal integration of steam levels. Identifying optimal conditions of steam levels for integration is important in the design of utility systems, as the selection of steam levels in a steam power plant and site utility for integration greatly influences the potential for cogeneration and energy recovery. The integration of steam levels of the steam power plant and the site utility system in the case study demonstrates the usefulness of the method for reducing the overall energy consumption for the site.

  3. French Regulatory practice and experience feedback on steam generator tube integrity

    Energy Technology Data Exchange (ETDEWEB)

    Sandon, G.

    1997-02-01

    This paper summarizes the way the French Safety Authority applies regulatory rules and practices to the problem of steam generator tube cracking in French PWR reactors. There are 54 reactors providing 80% of French electrical consumption. The Safety Authority closely monitors the performance of tubes in steam generators, and requires application of a program which deals with problems prior to the actual development of leakage. The actual rules regarding such performance are flexible, responding to the overall performance of operating steam generators. In addition there is an inservice inspection service to examine tubes during shutdown, and to monitor steam generators for leakage during operation, with guidelines for when generators must be pulled off line.

  4. Steam producing plant concept of 4S for oil sand extraction

    International Nuclear Information System (INIS)

    Plant concept of small fast reactor '4S' applying to continuous steam production for recovery of crude oil from oil sands was investigated. Assuming typical steam assisted gravity drainage (SAGD) plant whose production scale is 120,000 barrels per day of a crude oil, concept of nuclear steam supply system consisting of eight reactor modules for steam production and three reactor modules for electric generation of the 4S with a thermal rating of 135 MWt was established without any essential or significant design change from the preceding 4S with a thermal rating of 30 MWt. The 4S, provided for an oil sand extraction, will reduce greenhouse gas emission significantly, and has not much burden for development and licensing and has economic competitiveness. (author)

  5. Numerical discretization analysis of a HTR steam generator model for the thermal-hydraulics code trace

    Directory of Open Access Journals (Sweden)

    Esch Markus

    2014-01-01

    Full Text Available For future high temperature reactor projects, e. g., for electricity production or nuclear process heat applications, the steam generator is a crucial component. A typical design is a helical coil steam generator consisting of several tubes connected in parallel forming cylinders of different diameters. This type of steam generator was a significant component used at the thorium high temperature reactor. In the work presented the temperature profile is being analyzed by the nodal thermal hydraulics code TRACE for the thorium high temperature reactor steam generator. The influence of the nodalization is being investigated within the scope of this study and compared to experimental results from the past. The results of the standard TRACE code are compared to results using a modified Nusselt number for the primary side. The implemented heat transfer correlation was developed within the past German HTR program. This study shows that both TRACE versions are stable and provides a discussion of the nodalization requirements.

  6. The market for steam turbine generators around the world

    International Nuclear Information System (INIS)

    As a discrete market (in the mathematical meaning of the word) with irregular sales from one year to the next, the market for steam turbine generators in nuclear plants requires working out a strategy adapted to each project. The diversity of the reactors proposed (technology, thermal power, the thermodynamic characteristics of the steam supplied), the variety of the cold sources to be used (ranging from the Baltic Sea to the Indian Ocean) and the different frequencies of electricity grids (50 or 60 Hz) necessitate developing platforms of solutions. Furthermore, the requirement that local businesses have a share in contracts often entails partnerships. After pointing out the diversity of this market, the effort is made to point out its principal characteristics. (authors)

  7. Closed loop steam cooled airfoil

    Science.gov (United States)

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  8. Duplex steam reformer: alternate catalyst

    International Nuclear Information System (INIS)

    The manufacturing feasibility of a duplex steam reformer tube for potential use in a high temperature gas cooled reactor has been successfully demonstrated. This technique consists of explosively expanding the inner tube into the outer tube. To successfully achieve the desired 0 to 3 mil radial gap between the tubes it is necessary to perform the expansion in two steps with an intermediate anneal. A catalyst design that would have replaced the conventional Raschig rings with a metal supported catalyst has been evaluated and it has been concluded that further development and testing are needed before fabrication of a full scale prototype is warranted. Consequently, the immediate efforts are directed towards reevaluating the incentives for developing a catalyst and the probability of successfully developing a catalyst that could be used for steam reforming

  9. Geographic specificity of Aroclor 1268 in bottlenose dolphins (Tursiops truncatus) frequenting the Turtle/Brunswick River Estuary, Georgia (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Pulster, Erin L. [Marine Sciences Department, Savannah State University, Savannah, Georgia, 31404 (United States); Skidaway Institute of Oceanography, 10 Ocean Science Circle, Savannah, Georgia, 31411 (United States)], E-mail: epulster@mote.org; Maruya, Keith A. [Skidaway Institute of Oceanography, 10 Ocean Science Circle, Savannah, Georgia, 31411 (United States)

    2008-04-15

    Coastal marine resources are at risk from anthropogenic contaminants, including legacy persistent organic pollutants (POPs) with half-lives of decades or more. To determine if polychlorinated biphenyl (PCB) signatures can be used to distinguish among local populations of inshore bottlenose dolphins (Tursiops truncatus) along the southeastern U.S. coast, blubber from free-ranging and stranded animals were collected along the Georgia coast in 2004 and analyzed for PCB congeners using gas chromatography with electron capture and negative chemical ionization mass spectrometric detection (GC-ECD and GC-NCI-MS). Mean total PCB concentrations (77 {+-} 34 {mu}g/g lipid) were more than 10 fold higher and congener distributions were highly enriched in Cl{sub 7}-Cl{sub 10} homologs in free-ranging animals from the Turtle/Brunswick River estuary (TBRE) compared with strandings samples from Savannah area estuaries 90 km to the north. Using principal components analysis (PCA), the Aroclor 1268 signature associated with TBRE animals was distinct from that observed in Savannah area animals, and also from those in animals biopsied in other southeastern U.S estuaries. Moreover, PCB signatures in dolphin blubber closely resembled those in local preferred prey fish species, strengthening the hypothesis that inshore T. truncatus populations exhibit long-term fidelity to specific estuaries and making them excellent sentinels for assessing the impact of stressors on coastal ecosystem health.

  10. Rapid Risk Evaluation (ER2) Using MS Excel Spreadsheet: a Case Study of Fredericton (new Brunswick, Canada)

    Science.gov (United States)

    McGrath, H.; Stefanakis, E.; Nastev, M.

    2016-06-01

    Conventional knowledge of the flood hazard alone (extent and frequency) is not sufficient for informed decision-making. The public safety community needs tools and guidance to adequately undertake flood hazard risk assessment in order to estimate respective damages and social and economic losses. While many complex computer models have been developed for flood risk assessment, they require highly trained personnel to prepare the necessary input (hazard, inventory of the built environment, and vulnerabilities) and analyze model outputs. As such, tools which utilize open-source software or are built within popular desktop software programs are appealing alternatives. The recently developed Rapid Risk Evaluation (ER2) application runs scenario based loss assessment analyses in a Microsoft Excel spreadsheet. User input is limited to a handful of intuitive drop-down menus utilized to describe the building type, age, occupancy and the expected water level. In anticipation of local depth damage curves and other needed vulnerability parameters, those from the U.S. FEMA's Hazus-Flood software have been imported and temporarily accessed in conjunction with user input to display exposure and estimated economic losses related to the structure and the content of the building. Building types and occupancies representative of those most exposed to flooding in Fredericton (New Brunswick) were introduced and test flood scenarios were run. The algorithm was successfully validated against results from the Hazus-Flood model for the same building types and flood depths.

  11. Multiple modes of water quality impairment by fecal contamination in a rapidly developing coastal area: southwest Brunswick County, North Carolina.

    Science.gov (United States)

    Cahoon, Lawrence B; Hales, Jason C; Carey, Erin S; Loucaides, Socratis; Rowland, Kevin R; Toothman, Byron R

    2016-02-01

    Fecal contamination of surface waters is a significant problem, particularly in rapidly developing coastal watersheds. Data from a water quality monitoring program in southwest Brunswick County, North Carolina, gathered in support of a regional wastewater and stormwater management program were used to examine likely modes and sources of fecal contamination. Sampling was conducted at 42 locations at 3-4-week intervals between 1996 and 2003, including streams, ponds, and estuarine waters in a variety of land use settings. Expected fecal sources included human wastewater systems (on-site and central), stormwater runoff, and direct deposition by animals. Fecal coliform levels were positively associated with rainfall measures, but frequent high fecal coliform concentrations at times of no rain indicated other modes of contamination as well. Fecal coliform levels were also positively associated with silicate levels, a groundwater source signal, indicating that flux of fecal-contaminated groundwater was a mode of contamination, potentially elevating FC levels in impacted waters independent of stormwater runoff. Fecal contamination by failing septic or sewer systems at many locations was significant and in addition to effects of stormwater runoff. Rainfall was also linked to fecal contamination by central sewage treatment system failures. These results highlight the importance of considering multiple modes of water pollution and different ways in which human activities cause water quality degradation. Management of water quality in coastal regions must therefore recognize diverse drivers of fecal contamination to surface waters.

  12. Multiple modes of water quality impairment by fecal contamination in a rapidly developing coastal area: southwest Brunswick County, North Carolina.

    Science.gov (United States)

    Cahoon, Lawrence B; Hales, Jason C; Carey, Erin S; Loucaides, Socratis; Rowland, Kevin R; Toothman, Byron R

    2016-02-01

    Fecal contamination of surface waters is a significant problem, particularly in rapidly developing coastal watersheds. Data from a water quality monitoring program in southwest Brunswick County, North Carolina, gathered in support of a regional wastewater and stormwater management program were used to examine likely modes and sources of fecal contamination. Sampling was conducted at 42 locations at 3-4-week intervals between 1996 and 2003, including streams, ponds, and estuarine waters in a variety of land use settings. Expected fecal sources included human wastewater systems (on-site and central), stormwater runoff, and direct deposition by animals. Fecal coliform levels were positively associated with rainfall measures, but frequent high fecal coliform concentrations at times of no rain indicated other modes of contamination as well. Fecal coliform levels were also positively associated with silicate levels, a groundwater source signal, indicating that flux of fecal-contaminated groundwater was a mode of contamination, potentially elevating FC levels in impacted waters independent of stormwater runoff. Fecal contamination by failing septic or sewer systems at many locations was significant and in addition to effects of stormwater runoff. Rainfall was also linked to fecal contamination by central sewage treatment system failures. These results highlight the importance of considering multiple modes of water pollution and different ways in which human activities cause water quality degradation. Management of water quality in coastal regions must therefore recognize diverse drivers of fecal contamination to surface waters. PMID:26769702

  13. Geographic specificity of Aroclor 1268 in bottlenose dolphins (Tursiops truncatus) frequenting the Turtle/Brunswick River Estuary, Georgia (USA)

    International Nuclear Information System (INIS)

    Coastal marine resources are at risk from anthropogenic contaminants, including legacy persistent organic pollutants (POPs) with half-lives of decades or more. To determine if polychlorinated biphenyl (PCB) signatures can be used to distinguish among local populations of inshore bottlenose dolphins (Tursiops truncatus) along the southeastern U.S. coast, blubber from free-ranging and stranded animals were collected along the Georgia coast in 2004 and analyzed for PCB congeners using gas chromatography with electron capture and negative chemical ionization mass spectrometric detection (GC-ECD and GC-NCI-MS). Mean total PCB concentrations (77 ± 34 μg/g lipid) were more than 10 fold higher and congener distributions were highly enriched in Cl7-Cl10 homologs in free-ranging animals from the Turtle/Brunswick River estuary (TBRE) compared with strandings samples from Savannah area estuaries 90 km to the north. Using principal components analysis (PCA), the Aroclor 1268 signature associated with TBRE animals was distinct from that observed in Savannah area animals, and also from those in animals biopsied in other southeastern U.S estuaries. Moreover, PCB signatures in dolphin blubber closely resembled those in local preferred prey fish species, strengthening the hypothesis that inshore T. truncatus populations exhibit long-term fidelity to specific estuaries and making them excellent sentinels for assessing the impact of stressors on coastal ecosystem health

  14. Recent operating experiences with steam generators in Japanese NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Yashima, Seiji [Japan Power Engineering and Inspection Corp., Tokyo (Japan)

    1997-02-01

    In 1994, the Genkai-3 of Kyushu Electric Power Co., Inc. and the Ikata-3 of Shikoku Electric Power Co., Inc. started commercial operation, and now 22 PWR plants are being operated in Japan. Since the first PWR plant now 22 PWR plants are being operated in was started to operate, Japanese PWR plants have had an operating experience of approx. 280 reactor-years. During that period, many tube degradations have been experienced in steam generators (SGs). And, in 1991, the steam generator tube rupture (SGTR) occurred in the Mihama-2 of Kansai Electric Power Co., Inc. However, the occurrence of tube degradation of SGs has been decreased by the instructions of the MITI as regulatory authorities, efforts of Electric Utilities, and technical support from the SG manufacturers. Here the author describes the recent SGs in Japan about the following points. (1) Recent Operating Experiences (2) Lessons learned from Mihama-2 SGTR (3) SG replacement (4) Safety Regulations on SG (5) Research and development on SG.

  15. Effect of steam-exhaust operation of secondary coolant circuit on ship reactor blackout accident

    International Nuclear Information System (INIS)

    Highlights: • The ship reactor blackout accident (SRBA) is simulated by the RELAP5/MOD3.2 code. • The mitigation effect of steam-exhaust-operation (SEO) on the SRBA is analyzed. • Reasonable SEO scheme can obviously mitigate the accident for several hours. • The SEO scheme without feed water device can hardly mitigate the SRBA. • The failure of intercurrent steam flux control valve will result in the decrease of mitigation time. - Abstract: The ship reactor blackout accident can potentially lead to the severe accident and the radioactive fission product release. In the absence of auxiliary electrical source, the effective mitigation of the accident aftereffect is very important. As the exclusive heat trap in the reactor coolant system, the steam-exhaust operation (SEO) in the secondary coolant circuit (SCC) plays an important role in the accident mitigation. In view of the character of ship nuclear power plant (NPP), the ship reactor blackout accident (SRBA) under the typical operating conditions is simulated by the RELAP5/MOD3.2 code, and the mitigation of SEO on the accident is analyzed. It is found that (1) reasonable SEO can obviously mitigate the accident for several hours, the SEO with 1% rated steam flux of secondary coolant circuit provides about 7 h for the mitigation of accident, (2) a less steam flux of SCC during the SEO means a slower pressure drop of steam generation (SG) and a more time we can mitigate the accident, there are 1.5 h between the SEO with 1% rated steam flux and that with 3% rated steam flux, (3) the SEO without the feed water device can hardly mitigate the accident, and (4) during the blackout accident, the SEO with intercurrent steam flux control valve failure will result in the decrease of mitigation time because of the quick decrease of SG pressure, but the mitigation effect is also obvious

  16. Significant Silica Solubility in Geothermal Steam

    Energy Technology Data Exchange (ETDEWEB)

    James, Russell

    1986-01-21

    Although it is widely believed that silica solubility in low pressure (5 to 10 bar) geothermal steam is negligible, when one takes into account steam flows exceeding 10 million tonnes a year--at Wairakei, for instance--it is found that the amount transmitted in the vapor has the potential to give significant deposits on turbine nozzles and blades. A 150 MWe power station, when based on flows from a hot water reservoir at (a) 250 C or (b) 315 C, and with separator pressures of 6 bar, is found to carry about 100 and 200 kg/year respectively in the steam phase. In the case of a similar sized station exploiting a dry steam reservoir such as The Geysers, equivalent silica flows are obtained, dissolved in steam and carried as dust--the latter as solid particles precipitating from the vapor en route from source to turbine, and not preexisting in the formations as is commonly considered. Choking or coating of subterranean rock near such dry steam wells due to exsolving silica, may be the principal cause of declining steam discharge under production. Silica from completely dry or superheated steam can also seal the cap and sides of steam reservoirs when expanding below the criticus temperature (236 C) in a way previously thought possible only by hot water or wet steam.

  17. An installation for steam conversion of gases

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, K.; Matsumoto, I.

    1983-01-28

    An installation is proposed for steam conversion of a hydrocarbon gas in order to produce an inorganic gas which chiefly consists of H2 and CO in which the line for feeding the hydrocarbon gas has a steam generator which has a microcapillary structure made of sponge metal, inorganic heat resistant fibers of glass, Si02, Al203 or carbon, inorganic heat resistant fibers twisted into a fiber or a cord of multipore ceramic material; the installation is equipped with a heater which regulates the water temperature, in which the steam generator is submerged. The installation is designed for converting natural gas, C3H8, other hydrocarbon gases and vapors of liquid hydrocarbons (Uv) into H2 and CO. The design and disposition of the steam generator simplify the design of the device, eliminating the pump for feeding the steam and the device for premixing of the steam and hydrocarbon gas.

  18. Determination of steam wetness in the steam-generating equipment of nuclear power plants

    Science.gov (United States)

    Gorburov, V. I.; Gorburov, D. V.; Kuz'min, A. V.

    2012-05-01

    Calculation and experimental methods for determining steam wetness in horizontal steam generators for nuclear power stations equipped with VVER reactors, namely, the classic salt technique and calculations based on operating parameters are discussed considered and compared.

  19. Biomass-gasifier steam-injected gas turbine cogeneration for the cane sugar industry

    International Nuclear Information System (INIS)

    Steam injection for power and efficiency augmentation in aeroderivative gas turbines has been commercially established for natural gas-fired cogeneration since 1980. Steam-injected gas turbines fired with coal and biomass are being developed. A performance and economic assessment of biomass integrated-gasifier steam-injected gas turbine (BIG/STIG) cogeneration systems is carried out here. A detailed economic case study is presented for the second largest sugar factory in Jamaica, with cane residues as the fuel. BIG/STIG cogeneration units would be attractive investments for sugar producers, who could sell large quantities of excess electricity to the utility, or for the utility, as a low-cost generating option. Worldwide, the cane sugar industry could support some 50,000 MW of BIG/STIG electric generation capacity. The relatively modest development effort required to commercialize the BIG/STIG technology is discussed in a companion paper prepared for this conference

  20. Calculation of steam-water injector properties

    Science.gov (United States)

    Pavlicek, Petr; Linhart, Jiri

    2014-08-01

    The topic of this article is a calculation of steam-water injector properties using simplified one dimensional global model. In this case the injector is used as combined mixing heat exchanger and water pump. It mixes steam with water and inject water into an area with a set back-pressure. At the exit only liquid phase is present, which is caused by a shock wave which occurs in highly wet steam.

  1. Analysis of TROI-13 Steam Explosion Experiment

    OpenAIRE

    Mitja Uršič; Matjaž Leskovar

    2008-01-01

    The prediction of steam explosion inducing loads in nuclear power plants must be based on results of experimental research programmes and on simulations using validated fuel-coolant interaction codes. In this work, the TROI-13 steam explosion experiment was analysed with the fuel-coolant interaction MC3D computer code. The TROI-13 experiment is one of several experiments performed in the TROI research program and resulted in a spontaneous steam explosion using corium melt. First, the TROI-13 ...

  2. Pilot Plant for Solar Process Steam Supply

    OpenAIRE

    Hennecke, Klaus; Hirsch, Tobias; Krüger, Dirk; Lokurlu, Ahmet; Walder, Markus

    2008-01-01

    An aluminium upgrading process will be supplied by steam directly generated in parabolic trough collectors. In this first of it’s kind installation in an industrial environment, steam at 4 bar will be fed into the existing distribution lines of the production to heat anodizing baths and storage tanks. The integration of the solar steam through separate heat exchangers in parallel to the existing system was also considered. In principle, due to the low temperatures of the baths, solar hot wate...

  3. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  4. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    International Nuclear Information System (INIS)

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results

  5. CAREM-25 Steam Generator Stability Analysis

    International Nuclear Information System (INIS)

    In this work the stability of a once-through CAREM-25 steam generator is analyzed.A fix nodes numerical model, that allows the modelling of the liquid, two-phase and superheated steam zones, is implemented.This model was checked against a mobile finite elements model under saturated steam conditions at the channel exit and a good agreement was obtained.Finally the stability of a CAREM steam generator is studied and the range of in let restrictions that a assure the system stability is analyzed

  6. Analysis of TROI-13 Steam Explosion Experiment

    Directory of Open Access Journals (Sweden)

    Mitja Uršič

    2008-01-01

    Full Text Available The prediction of steam explosion inducing loads in nuclear power plants must be based on results of experimental research programmes and on simulations using validated fuel-coolant interaction codes. In this work, the TROI-13 steam explosion experiment was analysed with the fuel-coolant interaction MC3D computer code. The TROI-13 experiment is one of several experiments performed in the TROI research program and resulted in a spontaneous steam explosion using corium melt. First, the TROI-13 premixing simulations were performed to determine the initial conditions for the steam explosion simulations and to evaluate the melt droplets hydrodynamic fragmentation model. Next, a number of steam explosion simulations were performed, varying the steam explosion triggering position and the melt droplets mass participating in the steam explosion. The simulation results revealed that there is an important influence of the participating melt droplets mass on the calculated pressure loads, whereas the influence of the steam explosion triggering position on the steam explosion development was less expressive.

  7. Exergy and exergoeconomic analysis of sustainable direct steam generation solar power plants

    International Nuclear Information System (INIS)

    Highlights: • Exergy and exergoeconomic analyses are presented for direct steam generation plant. • Both non-reheating and reheating by steam–steam heat exchanger are considered. • The contribution of each component to the total exergy destruction is determined. • The cost associated with exergy destruction and production cost are evaluated. • The effect of degree of reheating on the performance is presented. - Abstract: Solar direct steam generation is considered as a promising technology for steam production in thermal power generation due to high temperature levels that can be achieved compared to other technologies that use indirect steam generation. This paper demonstrates exergy and exergoeconomic analysis of commercial-size direct steam generation parabolic trough solar thermal power plant. For steam power cycles, reheating might be necessary to avoid great wetness of steam which shortens the lifetime of the turbines. Therefore, two configurations have been considered in this study; the non-reheating configuration as well as reheating by steam–steam heat exchanger. For each component, exergy and exergy-costing balance equations have been formulated based on a proper definition of fuel–product–loss. Exergy results show that particular attention should be paid to solar field, condenser, low pressure turbine and high pressure turbine (in a descendant order) as they constitute the major sources of exergy destruction. Results from exergoeconomic analysis, however, show that the condenser should be the fourth component in the order of importance after the solar field and low/high pressure turbines. Increasing the temperature at the inlet of the low pressure turbine by 100 K using steam–steam reheating is shown to result in 9.1% increase in the vapor fraction at the exit of turbine. This increase in steam quality, however, would be achieved by drop less than 1.5% in thermal and exergetic efficiencies, and about 2% increase in cost of electricity

  8. Steam Flooding after Steam Soak in Heavy Oil Reservoirs through Extended-reach Horizontal Wells

    Institute of Scientific and Technical Information of China (English)

    Ning Zhengfu; Liu Huiqing; Zhang Hongling

    2007-01-01

    This paper presents a new development scheme of simultaneous injection and production in a single horizontal well drilled for developing small block reservoirs or offshore reservoirs.It is possible to set special packers within the long completion horizontal interval to establish an injection zone and a production zone.This method can also be used in steam flooding after steam soak through a horizontal well.Simulation results showed that it was desirable to start steam flooding after six steam soaking cycles and at this time the oil/steam ratio was 0.25 and oil recovery efficiency was 23.48%.Steam flooding performance was affected by separation interval and steam injection rate.Reservoir numerical simulation indicated that maximum oil recovery would be achieved at a separation section of 40-50 m at steam injection rate of 100-180 t/d; and the larger the steam injection rate,the greater the water cut and pressure difference between injection zone and production zone.A steam injection rate of 120 t/d was suitable for steam flooding under practical injection-production conditions.All the results could be useful for the guidance of steam flooding projects.

  9. RPV steam generator pressure boundary

    Energy Technology Data Exchange (ETDEWEB)

    Strosnider, J.

    1996-03-01

    As the types of SG tube degradation affecting PWR SGs has changed, and improvements in tube inspection and repair technology have occurred, current SG regulatory requirements and guidance have become increasingly out of date. This regulatory situation has been dealt with on a plant-specific basis, however to resolve this problem in the long term, the NRC has begun development of a performance-based rule. As currently structured, the proposed steam generator rule would require licensees to implement SG programs that monitor the condition of the steam generator tubes against accepted performance criteria to provide reasonable assurance that the steam generator tubes remain capable of performing their intended safety functions. Currently the staff is developing three performance criteria that will ensure the tubes can continue to perform their safety function and therefore satisfy the SG rule requirements. The staff, in developing the criteria, is striving to ensure that the performance criteria have the two key attributes of being (1) measurable (enabling the tube condition to be {open_quotes}measured{close_quotes} against the criteria) and (2) tolerable (ensuring that failures to meet the criteria do not result in unacceptable consequences). A general description of the criteria are: (1) Structural integrity criteria: Ensures that the structural integrity of the SG tubes is maintained for the operating cycle consistent with the margins intended by the ASME Code. (2) Leakage integrity criteria: Ensures that postulated accident leakages and the associated dose releases are limited relative to 10 CFR Part 50 guidelines and 10 CFR Part 50 Appendix A GDC 19. (3) Operational leakage criteria: Ensures that the operating unit will be shut down as a defense-in depth measure when operational SG tube leakage exceeds established leakage limits.

  10. A new approach in CHP steam turbines thermodynamic cycles computations

    Directory of Open Access Journals (Sweden)

    Grković Vojin R.

    2012-01-01

    Full Text Available This paper presents a new approach in mathematical modeling of thermodynamic cycles and electric power of utility district-heating and cogeneration steam turbines. The approach is based on the application of the dimensionless mass flows, which describe the thermodynamic cycle of a combined heat and power steam turbine. The mass flows are calculated relative to the mass flow to low pressure turbine. The procedure introduces the extraction mass flow load parameter νh which clearly indicates the energy transformation process, as well as the cogeneration turbine design features, but also its fitness for the electrical energy system requirements. The presented approach allows fast computations, as well as direct calculation of the selected energy efficiency indicators. The approach is exemplified with the calculation results of the district heat power to electric power ratio, as well as the cycle efficiency, versus νh. The influence of νh on the conformity of a combined heat and power turbine to the grid requirements is also analyzed and discussed. [Projekat Ministarstva nauke Republike Srbije, br. 33049: Development of CHP demonstration plant with gasification of biomass

  11. Steam turbine materials and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, G.R.; Alman, D.E.; Dogan, O.N.; Rawers, J.C.; Schrems, K.K.; Ziomek-Moroz, M.

    2007-12-01

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760°C. This project examines the steamside oxidation of candidate alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. As part of this research a concern has arisen about the possibility of high chromia evaporation rates of protective scales in the turbine. A model to calculate chromia evaporation rates is presented.

  12. 220Rn in geothermal steam

    International Nuclear Information System (INIS)

    The isotope 220Rn (half-life 56 seconds) occurs in fumaroles in Japan and Taiwan, in amounts as high as 1000 times the 222Rn content. The authors report its presence in geothermal steam at Wairakei, New Zealand, in amounts as high as 130 times those of 222Rn. It is detected by a radiochemical separation of Pb, and gamma spectrometry. Some of the 220Rn/222Rn ratios are higher than theoretically expected, but have frequently been reported from similar locations. Theories of possible origins will be discussed. 22 refs., 1 tab

  13. Steam Turbine Materials and Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, G.H.; Hsu, D.H.

    2008-07-01

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

  14. Steam microturbines in distributed cogeneration

    CERN Document Server

    Kicinski, Jan

    2014-01-01

    This book presents the most recent trends and concepts in power engineering, especially with regard to prosumer and civic energy generation. In so doing, it draws widely on his experience gained during the development of steam microturbines for use in small combined heat and power stations based on the organic Rankine cycle (CHP-ORC). Major issues concerning the dynamic properties of mechanical systems, in particular rotating systems, are discussed, and the results obtained when using unconventional bearing systems, presented. Modeling and analysis of radial-flow and axial-flow microturbines a

  15. Strategic management of steam generators

    International Nuclear Information System (INIS)

    This paper addresses the general approach followed in Belgium for managing any kind of generic defect affecting a Steam Generator tubebundle. This involves the successive steps of: problem detection, dedicated sample monitoring, implementation of preventive methods, development of specific plugging criteria, dedicated 100% inspection, implementation of repair methods, adjusted sample monitoring and repair versus replacement strategy. These steps are illustrated by the particular case of Primary Water Stress Corrosion Cracking in tube roll transitions, which is presently the main problem for two Belgian units Doele-3 and Tihange-2. (author)

  16. Design and construction of a steam generator with feedback; Projeto e construcao de um gerador de vapor com realimentacao

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Camila C., E-mail: camilacamargo@outlook.com [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil); Placco, Guilherme M., E-mail: placco@ieav.cta.br [Instituto de Tecnologia Aeronautica (ITA/CTA), Sao Jose dos Campos, SP (Brazil); Guimaraes, Lamartine N.F., E-mail: guimarae@ieav.cta.br [Instituto de Estudos Avancado (IEAv/DCTA), Sao Jose dos Campos, SP (Brazil). Departamento ENU

    2013-07-01

    The EARTH project aims to develop technologies to design and build systems that generate electricity in space, using microreactors. One of the activities within the TERRA project aims to build a closed thermal cycle Rankine type in order to test a Tesla turbine type. The objective of this work is to design and build a steam generator with feedback, which should ensure a satisfactory range of steam supply, security system, feedback system and heating system.

  17. Replacement steam dryer design and analysis for the Monticello nuclear plant

    International Nuclear Information System (INIS)

    Boiling Water Reactor (BWR) steam dryers are utilized as the final stage of moisture removal to provide high quality steam to the turbine. The Monticello Nuclear Generating Plant has begun a generating capacity expansion project that will increase electrical output by 13% or 71 MW. A replacement steam dryer has been designed for Monticello to meet performance requirements at the current and increased power levels. The robust design is based on many years of successful operating history in the Nordic region of Europe, including operation at up-rated conditions. Advanced analytical techniques and test results used in the design and qualification of the replacement dryer will be presented, including techniques to determine the moisture carryover. The design analysis incorporates techniques to assess the structural integrity of the steam dryer, including evaluation of high cycle fatigue loads due to acoustic resonance. The Westinghouse acoustic load definition methodology, which consists of a combination of analytical methods, sub-scale model testing, and plant measurements, provides an accurate prediction of the three-dimensional acoustic pressure field on the steam dryer surfaces. These loads are used to perform a comprehensive steam dryer structural analysis. (authors)

  18. Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells.

    Science.gov (United States)

    Chen, Xinbing; Guan, Chengzhi; Xiao, Guoping; Du, Xianlong; Wang, Jian-Qiang

    2015-01-01

    High temperature (HT) steam/CO2 coelectrolysis with solid oxide electrolysis cells (SOECs) using the electricity and heat generated from clean energies is an important alternative for syngas production without fossil fuel consumption and greenhouse gas emissions. Herein, reaction characteristics and the outlet syngas composition of HT steam/CO2 coelectrolysis under different operating conditions, including distinct inlet gas compositions and electrolysis current densities, are systematically studied at 800 °C using commercially available SOECs. The HT coelectrolysis process, which has comparable performance to HT steam electrolysis, is more active than the HT CO2 electrolysis process, indicating the important contribution of the reverse water-gas shift reaction in the formation of CO. The outlet syngas composition from HT steam/CO2 coelectrolysis is very sensitive to the operating conditions, indicating the feasibility of controlling the syngas composition by varying these conditions. Maximum steam and CO2 utilizations of 77% and 76% are achieved at 1.0 A cm(-2) with an inlet gas composition of 20% H2/40% steam/40% CO2. PMID:26204849

  19. Existing large steam power plant upgraded for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Galanti, L.; Franzoni, A.; Traverso, A.; Massardo, A.F. [University of Genoa, Genoa (Italy)

    2011-05-15

    This paper presents and discusses the results of a complete thermoeconomic analysis of an integrated power plant for co-production of electricity and hydrogen via pyrolysis and gasification processes fed by various coals and mixture of coal and biomass, applied to an existing large steam power plant (ENEL Brindisi power plant - 660 MWe). Two different technologies for the syngas production section are considered: pyrolysis process and direct pressurized gasification. Moreover, the proximity of a hydrogen production and purification plants to an existing steam power plant favors the inter-exchange of energy streams, mainly in the form of hot water and steam, which reduces the costs of auxiliary equipment. The high quality of the hydrogen would guarantee its usability for distributed generation and for public transport. The results were obtained using WTEMP thermoeconomic software, developed by the Thermochemical Power Group of the University of Genoa, and this project has been carried out within the framework of the FISR National project 'Integrated systems for hydrogen production and utilization in distributed power generation'.

  20. Development and test evaluation of duplex steam reformer tube

    International Nuclear Information System (INIS)

    For HTR applications involving a steam reformer (SR), it is uncertain whether an intermediate heat exchanger (IHX) is required. There are several system configurations that could be developed for the application of nuclear heat using the steam reformer reaction. The considerations (advantages vs. disadvantages) for each of the system configurations are summarized. The approach that technically and economically appears to be the most attractive, in studies conducted by General Electric, combines the SR process heat exchanger and the IHX in a single component using a duplex tube. A central question concerning the duplex tube concept is whether the design would provide adequate leak monitoring capability and significant reduction in tritium and hydrogen diffusion, while introducing only a small increase in overall temperature difference from the helium to the process gas. A cooperative GE-KFA effort was undertaken to develop, fabricate, test, and evaluate a duplex steam reformer tube. GE was responsible for the development and fabrication of the tube, and KFA was responsible for testing the tube in the EVA I facility at Juelich. Both GE and KFA are evaluating the thermochemical and metallurgical test data. Actual fabrication of the tube was performed by Foster-Wheeler in accordance with the GE design. This paper reviews the highlights of the fabrication development and preliminary evaluation of the test data

  1. Effects of forest harvesting on summer stream temperatures in New Brunswick, Canada: an inter-catchment, multiple-year comparison

    Directory of Open Access Journals (Sweden)

    C. P.-A. Bourque

    2001-01-01

    Full Text Available This paper presents a pre- and post-harvest comparison of stream temperatures collected in five neighbouring streams (sub-catchments over a period of five years (1994-1998. The aim of the study was to determine whether land cover changes from clear cutting in areas outside forest buffer zones (applied to streams >0.5 m wide might contribute to an increase in summer mean stream temperatures in buffered streams downslope by infusion of warmed surface and sub-surface water into the streams. Specific relationships were observed in all five forest streams investigated. To assist in the analysis, several spatially-relevant variables, such as land cover change, mid-summer potential solar radiation, flow accumulation, stream location and slope of the land were determined, in part, from existing aerial photographs, GIS-archived forest inventory data and a digital terrain model of the study area. Spatial calculations of insolation levels for July 15th were used as an index of mid-summer solar heating across sub-catchments. Analysis indicated that prior to the 1995 harvest, differences in stream temperature could be attributed to (i topographic position and catchment-to-sun orientation, (ii the level of cutting that occurred in the upper catchment prior to the start of the study, and (iii the average slope within harvested areas. Compared to the pre-harvest mean stream temperatures in 1994, mean temperatures in the three streams downslope from the 1995 harvest areas increased by 0.3 to 0.7°C (representing a 4-8% increase; p-value of normalised temperatures Keywords: terrain attributes, solar radiation, land cover, forest buffers, New Brunswick regulations, spatial modelling, DEM, forest covertypes

  2. Petrogenetic evolution of Late Paleozoic rhyolites of the Harvey Group, southwestern New Brunswick (Canada) hosting uranium mineralization

    Science.gov (United States)

    Dostal, J.; van Hengstum, T. R.; Shellnutt, J. G.; Hanley, J. J.

    2016-06-01

    The 360 Ma subaerial felsic volcanic and volcaniclastic rocks of the Harvey Group form a belt about 15 km long and 3 km wide in southwestern New Brunswick (Canada) that has been correlated with parts of the Mount Pleasant caldera complex, the site of a significant polymetallic (tin, tungsten, molybdenum, indium and bismuth) deposit. The Harvey volcanic rocks are highly fractionated peraluminous within-plate F-rich rhyolites, which host uranium mineralization. The rocks were modified by late-magmatic and post-magmatic processes. A comparison of the composition of whole rocks and melt inclusions in the quartz phenocrysts shows that some trace elements, including U, were affected by the post-magmatic processes. Their flat REE patterns accompanied by distinct negative Eu anomalies are typical of highly evolved F-rich leucogranites and rhyolites. Nd isotopic ratios (ɛNd(360) = +0.6 to -1.0) are similar to those of the felsic rocks of the Mount Pleasant complex. The Harvey rhyolites were generated by extensive fractional crystallization of andesites of the Mount Pleasant caldera. The melt evolved at the apex of the magma chamber where volatile elements become concentrated. The Harvey rhyolite (with melt inclusions containing ~20 ppm U) had the potential to develop a significant U mineralization. The erupted glassy rhyolite is a favorable U source rock amendable to leaching by post-magmatic hydrothermal and meteoric water. The high Th/U ratios in the Harvey volcanic rocks compared to the low ratios in the U-rich melt inclusions is indicative of such a process.

  3. Wetness measurements in a model multistage low pressure steam turbine

    International Nuclear Information System (INIS)

    Comprehensive measurement of wetness losses, exhaust fog droplet diameters, wetness and coarse water content have been taken in a model multistage LP steam turbine over a wide range of flow conditions. It was found that for conventional condensing turbine exhaust wetness fractions of approximately 0.10, the measured wetness loss factor was in reasonable agreement with the Baumann value. Comparison of exhaust wetness fractions derived from dynamometer power and five-hole probe radial traverse measurements, with those found independently from the Central Electricity Research Laboratories optical probe traverses, generally showed agreement to within approximately ±0.01. (author)

  4. Thermo-economic study on the implementation of steam turbine concepts for flexible operation on a direct steam generation solar tower power plant

    Science.gov (United States)

    Topel, Monika; Ellakany, Farid; Guédez, Rafael; Genrup, Magnus; Laumert, Björn

    2016-05-01

    Among concentrating solar power technologies, direct steam generation solar tower power plants represent a promising option. These systems eliminate the usage of heat transfer fluids allowing for the power block to be run at greater operating temperatures and therefore further increasing the thermal efficiency of the power cycle. On the other hand, the current state of the art of these systems does not comprise thermal energy storage as there are no currently available and techno-economically feasible storage integration options. This situation makes direct steam generation configurations even more susceptible to the already existing variability of operating conditions due to the fluctuation of the solar supply. In the interest of improving the annual performance and competitiveness of direct steam generation solar tower systems, the present study examines the influence of implementing two flexibility enhancing concepts which control the steam flow to the turbine as a function of the incoming solar irradiation. The proposed concepts were implemented in a reference plant model previously developed by the authors. Then, a multi-objective optimization was carried out in order to understand which configurations of the steam turbine concepts yield reductions of the levelized cost of electricity at a lower investment costs when compared to the reference model. Results show that the implementation of the proposed strategies can enhance the thermo-economic performance of direct steam generation systems by yielding a reduction of up to 9.2% on the levelized cost of electricity, mainly due to allowing 20% increase in the capacity factor, while increasing the investment costs by 7.8%.

  5. 2D-simulation of wet steam flow in a steam turbine with spontaneous condensation

    Institute of Scientific and Technical Information of China (English)

    SUN Lan-xin; ZHENG Qun; LIU Shun-long

    2007-01-01

    Removal of condensates from wet steam flow in the last stages of steam turbines significantly promotes stage efficiency and prevents erosion of rotors. In this paper, homogeneous spontaneous condensation in transonic steam flow in the 2-D rotor-tip section of a stage turbine is investigated.Calculated results agree with experimental data reasonably well. On the basis of the above work, a 2-D numerical simulation of wet steam flow in adjacent root sections of a complex steam turbine stage was carried out. Computational results were analyzed and provide insights into effective removal of humidity.

  6. Enhanced tubes for steam condensers. Volume 1, Summary of condensation and fouling; Volume 2, Detailed study of steam condensation

    Energy Technology Data Exchange (ETDEWEB)

    Webb, R.L.; Chamra, L.; Jaber, H.

    1992-02-01

    Electric utility steam condensers typically use plain tubes made of titanium, stainless steel, or copper alloys. Approximately two-thirds of the total thermal resistance is on the water side of the plain tube. This program seeks to conceive and develop a tube geometry that has special enhancement geometries on the tube (water) side and the steam (shell) side. This ``enhanced`` tube geometry, will provide increased heat transfer coefficients. The enhanced tubes will allow the steam to condense at a lower temperature. The reduced condensing temperature will reduce the turbine heat rate, and increase the plant peak load capability. Water side fouling and fouling control is a very important consideration affecting the choice of the tube side enhancement. Hence, we have consciously considered fouling potential in our selection of the tube side surface geometry. Using appropriate correlations and theoretical models, we have designed condensation and water side surface geometries that will provide high performance and be cleanable using sponge ball cleaning. Commercial tube manufacturers have made the required tube geometries for test purposes. The heat transfer test program includes measurement of the condensation and water side heat transfer coefficients. Fouling tests are being run to measure the waterside fouling resistance, and to the test the ability of the sponge ball cleaning system to clean the tubes.

  7. Steam generator tubing NDE performance

    Energy Technology Data Exchange (ETDEWEB)

    Henry, G. [Electric Power Research Institute, Charlotte, NC (United States); Welty, C.S. Jr. [Electric Power Research Institute, Palo Alto, CA (United States)

    1997-02-01

    Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, and data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed.

  8. Innovations relative to steam generators

    International Nuclear Information System (INIS)

    In the last decade the main object of attention in nuclear engineering has been that of safety; safety understood fundamentally as a study and examination of the possible consequences of accidents and of the devices for and phases of automatic protective intervention. Another problem of safety, that which concerns the criteria aimed at a less complex construction with advantages for transport, setting up, management, maintenance and decomissioning, seems, instead, to be ignored. The use of less specialised workshops for construction, easier control of the state of the structures and the possibility of substituing components during the life of the plant are factors with a direct influence on safety. These aspects, mainly of a creative engineering nature, are the concern of the MARS (Multipurpose Advanced Reactor inherently Safe) project. This memo concerns the innovations introduced by the project relative to the steam generator which is being realised by means of the assembly in situ of 5 sub-components of considerably reduced dimensions and weight with respect to traditional methods of uni-block construction. The economic-management benefits appear significant. Added to the proposal is a brief study for the removal and substitution of the tubing of the steam generator inside the reactor building

  9. BWR steam separator swirler optimization

    International Nuclear Information System (INIS)

    The initial phase of a steam separator swirler optimization project has been completed. A half-scale cast acrylic steam separator and four different swirlers were designed and constructed. The four swirlers were fabricated by stereolithography techniques to reduce the time and expense of fabrication using traditional manufacturing methods. This test apparatus was used to experimentally measure the pressure drop across the swirlers utilizing a two-phase mixture of air and water. Two of the swirlers were designed to reduce pressure losses, one longer to reduce secondary flows and flow separation, and the other with extra vanes to reduce secondary flows. A third swirler with a low vane exit angle was used to determine the effect of swirl energy on pressure drop, and the fourth is a reference swirler developed in the 1960's, was used as a benchmark. An experimental method was developed and tested to provide correlations for measuring the pressure drop. Preliminary results suggest that the longer swirler has a lower pressure drop than the low vane exit angle swirler, and a lower pressure drop than the extra vane swirler. Results are not available for the benchmark swirler because the vanes were damaged during shakedown testing

  10. Steam generator tubing NDE performance

    International Nuclear Information System (INIS)

    Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, and data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed

  11. Steam turbine materials and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, G.R.; Ziomek-Moroz, M.

    2007-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. The list of alloys being examined is discussed, including the addition of new alloys to the study. These include alloy 625, selected because of its use as one of the two alloys used for turbine rotors, valves, casings, blading and bolts in the European AD700 full-scale demonstration plant (Scholven Unit F). The other alloy, alloy 617, is already one of the alloys currently being examined by this project. Other new alloys to the study are the three round robin alloys in the UK-US collaboration: alloys 740, TP347HFG, and T92. Progress on the project is presented on cyclic oxidation in 50% air – 50% water vapor, furnace exposures in moist air, and thermogravimetric analysis in argon with oxygen saturated steam. An update on the progress towards obtaining an apparatus for high pressure exposures is given.

  12. Third international seminar on horizontal steam generators

    International Nuclear Information System (INIS)

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues

  13. Process steam production from cotton gin trash

    Energy Technology Data Exchange (ETDEWEB)

    LePori, W.A.; Carney, D.B.; Lalk, T.R.; Anthony, R.G.

    1981-01-01

    A steam producing system based on fluidized-bed gasification of biomass materials is discussed. Limited experimental results are discussed and show that steam has been produced at rates of 334.3 kg/hr. (737 lbs/hr.) with 2.8 kg of stream produced for each kilogram of cotton gin trash (2.8 lb/lb.). ref.

  14. Steam-frothing of milk for coffee

    DEFF Research Database (Denmark)

    Münchow, Morten; Jørgensen, Leif; Amigo Rubio, Jose Manuel;

    2015-01-01

    A method for evaluation of the foaming properties of steam-frothed milk, based on image analysis (feature extraction) carried out on a video taken immediately after foam formation, was developed. The method was shown to be able to analyse steam-frothed milk made using a conventional espresso mach...

  15. The Invention of the Steam Engine

    NARCIS (Netherlands)

    Van der Kooij, B.J.G.

    2015-01-01

    This casestudy is a historic analysis of the developments that resulted in the steam engine. The range of inventions that started with Savery's 'Miner's Friend' (a water pump to solve the dramatic water problem in the British eighteenth century mines) over a century culminated in the steam engine us

  16. Replacement steam generators for pressurized water reactors

    International Nuclear Information System (INIS)

    Babcock and Wilcox Canada has developed an Advanced Series steam generator for PWR Systems. This design incorporates all of the features that have contributed to the successful CANDU steam generator performance. This paper presents an overview of the design features and how the overall design relates to the requirements of a PWR reactor system

  17. Third international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues.

  18. Steam chemistry - interaction of chemical species with water, steam, and materials during evaporation, superheating, and condensation. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Topics of this proceedings are: steam chemistry, supercritical water, effects of chemicals in steam (acetic acid, formic acid, phosphoric acid or other impurities); solubility and deposition, condensation processes and effect of impurities; nucleation; gas-liquid interfaces; steam treatment. (SR)

  19. Strategic maintenance plan for Cernavoda steam generators

    International Nuclear Information System (INIS)

    Steam generators are among the most important pieces of equipment in a nuclear power plant. They are required full time during the plant operation and obviously no redundancy exists. Past experience has shown that those utilities which implemented comprehensive steam generator inspection and maintenance programs and strict water chemistry controls, have had good steam generator performance that supports good overall plant performance. The purpose of this paper is to discuss a strategic Life Management and Operational-monitoring program for the Cernavoda steam generators. The program is first of all to develop a base of expertise for the management of the steam generator condition; and that is to be supported by a program of actions to be accomplished over time to assess their condition, to take measures to avoid degradation and to provide for inspections, cleaning and modifications as necessary. (author)

  20. Circumferential cracking of steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Karwoski, K.J.

    1997-04-01

    On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, {open_quote}Circumferential Cracking of Steam Generator Tubes.{close_quote} GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff`s assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness.

  1. Comprehensive investigation of process characteristics for oxy-steam combustion power plants

    International Nuclear Information System (INIS)

    Highlights: • Oxy-steam combustion exhibits better performance than oxy-CO2 combustion. • Cost of electricity in oxy-steam combustion is 6.62% less than oxy-CO2 combustion. • The increase of oxygen concentration in oxidant can improve its system performance. • The decrease of excess oxygen coefficient can be helpful for its system performance. • Integration with solar technology can enhance its thermodynamic performance. - Abstract: Oxy-steam combustion, as an alternative option of oxy-fuel combustion technology, is considered as a promising CO2 capture technology for restraining CO2 emissions from power plants. To attain its comprehensive process characteristics, process simulation, thermodynamic assessment, and sensitivity analysis for oxy-steam combustion pulverized-coal-fired power plants are investigated whilst its corresponding CO2/O2 recycled combustion (oxy-CO2 combustion) power plant is served as the base case for comparison. Techno-economic evaluation and integration with solar parabolic trough collectors are also discussed to justify its economic feasibility and improve its thermodynamic performance further, respectively. It is found that oxy-steam combustion exhibits better performance than oxy-CO2 combustion on both thermodynamic and economic aspects, in which the cost of electricity decreases about 6.62% whilst the net efficiency and exergy efficiency increase about 0.90 and 1.01 percentage points, respectively. The increment of oxygen concentration in oxidant (20–45 mol.%) and decrease of excess oxygen coefficient (1.01–1.09) in a certain range are favorable for improving oxy-steam combustion system performance. Moreover, its thermodynamic performance can be improved when considering solar parabolic trough collectors for heating recycled water, even though its cost of electricity increases about 2 $/(MW h)

  2. Microbial activity in soils following steam treatment.

    Science.gov (United States)

    Richardson, Ruth E; James, C Andrew; Bhupathiraju, Vishvesh K; Alvarez-Cohen, Lisa

    2002-01-01

    Steam enhanced extraction (SEE) is an aquifer remediation technique that can be effective at removing the bulk of non-aqueous phase liquid (NAPL) contamination from the subsurface, particularly highly volatile contaminants. However, low volatility compounds such as polynuclear aromatic hydrocarbons (PAHs) are less efficiently removed by this process. This research evaluated the effects of steam injection on soil microbial activity, community structure, and the potential for biodegradation of contaminants following steam treatment. Three different soils were evaluated: a laboratory-prepared microbially-enriched soil, soil from a creosote contaminated field site, and soil from a chlorinated solvent and waste oil contaminated field site. Results from field-scale steaming are also presented. Microbial activity before and after steam treatment was evaluated using direct epifluorescent microscopy (DEM) using the respiratory activity dye 5-cyano-2,3, ditolyl tetrazolium chloride (CTC) in conjunction with the fluorochrome 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF) to yield a quantitative assessment of active and total microbial numbers. DEM results indicate that steamed soils that were analyzed while still hot exhibited microbial activity levels that were below detection. However, soil samples that were slowly cooled, more closely reflecting the conditions of applied SEE, exhibited microbial activity levels that were comparable to presteamed soils. Samples from a field-site where steam was applied continuously for 6 weeks also showed high levels of microbial activity following cooling. The metabolic capabilities of the steamed communities were investigated by measuring cell growth in enrichment cultures on various substrates. These studies provided evidence that organisms capable of biodegradation were among the mesophilic populations that survived steam treatment. Fluorescent in situ hybridization (FISH) analysis of the soils with domain-level rRNA probes suggest

  3. Design of PFBR steam generator

    International Nuclear Information System (INIS)

    Vertical straight tube with an expansion bend in sodium path is the design selected for the steam generators of 500 MWe Prototype Fast Breeder Reactor (PFBR). There are 4 secondary loops with each loop consisting of 3 modules. With sodium reheat incorporated each module comprises of one evaporator, superheater and reheater. Material of construction is 2.25Cr-1Mo for evaporator and 9Cr-1Mo for superheater and reheater. The tube to tubesheet weld is internal bore butt weld with tubesheet having raised spigot. Aim is to have reliable design with higher plant availability. Design considerations leading to the choice of design features selected are discussed in the paper and a ''reference'' design has been described. (author). 2 figs, 1 tab

  4. Design improvement and test verification of steam flow limiter of steam generator

    International Nuclear Information System (INIS)

    Background: Steam flow limiter is an important device of steam generator in nuclear power plant. It limits the steam flow during the event of steam line break. However, it is required that the steam flow limiter has low pressure loss during normal operation of steam generator. Purpose: The aim is to design a steam flow limiter with lower pressure loss. Methods: An improved design of steam flow limiter is developed by increasing the number of Venturies from 7 to 19. Two test models of steam flow limiters of traditional design and improved design are tested. Results: The pressure loss factor of the traditional design test model is 6.9. The pressure loss factor of the improved design test model is 4.4. Conclusion: Based on the same total throat flow area, it is verified by tests that the pressure loss of steam flow limiter containing 19 Venturis is significantly lower than that containing 7 Venturis. The pressure loss calculation method is verified simultaneously. (authors)

  5. Failure analysis of retired steam generator tubings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo; Kim, J. S.; Hwang, S. S. and others

    2005-04-15

    Degradation of steam generator leads to forced outage and extension of outage, which causes increase in repair cost, cost of purchasing replacement power and radiation exposure of workers. Steam generator tube rupture incident occurred in Uljin 4 in 2002, which made public sensitive to nuclear power plant. To keep nuclear energy as a main energy source, integrity of steam generator should be demonstrated. Quantitative relationship between ECT(eddy current test) signal and crack size is needed in assesment of integrity of steam generator in pressurized water reactor. However, it is not fully established for application in industry. Retired steam generator of Kori 1 has many kinds of crack such as circumferential and axial primary water stress corrosion crack and outer diameter stress corrosion crack(ODSCC). So, it can be used in qualifying and improving ECT technology and in condition monitoring assesment for crack detected in ISI(in service inspection). In addition, examination of pulled tube of Kori 1 retired steam generator will give information about effectiveness of non welded sleeving technology which was employed to repair defect tubes and remedial action which was applied to mitigate ODSCC. In this project, hardware such as semi hot lab. for pulled tube examination and modification transportation cask for pulled tube and software such as procedure of transportation of radioactive steam generator tube and non-destructive and destructive examination of pulled tube were established. Non-destructive and destructive examination of pulled tubes from Kori 1 retired steam generator were performed in semi hot lab. Remedial actions applied to Kori 1 retired steam generator, PWSCC trend and bulk water chemistry and crevice chemistry in Kori 1 were evaluated. Electrochemical decontamination technology for pulled tube was developed to reduce radiation exposure and enhance effectiveness of pulled tube examination. Multiparameter algorithm developed at ANL, USA was

  6. Proceedings of the third international steam generator and heat exchanger conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Third International Steam Generator and Heat Exchanger conference had the objective to present the state of knowledge of steam generator performance and life management, and also heat exchanger technology. As this conference followed on from the previous conferences held in Toronto in 1990 and 1994, the emphasis was on recent developments, particularly those of the last 4 years. The conference provided an opportunity to operators, designers and researchers in the field of steam generation associated with electricity generation by nuclear energy to present their findings and exchange ideas. The conference endeavoured to do this over the widest possible range of subject areas,including: general operating experience, life management and fitness for service strategies, maintenance and inspection, thermalhydraulics, vibration, fretting and fatigue, materials, chemistry and corrosion and the regulatory issues.

  7. Proceedings of the third international steam generator and heat exchanger conference

    International Nuclear Information System (INIS)

    The Third International Steam Generator and Heat Exchanger conference had the objective to present the state of knowledge of steam generator performance and life management, and also heat exchanger technology. As this conference followed on from the previous conferences held in Toronto in 1990 and 1994, the emphasis was on recent developments, particularly those of the last 4 years. The conference provided an opportunity to operators, designers and researchers in the field of steam generation associated with electricity generation by nuclear energy to present their findings and exchange ideas. The conference endeavoured to do this over the widest possible range of subject areas, including: general operating experience, life management and fitness for service strategies, maintenance and inspection, thermalhydraulics, vibration, fretting and fatigue, materials, chemistry and corrosion and the regulatory issues

  8. 49 CFR 229.105 - Steam generator number.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam generator number. 229.105 Section 229.105..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Steam Generators § 229.105 Steam generator number. An identification number shall be marked on the steam...

  9. Natural circulation steam generator model for optimal steam generator water level control

    International Nuclear Information System (INIS)

    Several authors have cited the control of steam generator water level as an important problem in the operation of pressurized water reactor plants. In this paper problems associated with steam generator water level control are identified, and advantages of modern estimation and control theory in dealing with these problems are discussed. A new state variable steam generator model and preliminary verification results using data from the loss of fluid test (LOFT) plant are also presented

  10. Study of Scaling Development on Tube Surfaces of Water Steam Loop in Steam Generator of CEFR

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Lu; LIU; Fu-chen; LUO; De-kang; WU; Qiang; ZHANG; Huan-qi

    2012-01-01

    <正>The steam generator worked as pressure boundary of Na-H2O loop in China Experimental FastReactor (CEFR), which was quite important for nuclear reactor safety. Once the tubes separating the water from steam leak because of corrosion by scaling, Na-H2O reaction would lead to severe accident. So it’s critically important to study how the scaling develops on the water-steam sides.

  11. A performance analysis of integrated solid oxide fuel cell and heat recovery steam generator for IGFC system

    DEFF Research Database (Denmark)

    Rudra, Souman; Lee, Jinwook; Rosendahl, Lasse;

    2010-01-01

    efficiencies can be achieved. The outputs from SOFC can be utilized by heat recovery steam generator (HRSG), which drives the steam turbine for electricity production. The SOFC stack model was developed using the process flow sheet simulator Aspen Plus, which is of the equilibrium type. Various ranges...... of syngas properties gathered from different literature were used for the simulation. The results indicate a trade-off efficiency and power with respect to a variety of SOFC inputs. The HRSG located after SOFC was included in the current simulation study with various operating parameters. This paper...... describes IGFC power plants, particularly the optimization of HRSG to improve the efficiency of the heat recovery from the SOFC exhaust gas and to maximize the power production in the steam cycle in the IGFC system. HRSG output from different pressure levels varies depending on the SOFC output. The steam...

  12. A high-temperature gas-and-steam turbine plant operating on combined fuel

    Science.gov (United States)

    Klimenko, A. V.; Milman, O. O.; Shifrin, B. A.

    2015-11-01

    A high-temperature gas-steam turbine plant (GSTP) for ultrasupercritical steam conditions is proposed based on an analysis of prospects for the development of power engineering around the world and in Russia up to 2040. The performance indicators of a GSTP using steam from a coal-fired boiler with a temperature of 560-620°C with its superheating to 1000-1500°C by firing natural gas with oxygen in a mixingtype steam superheater are analyzed. The thermal process circuit and design of a GSTP for a capacity of 25 MW with the high- and intermediate-pressure high-temperature parts with the total efficiency equal to 51.7% and the natural gas utilization efficiency equal to 64-68% are developed. The principles of designing and the design arrangement of a 300 MW GSTP are developed. The effect of economic parameters (the level and ratio of prices for solid fuel and gas, and capital investments) on the net cost of electric energy is determined. The net cost of electric energy produced by the GSTP is lower than that produced by modern combined-cycle power plants in a wide variation range of these parameters. The components of a high-temperature GSTP the development of which determines the main features of such installations are pointed out: a chamber for combusting natural gas and oxygen in a mixture with steam, a vacuum device for condensing steam with a high content of nondensables, and a control system. The possibility of using domestically available gas turbine technologies for developing the GSTP's intermediate-pressure high-temperature part is pointed out. In regard of its environmental characteristics, the GSTP is more advantageous as compared with modern condensing power plants: it allows a flow of concentrated carbon dioxide to be obtained at its outlet, which can be reclaimed; in addition, this plant requires half as much consumption of fresh water.

  13. Supercritical steam cycles and biomass integrated gasification combined cycles for sugarcane mills

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, Luiz Felipe; Burbano, Juan Carlos [Laboratory of Environmental and Thermal Engineering, Polytechnic School - University of Sao Paulo, Av. Prof. Luciano Gualberto, 1289 Cidade Universitaria, CEP: 05508-900, Sao Paulo, SP (Brazil); de Oliveira Junior, Silvio [Mechanical Engineering Faculty, Technological University of Pereira, Pereira (Colombia)

    2010-02-15

    Back in 1970s and 1980s, cogeneration plants in sugarcane mills were primarily designed to consume all bagasse, and produce steam and electricity to the process. The plants used medium pressure steam boilers (21 bar and 300 C) and backpressure steam turbines. Some plants needed also an additional fuel, as the boilers were very inefficient. In those times, sugarcane bagasse did not have an economic value, and it was considered a problem by most mills. During the 1990s and the beginning of the 2000s, sugarcane industry faced an open market perspective, thus, there was a great necessity to reduce costs in the production processes. In addition, the economic value of by-products (bagasse, molasses, etc.) increased, and there was a possibility of selling electricity to the grid. This new scenario led to a search for more advanced cogeneration systems, based mainly on higher steam parameters (40-80 bar and 400-500 C). In the future, some authors suggest that biomass integrated gasification combined cycles are the best alternative to cogeneration plants in sugarcane mills. These systems might attain 35-40% efficiency for the power conversion. However, supercritical steam cycles might also attain these efficiency values, what makes them an alternative to gasification-based systems. This paper presents a comparative thermoeconomic study of these systems for sugarcane mills. The configurations studied are based on real systems that could be adapted to biomass use. Different steam consumptions in the process are considered, in order to better integrate these configurations in the mill. (author)

  14. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

    2009-06-30

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today's high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors

  15. Commercial Nuclear Steam-Electric Power Plants, Part II

    Science.gov (United States)

    Shore, Ferdinand J.

    1974-01-01

    Presents the pros and cons of nuclear power systems. Includes a discussion of the institutional status of the AEC, AEC regulatory record, routine low-level radiation hazards, transport of radioactive materials, storage of wastes, and uranium resources and economics of supply. (GS)

  16. Final MTI Data Report: Comanche Peak Steam Electric Station

    International Nuclear Information System (INIS)

    During the periods from May 2000 to September 2001 and March 5 to April 10, 2002, cooling-lake surface water temperature data was collected at the Comanche Peak Nuclear Power Station near Granbury, Texas. This effort was led by the Savannah River Technology Center (SRTC) with the assistance of plant personnel. Permission for setting up these monitoring sites was granted by TXU Energy, which owns the plant site and surrounding property including Squaw Creek reservoir where the measurements were taken. This work was done in support of SRTC's ground truth mission for the U.S. Department of Energy's Multispectral Thermal Imager (MTI) satellite

  17. Pretreatment of Corn Stalk by Steam Explosion

    Institute of Scientific and Technical Information of China (English)

    邵自强; 田永生; 谭惠民

    2003-01-01

    A steam explosion pretreatment, which is one of the best ways of pretreating plant stalk, is applied at various severities to corn stalk. It could effectively modify the super-molecular structure of corn stalk and defibrating corn stalk into individual components. The relationship between yield of reducing sugar and the operating conditions, including temperature, pressure of steam explosion pretreatment and acidity, is also established. Experimental results prove that the steam explosion substantially increases the yield of reducing sugar, and the optimal condition for steam explosion is as follows: the pressure is 2.0 MPa, the pressure-retaining time 300 s, the initial acid concentration 1% and the acid treatment time 24 h.

  18. Ultrasonic testing of steam generator tubes

    International Nuclear Information System (INIS)

    A system is developed for inspection of steam generator tube, especially near the tube plate. Imaging, thickness measurement, radial profilometry, longitudinal and circonferential crack detection and welded joints testing are reviewed

  19. US PWR steam generator management: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Welty, C.S. Jr. [Electric Power Research Institute, Palo Alto, CA (United States)

    1997-02-01

    This paper provides an overview on the status of steam generator management activities in US PWRs, and includes: (1) an overview of the impact of steam generator problems; (2) a brief discussion of historical damage trends and the current damage mechanism of most concern; (3) a discussion of the elements of {open_quotes}steam generator management{close_quotes}; and (4) a description of the approach being followed to implement a degradation-specific protocol for tubing inspection and repair. This paper was prepared in conjunction with another paper presented during the Plenary Session of this Conference, {open_quotes}Steam Generator Degradation: Current Mitigation Strategies for Controlling Corrosion{close_quotes}, and is provided as a supplement to that material.

  20. US PWR steam generator management: An overview

    International Nuclear Information System (INIS)

    This paper provides an overview on the status of steam generator management activities in US PWRs, and includes: (1) an overview of the impact of steam generator problems; (2) a brief discussion of historical damage trends and the current damage mechanism of most concern; (3) a discussion of the elements of open-quotes steam generator managementclose quotes; and (4) a description of the approach being followed to implement a degradation-specific protocol for tubing inspection and repair. This paper was prepared in conjunction with another paper presented during the Plenary Session of this Conference, open-quotes Steam Generator Degradation: Current Mitigation Strategies for Controlling Corrosionclose quotes, and is provided as a supplement to that material

  1. Three dimensional analysis of turbulent steam jets in enclosed structures: a CFD approach

    International Nuclear Information System (INIS)

    This paper compares the three-dimensional numerical simulation with the experimental data of a steam blowdown event in a light water reactor containment building. The temperature and pressure data of a steam blowdown event was measured at the Purdue University Multi-Dimensional Integrated Test Assembly (PUMA), a scaled model of the General Electric simplified Boiling Water Reactor. A three step approach was used to analyze the steam jet behavior. First, a 1-Dimensional, system level RELAP5/Mod3.2 model of the steam blowdown event was created and the results used to set the initial conditions for the PUMA blowdown experiments. Second, 2-Dimensional CFD models of the discharged steam jets were computed using PHOENICS, a commercially available CFD package. Finally, 3-Dimensional model of the PUMA drywell was created with the boundary conditions based on experimental measurements. The results of the 1-D and 2-D models were reported in the previous meeting. This paper discusses in detail the formulation and the results of the 3-Dimensional PHOENICS model of the PUMA drywell. It is found that the 3-D CFD solutions compared extremely well with the measured data

  2. Effect of Low Pressure End Conditions on Steam Power Plant Performance

    Directory of Open Access Journals (Sweden)

    Ali Syed Haider

    2014-07-01

    Full Text Available Most of the electricity produced throughout the world today is from steam power plants and improving the performance of power plants is crucial to minimize the greenhouse gas emissions and fuel consumption. Energy efficiency of a thermal power plant strongly depends on its boiler-condenser operating conditions. The low pressure end conditions of a condenser have influence on the power output, steam consumption and efficiency of a plant. Hence, the objective this paper is to study the effect of the low pressure end conditions on a steam power plant performance. For the study each component was modelled thermodynamically. Simulation was done and the results showed that performance of the condenser is highly a function of its pressure which in turn depends on the flow rate and temperature of the cooling water. Furthermore, when the condenser pressure increases both net power output and plant efficiency decrease whereas the steam consumption increases. The results can be used to run a steam power cycle at optimum conditions.

  3. Effect of steam thermal treatment on the drying process of Eucalyptus dunnii variables

    Directory of Open Access Journals (Sweden)

    Elias Taylor Durgante Severo

    2013-12-01

    Full Text Available The aim of this study was to evaluate the effect of steam treatment prior to drying on the initial moisture content, moisture gradient, and drying rate in Eucalyptus dunnii Maiden wood. Boards were steamed at 100ºC for 3 h after 1 h of heating-up. Part of these boards was dried in a drying electric oven at 50ºC, and part was dried at kiln. The results showed that the steaming prior to drying of wood: (1 significantly reduced by 9.2% the initial moisture content; (2 significantly increased by 6.2% the drying rate; (3 significantly decreased by 15.6 and 14.8% the moisture gradient between the outer layer and the center of boards and between the outer and intermediate layers of boards, respectively. Steamed boards when dried in an oven showed drying rate of 0.007065 whereas in kiln were 0.008200 and 0.034300 from green to 17 and 17 to 12% moisture content, respectively. It was demonstrated that the steaming prior to drying can be suitable for reduces the drying times of this kind of wood.

  4. Comparison of performance of the integrated gas and steam cycle (IGSC) with the combined cycle (CC)

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Y.S.H. [Mechanical Engineering Department-Thermal, King Abdulaziz University, P.O. Box 9027, Jeddah 21413 (Saudi Arabia)

    1999-01-01

    The clear advantages of the gas turbine engine are making it the engine of the future in electric power generation. Some combined cycle power plants are breaking the 60% efficiency barrier. One of the key technologies for such high thermal efficiency is steam cooling.In the integrated gas and steam cycle (IGSC), part of the steam generated in the heat recovery boiler (HRB) is used in the gas turbine as the cooling medium instead of air, whereas the other part is used as process steam. In the analysis, the compressor pressure ratio r{sub c} and the turbine inlet temperature were considered the main variables. A computer program was specially tailored to carry out calculations and evaluate performance over a wide range of operating conditions including the design point.Performance results show that, when the cooling air is disregarded, the combined cycle (CC) produces 7% more power than IGSC, whereas the latter outperforms the CC by about 6% in SFC{sub ov} and 12% in {eta}{sub ov}.However, when 5% cooling air is considered, the IGSC outperforms the CC by 2%, 12% and 20%, respectively (in points).Moreover, considerable saving in capital cost is achieved by dispensing with the steam turbine, condenser and cooling tower needed by the CC. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Comparison of performance of the integrated gas and steam cycle (IGSC) with the combined cycle (CC)

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Y.S.H. [King Abdulaziz University, Jeddah (Saudi Arabia). Mechanical Engineering Dept.

    1999-01-01

    The clear advantages of the gas turbine engine are making it the engine of the future in electric power generation. Some combined cycle plants are breaking the 60% efficiency barrier. One of the key technologies for such high thermal efficiency is steam cooling. In the integrated gas and steam cycle (IGSC), part of the steam generated in the heat recovery boiler (HRB) is used in the gas turbine as the cooling medium instead of air, whereas the other part is used as process steam. In the analysis, the compressor pressure ratio r{sub c} and the turbine inlet temperature were considered the main variables. A computer program was specially tailored to carry out calculations and evaluate performance over a wide range of operating conditions including the design point. Performance results show that when the cooling air is disregarded, the combined cycle (CC) produces 7% more power than IGSC, whereas the latter outperforms the CC by about 6% in SFC{sub o{nu}} and 12% in {eta}{sub o{nu}}. However, when 5% cooling air is considered, the IGSC outperforms the CC by 2%, 12% and 20%, respectively (in points). Moreover, considerable saving in capital cost is achieved by dispensing with the steam turbine, condenser and cooling tower needed by the CC. (author)

  6. Assessment of steam generator slagging and slag removal with water guns

    Energy Technology Data Exchange (ETDEWEB)

    Bude, F.; Schettler, H.; Weidlich. H.G.

    1983-09-01

    This paper discusses combustion parameters and slag buildup on heating surfaces in brown coal fired steam generators. At the Berlin steam generator plant (GDR), the influence of slagging on heat transfer in a combustion chamber is calculated according to the method of A.M. Gurwitsch (1950). Combustion properties are further assessed with the approximation method according to B. Weiser (1976), for which nomograms have been developed. For the prediction of brown coal slagging behavior, four ash and slag analyses are described and compared. Slag removal from heating surfaces in various 815 t/h steam generators is carried out by 36 back-acting blowers, distributed over all 4 sides of the combustion chamber. These blowers, however, are not capable of complete cleaning of the heating surfaces. An automated and electrically operated water jet gun (type EWL 1) was, therefore, developed. It can be installed in all steam generator sizes including those with very large combustion chambers. The performance of the EWL 1 is evaluated with graphs. Four water guns are sufficient for periodic combustion chamber cleaning of 1,000 t/h steam generators. (9 refs.)

  7. Advanced low pressure steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A.P.

    1998-07-01

    Low pressure steam turbines for fossil and nuclear power plants are designed to provide maximum exhaust area per flow in order to achieve high efficiency and at the same time reduce the number of flows and thereby minimize costs. Therefore they are characterized by very long last stage blades (LSB) mounted on a relatively small hub diameter compared to other axial turbines e.g. gas turbines. The paper summarizes how this very high length to diameter ratio of the LSB creates challenging flow conditions concerning stage and blading design. The turbine designer has to cope with very low hub reaction and the corresponding danger of flow separation. Due to the extreme change of circumferential velocity from hub to tip and flow pitch angles in the range of 45 or more the flow field is highly three-dimensional even without considering endwall flow phenomena. The LSB is subjected to high inlet Mach number at the hub as well as at the tip. Furthermore, the exit Mach number at the tip might reach twice the speed of sound. This leads to strong compression shocks with high shock losses. Many ways to master these challenges have been described in the literature. A summary of these design features is given in the paper. A common goal of all design measures is to reduce the significant radial pressure gradient at the exit of the last stage vane. Beside the well-known forced ``vortex design'', the effects of blade lean angle and sweep angle are explained. Both features generate an additional radial force on the flow which at least partly balances the radial pressure gradient due to swirl. Finally, the major objective of the paper is to present how all these design features have been applied in combination for an actual advanced large low pressure steam turbine design. A highly three-dimensional last stage vane is introduced. It can be shown that it is possible to optimize radial mass flow distribution and pressure distribution simultaneously.

  8. BWR drywell behavior under steam blowdown

    International Nuclear Information System (INIS)

    Historically, thermal hydraulics analyses on Large Break Loss of Coolant Accidents (LOCA) have been focused on the transients within the reactor or steam generator. Few have studied the effects of steam blowdown on the containment building. This paper discusses some theoretical issues as well as presenting numerical and experimental results of the blowdown tests performed at the Purdue University Multi-Dimensional Integrated Test Assembly (PUMA)

  9. Next Generation Steam Cracking Reactor Concept

    OpenAIRE

    Van Goethem, M.W.M.

    2010-01-01

    The steam cracking process is an important asset in the hydrocarbon processing industry. The main products are lower olefins and hydrogen, with ethylene being the world's largest volume organic chemical at a worldwide capacity of ~ 120 million tonnes per year. Feed stocks are hydrocarbons such as: ethane, LPG, naphtha's, gas condensates and gas oil. The research goal of this thesis is to search for the intrinsic optimal steam cracking reaction conditions, pushing the olefin yields to the maxi...

  10. Oxidation of advanced steam turbine alloys

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  11. Reciprocating wear in a steam environment

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.J.; Gee, M.G. [National Physical Laboratory, Teddington, Middlesex (United Kingdom)

    2010-07-01

    Tests to simulate the wear between sliding components in steam power plant have been performed using a low frequency wear apparatus at elevated temperatures under static load, at ambient pressure, in a steam environment. The apparatus was modified to accept a novel method of steam delivery. The materials tested were pre-exposed in a flowing steam furnace at temperature for either 500 or 3000 hours to provide some simulation of long term ageing. The duration of each wear test was 50 hours and tests were also performed on as-received material for comparison purposes. Data has been compared with results of tests performed on non-oxidised material for longer durations and also on tests without steam to examine the effect of different environments. Data collected from each test consists of mass change, stub height measurement and friction coefficient as well as visual inspection of the wear track. Within this paper, it is reported that both pre-ageing and the addition of steam during testing clearly influence the friction between material surfaces. (orig.)

  12. Steam pipelines' effort and durability

    Directory of Open Access Journals (Sweden)

    J. Okrajni

    2007-06-01

    Full Text Available Purpose: The main problem addressed in the paper is the description of an effort and durability of steam pipelines under the conditions of mechanical and thermal interactions.Design/methodology/approach: The FEM modelling has been used to determine the stress and strain fields in the pipelines and to describe their behaviour under mechanical and thermal loading.Findings: An appropriate model description has been developed. So far, experimental verification of the usefulness of the model description to determine the stress and strain patterns in particular object and for chosen operation conditions has been made. The analysis made has shown that the most probable cause of cracks occurrence on the analyzed chosen pipeline’ inner surfaces are thermal deformations and constraints of their dislocations.Research limitations/implications: The developed description should be useful in problems of behaviour predictions of high temperature components and their durability assessment under different mechanical and thermal loadings in industry practical applications.Originality/value: The method, which more precise description of power industry components behaviour makes possible have been shown in the work. The work is addressed to researchers interested in problems of component behaviour prediction under different loadings that we can meet in the operation practice and to power industry engineering maintenance staff.

  13. Reliability of steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Kadokami, E. [Mitsubishi Heavy Industries Ltd., Hyogo-ku (Japan)

    1997-02-01

    The author presents results on studies made of the reliability of steam generator (SG) tubing. The basis for this work is that in Japan the issue of defects in SG tubing is addressed by the approach that any detected defect should be repaired, either by plugging the tube or sleeving it. However, this leaves open the issue that there is a detection limit in practice, and what is the effect of nondetectable cracks on the performance of tubing. These studies were commissioned to look at the safety issues involved in degraded SG tubing. The program has looked at a number of different issues. First was an assessment of the penetration and opening behavior of tube flaws due to internal pressure in the tubing. They have studied: penetration behavior of the tube flaws; primary water leakage from through-wall flaws; opening behavior of through-wall flaws. In addition they have looked at the question of the reliability of tubing with flaws during normal plant operation. Also there have been studies done on the consequences of tube rupture accidents on the integrity of neighboring tubes.

  14. New comprehensive use path of iron and steel industry sintering waste heat and saturated steam%钢铁企业烧结余热和饱和蒸汽综合利用的新途径

    Institute of Scientific and Technical Information of China (English)

    孔昔民

    2011-01-01

    利用煤气过热锅炉把饱和蒸汽加热成过热蒸汽,并入烧结余热锅炉产生的蒸汽进行发电.%Saturated steam superheated by gas heating boiler, and merge the steam produced by sintering waste heat boiler to generate electric power.

  15. Response of the steam generator VVER 1000 to a steam line break

    International Nuclear Information System (INIS)

    Dynamic effects of a steam line break in the weld of the steam pipe and the steam collector on the steam generator system are analyzed. Modelling of a steam line break may concern two cases. The steam line without a restraint and the steam line protected by a whip restraint with viscous elements applied at the postulated break cross-section. The second case is considered. Programme SYSTUS offers a special element the stiffness and viscous damping coefficients of which may be defined as dependent on the relative displacement and velocity of its nodes respectively. A circumferential crack is simulated by a sudden decrease of longitudinal and lateral stiffness coefficients of these special SYSTUS elements to zero. The computation has shown that one can simulate the pipe to behave like completely broken during a time interval of 0,0001 s or less. These elements are used to model the whip restraint with viscous elements and viscous dampers of the GERB type as well. In the case of a whip restraint model the stiffness coefficient-displacement relation and damping coefficient - velocity relation are chosen to fit the given characteristics of the restraint. The special SYSTUS elements are used to constitute Maxwell elements modelling the elasto-plastic and viscous properties of the GERB dampers applied to the steam generator. It has been ascertained that a steam line break at the postulated weld crack between the steam pipe and the steam generator collector cannot endanger the integrity of the system even in a case of the absence of a whip restraint effect. (author)

  16. The Development of a Small High Speed Steam Microturbine Generator System

    Science.gov (United States)

    Alford, Adrian; Nichol, Philip; Frisby, Ben

    2015-08-01

    The efficient use of energy is paramount in every kind of business today. Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. This can be accomplished using steam turbines driving alternators on large scale systems. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This gave rise to a number of challenges which are described with the solutions adopted. The challenges included aerodynamic design of high efficiency impellers, sealing of a high speed shaft, thrust control and material selection to avoid steam erosion. The machine was packaged with a sophisticated control system to allow connection to the electricity grid. Some of the challenges in packaging the machine are also described. The Spirax Sarco TurboPower has now concluded performance and initial endurance tests which are described with a summary of the results.

  17. Modeling and simulation of an isothermal reactor for methanol steam reforming

    Directory of Open Access Journals (Sweden)

    Raphael Menechini Neto

    2014-04-01

    Full Text Available Due to growing electricity demand, cheap renewable energy sources are needed. Fuel cells are an interesting alternative for generating electricity since they use hydrogen as their main fuel and release only water and heat to the environment. Although fuel cells show great flexibility in size and operating temperature (some models even operate at low temperatures, the technology has the drawback for hydrogen transportation and storage. However, hydrogen may be produced from methanol steam reforming obtained from renewable sources such as biomass. The use of methanol as raw material in hydrogen production process by steam reforming is highly interesting owing to the fact that alcohol has the best hydrogen carbon-1 ratio (4:1 and may be processed at low temperatures and atmospheric pressures. They are features which are desirable for its use in autonomous fuel cells. Current research develops a mathematical model of an isothermal methanol steam reforming reactor and validates it against experimental data from the literature. The mathematical model was solved numerically by MATLAB® and the comparison of its predictions for different experimental conditions indicated that the developed model and the methodology for its numerical solution were adequate. Further, a preliminary analysis was undertaken on methanol steam reforming reactor project for autonomous fuel cell.

  18. Thermodynamic and chemical kinetic analysis of a 5 kw, compact steam reformer - PEMFC system

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, Luis Evelio Garcia; Oliveira, Amir Antonio Martins [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica], e-mail: evelio@labcet.ufsc.br, e-mail: amirol@emc.ufsc.br

    2006-07-01

    Here we present a thermodynamic and chemical kinetic analysis of the methane steam reforming for production of 5 kw of electrical power in a PEM fuel cell. The equilibrium analysis is based on the method of element potentials to find the state of minimum Gibbs free energy for the system and provides the equilibrium concentration of the reforming products. The objective of this analysis is to obtain the range of reforming temperature, pressure and steam-methane molar ratio that results in maximum hydrogen production subjected to low carbon monoxide production and negligible coke formation. The thermal analysis provides the heat transfer rates associated with the individual processes of steam production, gas-phase superheating and reforming necessary to produce 5 kw of electrical power in a PEM fuel cell and allows for the calculation of thermal efficiencies. Then, the chemical reaction pathways for hydrogen production in steam reforming are discussed and the available chemical, adsorption and equilibrium constants are analyzed in terms of thermodynamic consistency. This analysis provides the framework for the reactor sizing and for establishing the adequate operation conditions. (author)

  19. Proceedings of the 13. International Conference on the Properties of Water and Steam : steam, water and hydrothermal systems : physics and chemistry meeting the needs of the industry

    Energy Technology Data Exchange (ETDEWEB)

    Tremaine, P.R. [ed.] [Memorial Univ. of Newfoundland, St. John' s, NF (Canada); Hill, P.G. [ed.] [British Columbia Univ., Vancouver, BC (Canada); Irish, D.E. [ed.] [Waterloo Univ., ON (Canada); Balakrishnan, P.V. [eds.] [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    2000-07-01

    This international conference focused on the physical and chemical properties of water, steam and aqueous systems. More than 140 presentations from nearly 200 scientists presented work in applied research in physics and chemistry of hydrothermal systems which are of particular importance to the thermal power industry. This year the conference expanded into new areas of pure and applied research related to water and aqueous solutions at temperature and pressure extremes. This application is useful to electric power cycle chemistry and other industrial technologies that involve the use of high-temperature and supercritical steam. The areas of basic science that were included were: spectroscopy, calorimetry, potentiometry, PVT measurements, molecular simulation studies of water, and solvated species in high-temperature or supercooled water. The areas of application were: power cycle chemistry, high-temperature aqueous technologies that apply to new steam cycles, use of high-temperature water and supercritical steam in chemical and metallurgical processes, supercritical destruction of toxic wastes, and hydrothermal geochemistry and hydrometallurgy. refs., tabs., figs.

  20. The computer science institute building of TU Brunswick University. Construction of an energy-efficient university building; Das Informatikzentrum der TU Braunschweig. Realisierung eines energieeffizienten Institutsgebaeudes

    Energy Technology Data Exchange (ETDEWEB)

    Rozynski, M.; Gerder, F. [Technische Univ. Braunschweig (Germany). Inst. fuer Gebaeude- und Solartechnik

    2003-07-01

    Saving of resources will be a key issue in future building construction. A new building projected on the campus of Brunswick University will have a power supply and ventilation concept that ensures low energy consumption. The project is carried out with funds provided by the Federal Minister of Economics and Technology (BMWi) in the context of the SolarBau funding concept. Construction of the building will be followed by an extensive monitoring programme that is to ensure its perfect function. [German] Eine wesentliche Zielsetzung zukuenftigen Bauens ist der sparsame Umgang mit Ressourcen. Im Rahmen eines integralen Planungsprozesses konnte fuer den Neubau des Informatikzentrums der TU Braunschweig ein Energie- und Lueftungskonzept realisiert werden, dass auf einen niedrigen Energieverbrauch zielt. Das Projekt wird im Rahmen des Foerderkonzeptes SolarBau durch das Bundesministerium fuer Wirtschaft und Technologie (BMWi) gefoerdert. Durch das anschliessende umfangreiche Monitoringprogramm wird derzeit die Funktionsfaehigkeit dieses Konzeptes ueberprueft. (orig.)

  1. PWR steam generator chemical cleaning process testing in model steam generators

    International Nuclear Information System (INIS)

    Corrosion related problems in PWR power plant steam generators have caused high maintenance costs, increased radiation exposure to plant personnel, and reduced unit availability. Two cleaning methods were investigated for their ability to clean deposits from steam generators thereby increasing the integrity of the steam generators and reducing personnel radiation exposure, due to reduced maintenance. First, an on-line chemical cleaning process (Chelant Addition) was tested for its ability to prevent corrosion product buildup in a steam generator. Second, an off-line dilute chemical cleaning process was tested to evaluate its ability to remove corrosion product deposits and leave minimal waste for disposal. These two processes were tested in model steam generators which simulated the operating conditions of a typical full size steam generator. Six model steam generators (MSG) were fabricated and qualified for their ability to reproduce denting at tube support plates. The results of six chemical cleaning tests and the post-cleaning destructive metallurgical evaluation of two of the model steam generators are reported

  2. 76 FR 53972 - Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of...

    Science.gov (United States)

    2011-08-30

    ... rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit and serve all... indirect transfer of control of CR-3, along with Brunswick Steam Electric Plant (BSEP), Units 1 and 2, including BSEP Independent Spent Fuel Storage Installation, Shearon Harris Nuclear Power Plant, Unit 1,...

  3. Computer modeling of a convective steam superheater

    Science.gov (United States)

    Trojan, Marcin

    2015-03-01

    Superheater is for generating superheated steam from the saturated steam from the evaporator outlet. In the case of pulverized coal fired boiler, a relatively small amount of ash causes problems with ash fouling on the heating surfaces, including the superheaters. In the convection pass of the boiler, the flue gas temperature is lower and ash deposits can be loose or sintered. Ash fouling not only reduces heat transfer from the flue gas to the steam, but also is the cause of a higher pressure drop on the flue gas flow path. In the case the pressure drop is greater than the power consumed by the fan increases. If the superheater surfaces are covered with ash than the steam temperature at the outlet of the superheater stages falls, and the flow rates of the water injected into attemperator should be reduced. There is also an increase in flue gas temperature after the different stages of the superheater. Consequently, this leads to a reduction in boiler efficiency. The paper presents the results of computational fluid dynamics simulations of the first stage superheater of both the boiler OP-210M using the commercial software. The temperature distributions of the steam and flue gas along the way they flow together with temperature of the tube walls and temperature of the ash deposits will be determined. The calculated steam temperature is compared with measurement results. Knowledge of these temperatures is of great practical importance because it allows to choose the grade of steel for a given superheater stage. Using the developed model of the superheater to determine its degree of ash fouling in the on-line mode one can control the activation frequency of steam sootblowers.

  4. High temperature steam gasification of wastewater sludge

    International Nuclear Information System (INIS)

    High temperature steam gasification is one of the most promising, viable, effective and efficient technology for clean conversion of wastes to energy with minimal or negligible environmental impact. Gasification can add value by transforming the waste to low or medium heating value fuel which can be used as a source of clean energy or co-fired with other fuels in current power systems. Wastewater sludge is a good source of sustainable fuel after fuel reforming with steam gasification. The use of steam is shown to provide value added characteristics to the sewage sludge with increased hydrogen content as well total energy. Results obtained on the syngas properties from sewage sludge are presented here at various steam to carbon ratios at a reactor temperature of 1173 K. Effect of steam to carbon ratio on syngas properties are evaluated with specific focus on the amounts of syngas yield, syngas composition, hydrogen yield, energy yield, and apparent thermal efficiency. The apparent thermal efficiency is similar to cold gas efficiency used in industry and was determined from the ratio of energy in syngas to energy in the solid sewage sludge feedstock. A laboratory scale semi-batch type gasifier was used to determine the evolutionary behavior of the syngas properties using calibrated experiments and diagnostic facilities. Results showed an optimum steam to carbon ratio of 5.62 for the range of conditions examined here for syngas yield, hydrogen yield, energy yield and energy ratio of syngas to sewage sludge fuel. The results show that steam gasification provided 25% increase in energy yield as compared to pyrolysis at the same temperature.

  5. Computer modeling of a convective steam superheater

    Directory of Open Access Journals (Sweden)

    Trojan Marcin

    2015-03-01

    Full Text Available Superheater is for generating superheated steam from the saturated steam from the evaporator outlet. In the case of pulverized coal fired boiler, a relatively small amount of ash causes problems with ash fouling on the heating surfaces, including the superheaters. In the convection pass of the boiler, the flue gas temperature is lower and ash deposits can be loose or sintered. Ash fouling not only reduces heat transfer from the flue gas to the steam, but also is the cause of a higher pressure drop on the flue gas flow path. In the case the pressure drop is greater than the power consumed by the fan increases. If the superheater surfaces are covered with ash than the steam temperature at the outlet of the superheater stages falls, and the flow rates of the water injected into attemperator should be reduced. There is also an increase in flue gas temperature after the different stages of the superheater. Consequently, this leads to a reduction in boiler efficiency. The paper presents the results of computational fluid dynamics simulations of the first stage superheater of both the boiler OP-210M using the commercial software. The temperature distributions of the steam and flue gas along the way they flow together with temperature of the tube walls and temperature of the ash deposits will be determined. The calculated steam temperature is compared with measurement results. Knowledge of these temperatures is of great practical importance because it allows to choose the grade of steel for a given superheater stage. Using the developed model of the superheater to determine its degree of ash fouling in the on-line mode one can control the activation frequency of steam sootblowers.

  6. ROSA III, a third generation steam generator service robot targeted at reducing steam generator maintenance exposure

    International Nuclear Information System (INIS)

    The Westinghouse Nuclear Service Division has employed two delivery robots for the past eight years. The simplest is a two degree of freedom robot (WL-2) that has a design goal of delivering Eddy Current Acquisition and Mechanical Plugging services. The delivery capability of this robot is 111 N at a reach of 2.36 M. The robot is somewhat limited because two degrees of freedom cannot provide general end point approach or orientation alignments for maintenance tools which require cam-locks. But for delivery of the above two services the design goal is very much satisfied. The second robot is ROSA I, its design goal is to provide the heavy duty maintenance operations on steam generators and reactor vessels. ROSA I has six degrees of freedom, has a reach of 2.36 M, and a load capacity of 222 N. The actuators of ROSA I are electric motor driven through a 200/1 harmonic drive. There are 677 N-M actuators at axes 1, 2 and 3 and 338 N-M actuators at axes 4, 5 and 6. These are arranged in a elbow configuration with axes 2, 3 and 4 providing the elbow shape. The services provided by ROSA I include Eddy Current, Mechanical Plugging, Sleeving, U-bend and Support Plate Heat Treating, Plug Removal and Tube Removal. ROSA I, having six degrees of freedom, is capable of generalized tool placement and orientation to any point in space within its reach envelope. ROSA II is a extension of ROSA I. A mast, carriage and rotating base were added to provide inspection and maintenance services on reactor vessel shells and nozzles. ROSA III is the third generation of maintenance and inspection robots designed, manufactured and operated by Westinghouse. An integrated system approach built around a network architecture has led to many areas of improvement. The single 16 mm digital network cable replaces the bulky analog cables, reducing setup time and containment penetration requirements. The robot arm was configured specifically for steam generator service and has the capability of remote

  7. THEWASP library. Thermodynamic water and steam properties library in GPU

    International Nuclear Information System (INIS)

    In this paper we present a new library for thermodynamic evaluation of water properties, THEWASP. This library consists of a C++ and CUDA based programs used to accelerate a function evaluation using GPU and GPU clusters. Global optimization problems need thousands of evaluations of the objective functions to nd the global optimum implying in several days of expensive processing. This problem motivates to seek a way to speed up our code, as well as to use MPI on Beowulf clusters, which however increases the cost in terms of electricity, air conditioning and others. The GPU based programming can accelerate the implementation up to 100 times and help increase the number of evaluations in global optimization problems using, for example, the PSO or DE Algorithms. THEWASP is based on Water-Steam formulations publish by the International Association for the properties of water and steam, Lucerne - Switzerland, and provides several temperature and pressure function evaluations, such as specific heat, specific enthalpy, specific entropy and also some inverse maps. In this study we evaluated the gain in speed and performance and compared it a CPU based processing library. (author)

  8. Next Generation Engineered Materials for Ultra Supercritical Steam Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Arrell

    2006-05-31

    To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

  9. Development of Steam Pressure Control Logic for SMART

    International Nuclear Information System (INIS)

    The objective of this work is to develop the Steam Pressure Control Logic(SPCL) in order to satisfy the performance requirements of SMART plant control systems. The final conceptual SPCL described in this report has been developed after studying the SMART system together with the secondary system, patents of control systems for fossil and unclear power plants featuring OTSG's, and familiarity and experience with power plant control systems. The logic represents a combination of good features from various control concepts to make SPCL effective in controlling relevant SMART secondary system parameter. The SPCL includes some new features, such as use of FCV position setpoint to control pump speed, relaxation of the measure RC hot-leg temperature to accelerate load-following response, and use of steam flow as feedwater flow setpoint. This report describes performance evaluation results for the SMART SPCL MMS model. The evaluation is based on three transients under three control modes. Three transients include load-following ramp at normal ramp rate to reduce load and then to increase load, turbin trip, and loss of external electrical load resulting in only house load as the remaining load. The three control modes include coordinated, turbin-following, and feedwater-following. It seems that any of the three control modes is viable for SMART control

  10. Development of the large main steam safety relief valve

    Energy Technology Data Exchange (ETDEWEB)

    Takeshima, Kikuo [Hitachi Ltd., Tokyo (Japan); Takasaki, Kiyoshi; Hamada, Nobuyoshi

    2000-02-01

    In order to control rise of reactor pressure at formation of over-pressure transition accident in a boiling water (BWR) type nuclear power plant, the numbers of the main steam safety relief valve (MSSRV) installed in a storage vessel increases with out-put in the plant, and for 1.35 MkW class improved BWR (ABWR) 18 sets of MSSRV are installed. And, in an ABWR preparing of construction at Ohma-cho, Aomori prefecture by the Electric Power Development Co., Ltd., uranium-plutonium mixed oxides (MOX) fuel is planned to load, to tend to further increase required numbers of MSSRV. In order to control arrangement in a storage vessel and increase of conservative inspection work together with increase the required numbers of MSSRV, it was planned to develop a large volume of MSSRV (16% increase in volume on comparison with that of conventional one), to confirm its function and feature by its testing and to apply to an actual machine. Here was introduced on its developmental contents and testing results. As a result, it could be estimated that required numbers of MSSRV would be sixteen, and was confirmed that features such as correlation on flowing-out pressure between nitrogen and steam, durability, work stability, valve seat leakage resistance, and so forth were similar to those of present MSSRV. (G.K.)

  11. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    KAUST Repository

    Myat, Aung

    2013-02-01

    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification-by utilizing single fuel source. The TCCP comprises a Capstone C-30 micro-turbine that generates nominal capacity of 26 kW of electricity, a compact and efficient waste heat recovery system and a host of waste-heat-activated devices, namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The performance analysis was conducted under different operation conditions such as different exhaust gas temperatures. It was observed that energy utilization factor could be as high as 70% while fuel energy saving ratio was found to be 28%. © 2013 Desalination Publications.

  12. Solar steam supply: Initial operation of a plant

    OpenAIRE

    Krüger, Dirk; Lichtenthäler, Niels; Dersch, Jürgen; Schenk, Heiko; Hennecke, Klaus; Anthrakidis, Anette; Rusack, Markus; Lokurlu, Ahmet; Saidi, Karim; Walder, Marcus; Fischer, Stephan; Wirth, Hans Peter

    2011-01-01

    This paper describes experiences in operating a parabolic trough collector field for process heat supply by direct steam generation. The solar steam generator has been running automatically since its start in 2010 except for a winter pause up to now, August 2011, without any malfunction. It has supplied steam at 4 bar absolute and 143°C to the main production steam line on sunny days. Direct steam generation has proven to be a viable technology to supply saturated steam to an industrial st...

  13. Thermoelectric generation coupling methanol steam reforming characteristic in microreactor

    International Nuclear Information System (INIS)

    Thermoelectric (TE) generator converts heat to electric energy by thermoelectric material. However, heat removal on the cold side of the generator represents a serious challenge. To address this problem and for improved energy conversion, a thermoelectric generation process coupled with methanol steam reforming (SR) for hydrogen production is designed and analyzed in this paper. Experimental study on the cold spot character in a micro-reactor with monolayer catalyst bed is first carried out to understand the endothermic nature of the reforming as the thermoelectric cold side. A novel methanol steam reforming micro-reactor heated by waste heat or methanol catalytic combustion for hydrogen production coupled with a thermoelectric generation module is then simulated. Results show that the cold spot effect exists in the catalyst bed under all conditions, and the associated temperature difference first increases and then decreases with the inlet temperature. In the micro-reactor, the temperature difference between the reforming and heating channel outlets decreases rapidly with an increase in thermoelectric material's conductivity coefficient. However, methanol conversion at the reforming outlet is mainly affected by the reactor inlet temperature; while at the combustion outlet, it is mainly affected by the reactor inlet velocity. Due to the strong endothermic effect of the methanol steam reforming, heat supply of both kinds cannot balance the heat needed at reactor local areas, resulting in the cold spot at the reactor inlet. When the temperature difference between the thermoelectric module's hot and cold sides is 22 K, the generator can achieve an output voltage of 55 mV. The corresponding molar fraction of hydrogen can reach about 62.6%, which corresponds to methanol conversion rate of 72.6%. - Highlights: • Cold spot character of methanol steam reforming was studied through experiment. • Thermoelectric generation Coupling MSR process has been

  14. Chemical operational experience with the water/steam-circuit at KNK II; Presentation at the meeting on Experience exchange on operational experience of fast breeder reactors, Karlsruhe/Bensberg/Kalkar, June 18. - 22. 1990

    International Nuclear Information System (INIS)

    The availability of sodium cooled reactors depends essentially from the safety and reliability of the sodium heated steam generator. The transition from experimental plants with 12-20 MW electrical power to larger plants with 600 MW (BN-600) or 1200 MW (Superphenix) required the change from modular components to larger and compact steam generators with up to 800 MW. Defects of these large components cause extreme losses in availability of the plant and have to be avoided. In view of this request, a comprehensive test program has been performed at KNK II in addition to the normal control of the water/steam-circuit to compile all operational data on the water and steam side of the sodium heated steam generator. This paper describes the plant and the water/steam-circuit with its mode of operation. The experience with the surveillance and different methods of the conditioning are discussed in detail in this presentation

  15. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Science.gov (United States)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  16. Parametric study of hydrogen production from ethanol steam reforming in a membrane microreactor

    OpenAIRE

    M. de-Souza; G. M. Zanin; F. F. Moraes

    2013-01-01

    Microreactors are miniaturized chemical reaction systems, which contain reaction channels with characteristic dimensions in the range of 10-500 µm. One possible application for microreactors is the conversion of ethanol to hydrogen used in fuel cells to generate electricity. In this paper a rigorous isothermal, steady-state two-dimensional model was developed to simulate the behavior of a membrane microreactor based on the hydrogen yield from ethanol steam reforming. Furthermore, this membran...

  17. Kanjanaburi Solar Thermal Power Plant with Direct Steam Generation – Layout

    OpenAIRE

    Krüger, Dirk; Krüger, Joachim; Pandian, Yuvaraj; Feldhoff, Jan Fabian; Eck, Markus; Eickhoff, Martin; Hennecke, Klaus

    2010-01-01

    A solar thermal power plant with parabolic trough collectors is being erected in Kanchanaburi, Thailand. It will supply electricity to the public grid for which a feed-in tariff is foreseen. For the first time direct steam generation will be applied in a commercial plant consisting of an evaporator and a superheater field. It combines the recirculation concept and injection cooling. Also the solar collectors are constructed with an innovative approach. They are made out of fibre glass/resin e...

  18. Effect of chip size on steam explosion pretreatment of softwood.

    Science.gov (United States)

    Ballesteros, I; Oliva, J M; Navarro, A A; González, A; Carrasco, J; Ballesteros, M

    2000-01-01

    Although considerable progress has been made in technology for converting lignocellulosic biomass into ethanol, substantial opportunities still exist to reduce production costs. In biomass pretreatment, reducing milling power is a technological improvement that will substantially lower production costs for ethanol. Improving sugar yield from hemicellulose hydrolysis would also reduce ethanol production costs. Thus, it would be desirable to test innovative pretreatment conditions to improve the economics by reducing electrical power of the milling stage and by optimizing pretreatment recovery of hemicellulose, as well as to enhance cellulose hydrolysis. The objective of this study was to evaluate the effect of chip size (2-5, 5-8, and 8-12 mm) on steam-explosion pretreatment (190 and 210 degrees C, 4 and 8 min) of softwood (Pinus pinaster).

  19. Steam injection in Colombia under challenging environment

    Energy Technology Data Exchange (ETDEWEB)

    Waghray, J.P. [Mansovar Energy Colombia Ltd (Colombia)

    2011-07-01

    Mansarovar Energy Columbia Ltd. is a company extracting heavy oil from its Colombian fields. In order to enhance the production and at the same time to contribute to the economic recovery, they are using the cyclic steam injection method. The aim of this presentation is to show what are the challenges facing heavy oil extraction in Colombia, what is the state of the art, and what needs to be improved. Heavy oil extraction in Colombia presents two sorts of challenges: operational ones related to sanding problems and diluents and gas availability; and commercial ones, related to low return rates. The use of steam injection in conventional wells can, however, increase both productivity and the rate of return while at the same time enhancing the recovery factor by 10 to 15%. For the future, improvement in drilling and completion, production, and steam efficiency will be necessary as well as the implementation of the appropriate enhanced oil recovery processes.

  20. Effects of wetness in steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hesketh, J.A.; Walker, P.J. [Alstom Power, Rugby (United Kingdom). Power Turbo Systems Sector

    2005-12-15

    Courses in mechanical engineering usually introduce the theory of axial-flow turbo-machines in terms of simple velocity triangles representing the bulk flow of ideal compressible fluid through the blade passages. A distinctive practical difference, peculiar to steam turbines (ST), is the presence of liquid-water in the flow field. The steam wetness in such turbines is widely known to be doubly-damaging, leading to both loss of efficiency and to mechanical damage (erosion, etc.) of the machine components. Over recent decades, a whole new field of mechanical engineering science has evolved on the subject of wetness in steam turbines, and general practices have been established within the industry. This article reviews the general effects that are of major importance to the turbine designer/engineer, power plant operator, and especially to researchers in this field. (author)

  1. Development of ATSR (Auto Thermal Steam Reformer)

    International Nuclear Information System (INIS)

    'Full text:' Auto-thermal reformers are used popularly for fuel cell vehicle because they are compact and can start up quickly. On the other hand, steam reformers are used for stationary fuel cell power plant because they are good thermal efficiency. While, there are many cases using the auto- thermal reformer for stationary use with expectation of cost reduction in USA, as well. However, they are still insufficient for its durability, compactness and cost. We have been developing the new type of fuel processing system that is auto-thermal steam reformer (ATSR), which is hybrid of a conventional steam reformer (STR) and a conventional auto-thermal reformer (ATR). In this study, some proto-type of ATSR for field test were designed, tried manufacturing and tested performance and durability. And we have tried to operate with fuel cell stack to evaluate the system interface performance, that is, operability and controllability. (author)

  2. Erosion corrosion in a wet steam loop

    International Nuclear Information System (INIS)

    In a technical loop of a power plant erosion corrosion behaviour of the steels C 22.8, 15 Mo 3 and 10 Cr Mo 9 10 was investigated in test periods up to 78 days under definite conditions in wet steam of a relative steam content of about 75% at a temperature of 185 to 2000C and flow velocities up to 180 m/s. For comparison one test was carried out also in hot steam. By gravimetric, metallographic, SEM- and X-ray-diffraction analysis essential information was obtained on the kinetics of erosion corrosion and the structure of oxide coatings. The rate of erosion corrosion shows a high dependence on time and steel composition and decrease in the above mentioned order. Structure and quality of the oxide layer also show a remarkable dependence on steel composition. (orig.)

  3. New ferritic steels for advanced steam plants

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H; Koenig, H. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    During the last 15-20 years ferritic-martensitic 9-12 % chromium steels have been developed under international research programmes which permit inlet steam temperatures up to approx. 625 deg C and pressures up to about 300 bars, thus leading to improvements in thermal efficiency of around 8 % and a CO{sub 2} reduction of about 20 % versus conventional steam parameters. These new steels are already being applied in 13 European and 34 Japanese power stations with inlet steam temperature up to 610 deg C. This presentation will give an account of the content, scope and results of the research programmes and of the experience gained during the production of components which have been manufactured from the new steels. (orig.) 13 refs.

  4. Analytical description of the modern steam automobile

    Science.gov (United States)

    Peoples, J. A.

    1974-01-01

    The sensitivity of operating conditions upon performance of the modern steam automobile is discussed. The word modern has been used in the title to indicate that emphasis is upon miles per gallon rather than theoretical thermal efficiency. This has been accomplished by combining classical power analysis with the ideal Pressure-Volume diagram. Several parameters are derived which characterize performance capability of the modern steam car. The report illustrates that performance is dictated by the characteristics of the working medium, and the supply temperature. Performance is nearly independent of pressures above 800 psia. Analysis techniques were developed specifically for reciprocating steam engines suitable for automotive application. Specific performance charts have been constructed on the basis of water as a working medium. The conclusions and data interpretation are therefore limited within this scope.

  5. SCC free design for nuclear steam turbine

    International Nuclear Information System (INIS)

    One of the major material degradation experiences in the nuclear turbine industry was LP rotor disc stress corrosion cracking (SCC). Besides basic laboratory researches, field monitoring tests in actual steam condition in service have been continuously conducted for 30 years to confirm the long term operation effects on SCC. Based on test results, blade/rotor design and material selection guidelines to prevent SCC were established. Principles to prevent SCC in nuclear turbines are: 1) using clean rotor materials with less inclusions or impurities, 2) using lower yield strength materials, and 3) reducing stresses. These requirements are achieved by the full integral or welded rotor design with integral shroud LP end blade design. Nuclear steam turbines applying these technologies have been operating without any SCC problems for more than 20 years. This paper presents the outline of SCC free solutions and review the SCC problems of nuclear steam turbines at present. (authors)

  6. Heat Recovery Steam Generator by Using Cogeneration

    Directory of Open Access Journals (Sweden)

    P.Vivek, P. Vijaya kumar

    2014-01-01

    Full Text Available A heat recovery steam generator or HRSG is an energy recovery heat exchanger that recovers heat from a hot gas stream. It produces steam that can be used in a process (cogeneration or used to drive a steam turbine (combined cycle. It has been working with open and closed cycle. Both of cycles are used to increase the performance and also power on the cogeneration plant. If we are using closed cycle technology, we can recycle the waste heat from the turbine. in cogeneration plant, mostly they are using open cycle technology. additional, by using closed cycle technology, we can use the waste heat that converts into useful amount of work. In this paper, the exhaust gas will be sent by using proper outlet from cogen unit, we are using only waste heat that produce from turbine.

  7. Market structure scenarios in international steam coal

    Energy Technology Data Exchange (ETDEWEB)

    Trueby, Johannes; Paulus, Moritz

    2011-04-15

    The seaborne steam coal market changed in recent years. Trade volumes grew dynamically, important players emerged and since 2007 prices increased significantly and remained relatively high since then. In this paper we analyse market equilibria in the years 2006 and 2008 by testing for two possible market structure scenarios in this market: perfect competition and an oligopoly setup with major exporters competing in quantities. We conclude from our results that international steam coal trade is not perfectly competitive as there is a large spread between marginal costs and prices and a low capacity utilisation in 2008. Further, trade flows are generally more diversified in reality than in the competitive scenario. However, also the Cournot scenarios fail to accurately explain real market outcomes. We conclude that only more sophisticated models of strategic behaviour can predict market equilibria in international steam coal trade. (orig.)

  8. Ultra supercritical turbines--steam oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

    2004-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

  9. How to compute the power of a steam turbine with condensation, knowing the steam quality of saturated steam in the turbine discharge

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Albarran, Manuel Jaime; Krever, Marcos Paulo Souza [Braskem, Sao Paulo, SP (Brazil)

    2009-07-01

    To compute the power and the thermodynamic performance in a steam turbine with condensation, it is necessary to know the quality of the steam in the turbine discharge and, information of process variables that permit to identifying with high precision the enthalpy of saturated steam. This paper proposes to install an operational device that will expand the steam from high pressure point on the shell turbine to atmosphere, both points with measures of pressure and temperature. Arranging these values on the Mollier chart, it can be know the steam quality value and with this data one can compute the enthalpy value of saturated steam. With the support of this small instrument and using the ASME correlations to determine the equilibrium temperature and knowing the discharge pressure in the inlet of surface condenser, the absolute enthalpy of the steam discharge can be computed with high precision and used to determine the power and thermodynamic efficiency of the turbine. (author)

  10. Sintering of nickel steam reforming catalysts

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Niels Wessel; Falsig, Hanne;

    2014-01-01

    . In this paper, particle migration and coalescence in nickel steam reforming catalysts is studied. Density functional theory calculations indicate that Ni-OH dominate nickel transport at nickel surfaces in the presence of steam and hydrogen as Ni-OH has the lowest combined energies of formation and diffusion...... compared to other potential nickel transport species. The relation between experimental catalyst sintering data and the effective mass diffusion constant for Ni-OH is established by numerical modelling of the particle migration and coalescence process. Using this relation, the effective mass diffusion...

  11. Fourth international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, H. [ed.] [IVO Group, Vantaa (Finland); Purhonen, H. [ed.] [VTT, Espoo (Finland); Kouhia, V. [ed.] [Lappeenranta Univ. of Technology (Finland)

    1997-12-31

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries.

  12. The partitioning of iodides into steam

    International Nuclear Information System (INIS)

    In order to estimate the likely releases of radioactive iodine during steam generator tube rupture (SGTR) faults, it is necessary to know the relevant partition coefficients as a function of temperature and solution composition. It has been suggested previously that, under SGTR fault conditions, partitioning of free or ion-paired I- into the steam may be more extensive than that for molecular HI. This report uses available information on the partitioning of iodides and other salts to provide a means of estimating the partition coefficient of the iodide ion as a function of boric acid concentration and temperature. (author)

  13. Function analysis of steam isolation valves

    International Nuclear Information System (INIS)

    Function analysis of system-medium-operated steam isolation valves has been the objective of the Swedish-Finnish IVLS project, the results of which are presented in this report. Theoretical models were to be verified against available experimental data, to some extent from the HDR blowdown experiments, which are part of a German reactor safety program. Finnish hydraulic measurements on a valve model (scale 1:2.15) have been performed to give complementary data. The analysis work has covered the thermal-hydraulic behaviour of steam isolation valves as well as phenomena related to structural mechanics. Work performed under contract with the Swedish Nuclear Power Inspectorate. (Author)

  14. Fourth international seminar on horizontal steam generators

    International Nuclear Information System (INIS)

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries

  15. Thermoeconomic analysis of mixed gas-steam cycles

    Energy Technology Data Exchange (ETDEWEB)

    Traverso, A.; Massardo, A.F. [Universita di Genova (Italy). Dip. di Macchine, Sistemi Energetici e Trasporti

    2002-01-01

    In this paper the direct thermoeconomic analysis approach developed by the authors [ASME Paper 95-CTP-38; ASME Cogen Turbo Power Conference, Wien, 23/25 August, 1995] is applied to the assessment of the thermoeconomic performance of mixed gas-steam cycles such as the steam injected cycle (steam injected gas turbine, STIG), regenerated water injected (RWI) cycle, and humid air turbine (HAT) or evaporative cycle. All the simulations were carried using the thermo-economic modular program (TEMP) code developed at the University of Genoa [ASME Trans., J. Engng. Gas Turbine Power 119 (1997) 885; Thermo-economic and environmental optimisation of energy systems, Tesi di Dottorato, Universita di Genova (DIMSET),1997] and carefully tested here, mainly for the HAT cycle and saturator, using the experimental data provided by the HAT pilot-plant operating at the Lund University, Sweden [Theoretical and experimental evaluation of the EvGT-process, Thesis for Degree of Licentiate in Engineering, Lund Institute of Technology, Sweden, 1999; Evaporative cycles - in theory and in practice, Doctoral Thesis, Lund Institute of Technology, Sweden, 2000]. Three different mixed cycles (STIG, RWI, and HAT) are analysed in detail together with an additional fourth layout proposed by the authors [Thermodynamic analysis of STIG, RWI and HAT cycles with carbon dioxide (CO{sub 2}) emissions penalty, Tesi di laurea, Universita di Genova (DIMSET),2000], named HAWIT, humid air water injection turbine, that appears to be the most attractive solution. The thermoeconomic results of mixed cycles are presented here for the first time in open literature. These results are compared to the data of a conventional two-pressure level combined cycle considered as representative of the state of the art of high efficiency conversion systems. A new representation proposed by the authors [ASME Trans., J. Engng. Gas Turbine Power 122 (2000)] such as cost of electricity versus cycle efficiency or internal rate of

  16. Research progress of the Superheated Steam Drying Technology

    OpenAIRE

    Shi, Yongchun; Li, Jie; Li, Xuanyou; Zhao, Gaiju; Wu, Maogang

    2012-01-01

    The superheated steam drying technology has lots of advantages such as safe, energy-saving, pollution-free and so on, so it causes more and more extensive concern. The superheated steam drying technology is introduced and its merits and faults are analyzed. The theoretical research progress of the superheated steam drying is summarized and the recent application of the materials including the food, wood, paper, sludge and lignite is stated. In brief, the superheated steam drying technol...

  17. Steam gasification of oil palm trunk waste for clean syngas production

    International Nuclear Information System (INIS)

    Highlights: ► Initial high values of syngas flow rate are attributed to rapid devolatilization. ► Over 50% of syngas generated was obtained during the first five minutes of the process. ► Increase in steam flow rate resulted in reduced gasification time. ► Variation in steam flow rate slightly affected the apparent thermal efficiency. ► Oil palm yielded more energy than that from mangrove wood, paper and food waste. -- Abstract: Waste and agricultural residues offer significant potential for harvesting chemical energy with simultaneous reduction of environmental pollution, providing carbon neutral (or even carbon negative) sustained energy production, energy security and alleviating social concerns associated with the wastes. Steam gasification is now recognized as one of the most efficient approaches for waste to clean energy conversion. Syngas generated during the gasification process can be utilized for electric power generation, heat generation and for other industrial and domestic uses. In this paper results obtained from the steam assisted gasification of oil palm trunk waste are presented. A batch type gasifier has been used to examine the syngas characteristics from gasification of palm trunk waste using steam as the gasifying agent. Reactor temperature was fixed at 800 °C. Results show initial high values of syngas flow rate, which is attributed to rapid devolatilization of the sample. Approximately over 50% of the total syngas generated was obtained during the first five minutes of the process. An increase in steam flow rate accelerated the gasification reactions and resulted in reduced gasification time. The effect of steam flow rate on the apparent thermal efficiency has also been investigated. Variation in steam flow rate slightly affected the apparent thermal efficiency and was found to be very high. Properties of the syngas obtained from the gasification of oil palm trunk waste have been compared to other samples under similar operating

  18. 7 CFR 305.23 - Steam sterilization treatment schedules.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Steam sterilization treatment schedules. 305.23... Steam sterilization treatment schedules. Treatment schedule Temperature( °F) Pressure Exposure period (minutes) Directions T303-b-1 10 lbs 20 Use 28″ vacuum. Steam sterilization is not practical for...

  19. The Effect of Steaming on the Glucosinolate Content in Broccoli

    NARCIS (Netherlands)

    Verkerk, R.; Knol, J.J.; Dekker, M.

    2010-01-01

    Total and individual glucosinolates were measured after different duration of steaming broccoli (Brassica oleracea L. var. italica). During steaming, the temperature profile, cell lysis and inactivation of myrosinase were assessed as well. Steaming resulted in high retention of total aliphatic and i

  20. Recent trends in repair and refurbishing of steam turbine components

    Indian Academy of Sciences (India)

    A K Bhaduri; S K Albert; S K Ray; P Rodriguez

    2003-06-01

    The repair and refurbishing of steam generator components is discussed from the perspective of repair welding philosophy including applicable codes and regulations. Some case histories of repair welding of steam generator components are discussed with special emphasis on details of repair welding of cracked steam turbine blades and shrouds in some of the commercial nuclear power plants using procedures developed.

  1. 46 CFR 50.05-20 - Steam-propelled motorboats.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam-propelled motorboats. 50.05-20 Section 50.05-20... Application § 50.05-20 Steam-propelled motorboats. (a) The requirements covering design of the propelling... than 40 feet in length and which are propelled by machinery driven by steam shall be in accordance...

  2. Improving Steam System Performance: A Sourcebook for Industry, Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-02-23

    This sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The sourcebook is divided into three main sections: steam system basics, performance improvement opportunities, and where to find help.

  3. COMMAND AND CONTROL STRATEGIES APPLIED TO HIGHPOWER STEAM GENERATORS

    OpenAIRE

    DUINEA. A.M.; MIRCEA P.M.

    2015-01-01

    The paper presents the analysis of the actual operation scheme existing for steam generator drum. Following the trend valid for forced circulation steam generator, it is proposed to replace the classical adjustment loops with new regulation scheme highlighting its advantages in steam generation operation.

  4. COMMAND AND CONTROL STRATEGIES APPLIED TO HIGHPOWER STEAM GENERATORS

    Directory of Open Access Journals (Sweden)

    DUINEA. A.M.

    2015-06-01

    Full Text Available The paper presents the analysis of the actual operation scheme existing for steam generator drum. Following the trend valid for forced circulation steam generator, it is proposed to replace the classical adjustment loops with new regulation scheme highlighting its advantages in steam generation operation.

  5. DESIGN OF COMBINED CYCLE GENERATION SYSTEM WITH HIGH TEMPERATURE FUEL CELL AND STEAM TURBINE

    Institute of Scientific and Technical Information of China (English)

    Yu Lijun; Yuan Junqi; Cao Guangyi

    2003-01-01

    For environment protection and high efficiency, development of new concept power plant has been required in China. The fuel cell is expected to be used in a power plant as a centralized power station or distributed power plant. It is a chemical power generation device that converts the energy of a chemical reaction directly into electrical energy and not limited by Carnot cycle efficiency. The molten carbonate fuel cell (MCFC) power plant has several attractive features I.e. High efficiency and lower emission of Nox and Sox. A combined cycle generation system with MCFC and steam turbine is designed. Its net electrical efficiency LHV is about 55%.

  6. Active acoustic leak detection for LMFBR steam generators. Pt. 6. Applicability to practical steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuo; Kumagai, Hiromichi; Kinoshita, Izumi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-03-01

    It is necessary to develop a reliable water leak detection system for steam generators of liquid metal reactors in order to prevent the expansion of damage and to maintain the structural integrity of the steam generators. The concept of the active acoustic method is to detect the change of the ultrasonic field due to the hydrogen gas bubbles generated by a sodium-water reaction. This method has the potential for improved detection performance compared with conventional passive methods, from the viewpoint of sensitivity, response time and tolerance against the background noise. A feasibility study of the active acoustic leak detection system is being carried out. This report predicts the performance of the active acoustic method in the practical steam generators from the results of the large scale in-water experiments. The results shows that the active acoustic system can detect a 10 g/s leak within a few seconds in large-scale steam generators. (author)

  7. Cooldown strategies for a steam generator tube rupture event with failure of main steam safety valve

    International Nuclear Information System (INIS)

    This paper provides an evaluation of the thermal-hydraulic response of a pressurized water reactor (PWR) during a steam generator tube rupture (SGTR) event with the failure of a main steam safety valve (MSSV). Operator actions to successfully mitigate the consequences of this SGTR event are proposed. The desired actions are those which provide for control of the affected steam generator water level and minimize radiological doses to the environment. Specifically, the purpose of this paper is to demonstrate the results of differences in operator actions to cooldown the power plant in terms of: (1) dose releases to the environment, (2) control of the affected steam generator level, (3) and optimal reactor coolant system cooldown and depressurization

  8. Steam Pyrolysis of Polyimides: Effects of Steam on Raw Material Recovery.

    Science.gov (United States)

    Kumagai, Shogo; Hosaka, Tomoyuki; Kameda, Tomohito; Yoshioka, Toshiaki

    2015-11-17

    Aromatic polyimides (PIs) have excellent thermal stability, which makes them difficult to recycle, and an effective way to recycle PIs has not yet been established. In this work, steam pyrolysis of the aromatic PI Kapton was performed to investigate the recovery of useful raw materials. Steam pyrolysis significantly enhanced the gasification of Kapton at 900 °C, resulting in 1963.1 mL g(-1) of a H2 and CO rich gas. Simultaneously, highly porous activated carbon with a high BET surface area was recovered. Steam pyrolysis increased the presence of polar functional groups on the carbon surface. Thus, it was concluded that steam pyrolysis shows great promise as a recycling technique for the recovery of useful synthetic gases and activated carbon from PIs without the need for catalysts and organic solvents.

  9. Revised evaluation of steam generator testing alternatives

    International Nuclear Information System (INIS)

    A scoping evaluation was made of various facility alternatives for test of LMFBR prototype steam generators and models. Recommendations are given for modifications to EBR-II and SCTI (Sodium Components Test Installation) for prototype SG testing, and for few-tube model testing

  10. Dynamic simulation of steam generator failures

    International Nuclear Information System (INIS)

    A computer program will be described which is capable to simulate severe transients in a gas heated steam generator. Such transients may arise in the safety analysis of accidents resulting from failures in the heat removal system of an HTGR power plant. Important failure modes which have to be considered are ruptures of one or more steam generator tubes leading to water or steam ejection into the primary system or anomalous operating conditions which my cause damage due to excessive thermal stress. Examples are the complete dryout as a consequence of feedwater interrupt in connection with continuing gas heating and the reflooding of the secondary channel with cold feedwater after dryout. The steam generator program which is capable to simulate accidents of this type is written as a module which can be implemented into a program system fur the simulation of the total heat rejection system. It based on an advanced mathematical model for the two phase flow taking deviations from thermal equilibrium into account. Mass, energy and momentum balances for the primary and secondary fluid and the heat diffusion equations for the heat exchanging wall form a system of coupled differential equations which is solved numerically by an algorithm which is stiffly stable and suppresses effectively oscillations of numerical origin. Results of the simulation of transients of the type mentioned above will be presented and discussed. (author)

  11. Investigation of beryllium/steam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chekhonadskikh, A.M.; Vurim, A.D.; Vasilyev, Yu.S.; Pivovarov, O.S. [Inst. of Atomic Energy National Nuclear Center of the Republic of Kazakstan Semipalatinsk (Kazakhstan); Shestakov, V.P.; Tazhibayeva, I.L.

    1998-01-01

    In this report program on investigations of beryllium emissivity and transient processes on overheated beryllium surface attacked by water steam to be carried out in IAE NNC RK within Task S81 TT 2096-07-16 FR. The experimental facility design is elaborated in this Report. (author)

  12. Leakage experiences with 1 MW steam generator

    International Nuclear Information System (INIS)

    An 1 MW steam generator was tested from October, 1971 and completed with the first series of experiments by May, 1972 after 3600 hours of operation. During these tests, unextraordinary heat absorption was experienced in the downcomer region, which led to shortage of heat transfer area to attain the rated steam temperature and to one of the reasons of flow instabilities. The steam generator was disassembled to get test pieces for structure as well as material examinations and then it was reassembled to proceed the second series of tests. Before it was done, a modification was provided to insulate the downcomer region by putting a gas space around the downcomer tube. The gas space was provided by a dual tube and spacers were welded on the inner tube and an end plate was welded on upper parts between the two to seal the gap by means of fillet welding. After the modified steam generator was put into operation, water happened to leak into a sodium side two times through these additional welding spots for the gas insulation. This paper presents operating conditions and behaviors of monitors at the time of the leakages, identifications of leaked spots, an evaluation of causes and a treatment or a precaution for them

  13. Next Generation Steam Cracking Reactor Concept

    NARCIS (Netherlands)

    Van Goethem, M.W.M.

    2010-01-01

    The steam cracking process is an important asset in the hydrocarbon processing industry. The main products are lower olefins and hydrogen, with ethylene being the world's largest volume organic chemical at a worldwide capacity of ~ 120 million tonnes per year. Feed stocks are hydrocarbons such as: e

  14. Biophysical Evaluation of SonoSteam®:

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan R.;

    /response relationship between SonoSteam treatment time and changes in collagen I, and a depth dependency in bacterial reduction, which points toward CFU counts overestimating total bacterial reduction. In conclusion the biophysical methods provide a less biased, reproducible and highly detailed system description...

  15. Temperature escalation in PWR fuel rod simulators due to the zircaloy/steam reaction: Tests ESSI-1,2,3

    International Nuclear Information System (INIS)

    This report discusses the test conduct, results, and posttest appearance of three scoping tests (ESSI-1,2,3) investigating temperature escalation in zircaloy clad fuel rods. The experiments are part of an out-of-pile program using electrically heated fuel rod simulators to investigate PWR fuel element behavior up to temperatures of 20000C. These experiments are part of the PNS Severe Fuel Damage Program. The temperature escalation is caused by the exothermal zircaloy/steam reaction, whose reaction rate increases exponentially with the temperature. The tests were performed using different initial oxide layers as a major parameter, obtained by varying the heatup rates and steam exposure times. (orig./RW)

  16. Performance Comparison on Repowering of a Steam Power Plant with Gas Turbines and Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2016-01-01

    into an existing steam cycle which was built decades ago. Thus, traditional repowering results in combined cycles (CC). High temperature fuel cells (such as solid oxide fuel cell (SOFC)) could also be used as a topping cycle, achieving even higher global plant efficiency and even lower specific CO2 emissions....... Decreasing the operating temperature in a SOFC allows the use of less complex materials and construction methods, consequently reducing plant and the electricity costs. A lower working temperature makes it also suitable for topping an existing steam cycle, instead of gas turbines. This is also the target...

  17. Reduction of Microbe Contamination through Steaming Process to Cocoa Beans Using Steaming Chamber

    OpenAIRE

    Hendy Firmanto

    2014-01-01

    Dry cocoa bean quality is also determined by its microbe contamination level. Steaming process for dried cocoa beans as a pretreatment process was selected because of less effect on organic compound inside the dried cocoa bean. This experiment aim was to study microbial contamination level of cocoa beans using steaming process, determining its microbial population and evaluate its chemical changes. Experiment was carried out in Postharvest Laboratory of Indonesian Coffee and Cocoa Research In...

  18. Reduction of Microbe Contamination through Steaming Process to Cocoa Beans Using Steaming Chamber

    Directory of Open Access Journals (Sweden)

    Hendy Firmanto

    2014-05-01

    Full Text Available Dry cocoa bean quality is also determined by its microbe contamination level. Steaming process for dried cocoa beans as a pretreatment process was selected because of less effect on organic compound inside the dried cocoa bean. This experiment aim was to study microbial contamination level of cocoa beans using steaming process, determining its microbial population and evaluate its chemical changes. Experiment was carried out in Postharvest Laboratory of Indonesian Coffee and Cocoa Research Institute. Cocoa beans for the experiment were lots collected from four farms in Jayapura, Papua with different microbial contamination level for each lot. Results of this experiment showed that optimum steaming process was 15 minutes at 100 O C with 10 minutes preheating time. Microbial analysis result of the four lots after complete steaming process by total plate count method showed the same result (<3.0 x 103 cfu. Most of the decrease in microbial contaminant appeared in the plate was 73.5% of Staphylococcus aureusand 0.058% of Penicilliumsp. Bean acidity (pH after steaming increased (4.76 to 4.80 and free fatty acid increased (1.81% to 1.96% while carbohydrate content decreased (17.5% to 15.9% and as well as protein content (12.6% into 11.7%. Key words: cocoa bean, steaming process, microbe reduction, nutrient changes

  19. Steam quality determination by self-tracers present in the BOP blowdown water and steam

    International Nuclear Information System (INIS)

    Steam quality determination (the ratio between steam mass flow rate and the sum of steam and liquid water mass flow rate) or its reciprocal named moisture carryover, is a magnitude of importance in fossil fired and nuclear power plants as well. This is due to that, the steam quality participates in the determination of the power transferred from the primary to the secondary circuit (ASME PTC, Gross Heat Input) and the performance of the secondary circuit, in the efficiency of the liquid separators located in the dome of the recirculating type steam generators and finally because the drops carryover implies mechanical wear in the turbine blades and transport of impurities as well. It is after the above mentioned reasons, that several standardized procedures exist (ASTM) and international institutions devoted to the properties of water and steam and applications in power plants release recommendations on the steam quality (IAPWS). Even though, the measurement is still a subject of new publications (Thomas et al., NPC10). In general, the determination methods make use of the addition of a tracer, stable alkaline element or isotope, which has to be later quantified by an analytical or radiochemical technique. It also means keeping the BOP under specified conditions during the test. Chemicals dosing of is not always accepted considering that ions used as tracers concentrate in the steam generator media and modify the water chemistry conditions. This is more pronounced in old devices with presence of fouling and sludge piles on the tube sheet. In the present work a technique based on the concentration of the ions currently existing in the cycle: Blowdown Water (BDW) and condensate (MSR-MSC) of the main steam used as heating fluid in the Moisture Separator Reheater (MSR). The latter ensures a total representative sample of the two phase stream, unlike sampling in the main steam sampling line. Those ion concentrations participate in the calculation of the steam quality. To

  20. Vibrational fatigue analysis for main steam pipelines on a NPP

    International Nuclear Information System (INIS)

    The vibration and noise of pipings adjacent to isolation valves of main steam pipelines in a NPP were excessive during operation. To assess the safety in operation of main steam pipelines, both stress and fatigue analysis were performed using ANSYS program, and evaluation was performed according to ASME code. The main steam pipeline considered in this report, includes the main steam piping, safety valves, main steam isolation valve and other branch pipings between the containment penetration and the first transverse direction limit stop downstream of the isolation valve

  1. Windage effect on HP sections of reheat steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Uicker, J.; Tohme, B. [Detroit Edison Co., MI (United States); Bergmann, D.; Stannowski, G.; Havemann, J. [Siemens/KWU, Mulheim (Germany); Meade, W.; Termuehlen, H. [Siemens Power Corp., Bradenton, FL (United States)

    1994-12-31

    Steam turbines or steam turbine sections, when operated at high speed and little or no steam flow, generate windage due to uncontrolled turbulent flow conditions which can cause high metal temperatures affecting the integrity of steam path components. Indications of blade overheating found in the Belle River 641 MW reheat steam turbines of Detroit Edison Company, have been the cause for addressing this issue. These units were not originally equipped with any preventative measures. This paper will summarize latest findings, investigations and the establishment of guidelines for preventing HP turbine component overheating caused by windage.

  2. A study of steam injection in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Dindoruk, M.D.S.; Aziz, K.; Brigham, W.; Castanier, L.

    1996-02-01

    Steam injection is the most widely used thermal recovery technique for unfractured reservoirs containing heavy oil. There have been numerous studies on theoretical and experimental aspects of steam injection for such systems. Fractured reservoirs contain a large fraction of the world supply of oil, and field tests indicate that steam injection is feasible for such reservoirs. Unfortunately there has been little laboratory work done on steam injection in such systems. The experimental system in this work was designed to understand the mechanisms involved in the transfer of fluids and heat between matrix rocks and fractures under steam injection.

  3. Study on mathematical model of steam coal blending

    Institute of Scientific and Technical Information of China (English)

    高洪阁; 李白英; 刘泽常; 尹增德

    2002-01-01

    It is necessary to set up a new mathematical model of steam coal blending instead of the old model. Indexes such as moisture content, ash content, volatile matter, sulfur content and heating value in the new mathematical model have linear relation. The new mathematical model can also predict ash-fusion temperature precisely by considering coal ash ratio in steam coal blending, therefore it is possible to obtain linear relation of ash-fusion temperature between single coal and steam coal blending. The new mathematical model can improve precision of steam coal blending and perfect the old mathematical model of steam coal blending.

  4. Electricity Today's annual year-in-review: Canadian electric utilities discuss events of 1992 and plans for 1993

    International Nuclear Information System (INIS)

    A review is presented of the 1992 activities and strategic directions of the major electric utilities in Canada: British Columbia Hydro, Alberta Power, Edmonton Power, TransAlta Utilities, SaskPower, Manitoba Hydro, Ontario Hydro, Hydro-Quebec, and New Brunswick Power. Activities reported include sales, customer growth, exports, training programs, investments, workforce restructuring, energy efficiency programs, cogeneration projects, new power stations and transmission facilities, environmental programs, revisions in rate structures, and modifications to existing facilities. Future plans include increased hiring of aboriginals, aggressive marketing of utility expertise abroad, examining the feasibility of district energy systems, pursuing goals related to sustainable development, cutting back on plans for new installations, and finding ways to save more energy

  5. Report on US-Japan 1983 meetings on steam generators

    International Nuclear Information System (INIS)

    This is a report on a trip to Japan by personnel of the US Nuclear Regulatory Commission in 1983 to exchange information on steam generators of nuclear power plants. Steam generators of Japanese pressurized water reactors have experienced nearly all of the forms of degradation that have been experienced in US recirculating-type steam generators, except for denting and pitting. More tubes have been plugged per year of reactor operation in Japanese than in US steam generators, but much of the Japanese tube plugging is preventative rather than the result of leaks experienced. The number of leaks per reactor year is much smaller for Japanese than for US steam generators. No steam generators have been replaced in Japan while several have been replaced in the US. The Japanese experience may be related to their very stringent inspection and maintenance programs for steam generators

  6. Corrosion Evaluation and Corrosion Control of Steam Generators

    International Nuclear Information System (INIS)

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants

  7. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  8. XPS and IGC characterization of steam treated triticale straw

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Liyan, E-mail: Liyan.zhao@albertainnovates.ca [Cellulose and Hemicellulose Program, Forest Products, Alberta Innovates-Technology Futures, 250 Karl Clark Road, Edmonton, AB T6N 1E4 (Canada); Boluk, Yaman [Cellulose and Hemicellulose Program, Forest Products, Alberta Innovates-Technology Futures, 250 Karl Clark Road, Edmonton, AB T6N 1E4 (Canada)

    2010-10-15

    The surface chemical composition and surface energy of native and steam treated triticale straws have been investigated by X-ray photoelectron spectroscopy (XPS) and inverse gas chromatography (IGC) to reveal the effect of steam treatment temperature and time. The XPS results show that the contents of C elements and C-C group on the exterior surface of native triticale straw are much higher than those on the interior surface, indicating that there was a high quantity of wax on the exterior surface of the native triticale straw. Upon steam treatment, both carbon levels and C-C groups reduce with increasing steam temperature and treatment time of the exterior surfaces. However, the effect of steam treatment on the interior surface is very limited. In terms of the surface acid and base properties, the steam treated samples exhibited higher acid and base properties than the native sample, indicating a more polar surface of the steam treated sample.

  9. XPS and IGC characterization of steam treated triticale straw

    Science.gov (United States)

    Zhao, Liyan; Boluk, Yaman

    2010-10-01

    The surface chemical composition and surface energy of native and steam treated triticale straws have been investigated by X-ray photoelectron spectroscopy (XPS) and inverse gas chromatography (IGC) to reveal the effect of steam treatment temperature and time. The XPS results show that the contents of C elements and C-C group on the exterior surface of native triticale straw are much higher than those on the interior surface, indicating that there was a high quantity of wax on the exterior surface of the native triticale straw. Upon steam treatment, both carbon levels and C-C groups reduce with increasing steam temperature and treatment time of the exterior surfaces. However, the effect of steam treatment on the interior surface is very limited. In terms of the surface acid and base properties, the steam treated samples exhibited higher acid and base properties than the native sample, indicating a more polar surface of the steam treated sample.

  10. Optimisation of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Central receiver solar thermal power plants are regarded as one of the promising ways to generate electricity in near future. They offer the possibility of using high temperatures and pressures to achieve high efficiencies with standard power cycles. A direct steam generation approach can be used...... for such plants for improved performance. This approach can also be combined with using advanced power cycles like the Kalina cycle, which uses a zeotropic mixture of ammonia and water instead of pure water as the working fluid. This paper presents the optimisation of a particular Kalina cycle layout...... for a central receiver solar thermal power plant with direct steam generation. The variation in the cycle performance with respect to the turbine inlet ammonia mass fraction and pressure and a comparison of the initial investment with that of the basic Rankine cycle are also presented. Only high live steam...

  11. Solar tower power plant using a particle-heated steam generator: Modeling and parametric study

    Science.gov (United States)

    Krüger, Michael; Bartsch, Philipp; Pointner, Harald; Zunft, Stefan

    2016-05-01

    Within the framework of the project HiTExStor II, a system model for the entire power plant consisting of volumetric air receiver, air-sand heat exchanger, sand storage system, steam generator and water-steam cycle was implemented in software "Ebsilon Professional". As a steam generator, the two technologies fluidized bed cooler and moving bed heat exchangers were considered. Physical models for the non-conventional power plant components as air- sand heat exchanger, fluidized bed coolers and moving bed heat exchanger had to be created and implemented in the simulation environment. Using the simulation model for the power plant, the individual components and subassemblies have been designed and the operating parameters were optimized in extensive parametric studies in terms of the essential degrees of freedom. The annual net electricity output for different systems was determined in annual performance calculations at a selected location (Huelva, Spain) using the optimized values for the studied parameters. The solution with moderate regenerative feed water heating has been found the most advantageous. Furthermore, the system with moving bed heat exchanger prevails over the system with fluidized bed cooler due to a 6 % higher net electricity yield.

  12. System for the co-production of electricity and hydrogen

    Science.gov (United States)

    Pham, Ai Quoc; Anderson, Brian Lee

    2007-10-02

    Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

  13. Two-phase flow induced vibrations in CANDU steam generators

    International Nuclear Information System (INIS)

    The U-Bend region of nuclear steam generators tube bundles have suffered from two-phase cross flow induced vibrations. Tubes in this region have experienced high amplitude vibrations leading to catastrophic failures. Turbulent buffeting and fluid-elastic instability has been identified as the main causes. Previous investigations have focused on flow regime and two-phase flow damping ratio. However, tube bundles in steam generators have vapour generated on the surface of the tubes, which might affect the flow regime, void fraction distribution, turbulent intensity levels and tube-flow interaction, all of which have the potential to change the tube vibration response. A cantilevered tube bundle made of electric cartridges heaters was built and tested in a Freon-11 flow loop at McMaster University. Tubes were arranged in a parallel triangular configuration. The bundle was exposed to two-phase cross flows consisting of different combinations of void from two sources, void generated upstream of the bundle and void generated at the surface of the tubes. Tube tip vibration response was measured optically and void fraction was measured by gamma densitometry technique. It was found that tube vibration amplitude in the transverse direction was reduced by a factor of eight for void fraction generated at the tube surfaces only, when compared to the upstream only void generation case. The main explanation for this effect is a reduction in the correlation length of the turbulent buffeting forcing function. Theoretical calculations of the tube vibration response due to turbulent buffeting under the same experimental conditions predicted a similar reduction in tube amplitude. The void fraction for the fluid-elastic instability threshold in the presence of tube bundle void fraction generation was higher than that for the upstream void fraction generation case. The first explanation of this difference is the level of turbulent buffeting forces the tube bundle was exposed to

  14. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Grant Hawkes; James O' Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model

  15. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Science.gov (United States)

    Fic, Adam; Składzień, Jan; Gabriel, Michał

    2015-03-01

    Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  16. Design and performance of BWC replacement steam generators for PWR systems

    International Nuclear Information System (INIS)

    In recent years, Babcock and Wilcox Canada (BWC) has provided a number of PWR Replacement Steam Generators (RSGS) to replace units that had experienced extensive Alloy 600 tube degradation. BWC RSG units are in operation at Northeast Utilities' Millstone Unit 2, Rochester Gas and Electric's Ginna Station, Duke Energy's Catawba Unit 1, McGuire Unit 1 and 2, Florida Power and Light's St. Lucie Unit 1 and Commonwealth Edison's Byron 1 Station. Extensive start-up performance characteristics have been obtained for Millstone 2, Ginna, McGuire 1, and Catawba 1 RSGS. The Millstone 2, Ginna and Catawba 1 RSGs have also undergone extensive inspections following their first cycle of operation. The design and start-up performance characteristics of these RSGs are presented. The BWC Replacement Steam generators were designed to fit the existing envelope of pressure boundary dimensions to ensure licensability and integration into the Nuclear Steam Supply System. The RSGs were provided with a tube bundle of Alloy 690TT tubing, sized to match or exceed the original steam generator (OSG) thermal performance including provision for the reduced thermal conductivity of Alloy 690 relative to Alloy 600. The RSG tube bundle configurations provide a higher circulation design relative to the OSG, and feature corrosion resistant lattice grid and U-bend tube supports which provide effective anti-vibration support. The tube bundle supports accommodate relatively unobstructed flow and allow unrestrained structural interactions during thermal transients. Efficient steam separators assure low moisture carryover as well as high circulation. Performance measurements obtained during start-up verify that the BWC RSGs meet or exceed the specified thermal and moisture carryover performance requirements. RSG water level stability results at nor-mal operation and during plant transients have been excellent. Visual and ECT inspections have confirmed minimal deposition and 100% tube integrity following

  17. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Directory of Open Access Journals (Sweden)

    Fic Adam

    2015-03-01

    Full Text Available Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle, which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle. The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  18. Deliberate ignition of hydrogen-air-steam mixtures in condensing steam environments

    International Nuclear Information System (INIS)

    Large scale experiments were performed to determine the effectiveness of thermal glow plug igniters to burn hydrogen in a condensing steam environment due to the presence of water sprays. The experiments were designed to determine if a detonation or accelerated flame could occur in a hydrogen-air-steam mixture which was initially nonflammable due to steam dilution but was rendered flammable by rapid steam condensation due to water sprays. Eleven Hydrogen Igniter Tests were conducted in the test vessel. The vessel was instrumented with pressure transducers, thermocouple rakes, gas grab sample bottles, hydrogen microsensors, and cameras. The vessel contained two prototypic engineered systems: (1) a deliberate hydrogen ignition system and (2) a water spray system. Experiments were conducted under conditions scaled to be nearly prototypic of those expected in Advanced Light Water Reactors (such as the Combustion Engineering (CE) System 80+), with prototypic spray drop diameter, spray mass flux, steam condensation rates, hydrogen injection flow rates, and using the actual proposed plant igniters. The lack of any significant pressure increase during the majority of the burn and condensation events signified that localized, benign hydrogen deflagration(s) occurred with no significant pressure load on the containment vessel. Igniter location did not appear to be a factor in the open geometry. Initially stratified tests with a stoichiometric mixture in the top showed that the water spray effectively mixes the initially stratified atmosphere prior to the deflagration event. All tests demonstrated that thermal glow plugs ignite hydrogen-air-steam mixtures under conditions with water sprays near the flammability limits previously determined for hydrogen-air-steam mixtures under quiescent conditions. This report describes these experiments, gives experimental results, and provides interpretation of the results. 12 refs., 127 figs., 16 tabs

  19. Steam generator degradation: Current mitigation strategies for controlling corrosion

    International Nuclear Information System (INIS)

    Steam Generator degradation has caused substantial losses of power generation, resulted in large repair and maintenance costs, and contributed to significant personnel radiation exposures in Pressurized Water Reactors (PWRs) operating throughout the world. EPRI has just published the revised Steam Generator Reference Book, which reviews all of the major forms of SG degradation. This paper discusses the types of SG degradation that have been experienced with emphasis on the mitigation strategies that have been developed and implemented in the field. SG degradation is presented from a world wide perspective as all countries operating PWRs have been effected to one degree or another. The paper is written from a US. perspective where the utility industry is currently undergoing tremendous change as a result of deregulation of the electricity marketplace. Competitive pressures are causing utilities to strive to reduce Operations and Maintenance (O ampersand M) and capital costs. SG corrosion is a major contributor to the O ampersand M costs of PWR plants, and therefore US utilities are evaluating and implementing the most cost effective solutions to their corrosion problems. Mitigation strategies developed over the past few years reflect a trend towards plant specific solutions to SG corrosion problems. Since SG degradation is in most cases an economic problem and not a safety problem, utilities can focus their mitigation strategies on their unique financial situation. Accordingly, the focus of R ampersand D has shifted from the development of more expensive, prescriptive solutions (e.g. reduced impurity limits) to corrosion problems to providing the utilities with a number of cost effective mitigation options (e.g. molar ratio control, boric acid treatment)

  20. Steam generator degradation: Current mitigation strategies for controlling corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Millett, P. [Electric Power Research Institute, Palo Alto, CA (United States)

    1997-02-01

    Steam Generator degradation has caused substantial losses of power generation, resulted in large repair and maintenance costs, and contributed to significant personnel radiation exposures in Pressurized Water Reactors (PWRs) operating throughout the world. EPRI has just published the revised Steam Generator Reference Book, which reviews all of the major forms of SG degradation. This paper discusses the types of SG degradation that have been experienced with emphasis on the mitigation strategies that have been developed and implemented in the field. SG degradation is presented from a world wide perspective as all countries operating PWRs have been effected to one degree or another. The paper is written from a US. perspective where the utility industry is currently undergoing tremendous change as a result of deregulation of the electricity marketplace. Competitive pressures are causing utilities to strive to reduce Operations and Maintenance (O&M) and capital costs. SG corrosion is a major contributor to the O&M costs of PWR plants, and therefore US utilities are evaluating and implementing the most cost effective solutions to their corrosion problems. Mitigation strategies developed over the past few years reflect a trend towards plant specific solutions to SG corrosion problems. Since SG degradation is in most cases an economic problem and not a safety problem, utilities can focus their mitigation strategies on their unique financial situation. Accordingly, the focus of R&D has shifted from the development of more expensive, prescriptive solutions (e.g. reduced impurity limits) to corrosion problems to providing the utilities with a number of cost effective mitigation options (e.g. molar ratio control, boric acid treatment).

  1. Comparison of humus and till as prospecting material in areas of thick overburden and multiple ice-flow events: An example from northeastern New Brunswick

    Science.gov (United States)

    Broster, Bruce E.; Dickson, M.L.; Parkhill, M.A.

    2009-01-01

    Thirty-nine elements in humus and till matrix were compared at 109 sites overlying Ag-As-Cu-Mo-Pb-Zn mineralized occurrences in northeastern New Brunswick to assess humus for anomaly identification. Humus element concentrations were not consistently correlative with maximum or minimum concentrations found in the underlying till or bedrock. The humus demonstrated significantly higher mean elemental concentrations than the till for six specific elements: 9 times greater for Mn, 6 times greater for Cd, 5 times greater for Ag and Pb, 3 times greater for Hg, and double the concentration of Zn. Spatial dispersal patterns for these elements were much larger for humus content than that exhibited by the till matrix analysis, but did not delineate a point source. For elements in till, the highest concentrations were commonly found directly overlying the underlying mineralized bedrock source or within one km down-glacier of the source. The complexity of the humus geochemical patterns is attributed to the effects of post-glacial biogenic, down-slope hydrodynamic and solifluction modification of dispersed mineralization in the underlying till, and the greater capacity of humus to adsorb cations and form complexes with some elements, relative to the till matrix. Humus sampling in areas of glaciated terrain is considered to be mostly valuable for reconnaissance exploration as elements can be spatially dispersed over a much larger area than that found in the till or underlying bedrock. ?? 2009 Elsevier B.V. All rights reserved.

  2. Electricity from the Silk Cocoon Membrane

    Science.gov (United States)

    Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak

    2014-06-01

    Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management.

  3. Electricity from the silk cocoon membrane.

    Science.gov (United States)

    Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak

    2014-06-25

    Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management.

  4. Experimental investigation on steam condensation in the presence of air and helium: forced convection conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bucci, M., E-mail: matteo.bucci@cea.fr [Univ. of Pisa, DIMNP, Pisa (Italy); CEA Saclay, CEA/DEN/DANS/DM2S/SFME/LETR (France); Ambrosini, W.; Forgione, N. [Univ. of Pisa, DIMNP, Pisa (Italy); Lioce, D [Univ. of Pisa, DIMNP, Pisa (Italy); Westinghouse Electric Belguim, Nivelles (Belgium)

    2011-07-01

    This paper discusses the results obtained from recent experimental investigations devoted to the study of steam condensation in the presence of air and a light noncondensable gas. The experiments are intended to provide data for the validation of engineering models and CFD codes. The original experimental data herein discussed focus on forced convection turbulent boundary layer conditions and involve atmospheric pressure, different conditions for mixture velocity (from 1.5 to 3.5 m/s), mixture composition (form 0 to 75 per cent of the light species in the overall amount of noncondensable gases) and two nominal electrical power supply of the steam generator. The experimental data are qualified against correlations based on the heat and mass transfer analogy and to the predictions obtained by an in house condensation model implemented in a commercial CFD code. (author)

  5. Performance comparison between partial oxidation and methane steam for SOFC micro-CHP systems

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Olesen, Anders Christian; Nielsen, Mads Pagh;

    2011-01-01

    and Partial Oxidation and recirculation of anode and cathode gas. The comparative analysis among the different configurations will lead us to conclude that maximum efficiency is achieved when cathode and anode gas recirculation are used along with steam methane reforming. Further Steam Methane Reforming...... process produces a higher electrical system efficiency compared to Partial oxidation reforming process. Efficiency is affected when running the system in part load mode mainly due to heat loss, additional natural gas supplied to the burner to satisfy the required heat demand inside the system, and ejector...... efficiency drop in the recirculation system. Due to high temperature of operation heat loss strongly affects the system efficiency especially at part load operation....

  6. The development of an 85-kW (thermal) steam Rankine solar receiver

    Science.gov (United States)

    Wright, C. C.; Bank, H.

    1981-01-01

    The receiver is a once-through monotube boiler designed for steam/electric and process steam applications at pressures up to 17.24 MPa (2500 psia) and temperatures up to 704 C (1300 F). The unit is 76.2 cm (30.0 in.) in diameter and 95.8 cm (37.7 in.) in length; it weighs 220 kg (485 lb). Its heat transfer surface, which is 45.7 cm (18 in.) in diameter by 57 cm (22.4 in.) long, is an Inconel 625, cylindrical, tube-coil assembly composed of primary and reheat sections. A test unit was successfully operated at up to 6.9 MPa (1000 psia) and 704 C (1300 F) with solar input from a 11-m-dia parabolic dish concentrator.

  7. Design and performance verification of fuel assembly and steam generator simulators for SMART reactor

    International Nuclear Information System (INIS)

    The SMART reactor has been developed at KAERI, for the generation of electric power and also for seawater desalination. In order to verify the performance of the SMART design with respect to flow and pressure distribution, an experimental test facility named SCOP has been developed. For the purpose of preserving the flow distribution characteristics, SCOP is linearly reduced with a scaling ratio of 1/5. A CFD analysis was carried out to draw basic design parameters of the venturi tube and the perforated plates in a fuel assembly simulator. A CALIP, which is a flow and pressure drop calibration test facility, has been constructed to evaluate the pressure drop characteristic of fuel assembly and steam generator simulators. This paper shows the results of the actual performance verification and evaluation of fuel assembly and steam generator simulator, were evaluated using a CALIP. (author)

  8. Use of borehole radar reflection logging to monitor steam-enhanced remediation in fractured limestone-results of numerical modelling and a field experiment

    Science.gov (United States)

    Gregoire, C.; Joesten, P.K.; Lane, J.W.

    2006-01-01

    Ground penetrating radar is an efficient geophysical method for the detection and location of fractures and fracture zones in electrically resistive rocks. In this study, the use of down-hole (borehole) radar reflection logs to monitor the injection of steam in fractured rocks was tested as part of a field-scale, steam-enhanced remediation pilot study conducted at a fractured limestone quarry contaminated with chlorinated hydrocarbons at the former Loring Air Force Base, Limestone, Maine, USA. In support of the pilot study, borehole radar reflection logs were collected three times (before, during, and near the end of steam injection) using broadband 100 MHz electric dipole antennas. Numerical modelling was performed to predict the effect of heating on radar-frequency electromagnetic (EM) wave velocity, attenuation, and fracture reflectivity. The modelling results indicate that EM wave velocity and attenuation change substantially if heating increases the electrical conductivity of the limestone matrix. Furthermore, the net effect of heat-induced variations in fracture-fluid dielectric properties on average medium velocity is insignificant because the expected total fracture porosity is low. In contrast, changes in fracture fluid electrical conductivity can have a significant effect on EM wave attenuation and fracture reflectivity. Total replacement of water by steam in a fracture decreases fracture reflectivity of a factor of 10 and induces a change in reflected wave polarity. Based on the numerical modelling results, a reflection amplitude analysis method was developed to delineate fractures where steam has displaced water. Radar reflection logs collected during the three acquisition periods were analysed in the frequency domain to determine if steam had replaced water in the fractures (after normalizing the logs to compensate for differences in antenna performance between logging runs). Analysis of the radar reflection logs from a borehole where the temperature

  9. Criteria for the provision and assembly of the rotor blades of a 300 MW low pressure steam turbine for electrical generation; Criterios para el suministro y ensambles de la alabes de rotor de turbina de vapor de 300 MW baja presion para generacion electrica

    Energy Technology Data Exchange (ETDEWEB)

    Bertin, Galo; Felix, Jorge A.; Quijano, Octavio [Especialistas en Turbopartes, S.A. de C.V., Queretaro, Queretaro (Mexico)

    2007-11-15

    This paper presents some of the main criteria to consider from the inspection, disassembling and assembly of blades with different root types of a turbine rotor of steam turbines for power generation, having as an aim to count on a reliable rotor, fulfilling with the equipment original design and norms and international standards. [Spanish] Este trabajo presenta algunos de los criterios principales a considerar desde la inspeccion, desmontaje y montaje de alabes de diferentes tipos de raiz de un rotor de turbinas de vapor de generacion electrica, teniendo como finalidad contar con un rotor confiable, cumpliendo con el diseno original del equipo y con normas y estandares internacionales.

  10. Combined heat and power plants with parallel tandem steam turbines; Smaaskalig kraftvaerme med parallellkopplade tandemturbiner

    Energy Technology Data Exchange (ETDEWEB)

    Steinwall, Pontus; Norstroem, Urban; Pettersson, Camilla; Oesterlin, Erik

    2004-12-01

    We investigate the technical and economical conditions for a concept with parallel coupled tandem turbines in small scale combined heat and power plants fired with bio-fuel and waste. Performance and heat production costs at varying electricity prices for the concept with two smaller tandem coupled steam turbines has been compared to the traditional concept with one single multi-staged turbine. Three different types of plants have been investigated: - Bio fuelled CHP plant with thermal capacity of 15 MW{sub th}; - Waste fired CHP plant with thermal capacity of 20 MW{sub th}; - Bio fuelled CHP plant with thermal capacity of 25 MW{sub th}. The simple steam turbines (Curtis turbines) used in the tandem arrangement has an isentropic efficiency of about 49 to 53% compared to the multi-staged steam turbines with isentropic efficiency in the range of 59% to 81%. The lower isentropic efficiency for the single staged turbines is to some extent compensated at partial load when one of the two turbines can be shut down leading to better operational conditions for the one still in operation. For concepts with saturated steam at partial load below 50% the tandem arrangements presents higher electricity efficiency than the conventional single turbine alternative. The difference in annual production of electricity is therefore less than the difference in isentropic efficiency for the two concepts. Production of electricity is between 2% and 42% lower for the tandem arrangements in this study. Investment costs for the turbine island has been calculated for the two turbine concepts and when the costs for turbines, generator, power transmission, condensing system, piping system, buildings, assembling, commissioning and engineering has been added the sum is about the same for the two concepts. For the bio-fuelled plant with thermal capacity of 15 MW{sub th} the turbine island amount to about 10-12 MSEK and about 13-15 MSEK for the waste fired plant with a thermal capacity of 20 MW

  11. Design of a nuclear steam reforming plant

    International Nuclear Information System (INIS)

    The design of a plant for the steam reforming of methane using a High Temperature Reactor has been studied by CEA in connection with the G.E.G.N. This group of companies (CEA, GAZ DE FRANCE, CHARBONNAGES DE FRANCE, CREUSOT-LOIRE, NOVATOME) is in charge of studying the feasibility of the coal gasification process by using a nuclear reactor. The process is based on the hydrogenation of the coal in liquid phase with hydrogen produced by a methane steam reformer. The reformer plant is fed by a pipe of natural gas or SNG. The produced hydrogen feeds the gasification plant which could not be located on the same site. An intermediate hydrogen storage between the two plants could make the coupling more flexible. The gasification plant does not need a great deal of heat and this heat can be satisfied mostly by internal heat exchanges

  12. Integration of torrefaction with steam power plant

    Energy Technology Data Exchange (ETDEWEB)

    Zakri, B.; Saari, J.; Sermyagina, E.; Vakkilainen, E.

    2013-09-01

    Torrefaction is one of the pretreatment technologies to enhance the fuel characteristics of biomass. The efficient and continuous operation of a torrefaction reactor, in the commercial scale, demands a secure biomass supply, in addition to adequate source of heat. Biorefinery plants or biomass-fuelled steam power plants have the potential to integrate with the torrefaction reactor to exchange heat and mass, using available infrastructure and energy sources. The technical feasibility of this integration is examined in this study. A new model for the torrefaction process is introduced and verified by the available experimental data. The torrefaction model is then integrated in different steam power plants to simulate possible mass and energy exchange between the reactor and the plants. The performance of the integrated plant is investigated for different configurations and the results are compared. (orig.)

  13. Artificial Intelligence Techniques for Steam Generator Modelling

    CERN Document Server

    Wright, Sarah

    2008-01-01

    This paper investigates the use of different Artificial Intelligence methods to predict the values of several continuous variables from a Steam Generator. The objective was to determine how the different artificial intelligence methods performed in making predictions on the given dataset. The artificial intelligence methods evaluated were Neural Networks, Support Vector Machines, and Adaptive Neuro-Fuzzy Inference Systems. The types of neural networks investigated were Multi-Layer Perceptions, and Radial Basis Function. Bayesian and committee techniques were applied to these neural networks. Each of the AI methods considered was simulated in Matlab. The results of the simulations showed that all the AI methods were capable of predicting the Steam Generator data reasonably accurately. However, the Adaptive Neuro-Fuzzy Inference system out performed the other methods in terms of accuracy and ease of implementation, while still achieving a fast execution time as well as a reasonable training time.

  14. Jay Carter Enterprises, Incorporated steam engine

    Science.gov (United States)

    1981-01-01

    The Small Community Solar Thermal Power Experiment (SCSE) selected an organic rankine cycle (ORC) engine driving a high speed permanent magnet alternator (PMA) as the baseline power conversion subsystem (PCS) design. The back-up conceptual PCS design is a steam engine driving an induction alternator delivering power directly to the grid. The development of the automotive reciprocating simple rankine cycle steam engine and how an engine of similar design might be incorporated into the SCSE is discussed. A description of the third generation automotive engine is included along with some preliminary test data. Tests were conducted with the third generation engine driving an induction alternator delivering power directly to the grid. The purpose of these tests is to further verify the effects of expander inlet temperature, input thermal power level, expansion ratio, and other parameters affecting engine performance to aid in the development of an SCSE PCS.

  15. Solar steam generation by heat localization.

    Science.gov (United States)

    Ghasemi, Hadi; Ni, George; Marconnet, Amy Marie; Loomis, James; Yerci, Selcuk; Miljkovic, Nenad; Chen, Gang

    2014-01-01

    Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications.

  16. Modelling the horizontal steam generator with APROS

    Energy Technology Data Exchange (ETDEWEB)

    Ylijoki, J. [VTT Energy, Espoo (Finland); Palsinajaervi, C.; Porkholm, K. [IVO International Ltd, Vantaa (Finland)

    1995-12-31

    In this paper the capability of the five- and six-equation models of the simulation code APROS to simulate the behaviour of the horizontal steam generator is discussed. Different nodalizations are used in the modelling and the results of the stationary state runs are compared. Exactly the same nodalizations have been created for the five- and six-equation models. The main simulation results studied in this paper are void fraction and mass flow distributions in the secondary side of the steam generator. It was found that quite a large number of simulation volumes is required to simulate the distributions with a reasonable accuracy. The simulation results of the different models are presented and their validity is discussed. (orig.). 4 refs.

  17. Mathematical models for steam generator accident simulation

    International Nuclear Information System (INIS)

    In this contribution, the numerical methods used in the DeBeNe-LMFBR development for the analysis of the hydrodynamic and mechanical consequences of steam generator accidents are presented. At first the definition of the source term, i.e. the water leak rate which has to be assumed in the design basis accident as well as the thermochemistry of the sodium/water-reaction is discussed. Then the computer-codes presently used to describe the hydrodynamic and mechanical consequences of steam generator accidents on the basis of the above mentioned source term are presented. These comprise the code-system SAPHYR and the code PTANER and PISCES. Furthermore, developments which are planned or already under way for future use, such as the BEREPOT-code, are presented. (author)

  18. Novel metallic alloys as phase change materials for heat storage in direct steam generation applications

    Science.gov (United States)

    Nieto-Maestre, J.; Iparraguirre-Torres, I.; Velasco, Z. Amondarain; Kaltzakorta, I.; Zubieta, M. Merchan

    2016-05-01

    Concentrating Solar Power (CSP) is one of the key electricity production renewable energy technologies with a clear distinguishing advantage: the possibility to store the heat generated during the sunny periods, turning it into a dispatchable technology. Current CSP Plants use an intermediate Heat Transfer Fluid (HTF), thermal oil or inorganic salt, to transfer heat from the Solar Field (SF) either to the heat exchanger (HX) unit to produce high pressure steam that can be leaded to a turbine for electricity production, or to the Thermal Energy Storage (TES) system. In recent years, a novel CSP technology is attracting great interest: Direct Steam Generation (DSG). The direct use of water/steam as HTF would lead to lower investment costs for CSP Plants by the suppression of the HX unit. Moreover, water is more environmentally friendly than thermal oils or salts, not flammable and compatible with container materials (pipes, tanks). However, this technology also has some important challenges, being one of the major the need for optimized TES systems. In DSG, from the exergy point of view, optimized TES systems based on two sensible heat TES systems (for preheating of water and superheating vapour) and a latent heat TES system for the evaporation of water (around the 70% of energy) is the preferred solution. This concept has been extensively tested [1, 2, 3] using mainly NaNO3 as latent heat storage medium. Its interesting melting temperature (Tm) of 306°C, considering a driving temperature difference of 10°C, means TES charging steam conditions of 107 bar at 316°C and discharging conditions of 81bar at 296°C. The average value for the heat of fusion (ΔHf) of NaNO3 from literature data is 178 J/g [4]. The main disadvantage of inorganic salts is their very low thermal conductivity (0.5 W/m.K) requiring sophisticated heat exchanging designs. The use of high thermal conductivity eutectic metal alloys has been recently proposed [5, 6, 7] as a feasible alternative. Tms

  19. Monitoring Electronics for Steam Engines Models

    OpenAIRE

    Benda, D.

    2015-01-01

    The aim of the project was to design and implement a rotary position senzor for sensing rotational speed of steam engines using integrated circuits from the company Austria Micro Systems. Further, a temperature sensing boilers for heating water vapor using temperature sensors from the company Texas Instruments. All information from the sensors are processed in the ATmega16 microcontroller from the company Atmel. The output data are displayed on a display composed of seven segmented blocks.

  20. AGR operational experience - steam generator materials constraints

    International Nuclear Information System (INIS)

    Steam generator material problems which have arisen in Hinkley Point B and Hunterston B are discussed. Four examples are described in detail. These are: gas-side oxidation of the 9Cr-1Mo superheater, stress-corrosion of the austenitic superheater, creep of the transition joint between the 9Cr-1Mo and austenitic superheaters, erosion-corrosion of the economizer inlet orifice carriers. (U.K.)

  1. Analysis of steam storage systems using Modelica

    OpenAIRE

    Buschle, Jochen; Steinmann, Wolf-Dieter; Tamme, Rainer

    2006-01-01

    Industrial process heat applications have been identified as a promising new area of application for thermal energy storage systems. Storage systems offer not only the reuse of thermal energy in cyclic processes which facilitates the integration of solar energy due to the availability of storage capacity. The bulk of process heat applications require steam at pressures between 1 and 20. While the application of phase change materials (PCMs) is straightforward for isothermal energy storage, no...

  2. Materials Performance in USC Steam Portland

    Energy Technology Data Exchange (ETDEWEB)

    G.R. Holcomb; J. Tylczak; R. Hu

    2011-04-26

    Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interest include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

  3. Perspectives of conventional and nuclear steam generation

    International Nuclear Information System (INIS)

    In the years to come, steam generation will be influenced by the following trends: 1) substitution of coal for petroleum, 2) a steady rise in energy costs, 3) environmental protection. The German boiler industry should try to maintain and further develop its high standard in order to be competitive on the world market in spite of high wages. Exports are absolutely necessary in view of the strongly fluctuating demand in Germany. (orig.)

  4. Oxidation of alloys for advanced steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Alman, David E.

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  5. A Numerical Study on the Supersonic Steam Ejector Use in Steam Turbine System

    Directory of Open Access Journals (Sweden)

    Lin Cai

    2013-01-01

    Full Text Available Supersonic steam ejector is widely used in steam energy systems such as refrigeration, wood drying equipment, papermaking machine, and steam turbine. In this paper the Computational Fluids Dynamics (CFD method was employed to simulate a supersonic steam ejector, SST k-w turbulence model was adopted, and both real gas model and ideal gas model for fluid property were considered and compared. The mixing chamber angle, throat length, and nozzle exit position (NXP primary pressure and temperature effects on entrainment ratio were investigated. The results show that performance of the ejector is underestimated using ideal gas model, and the entrainment ratio is 20%–40% lower than that when using real gas model. There is an optimum mixing chamber angel and NXP makes the entrainment ratio achieve its maximum; as throat length is decreased within a range, the entrainment ratio remains unchanged. Primary fluid pressure has a critical value, and the entrainment ratio reaches its peak at working critical pressure; when working steam superheat degree increases, the entrainment ratio is increased.

  6. Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment.

    Science.gov (United States)

    Martin-Sampedro, Raquel; Revilla, Esteban; Villar, Juan C; Eugenio, Maria E

    2014-09-01

    Steam explosion and steam pre-treatment have proved capable of enhancing enzymatic saccharification of lignocellulosic materials. However, until now, these methods had not been compared under the same operational conditions and using the same raw material. Both pre-treatments lead to increased yields in the saccharification of Eucalyptus globulus; but results have been better with steam pre-treatments, despite the more accessible surface of exploded samples. The reason for this finding could be enzymatic inhibition: steam explosion causes a more extensive extraction of hemicelluloses and releases a greater amount of degradation products which can inhibit enzymatic action. Enzymatic inhibition is also dependent on the amount and chemical structure of lignin, which was also a contributing factor to the lower enzymatic yields obtained with the most severe pre-treatment. Thus, the highest yields (46.7% glucose and 73.4% xylose yields) were obtained after two cycle of steam treatment, of 5 and 3 min, at 183°C.

  7. Evaluation of on-line chelant addition to PWR steam generators. Steam generator cleaning project

    International Nuclear Information System (INIS)

    The investigation of chelating agents for continuous water treatment of secondary loops of PWR steam generators were conducted in two general areas: the study of the chemistry of chelating agents and the study of materials compatability with chelating agents. The thermostability of both EDTA and HEDTA metal chelates in All Volatile Treatment (AVT) water chemistry were shown to be greater than or equal to the thermostability of EDTA metal chelates in phosphate-sulfite water chemistry. HEDTA metal chelates were shown to have a much greater stability than EDTA metal chelates. Using samples taken from the EDTA metal chelate thermostability study and from the Commonwealth Research Corporation (CRC) model steam generators (MSG), EDTA decomposition products were determined. Active metal surfaces were shown to become passivated when exposed to EDTA and HEDTA concentrations as high as 0.1% w/w in AVT. Trace amounts of iron in the water were found to increase the rate of passivation. Material balance and visual inspection data from CRC model steam generators showed that metal was transported through and cleaned from the MSG's. The Inconel 600 tubes of the salt water fouled model steam generators experienced pitting corrosion. Results of this study demonstrates the feasibility of EDTA as an on-line water treatment additive to maintain nuclear steam generators in a clean condition

  8. Plasma-chemical Synthesis and Regeneration of Catalysts for CH4 Steam Conversion

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We carried out experimental studies concerning the plasma-chemical synthesis(PCS) of a catalyst for CH4 steam conversion and designed and built the equipment for PCS and/ or regeneration of spent catalyst for CH4 steam conversion. Under the conditions of an electric-arc low-temperature plasma (LTP), we studied the Ni-O-Al system and performed a comprehensive physicochemical analysis of the ultradispersed product obtained. It's the first time worldwide when the conditions of plasma-chemical synthesis and/ or regeneration of CH4 steam conversion catalysts under the conditions of electric-arc LTP are investigated depending on the plasma-chemical process (PCP) parameters and the plasma-chemical reactor (PCP) type (with CW-"cold walls" Tw = 500 K or WW-"warm walls" Tw = 1500 K), samples with a specific surface of 120 m2/g are obtained. Plasma-chemically synthesized and/ or regenerated samples have a homogenous chemical composition similar to that the Girdller (USA) conventional industrial catalyst. It is empirically established that the optimal temperature range in PCR for synthesis of samples with maximum dispersity is (2000 ~ 3000) K. Results from investigation on dynamics and kinetics of plasma-chemically synthesized and / or regenerated catalysts for CH4 steam conversion show that under LTP conditions premises for the formation of catalyst compositions are established. They are reduced 3 to 4 times faster than their industrial analogues. High specific surface of the samples, homogenous composition, high rate of active chemical surface formed by reduction, faulty crystal lattice of catalytically active phases and mostly high catalytic activity make them a potential competitor with their industrial analogues for their probable production in catalyst shops.

  9. Catalytic glycerol steam reforming for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj Napoca (Romania)

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  10. Catalytic glycerol steam reforming for hydrogen production

    Science.gov (United States)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-12-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H2. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al2O3. The catalyst was prepared by wet impregnation method and characterized through different methods: N2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H2, CH4, CO, CO2. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H2O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  11. Reliability design method for steam turbine blades

    Institute of Scientific and Technical Information of China (English)

    Jinyuan SHI

    2008-01-01

    Based on theories of probability and statistics, and taking static stresses, dynamic stresses, endurance strength, safety ratios, vibration frequencies and exciting force frequencies of blades as random variables, a reliabil-ity design method for steam turbine blades is presented. The purport and calculation method for blade reliability are expounded. The distribution parameters of random variables are determined after analysis and numerical cal-culation of test data. The fatigue strength and the vibra-tion design reliability of turbine blades are determined with the aid of a probabilistic design method and by inter-ference models for stress distribution and strength distri-bution. Some blade reliability design calculation formulas for a dynamic stress design method, a safety ratio design method for fatigue strength, and a vibration reliability design method for the first and second types of tuned blades and a packet of blades on a disk connected closely, are given together with some practical examples. With these methods, the design reliability of steam turbine blades can be guaranteed in the design stage. This research may provide some scientific basis for reliability design of steam turbine blades.

  12. Steam-chemical reactivity for irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; McCarthy, K.A.; Oates, M.A.; Petti, D.A.; Pawelko, R.J.; Smolik, G.R. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental investigation to determine the influence of neutron irradiation effects and annealing on the chemical reactivity of beryllium exposed to steam. The work entailed measurements of the H{sub 2} generation rates for unirradiated and irradiated Be and for irradiated Be that had been previously annealed at different temperatures ranging from 450degC to 1200degC. H{sub 2} generation rates were similar for irradiated and unirradiated Be in steam-chemical reactivity experiments at temperatures between 450degC and 600degC. For irradiated Be exposed to steam at 700degC, the chemical reactivity accelerated rapidly and the specimen experienced a temperature excursion. Enhanced chemical reactivity at temperatures between 400degC and 600degC was observed for irradiated Be annealed at temperatures of 700degC and higher. This reactivity enhancement could be accounted for by the increased specific surface area resulting from development of a surface-connected porosity in the irradiated-annealed Be. (author)

  13. Heat treatment of scallop adductor muscle using superheated steam.

    Science.gov (United States)

    Abe, T; Miyashita, K

    2007-08-01

    Scallop (Patinopecten yessoensis) adductor muscles were heated using superheated steam (150 and 200 degrees C), boiling (98 degrees C), and normal steaming (95 degrees C). The amounts of amino acids, water-soluble peptides, and nucleotides, expressed as extractive nitrogen in scallop products, are very important elements of quality and taste. After 15-min heating of scallop muscles with normal steaming and boiling, respective losses of 50% and 64% of the extractive nitrogen were observed. However, most extractive nitrogen (> 86%) remained in the scallop muscles treated with superheated steam at 150 and 200 degrees C. Protective effects of superheated steam against elution loss of nitrogen compounds were also observed in amino acid analyses of the heated products. The scallop-muscle surface temperature during treatment with superheated steam increased more quickly than that with normal steaming and boiling. The rapid water loss and the surface protein denaturation engendered formation of a 30-mum-thick film covering the surface, which prevented extractive nitrogen loss from internal tissues. Superheated steam treatment at 200 degrees C caused browning, surface shrinkage, and 47% weight loss. In marked contrast, the appearance and the weight loss of sample treated at 150 degrees C were almost the same as those of normal steaming and boiling-treated samples. These results suggested that superheated steaming at 150 degrees C is an optimal heat treatment of scallop adductor muscles.

  14. SOLAR WATER DESALINATION SYSTEM WITH CONDENSER WITHOUT USING ELECTRICITY FOR RURAL AREAS

    Directory of Open Access Journals (Sweden)

    Abhijeet Auti

    2013-01-01

    Full Text Available Domestic desalination is a process in which salt water is heated and converted to steam by using parabolic solar concentrator. Solar radiations incident on concentrator are focused at the absorber which contains salt water. The steam is then condensed by the condenser which is designed on the basis of the thermal analysis. Condenser is a basically a water tank with copper tubes immersed in it. The steam flows through the tubes and heat exchange takes place between steam and tank water which absorbs the heat from the steam by converting it to purified water. No electricity is used for the condensation and the equipment is suitable for a small family, having no or limited access to electricity.

  15. Internal steam reforming in solid oxide fuel cells: Status and opportunities of kinetic studies and their impact on modelling

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, J.-D.; Hendriksen, Peter Vang;

    2011-01-01

    Solid oxide fuel cells (SOFC) systems with internal steam reforming have the potential to become an economically competitive technology for cogeneration power plants, exploiting its significantly higher electrical efficiency compared to existing technologies. Optimal design and operation of such ......Solid oxide fuel cells (SOFC) systems with internal steam reforming have the potential to become an economically competitive technology for cogeneration power plants, exploiting its significantly higher electrical efficiency compared to existing technologies. Optimal design and operation...... in operating conditions, catalyst support material and structure it is critical to transfer this knowledge directly to internal reforming in SOFCs, which is discussed in further detail in this article. There are big differences in the reported kinetic expression for steam reforming over both industrial Ni...... catalysts and SOFC anode materials. Surprisingly, there is a good agreement between measured rates pr. geometric anode area at high operating temperatures, even for very different anodes. Detailed experimental data on the intrinsic steam reforming kinetics of Ni-YSZ are necessary for micro structure SOFC...

  16. LMFBR steam generators in the United Kingdom

    International Nuclear Information System (INIS)

    Experience has been gained in the UK on the operation of LMFBR Steam Generator Units (SGU) over a period of 20 years from the Dounreay Fast Reactor (DFR) and the Prototype Fast Reactor (PFR). The DFR steam generator featured a double barrier and therefore did not represent a commercial design. PFR, however, faced the challenge of a single wall design and it is experience from this which is most valuable. The PFR reactor went critical in March 1974 and the plant operating history since then has been dominated by experience with leaks in the tube to tube plate welds of the high performance U-tubes SGU's. Operation at high power using the full complement of three secondary sodium circuits was delayed until July 1976 by the occurrence of leaks in the tube to tube plate welds of the superheater and reheater units which are fabricated in stainless steel. Repairs were carried out to the two superheaters and they were returned to service. The reheater tube bundle was removed from circuit after sodium was found to have entered the steam side. When the sodium had been removed and inspection carried out it was decided not to recover the unit. Since 1976 the remaining five stainless steel units have operated satisfactorily. This year a replacement reheater unit has been installed. This is of a new design in 9-Cr-Mo ferritic steel using a sleeve through which the steam tube passes to eliminate the tube to tube plate weld. Despite a few early leaks in evaporator tube to tube plate welds up to 1979, these failures did not initially present a major problem. However, in 1980 the rate of evaporator weld failures increased and despite the successful application of a shot peening process to eliminate stress corrosion failures from the water side of the weld, failures traced to the sodium side continued. A sleeving process was developed for application to complete evaporator units on a production basis with the objective of bypassing the welds at each end of the 500 tubes. The decision

  17. Deliberate ignition of hydrogen-air-steam mixtures under conditions of rapidly condensing steam

    International Nuclear Information System (INIS)

    A series of experiments was conducted to determine hydrogen combustion behavior under conditions of rapidly condensing steam caused by water sprays. Experiments were conducted in the Surtsey facility under conditions that were nearly prototypical of those that would be expected in a severe accident in the CE System 80+ containment. Mixtures were initially nonflammable owing to dilution by steam. The mixtures were ignited by thermal glow plugs when they became flammable after sufficient steam was removed by condensation caused by water sprays. No detonations or accelerated flame propagation was observed in the Surtsey facility. The combustion mode observed for prototypical mixtures was characterized by multiple deflagrations with relatively small pressure rises. The thermal glow plugs were effective in burning hydrogen safely by igniting the gases as the mixtures became marginally flammable

  18. Condensation of the steam in the horizontal steam line during cold water flooding

    International Nuclear Information System (INIS)

    Direct contact condensation and condensation induced water-hammer in a horizontal pipe was experimentally investigated at PMK-2 test facility of the Hungarian Atomic Energy Research Institute KFKI. The experiment is preformed in the horizontal section of the steam line of the PMK-2 integral test facility. As liquid water floods the horizontal part of the pipeline, the counter current horizontally stratified flow is being observed. During the flooding of the steam line, the vapour-liquid interface area increases and therefore the vapour condensation rate and the vapour velocity also increase. Similar phenomena can occur in the cold/hot leg of the primary loop of PWR nuclear power plant during loss of coolant accident, when emergency core cooling system is activated. Water level at one cross-section and four local void fraction and temperature at the top of steam line was measured and compared with simulation. Condensed steam increases the water temperature that is why the local temperature measurements are the most important information, from which condensation rate can be estimated, since mass of condensed steam was not measured. Free surface simulation of the experiment with thermal phase change model is presented. Surface renewal concept with small eddies is used for calculation of heat transfer coefficient. With surface renewal theory we did not get results similar to experiment, that is why heat transfer coefficient was increased by factor 20. In simulation with heat transfer coefficient calculated with surface renewal concept bubble entrapment is due to reflection of the wave from the end of the pipe. When heat transfer coefficient is increased, condensation rate and steam velocity are also increased, bubble entrapment is due to Kelvin-Helmholtz instability of the free surface, and the results become similar to the measurements. (author)

  19. Numerical investigation of mass transfer in the flow path of the experimental model of the PGV-1500 steam generator's steam receiving section with two steam nozzles

    Science.gov (United States)

    Golibrodo, L. A.; Krutikov, A. A.; Nadinskii, Yu. N.; Nikolaeva, A. V.; Skibin, A. P.; Sotskov, V. V.

    2014-10-01

    The hydrodynamics of working medium in the steam volume model implemented in the experimental setup constructed at the Leipunskii Institute for Physics and Power Engineering was simulated for verifying the procedure of calculating the velocity field in the steam space of steam generators used as part of the reactor plants constructed on the basis of water-cooled water-moderated power-generating reactors (VVER). The numerical calculation was implemented in the environment of the STAR-CCM+ software system with its cross verification in the STAR-CD and ANSYS CFX software systems. The performed numerical investigation served as a basis for substantiating the selection of the computation code and parameters for constructing the computer model of the steam receiving device of the PGV-1500 steam generator experimental model, such as the quantization scheme, turbulence model, and mesh model.

  20. A Novel Method for Measuring the Coarse Water Droplets in Wet Steam Flow in Steam Turbines

    Institute of Scientific and Technical Information of China (English)

    Xiaoshu Cai; Lili Wang; Yongzhi Pan; Xin Ouyan; Jianqi Shen

    2001-01-01

    Some optical probes based on light extinction have been developed to measure wemess dominated with fine droplets in steam turbine. However, coarse water droplets (hereafter referred to as CWD) that are the main cause of erosion of blade and of wetness loss of steam turbine can't be detected by the extinction probes because of its large size. In this paper, a new method - the light fluctuation method is presented that is capable of measuring the size of CWD. A new probe based on this method was developed for measuring the size of CWD as well as its velocity and concentration.

  1. Condensation-Induced Steam Bubble Collapse in a Pipeline

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Steam bubbles often occur in pipelines due to the pipeline structure or operational errors. The water hammer force induced by the steam bubble collapse is a hidden safety concern. This paper experimentally and numerically investigates the conditions for steam bubble formation and collapse. A series of video pictures taken in the laboratory show that steam bubbles form and collapse over several cycles. The pressure history of the steam bubbles is measured in conjunction with the pictures. In the experiment, the liquid column cavitated at the low pressures and then the cavities collapsed due to condensation causing high pressure pulses. The process was also simulated numerically. The results suggest that coolant pipeline design and operation must include procedures to avoid steam bubble formation.

  2. Thermoelastic steam turbine rotor control based on neural network

    Science.gov (United States)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  3. Advancing CANDU experience to the world steam generator market

    International Nuclear Information System (INIS)

    Tube degradation in certain recirculating nuclear steam generators has provided a market for steam generator replacement. Prior to this need, B and W supplied over 200 steam generators for CANDU nuclear plants. With this experience, and implementing extensive research and development improvements in material selection, design enhancements, and new manufacturing and analytical methods, B and W has supplied or secured orders for the replacement of 26 steam generators. Along with plans for new replacement orders, B and W will continue to supply steam generators for future CANDU plants. This paper will review the progression of B and W's CANDU experience to meet the replacement steam generator market, and examine the continuous improvements required for today's increasingly demanding nuclear specifications. (author). 1 tab., 4 figs

  4. 49 CFR 230.65 - Steam blocking view of engine crew.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Leaks § 230.65 Steam blocking view of engine crew. The steam locomotive owner and/or... 49 Transportation 4 2010-10-01 2010-10-01 false Steam blocking view of engine crew. 230.65...

  5. 49 CFR 230.20 - Alteration and repair report for steam locomotive boilers.

    Science.gov (United States)

    2010-10-01

    ... boilers. (a) Alterations. When an alteration is made to a steam locomotive boiler, the steam locomotive... steam locomotive boiler, the steam locomotive owner and/or operator shall file with the FRA Regional... the boiler. Whenever welded or riveted repairs are performed on stayed portions of a steam...

  6. Design of Steam Gathering System for Menengai Geothermal Field, Kenya

    OpenAIRE

    Onyango, Stephen Odhiambo, 1980-

    2015-01-01

    Utilizing high temperature geothermal resources for power generation requires design of steam gathering system to transport geothermal fluids. The aim of this project is develop a model that can be used to optimize the steam gathering and the re-injection systems in Menengai geothermal field. The objective function includes the capital investment and the operational cost. The constraints are the steam and water velocity and the upward slope of the two phase flow pipelines. To test the model, ...

  7. AUTOMATIC CONTROL SYSTEM OF THE DRUM BOILER SUPERHEATED STEAM TEMPERATURE.

    Directory of Open Access Journals (Sweden)

    Juravliov A.A.

    2006-04-01

    Full Text Available The control system of the temperature of the superheated steam of the drum boiler is examined. Main features of the system are the PI-controller in the external control loop and introduction of the functional component of the error signal of the external control loop with the negative feedback of the error signal between the prescribed value of steam flowrate and the signal of the steam flowrate in the exit of the boiler in the internal control loop.

  8. Condensation pool experiments with steam using DN200 blowdown pipe

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M. [Lappeenranta Univ. of Technology (Finland)

    2005-08-01

    This report summarizes the results of the condensation pool experiments with steam using a DN200 blowdown pipe. Altogether five experiment series, each consisting of several steam blows, were carried out in December 2004 with a scaled-down test facility designed and constructed at Lappeenranta University of Technology. The main purpose of the experiments was to increase the understanding of different phenomena in the condensation pool during steam discharge. (au)

  9. Direct steam generation in line-focus solar collectors

    Science.gov (United States)

    May, E. K.; Murphy, L. M.

    1983-01-01

    The performance benefits of the direct (in situ) generation of steam in the receiver tube of a line focus solar collector were assessed. Compared to existing technology using steam flash or unfired boiler systems, the in situ technique could produce 25% more steam at a reduced delivery cost. It is indicated that two phase flow instabilities, if present, can be readily controlled, and that the possibility of freezing is not an impediment to using water in cold climates.

  10. Selection of the design basis leak for LMFBR steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, R A; Pfefferlen, H C; Roberts, J M; Sane, J O

    1977-11-01

    Steam generator tube failure mechanisms that have been observed in experiments or that have been postulated are discussed. The DBL for CRBRP and a proposed DBL for future large LMFBR steam generators are described. Safety considerations and philosophy in selection of Design Basis Leaks (DBL) are presented. A discussion of the Large Leak Test Rig (LLTR) Series II program support of the DBL selection for future large LMFBR steam generators is included.

  11. IFCI simulation of steam explosion loads for reactor cases

    International Nuclear Information System (INIS)

    SERENA(Steam Explosion REsolution for Nuclear Application) program runned by OECD is an international concerted program on Fuel Coolant Interaction. To resolve the still unsolved issue of calculating the steam explosion load is one purpose of the program. For this each participant to the program is supposed to calculate the in-and ex-vessel steam explosion loads for the assumed reactor conditions. The present paper summarizes the simulation results obtained using IFCI (Integrated Fuel Coolant Interaction) code

  12. Review of the Characteristics of Steam Plume Jet in Water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Sik; Choi, Ki Yong; Song, Chul Hwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    When steam is introduced into the pool of water by means of a pipe, DCC of steam in water occurs. In general, DCC consists of four different regions. The first region in the process of condensation is the steam plume. This region occurs at the steam pipe (or nozzle) exit through which the steam is introduced into the pool of water. The outer surface of the steam plume is the steam-water interface. The hot water layer is also named bulk water. And the pool water us a single-phase area of water at certain temperature. When the steam jet is condensed in a pool, the plume modes due to DCC can be classified into three main patters: chugging: jetting: and bubbling. These modes can be shown in condensation regime map. In the view point of the engineering, the pool mixing analysis related to DCC is also very important. In this paper, the characteristics of the steam plume jet in water will be reviewed more detail in the following sections

  13. COMPUTATIONAL FLUID DYNAMIC ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE

    Directory of Open Access Journals (Sweden)

    C RAJESH BABU

    2013-05-01

    Full Text Available a steam prime mover with rotary motion of the driving element, or rotor, and continuous operation. It converts the thermal energy of steam into mechanical work. The steam flow proceeds through directing devices and impinges on curved blades mounted along the periphery of the rotor. By exerting a force on the blades, the steam flow causes the rotor to rotate. Unlike the reciprocating steam engine, the steam turbine makes use of the kinetic rather than the potential energy of steam. The performance of the turbine depends on the efficientconversion of steam enthalpy into mechanical power with minimum flow losses. In order to reduce the leakage loss hub/shroud sealing between the stages is considered. The hub/shroud sealing improves the performance of the turbine and higher power is generated from the stages. To simulate the hub/shroud sealing, blades & seals are modelled and meshed separately. The bladed region and hub/shroud seal region are attached by General Grid Interface. The flow domain and mesh generation for seal area needs to be accurate to get the correct interface with blades. The analysis is carried out for seven stages of a typical multistage Intermediate Pressure turbine in which steam parameters and blade height are medium.

  14. Steam generator operating experience update, 1982-1983

    International Nuclear Information System (INIS)

    This report is a continuation of earlier reports by the staff addressing pressurized water reactor steam generator operating experience. NUREG-0886, Steam Generator Tube Experience, published in February 1982 summarized experience in domestic and foreign plants through December 1981. This report summarizes steam generator operating experience in domestic plants for the years 1982 and 1983. Included are new problems encountered with secondary-side loose parts, sulfur-induced stress-assisted corrosion cracking, and flow-induced vibrational wear in the new preheater design steam generators. The status of Unresolved Safety Issues A3, A4, and A5 is also discussed

  15. Status of steam generator tubing integrity at Jaslovske Bohunice NPP

    Energy Technology Data Exchange (ETDEWEB)

    Cepcek, S. [Nuclear Regulatory Authority of the Slovak Republic, Trnava (Slovakia)

    1997-02-01

    Steam generator represents one of the most important component of nuclear power plants. Especially, loss of tubing integrity of steam generators can lead to the primary coolant leak to secondary circuit and in worse cases to the unit shut down or to the PTS events occurrence. Therefore, to ensure the steam generator tubing integrity and the current knowledge about tube degradation propagation and development is of the highest importance. In this paper the present status of steam generator tubing integrity in operated NPP in Slovak Republic is presented.

  16. Optimal operations and resilient investments in steam networks

    Directory of Open Access Journals (Sweden)

    Stephane Laurent Bungener

    2016-01-01

    Full Text Available Steam is a key energy vector for industrial sites, most commonly used for process heating and cooling, cogeneration of heat and mechanical power, as a motive fluid or for stripping. Steam networks are used to carry steam from producers to consumers and between pressure levels through letdowns and steam turbines. The steam producers (boilers, heat and power cogeneration units, heat exchangers, chemical reactors should be sized to supply the consumers at nominal operating conditions as well as peak demand.This paper firstly proposes an Mixed Integer Linear Programming formulation to optimise the operations of steam networks in normal operating conditions and exceptional demand (when operating reserves fall to zero, through the introduction of load shedding. Optimisation of investments based on operational and investment costs are included in the formulation.Though rare, boiler failures can have a heavy impact of steam network operations and costs, leading to undercapacity and unit shutdowns. A method is therefore proposed to simulate steam network operations when facing boiler failures. Key performance indicators are introduced to quantify the network's resilience.The proposed methods are applied and demonstrated in an industrial case study using industrial data. The results indicate the importance of oversizing key steam producing equipments and the value of industrial symbiosis to increase industrial site resilience.

  17. Improvement of steam temperature control in supercritical once thru boilers

    OpenAIRE

    黒石, 卓司; 藤川, 卓爾

    2009-01-01

     New steam temperature control logic for supercritical once thru boilers was developed from the view point of simplicity similar to that of the conventional sub-critical drum type boilers. Water wall outlet steam temperature can be controlled more easily due to larger specific heat capacity of steam than super heater outlet steam temperature. By dividing temperature control into two parts, one at water wall outlet by fuel flow and the other at SH(super heater) outlet by SH spray flow, boiler ...

  18. Power enhancement of the Brayton cycle by steam utilization

    Science.gov (United States)

    Jesionek, Krzysztof; Chrzczonowski, Andrzej; Ziółkowski, Paweł; Badur, Janusz

    2012-09-01

    The paper presents thermodynamic analysis of the gas-steam unit of the 65 MWe combined heat and power station. Numerical analyses of the station was performed for the nominal operation conditions determining the Brayton and combined cycle. Furthermore, steam utilization for the gas turbine propulsion in the Cheng cycle was analysed. In the considered modernization, steam generated in the heat recovery steam generator unit is directed into the gas turbine combustion chamber, resulting in the Brayton cycle power increase. Computational flow mechanics codes were used in the analysis of the thermodynamic and operational parameters of the unit.

  19. Solar process steam for a pharmaceutical company in Jordan

    Science.gov (United States)

    Berger, M.; Mokhtar, M.; Zahler, C.; Al-Najami, M. M. R.; Krüger, D.; Hennecke, K.

    2016-05-01

    This paper presents details of the recent installation of a linear Fresnel collector to provide saturated steam for process heat usage through Direct Steam Generation (DSG) for industrial use in the Jordanian pharmaceuticals manufacturing company RAM Pharma, where first solar steam has been provided in March 2015. This commercial DSG project also represents the first solar DSG plant in MENA. During sunshine, the system achieves a solar fraction of 100 %, and the conventional steam boiler is not needed. In the evening the fossil fired backup takes over automatically and replaces the solar collector in operation. Operational experience, details of the control strategy, and measurement data are presented in the paper.

  20. Hideout in steam generator tube deposits

    International Nuclear Information System (INIS)

    Hideout in deposits on steam generator tubes was studied using tubes coated with magnetite. Hideout from sodium chloride solutions at 279 degrees C was followed using an on-line high-temperature conductivity probe, as well as by chemical analysis of solution samples from the autoclave in which the studies were done. Significant hideout was observed only at a heat flux greater than 200 kW/m2, corresponding to a temperature drop greater than 2 degrees C across the deposits. The concentration factor resulting from the hideout increased highly non-linearly with the heat flux (varying as high as the fourth power of the heat flux). The decrease in the apparent concentration factor with increasing deposit thickness suggested that the pores in the deposit were occupied by a mixture of steam and water, which is consistent with the conclusion from the thermal conductivity measurements on deposits in a separate study. Analyses of the deposits after the hideout tests showed no evidence of any hidden-out solute species, probably due to the concentrations being very near the detection limits and to their escape from the deposit as the tests were being ended. This study showed that hideout in deposits may concentrate solutes in the steam generator bulk water by a factor as high as 2 x 103. Corrosion was evident under the deposit in some tests, with some chromium enrichment on the surface of the tube. Chromium enrichment usually indicates an acidic environment, but the mobility required of chromium to become incorporated into the thick magnetite deposit may indicate corrosion under an alkaline environment. An alkaline environment could result from preferential accumulation of sodium in the solution in the deposit during the hideout process. (author)