WorldWideScience

Sample records for brugia

  1. Brugia timori INFECTION IN LEKEBAI, FLORES: clinical aspects

    Directory of Open Access Journals (Sweden)

    Arbain Joesoef

    2012-09-01

    Full Text Available Pengamatan filariasis pada penduduk Nualolo-Lekebai, Pulau Flores telah dilakukan pada bulan Februari 1975. Kampung Nualolo-Lekebai berpenduduk 680 jiwa, pekerjaan bertani dan menganut agama Nasrani. Kebiasaan hidup di antara penduduk di daerah ini adalah menyerahkan pelaksanaan pekerjaan berat pada kaum wanita, baik di rumah ataupun di kebun. Dalam perjalanan jauh baik ke kebun atau ke pasar, kaum wanitanya selalu berjalan kaki sedangkan kaum prianya menunggang kuda. Sejumlah 80% dari penduduk kampung ini telah diperiksa terhadap infeksi parasit filaria dan terhadap gejala filariasis. Dari hasil yang ditemukan ternyata penduduk kampung ini menderita infeksi Brugia timori dengan angka derajat infeksi sebesar 7.0% dan angka derajat elephantiasis sebesar 10.3%. Hal yang menarik yang ditemukan dalam pengamatan ini adalah tingginya angka derajat elephantiasis pada kaum wanita dibandingkan dengan pada kaum pria. Fenomena ini mungkin disebabkan oleh kebiasaan hidup kaum wanita di daerah ini sehari-hari yang bekerja lebih berat dan berjalan kaki lebih sering dan lebih jauh dibandingkan kaum prianya.

  2. Maternal influence on susceptibility of offspring to Brugia malayi infection in a murine model of filariasis.

    Science.gov (United States)

    Rajan, T V; Bailis, J M; Yates, J A; Shultz, L D; Greiner, D L; Nelson, F K

    1994-12-01

    We have used the severe combined immunodeficient C.B-17-scid/scid mouse to investigate the influences of maternal immune status and parasite burden on the susceptibility (or resistance) of offspring to infection with the human filarial parasite, Brugia malayi. C.B-17-scid/scid mice are permissive for infection while immunocompetent C.B-17(-)+/+ mice are uniformly resistant. Reciprocal matings of C.B-17-scid/scid and C.B-17(-)+/+ mice were performed. The C.B-17-scid/scid females were either naive or infected with Brugia malayi. The resulting immunocompetent C.B-17-scid/+ and C.B-17(-)+/scid progeny were challenged at weaning with an intraperitoneal injection of Brugia malayi third stage larvae known to produce patent infection in > 95% of C.B-17-scid/scid mice. We observed that 40.0%l (34/85) of the immunocompetent offspring of C.B-17-scid/scid females x C.B-17(-)+/+ males were permissive for the growth and development of Brugia malayi larvae to adults. No difference was observed in susceptibility to infection between the progeny of infected or uninfected C.B-17-scid/scid mothers mated with C.B-17(-)+/+ fathers, arguing against acquired immunological tolerance to the parasite in the former. In marked contrast, only 4.8% (2/42) of the heterozygous progeny of wild type C.B-17(-)+/+ females mated with C.B-17-scid/scid males were permissive. These observations document conversion of a 'resistant' phenotype to a 'susceptible' phenotype by manipulation of maternal immune status and provide clear evidence of maternal influence on offspring susceptibility to infection with Brugia malayi.

  3. Detection of a new focus of Brugia malayi infection in Orissa.

    Science.gov (United States)

    Rath, R N; Mohapatra, B N; Das, B

    1989-03-01

    526 people were surveyed in a village called Chudamani, in Balasore district of Orissa, for detection of asymptomatic microfilaria (mf) carriers. Of these 36 (6.8 per cent) were cases found to harbour mf; 19 cases had Brugia malayi, 4 Wuchereria bancrofti and 5 cases had mixed infection. In 8 cases, species could not be ascertained. For the first time after 1955, a focus of B. malayi has been detected in Orissa.

  4. The solution structure of the forkhead box-O DNA binding domain of Brugia malayi DAF-16a.

    Science.gov (United States)

    Casper, Sarah K; Schoeller, Scott J; Zgoba, Danielle M; Phillips, Andrew J; Morien, Thomas J; Chaffee, Gary R; Sackett, Peter C; Peterson, Francis C; Crossgrove, Kirsten; Veldkamp, Christopher T

    2014-12-01

    Brugia malayi is a parasitic nematode that causes lymphatic filariasis in humans. Here the solution structure of the forkhead DNA binding domain of Brugia malayi DAF-16a, a putative ortholog of Caenorhabditis elegans DAF-16, is reported. It is believed to be the first structure of a forkhead or winged helix domain from an invertebrate. C. elegans DAF-16 is involved in the insulin/IGF-I signaling pathway and helps control metabolism, longevity, and development. Conservation of sequence and structure with human FOXO proteins suggests that B. malayi DAF-16a is a member of the FOXO family of forkhead proteins. © 2014 Wiley Periodicals, Inc.

  5. Deteksi Brugia malayi pada Armigeres subalbatus dan Culex quinquefasciatusyang diinfeksikan darah penderita filariasis dengan metode PCR

    Directory of Open Access Journals (Sweden)

    Yahya Yahya

    2015-01-01

    Full Text Available Abstract. Pemayungdistricts, Batanghari regency of Jambi province classified as filariasis endemic areas in Jambi province since the Mf rate reached 1.5% in 2011. A study was conducted to identify Brugia malayi on experimentally infected Ar. subalbatus and Cx. quinquefasciatus. An experimental study was performed with completely randomized design and six repetitions. Standard of treatment in this study was time (hours that selected for mosquitoes to bite the patients with filariasis (experimental infection. Selected time is at 9.00 a.m, 5.00 p.m, 9.00 p.m, and at 1.00 a.m. The results showed that filarial L3 larvae did not found on Ar. subalbatus and Cx. quinquefasciatus mosquitoes during surgery at day 11th to 13th after infection. Density of microfilariae in the blood of humans as a source of infection was 17 microfilariae per 20 micro liter blood. Otherwise, after detection by PCR, our study found positive B.malayi on Cx. quinquefasciatus thorax and proboscis. It indicates that Cx. quinquefasciatusas potential vector of B.malayi filariasis compared to Ar. subalbatus. Keywords: PCR, filariasis, Armigeres subalbatus, Culex quinquefasciatus, Brugia malayi   Abstrak. Kecamatan Pemayung Kabupaten Batanghari Provinsi Jambi merupakan wilayah endemis filariasis di Provinsi Jambi Karena angka Mf rate mencapai 1,5% pada tahun 2011. Penelitian ini untuk mengetahui tingkat kerentanan nyamuk Ar. subalbatus dan Cx. quinquefasciatus terhadap infeksi B. malayi subperiodik nokturna yang dilakukan pada tahun 2013, sehingga dapat dianalisis potensi nyamuk tersebut sebagai vektor filariasis di lokasi penelitian. Desain penelitian adalah eksperimental dengan rancangan acak lengkap dan enam kali pengulangan. Variabel perlakuan dalam penelitian ini adalah waktu (jam yang dipilih untuk menggigitkan nyamuk pada penderita filariasis (infeksi percobaan. Waktu yang dipilih adalah pukul 09.00 WIB, pukul 17.00 WIB, pukul 21.00 WIB dan pukul 01.00 WIB. Hasil penelitian

  6. Effects of Doxycycline on gene expression in Wolbachia and Brugia malayi adult female worms in vivo

    Directory of Open Access Journals (Sweden)

    Rao Ramakrishna U

    2012-02-01

    Full Text Available Abstract Background Most filarial nematodes contain Wolbachia symbionts. The purpose of this study was to examine the effects of doxycycline on gene expression in Wolbachia and adult female Brugia malayi. Methods Brugia malayi infected gerbils were treated with doxycycline for 6-weeks. This treatment largely cleared Wolbachia and arrested worm reproduction. RNA recovered from treated and control female worms was labeled by random priming and hybridized to the Version 2- filarial microarray to obtain expression profiles. Results and discussion Results showed significant changes in expression for 200 Wolbachia (29% of Wolbachia genes with expression signals in untreated worms and 546 B. malayi array elements after treatment. These elements correspond to known genes and also to novel genes with unknown biological functions. Most differentially expressed Wolbachia genes were down-regulated after treatment (98.5%. In contrast, doxycycline had a mixed effect on B. malayi gene expression with many more genes being significantly up-regulated after treatment (85% of differentially expressed genes. Genes and processes involved in reproduction (gender-regulated genes, collagen, amino acid metabolism, ribosomal processes, and cytoskeleton were down-regulated after doxycycline while up-regulated genes and pathways suggest adaptations for survival in response to stress (energy metabolism, electron transport, anti-oxidants, nutrient transport, bacterial signaling pathways, and immune evasion. Conclusions Doxycycline reduced Wolbachia and significantly decreased bacterial gene expression. Wolbachia ribosomes are believed to be the primary biological target for doxycycline in filarial worms. B. malayi genes essential for reproduction, growth and development were also down-regulated; these changes are consistent with doxycycline effects on embryo development and reproduction. On the other hand, many B. malayi genes involved in energy production, electron

  7. Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types.

    Directory of Open Access Journals (Sweden)

    Elizabeth S Andrews

    Full Text Available Heterologous transinfection with the endosymbiotic bacterium Wolbachia has been shown previously to induce pathogen interference phenotypes in mosquito hosts. Here we examine an artificially infected strain of Aedes polynesiensis, the primary vector of Wuchereria bancrofti, which is the causative agent of Lymphatic filariasis (LF throughout much of the South Pacific. Embryonic microinjection was used to transfer the wAlbB infection from Aedes albopictus into an aposymbiotic strain of Ae. polynesiensis. The resulting strain (designated "MTB" experiences a stable artificial infection with high maternal inheritance. Reciprocal crosses of MTB with naturally infected wild-type Ae. polynesiensis demonstrate strong bidirectional incompatibility. Levels of reactive oxygen species (ROS in the MTB strain differ significantly relative to that of the wild-type, indicating an impaired ability to regulate oxidative stress. Following a challenge with Brugia pahangi, the number of filarial worms achieving the infective stage is significantly reduced in MTB as compared to the naturally infected and aposymbiotic strains. Survivorship of MTB differed significantly from that of the wild-type, with an interactive effect between survivorship and blood feeding. The results demonstrate a direct correlation between decreased ROS levels and decreased survival of adult female Aedes polynesiensis. The results are discussed in relation to the interaction of Wolbachia with ROS production and antioxidant expression, iron homeostasis and the insect immune system. We discuss the potential applied use of the MTB strain for impacting Ae. polynesiensis populations and strategies for reducing LF incidence in the South Pacific.

  8. Detection of human filarial parasite Brugia malayi in dogs by histochemical staining and molecular techniques.

    Science.gov (United States)

    Ambily, V R; Pillai, Usha Narayana; Arun, R; Pramod, S; Jayakumar, K M

    2011-09-27

    Human filariasis caused by Brugia malayi is still a public health problem in many countries of Asia including India, Indonesia, Malaysia and Thailand. The World Health Organization (WHO) has targeted to eliminate filariasis by the year 2020 by Mass annual single dose Diethylcarbamazine Administration (MDA). Results of the MDA programme after the first phase was less satisfactory than expected. Malayan filariasis caused by B. malayi is endemic in the south of Thailand where domestic cat serves as the major reservoir host. There is no report about the occurrence of B. malayi in dogs. The present work was carried out to find out the incidence of microfilariasis in dogs and also to detect the presence of human filarial infection in dogs, if any. One hundred dogs above 6 months of age presented to the veterinary college Hospital, Mannuthy, Kerala, with clinical signs suggestive of microfilariasis - fever, anorexia, conjunctivitis, limb and scrotal oedema - were screened for microfilariae by wet film examination. Positive cases were subjected to Giemsa staining, histochemical staining and molecular techniques. Results of the study showed that 80% of dogs had microfilariasis; out of which 20% had sheathed microfilaria. Giemsa and histochemical staining character, PCR and sequencing confirmed it as B. malayi. High prevalence of B. malayi in dogs in this study emphasized the possible role of dogs in transmission of human filariasis. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Defining Brugia malayi and Wolbachia symbiosis by stage-specific dual RNA-seq.

    Directory of Open Access Journals (Sweden)

    Alexandra Grote

    2017-03-01

    Full Text Available Filarial nematodes currently infect up to 54 million people worldwide, with millions more at risk for infection, representing the leading cause of disability in the developing world. Brugia malayi is one of the causative agents of lymphatic filariasis and remains the only human filarial parasite that can be maintained in small laboratory animals. Many filarial nematode species, including B. malayi, carry an obligate endosymbiont, the alpha-proteobacteria Wolbachia, which can be eliminated through antibiotic treatment. Elimination of the endosymbiont interferes with development, reproduction, and survival of the worms within the mamalian host, a clear indicator that the Wolbachia are crucial for survival of the parasite. Little is understood about the mechanism underlying this symbiosis.To better understand the molecular interplay between these two organisms we profiled the transcriptomes of B. malayi and Wolbachia by dual RNA-seq across the life cycle of the parasite. This helped identify functional pathways involved in this essential symbiotic relationship provided by the co-expression of nematode and bacterial genes. We have identified significant stage-specific and gender-specific differential expression in Wolbachia during the nematode's development. For example, during female worm development we find that Wolbachia upregulate genes involved in ATP production and purine biosynthesis, as well as genes involved in the oxidative stress response.This global transcriptional analysis has highlighted specific pathways to which both Wolbachia and B. malayi contribute concurrently over the life cycle of the parasite, paving the way for the development of novel intervention strategies.

  10. Brugia malayi microfilariae adhere to human vascular endothelial cells in a C3-dependent manner.

    Directory of Open Access Journals (Sweden)

    Jan-Hendrik Schroeder

    2017-05-01

    Full Text Available Brugia malayi causes the human tropical disease, lymphatic filariasis. Microfilariae (Mf of this nematode live in the bloodstream and are ingested by a feeding mosquito vector. Interestingly, in a remarkable co-evolutionary adaptation, Mf appearance in the peripheral blood follows a circadian periodicity and reaches a peak when the mosquito is most likely to feed. For the remaining hours, the majority of Mf sequester in the lung capillaries. This circadian phenomenon has been widely reported and is likely to maximise parasite fitness and optimise transmission potential. However, the mechanism of Mf sequestration in the lungs remains largely unresolved. In this study, we demonstrate that B. malayi Mf can, directly adhere to vascular endothelial cells under static conditions and under flow conditions, they can bind at high (but not low flow rates. High flow rates are more likely to be experienced diurnally. Furthermore, a non-periodic nematode adheres less efficiently to endothelial cells. Strikingly C3, the central component of complement, plays a crucial role in the adherence interaction. These novel results show that microfilariae have the ability to bind to endothelial cells, which may explain their sequestration in the lungs, and this binding is increased in the presence of inflammatory mediators.

  11. Inventory and analysis of ATP-binding cassette (ABC) systems in Brugia malayi.

    Science.gov (United States)

    Ardelli, B F; Stitt, L E; Tompkins, J B

    2010-07-01

    ABC systems are one of the largest described protein superfamilies. These systems have a domain organization that may contain 1 or more transmembrane domains (ABC_TM1F) and 1 or 2 ATP-binding domains (ABC_2). The functions (e.g., import, export and DNA repair) of these proteins distinguish the 3 classes of ABC systems. Mining and PCR-based cloning were used to identify 33 putative ABC systems from the Brugia malayi genome. There were 31 class 2 genes, commonly called ABC transporters, and 2 class 3 genes. The ABC transporters were divided into subfamilies. Three belonged to subfamily A, 16 to subfamily B, 5 to subfamily C, 1 to subfamily E and 3 to subfamilies F and G, respectively. None were placed in subfamilies D and H. Similar to other ABC systems, the ABC_2 domain of B. malayi genes was conserved and contained the Walker A and B motifs, the signature sequence/linker region and the switch region with the conserved histidine. The ABC_TM1F domain was less conserved. The relative abundance of ABC systems was quantified using real-time reverse transcription PCR and was significantly higher in female adults of B. malayi than in males and microfilaria, particularly those in subfamilies B and C, which are associated with drug resistance.

  12. Galactolipids from Bauhinia racemosa as a new class of antifilarial agents against human lymphatic filarial parasite, Brugia malayi.

    Science.gov (United States)

    Sashidhara, Koneni V; Singh, Suriya P; Misra, Sweta; Gupta, Jyoti; Misra-Bhattacharya, Shailja

    2012-04-01

    Bioassay guided fractionation of ethanolic extract of the leaves of Bauhinia racemosa led to the isolation of galactolipid and catechin class of the compounds (1-7) from the most active n-butanol fraction (F4). Among the active galactolipids, 1 emerged as the lead molecule which was active on both forms of lymphatic filarial parasite, Brugia malayi. It was found to be better than the standard drug ivermectin and diethylcarbamazine (DEC) in terms of dose and efficacy. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Live Brugia malayi microfilariae inhibit transendothelial migration of neutrophils and monocytes.

    Directory of Open Access Journals (Sweden)

    Jan-Hendrik Schroeder

    Full Text Available Lymphatic filariasis is a major tropical disease caused by the parasite Brugia malayi. Microfilariae (Mf circulate in the peripheral blood for 2-3 hours in synchronisation with maximal feeding of the mosquito vector. When absent from the peripheral blood, Mf sequester in the capillaries of the lungs. Mf are therefore in close contact with vascular endothelial cells (EC and may induce EC immune function and/or wound repair mechanisms such as angiogenesis. In this study, Mf were co-cultured with human umbilical vein EC (HUVEC or human lung microvascular EC (HLMVEC and the transendothelial migration of leukocyte subsets was analysed. In addition, the protein and/or mRNA expression of chemokine, cytokine and angiogenic mediators in endothelial cells in the presence of live microfilariae were measured by a combination of cDNA arrays, protein arrays, ELISA and fluorescence antibody tests.Surprisingly, our findings indicate that Mf presence partially blocked transendothelial migration of monocytes and neutrophils, but not lymphocytes. However, Mf exposure did not result in altered vascular EC expression of key mediators of the tethering stage of extravasation, such as ICAM-1, VCAM-1 and various chemokines. To further analyse the immunological function of vascular EC in the presence of Mf, we measured the mRNA and/or protein expression of a number of pro-inflammatory mediators. We found that expression levels of the mediators tested were predominantly unaltered upon B. malayi Mf exposure. In addition, a comparison of angiogenic mediators induced by intact Mf and Wolbachia-depleted Mf revealed that even intact Mf induce the expression of remarkably few angiogenic mediators in vascular EC. Our study suggests that live microfilariae are remarkably inert in their induction and/or activation of vascular cells in their immediate local environment. Overall, this work presents important insights into the immunological function of the vascular endothelium during

  14. Profiling the macrofilaricidal effects of flubendazole on adult female Brugia malayi using RNAseq

    Directory of Open Access Journals (Sweden)

    Maeghan O'Neill

    2016-12-01

    Full Text Available The use of microfilaricidal drugs for the control of onchocerciasis and lymphatic filariasis (LF necessitates prolonged yearly dosing. Prospects for elimination or eradication of these diseases would be enhanced by the availability of a macrofilaricidal drug. Flubendazole (FLBZ, a benzimidazole anthelmintic, is an appealing candidate. FLBZ has demonstrated potent macrofilaricidal effects in a number of experimental rodent models and in one human trial. Unfortunately, FLBZ was deemed unsatisfactory for use in mass drug administration campaigns due to its limited oral bioavailability. A new formulation that enables sufficient bioavailability following oral administration could render FLBZ an effective treatment for onchocerciasis and LF. Identification of drug-derived effects is important in ascertaining a dosage regimen which is predicted to be lethal to the parasite in situ. In previous histological studies, exposure to FLBZ induced damage to tissues required for reproduction and survival at pharmacologically relevant concentrations. However, more precise and quantitative indices of drug effects are needed. This study assessed drug effects using a transcriptomic approach to confirm effects observed histologically and to identify genes which were differentially expressed in treated adult female Brugia malayi. Comparative analysis across different concentrations (1 μM and 5 μM and durations (48 and 120 h provided an overview of the processes which are affected by FLBZ exposure. Genes with dysregulated expression were consistent with the reproductive effects observed via histology in our previous studies. This study revealed transcriptional changes in genes involved in embryo development. Additionally, significant downregulation was observed in genes encoding cuticle components, which may reflect changes in developing embryos, the adult worm cuticle or both. These data support the hypothesis that FLBZ acts predominantly on rapidly dividing

  15. Production of Brugia malayi BmSXP Recombinant Protein Expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Khoo, T. K.

    2010-01-01

    Full Text Available A rapid antibody detection test is very useful for detection of lymphatic filariasis, especially for certification and surveillance of post-mass drug administration. One such kit, panLF RapidTM (commercialized by Malaysian BioDiagnostic Research Sdn. Bhd. had been developed in our laboratory for the detection of all species of filarial infections. It is based on the detection of anti-filarial IgG4 antibodies that react with recombinant Brugia malayi antigens, BmR1 and BmSXP. In this study, the growth of recombinant bacteria that produce BmSXP was optimized under shake flask fermentation for high yield of the recombinant antigen. The optimizations involved selection of suitable growth medium, IPTG concentration and induction time. The medium that yielded the highest biomass as well as total protein was Terrific Broth (TB medium, which is an undefined medium. Initiation of induction of protein expression was found to be best at mid-log phase (OD600 = 1.5, with IPTG concentration of 1.0 mM, and harvest time at 9 h post-induction. This study showed that under the optimized conditions, the shake flask culture produced 4 g/L biomass (dry cell weight of recombinant Escherichia coli BmSXP/pPROEXHTa/TOP10F’, which yielded 2.42 mg/L of purified BmSXP recombinant antigen. The purified antigen was analyzed by SDS-PAGE and the antigenicity of protein was confirmed by Western blot.

  16. Macrofilaricidal and microfilaricidal effects of Neurolaena lobata, a Guatemalan medicinal plant, on Brugia pahangi.

    Science.gov (United States)

    Fujimaki, Y; Kamachi, T; Yanagi, T; Cáceres, A; Maki, J; Aoki, Y

    2005-03-01

    Twelve extracts of 11 Guatemalan medicinal plants were initially screened in vitro for potential macrofilaricidal activity against Brugia pahangi, a lymphatic dwelling filarial worm, using concentrations from 125 to 1000 microg ml(-1) of each extract that could be dissolved in the culture medium. Of 12 extracts used, the ethanol extract of leaves of Neurolaena lobata showed the strongest activity against the motility of adult worms. Subsequently, the extract of N. lobata was extensively examined in vitro for macro- and micro-filaricidal effects using a series of concentrations of 500, 250, 100, 50 and 10 microg ml(-1). The effects were assessed by worm motility, microfilarial release by female worms and a MTT assay. The effect on the motility of adult worms was observed in a concentration- and time-dependent manner. The time required to stop motility of both sexes of adult worms was 6 h at 500 microg ml(-1), 24 h at 250 microg ml(-1), and 3 days for females and 4 days for males at 100 microg ml(-1). The movement of females ceased at 4 days at a concentration of 50 microg ml(-1) whereas the motility of males was only reduced. The loss of worm's viability was confirmed by the MTT assay and was similar to the motility results. These concentrations, including 10 microg ml(-1), prevented microfilarial release by females in a concentration- and time-dependent manner. Concentrations higher than 100 microg ml(-1) even induced mortality of the microfilariae. The present study suggested that the ethanol extract of Neurolaena lobata has potential macro- and micro-filaricidal activities.

  17. Mining predicted essential genes of Brugia malayi for nematode drug targets.

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar

    Full Text Available We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.

  18. Stage- and gender-specific proteomic analysis of Brugia malayi excretory-secretory products.

    Directory of Open Access Journals (Sweden)

    Yovany Moreno

    Full Text Available INTRODUCTION: While we lack a complete understanding of the molecular mechanisms by which parasites establish and achieve protection from host immune responses, it is accepted that many of these processes are mediated by products, primarily proteins, released from the parasite. Parasitic nematodes occur in different life stages and anatomical compartments within the host. Little is known about the composition and variability of products released at different developmental stages and their contribution to parasite survival and progression of the infection. METHODOLOGY/PRINCIPAL FINDINGS: To gain a deeper understanding on these aspects, we collected and analyzed through 1D-SDS PAGE and LC-MS/MS the Excretory-Secretory Products (ESP of adult female, adult male and microfilariae of the filarial nematode Brugia malayi, one of the etiological agents of human lymphatic filariasis. This proteomic analysis led to the identification of 228 proteins. The list includes 76 proteins with unknown function as well as also proteins with potential immunoregulatory properties, such as protease inhibitors, cytokine homologues and carbohydrate-binding proteins. Larval and adult ESP differed in composition. Only 32 proteins were shared between all three stages/genders. Consistent with this observation, different gene ontology profiles were associated with the different ESP. CONCLUSIONS/SIGNIFICANCE: A comparative analysis of the proteins released in vitro by different forms of a parasitic nematode dwelling in the same host is presented. The catalog of secreted proteins reflects different stage- and gender-specific related processes and different strategies of immune evasion, providing valuable insights on the contribution of each form of the parasite for establishing the host-parasite interaction.

  19. Comparison of an enzyme linked immunosorbent assay (ELISA) and a radioallergosorbent test (RAST) for detection of IgE antibodies to Brugia malayi

    NARCIS (Netherlands)

    Wahyuni, Sitti; van Ree, Ronald; Mangali, Andarias; Supali, Taniawati; Yazdanbakhsh, Maria; Sartono, Erliyani

    2003-01-01

    The enzyme linked immunosorbent assay (ELISA) for specific IgE antibodies to Brugia malayi was compared with the radioallergosorbent test (RAST) for use in immunoepidemiological studies of lymphatic filariasis. Sera used were from individuals (aged 5-82 years) living in an area endemic for lymphatic

  20. Poly(d,l)-lactide-co-glycolide (PLGA) microspheres as immunoadjuvant for Brugia malayi antigens.

    Science.gov (United States)

    Saini, Vinay; Verma, Shiv Kumar; Murthy, P Kalpana; Kohli, Dharmveer

    2013-08-28

    Recently we identified in Brugia malayi adult worm extract (BmA) a pro-inflammatory 54-68kDa SDS-PAGE resolved fraction F6 that protects the host from the parasite via Th1/Th2 type responses. We are currently investigating F6 as a potential source of vaccine candidate(s) and the present study is aimed at investigating the suitability of poly(d,l)-lactide-co-glycolide microspheres (PLGA-Ms) as immunoadjuvant for the antigen administration in a single dose. PLGA-Ms were prepared aseptically by a modified double emulsion (w/o/w) solvent evaporation technique and their size, shape, antigen adsorption efficiency, in-process stability, and antigen release were characterized. Swiss mice were immunized by a single subcutaneous administration of BmA and F6 adsorbed on PLGA-Ms (lactide:glycolide ratios 50:50 and 75:25) and the immune responses were compared with administration of 1 or 2 doses of plain BmA and F6. Specific IgG, IgG1, IgG2a, IgG2b, IgE levels in serum, cellular-proliferative response and release of IFN-γ, TNF-α and nitric oxide from the cells of immunized host in response to the antigens/LPS/Con A challenge and antibody-dependant cellular cytotoxicity (ADCC) to parasite life stages were determined. The average size of PLGA-Ms 50:50 was smaller than the size of PLGA-Ms 75:25 and the % antigen adsorption efficiency of PLGA-Ms 50:50 was greater than PLGA-Ms 75:25. Single shot injection of PLGA-Ms 50:50/75:25-BmA/F6 produced better and stronger IgG, IgG1/IgG2a and cell-mediated immune responses than even two injections of plain BmA or F6. Further, PLGA-Ms 50:50-F6 produced stronger responses than PLGA-Ms 50:50-BmA. Anti-PLGA-Ms 50:50-F6 antibodies elicited higher ADCC response to infective larval and microfilarial stages of the parasite than anti-PLGA-Ms 75:25-F6 antibodies. The findings demonstrate that PLGA-Ms 50:50 is an excellent adjuvant for use with F6 in a single administration. This is the first ever report on PLGA as immunoadjuvant for filarial antigens

  1. Expression of five acetylcholine receptor subunit genes in Brugia malayi adult worms

    Directory of Open Access Journals (Sweden)

    Ben-Wen Li

    2015-12-01

    Full Text Available Acetylcholine receptors (AChRs are required for body movement in parasitic nematodes and are targets of “classical” anthelmintic drugs such as levamisole and pyrantel and of newer drugs such as tribendimidine and derquantel. While neurotransmission explains the effects of these drugs on nematode movement, their effects on parasite reproduction are unexplained. The levamisole AChR type (L-AChRs in Caenorhabditis elegans is comprised of five subunits: Cel-UNC-29, Cel-UNC-38, Cel-UNC-63, Cel-LEV-1 and Cel-LEV-8. The genome of the filarial parasite Brugia malayi contains nine AChRs subunits including orthologues of Cel-unc-29, Cel-unc-38, and Cel-unc-63. We performed in situ hybridization with RNA probes to localize the expression of five AChR genes (Bm1_35890-Bma-unc-29, Bm1_20330-Bma-unc-38, Bm1_38195-Bma-unc-63, Bm1_48815-Bma-acr-26 and Bm1_40515-Bma-acr-12 in B. malayi adult worms. Four of these genes had similar expression patterns with signals in body muscle, developing embryos, spermatogonia, uterine wall adjacent to stretched microfilariae, wall of Vas deferens, and lateral cord. Three L-AChR subunit genes (Bma-unc-29, Bma-unc-38 and Bma-unc-63 were expressed in body muscle, which is a known target of levamisole. Bma-acr-12 was co-expressed with these levamisole subunit genes in muscle, and this suggests that its protein product may form receptors with other alpha subunits. Bma-acr-26 was expressed in male muscle but not in female muscle. Strong expression signals of these genes in early embryos and gametes in uterus and testis suggest that AChRs may have a role in nervous system development of embryogenesis and spermatogenesis. This would be consistent with embryotoxic effects of drugs that target these receptors in filarial worms. Our data show that the expression of these receptor genes is tightly regulated with regard to localization in adult worms and developmental stage in embryos and gametes. These results may help to explain the

  2. Brugia malayi gene expression in response to the targeting of the Wolbachia endosymbiont by tetracycline treatment.

    Directory of Open Access Journals (Sweden)

    Elodie Ghedin

    2009-10-01

    Full Text Available Brugia malayi, like most human filarial parasite species, harbors an endosymbiotic bacterium of the genus Wolbachia. Elimination of the endosymbiont leads to sterilization of the adult female. Previous biochemical and genetic studies have established that communication with its endobacterium is essential for survival of the worm.We used electron microscopy to examine the effects of antibiotic treatment on Wolbachia cell structure. We have also used microarray and quantitative RT-PCR analyses to examine the regulation of the B. malayi transcripts altered in response to the anti-Wolbachia treatment. Microscopy of worms taken from animals treated with tetracycline for 14 and 21 days (14 d and 21 d demonstrated substantial morphologic effects on the Wolbachia endobacterium by 14 d and complete degeneration of the endobacterial structures by 21 d. We observed upregulation of transcripts primarily encoding proteins involved in amino acid synthesis and protein translation, and downregulation of transcripts involved in cuticle biosynthesis after both 7 d and 14 d of treatment. In worms exposed to tetracycline in culture, substantial effects on endobacteria morphology were evident by day 3, and extensive death of the endobacteria was observed by day 5. In a detailed examination of the expression kinetics of selected signaling genes carried out on such cultured worms, a bimodal pattern of regulation was observed. The selected genes were upregulated during the early phase of antibiotic treatment and quickly downregulated in the following days. These same genes were upregulated once more at 6 days post-treatment.Upregulation of protein translation and amino acid synthesis may indicate a generalized stress response induced in B. malayi due to a shortage of essential nutrients/factors that are otherwise supplied by Wolbachia. Downregulation of transcripts involved in cuticle biosynthesis perhaps reflects a disruption in the normal embryogenic program. This is

  3. Infective Larvae of Brugia malayi Induce Polarization of Host Macrophages that Helps in Immune Evasion

    Directory of Open Access Journals (Sweden)

    Aditi Sharma

    2018-02-01

    Full Text Available Filarial parasites suppress, divert, or polarize the host immune response to aid their survival. However, mechanisms that govern the polarization of host MΦs during early filarial infection are not completely understood. In this study, we infected BALB/c mice with infective larvae stage-3 of Brugia malayi (Bm-L3 and studied their effect on the polarization of splenic MΦs. Results showed that MΦs displayed M2-phenotype by day 3 p.i. characterized by upregulated IL-4, but reduced IL-12 and Prostaglandin-D2 secretion. Increased arginase activity, higher arginase-1 but reduced NOS2 expression and poor phagocytic and antigen processing capacity was also observed. M2 MΦs supported T-cell proliferation and characteristically upregulated p-ERK but downregulated NF-κB-p65 and NF-κB-p50/105. Notably, Bm-L3 synergized with host regulatory T-cells (Tregs and polarized M2 MΦs to regulatory MΦs (Mregs by day 7 p.i., which secreted copious amounts of IL-10 and prostaglandin-E2. Mregs also showed upregulated expression levels of MHC-II, CD80, and CD86 and exhibited increased antigen-processing capacity but displayed impaired activation of NF-κB-p65 and NF-κB-p50/105. Neutralization of Tregs by anti-GITR + anti-CD25 antibodies checked the polarization of M2 MΦs to Mregs, decreased accumulation of regulatory B cells and inflammatory monocytes, and reduced secretion of IL-10, but enhanced IL-4 production and percentages of eosinophils, which led to Bm-L3 killing. In summary, we report hitherto undocumented effects of early Bm-L3 infection on the polarization of splenic MΦs and show how infective larvae deftly utilize the functional plasticity of host MΦs to establish themselves inside the host.

  4. Transcriptomes and pathways associated with infectivity, survival and immunogenicity in Brugia malayi L3

    Directory of Open Access Journals (Sweden)

    Spiro David

    2009-06-01

    Full Text Available Abstract Background Filarial nematode parasites cause serious diseases such as elephantiasis and river blindness in humans, and heartworm infections in dogs. Third stage filarial larvae (L3 are a critical stage in the life cycle of filarial parasites, because this is the stage that is transmitted by arthropod vectors to initiate infections in mammals. Improved understanding of molecular mechanisms associated with this transition may provide important leads for development of new therapies and vaccines to prevent filarial infections. This study explores changes in gene expression associated with the transition of Brugia malayi third stage larvae (BmL3 from mosquitoes into mammalian hosts and how these changes are affected by radiation. Radiation effects are especially interesting because irradiated L3 induce partial immunity to filarial infections. The underlying molecular mechanisms responsible for the efficacy of such vaccines are unkown. Results Expression profiles were obtained using a new filarial microarray with 18, 104 64-mer elements. 771 genes were identified as differentially expressed in two-way comparative analyses of the three L3 types. 353 genes were up-regulated in mosquito L3 (L3i relative to cultured L3 (L3c. These genes are important for establishment of filarial infections in mammalian hosts. Other genes were up-regulated in L3c relative to L3i (234 or irradiated L3 (L3ir (22. These culture-induced transcripts include key molecules required for growth and development. 165 genes were up-regulated in L3ir relative to L3c; these genes encode highly immunogenic proteins and proteins involved in radiation repair. L3ir and L3i have similar transcription profiles for genes that encode highly immunogenic proteins, antioxidants and cuticle components. Conclusion Changes in gene expression that normally occur during culture under conditions that support L3 development and molting are prevented or delayed by radiation. This may explain

  5. Cytokine production in BALB/c mice immunized with radiation attenuated third stage larvae of the filarial nematode, Brugia pahangi

    International Nuclear Information System (INIS)

    Bancroft, A.J.; Devaney, E.; Grencis, R.K.; Else, K.J.

    1993-01-01

    BALB/c mice immunized with radiation-attenuated third stage larvae of the filarial nematode Brugia pahangi are strongly immune to challenge infection. Investigation of the profile of cytokines secreted by spleen cells from immune mice stimulated in vitro with either parasite Ag or with Con A revealed high levels of IL-5 and IL-9 and moderate levels of IL-4. In contrast, secretion of IFN-γ by spleen cells from immune animals was negligible. Spleen cells from control mice secreted low levels of all cytokines assayed. Levels of parasite-specific IgE were significantly elevated in immune animals and a peripheral blood eosinophilia was observed, which exhibited a biphasic distribution. Our results are consistent with the preferential expansion of Th2 cells in immune animals and provide the basis for dissecting the means by which radiation-attenuated larvae of filarial nematodes stimulate immunity. 5l refs., 3 figs., 3 tabs

  6. Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin.

    Directory of Open Access Journals (Sweden)

    Hiruni Harischandra

    2018-04-01

    Full Text Available The filarial nematode Brugia malayi is an etiological agent of Lymphatic Filariasis. The capability of B. malayi and other parasitic nematodes to modulate host biology is recognized but the mechanisms by which such manipulation occurs are obscure. An emerging paradigm is the release of parasite-derived extracellular vesicles (EV containing bioactive proteins and small RNA species that allow secretion of parasite effector molecules and their potential trafficking to host tissues. We have previously described EV release from the infectious L3 stage B. malayi and here we profile vesicle release across all intra-mammalian life cycle stages (microfilariae, L3, L4, adult male and female worms. Nanoparticle Tracking Analysis was used to quantify and size EVs revealing discrete vesicle populations and indicating a secretory process that is conserved across the life cycle. Brugia EVs are internalized by murine macrophages with no preference for life stage suggesting a uniform mechanism for effector molecule trafficking. Further, the use of chemical uptake inhibitors suggests all life stage EVs are internalized by phagocytosis. Proteomic profiling of adult male and female EVs using nano-scale LC-MS/MS described quantitative and qualitative differences in the adult EV proteome, helping define the biogenesis of Brugia EVs and revealing sexual dimorphic characteristics in immunomodulatory cargo. Finally, ivermectin was found to rapidly inhibit EV release by all Brugia life stages. Further this drug effect was also observed in the related filarial nematode, the canine heartworm Dirofilaria immitis but not in an ivermectin-unresponsive field isolate of that parasite, highlighting a potential mechanism of action for this drug and suggesting new screening platforms for anti-filarial drug development.

  7. Identification of anti-filarial leads against aspartate semialdehyde dehydrogenase of Wolbachia endosymbiont of Brugia malayi: combined molecular docking and molecular dynamics approaches.

    Science.gov (United States)

    Amala, Mathimaran; Rajamanikandan, Sundaraj; Prabhu, Dhamodharan; Surekha, Kanagarajan; Jeyakanthan, Jeyaraman

    2018-02-06

    Lymphatic filariasis is a debilitating vector borne parasitic disease that infects human lymphatic system by nematode Brugia malayi. Currently available anti-filarial drugs are effective only on the larval stages of parasite. So far, no effective drugs are available for humans to treat filarial infections. In this regard, aspartate semialdehyde dehydrogenase (ASDase) in lysine biosynthetic pathway from Wolbachia endosymbiont Brugia malayi represents an attractive therapeutic target for the development of novel anti-filarial agents. In this present study, molecular modeling combined with molecular dynamics simulations and structure-based virtual screening were performed to identify potent lead molecules against ASDase. Based on Glide score, toxicity profile, binding affinity and mode of interactions with the ASDase, five potent lead molecules were selected. The molecular docking and dynamics results revealed that the amino acid residues Arg103, Asn133, Cys134, Gln161, Ser164, Lys218, Arg239, His246, and Asn321 plays a crucial role in effective binding of Top leads into the active site of ASDase. The stability of the ASDase-lead complexes was confirmed by running the 30 ns molecular dynamics simulations. The pharmacokinetic properties of the identified lead molecules are in the acceptable range. Furthermore, density functional theory and binding free energy calculations were performed to rank the lead molecules. Thus, the identified lead molecules can be used for the development of anti-filarial agents to combat the pathogenecity of Brugia malayi.

  8. Immunization of Mastomys coucha with Brugia malayi recombinant trehalose-6-phosphate phosphatase results in significant protection against homologous challenge infection.

    Directory of Open Access Journals (Sweden)

    Susheela Kushwaha

    Full Text Available Development of a vaccine to prevent or reduce parasite development in lymphatic filariasis would be a complementary approach to existing chemotherapeutic tools. Trehalose-6-phosphate phosphatase of Brugia malayi (Bm-TPP represents an attractive vaccine target due to its absence in mammals, prevalence in the major life stages of the parasite and immunoreactivity with human bancroftian antibodies, especially from endemic normal subjects. We have recently reported on the cloning, expression, purification and biochemical characterization of this vital enzyme of B. malayi. In the present study, immunoprophylactic evaluation of Bm-TPP was carried out against B. malayi larval challenge in a susceptible host Mastomys coucha and the protective ability of the recombinant protein was evaluated by observing the adverse effects on microfilarial density and adult worm establishment. Immunization caused 78.4% decrease in microfilaremia and 71.04% reduction in the adult worm establishment along with sterilization of 70.06% of the recovered live females. The recombinant protein elicited a mixed Th1/Th2 type of protective immune response as evidenced by the generation of both pro- and anti-inflammatory cytokines IL-2, IFN-γ, TNF-α, IL-4 and an increased production of antibody isotypes IgG1, IgG2a, IgG2b and IgA. Thus immunization with Bm-TPP conferred considerable protection against B. malayi establishment by engendering a long-lasting effective immune response and therefore emerges as a potential vaccine candidate against lymphatic filariasis (LF.

  9. Brugia malayi excreted/secreted proteins at the host/parasite interface: stage- and gender-specific proteomic profiling.

    Directory of Open Access Journals (Sweden)

    Sasisekhar Bennuru

    Full Text Available Relatively little is known about the filarial proteins that interact with the human host. Although the filarial genome has recently been completed, protein profiles have been limited to only a few recombinants or purified proteins of interest. Here, we describe a large-scale proteomic analysis using microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry to identify the excretory-secretory (ES products of the L3, L3 to L4 molting ES, adult male, adult female, and microfilarial stages of the filarial parasite Brugia malayi. The analysis of the ES products from adult male, adult female, microfilariae (Mf, L3, and molting L3 larvae identified 852 proteins. Annotation suggests that the functional and component distribution was very similar across each of the stages studied; however, the Mf contributed a higher proportion to the total number of identified proteins than the other stages. Of the 852 proteins identified in the ES, only 229 had previous confirmatory expressed sequence tags (ESTs in the available databases. Moreover, this analysis was able to confirm the presence of 274 "hypothetical" proteins inferred from gene prediction algorithms applied to the B. malayi (Bm genome. Not surprisingly, the majority (160/274 of these "hypothetical" proteins were predicted to be secreted by Signal IP and/or SecretomeP 2.0 analysis. Of major interest is the abundance of previously characterized immunomodulatory proteins such as ES-62 (leucyl aminopeptidase, MIF-1, SERPIN, glutathione peroxidase, and galectin in the ES of microfilariae (and Mf-containing adult females compared to the adult males. In addition, searching the ES protein spectra against the Wolbachia database resulted in the identification of 90 Wolbachia-specific proteins, most of which were metabolic enzymes that have not been shown to be immunogenic. This proteomic analysis extends our knowledge of the ES and provides insight into the host-parasite interaction.

  10. Distribution of Brugia malayi larvae and DNA in vector and non-vector mosquitoes: implications for molecular diagnostics

    Directory of Open Access Journals (Sweden)

    Christensen Bruce M

    2009-11-01

    Full Text Available Abstract Background The purpose of this study was to extend prior studies of molecular detection of Brugia malayi DNA in vector (Aedes aegypti- Liverpool and non-vector (Culex pipiens mosquitoes at different times after ingestion of infected blood. Results Parasite DNA was detected over a two week time course in 96% of pooled thoraces of vector mosquitoes. In contrast, parasite DNA was detected in only 24% of thorax pools from non-vectors; parasite DNA was detected in 56% of midgut pools and 47% of abdomen pools from non-vectors. Parasite DNA was detected in vectors in the head immediately after the blood meal and after 14 days. Parasite DNA was also detected in feces and excreta of the vector and non-vector mosquitoes which could potentially confound results obtained with field samples. However, co-housing experiments failed to demonstrate transfer of parasite DNA from infected to non-infected mosquitoes. Parasites were also visualized in mosquito tissues by immunohistololgy using an antibody to the recombinant filarial antigen Bm14. Parasite larvae were detected consistently after mf ingestion in Ae. aegypti- Liverpool. Infectious L3s were seen in the head, thorax and abdomen of vector mosquitoes 14 days after Mf ingestion. In contrast, parasites were only detected by histology shortly after the blood meal in Cx. pipiens, and these were not labeled by the antibody. Conclusion This study provides new information on the distribution of filarial parasites and parasite DNA in vector and non-vector mosquitoes. This information should be useful for those involved in designing and interpreting molecular xenomonitoring studies.

  11. Functional analysis of the cathepsin-like cysteine protease genes in adult Brugia malayi using RNA interference.

    Directory of Open Access Journals (Sweden)

    Louise Ford

    Full Text Available Cathepsin-like enzymes have been identified as potential targets for drug or vaccine development in many parasites, as their functions appear to be essential in a variety of important biological processes within the host, such as molting, cuticle remodeling, embryogenesis, feeding and immune evasion. Functional analysis of Caenorhabditis elegans cathepsin L (Ce-cpl-1 and cathepsin Z (Ce-cpz-1 has established that both genes are required for early embryogenesis, with Ce-cpl-1 having a role in regulating in part the processing of yolk proteins. Ce-cpz-1 also has an important role during molting.RNA interference assays have allowed us to verify whether the functions of the orthologous filarial genes in Brugia malayi adult female worms are similar. Treatment of B. malayi adult female worms with Bm-cpl-1, Bm-cpl-5, which belong to group Ia of the filarial cpl gene family, or Bm-cpz-1 dsRNA resulted in decreased numbers of secreted microfilariae in vitro. In addition, analysis of the intrauterine progeny of the Bm-cpl-5 or Bm-cpl Pro dsRNA- and siRNA-treated worms revealed a clear disruption in the process of embryogenesis resulting in structural abnormalities in embryos and a varied differential development of embryonic stages.Our studies suggest that these filarial cathepsin-like cysteine proteases are likely to be functional orthologs of the C. elegans genes. This functional conservation may thus allow for a more thorough investigation of their distinct functions and their development as potential drug targets.

  12. The role of polymorphisms in the spliced leader addition domain in determining promoter activity in Brugia malayi.

    Science.gov (United States)

    Bailey, Michelle; Chauhan, Chitra; Liu, Canhui; Unnasch, Thomas R

    2011-03-01

    Previous studies of Brugia malayi promoters have suggested that they are unusual in that they lack the CAAT or TATAA boxes that are often emblematic of eucaryotic core promoter domains. Instead, the region surrounding the spliced leader (SL) addition site appears to function as the core promoter domain in B. malayi. To test the hypothesis that polymorphisms in this SL addition domain are important determinants of promoter activity, a series of domain swap mutants were prepared replacing the SL addition domain of the B. malayi 13kDa large subunit ribosomal protein (BmRPL13) with those of other ribosomal protein (RP) promoters exhibiting a wide range of activities. These constructs were then tested for promoter activity in a homologous transient transfection system. On average, polymorphisms in the SL addition domain were found to be responsible for 80% of the variation in promoter activity exhibited by the RP promoters tested. Essentially all of this effect could be attributable to polymorphisms in the 10nt located directly upstream of the SL addition site. A comparison of the sequence of this domain to the promoter activity exhibited by the domain swap mutants suggested that promoter activity was related to the number of T residues present in the coding strand of the upstream domain. Confirming this, mutation of the upstream domain of the promoter of the BmRPS4 gene to a homogeneous stretch of 10 T residues resulted in a significant increase in promoter activity. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target.

    Directory of Open Access Journals (Sweden)

    Bo Wu

    2009-07-01

    Full Text Available Filarial parasites (e.g., Brugia malayi, Onchocerca volvulus, and Wuchereria bancrofti are causative agents of lymphatic filariasis and onchocerciasis, which are among the most disabling of neglected tropical diseases. There is an urgent need to develop macro-filaricidal drugs, as current anti-filarial chemotherapy (e.g., diethylcarbamazine [DEC], ivermectin and albendazole can interrupt transmission predominantly by killing microfilariae (mf larvae, but is less effective on adult worms, which can live for decades in the human host. All medically relevant human filarial parasites appear to contain an obligate endosymbiotic bacterium, Wolbachia. This alpha-proteobacterial mutualist has been recognized as a potential target for filarial nematode life cycle intervention, as antibiotic treatments of filarial worms harboring Wolbachia result in the loss of worm fertility and viability upon antibiotic treatments both in vitro and in vivo. Human trials have confirmed this approach, although the length of treatments, high doses required and medical counter-indications for young children and pregnant women warrant the identification of additional anti-Wolbachia drugs.Genome sequence analysis indicated that enzymes involved in heme biosynthesis might constitute a potential anti-Wolbachia target set. We tested different heme biosynthetic pathway inhibitors in ex vivo B. malayi viability assays and report a specific effect of N-methyl mesoporphyrin (NMMP, which targets ferrochelatase (FC, the last step. Our phylogenetic analysis indicates evolutionarily significant divergence between Wolbachia heme genes and their human homologues. We therefore undertook the cloning, overexpression and analysis of several enzymes of this pathway alongside their human homologues, and prepared proteins for drug targeting. In vitro enzyme assays revealed a approximately 600-fold difference in drug sensitivities to succinyl acetone (SA between Wolbachia and human 5

  14. Identification and characterization of nematode specific protective epitopes of Brugia malayi TRX towards development of synthetic vaccine construct for lymphatic filariasis.

    Science.gov (United States)

    Madhumathi, Jayaprakasam; Prince, Prabhu Rajaiah; Anugraha, Gandhirajan; Kiran, Pote; Rao, Donthamsetty Nageswara; Reddy, Maryada Venkata Rami; Kaliraj, Perumal

    2010-07-12

    Although multi-epitope vaccines have been evaluated for various diseases, they have not yet been investigated for lymphatic filariasis. Here, we report for the first time identification of two immunodominant B epitopes (TRXP1 and TRXP2) from the antioxidant Brugia malayi thioredoxin by studying their immune responses in mice model and human subjects. TRXP1 was also found to harbor a T epitope recognized by human PBMCs and mice splenocytes. Further, the epitopic peptides were synthesized as a single peptide conjugate (PC1) and their prophylactic efficacy was tested in a murine model of filariasis with L3 larvae. PC1 conferred a significantly high protection (75.14%) (P TRX (63.03%) (P < 0.018) in experimental filariasis. Our results suggest that multi-epitope vaccines could be a promising strategy in the control of lymphatic filariasis.

  15. Wolbachia lipoproteins: abundance, localisation and serology of Wolbachia peptidoglycan associated lipoprotein and the Type IV Secretion System component, VirB6 from Brugia malayi and Aedes albopictus.

    Science.gov (United States)

    Voronin, Denis; Guimarães, Ana F; Molyneux, Gemma R; Johnston, Kelly L; Ford, Louise; Taylor, Mark J

    2014-10-06

    Lipoproteins are the major agonists of Wolbachia-dependent inflammatory pathogenesis in filariasis and a validated target for drug discovery. Here we characterise the abundance, localisation and serology of the Wolbachia lipoproteins: Wolbachia peptidoglycan associated lipoprotein and the Type IV Secretion System component, VirB6. We used proteomics to confirm lipoprotein presence and relative abundance; fractionation, immunoblotting and confocal and electron immuno-microscopy for localisation and ELISA for serological analysis. Proteomic analysis of Brugia malayi adult female protein extracts confirmed the presence of two lipoproteins, previously predicted through bioinformatics: Wolbachia peptidoglycan associated lipoprotein (wBmPAL) and the Type IV Secretion System component, VirB6 (wBmVirB6). wBmPAL was among the most abundant Wolbachia proteins present in an extract of adult female worms with wBmVirB6 only detected at a much lower abundance. This differential abundance was reflected in the immunogold-labelling, which showed wBmPAL localised at numerous sites within the bacterial membranes, whereas wBmVirB6 was present as a single cluster on each bacterial cell and also located within the bacterial membranes. Immunoblotting of fractionated extracts confirmed the localisation of wBmPAL to membranes and its absence from cytosolic fractions of C6/36 mosquito cells infected with wAlbB. In whole worm mounts, antibody labelling of both lipoproteins were associated with Wolbachia. Serological analysis showed that both proteins were immunogenic and raised antibody responses in the majority of individuals infected with Wuchereria bancrofti. Two Wolbachia lipoproteins, wBmPAL and wBmVirB6, are present in extracts of Brugia malayi with wBmPAL among the most abundant of Wolbachia proteins. Both lipoproteins localised to bacterial membranes with wBmVirB6 present as a single cluster suggesting a single Type IV Secretory System on each Wolbachia cell.

  16. Cofactor Independent Phosphoglycerate Mutase of Brugia malayi Induces a Mixed Th1/Th2 Type Immune Response and Inhibits Larval Development in the Host

    Directory of Open Access Journals (Sweden)

    Prashant K. Singh

    2014-01-01

    Full Text Available Lymphatic filariasis is a major debilitating disease, endemic in 72 countries putting more than 1.39 billion people at risk and 120 million are already infected. Despite the significant progress in chemotherapeutic advancements, there is still need for other measures like development of an effective vaccine or discovery of novel drug targets. In this study, structural and immunological characterization of independent phosphoglycerate mutase of filarial parasite Brugia malayi was carried out. Protein was found to be expressed in all major parasite life stages and as an excretory secretory product of adult parasites. Bm-iPGM also reacted to all the categories of human bancroftian patient’s sera including endemic normals. In vivo immunological behaviour of protein was determined in immunized BALB/c mice followed by prophylactic analysis in BALB/c mice and Mastomys coucha. Immunization with Bm-iPGM led to generation of a mixed Th1/Th2 type immune response offering 58.2% protection against larval challenge in BALB/c and 65–68% protection in M. coucha. In vitro studies confirmed participation of anti-Bm-iPGM antibodies in killing of B. malayi infective larvae and microfilariae through ADCC mechanism. The present findings reveal potential immunoprotective nature of Bm-iPGM advocating its worth as an antifilarial vaccine candidate.

  17. Suppression of Brugia malayi (sub-periodic larval development in Aedes aegypti (Liverpool strain fed on blood of animals immunized with microfilariae

    Directory of Open Access Journals (Sweden)

    K Athisaya Mary

    2005-07-01

    Full Text Available Preliminary studies were carried out to investigate the role of filarial specific antibodies, raised in an animal model against the filarial parasite, Brugia malayi (sub-periodic, in blocking their early development in an experimental mosquito host, Aedes aegypti (Liverpool strain. In order to generate filarial specific antibodies, Mongolian gerbils, Meriones unguiculatus, were immunized either with live microfilariae (mf of B. malayi or their homogenate. Mf were harvested from the peritoneal cavity of Mongolian gerbils with patent infection of B. malayi and fed to A. aegypti along with the blood from immunized animals. Development of the parasite in infected mosquitoes was monitored until they reached infective stage larvae (L3. Fewer number of parasites developed to first stage (L1 and subsequently to L2 and L3 in mosquitoes fed with blood of immunized animals, when compared to those fed with blood of control animals. The results thus indicated that filarial parasite specific antibodies present in the blood of the immunized animals resulted in the reduction of number of larvae of B. malayi developing in the mosquito host.

  18. Exome and Transcriptome Sequencing of Aedes aegypti Identifies a Locus That Confers Resistance to Brugia malayi and Alters the Immune Response

    KAUST Repository

    Juneja, Punita

    2015-03-27

    Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model for studying lymphatic filariasis, is genetically variable for its capacity to harbor the filarial nematode Brugia malayi. The genome of Ae. aegypti is large and repetitive, making genome resequencing difficult and expensive. We designed exome captures to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously mapped in a line established in 1936, suggesting that this polymorphism has been maintained in the wild for the at least 80 years. We then crossed resistant and susceptible mosquitoes to place both alleles of the gene into a common genetic background, and used RNA-seq to measure the effect of this locus on gene expression. We found evidence for Toll, IMD, and JAK-STAT pathway activity in response to early stages of B. malayi infection when the parasites are beginning to die in the resistant genotype. We also found that resistant mosquitoes express anti-microbial peptides at the time of parasite-killing, and that this expression is suppressed in susceptible mosquitoes. Together, we have found that a single resistance locus leads to a higher immune response in resistant mosquitoes, and we identify genes in this region that may be responsible for this trait.

  19. Recombinant Brugia malayi pepsin inhibitor (rBm33) exploits host signaling events to regulate inflammatory responses associated with lymphatic filarial infections.

    Science.gov (United States)

    Sreenivas, Kirthika; Kalyanaraman, Haripriya; Babu, Subash; Narayanan, Rangarajan Badri

    2017-11-01

    Prolonged existence of filarial parasites and their molecules within the host modulate the host immune system to instigate their survival and induce inflammatory responses that contribute to disease progression. Recombinant Brugia malayi pepsin inhibitor (rBm33) modulates the host immune responses by skewing towards Th1 responses characterized by secretion of inflammatory molecules such as TNF-α, IL-6, nitric oxide (NO). Here we also specified the molecular signaling events triggered by rBm33 in peripheral blood mononuclear cells (PBMCs) of filarial endemic normals (EN). rBm33 predominantly enhanced the levels of nitric oxide in cultured PBMCs but did not result in oxidative stress to the host cells. Further, rBm33 treatment of human PBMCs resulted in higher GSH/GSSG levels. MYD88 dependent activation was found to be associated with rBm33 specific inflammatory cytokine production. rBm33 triggered intracellular signaling events also involved JNK activation in host PBMCs. In addition, c-Fos and not NF-κB was identified as the transcription factor regulating the expression of inflammatory cytokines in rBm33 stimulated PBMCs. rBm33 marked its role in filarial pathology by altered levels of growth factors but did not have a significant impact on matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs) activity of host PBMCs. Thus, the study outlines the signaling network of rBm33 induced inflammatory responses within the host immune cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Immunogenicity and Protective Efficacy of Brugia malayi Heavy Chain Myosin as Homologous DNA, Protein and Heterologous DNA/Protein Prime Boost Vaccine in Rodent Model.

    Directory of Open Access Journals (Sweden)

    Jyoti Gupta

    Full Text Available We earlier demonstrated the immunoprophylactic efficacy of recombinant heavy chain myosin (Bm-Myo of Brugia malayi (B. malayi in rodent models. In the current study, further attempts have been made to improve this efficacy by employing alternate approaches such as homologous DNA (pcD-Myo and heterologous DNA/protein prime boost (pcD-Myo+Bm-Myo in BALB/c mouse model. The gene bm-myo was cloned in a mammalian expression vector pcDNA 3.1(+ and protein expression was confirmed in mammalian Vero cell line. A significant degree of protection (79.2%±2.32 against L3 challenge in pcD-Myo+Bm-Myo immunized group was observed which was much higher than that exerted by Bm-Myo (66.6%±2.23 and pcD-Myo (41.6%±2.45. In the heterologous immunized group, the percentage of peritoneal leukocytes such as macrophages, neutrophils, B cells and T cells marginally increased and their population augmented further significantly following L3 challenge. pcD-Myo+Bm-Myo immunization elicited robust cellular and humoral immune responses as compared to pcD-Myo and Bm-Myo groups as evidenced by an increased accumulation of CD4+, CD8+ T cells and CD19+ B cells in the mouse spleen and activation of peritoneal macrophages. Though immunized animals produced antigen-specific IgG antibodies and isotypes, sera of mice receiving pcD-Myo+Bm-Myo or Bm-Myo developed much higher antibody levels than other groups and there was profound antibody-dependent cellular adhesion and cytotoxicity (ADCC to B. malayi infective larvae (L3. pcD-Myo+Bm-Myo as well as Bm-Myo mice generated a mixed T helper cell phenotype as evidenced by the production of both pro-inflammatory (IL-2, IFN-γ and anti-inflammatory (IL-4, IL-10 cytokines. Mice receiving pcD-Myo on contrary displayed a polarized pro-inflammatory immune response. The findings suggest that the priming of animals with DNA followed by protein booster generates heightened and mixed pro- and anti-inflammatory immune responses that are capable of

  1. The n-hexane and chloroform fractions of Piper betle L. trigger different arms of immune responses in BALB/c mice and exhibit antifilarial activity against human lymphatic filarid Brugia malayi.

    Science.gov (United States)

    Singh, Meghna; Shakya, Shilpy; Soni, Vishal Kumar; Dangi, Anil; Kumar, Nikhil; Bhattacharya, Shailja-Misra

    2009-06-01

    Modulation of immune functions by using herbal plants and their products has become fundamental regime of therapeutic approach. Piper betle Linn. (Piperaceae) is a widely distributed plant in the tropical and subtropical regions of the world and has been attributed as traditional herbal remedy for many diseases. We have recently reported the antifilarial and antileishmanial efficacy in the leaf extract of Bangla Mahoba landrace of P. betle which is a female plant. The present report describes the in vivo immunomodulatory efficacy of the crude methanolic extract and its n-hexane, chloroform, n-butanol fractions of the female plant at various dose levels ranging between 0.3 and 500 mg/kg in BALB/c. Attempts were also made to observe antifilarial activity of the active extracts and correlate it with the antigen specific immune responses in another rodent Mastomys coucha infected with human lymphatic filarial parasite Brugia malayi. The crude methanol extract and n-hexane fraction were found to potentiate significant (p<0.001) enhancement of both humoral (plaque forming cells, hemagglutination titre) as well as cell-mediated (lymphoproliferation, macrophage activation, delayed type hypersensitivity) immune responses in mice. The flow cytometric analysis of splenocytes of treated mice indicated enhanced population of T-cells (CD4(+), CD8(+)) and B-cells (CD19(+)). The n-hexane fraction (3 mg/kg) was found to induce biased type 2 cytokine response as revealed by increased IL-4(+) and decreased IFN-gamma(+) T-cell population while the chloroform fraction (10 mg/kg) produced a predominant type 1 cytokines. Crude methanolic extract (100 mg/kg) demonstrated a mixed type 1 and type 2 cytokine responses thus suggesting a remarkable immunomodulatory property in this plant. The induction of differential T-helper cell immune response appears ideal to overcome immunosuppression as observed in case of lymphatic, filarial Brugia malayi infection which may also be extended to other

  2. Physicochemical properties of the modeled structure of astacin metalloprotease moulting enzyme NAS-36 and mapping the druggable allosteric space of Heamonchus contortus, Brugia malayi and Ceanorhabditis elegans via molecular dynamics simulation.

    Science.gov (United States)

    Sharma, Om Prakash; Agrawal, Sonali; Kumar, M Suresh

    2013-12-01

    Nematodes represent the second largest phylum in the animal kingdom. It is the most abundant species (500,000) in the planet. It causes chronic, debilitating infections worldwide such as ascariasis, trichuriasis, hookworm, enterobiasis, strongyloidiasis, filariasis and trichinosis, among others. Molecular modeling tools can play an important role in the identification and structural investigation of molecular targets that can act as a vital candidate against filariasis. In this study, sequence analysis of NAS-36 from H. contortus (Heamonchus contortus), B. malayi (Brugia malayi) and C. elegans (Ceanorhabditis elegans) has been performed, in order to identify the conserved residues. Tertiary structure was developed for an insight into the molecular structure of the enzyme. Molecular Dynamics Simulation (MDS) studies have been carried out to analyze the stability and the physical properties of the proposed enzyme models in the H. contortus, B. malayi and C. elegans. Moreover, the drug binding sites have been mapped for inhibiting the function of NAS-36 enzyme. The molecular identity of this protease could eventually demonstrate how ex-sheathment is regulated, as well as provide a potential target of anthelmintics for the prevention of nematode infections.

  3. Brugia malayi Antigen (BmA Inhibits HIV-1 Trans-Infection but Neither BmA nor ES-62 Alter HIV-1 Infectivity of DC Induced CD4+ Th-Cells.

    Directory of Open Access Journals (Sweden)

    Emily E I M Mouser

    Full Text Available One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA and excretory-secretory product 62 (ES-62 from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs.

  4. 周期型马来丝虫复合基因重组质粒和相应表达蛋白的免疫学研究%Immunology comparision of composite gene recombinant plasmid and expressed protein of periodical Brugia malayi

    Institute of Scientific and Technical Information of China (English)

    王慧; 方政; 徐倩; 陆施娟; 钱一言; 徐怿琳; 方浩; 徐邦生

    2014-01-01

    粒/复合重组蛋白/CpG组小鼠淋巴细胞刺激增殖指数(1.629±0.235)高于复合重组蛋白组(1.248±0.110,P<0.05);免疫4、6周后,复合重组质粒/复合重组蛋白/CpG组和复合重组质粒/CpG组小鼠血清IFN-γ水平[(101.660±5.101)、(178.265±7.139)mg/L,(102.067±3.722)、(115.148±6.031)mg/L]均高于复合重组蛋白组[(75.438±2.102)、(82.004±3.777) mg/L,P均<0.05];免疫后6周,复合重组质粒/复合重组蛋白/CpG组和复合重组蛋白/CpG组的小鼠血清IL-4水平[(75.385±3.318)、(46.363±3.672)mg/L]均明显高于复合重组质粒/CpG组[(36.691±3.443)mg/L,P均<0.05).结论 pcDNA3.1-BmCPI/BmGAPDH核酸疫苗和相应蛋白疫苗均可诱导BALB/c小鼠产生特异性体液和细胞免疫应答反应.核酸疫苗-蛋白疫苗联合免疫效果有明显的优势.%Objective To construct a plasmid DNA vector expressing cysteine protease inhibitor and glyceraldehydes-3-phosphate dehydrogenase of periodic Brugia malayi(BmCPI/BmGAPDH),and purify the recombinant protein after transfecting the vector into human cervical carcinoma cells(Hela) for expression.To make a comparison of immunity efficacy between the recombinant plasmid and the homologous protein and to a lay theoretic and experimental basis for developing novel anti-filarial genetic engineering vaccines.Methods The amplified genes BmCPI and BmGAPDH and a plasmid vector were double enzymes digested and ligated to construct a recombinant plasmid pcDNA3.1 (+)-BmCPI/BmGAPDH,and this plasmid was transfected to Hela cells after being identified.G418 was used for screening transfectants,and the monoclonal resistant cell strain was determined by RT-PCR and SDS-PAGE.The recombinant protein was purified by affnity chromatography and identified by Western blotting.Sixty BALB/c mice were divided into 5 groups,12 per group,and they were immunized at 2,4,and 6 weeks.Mice in control groups were injected with PBS 100 μ1 or pcDNA3.1 100 μg/CpG 30 μg,and mice in

  5. Tissue and stage-specific distribution of Wolbachia in Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Kerstin Fischer

    2011-05-01

    Full Text Available BACKGROUND: Most filarial parasite species contain Wolbachia, obligatory bacterial endosymbionts that are crucial for filarial development and reproduction. They are targets for alternative chemotherapy, but their role in the biology of filarial nematodes is not well understood. Light microscopy provides important information on morphology, localization and potential function of these bacteria. Surprisingly, immunohistology and in situ hybridization techniques have not been widely used to monitor Wolbachia distribution during the filarial life cycle. METHODS/PRINCIPAL FINDINGS: A monoclonal antibody directed against Wolbachia surface protein and in situ hybridization targeting Wolbachia 16S rRNA were used to monitor Wolbachia during the life cycle of B. malayi. In microfilariae and vector stage larvae only a few cells contain Wolbachia. In contrast, large numbers of Wolbachia were detected in the lateral chords of L4 larvae, but no endobacteria were detected in the genital primordium. In young adult worms (5 weeks p.i., a massive expansion of Wolbachia was observed in the lateral chords adjacent to ovaries or testis, but no endobacteria were detected in the growth zone of the ovaries, uterus, the growth zone of the testis or the vas deferens. Confocal laser scanning and transmission electron microscopy showed that numerous Wolbachia are aligned towards the developing ovaries and single endobacteria were detected in the germline. In inseminated females (8 weeks p.i. Wolbachia were observed in the ovaries, embryos and in decreasing numbers in the lateral chords. In young males Wolbachia were found in distinct zones of the testis and in large numbers in the lateral chords in the vicinity of testicular tissue but never in mature spermatids or spermatozoa. CONCLUSIONS: Immunohistology and in situ hybridization show distinct tissue and stage specific distribution patterns for Wolbachia in B. malayi. Extensive multiplication of Wolbachia occurs in the lateral chords of L4 and young adults adjacent to germline cells.

  6. Attempts to Image the Early Inflammatory Response during Infection with the Lymphatic Filarial Nematode Brugia pahangi in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Elmarie Myburgh

    Full Text Available Helminth parasites remain a major constraint upon human health and well-being in many parts of the world. Treatment of these infections relies upon a very small number of therapeutics, most of which were originally developed for use in animal health. A lack of high throughput screening systems, together with limitations of available animal models, has restricted the development of novel chemotherapeutics. This is particularly so for filarial nematodes, which are long-lived parasites with a complex cycle of development. In this paper, we describe attempts to visualise the immune response elicited by filarial parasites in infected mice using a non-invasive bioluminescence imaging reagent, luminol, our aim being to determine whether such a model could be developed to discriminate between live and dead worms for in vivo compound screening. We show that while imaging can detect the immune response elicited by early stages of infection with L3, it was unable to detect the presence of adult worms or, indeed, later stages of infection with L3, despite the presence of worms within the lymphatic system of infected animals. In the future, more specific reagents that detect secreted products of adult worms may be required for developing screens based upon live imaging of infected animals.

  7. Exome and Transcriptome Sequencing of Aedes aegypti Identifies a Locus That Confers Resistance to Brugia malayi and Alters the Immune Response

    KAUST Repository

    Juneja, Punita; Ariani, Cristina V.; Ho, Yung Shwen; Akorli, Jewelna; Palmer, William J.; Pain, Arnab; Jiggins, Francis M.

    2015-01-01

    to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously

  8. In vitro silencing of Brugia malayi trehalose-6-phosphate phosphatase impairs embryogenesis and in vivo development of infective larvae in jirds.

    Directory of Open Access Journals (Sweden)

    Susheela Kushwaha

    Full Text Available The trehalose metabolic enzymes have been considered as potential targets for drug or vaccine in several organisms such as Mycobacterium, plant nematodes, insects and fungi due to crucial role of sugar trehalose in embryogenesis, glucose uptake and protection from stress. Trehalose-6-phosphate phosphatase (TPP is one of the enzymes of trehalose biosynthesis that has not been reported in mammals. Silencing of tpp gene in Caenorhabditis elegans revealed an indispensable functional role of TPP in nematodes.In the present study, functional role of B. malayi tpp gene was investigated by siRNA mediated silencing which further validated this enzyme to be a putative antifilarial drug target. The silencing of tpp gene in adult female B. malayi brought about severe phenotypic deformities in the intrauterine stages such as distortion and embryonic development arrest. The motility of the parasites was significantly reduced and the microfilarial production as well as their in vitro release from the female worms was also drastically abridged. A majority of the microfilariae released in to the culture medium were found dead. B. malayi infective larvae which underwent tpp gene silencing showed 84.9% reduced adult worm establishment after inoculation into the peritoneal cavity of naïve jirds.The present findings suggest that B. malayi TPP plays an important role in the female worm embryogenesis, infectivity of the larvae and parasite viability. TPP enzyme of B. malayi therefore has the potential to be exploited as an antifilarial drug target.

  9. Immunization with Brugia malayi Myosin as Heterologous DNA Prime Protein Boost Induces Protective Immunity against B. malayi Infection in Mastomys coucha.

    Directory of Open Access Journals (Sweden)

    Jyoti Gupta

    Full Text Available The current control strategies employing chemotherapy with diethylcarbamazine, ivermectin and albendazole have reduced transmission in some filaria-endemic areas, there is growing interest for complementary approaches, such as vaccines especially in light of threat of parasite developing resistance to mainstay drugs. We earlier demonstrated recombinant heavy chain myosin of B. malayi (Bm-Myo as a potent vaccine candidate whose efficacy was enhanced by heterologous DNA prime/protein boost (Myo-pcD+Bm-Myo vaccination in BALB/c mice. BALB/c mouse though does not support the full developmental cycle of B. malayi, however, the degree of protection may be studied in terms of transformation of challenged infective larvae (L3 to next stage (L4 with an ease of delineating the generated immunological response of host. In the current investigation, DNA vaccination with Bm-Myo was therefore undertaken in susceptible rodent host, Mastomys coucha (M. coucha which sustains the challenged L3 and facilitates their further development to sexually mature adult parasites with patent microfilaraemia. Immunization schedule consisted of Myo-pcD and Myo-pcD+Bm-Myo followed by B. malayi L3 challenge and the degree of protection was evaluated by observing microfilaraemia as well as adult worm establishment. Myo-pcD+Bm-Myo immunized animals not only developed 78.5% reduced blood microfilarial density but also decreased adult worm establishment by 75.3%. In addition, 75.4% of the recovered live females revealed sterilization over those of respective control animals. Myo-pcD+Bm-Myo triggered higher production of specific IgG and its isotypes which induced marked cellular adhesion and cytotoxicity (ADCC to microfilariae (mf and L3 in vitro. Both Th1 and Th2 cytokines were significantly up-regulated displaying a mixed immune response conferring considerable protection against B. malayi establishment by engendering a long-lasting effective immune response and therefore emerges as a potential vaccination method against LF.

  10. ORF Alignment: NC_006833 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available TRS of Brugia malayi] ... Length = 188 ... Query: 439 HPLGFARCQVYNTYIIAEARGK...LIIVDQHAAHERLVYECLKQKSSIKRQKLLLSEVVEIK 498 ... HPLGFARCQVYNTYIIAEARGKLIIVDQHAAHERLVYECLKQKSSIKRQKLLLSEVVEIK Sbjct: 1 ... HPLGFAR

  11. Dicty_cDB: Contig-U07003-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available aegypti infected with Brugia Mal... 50 0.090 1 ( DV278108 ) NAAF224TF Aedes aegypti - Fat Bodies Normalized ...(... 50 0.090 1 ( DV276715 ) NAAHF49TR Aedes aegypti - Fat Bodies Normalized (...

  12. Duration of detection of anti-BmR1 IgG4 antibodies after mass-drug administration (MDA) in Sarawak, Malaysia.

    Science.gov (United States)

    Noordin, R; Muhi, J; Md Idris, Z; Arifin, N; Kiyu, A

    2012-03-01

    The detection rates of brugian filariasis in three regions of Sarawak namely Central, North and South after three courses of mass drug administration (MDA) from year 2004 to 2006 was investigated. A recombinant BmR1 antigen-based IgG4 detection test, named Brugia Rapid and night blood smear for microfilaria (mf) detection were used. All three regions recorded a sharp fall in mf positive rates after a year post-MDA. Meanwhile Brugia Rapid positive rates declined more gradually to 3.8% and 5.6% of the pre-MDA levels in the Central and North regions, respectively. This study showed that in filariasis endemic areas in Sarawak, anti-filarial IgG4 antibodies to BmR1, as detected by the Brugia Rapid test, were positive for one to two years after mf disappearance.

  13. Dicty_cDB: Contig-U05658-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available ted with Brugia Mala... 44 2.4 1 ( DV286265 ) NAAI621TR Aedes aegypti - Fat Bodie...s Normalized (... 44 2.4 1 ( DV286264 ) NAAI621TF Aedes aegypti - Fat Bodies Normalized (... 44 2.4 1 ( CP00

  14. Differential expression of IgE and IgG4 specific antibody responses in asymptomatic and chronic human filariasis

    NARCIS (Netherlands)

    Kurniawan, A.; Yazdanbakhsh, M.; van Ree, R.; Aalberse, R.; Selkirk, M. E.; Partono, F.; Maizels, R. M.

    1993-01-01

    A population of 164 adult individuals resident in an area endemic for Brugia malayi lymphatic filariasis has been studied for humoral immune responses to filarial parasites. Antibody levels to Ag extracted from adult worms were determined for each of the IgG subclasses, for IgM and for IgE. The

  15. Primary structure of and immunoglobulin E response to the repeat subunit of gp15/400 from human lymphatic filarial parasites

    NARCIS (Netherlands)

    Paxton, W. A.; Yazdanbakhsh, M.; Kurniawan, A.; Partono, F.; Maizels, R. M.; Selkirk, M. E.

    1993-01-01

    We have isolated and sequenced clones encoding the repeated subunit of the surface-associated glycoprotein gp15/400 from the two nematode species predominantly responsible for lymphatic filariasis in humans: Brugia malayi and Wuchereria bancrofti. The amino acid sequence of the 15-kDa subunit,

  16. Diagnosis of brugian filariasis by loop-mediated isothermal amplification.

    Directory of Open Access Journals (Sweden)

    Catherine B Poole

    Full Text Available In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis.

  17. Repurposing auranofin as a lead candidate for treatment of lymphatic filariasis and onchocerciasis.

    Directory of Open Access Journals (Sweden)

    Christina A Bulman

    2015-02-01

    Full Text Available Two major human diseases caused by filariid nematodes are onchocerciasis, or river blindness, and lymphatic filariasis, which can lead to elephantiasis. The drugs ivermectin, diethylcarbamazine (DEC, and albendazole are used in control programs for these diseases, but are mainly effective against the microfilarial stage and have minimal or no effect on adult worms. Adult Onchocerca volvulus and Brugia malayi worms (macrofilariae can live for up to 15 years, reproducing and allowing the infection to persist in a population. Therefore, to support control or elimination of these two diseases, effective macrofilaricidal drugs are necessary, in addition to current drugs. In an effort to identify macrofilaricidal drugs, we screened an FDA-approved library with adult worms of Brugia spp. and Onchocerca ochengi, third-stage larvae (L3s of Onchocerca volvulus, and the microfilariae of both O. ochengi and Loa loa. We found that auranofin, a gold-containing drug used for rheumatoid arthritis, was effective in vitro in killing both Brugia spp. and O. ochengi adult worms and in inhibiting the molting of L3s of O. volvulus with IC50 values in the low micromolar to nanomolar range. Auranofin had an approximately 43-fold higher IC50 against the microfilariae of L. loa compared with the IC50 for adult female O. ochengi, which may be beneficial if used in areas where Onchocerca and Brugia are co-endemic with L. loa, to prevent severe adverse reactions to the drug-induced death of L. loa microfilariae. Further testing indicated that auranofin is also effective in reducing Brugia adult worm burden in infected gerbils and that auranofin may be targeting the thioredoxin reductase in this nematode.

  18. Morphological and molecular characteristics of Malayfilaria sofiani Uni, Mat Udin & Takaoka n. g., n. sp. (Nematoda: Filarioidea) from the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia) in Peninsular Malaysia.

    Science.gov (United States)

    Uni, Shigehiko; Mat Udin, Ahmad Syihan; Agatsuma, Takeshi; Saijuntha, Weerachai; Junker, Kerstin; Ramli, Rosli; Omar, Hasmahzaiti; Lim, Yvonne Ai-Lian; Sivanandam, Sinnadurai; Lefoulon, Emilie; Martin, Coralie; Belabut, Daicus Martin; Kasim, Saharul; Abdullah Halim, Muhammad Rasul; Zainuri, Nur Afiqah; Bhassu, Subha; Fukuda, Masako; Matsubayashi, Makoto; Harada, Masashi; Low, Van Lun; Chen, Chee Dhang; Suganuma, Narifumi; Hashim, Rosli; Takaoka, Hiroyuki; Azirun, Mohd Sofian

    2017-04-20

    The filarial nematodes Wuchereria bancrofti (Cobbold, 1877), Brugia malayi (Brug, 1927) and B. timori Partono, Purnomo, Dennis, Atmosoedjono, Oemijati & Cross, 1977 cause lymphatic diseases in humans in the tropics, while B. pahangi (Buckley & Edeson, 1956) infects carnivores and causes zoonotic diseases in humans in Malaysia. Wuchereria bancrofti, W. kalimantani Palmieri, Pulnomo, Dennis & Marwoto, 1980 and six out of ten Brugia spp. have been described from Australia, Southeast Asia, Sri Lanka and India. However, the origin and evolution of the species in the Wuchereria-Brugia clade remain unclear. While investigating the diversity of filarial parasites in Malaysia, we discovered an undescribed species in the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia). We examined 81 common treeshrews from 14 areas in nine states and the Federal Territory of Peninsular Malaysia for filarial parasites. Once any filariae that were found had been isolated, we examined their morphological characteristics and determined the partial sequences of their mitochondrial cytochrome c oxidase subunit 1 (cox1) and 12S rRNA genes. Polymerase chain reaction (PCR) products of the internal transcribed spacer 1 (ITS1) region were then cloned into the pGEM-T vector, and the recombinant plasmids were used as templates for sequencing. Malayfilaria sofiani Uni, Mat Udin & Takaoka, n. g., n. sp. is described based on the morphological characteristics of adults and microfilariae found in common treeshrews from Jeram Pasu, Kelantan, Malaysia. The Kimura 2-parameter distance between the cox1 gene sequences of the new species and W. bancrofti was 11.8%. Based on the three gene sequences, the new species forms a monophyletic clade with W. bancrofti and Brugia spp. The adult parasites were found in tissues surrounding the lymph nodes of the neck of common treeshrews. The newly described species appears most closely related to Wuchereria spp. and Brugia spp., but differs from these in

  19. ASPEK ZOONOTIK PARASIT NEMATODA PADA KERA DAN BINATANG MENGERAT DI BENGKULU, SUMATERA. INDONESIA

    Directory of Open Access Journals (Sweden)

    Untung S.

    2012-09-01

    Full Text Available Twentyfive monkeys and 481 rats were examined for parasitic nematodes in Bengkulu, nine species of nematode were found infecting these animals. Five of filarían nematodes, i.e. Brugia malayi, Brugia pahangi, Dirofilaria magnilarvatum and Edesonfilaria malayensis were infecting monkeys and one speciesTBreinlia booliati, was found infecting rats. Three species of gastrointestinal helminths, i.e. Trichuris trichiura, Enterobius vermicularis and Oestophagomomum spp were found in monkeys; a lung worm, Angiostrongylus cantonensis, was found in rats. The most important nematode species is B. malayi, which was found in Presbytis cristatus (36.8 % and in Macaca fascicularis (20.0 %. T. trichiura was found in R. cristatus (47.9 % and A. cantonensis in Rattus argentiventer (4.0 % and Rattus tiomanicus (2.9%.

  20. Lymphedema secondary to filariasis

    International Nuclear Information System (INIS)

    Leonard, J.C.; Humphrey, G.B.; Basmadjian, G.

    1985-01-01

    A 1-year-old immunodeficient boy developed brawny edema of the left foot. Lymphoscintigraphy revealed no evidence of left inguinal activity following pedal injection of Tc-99m-Sn phosphate. Over the next two months, the patient developed lymphedema on the right and repeat scintigraphy demonstrated no movement of isotope from the dorsum of either foot. Subsequent studies identified microfilaria in a nocturnal blood smear, which were thought to represent Brugia beaveri acquired by mosquito transmission in Oklahoma

  1. Attempts at immunization against Malayan filariasis using X-irradiated infective larvae

    International Nuclear Information System (INIS)

    Ramachandran, C.P.

    1975-01-01

    Recent studies on immunity to helminthic infections have shown that some degree of protective immunity may be stimulated by inoculations of attenuated living worms or their metabolites. Although much on these lines has been done with several helminths, little if any has been done with filarial infections in general. Experiments were designed to observe the effects of attempted immunization in the rhesus monkey as well as the domestic cat by the use of attenuated infective larvae of Brugia malayi. The sub-periodic strain of Brugia malayi, the major filarial parasite of man in Malaysia, maintained in the laboratory on experimentally infected cats and rhesus monkeys were used for the preparation of X-irradiated vaccines as well as for challenge inoculations. Third-stage infective larvae of Brugia malayi were obtained from experimentally fed Aedes togoi mosquitoes. Infective larvae were irradiated by X-rays, using a Dermopan X-ray unit at exposures between 10 - 40 kR. Rhesus monkeys and cats were inoculated twice with 100 - 400 attenuated larvae per inoculation at 2 week intervals and challenged about a month later by inoculation of 100 normal larvae. Control animals for each vaccination dose as well as for challenge doses were maintained. In rhesus monkeys persistent immunity to challenge infections (expressed as failure to cause microfilaraemia) were obtained in animals vaccinated with 200 infective larvae attenuated by X-irradiation at 20000 R. Encouraged with the results obtained on rhesus monkeys, similar experiments on an enlarged scale using varying strengths of the vaccines were carried out on the domestic cat, which is a more receptive animal host for Brugia malayi. However, all cats vaccinated when challenged came down with patent infection indicating lack of any definite immunity. In all these experiments, results of vaccine control animals showed that inoculation of irradiated larvae was not followed by the infection of microfilaria in the blood, indicating

  2. Identification of antigenic proteins of setaria cervi by immunoblotting technique

    International Nuclear Information System (INIS)

    Kaushal, N.A.; Kaushal, D.C.; Ghatak, S.

    1987-01-01

    Identification and characterization of antigenic proteins of Setaria cervi (bovine filarial parasite) adults and microfilariae was done by immunoblotting technique using hyperimmune rabbit sera against S. cervi and Brugia malayi. The antigens recognized by these sera were detected by using 125 I protein-A followed by autoradiography. Fifteen different antigens were observed to be common between adult and microfilarial stages of the parasite. Some stage specific antigens were also identified. Many antigens of S. cervi adults and microfilariae were also recognized by rabbit anti-B.malayi serum showing the existence of common antigenic determinants between the bovine and human filarial parasites

  3. SURVEI DARAH JARI FILARIASIS DI DESA BATUMARTA X KEC. MADANG SUKU III KABUPATEN OGAN KOMERING ULU (OKU TIMUR, SUMATERA SELATAN TAHUN 2012

    Directory of Open Access Journals (Sweden)

    R. Irpan Pahlepi

    2015-01-01

    Full Text Available AbstrakFilariasis atau penyakit kaki gajah adalah golongan penyakit menular yang disebabkan oleh cacing filaria  yang  ditularkan  melalui  berbagai  jenis  nyamuk.  Penyebaran  filariasis  hampir  meliputi  seluruh wilayah di Indonesia termasuk Kabupaten Ogan Komering Ulu (OKU Timur. Angka kesakitan filarisis di Kabupaten OKU Timur tahun 2007 sebesar 1,05%. Kegiatan pengobatan massal di Kabupaten OKU Timur belum pernah dilakukan sampai saat ini, sehingga perlu dilakukan penelitian yang bertujuan untuk mengetahui tingkat penyebaran penyakit filariasis. Penelitian ini merupakan penelitian survei dengan desain potong lintang. Pengambilan dan pemeriksaan sediaan darah jari dilakukan pada malam hari dimulai pukul 19.00 WIB. Jumlah penduduk yang diperiksa sebanyak 502. Hasil pemeriksaan diperoleh 4 orang positif mikrofilaria (Mf_ rate 0,8% dengan spesies Brugia  malayi  dan  kepadatan  rata-rata  200mf/ml.  Seluruh  kasus  yang  ditemukan  merupakan  kasus baru. Hasil penelitian ini menunjukkan bahwa penularan filariasis masih terjadi di Kabupaten OKU Timur sehingga perlu adanya pengobatan massal untuk mencegah penularan lebih lanjut.Kata kunci : Filariasis, Brugia malayi, Survei darah jari, OKU TimurAbstractFilariasis or elephantiasis is an infectious diseases caused by filarial worms that transmitted by various species of mosquitoes. Filariasis distributions almost covers all districts in Indonesia including East Ogan Komering Ulu (OKU. Filarisais morbidity in East OKU regency in 2007 was 1.05 %. Mass treatment in the district of East OKU have not been done yet, so it is necessary to do a research that aim to determine the prevalen of filariasis. This study is a cross-sectional survey design. Collection and examination of finger’s blood was done at night starting at 19:00. Number of people examined were 502. Examination results obtained 4 positive microfilariae (Mf_ rate 0.8 % of Brugia malayi and the average density of 200

  4. Loiasis in a Japanese Traveler Returning from Central Africa

    Science.gov (United States)

    Kobayashi, Tetsuro; Hayakawa, Kayoko; Mawatari, Momoko; Itoh, Makoto; Akao, Nobuaki; Yotsu, Rie R.; Sugihara, Jun; Takeshita, Nozomi; Kutsuna, Satoshi; Fujiya, Yoshihiro; Kanagawa, Shuzo; Ohmagari, Norio; Kato, Yasuyuki

    2015-01-01

    We encountered a probable case of loiasis in a returned traveler from Central Africa. A 52-year-old Japanese woman presented to our hospital complaining of discomfort in her eyes and skin. She reported having frequently visited Central Africa over many years and having been extensively exposed to the rainforest climate and ecosystem. Although no microfilariae were found in her blood, there was an elevated level of IgG antibodies against the crude antigens of Brugia pahangi, which have cross-reactivity with Loa loa. She was treated with albendazole for 21 days, after which the antigen-specific IgG level decreased and no relapse occurred. PMID:26161033

  5. Ocular Manifestations of Mosquito-Transmitted Diseases.

    Science.gov (United States)

    Karesh, James W; Mazzoli, Robert A; Heintz, Shannon K

    2018-03-01

    Of the 3,548 known mosquito species, about 100 transmit human diseases. Mosquitoes are distributed globally throughout tropical and temperate regions where standing water sources are available for egg laying and the maturation of larva. Female mosquitoes require blood meals for egg production. This is the main pathway for disease transmission. Mosquitoes carry several pathogenic organisms responsible for significant ocular pathology and vision loss including West Nile, Rift Valley, chikungunya, dengue viruses, various encephalitis viruses, malarial parasites, Francisella tularensis, microfilarial parasites, including Dirofilaria, Wuchereria, and Brugia spp., and human botfly larvae. Health care providers may not be familiar with many of these mosquito-transmitted diseases or their associated ocular findings delaying diagnosis, treatment, and recovery of visual function. This article aims to provide an overview of the ocular manifestations associated with mosquito-transmitted diseases.

  6. Plasmodium knowlesi and Wucheriria bancrofti: Their vectors and challenges for the future

    Directory of Open Access Journals (Sweden)

    Indra eVythilingam

    2012-05-01

    Full Text Available Malaria and filariasis still continue to pose public health problems in developing countries of the tropics. Although plans are ongoing for the elimination of both these parasitic vector borne diseases, we are now faced with a daunting challenge as we have a fifth species, Plasmodium knowlesi a simian malaria parasite affecting humans. Similarly in peninsular Malaysia, filariasis was mainly due to Brugia malayi, however, we now see cases of W. bancrofti in immigrant workers coming into the country. Work is on going to eliminate malaria and filariasis from the country. In order to be successful we need to revamp our control measures. Thus this paper attempts to review the vectors of malaria and filariasis in Southeast Asia with special emphasis on P. knowlesi and W. bancrofti and their control strategies.

  7. Serine protease inhibitors of parasitic helminths.

    Science.gov (United States)

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships.

  8. A PRELIMINARY STUDY OF MALAYAN FILARIASIS IN PUDING VILLAGE, JAMBI PROVINCE (SUMATERA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Sudomo M.

    2012-09-01

    Full Text Available Beberapa daerah di Propinsi Jambi akan dikembangkan menjadi daerah transmigrasi, satu di antara­nya adalah daerah Kumpeh yang terletak berdekatan dengan daerah endemik filariasis malayi. Desa yang paling dekat dengan lokasi transmigrasi tersebut adalah desa Puding. Penelitian pendahuluan tentang penyakit filariasis telah dikerjakan di desa Puding untuk mengetahui tingkat endemisitas, periodisitas B. malayi, fauna nyamuk, jenis nyamuk yang potensial menjadi vektor filariasis, hospes reservoir dan keadaan sosial-ekonomi-budaya penduduk setempat. Mf rate pada penduduk desa Puding adalah 18,7% dan dari B. malayi jenis subperiodiknokturna. Nyamuk yang tertangkap terdiri dari enam genera yaitu genus Anopheles, Aedes, Culex, Coquilletidia, Mansonia dan Tripteroides. Dari enam genera tersebut yang potensial untuk menjadi vektor filariasis adalah genus Mansonia dan ini didukung dengan diketemukannyd larva stadium L3 (infektif Brugia sp di tubuh nyamuk tersebut. Keadaan sosial-ekonomi-budaya, khususnya menyangkut adat istiadat dan kebiasaan penduduk setempat, telah dipelajari.

  9. Dicty_cDB: Contig-U12802-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available cobacter cetorum strain MIT-0... 38 0.23 AF237484_1( AF237484 |pid:none) Dirofilaria immitis intermed...87 ( O97594 ) RecName: Full=Structural maintenance of chromosomes pro... 36 0.87 U00680_1( U00680 |pid:none) Brugia malayi intermed...1305( CP000879 |pid:none) Petrotoga mobilis SJ95, complet... 38 0.30 (Q9BZF9) RecName: Full=Uveal autoantigen with coiled...ns BAC clone RP11-764E7 from 2, complet... 34 0.79 6 ( FK620261 ) 454GmaGlobSeed354893 Soybean Seed...ditis elegans clone Y71H2X, *** SEQUENCI... 38 4.5 7 ( AC146972 ) Medicago truncatula clone mth2-128d9, compl

  10. STUDI ENDEMISITAS FILARIASIS DI WILAYAH KECAMATAN PEMAYUNG, KABUPATEN BATANGHARI PASCA PENGOBATAN MASSAL TAHAP III

    Directory of Open Access Journals (Sweden)

    Yahya Yahya

    2013-05-01

    Full Text Available Abstract Filariasis endemicity research in District Pemayung, Batanghari Regency Post-Mass Drug Administration Phase III has been implemented. The study aims to determine the prevalence of filariasis, microfilaria worm species, the periodicity, reservoir determination and evaluate the results of mass treatment activities that have been 3 times. The number of people who checked their blood preparation for the examination as many as 538. Blood sampling for the periodicity of the parasite examinations performed on 4 persons, each carried out blood sampling every 2 hours for 24 hours. People microfilariae with microfilariae positive number as many as 8 people to rate microfilariae (Mf rate 1.5%.. The highest parasite density of 17.493 per 20 cu mm of blood occurred at 1:00 am and decresing to 0,415 per 20 cu mm of blood at 07.00 am. The parasite was found in sub periodic nokturna 3 subjects and 1 subject was found only be found in the morning and afternoon. The results of examination of 12 cats and two monkeys were found two positive cats with Brugia malayi microfilariae. Cats that were examined and the positive was one house cat and one stray cat. The conclusion from this study showed that filariasis was still endemic with periodicity of microfilariae was sub periodic nokturna and was zoonotic. Recommendations of this study was that mass treatment  was done by giving the drug directly and took medicine in front of the officers, examination and treatment of microfilariae positive cats. Key words: microfilariae rate, periodicity, Brugia malayi, reservoir. Abstrak  Submit : 28-03-2012  Review : 04-04-2012 Review : 11-06-2012 revisi : 29–08-2012Penelitian untuk menentukan tingkat endemisitas filariasis di wilayah Kecamatan Pemayung, Kabupaten Batanghari Pasca Pengobatan Massal Tahap III telah dilaksanakan. Penelitian bertujuan untuk mengetahui prevalensi filariasis, mengetahui spesies cacing mikrofilaria, periodisitas mikrofilaria dan pemeriksaan

  11. Transmission assessment surveys (TAS to define endpoints for lymphatic filariasis mass drug administration: a multicenter evaluation.

    Directory of Open Access Journals (Sweden)

    Brian K Chu

    Full Text Available BACKGROUND: Lymphatic filariasis (LF is targeted for global elimination through treatment of entire at-risk populations with repeated annual mass drug administration (MDA. Essential for program success is defining and confirming the appropriate endpoint for MDA when transmission is presumed to have reached a level low enough that it cannot be sustained even in the absence of drug intervention. Guidelines advanced by WHO call for a transmission assessment survey (TAS to determine if MDA can be stopped within an LF evaluation unit (EU after at least five effective rounds of annual treatment. To test the value and practicality of these guidelines, a multicenter operational research trial was undertaken in 11 countries covering various geographic and epidemiological settings. METHODOLOGY: The TAS was conducted twice in each EU with TAS-1 and TAS-2 approximately 24 months apart. Lot quality assurance sampling (LQAS formed the basis of the TAS survey design but specific EU characteristics defined the survey site (school or community, eligible population (6-7 year olds or 1(st-2(nd graders, survey type (systematic or cluster-sampling, target sample size, and critical cutoff (a statistically powered threshold below which transmission is expected to be no longer sustainable. The primary diagnostic tools were the immunochromatographic (ICT test for W. bancrofti EUs and the BmR1 test (Brugia Rapid or PanLF for Brugia spp. EUs. PRINCIPAL FINDINGS/CONCLUSIONS: In 10 of 11 EUs, the number of TAS-1 positive cases was below the critical cutoff, indicating that MDA could be stopped. The same results were found in the follow-up TAS-2, therefore, confirming the previous decision outcome. Sample sizes were highly sex and age-representative and closely matched the target value after factoring in estimates of non-participation. The TAS was determined to be a practical and effective evaluation tool for stopping MDA although its validity for longer-term post

  12. FAKTOR-FAKTOR YANG MEMPENGARUHI KEJADIAN FILARIASIS DI INDONESIA (DATA RISKESDAS 2007

    Directory of Open Access Journals (Sweden)

    Mardiana Mardiana

    2012-11-01

    Full Text Available Filariasis or elephantiasis diseases which caused by filaria worm and contagious through mosquito bite, still the major community health problem in Indonesia. There are several type of filaria worm in Indonesia, i.e. Wuchereria bancrofti, Brugia malayi and Brugia timori. The vectors of filariasis are Culex quinquefasciatus in the urban area, Anopheles spp, Aedes spp and Mansonia spp in the rural area. The infection risk in some area of filariasis related to the situation of local area. Various factor of environmental area which area physical, biological and also cultural social to be influence to development of transmitted filariasis by mosquito. The analysis of data Riskesdas 2007 has been done to perform of factor influence filariasis case in Indonesia. Same parameters was analyzed to case of filariasis in last 12 months; gender, ages, educations, work, mosquito net usage, sources of water, effluent dismissal, residences, water dismissal channel, existence of livestock in house. From analysis inferential, show there is no relation between genders, age, education, work, and mosquito net usage, sources of water, water dismissal channel, and existence of livestock in house to case filariasis. Statistically indicates that there is significantly difference between residences in rural and in urban to case of filariasis in last 12 months. Responder who live in rural areas (0,05% have 2,4 times risk higher than responder who live in urban (0,03%. The same as condition of water dismissal channel shows to existence of significantly differences. Responder who have water dismissal channel without cover have high risk infections of filariasis in the last 12 months were 0,05%, while the responder have water dismissal channel with cover have high risk in last 12 months were 0,03%. Keywords: Filariasis, endemic area, factors

  13. Transmission assessment surveys (TAS) to define endpoints for lymphatic filariasis mass drug administration: a multicenter evaluation.

    Science.gov (United States)

    Chu, Brian K; Deming, Michael; Biritwum, Nana-Kwadwo; Bougma, Windtaré R; Dorkenoo, Améyo M; El-Setouhy, Maged; Fischer, Peter U; Gass, Katherine; Gonzalez de Peña, Manuel; Mercado-Hernandez, Leda; Kyelem, Dominique; Lammie, Patrick J; Flueckiger, Rebecca M; Mwingira, Upendo J; Noordin, Rahmah; Offei Owusu, Irene; Ottesen, Eric A; Pavluck, Alexandre; Pilotte, Nils; Rao, Ramakrishna U; Samarasekera, Dilhani; Schmaedick, Mark A; Settinayake, Sunil; Simonsen, Paul E; Supali, Taniawati; Taleo, Fasihah; Torres, Melissa; Weil, Gary J; Won, Kimberly Y

    2013-01-01

    Lymphatic filariasis (LF) is targeted for global elimination through treatment of entire at-risk populations with repeated annual mass drug administration (MDA). Essential for program success is defining and confirming the appropriate endpoint for MDA when transmission is presumed to have reached a level low enough that it cannot be sustained even in the absence of drug intervention. Guidelines advanced by WHO call for a transmission assessment survey (TAS) to determine if MDA can be stopped within an LF evaluation unit (EU) after at least five effective rounds of annual treatment. To test the value and practicality of these guidelines, a multicenter operational research trial was undertaken in 11 countries covering various geographic and epidemiological settings. The TAS was conducted twice in each EU with TAS-1 and TAS-2 approximately 24 months apart. Lot quality assurance sampling (LQAS) formed the basis of the TAS survey design but specific EU characteristics defined the survey site (school or community), eligible population (6-7 year olds or 1(st)-2(nd) graders), survey type (systematic or cluster-sampling), target sample size, and critical cutoff (a statistically powered threshold below which transmission is expected to be no longer sustainable). The primary diagnostic tools were the immunochromatographic (ICT) test for W. bancrofti EUs and the BmR1 test (Brugia Rapid or PanLF) for Brugia spp. EUs. In 10 of 11 EUs, the number of TAS-1 positive cases was below the critical cutoff, indicating that MDA could be stopped. The same results were found in the follow-up TAS-2, therefore, confirming the previous decision outcome. Sample sizes were highly sex and age-representative and closely matched the target value after factoring in estimates of non-participation. The TAS was determined to be a practical and effective evaluation tool for stopping MDA although its validity for longer-term post-MDA surveillance requires further investigation.

  14. Filarial worms reduce Plasmodium infectivity in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Matthew T Aliota

    2011-02-01

    Full Text Available Co-occurrence of malaria and filarial worm parasites has been reported, but little is known about the interaction between filarial worm and malaria parasites with the same Anopheles vector. Herein, we present data evaluating the interaction between Wuchereria bancrofti and Anopheles punctulatus in Papua New Guinea (PNG. Our field studies in PNG demonstrated that An. punctulatus utilizes the melanization immune response as a natural mechanism of filarial worm resistance against invading W. bancrofti microfilariae. We then conducted laboratory studies utilizing the mosquitoes Armigeres subalbatus and Aedes aegypti and the parasites Brugia malayi, Brugia pahangi, Dirofilaria immitis, and Plasmodium gallinaceum to evaluate the hypothesis that immune activation and/or development by filarial worms negatively impact Plasmodium development in co-infected mosquitoes. Ar. subalbatus used in this study are natural vectors of P. gallinaceum and B. pahangi and they are naturally refractory to B. malayi (melanization-based refractoriness.Mosquitoes were dissected and Plasmodium development was analyzed six days after blood feeding on either P. gallinaceum alone or after taking a bloodmeal containing both P. gallinaceum and B. malayi or a bloodmeal containing both P. gallinaceum and B. pahangi. There was a significant reduction in the prevalence and mean intensity of Plasmodium infections in two species of mosquito that had dual infections as compared to those mosquitoes that were infected with Plasmodium alone, and was independent of whether the mosquito had a melanization immune response to the filarial worm or not. However, there was no reduction in Plasmodium development when filarial worms were present in the bloodmeal (D. immitis but midgut penetration was absent, suggesting that factors associated with penetration of the midgut by filarial worms likely are responsible for the observed reduction in malaria parasite infections.These results could have an

  15. How elimination of lymphatic filariasis as a public health problem in the Kingdom of Cambodia was achieved.

    Science.gov (United States)

    Khieu, Virak; Or, Vandine; Tep, Chhakda; Odermatt, Peter; Tsuyuoka, Reiko; Char, Meng Chuor; Brady, Molly A; Sidwell, Joshua; Yajima, Aya; Huy, Rekol; Ramaiah, Kapa D; Muth, Sinuon

    2018-02-20

    Endemicity of lymphatic filariasis (LF) in Cambodia was proven in 1956 when microfilariae were detected in mosquitos in the Kratié province. In 2001, an extensive study confirmed the presence of both Brugia malayi and Wuchereria bancrofti microfilariae. In 2003, the Ministry of Health established a national task force to develop policies and strategies for controlling and eliminating neglected tropical diseases (NTDs), with the goal of eliminating LF by 2015. This article summarizes the work accomplished to eliminate LF as a public health problem in Cambodia. The National Program to Eliminate Lymphatic Filariasis made excellent progress in the goal towards elimination due to strong collaboration between ministries, intensive supervision by national staff, and advocacy for mobilization of internal and external resources. Mass drug administration (MDA) with diethylcarbamazine citrate and albendazole was conducted in six implementation units, achieving > 70% epidemiological coverage for five consecutive rounds, from 2005 to 2009. In 2006, in 14 provinces, healthcare workers developed a line list of lymphedema and hydrocele patients, many of whom were > 40 years old and had been affected by LF for many years. The national program also trained healthcare workers and provincial and district staff in morbidity management and disability prevention, and designated health centers to provide care for lymphedema and acute attack. Two reference hospitals were designated to administer hydrocele surgery. Effectiveness of MDA was proven with transmission assessment surveys. These found that less than 1% of school children had antigenemia in 2010, which fell to 0% in both 2013 and 2015. A separate survey in one province in 2015 using Brugia Rapid tests to test for LF antibody found one child positive among 1677 children. The list of chronic LF patients was most recently updated and confirmed in 2011-2012, with 32 lymphoedema patients and 17 hydrocele patients listed. All

  16. Cakupan Pemberian Obat Pencegahan Massal Filariasis di Kabupaten Sumba Barat Daya Tahun 2012-2013

    Directory of Open Access Journals (Sweden)

    Zahrotul Habibah

    2016-03-01

    Full Text Available Filariasis merupakan masalah kesehatan masyarakat terutama di Indonesia Timur antara lain di Kabupaten Sumba Barat Daya (SBD. Untuk mengeliminasi filariasis, WHO membuat program PemberianObat Pencegahan Masal (POPM dengan dietilkarbamazin sitrat dan albendazol setiap tahun selama 5tahun berturut-turut. Untuk mengetahui keberhasilan POPM, perlu dilakukan evaluasi cakupan POPM setiaptahun. Tujuan penelitian ini adalah mengetahui cakupan POPM di SBD pada tahun 2012-2013. Penelitanini menggunakan data POPM Dinas Kesehatan SBD pada tahun 2012 dan 2013. Cakupan POPM filariasisdihitung berdasarkan jumlah penduduk minum obat dibagi penduduk total dan jumlah penduduk sasaran.Target cakupan pengobatan penduduk sasaran adalah >85% dan dari penduduk total adalah  > 65%. Hasilpenelitian menunjukkan cakupan POPM filariasis berdasarkan penduduk total pada tahun 2012 adalah 1,96%dan tahun 2013 sebesar 1,13%. Cakupan POPM filariasis berdasarkan penduduk sasaran pada tahun 2012adalah 2,51% dan tahun 2013 adalah 1,35%. Disimpulkan bahwa cakupan POPM filariasis berdasarkanpenduduk sasaran dan penduduk total di SBD sangat rendah dan cakupan tahun 2013 lebih rendahdibandingkan tahun 2012. Kata kunci: W. bancrofti, B.malayi, B.timori, pemberian obat masal pencegahan, Sumba Barat Daya   Coverage of Mass Drugs Administration (MDA for Filariasis inSouth West Sumba on 2012-2013 AbstractFilariasis is a disease caused by Wuchereria bancrofti, Brugia malayi and Brugia timori. It is transmitted by mosquitos. It cause defect in patient’s physical condition, decrease social life, and increase health spending.WHO concepts a program to eliminate filariasis by Massal Drugs Administration (MDA of filariasis. It hasto be evaluated each year in five years by counting the coverage of MDA of filariasis in total population andtargeted population. This research used secondary data from Dinas Kesehatan in SBD to know the coverageof MDA of filariasis in SBD on 2012-2013. The coverage

  17. Generation and selection of naïve Fab library for parasitic antigen: Anti-BmSXP antibodies for lymphatic filariasis.

    Science.gov (United States)

    Omar, Noorsharmimi; Hamidon, Nurul Hamizah; Yunus, Muhammad Hafiznur; Noordin, Rahmah; Choong, Yee Siew; Lim, Theam Soon

    2018-05-01

    Phage display has been applied successfully as a tool for the generation of monoclonal antibodies (mAbs). Naive antibody libraries are unique as they are able to overcome several limitations associated with conventional mAb generation methods like the hybridoma technology. Here, we performed an in vitro selection and generation of Fab antibodies against Brugia malayi SXP protein (BmSXP), a recombinant antigen for the detection of lymphatic filariasis. We developed a naïve multi ethnic Fab antibody library with an estimated diversity of 2.99 × 10 9 . The antibody library was used to screen for mAbs against BmSXP recombinant antigen. Soluble monoclonal Fab antibodies against BmSXP were successfully isolated from the naïve library. The Fab antibodies obtained were expressed and analyzed to show its binding capability. The diversity obtained from a pool of donors from various ethnic groups allowed for a diverse antibody library to be generated. The mAbs obtained were also functional in soluble form, which makes it useful for further downstream applications. We believe that the Fab mAbs are valuable for further studies and could also contribute to improvements in the diagnosis of filariasis. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  18. First analysis of the secretome of the canine heartworm, Dirofilaria immitis

    Directory of Open Access Journals (Sweden)

    Geary James

    2012-07-01

    Full Text Available Abstract Background The characterization of proteins released from filariae is an important step in addressing many of the needs in the diagnosis and treatment of these clinically important parasites, as well as contributing to a clearer understanding of their biology. This report describes findings on the proteins released during in vitro cultivation of adult Dirofilaria immitis , the causative agent of canine and feline heartworm disease. Differences in protein secretion among nematodes in vivo may relate to the ecological niche of each parasite and the pathological changes that they induce. Methods The proteins in the secretions of cultured adult worms were run on Tris-Glycine gels, bands separated and peptides from each band analysed by ultra mass spectrometry and compared with a FastA dataset of predicted tryptic peptides derived from a genome sequence of D. immitis. Results This study identified 110 proteins. Of these proteins, 52 were unique to D. immitis . A total of 23 (44% were recognized as proteins likely to be secreted. Although these proteins were unique, the motifs were conserved compared with proteins secreted by other nematodes. Conclusion The present data indicate that D. immitis secretes proteins that are unique to this species, when compared with Brugia malayi. The two major functional groups of molecules represented were those representing cellular and of metabolic processes. Unique proteins might be important for maintaining an infection in the host environment, intimately involved in the pathogenesis of disease and may also provide new tools for the diagnosis of heartworm infection.

  19. Vector competence of Aedes aegypti mosquitoes for filarial nematodes is affected by age and nutrient limitation.

    Science.gov (United States)

    Ariani, Cristina V; Juneja, Punita; Smith, Sophia; Tinsley, Matthew C; Jiggins, Francis M

    2015-01-01

    Mosquitoes are one of the most important vectors of human disease. The ability of mosquitoes to transmit disease is dependent on the age structure of the population, as mosquitoes must survive long enough for the parasites to complete their development and infect another human. Age could have additional effects due to mortality rates and vector competence changing as mosquitoes senesce, but these are comparatively poorly understood. We have investigated these factors using the mosquito Aedes aegypti and the filarial nematode Brugia malayi. Rather than observing any effects of immune senescence, we found that older mosquitoes were more resistant, but this only occurred if they had previously been maintained on a nutrient-poor diet of fructose. Constant blood feeding reversed this decline in vector competence, meaning that the number of parasites remained relatively unchanged as mosquitoes aged. Old females that had been maintained on fructose also experienced a sharp spike in mortality after an infected blood meal ("refeeding syndrome") and few survived long enough for the parasite to develop. Again, this effect was prevented by frequent blood meals. Our results indicate that old mosquitoes may be inefficient vectors due to low vector competence and high mortality, but that frequent blood meals can prevent these effects of age. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Helminth Genomics: The Implications for Human Health

    Science.gov (United States)

    Brindley, Paul J.; Mitreva, Makedonka; Ghedin, Elodie; Lustigman, Sara

    2009-01-01

    More than two billion people (one-third of humanity) are infected with parasitic roundworms or flatworms, collectively known as helminth parasites. These infections cause diseases that are responsible for enormous levels of morbidity and mortality, delays in the physical development of children, loss of productivity among the workforce, and maintenance of poverty. Genomes of the major helminth species that affect humans, and many others of agricultural and veterinary significance, are now the subject of intensive genome sequencing and annotation. Draft genome sequences of the filarial worm Brugia malayi and two of the human schistosomes, Schistosoma japonicum and S. mansoni, are now available, among others. These genome data will provide the basis for a comprehensive understanding of the molecular mechanisms involved in helminth nutrition and metabolism, host-dependent development and maturation, immune evasion, and evolution. They are likely also to predict new potential vaccine candidates and drug targets. In this review, we present an overview of these efforts and emphasize the potential impact and importance of these new findings. PMID:19855829

  1. Genome mining offers a new starting point for parasitology research.

    Science.gov (United States)

    Lv, Zhiyue; Wu, Zhongdao; Zhang, Limei; Ji, Pengyu; Cai, Yifeng; Luo, Shiqi; Wang, Hongxi; Li, Hao

    2015-02-01

    Parasites including helminthes, protozoa, and medical arthropod vectors are a major cause of global infectious diseases, affecting one-sixth of the world's population, which are responsible for enormous levels of morbidity and mortality important and remain impediments to economic development especially in tropical countries. Prevalent drug resistance, lack of highly effective and practical vaccines, as well as specific and sensitive diagnostic markers are proving to be challenging problems in parasitic disease control in most parts of the world. The impressive progress recently made in genome-wide analysis of parasites of medical importance, including trematodes of Clonorchis sinensis, Opisthorchis viverrini, Schistosoma haematobium, S. japonicum, and S. mansoni; nematodes of Brugia malayi, Loa loa, Necator americanus, Trichinella spiralis, and Trichuris suis; cestodes of Echinococcus granulosus, E. multilocularis, and Taenia solium; protozoa of Babesia bovis, B. microti, Cryptosporidium hominis, Eimeria falciformis, E. histolytica, Giardia intestinalis, Leishmania braziliensis, L. donovani, L. major, Plasmodium falciparum, P. vivax, Trichomonas vaginalis, Trypanosoma brucei and T. cruzi; and medical arthropod vectors of Aedes aegypti, Anopheles darlingi, A. sinensis, and Culex quinquefasciatus, have been systematically covered in this review for a comprehensive understanding of the genetic information contained in nuclear, mitochondrial, kinetoplast, plastid, or endosymbiotic bacterial genomes of parasites, further valuable insight into parasite-host interactions and development of promising novel drug and vaccine candidates and preferable diagnostic tools, thereby underpinning the prevention and control of parasitic diseases.

  2. Non-endemic cases of lymphatic filariasis.

    Science.gov (United States)

    Jones, Robert T

    2014-11-01

    Several cases of lymphatic filariasis (LF) have been reported in non-endemic countries due to travellers, military personnel and expatriates spending time in and returning from endemic areas, as well as immigrants coming from these regions. These cases are reviewed to assess the scale and context of non-endemic presentations and to consider the biological factors underlying their relative paucity. Cases reported in the English, French, Spanish and Portuguese literature during the last 30 years were examined through a search of the PubMed, ProMED-mail and TropNet resources. The literature research revealed 11 cases of lymphatic filariasis being reported in non-endemic areas. The extent of further infections in recent migrants to non-endemic countries was also revealed through the published literature. The life-cycle requirements of Wuchereria and Brugia species limit the extent of transmission of LF outside of tropical regions. However, until elimination, programmes are successful in managing the disease, there remains a possibility of low rates of infection being reported in non-endemic areas, and increased international travel can only contribute to this phenomenon. Physicians need to be aware of the signs and symptoms of lymphatic filariasis, and infection should be considered in the differential diagnosis of people with a relevant travel history. © 2014 John Wiley & Sons Ltd.

  3. Targeting the Wolbachia cell division protein FtsZ as a new approach for antifilarial therapy.

    Directory of Open Access Journals (Sweden)

    Zhiru Li

    2011-11-01

    Full Text Available The use of antibiotics targeting the obligate bacterial endosymbiont Wolbachia of filarial parasites has been validated as an approach for controlling filarial infection in animals and humans. Availability of genomic sequences for the Wolbachia (wBm present in the human filarial parasite Brugia malayi has enabled genome-wide searching for new potential drug targets. In the present study, we investigated the cell division machinery of wBm and determined that it possesses the essential cell division gene ftsZ which was expressed in all developmental stages of B. malayi examined. FtsZ is a GTPase thereby making the protein an attractive Wolbachia drug target. We described the molecular characterization and catalytic properties of Wolbachia FtsZ. We also demonstrated that the GTPase activity was inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. Furthermore, berberine was also effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel anti-symbiotic approach for controlling filarial infection. NOTE: The nucleotide sequences reported in this paper are available in GenBank™ Data Bank under the accession number wAlB-FtsZ (JN616286.

  4. Assembly of the Genome of the Disease Vector Aedes aegypti onto a Genetic Linkage Map Allows Mapping of Genes Affecting Disease Transmission

    KAUST Repository

    Juneja, Punita

    2014-01-30

    The mosquito Aedes aegypti transmits some of the most important human arboviruses, including dengue, yellow fever and chikungunya viruses. It has a large genome containing many repetitive sequences, which has resulted in the genome being poorly assembled - there are 4,758 scaffolds, few of which have been assigned to a chromosome. To allow the mapping of genes affecting disease transmission, we have improved the genome assembly by scoring a large number of SNPs in recombinant progeny from a cross between two strains of Ae. aegypti, and used these to generate a genetic map. This revealed a high rate of misassemblies in the current genome, where, for example, sequences from different chromosomes were found on the same scaffold. Once these were corrected, we were able to assign 60% of the genome sequence to chromosomes and approximately order the scaffolds along the chromosome. We found that there are very large regions of suppressed recombination around the centromeres, which can extend to as much as 47% of the chromosome. To illustrate the utility of this new genome assembly, we mapped a gene that makes Ae. aegypti resistant to the human parasite Brugia malayi, and generated a list of candidate genes that could be affecting the trait. © 2014 Juneja et al.

  5. Limitations of the radioimmunoprecipitation polyethylene glycol assay (RIPEGA) for detection of filarial antigens in serum

    International Nuclear Information System (INIS)

    Hamilton, R.G.; Alexander, E.; Adkinson, N.F.

    1984-01-01

    The performance of the radioimmunoprecipitation polyethylene glycol assay (RIPEGA) was examined for quantitation of filarial antigens (Brugia malayi and Dirofilaria immitis) in serum from infected human and animal hosts and non-infected controls. Multiple PEG concentrations were employed to determine the level of non-specific binding (NSB) in non-exposed human sera (NEHS) containing no filarial antigen. The NSB observed when 3 different 125 I-labelled IgG antibodies were added to 26 NEHS varied 3-fold and was correlated significantly with total serum IgM (r = 0.80, P 2 fragment of the 125 I-labelled antibody was used, but the correlation of NSB with total serum IgM remained significant (r = 0.57, P < 0.01). The presence of rheumatoid factor in NEHS sera also significantly increased NSB by an average of 3-fold. These effects eliminated the assay's ability to detect in sera from infected hosts filarial antigen the presence of which could be readily demonstrated by an immunoradiometric assay. The RIPEGA's precision (intra-assay coefficient of variation (CV) = 21% at 35% Bsub(max)) and reproducibility (inter-assay CV = 29% at 35% Bsub(max)) are less satisfactory than many alternative immunoassays. (Auth.)

  6. Lymphatic filarial species differentiation using evolutionarily modified tandem repeats: generation of new genetic markers.

    Science.gov (United States)

    Sakthidevi, Moorthy; Murugan, Vadivel; Hoti, Sugeerappa Laxmanappa; Kaliraj, Perumal

    2010-05-01

    Polymerase chain reaction based methods are promising tools for the monitoring and evaluation of the Global Program for the Elimination of Lymphatic Filariasis. The currently available PCR methods do not differentiate the DNA of Wuchereria bancrofti or Brugia malayi by a single PCR and hence are cumbersome. Therefore, we designed a single step PCR strategy for differentiating Bancroftian infection from Brugian infection based on a newly identified gene from the W. bancrofti genome, abundant larval transcript-2 (alt-2), which is abundantly expressed. The difference in PCR product sizes generated from the presence or absence of evolutionarily altered tandem repeats in alt-2 intron-3 differentiated W. bancrofti from B. malayi. The analysis was performed on the genomic DNA of microfilariae from a number of patient blood samples or microfilariae positive slides from different Indian geographical regions. The assay gave consistent results, differentiating the two filarial parasite species accurately. This alt-2 intron-3 based PCR assay can be a potential tool for the diagnosis and differentiation of co-infections by lymphatic filarial parasites. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Recent Advances on the Use of Biochemical Extracts as Filaricidal Agents

    Directory of Open Access Journals (Sweden)

    Nazeh M. Al-Abd

    2013-01-01

    Full Text Available Lymphatic filariasis is a parasitic infection that causes a devastating public health and socioeconomic burden with an estimated infection of over 120 million individuals worldwide. The infection is caused by three closely related nematode parasites, namely, Wuchereria bancrofti, Brugia malayi, and B. timori, which are transmitted to human through mosquitoes of Anopheles, Culex, and Aedes genera. The species have many ecological variants and are diversified in terms of their genetic fingerprint. The rapid spread of the disease and the genetic diversification cause the lymphatic filarial parasites to respond differently to diagnostic and therapeutic interventions. This in turn prompts the current challenge encountered in its management. Furthermore, most of the chemical medications used are characterized by adverse side effects. These complications urgently warrant intense prospecting on bio-chemicals that have potent efficacy against either the filarial worms or thier vector. In lieu of this, we presented a review on recent literature that reported the efficacy of filaricidal biochemicals and those employed as vector control agents. In addition, methods used for biochemical extraction, screening procedures, and structure of the bioactive compounds were also presented.

  8. Lymphatic filariasis-specific immune responses in relation to lymphoedema grade and infection status. II. Humoral responses

    DEFF Research Database (Denmark)

    Nielsen, N. O.; Bloch, P.; Simonsen, P. E.

    2002-01-01

    The filarial-specific humoral responses (IgG1, IgG2, IgG3, IgG4 and IgE) to a Brugia pahangi antigen was assessed in 9 groups of adult individuals from a Wuchereria bancrofti-endemic area in north-east Tanzania. In 5 of the groups, individuals were negative for microfilariae (mf) and circulating...... filarial antigen (CFA) and had leg lymphoedema of varying severity ranging from early to more advanced grades. A 6th group had mixed grades of lymphoedema and were actively infected with mf and/or CFA. Three groups of asymptomatic individuals with different infection status (mf+CFA+; mf-CFA+; mf-CFA-) were...... also included. No differences in the antibody levels were observed between the 5 uninfected pathology groups. However, groups with advanced lymphoedema had a significantly higher level of IgG3 as compared to groups with early lymphoedema. A decline in the IgG4/IgE ratios were observed when moving from...

  9. Filarial excretory-secretory products induce human monocytes to produce lymphangiogenic mediators.

    Directory of Open Access Journals (Sweden)

    Tiffany Weinkopff

    2014-07-01

    Full Text Available The nematodes Wuchereria bancrofti and Brugia spp. infect over 120 million people worldwide, causing lymphedema, elephantiasis and hydrocele, collectively known as lymphatic filariasis. Most infected individuals appear to be asymptomatic, but many exhibit sub-clinical manifestations including the lymphangiectasia that likely contributes to the development of lymphedema and elephantiasis. As adult worm excretory-secretory products (ES do not directly activate lymphatic endothelial cells (LEC, we investigated the role of monocyte/macrophage-derived soluble factors in the development of filarial lymphatic pathology. We analyzed the production of IL-8, IL-6 and VEGF-A by peripheral blood mononuclear cells (PBMC from naïve donors following stimulation with filarial ES products. ES-stimulated PBMCs produced significantly more IL-8, IL-6 and VEGF-A compared to cells cultured in medium alone; CD14(+ monocytes appear to be the primary producers of IL-8 and VEGF-A, but not IL-6. Furthermore, IL-8, IL-6 and VEGF-A induced in vitro tubule formation in LEC Matrigel cultures. Matrigel plugs supplemented with IL-8, IL-6, VEGF-A, or with supernatants from ES-stimulated PBMCs and implanted in vivo stimulated lymphangiogenesis. Collectively, these data support the hypothesis that monocytes/macrophages exposed to filarial ES products may modulate lymphatic function through the secretion of soluble factors that stimulate the vessel growth associated with the pathogenesis of filarial disease.

  10. A new member of the GM130 golgin subfamily is expressed in the optic lobe anlagen of the metamorphosing brain of Manduca sexta

    Directory of Open Access Journals (Sweden)

    Chiou-Miin Wang

    2003-12-01

    Full Text Available During metamorphosis of the insect brain, the optic lobe anlagen generate the proliferation centers for the visual cortices. We show here that, in the moth Manduca sexta, an 80 kDa Golgi complex protein (Ms-golgin80 is abundantly expressed in the cytoplasm of neuroblasts and ganglion mother cells in the optic lobe anlagen and proliferation centers. The predicted amino acid sequence for Ms-golgin80 is similar to that of several members of the GM130 subfamily of Golgi-associated proteins, including rat GM130 and human golgin-95. Homologs of Ms-golgin80 from Drosophila melanogaster, Caenorhabditis elegans, and Brugia malayi were identified through homology sequence search. Sequence similarities are present in three regions: the N-terminus, an internal domain of 89 amino acids, and another domain of 89 amino acids near the C-terminus. Structural similarities further suggest that these molecules play the same cellular role as GM130. GM130 is involved in the docking and fusion of coatomer (COP I coated vesicles to the Golgi membranes; it also regulates the fragmentation and subsequent reassembly of the Golgi complex during mitosis. Abundant expression of Ms-golgin80 in neuroblasts and ganglion mother cells and its reduced expression in the neuronal progeny of these cells suggest that this protein may be involved in the maintenance of the proliferative state.

  11. Polyanhydride Nanoparticle Delivery Platform Dramatically Enhances Killing of Filarial Worms.

    Directory of Open Access Journals (Sweden)

    Andrea M Binnebose

    Full Text Available Filarial diseases represent a significant social and economic burden to over 120 million people worldwide and are caused by endoparasites that require the presence of symbiotic bacteria of the genus Wolbachia for fertility and viability of the host parasite. Targeting Wolbachia for elimination is a therapeutic approach that shows promise in the treatment of onchocerciasis and lymphatic filariasis. Here we demonstrate the use of a biodegradable polyanhydride nanoparticle-based platform for the co-delivery of the antibiotic doxycycline with the antiparasitic drug, ivermectin, to reduce microfilarial burden and rapidly kill adult worms. When doxycycline and ivermectin were co-delivered within polyanhydride nanoparticles, effective killing of adult female Brugia malayi filarial worms was achieved with approximately 4,000-fold reduction in the amount of drug used. Additionally the time to death of the macrofilaria was also significantly reduced (five-fold when the anti-filarial drug cocktail was delivered within polyanhydride nanoparticles. We hypothesize that the mechanism behind this dramatically enhanced killing of the macrofilaria is the ability of the polyanhydride nanoparticles to behave as a Trojan horse and penetrate the cuticle, bypassing excretory pumps of B. malayi, and effectively deliver drug directly to both the worm and Wolbachia at high enough microenvironmental concentrations to cause death. These provocative findings may have significant consequences for the reduction in the amount of drug and the length of treatment required for filarial infections in terms of patient compliance and reduced cost of treatment.

  12. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence

    Science.gov (United States)

    Gordon, Kacy L.; Arthur, Robert K.; Ruvinsky, Ilya

    2015-01-01

    Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. PMID:26020930

  13. Molecular characterization and functional analysis of serine/threonine protein phosphatase of Toxocara canis.

    Science.gov (United States)

    Ma, Guang Xu; Zhou, Rong Qiong; Hu, Shi Jun; Huang, Han Cheng; Zhu, Tao; Xia, Qing You

    2014-06-01

    Toxocara canis (T. canis) is a widely prevalent zoonotic parasite that infects a wide range of mammalian hosts, including humans. We generated the full-length complementary DNA (cDNA) of the serine/threonine phosphatase gene of T. canis (Tc stp) using 5' rapid amplification of the cDNA ends. The 1192-bp sequence contained a continuous 942-nucleotide open reading frame, encoding a 313-amino-acid polypeptide. The Tc STP polypeptide shares a high level of amino-acid sequence identity with the predicted STPs of Loa loa (89%), Brugia malayi (86%), Oesophagostomum columbianum (76%), and Oesophagostomumdentatum (76%). The Tc STP contains GDXHG, GDXVDRG, GNHE motifs, which are characteristic of members of the phosphoprotein phosphatase family. Our quantitative real-time polymerase chain reaction analysis showed that the Tc STP was expressed in six different tissues in the adult male, with high-level expression in the spermary, vas deferens, and musculature, but was not expressed in the adult female, suggesting that Tc STP might be involved in spermatogenesis and mating behavior. Thus, STP might represent a potential molecular target for controlling T. canis reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence.

    Directory of Open Access Journals (Sweden)

    Kacy L Gordon

    2015-05-01

    Full Text Available Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2 from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements.

  15. A Cell-Based Screen Reveals that the Albendazole Metabolite, Albendazole Sulfone, Targets Wolbachia

    Science.gov (United States)

    Bray, Walter M.; White, Pamela M.; Ruybal, Jordan; Lokey, R. Scott; Debec, Alain; Sullivan, William

    2012-01-01

    Wolbachia endosymbionts carried by filarial nematodes give rise to the neglected diseases African river blindness and lymphatic filariasis afflicting millions worldwide. Here we identify new Wolbachia-disrupting compounds by conducting high-throughput cell-based chemical screens using a Wolbachia-infected, fluorescently labeled Drosophila cell line. This screen yielded several Wolbachia-disrupting compounds including three that resembled Albendazole, a widely used anthelmintic drug that targets nematode microtubules. Follow-up studies demonstrate that a common Albendazole metabolite, Albendazole sulfone, reduces intracellular Wolbachia titer both in Drosophila melanogaster and Brugia malayi, the nematode responsible for lymphatic filariasis. Significantly, Albendazole sulfone does not disrupt Drosophila microtubule organization, suggesting that this compound reduces titer through direct targeting of Wolbachia. Accordingly, both DNA staining and FtsZ immunofluorescence demonstrates that Albendazole sulfone treatment induces Wolbachia elongation, a phenotype indicative of binary fission defects. This suggests that the efficacy of Albendazole in treating filarial nematode-based diseases is attributable to dual targeting of nematode microtubules and their Wolbachia endosymbionts. PMID:23028321

  16. VECTORS OF MALARIA AND FILARIASIS IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Hoedojo Hoedojo

    2012-09-01

    Full Text Available Malaria at present is still one of the important mosquito-borne diseases in Indonesia. The disease is widespread all over the country and involves nearly all islands. Sixteen Anopheles species have been reconfirmed as malaria vectors. They were distributed geographi­cally as follows: Coastal areas and lagoons ------------------------------------- An sundaicus and An.subpictus Cultivated ricefields and swampy areas -------------------- An.aconitus, An.barbirostris, An.nigerrimus and An.sinensis Forest inland areas in shaded temporary pools, muddy animal wallows and hoof-prints -------------------------------------------------------- An.balabacensis, An.bancrofti, An.farauti, An.koliensis and An.punctulatus Swamp forest edge in ditches with vegeta- ---------------- An.letifer and An.ludlowae don Hilly areas in seepages, streams and clear moving water ---------------------------------------------- Anflavirostris, An.maculatus and Anminimus.   The species (of most general importance is An.sundaicus, which is restricted by its preference for brackish water and is prevalent in coastal areas of Java. Their types in behaviour of An.sundaicus appear as follows : 1. An.sundaicus in South Coast of Java in general. This species is essentially anthropophilic, exophagic and rests outdoor. It shows susceptible to DDT. 2. An.sundaicus in Cilacap, Central Java. This mosquito is a pure anthropophilic form. It bites man in houses and outdoors, rests indoors and is known resistant to DDT. 3. An.sundaicus in Yogyakarta and Purworejo, Central Java. This mosquito is a strong zoophilic species. It rests and prefers to bite outdoors and shows tolerance to DDT. Human filariasis in Indonesia is the result of infection by three endemic species, namely, Wuchereria bancrofti, Brugia malayi, and Brugia timori.W.bancrofti infection is found in both urban and rural areas. Twenty species of mosquitoes are confirmed as filariasis vectors. The urban type bancroftian filariasis

  17. Utilization of computer processed high definition video imaging for measuring motility of microscopic nematode stages on a quantitative scale: "The Worminator".

    Science.gov (United States)

    Storey, Bob; Marcellino, Chris; Miller, Melissa; Maclean, Mary; Mostafa, Eman; Howell, Sue; Sakanari, Judy; Wolstenholme, Adrian; Kaplan, Ray

    2014-12-01

    A major hindrance to evaluating nematode populations for anthelmintic resistance, as well as for screening existing drugs, new compounds, or bioactive plant extracts for anthelmintic properties, is the lack of an efficient, objective, and reproducible in vitro assay that is adaptable to multiple life stages and parasite genera. To address this need we have developed the "Worminator" system, which objectively and quantitatively measures the motility of microscopic stages of parasitic nematodes. The system is built around the computer application "WormAssay", developed at the Center for Discovery and Innovation in Parasitic Diseases at the University of California, San Francisco. WormAssay was designed to assess motility of macroscopic parasites for the purpose of high throughput screening of potential anthelmintic compounds, utilizing high definition video as an input to assess motion of adult stage (macroscopic) parasites (e.g. Brugia malayi). We adapted this assay for use with microscopic parasites by modifying the software to support a full frame analysis mode that applies the motion algorithm to the entire video frame. Thus, the motility of all parasites in a given well are recorded and measured simultaneously. Assays performed on third-stage larvae (L3) of the bovine intestinal nematode Cooperia spp., as well as microfilariae (mf) of the filarioid nematodes B. malayi and Dirofilaria immitis, yielded reproducible dose responses using the macrocyclic lactones ivermectin, doramectin, and moxidectin, as well as the nicotinic agonists, pyrantel, oxantel, morantel, and tribendimidine. This new computer based-assay is simple to use, requires minimal new investment in equipment, is robust across nematode genera and developmental stage, and does not require subjective scoring of motility by an observer. Thus, the "Worminator" provides a relatively low-cost platform for developing genera- and stage-specific assays with high efficiency and reproducibility, low labor input

  18. Utilization of computer processed high definition video imaging for measuring motility of microscopic nematode stages on a quantitative scale: “The Worminator”

    Directory of Open Access Journals (Sweden)

    Bob Storey

    2014-12-01

    Full Text Available A major hindrance to evaluating nematode populations for anthelmintic resistance, as well as for screening existing drugs, new compounds, or bioactive plant extracts for anthelmintic properties, is the lack of an efficient, objective, and reproducible in vitro assay that is adaptable to multiple life stages and parasite genera. To address this need we have developed the “Worminator” system, which objectively and quantitatively measures the motility of microscopic stages of parasitic nematodes. The system is built around the computer application “WormAssay”, developed at the Center for Discovery and Innovation in Parasitic Diseases at the University of California, San Francisco. WormAssay was designed to assess motility of macroscopic parasites for the purpose of high throughput screening of potential anthelmintic compounds, utilizing high definition video as an input to assess motion of adult stage (macroscopic parasites (e.g. Brugia malayi. We adapted this assay for use with microscopic parasites by modifying the software to support a full frame analysis mode that applies the motion algorithm to the entire video frame. Thus, the motility of all parasites in a given well are recorded and measured simultaneously. Assays performed on third-stage larvae (L3 of the bovine intestinal nematode Cooperia spp., as well as microfilariae (mf of the filarioid nematodes B. malayi and Dirofilaria immitis, yielded reproducible dose responses using the macrocyclic lactones ivermectin, doramectin, and moxidectin, as well as the nicotinic agonists, pyrantel, oxantel, morantel, and tribendimidine. This new computer based-assay is simple to use, requires minimal new investment in equipment, is robust across nematode genera and developmental stage, and does not require subjective scoring of motility by an observer. Thus, the “Worminator” provides a relatively low-cost platform for developing genera- and stage-specific assays with high efficiency and

  19. Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis

    Science.gov (United States)

    Joseph, SK; Ramaswamy, K

    2013-01-01

    The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and Protein or Protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-Protein) and 48% (BmHAT Protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis. PMID:23735679

  20. Comparative studies on the biology and filarial susceptibility of selected blood-feeding and autogenous Aedes togoi sub-colonies

    Directory of Open Access Journals (Sweden)

    Anuluck Junkum

    2003-06-01

    Full Text Available Blood-feeding and autogenous sub-colonies were selected from a laboratory, stock colony of Aedes togoi, which was originally collected from Koh Nom Sao, Chanthaburi province, Southeast Thailand. Comparative biology and filarial susceptibility between the two sub-colonies (blood-feeding: F11, F13; autogeny: F38, F40 were investigated to evaluate their viability and vectorial capacity. The results of comparison on biology revealed intraspecific differences, i.e., the average egg deposition/gravid female (F11/F38; F13/F40, embryonation rate (F13/F40, hatchability rate (F11/F38; F13/F40, egg width (F11/F38, wing length of females (F13/F40, and wing length and width of males (F11/F38 in the blood-feeding sub-colony were significantly greater than that in the autogenous sub-colony; and egg length (F11/F38 and width (F13/F40, and mean longevity of adult females (F11/F38 and males (F13/F40 in the blood-feeding sub-colony were significantly less than that in the autogenous sub-colony. The results of comparison on filarial susceptibility demonstrated that both sub-colonies yielded similar susceptibilities to Brugia malayi [blood-feeding/autogeny = 56.7% (F11/53.3%(F38, 60%(F13/83.3%(F40] and Dirofilaria immitis [blood-feeding/autogeny = 85.7%(F11/75%(F38, 45%(F13/29.4%(F40], suggesting autogenous Ae. togoi sub-colony was an efficient laboratory vector in study of filariasis.

  1. Similarities and differences between helminth parasites and cancer cell lines in shaping human monocytes: Insights into parallel mechanisms of immune evasion.

    Directory of Open Access Journals (Sweden)

    Prakash Babu Narasimhan

    2018-04-01

    Full Text Available A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma or to live microfilariae (mf of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β, M2-associated (CCL13, CD206, Mreg-associated (IL-10, TGF-β, and angiogenesis associated (MMP9, VEGF genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.

  2. Similarities and differences between helminth parasites and cancer cell lines in shaping human monocytes: Insights into parallel mechanisms of immune evasion.

    Science.gov (United States)

    Narasimhan, Prakash Babu; Akabas, Leor; Tariq, Sameha; Huda, Naureen; Bennuru, Sasisekhar; Sabzevari, Helen; Hofmeister, Robert; Nutman, Thomas B; Tolouei Semnani, Roshanak

    2018-04-01

    A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma) or to live microfilariae (mf) of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β), M2-associated (CCL13, CD206), Mreg-associated (IL-10, TGF-β), and angiogenesis associated (MMP9, VEGF) genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.

  3. Sequencing and analysis of the complete mitochondrial genome in Anopheles sinensis (Diptera: Culicidae).

    Science.gov (United States)

    Chen, Kai; Wang, Yan; Li, Xiang-Yu; Peng, Heng; Ma, Ya-Jun

    2017-10-02

    Anopheles sinensis (Diptera: Culicidae) is a primary vector of Plasmodium vivax and Brugia malayi in most regions of China. In addition, its phylogenetic relationship with the cryptic species of the Hyrcanus Group is complex and remains unresolved. Mitochondrial genome sequences are widely used as molecular markers for phylogenetic studies of mosquito species complexes, of which mitochondrial genome data of An. sinensis is not available. An. sinensis samples was collected from Shandong, China, and identified by molecular marker. Genomic DNA was extracted, followed by the Illumina sequencing. Two complete mitochondrial genomes were assembled and annotated using the mitochondrial genome of An. gambiae as reference. The mitochondrial genomes sequences of the 28 known Anopheles species were aligned and reconstructed phylogenetic tree by Maximum Likelihood (ML) method. The length of complete mitochondrial genomes of An. sinensis was 15,076 bp and 15,138 bp, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and an AT-rich control region. As in other insects, most mitochondrial genes are encoded on the J strand, except for ND5, ND4, ND4L, ND1, two rRNA and eight tRNA genes, which are encoded on the N strand. The bootstrap value was set as 1000 in ML analyses. The topologies restored phylogenetic affinity within subfamily Anophelinae. The ML tree showed four major clades, corresponding to the subgenera Cellia, Anopheles, Nyssorhynchus and Kerteszia of the genus Anopheles. The complete mitochondrial genomes of An. sinensis were obtained. The number, order and transcription direction of An. sinensis mitochondrial genes were the same as in other species of family Culicidae.

  4. Development of lymphatic filarial parasite Wuchereria bancrofti (Spirurida: Onchocercidae) in mosquito species (Diptera: Culicidae) fed artificially on microfilaremic blood.

    Science.gov (United States)

    Paily, K P; Hoti, S L; Balaraman, K

    2006-11-01

    The efficiency of laboratory colonies of mosquitoes such as Anopheles stephensi Liston, Aedes aegypti (L.) Liverpool strain, Ae. aegypti wild type, Aedes albopictus (Skuse), Culex tritaeniorhynchus Giles, Culex sitiens Wiedemann, and Armigeres subalbatus Coquillett in supporting the development of Wuchereria bancrofti (Cobbold) (Spirurida: Onchocercidae) microfilariae to infective larvae was investigated. The mosquitoes were fed on heparinized microfilaremic human blood by using a membrane-feeding unit with Parafilm as membrane. The rate of infection, parasite development, and parasite burden were compared with that in the known vector mosquito Culex quinquefasciatus Say. Cx. quinquefasciatus showed the highest percentage of infection, followed by Ae. aegypti Liverpool strain and An. stephensi. The rate of development of the parasite was more or less similar in all the three species, and infective larvae were found on day 13. When the larvae were harvested on day 17, Cx. quinquefasciatus yielded the highest numbers, followed by Ae. aegypti Liverpool strain and An. stephensi. The percentage of infection was low, and the development was slow in Cx. tritaeniorhynchus compared with the other susceptible species. The parasite developed to second-stage larvae only by day 22 and to infective larvae by day 28. When 2-wk-old Cx. tritaeniorhynchus were fed on microfilaremic blood, they could develop the parasite to infective larvae by day 13 postfeeding. All other species of mosquitoes tested were found to be refractory to parasite development. It is shown that Cx. quinquefasciatus is the most suitable mosquito host for the production of infective larvae. However, Ae. aegypti Liverpool strain, which is commonly used for Brugia malayi filarial parasite, also can be used for generation of W. bancrofti infective larvae to circumvent the problem of maintaining two mosquito species.

  5. Lipoprotein biosynthesis as a target for anti-Wolbachia treatment of filarial nematodes

    Directory of Open Access Journals (Sweden)

    Slatko Barton E

    2010-10-01

    Full Text Available Abstract Background Lymphatic filariasis and onchocerciasis are debilitating diseases caused by filarial nematodes. Disease pathogenesis is induced by inflammatory responses following the death of the parasite. Wolbachia endosymbionts of filariae are potent inducers of innate and adaptive inflammation and bacterial lipoproteins have been identified as the ligands that bind toll-like receptors (TLR 2 and TLR6. Lipoproteins are important structural and functional components of bacteria and therefore enzymes involved in Wolbachia lipoprotein biosynthesis are potential chemotherapeutic targets. Results Globomycin, a signal peptidase II (LspA inhibitor, has activity against Gram-negative bacteria and a putative lspA gene has been identified from the Wolbachia genome of Brugia malayi (wBm. The amino acids required for function are strictly conserved and functionality was verified by complementation tests in a temperature-sensitive Escherichia coli lspA mutant. Also, transformation of wild type E. coli with Wolbachia lspA conferred significant globomycin resistance. A cell-based screen has been developed utilizing a Wolbachia-containing Aedes albopictus cell line to assay novel compounds active against Wolbachia. Globomycin was screened using this assay, which resulted in a dose-dependent reduction in Wolbachia load. Furthermore, globomycin was also effective in reducing the motility and viability of adult B. malayi in vitro. Conclusions These studies validate lipoprotein biosynthesis as a target in an organism for which no genetic tools are available. Further studies to evaluate drugs targeting this pathway are underway as part of the A-WOL drug discovery and development program.

  6. Analysis of nematode motion using an improved light-scatter based system.

    Directory of Open Access Journals (Sweden)

    Chuck S Nutting

    2015-02-01

    Full Text Available The detailed assessment of nematode activity and viability still remains a relatively undeveloped area of biological and medical research. Computer-based approaches to assessing the motility of larger nematode stages have been developed, yet these lack the capability to detect and analyze the more subtle and important characteristics of the motion of nematodes. There is currently a need to improved methods of assessing the viability and health of parasitic worms.We describe here a system that converts the motion of nematodes through a light-scattering system into an electrical waveform, and allows for reproducible, and wholly non-subjective, assessment of alterations in motion, as well as estimation of the number of nematode worms of different forms and sizes. Here we have used Brugia sp. microfilariae (L1, infective larvae (L3 and adults, together with the free-living nematode Caenorhabditis elegans.The motion of worms in a small (200 ul volume can be detected, with the presence of immotile worms not interfering with the readings at practical levels (up to at least 500 L1 /200 ul. Alterations in the frequency of parasite movement following the application of the anti-parasitic drugs, (chloroquine and imatinib; the anti-filarial effect of the latter agent is the first demonstrated here for the first time. This system can also be used to estimate the number of parasites, and shortens the time required to estimate parasites numbers, and eliminates the need for microscopes and trained technicians to provide an estimate of microfilarial sample sizes up to 1000 parasites/ml. Alterations in the form of motion of the worms can also be depicted.This new instrument, named a "WiggleTron", offers exciting opportunities to further study nematode biology and to aid drug discovery, as well as contributing to a rapid estimate of parasite numbers in various biological samples.

  7. Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis.

    Science.gov (United States)

    Joseph, S K; Ramaswamy, K

    2013-07-18

    The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and protein or protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-protein) and 48% (BmHAT protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Identification of attractive drug targets in neglected-disease pathogens using an in silico approach.

    Directory of Open Access Journals (Sweden)

    Gregory J Crowther

    Full Text Available BACKGROUND: The increased sequencing of pathogen genomes and the subsequent availability of genome-scale functional datasets are expected to guide the experimental work necessary for target-based drug discovery. However, a major bottleneck in this has been the difficulty of capturing and integrating relevant information in an easily accessible format for identifying and prioritizing potential targets. The open-access resource TDRtargets.org facilitates drug target prioritization for major tropical disease pathogens such as the mycobacteria Mycobacterium leprae and Mycobacterium tuberculosis; the kinetoplastid protozoans Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi; the apicomplexan protozoans Plasmodium falciparum, Plasmodium vivax, and Toxoplasma gondii; and the helminths Brugia malayi and Schistosoma mansoni. METHODOLOGY/PRINCIPAL FINDINGS: Here we present strategies to prioritize pathogen proteins based on whether their properties meet criteria considered desirable in a drug target. These criteria are based upon both sequence-derived information (e.g., molecular mass and functional data on expression, essentiality, phenotypes, metabolic pathways, assayability, and druggability. This approach also highlights the fact that data for many relevant criteria are lacking in less-studied pathogens (e.g., helminths, and we demonstrate how this can be partially overcome by mapping data from homologous genes in well-studied organisms. We also show how individual users can easily upload external datasets and integrate them with existing data in TDRtargets.org to generate highly customized ranked lists of potential targets. CONCLUSIONS/SIGNIFICANCE: Using the datasets and the tools available in TDRtargets.org, we have generated illustrative lists of potential drug targets in seven tropical disease pathogens. While these lists are broadly consistent with the research community's current interest in certain specific proteins, and suggest

  9. COMPARATIVE STUDY OF FILARIAL DETECTION BY MICROSCOPIC EXAMINATION AND SEROLOGICAL ASSAY UTILIZING BMR1 AND BMXSP RECOMBINANT ANTIGENS FOR EVALUATION OF FILARIASIS ELIMINATION PROGRAM AT KAMPUNG SAWAH AND PAMULANG, SOUTH TANGERANG DISTRICT, BANTEN, INDONESIA

    Directory of Open Access Journals (Sweden)

    Silvia F. Nasution

    2015-09-01

    Full Text Available South Tangerang district is one of the endemic areas for filariasis; and based on an evaluation study in 2008-2009 which covered several subdistricts, the prevalence of microfilaria was between 1–2.4%. Nevertheless, the evaluation by serological assay has never been reported. A cross-sectional study was conducted to detect the microfilaremia and anti-filarial IgG4 antibody status in Kp Sawah and Pamulang subdistricts. Cluster sampling was performed in Kp Sawah by collecting finger-prick blood (FPB and venous blood samples from inhabitants who lived with and nearby the four elephantiasis subjects in the area. The FPB were only collected in Pamulang area by consecutive sampling method. The detection method included microscopic evaluation of FPB and serological detection using recombinant antigens BmR1 and BmSXP by ELISA and lateral flow rapid tests. Symptomatic patients who had 2nd and 3rd degree of elephantiasis were clinically determined in 10% (4/40 subjects. Among those with elephantiasis, 2 were positive serologically but their microscopic results were all negative (40/40. Meanwhile, the microscopic result for 107 subjects from Pamulang were all negative. The results of the rapid tests showed that 15% (6/40 of the positive cases were detected by Brugia Rapid and 27.5% (11/40 by PanLF. Meanwhile, the ELISA showed that 20% (8/40 of the cases were positive with BmSXP, whereas only 2.5% or 1/40 sample was found to be positive with BmR1. Even though the sensitivity of the Rapid test was lower when compared to microscopic examination for these samples, the assay showed good specificity ranging from 72.5 to 97.5%. The optical density (OD values of ELISA has ranged between 0.3–3.045.

  10. Characterizing Ancylostoma caninum transcriptome and exploring nematode parasitic adaptation

    Directory of Open Access Journals (Sweden)

    Hawdon John

    2010-05-01

    Full Text Available Abstract Background Hookworm infection is one of the most important neglected diseases in developing countries, with approximately 1 billion people infected worldwide. To better understand hookworm biology and nematode parasitism, the present study generated a near complete transcriptome of the canine hookworm Ancylostoma caninum to a very high coverage using high throughput technology, and compared it to those of the free-living nematode Caenorhabditis elegans and the parasite Brugia malayi. Results The generated transcripts from four developmental stages, infective L3, serum stimulated L3, adult male and adult female, covered 93% of the A. caninum transcriptome. The broad diversity among nematode transcriptomes was confirmed, and an impact of parasitic adaptation on transcriptome diversity was inferred. Intra-population analysis showed that A. caninum has higher coding sequence diversity than humans. Examining the developmental expression profiles of A. caninum revealed major transitions in gene expression from larval stages to adult. Adult males expressed the highest number of selectively expressed genes, but adult female expressed the highest number of selective parasitism-related genes. Genes related to parasitism adaptation and A. caninum specific genes exhibited more expression selectivity while those conserved in nematodes tend to be consistently expressed. Parasitism related genes were expressed more selectively in adult male and female worms. The comprehensive analysis of digital expression profiles along with transcriptome comparisons enabled identification of a set of parasitism genes encoding secretory proteins in animal parasitic nematode. Conclusions This study validated the usage of deep sequencing for gene expression profiling. Parasitic adaptation of the canine hookworm is related to its diversity and developmental dynamics. This comprehensive comparative genomic and expression study substantially improves our understanding of

  11. RNAi effector diversity in nematodes.

    Directory of Open Access Journals (Sweden)

    Johnathan J Dalzell

    2011-06-01

    Full Text Available While RNA interference (RNAi has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (dsRNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii The Argonautes (AGOs responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii Secondary Argonautes (SAGOs are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research

  12. The quantitation of parasite-specific human IgG and IgE in sera: evaluation of solid-phase RIA and ELISA methodology

    International Nuclear Information System (INIS)

    Hamilton, R.G.; Adkinson, N.F. Jr.

    1981-01-01

    The authors have developed a non-competitive solid-phase radioimmunoassay (SPRIA) to quantitate both human IgE and IgG antibodies against soluble adult antigens of Brugia malayi (B.m.), a filarial parasite causing extensive infection throughout the tropics. Previously enzyme-linked immunosorbent assays (ELISA) had been used to detect μg/ml levels of IgG anti-B.m., but IgE antibodies were difficult to detect in this system. Since the SPRIA successfully quantitates both IgG and IgE anti-B.m., they sought to examine the reasons for the SPRIA's apparent superiority in detecting IgE anti-B.m. by extracting specific IgG from sera with high levels of IgE and IgG anti-B.m. antibodies. IgE anti-B.m. was then quantitated in these sera using both the SPRIA and ELISA methods. Results indicate that IgG anti-B.m. does not interfere with detection of specific IgE antibody in the SPRIA but does interfere in the ELISA. While ELISA permits detection of IgE anti-B.m. in the absence of competing IgG anti-B.m., as levels of specific IgG increase, the IgE is no longer detectable. These differences between SPRIA and ELISA can be explained by the SPRIA's antigen excess conditions which assure that there are sufficient antigens both to detect all anti-B.m. antibodies present in the serum and to adequately represent all antigen specificities in the crude B.m. extract. Their findings commend the use of SPRIA methods over ELISA in assessment of B.m.-specific IgE antibody in filariasis and indicate a potential role for SPRIA methods in absolute quantitation of specific serum antibodies. (Auth.)

  13. Quantitation of parasite-specific human IgG and IgE in sera: evaluation of solid-phase RIA and ELISA methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, R G [Johns Hopkins Univ., Baltimore, MD (USA). Dept. of Medicine; Hussain, R; Ottesen, E A [National Inst. of Allergy and Infectious Diseases, Bethesda, MD (USA); Adkinson, Jr, N F [Johns Hopkins Univ., Baltimore, MD (USA). School of Medicine

    1981-07-17

    The authors have developed a non-competitive solid-phase radioimmunoassay (SPRIA) to quantitate both human IgE and IgG antibodies against soluble adult antigens of Brugia malayi (B.m.), a filarial parasite causing extensive infection throughout the tropics. Previously enzyme-linked immunosorbent assays (ELISA) had been used to detect ..mu..g/ml levels of IgG anti-B.m., but IgE antibodies were difficult to detect in this system. Since the SPRIA successfully quantitates both IgG and IgE anti-B.m., they sought to examine the reasons for the SPRIA's apparent superiority in detecting IgE anti-B.m. by extracting specific IgG from sera with high levels of IgE and IgG anti-B.m. antibodies. IgE anti-B.m. was then quantitated in these sera using both the SPRIA and ELISA methods. Results indicate that IgG anti-B.m. does not interfere with detection of specific IgE antibody in the SPRIA but does interfere in the ELISA. While ELISA permits detection of IgE anti-B.m. in the absence of competing IgG anti-B.m., as levels of specific IgG increase, the IgE is no longer detectable. These differences between SPRIA and ELISA can be explained by the SPRIA's antigen excess conditions which assure that there are sufficient antigens both to detect all anti-B.m. antibodies present in the serum and to adequately represent all antigen specificities in the crude B.m. extract. Their findings commend the use of SPRIA methods over ELISA in assessment of B.m.-specific IgE antibody in filariasis and indicate a potential role for SPRIA methods in absolute quantitation of specific serum antibodies.

  14. Colorimetric tests for diagnosis of filarial infection and vector surveillance using non-instrumented nucleic acid loop-mediated isothermal amplification (NINA-LAMP.

    Directory of Open Access Journals (Sweden)

    Catherine B Poole

    Full Text Available Accurate detection of filarial parasites in humans is essential for the implementation and evaluation of mass drug administration programs to control onchocerciasis and lymphatic filariasis. Determining the infection levels in vector populations is also important for assessing transmission, deciding when drug treatments may be terminated and for monitoring recrudescence. Immunological methods to detect infection in humans are available, however, cross-reactivity issues have been reported. Nucleic acid-based molecular assays offer high levels of specificity and sensitivity, and can be used to detect infection in both humans and vectors. In this study we developed loop-mediated isothermal amplification (LAMP tests to detect three different filarial DNAs in human and insect samples using pH sensitive dyes for enhanced visual detection of amplification. Furthermore, reactions were performed in a portable, non-instrumented nucleic acid amplification (NINA device that provides a stable heat source for LAMP. The efficacy of several strand displacing DNA polymerases were evaluated in combination with neutral red or phenol red dyes. Colorimetric NINA-LAMP assays targeting Brugia Hha I repeat, Onchocerca volvulus GST1a and Wuchereria bancrofti LDR each exhibit species-specificity and are also highly sensitive, detecting DNA equivalent to 1/10-1/5000th of one microfilaria. Reaction times varied depending on whether a single copy gene (70 minutes, O. volvulus or repetitive DNA (40 min, B. malayi and W. bancrofti was employed as a biomarker. The NINA heater can be used to detect multiple infections simultaneously. The accuracy, simplicity and versatility of the technology suggests that colorimetric NINA-LAMP assays are ideally suited for monitoring the success of filariasis control programs.

  15. The complete mitochondrial genome of Setaria digitata (Nematoda: Filarioidea): Mitochondrial gene content, arrangement and composition compared with other nematodes.

    Science.gov (United States)

    Yatawara, Lalani; Wickramasinghe, Susiji; Rajapakse, R P V J; Agatsuma, Takeshi

    2010-09-01

    In the present study, we determined the complete mitochondrial (mt) genome sequence (13,839bp) of parasitic nematode Setaria digitata and its structure and organization compared with Onchocerca volvulus, Dirofilaria immitis and Brugia malayi. The mt genome of S. digitata is slightly larger than the mt genomes of other filarial nematodes. S. digitata mt genome contains 36 genes (12 protein-coding genes, 22 transfer RNAs and 2 ribosomal RNAs) that are typically found in metazoans. This genome contains a high A+T (75.1%) content and low G+C content (24.9%). The mt gene order for S. digitata is the same as those for O. volvulus, D. immitis and B. malayi but it is distinctly different from other nematodes compared. The start codons inferred in the mt genome of S. digitata are TTT, ATT, TTG, ATG, GTT and ATA. Interestingly, the initiation codon TTT is unique to S. digitata mt genome and four protein-coding genes use this codon as a translation initiation codon. Five protein-coding genes use TAG as a stop codon whereas three genes use TAA and four genes use T as a termination codon. Out of 64 possible codons, only 57 are used for mitochondrial protein-coding genes of S. digitata. T-rich codons such as TTT (18.9%), GTT (7.9%), TTG (7.8%), TAT (7%), ATT (5.7%), TCT (4.8%) and TTA (4.1%) are used more frequently. This pattern of codon usage reflects the strong bias for T in the mt genome of S. digitata. In conclusion, the present investigation provides new molecular data for future studies of the comparative mitochondrial genomics and systematic of parasitic nematodes of socio-economic importance. 2010 Elsevier B.V. All rights reserved.

  16. In vitro, in silico and in vivo studies of ursolic acid as an anti-filarial agent.

    Directory of Open Access Journals (Sweden)

    Komal Kalani

    Full Text Available As part of our drug discovery program for anti-filarial agents from Indian medicinal plants, leaves of Eucalyptus tereticornis were chemically investigated, which resulted in the isolation and characterization of an anti-filarial agent, ursolic acid (UA as a major constituent. Antifilarial activity of UA against the human lymphatic filarial parasite Brugia malayi using in vitro and in vivo assays, and in silico docking search on glutathione-s-transferase (GST parasitic enzyme were carried out. The UA was lethal to microfilariae (mf; LC100: 50; IC50: 8.84 µM and female adult worms (LC100: 100; IC50: 35.36 µM as observed by motility assay; it exerted 86% inhibition in MTT reduction potential of the adult parasites. The selectivity index (SI of UA for the parasites was found safe. This was supported by the molecular docking studies, which showed adequate docking (LibDock scores for UA (-8.6 with respect to the standard antifilarial drugs, ivermectin (IVM -8.4 and diethylcarbamazine (DEC-C -4.6 on glutathione-s-transferase enzyme. Further, in silico pharmacokinetic and drug-likeness studies showed that UA possesses drug-like properties. Furthermore, UA was evaluated in vivo in B. malayi-M. coucha model (natural infection, which showed 54% macrofilaricidal activity, 56% female worm sterility and almost unchanged microfilaraemia maintained throughout observation period with no adverse effect on the host. Thus, in conclusion in vitro, in silico and in vivo results indicate that UA is a promising, inexpensive, widely available natural lead, which can be designed and developed into a macrofilaricidal drug. To the best of our knowledge this is the first ever report on the anti-filarial potential of UA from E. tereticornis, which is in full agreement with the Thomson Reuter's 'Metadrug' tool screening predictions.

  17. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential.

    Directory of Open Access Journals (Sweden)

    Stéphane Bellafiore

    2008-10-01

    Full Text Available The root knot nematode, Meloidogyne incognita, is an obligate parasite that causes significant damage to a broad range of host plants. Infection is associated with secretion of proteins surrounded by proliferating cells. Many parasites are known to secrete effectors that interfere with plant innate immunity, enabling infection to occur; they can also release pathogen-associated molecular patterns (PAMPs, e.g., flagellin that trigger basal immunity through the nematode stylet into the plant cell. This leads to suppression of innate immunity and reprogramming of plant cells to form a feeding structure containing multinucleate giant cells. Effectors have generally been discovered using genetics or bioinformatics, but M. incognita is non-sexual and its genome sequence has not yet been reported. To partially overcome these limitations, we have used mass spectrometry to directly identify 486 proteins secreted by M. incognita. These proteins contain at least segmental sequence identity to those found in our 3 reference databases (published nematode proteins; unpublished M. incognita ESTs; published plant proteins. Several secreted proteins are homologous to plant proteins, which they may mimic, and they contain domains that suggest known effector functions (e.g., regulating the plant cell cycle or growth. Others have regulatory domains that could reprogram cells. Using in situ hybridization we observed that most secreted proteins were produced by the subventral glands, but we found that phasmids also secreted proteins. We annotated the functions of the secreted proteins and classified them according to roles they may play in the development of root knot disease. Our results show that parasite secretomes can be partially characterized without cognate genomic DNA sequence. We observed that the M. incognita secretome overlaps the reported secretome of mammalian parasitic nematodes (e.g., Brugia malayi, suggesting a common parasitic behavior and a possible

  18. Draft genome of neurotropic nematode parasite Angiostrongylus cantonensis, causative agent of human eosinophilic meningitis.

    Science.gov (United States)

    Yong, Hoi-Sen; Eamsobhana, Praphathip; Lim, Phaik-Eem; Razali, Rozaimi; Aziz, Farhanah Abdul; Rosli, Nurul Shielawati Mohamed; Poole-Johnson, Johan; Anwar, Arif

    2015-08-01

    Angiostrongylus cantonensis is a bursate nematode parasite that causes eosinophilic meningitis (or meningoencephalitis) in humans in many parts of the world. The genomic data from A. cantonensis will form a useful resource for comparative genomic and chemogenomic studies to aid the development of diagnostics and therapeutics. We have sequenced, assembled and annotated the genome of A. cantonensis. The genome size is estimated to be ∼260 Mb, with 17,280 genomic scaffolds, 91X coverage, 81.45% for complete and 93.95% for partial score based on CEGMA analysis of genome completeness. The number of predicted genes of ≥300 bp was 17,482. A total of 7737 predicted protein-coding genes of ≥50 amino acids were identified in the assembled genome. Among the proteins of known function, kinases are the most abundant followed by transferases. The draft genome contains 34 excretory-secretory proteins (ES), a minimum of 44 Nematode Astacin (NAS) metalloproteases, 12 Homeobox (HOX) genes, and 30 neurotransmitters. The assembled genome size (260 Mb) is larger than those of Pristionchus pacificus, Caenorhabditis elegans, Necator americanus, Caenorhabditis briggsae, Trichinella spiralis, Brugia malayi and Loa loa, but smaller than Haemonchus contortus and Ascaris suum. The repeat content (25%) is similar to H. contortus. The GC content (41.17%) is lower compared to P. pacificus (42.7%) and H. contortus (43.1%) but higher compared to C. briggsae (37.69%), A. suum (37.9%) and N. americanus (40.2%) while the scaffold N50 is 42,191. This draft genome will facilitate the understanding of many unresolved issues on the parasite and the disorder it causes. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A reverse transcriptase-PCR assay for detecting filarial infective larvae in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Sandra J Laney

    2008-06-01

    Full Text Available Existing molecular assays for filarial parasite DNA in mosquitoes cannot distinguish between infected mosquitoes that contain any stage of the parasite and infective mosquitoes that harbor third stage larvae (L3 capable of establishing new infections in humans. We now report development of a molecular L3-detection assay for Brugia malayi in vectors based on RT-PCR detection of an L3-activated gene transcript.Candidate genes identified by bioinformatics analysis of EST datasets across the B. malayi life cycle were initially screened by PCR using cDNA libraries as templates. Stage-specificity was confirmed using RNA isolated from infected mosquitoes. Mosquitoes were collected daily for 14 days after feeding on microfilaremic cat blood. RT-PCR was performed with primer sets that were specific for individual candidate genes. Many promising candidates with strong expression in the L3 stage were excluded because of low-level transcription in less mature larvae. One transcript (TC8100, which encodes a particular form of collagen was only detected in mosquitoes that contained L3 larvae. This assay detects a single L3 in a pool of 25 mosquitoes.This L3-activated gene transcript, combined with a control transcript (tph-1, accession # U80971 that is constitutively expressed by all vector-stage filarial larvae, can be used to detect filarial infectivity in pools of mosquito vectors. This general approach (detection of stage-specific gene transcripts from eukaryotic pathogens may also be useful for detecting infective stages of other vector-borne parasites.

  20. Detection of circulating parasite-derived microRNAs in filarial infections.

    Directory of Open Access Journals (Sweden)

    Lucienne Tritten

    2014-07-01

    Full Text Available Filarial nematodes cause chronic and profoundly debilitating diseases in both humans and animals. Applications of novel technology are providing unprecedented opportunities to improve diagnosis and our understanding of the molecular basis for host-parasite interactions. As a first step, we investigated the presence of circulating miRNAs released by filarial nematodes into the host bloodstream. miRNA deep-sequencing combined with bioinformatics revealed over 200 mature miRNA sequences of potential nematode origin in Dirofilaria immitis-infected dog plasma in two independent analyses, and 21 in Onchocerca volvulus-infected human serum. Total RNA obtained from D. immitis-infected dog plasma was subjected to stem-loop RT-qPCR assays targeting two detected miRNA candidates, miR-71 and miR-34. Additionally, Brugia pahangi-infected dog samples were included in the analysis, as these miRNAs were previously detected in extracts prepared from this species. The presence of miR-71 and miR-34 discriminated infected samples (both species from uninfected samples, in which no specific miRNA amplification occurred. However, absolute miRNA copy numbers were not significantly correlated with microfilaraemia for either parasite. This may be due to the imprecision of mf counts to estimate infection intensity or to miRNA contributions from the unknown number of adult worms present. Nonetheless, parasite-derived circulating miRNAs are found in plasma or serum even for those species that do not live in the bloodstream.

  1. Lymphatic pathology in asymptomatic and symptomatic children with Wuchereria bancrofti infection in children from Odisha, India and its reversal with DEC and albendazole treatment.

    Science.gov (United States)

    Kar, Shantanu K; Dwibedi, Bhagirathi; Das, Birendra K; Agrawala, Bikash K; Ramachandran, Cherubala P; Horton, John

    2017-10-01

    Once interruption of transmission of lymphatic filariasis is achieved, morbidity prevention and management becomes more important. A study in Brugia malayi filariasis from India has shown sub-clinical lymphatic pathology with potential reversibility. We studied a Wuchereria bancrofti infected population, the major contributor to LF globally. Children aged 5-18 years from Odisha, India were screened for W. bancrofti infection and disease. 102 infected children, 50 with filarial disease and 52 without symptoms were investigated by lymphoscintigraphy and then randomized to receive a supervised single oral dose of DEC and albendazole which was repeated either annually or semi-annually. The lymphatic pathology was evaluated six monthly for two years. Baseline lymphoscintigraphy showed abnormality in lower limb lymphatics in 80% of symptomatic (40/50) and 63·5% (33/52) of asymptomatic children. Progressive improvement in baseline pathology was seen in 70·8, 87·3, 98·6, and 98·6% of cases at 6, 12, 18, and 24 months follow up, while in 4·2, 22·5, 47·9 and 64·8%, pathology reverted to normal. This was independent of age (p = 0·27), symptomatic status (p = 0·57) and semi-annual/bi-annual dosing (p = 0·46). Six of eleven cases showed clinical reduction in lymphedema of legs. A significant proportion of a young W. bancrofti infected population exhibited lymphatic pathology which was reversible with annual dosage of DEC and albendazole. This provides evidence for morbidity prevention & treatment of early lymphedema. It can also be used as a tool to improve community compliance during mass drug administration. ClinicalTrials.gov No CTRI/2013/10/004121.

  2. Screening of the ‘Open Scaffolds’ collection from Compounds Australia identifies a new chemical entity with anthelmintic activities against different developmental stages of the barber's pole worm and other parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Sarah Preston

    2017-12-01

    Full Text Available The discovery and development of novel anthelmintic classes is essential to sustain the control of socioeconomically important parasitic worms of humans and animals. With the aim of offering novel, lead-like scaffolds for drug discovery, Compounds Australia released the ‘Open Scaffolds’ collection containing 33,999 compounds, with extensive information available on the physicochemical properties of these chemicals. In the present study, we screened 14,464 prioritised compounds from the ‘Open Scaffolds’ collection against the exsheathed third-stage larvae (xL3s of Haemonchus contortus using recently developed whole-organism screening assays. We identified a hit compound, called SN00797439, which was shown to reproducibly reduce xL3 motility by ≥ 70%; this compound induced a characteristic, “coiled” xL3 phenotype (IC50 = 3.46–5.93 μM, inhibited motility of fourth-stage larvae (L4s; IC50 = 0.31–12.5 μM and caused considerable cuticular damage to L4s in vitro. When tested on other parasitic nematodes in vitro, SN00797439 was shown to inhibit (IC50 = 3–50 μM adults of Ancylostoma ceylanicum (hookworm and first-stage larvae of Trichuris muris (whipworm and eventually kill (>90% these stages. Furthermore, this compound completely inhibited the motility of female and male adults of Brugia malayi (50–100 μM as well as microfilariae of both B. malayi and Dirofilaria immitis (heartworm. Overall, these results show that SN00797439 acts against genetically (evolutionarily distant parasitic nematodes i.e. H. contortus and A. ceylanicum [strongyloids] vs. B. malayi and D. immitis [filarioids] vs. T. muris [enoplid], and, thus, might offer a novel, lead-like scaffold for the development of a relatively broad-spectrum anthelmintic. Our future work will focus on assessing the activity of SN00797439 against other pathogens that cause neglected tropical diseases, optimising analogs with improved biological activities and

  3. Karakteristik Habitat Perkembangbiakan Vektor Filariasis di Kecamatan Kodi Balaghar Kabupaten Sumba Barat Daya

    Directory of Open Access Journals (Sweden)

    Mefi Mariana Tallan

    2016-12-01

    Full Text Available Abstract. Subdistrict scores balaghar is on filariasis endemic areas in the shouthwest district Sumba. Filariasis (elephantiasis is a chronic infectious disease caused by the filarial worm that attacks the lymph channels and lymph (lymphatic system that can cause acuteor chronic clinical symptoms and is transmitted by mosquitoes Mansonia, Anopheles, Culex, Amigeres. The purpose researchis to describe the characteristics of the environment and behavior to the incidence on filariasis in District Kodi Balaghar South western Sumba. This research is descriptive study with cross sectional approach that describes the spread of filariasis. Kodi was conducted in Southwest Sumba Regency Balaghar for eight months from April to November 2014. Foundas apotential habitat forlas mosquito breeding habitats where dominant is a puddle of water, springs, drains and small stream swith temperatures ranging from21-350C, from 0,22 to 795luxillumination, range pH between7,2 to 7,7, 0-0.1‰ salinity with elevation ranging from 25-117m/asl. Where is thespecies found in the breeding habitat on is An.vagus, An.barbirostris, An.annularis, Cx.vishnui, Cx.bitaeniorhynchus, Cx.quinquefasciatus, Ar. Kuchingensis.Keywords:Filariasis, Environment, Breeding habitatsAbstrak. Kecamatan Kodi Balaghar merupakan salah satu daerah endemis filariasis di Kabupaten Sumba Barat Daya. Filariasis (penyakit kaki gajah adalah penyakit menular menahun yang disebabkan oleh cacing filaria Wuchereria brancofti, Brugia malayidan B. timori yang menyerang saluran dan kelenjar getah bening (sistem limfatik yang dapat menyebabkan gejala klinis akut atau kronis dan ditularkan oleh nyamuk Mansonia, Anopheles, Culex, Amigeres. Penelitian ini bertujuan untuk mengetahui gambaran karakteristik lingkungan fisik dan biologi di Kecamatan Kodi Balaghar Kabupaten Sumba Barat Daya. Penelitian ini merupakan penelitian deskriptif dengan pendekatan cross sectional yaitu menggambarkan karakteristik lingkungan fisik

  4. IMPORTANT NEMATODE INFECTIONS IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Sri Oemijati

    2012-09-01

    Full Text Available At least 13 species of intestinal nematodes and 4 species of blood and tissue nematodes have been reported infecting man in Indonesia. Five species of intestinal nematodes are very common and highly prevalent, especially in the rural areas and slums of the big cities. Those species are Ascaris lumbricoides, Necator americanus, Ancylostoma duodenale, Trichuris trichiura and Oxyuris vermicularis, while Strongyloides stercoralis is disappearing. The prevalence of the soil transmitted helminths differs from place to place, depending on many factors such as the type of soil, human behaviour etc. Three species of lymph dwelling filarial worms are known to be endemic, the urban Wuchereria bancrofti is low endemic in Jakarta and a few other cities along the north coast of Java, with Culex incriminated as vector, high endemicity is found in Irian Jaya, where Anopheline mosquitoes act as vectors. Brugia malayi is widely distributed and is still highly endemic in many areas. The zoonotic type is mainly endemic in swampy areas, and has many species of Mansonia mosquitoes as vectors. B.timori so far has been found only in the south eastern part of the archipelago and has Anopheles barbirostris as vector. Human infections with animal parasites have been diagnosed properly only when adult stages were found either in autopsies or removed tissues. Cases of infections with A. caninum, A.braziliense, A.ceylanicum, Trichostrongylus colubriformis, T.axei and Oesophagostomum apiostomum have been desribed from autopsies, while infections with Gnathostoma spiningerum have been reported from removed tissues. Infections with the larval stages such as VLM, eosinophylic meningitis, occult filanasis and other could only be suspected, since the diagnosis was extremely difficult and based on the finding and identification of the parasite. Many cases of creeping eruption which might be caused by the larval stages of A.caninum and A.braziliense and Strongyloides stercoralis

  5. Novel microfilaricidal activity of nanosilver

    Directory of Open Access Journals (Sweden)

    Singh SK

    2012-02-01

    Full Text Available Sunil K Singh1, Kalyan Goswami2, Richa D Sharma2, Maryada VR Reddy2, Debabrata Dash11Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 2Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram, IndiaPurpose: The currently available drug repertoire against lymphatic filariasis, a major health hazard in the developing world, is inadequate and is fraught with serious limitations. Thus, the development of an effective antifilarial strategy has become a global research thrust mandated by the World Health Organization. Nanoparticles of silver endowed with antibacterial potency are known to induce apoptosis in eukaryotic cells. The present study was designed to investigate the possible microfilaricidal efficacy of silver nanoparticles and to establish the validity of apoptotic rationale in antifilarial drug designing.Methods: This report analyzed the effect of nanoparticles of silver as well as gold (size range: 10–15 nm on the microfilariae of Brugia malayi obtained from the lavage of peritoneal cavities of infected jirds (Meriones unguiculatus. The study included a microfilarial motility assay, a trypan blue exclusion test, a poly(adenosine diphosphate-ribose polymerase activity study, ethidium bromide/acridine orange differential staining, and transmission, as well as scanning electron microscopic evaluation of ultrastructural changes in microfilariae.Results: The study demonstrates that nanoparticles of silver, but not of gold, elicited significant loss in microfilarial motility. Differential staining of parasites with ethidium bromide and acridine orange, poly(adenosine diphosphate-ribose polymerase activity in microfilarial lysate, and electron microscopic findings underscored apoptotic death of parasites attributable to nanosilver. In a trypan blue exclusion test, the 50% lethal dose of nanosilver was measured to be 101.2 µM, which was higher than the recorded complete

  6. Precontrol observations on lymphatic filariasis & geo-helminthiases in two coastal districts of rural Orrisa.

    Science.gov (United States)

    Chhotray, G P; Ranjit, M R; Khuntia, H K; Acharya, A S

    2005-11-01

    Lymphatic filariasis (LF) is a major public health problem in India, accounting for 40 per cent of the global burden. The World Health Organization has launched a global programme to eliminate LF by 2020 and India is a signatory to it. Orissa, an eastern Indian State has long been known to be endemic for LF. Prior to implementation of mass drug administration programme it is important to collect baseline data on filariasis and geo-helminthiases in the State. The present cross-sectional survey was therefore carried out between February and December 2001 to obtain baseline information on both LF and geo-helminthiases before application of the control measures. The study was carried out in rural areas of Puri and Ganjam districts in two phases. In phase I, the distribution of microfilaraemia in two district was mapped out in randomly selected primary health centres (PHCs), and 12 microfilaraemic villages were identified in each district by cluster analysis for the phase II study. In phase II, detailed clinical and parasitological survey for LF and geo-helminthiases was carried out following the standard procedures. Wuchereria bancrofti was found to be widely prevalent in Puri district with certain pockets of Brugia malayi while W. bancrofti was the only species in Ganjam district. The microfilaraemia (Mf) rate was found to be 9.5 and 11.1 per cent; and circulating filarial antigenaemia (CFA) was 16.8 and 17.8 per cent in Puri and Ganjam respectively. The geometric mean intensity (GMI) of Mf per ml of blood among positive individuals was 387 in Puri and 454 in Ganjam. The overall disease rate in Puri was 7.9 and 8.9 per cent in Ganjam. The prevalence of chronic manifestations was found to be significantly higher (PGanjam; and the heavy infection was found to be significantly higher (PGanjam compared to Puri district. The present study identified LF and geo-helminthiases as widely distributed health problem in rural areas of coastal Orissa which warrants intervention

  7. [Ultrastructural basis of interactions between prokaryotes and eukaryotes in different symbiotic models].

    Science.gov (United States)

    Sacchi, L

    2004-06-01

    symbiotic bacteria are transmitted transovarially and, during embryogenesis, they are integrated into the morphogenetic processes. In particular, we were able to demonstrate that the origin of the bacteriocyte should be looked for in the cells of the haemocyte line (embryonic plasmatocytes). The eggs are infected by the bacteria emerging from the bacteriocytes of the ovaric fat body and, at the end of the vitellogenesis, they are actively phagocytized by the egg membrane. In filarial nematodes, intracellular bacteria belonging to the genus Wolbachia have been described: they have evolved an obligatory mutualistic association with their host. In fact, antibiotic treatments lead to the clearance of bacteria and this loss produces a negative impact on reproduction and survival of the filarial host. We evidenced, by TEM, the degenerative events occurring during the embriogenesis of Brugia pahangi and Dirofilaria immitis after tetracycline treatment. The data suggest that the Wolbachia play a direct role in worm metabolism. Finally, a new additional model of the prokaryote-eukaryote interaction has been described: we have recently discovered a new intracellular alpha-proteobacterium, named Iric ES1, which resides in the ovarian tissues of the tick Ixodes ricinus. The intriguing characteristic of this bacterium is its ability to invade and consume the ovaric mitochondria. From an evolutionary perspective, it is interesting to note that Iric ES1 enters mitochondria in a similar way to that employed by the "predatory" bacterium Bdellovibrio bacteriovorus.