WorldWideScience

Sample records for brugia malayi endosymbiont

  1. The Wolbachia endosymbiont of Brugia malayi has an active pyruvate phosphate dikinase.

    Science.gov (United States)

    Raverdy, Sylvine; Foster, Jeremy M; Roopenian, Erica; Carlow, Clotilde K S

    2008-08-01

    Genome analysis of the glycolytic/gluconeogenic pathway in the Wolbachia endosymbiont from the filarial parasite Brugia malayi (wBm) has revealed that wBm lacks pyruvate kinase (PK) and may instead utilize the enzyme pyruvate phosphate dikinase (PPDK; ATP:pyruvate, orthophosphate phosphotransferase, EC 2.7.9.1). PPDK catalyses the reversible conversion of AMP, PPi and phosphoenolpyruvate (PEP) into ATP, Pi and pyruvate. The glycolytic pathway of most organisms, including mammals, contains exclusively PK for the production of pyruvate from PEP. Therefore, the absence of PPDK in mammals makes the enzyme an attractive Wolbachia drug target. In the present study, we have cloned and expressed an active wBm-PPDK, thereby providing insight into the energy metabolism of the endosymbiont. Our results support the development of wBm-PPDK as a promising new drug target in an anti-symbiotic approach to controlling filarial infection.

  2. The Wolbachia endosymbiont of Brugia malayi has an active phosphoglycerate mutase: a candidate target for anti-filarial therapies.

    Science.gov (United States)

    Foster, Jeremy M; Raverdy, Sylvine; Ganatra, Mehul B; Colussi, Paul A; Taron, Christopher H; Carlow, Clotilde K S

    2009-04-01

    Phosphoglycerate mutases (PGM) interconvert 2- and 3-phosphoglycerate in the glycolytic and gluconeogenic pathways. A putative cofactor-independent phosphoglycerate mutase gene (iPGM) was identified in the genome sequence of the Wolbachia endosymbiont from the filarial nematode, Brugia malayi (wBm). Since iPGM has no sequence or structural similarity to the cofactor-dependent phosphoglycerate mutase (dPGM) found in mammals, it may represent an attractive Wolbachia drug target. In the present study, wBm-iPGM cloned and expressed in Escherichia coli was mostly insoluble and inactive. However, the protein was successfully produced in the yeast Kluyveromyces lactis and the purified recombinant wBm-iPGM showed typical PGM activity. Our results provide a foundation for further development of wBm-iPGM as a promising new drug target for novel anti-filarial therapies that selectively target the endosymbiont.

  3. Molecular characterization of NAD+-dependent DNA ligase from Wolbachia endosymbiont of lymphatic filarial parasite Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Nidhi Shrivastava

    Full Text Available The lymphatic filarial parasite, Brugia malayi contains Wolbachia endobacteria that are essential for development, viability and fertility of the parasite. Therefore, wolbachial proteins have been currently seen as the potential antifilarial drug targets. NAD(+-dependent DNA ligase is characterized as a promising drug target in several organisms due to its crucial, indispensable role in DNA replication, recombination and DNA repair. We report here the cloning, expression and purification of NAD(+-dependent DNA ligase of Wolbachia endosymbiont of B. malayi (wBm-LigA for its molecular characterization. wBm-LigA has all the domains that are present in nearly all the eubacterial NAD(+-dependent DNA ligases such as N-terminal adenylation domain, OB fold, helix-hairpin-helix (HhH and BRCT domain except zinc-binding tetracysteine domain. The purified recombinant protein (683-amino acid was found to be biochemically active and was present in its native form as revealed by the circular dichroism and fluorescence spectra. The purified recombinant enzyme was able to catalyze intramolecular strand joining on a nicked DNA as well as intermolecular joining of the cohesive ends of BstEII restricted lamda DNA in an in vitro assay. The enzyme was localized in the various life-stages of B. malayi parasites by immunoblotting and high enzyme expression was observed in Wolbachia within B. malayi microfilariae and female adult parasites along the hypodermal chords and in the gravid portion as evident by the confocal microscopy. Ours is the first report on this enzyme of Wolbachia and these findings would assist in validating the antifilarial drug target potential of wBm-LigA in future studies.

  4. Cloning, expression and characterization of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA from Wolbachia endosymbiont of human lymphatic filarial parasite Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Mohd Shahab

    Full Text Available Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for treatment of lymphatic filariasis. Although functional characterization of the Wolbachia peptidoglycan assembly has not been fully explored, the Wolbachia genome provides evidence for coding all of the genes involved in lipid II biosynthesis, a part of peptidoglycan biosynthesis pathway. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA is one of the lipid II biosynthesis pathway enzymes and it has inevitably been recognized as an antibiotic target. In view of the vital role of MurA in bacterial viability and survival, MurA ortholog from Wolbachia endosymbiont of Brugia malayi (wBm-MurA was cloned, expressed and purified for further molecular characterization. The enzyme kinetics and inhibition studies were undertaken using fosfomycin. wBm-MurA was found to be expressed in all the major life stages of B. malayi and was immunolocalized in Wolbachia within the microfilariae and female adults by the confocal microscopy. Sequence analysis suggests that the amino acids crucial for enzymatic activity are conserved. The purified wBm-MurA was shown to possess the EPSP synthase (3-phosphoshikimate 1-carboxyvinyltransferase like activity at a broad pH range with optimal activity at pH 7.5 and 37°C temperature. The apparent affinity constant (Km for the substrate UDP-N-acetylglucosamine was found to be 0.03149 mM and for phosphoenolpyruvate 0.009198 mM. The relative enzymatic activity was inhibited ∼2 fold in presence of fosfomycin. Superimposition of the wBm-MurA homology model with the structural model of Haemophilus influenzae (Hi-MurA suggests binding of fosfomycin at the same active site. The findings suggest wBm-MurA to be a putative antifilarial drug target for screening of novel compounds.

  5. The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target.

    Directory of Open Access Journals (Sweden)

    Bo Wu

    Full Text Available BACKGROUND: Filarial parasites (e.g., Brugia malayi, Onchocerca volvulus, and Wuchereria bancrofti are causative agents of lymphatic filariasis and onchocerciasis, which are among the most disabling of neglected tropical diseases. There is an urgent need to develop macro-filaricidal drugs, as current anti-filarial chemotherapy (e.g., diethylcarbamazine [DEC], ivermectin and albendazole can interrupt transmission predominantly by killing microfilariae (mf larvae, but is less effective on adult worms, which can live for decades in the human host. All medically relevant human filarial parasites appear to contain an obligate endosymbiotic bacterium, Wolbachia. This alpha-proteobacterial mutualist has been recognized as a potential target for filarial nematode life cycle intervention, as antibiotic treatments of filarial worms harboring Wolbachia result in the loss of worm fertility and viability upon antibiotic treatments both in vitro and in vivo. Human trials have confirmed this approach, although the length of treatments, high doses required and medical counter-indications for young children and pregnant women warrant the identification of additional anti-Wolbachia drugs. METHODS AND FINDINGS: Genome sequence analysis indicated that enzymes involved in heme biosynthesis might constitute a potential anti-Wolbachia target set. We tested different heme biosynthetic pathway inhibitors in ex vivo B. malayi viability assays and report a specific effect of N-methyl mesoporphyrin (NMMP, which targets ferrochelatase (FC, the last step. Our phylogenetic analysis indicates evolutionarily significant divergence between Wolbachia heme genes and their human homologues. We therefore undertook the cloning, overexpression and analysis of several enzymes of this pathway alongside their human homologues, and prepared proteins for drug targeting. In vitro enzyme assays revealed a approximately 600-fold difference in drug sensitivities to succinyl acetone (SA between

  6. Draft genome of the filarial nematode parasite Brugia malayi.

    Science.gov (United States)

    Ghedin, Elodie; Wang, Shiliang; Spiro, David; Caler, Elisabet; Zhao, Qi; Crabtree, Jonathan; Allen, Jonathan E; Delcher, Arthur L; Guiliano, David B; Miranda-Saavedra, Diego; Angiuoli, Samuel V; Creasy, Todd; Amedeo, Paolo; Haas, Brian; El-Sayed, Najib M; Wortman, Jennifer R; Feldblyum, Tamara; Tallon, Luke; Schatz, Michael; Shumway, Martin; Koo, Hean; Salzberg, Steven L; Schobel, Seth; Pertea, Mihaela; Pop, Mihai; White, Owen; Barton, Geoffrey J; Carlow, Clotilde K S; Crawford, Michael J; Daub, Jennifer; Dimmic, Matthew W; Estes, Chris F; Foster, Jeremy M; Ganatra, Mehul; Gregory, William F; Johnson, Nicholas M; Jin, Jinming; Komuniecki, Richard; Korf, Ian; Kumar, Sanjay; Laney, Sandra; Li, Ben-Wen; Li, Wen; Lindblom, Tim H; Lustigman, Sara; Ma, Dong; Maina, Claude V; Martin, David M A; McCarter, James P; McReynolds, Larry; Mitreva, Makedonka; Nutman, Thomas B; Parkinson, John; Peregrín-Alvarez, José M; Poole, Catherine; Ren, Qinghu; Saunders, Lori; Sluder, Ann E; Smith, Katherine; Stanke, Mario; Unnasch, Thomas R; Ware, Jenna; Wei, Aguan D; Weil, Gary; Williams, Deryck J; Zhang, Yinhua; Williams, Steven A; Fraser-Liggett, Claire; Slatko, Barton; Blaxter, Mark L; Scott, Alan L

    2007-09-21

    Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the approximately 90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict approximately 11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during approximately 350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.

  7. Whole body lymphangioscintigraphy in ferrets chronically infected with Brugia malayi

    Energy Technology Data Exchange (ETDEWEB)

    Witte, M.; McNeill, G.; Crandall, C.; Case, T.; Witte, C.; Crandall, R.; Hall, J.; Williams, W.

    1988-12-01

    Whole body lymphangioscintigraphy was performed after intradermal injection of /sup 99m/technetium human serum albumin or antimony colloid in the distal hindlimbs and forelimbs of ferrets chronically infected with Brugia malayi. The findings were compared with control ferrets and those with surgical interruption of the iliac lymphatics. While only one infected ferret manifested chronic hindlimb lymphedema, all exhibited delayed transport of radioisotope from the hindpaw with obstruction in the groin, poor or absent visualization of central lymphatic channels and regional lymph nodes, a picture similar to that following surgically induced lymphatic obstruction. In control ferrets, there was prompt visualization of peripheral lymphatic channels and regional lymph nodes with sharper and more extensive channel visualization after radiolabeled albumin and more intense sustained nodal visualization after radiolabeled antimony colloid. This noninvasive technique provides a readily repeatable investigative tool adaptable to small animals to study the evolution of lymphatic filariasis and other conditions associated with lymphatic obstruction.

  8. The effect of chitin synthesis inhibitors on the development of Brugia malayi in Aedes aegypti.

    Science.gov (United States)

    Mohapatra, R; Ranjit, M R; Dash, A P

    1996-09-01

    Two chitin synthesis inhibitors (CSIs) viz., triflumuron and hexaflumuron interfere++ with the development of Brugia malayi in Aedes aegypti (a black-eyed Liverpool strain). The development of B. malayi was slow in both the treated populations and the infection rate, infectivity rate and L3 load per mosquito decreased significantly (P triflumuron. PMID:8984113

  9. Detection of Brugia malayi infected mosquitoes with a species specific DNA probe

    International Nuclear Information System (INIS)

    A species specific DNA probe (pβm15) was used in a field area where two filarial infections coexist: Brugia malayi in man and Brugia pahangi in cats. In our laboratory at Jakarta, this DNA probe proved to be sensitive enough to detect 500 pg of purified Brugia malayi microfilarial DNA. One to two infective larvae of Brugia malayi could be detected with ease. This DNA probe did not react with infective larvae of Brugia pahangi, Wuchereria bancrofti and Dirofilaria spp. Mosquitoes, which are vectors in Riau, were collected and fed on microfilaremic patients of Riau. The set of mosquitoes were tested in parallel with mosquitoes infected with Brugia pahangi from cats. All fed mosquitoes were tested after 10-12 days. Only mosquitoes infected with Brugia malayi reacted with the assay. This study shows that we have succeeded in applying the DNA probe technique in Jakarta. Further application in the field should be encouraged, with some modification of the DNA probing techniques for cheaper and easier implementation. 6 refs, 3 figs, 1 tab

  10. A STUDY ON THE MICROFILARIAL PERIODICITY AT BIREUEN, THE TYPE LOCALITY OF BRUGIA MALAYI (BRUG, 1927

    Directory of Open Access Journals (Sweden)

    Menabu Sasa

    2012-09-01

    Full Text Available Brugia malayi ('Brug, 1927 adalah salah satu bibit penyakit filaría yang ditemukan di Indonesia yang dilaporkan pertama kali oleh Brug ditahun 1927 dari daerah endemis Bireuen, Aceh Utara. Walaupun akhir-akhir ini diketahui di Indonesia bahwa B. malayi ini mempunyai sifat periodisitas yang periodik nokturna dan juga sub-periodik nokturna, namun dari daerah endemis Bireuen dimana parasit ini pertama kali ditemukan dan dilaporkan belum jelas sifat periodisitasnya. Oleh sebab itulah dilakukan penyelidikan didaerah ini guna menentukan sifat periodisitas dari B. malayi didaerah endemis dimana pertama kali bibit penyakit dilaporkan. Dari hasil penyelidikan didaerah endemis Bireuen pada bulan Agustus tahun 1974 ini ternyata bahwa B. malayi yang ditemukan mempunyai sifat periodisitas yang periodik nokturna. Disamping itu ditemukan pula bibit penyakit filaría dari jenis Wuchereria bancrofti yang juga mempunyai sifat periodisitas yang periodik nokturna.

  11. Identification of Brugia malayi in vectors with a species-specific DNA probe.

    Science.gov (United States)

    Sim, B K; Mak, J W; Cheong, W H; Sutanto, I; Kurniawan, L; Marwoto, H A; Franke, E; Campell, J R; Wirth, D F; Piessens, W F

    1986-05-01

    We evaluated the potential value of a cloned sequence of genomic DNA of Brugia malayi as a species-specific probe. Clone pBm 15 reacted with all stages of 8 different geographic isolates of B. malayi and cross-hybridized with microfilariae of B. timori. It did not hybridize with Wuchereria bancrofti or with B. pahangi, W. kalimantani, Dirofilaria repens, Breinlia booliati or Cardiofilaria species, animal filariids that can be sympatric with B. malayi. P32-labeled clone pBm 15 correctly identified mosquitoes infected even with 1 infective larva of B. malayi. This specific DNA probe should be an invaluable tool to monitor control programs of Brugian filariasis. PMID:3518507

  12. Bacterial endosymbionts of plant-parasitic nematodes

    Science.gov (United States)

    Several groups of bacteria have been reported as endosymbionts of various orders of nematodes including the filarial nematodes (Brugia malayi, Wucheria bancrofti and Onchocerca volvulus (Spiruida)), the entomopathogenic nematodes (Steinernema spp., and Heterorhabditis spp. (Rhabditida)), and plant-p...

  13. The genome of Brugia malayi – all worms are not created equal

    OpenAIRE

    Scott, Alan; Ghedin, Elodie

    2008-01-01

    Filarial nematode parasites, the causative agents of elephantiasis and river blindness, undermine the livelihoods of over one hundred millions people in the developing world. Recently, the Filarial Genome Project reported the draft sequence of the ~95 Mb genome of the human filarial parasite Brugia malayi - the first parasitic nematode genome to be sequenced. Comparative genome analysis with the prevailing model nematode Caenorhabditis elegans revealed similarities and differences in genome s...

  14. Modeling analysis of GST (glutathione-S-transferases) from Wuchereria bancrofti and Brugia malayi

    OpenAIRE

    Bhargavi, Rayavarapu; Vishwakarma, Siddharth; Murty, Upadhyayula Suryanarayana

    2005-01-01

    GST (glutathione S-transferases) are a family of detoxification enzymes that catalyze the conjugation of reduced GSH (glutathione) to xenobiotic (endogenous electrophilic) compounds. GST from Wb (Wuchereria bancrofti) and Bm (Brugia malayi) are significantly different from human GST in sequence and structure. Thus, Wb-GST and Bm-GST are potential chemotherapeutic targets for anti-filarial treatment. Comparison of modeled Wb and Bm GST with human GST show structural difference between them. An...

  15. Diversity and expression of microRNAs in the filarial parasite, Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Catherine B Poole

    Full Text Available Human filarial parasites infect an estimated 120 million people in 80 countries worldwide causing blindness and the gross disfigurement of limbs and genitals. An understanding of RNA-mediated regulatory pathways in these parasites may open new avenues for treatment. Toward this goal, small RNAs from Brugia malayi adult females, males and microfilariae were cloned for deep-sequencing. From ∼ 30 million sequencing reads, 145 miRNAs were identified in the B. malayi genome. Some microRNAs were validated using the p19 RNA binding protein and qPCR. B. malayi miRNAs segregate into 99 families each defined by a unique seed sequence. Sixty-one of the miRNA families are highly conserved with homologues in arthropods, vertebrates and helminths. Of those miRNAs not highly conserved, homologues of 20 B. malayi miRNA families were found in vertebrates. Nine B. malayi miRNA families appear to be filarial-specific as orthologues were not found in other organisms. The miR-2 family is the largest in B. malayi with 11 members. Analysis of the sequences shows that six members result from a recent expansion of the family. Library comparisons found that 1/3 of the B. malayi miRNAs are differentially expressed. For example, miR-71 is 5-7X more highly expressed in microfilariae than adults. Studies suggest that in C.elegans, miR-71 may enhance longevity by targeting the DAF-2 pathway. Characterization of B. malayi miRNAs and their targets will enhance our understanding of their regulatory pathways in filariads and aid in the search for novel therapeutics.

  16. Diversity and expression of microRNAs in the filarial parasite, Brugia malayi.

    Science.gov (United States)

    Poole, Catherine B; Gu, Weifeng; Kumar, Sanjay; Jin, Jingmin; Davis, Paul J; Bauche, David; McReynolds, Larry A

    2014-01-01

    Human filarial parasites infect an estimated 120 million people in 80 countries worldwide causing blindness and the gross disfigurement of limbs and genitals. An understanding of RNA-mediated regulatory pathways in these parasites may open new avenues for treatment. Toward this goal, small RNAs from Brugia malayi adult females, males and microfilariae were cloned for deep-sequencing. From ∼ 30 million sequencing reads, 145 miRNAs were identified in the B. malayi genome. Some microRNAs were validated using the p19 RNA binding protein and qPCR. B. malayi miRNAs segregate into 99 families each defined by a unique seed sequence. Sixty-one of the miRNA families are highly conserved with homologues in arthropods, vertebrates and helminths. Of those miRNAs not highly conserved, homologues of 20 B. malayi miRNA families were found in vertebrates. Nine B. malayi miRNA families appear to be filarial-specific as orthologues were not found in other organisms. The miR-2 family is the largest in B. malayi with 11 members. Analysis of the sequences shows that six members result from a recent expansion of the family. Library comparisons found that 1/3 of the B. malayi miRNAs are differentially expressed. For example, miR-71 is 5-7X more highly expressed in microfilariae than adults. Studies suggest that in C.elegans, miR-71 may enhance longevity by targeting the DAF-2 pathway. Characterization of B. malayi miRNAs and their targets will enhance our understanding of their regulatory pathways in filariads and aid in the search for novel therapeutics.

  17. Molecular evidence for a functional ecdysone signaling system in Brugia malayi.

    Directory of Open Access Journals (Sweden)

    George Tzertzinis

    Full Text Available BACKGROUND: Filarial nematodes, including Brugia malayi, the causative agent of lymphatic filariasis, undergo molting in both arthropod and mammalian hosts to complete their life cycles. An understanding of how these parasites cross developmental checkpoints may reveal potential targets for intervention. Pharmacological evidence suggests that ecdysteroids play a role in parasitic nematode molting and fertility although their specific function remains unknown. In insects, ecdysone triggers molting through the activation of the ecdysone receptor: a heterodimer of EcR (ecdysone receptor and USP (Ultraspiracle. METHODS AND FINDINGS: We report the cloning and characterization of a B. malayi EcR homologue (Bma-EcR. Bma-EcR dimerizes with insect and nematode USP/RXRs and binds to DNA encoding a canonical ecdysone response element (EcRE. In support of the existence of an active ecdysone receptor in Brugia we also cloned a Brugia rxr (retinoid X receptor homolog (Bma-RXR and demonstrate that Bma-EcR and Bma-RXR interact to form an active heterodimer using a mammalian two-hybrid activation assay. The Bma-EcR ligand-binding domain (LBD exhibits ligand-dependent transactivation via a GAL4 fusion protein combined with a chimeric RXR in mammalian cells treated with Ponasterone-A or a synthetic ecdysone agonist. Furthermore, we demonstrate specific up-regulation of reporter gene activity in transgenic B. malayi embryos transfected with a luciferase construct controlled by an EcRE engineered in a B. malayi promoter, in the presence of 20-hydroxy-ecdysone. CONCLUSIONS: Our study identifies and characterizes the two components (Bma-EcR and Bma-RXR necessary for constituting a functional ecdysteroid receptor in B. malayi. Importantly, the ligand binding domain of BmaEcR is shown to be capable of responding to ecdysteroid ligands, and conversely, ecdysteroids can activate transcription of genes downstream of an EcRE in live B. malayi embryos. These results together

  18. Anti-idiotypic antibodies function as a surrogate surface epitope of Brugia malayi infective larvae.

    Science.gov (United States)

    Carlow, C K; Busto, P; Storey, N; Philipp, M

    1990-07-01

    Anti-idiotypic (AB2) antibodies were generated in rabbits following immunization with a murine IgM monoclonal antibody (AB1) recognizing a surface determinant of Brugia malayi infective stage larvae. AB2 specifically inhibited the binding of AB1 to B. malayi larvae. Furthermore, AB2 had the ability to mimic the original antigen since mice immunized with AB2 possessed serum antibodies (AB3) specific for the B. malayi surface determinant. The presence of anti-surface antibodies (AB3 and AB1) induced either by AB2 immunization or by administration of AB1, did not alter the outcome of an intraperitoneal infection of B. malayi larvae in BABL/c mice when compared to untreated animals. AB3 antibodies like AB1, were IgM, thus indicating an isotype restricted response to the B. malayi epitope. There were no detectable cell mediated responses to the surface determinant in mice immunized with AB2, assessed by lymphocyte blastogenesis or IL3 production in vitro in response to the idiotope as presented by living larvae. The lack of cellular responses and/or the previously demonstrated rapid shedding of the epitope may explain the inability of AB1 or AB2 to protect mice against larval challenge in this study.

  19. Mining predicted essential genes of Brugia malayi for nematode drug targets.

    Science.gov (United States)

    Kumar, Sanjay; Chaudhary, Kshitiz; Foster, Jeremy M; Novelli, Jacopo F; Zhang, Yinhua; Wang, Shiliang; Spiro, David; Ghedin, Elodie; Carlow, Clotilde K S

    2007-01-01

    We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.

  20. Mining predicted essential genes of Brugia malayi for nematode drug targets.

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar

    Full Text Available We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.

  1. Glucose and Glycogen Metabolism in Brugia malayi Is Associated with Wolbachia Symbiont Fitness.

    Science.gov (United States)

    Voronin, Denis; Bachu, Saheed; Shlossman, Michael; Unnasch, Thomas R; Ghedin, Elodie; Lustigman, Sara

    2016-01-01

    Wolbachia are endosymbiotic bacteria found in the majority of arthropods and filarial nematodes of medical and veterinary importance. They have evolved a wide range of symbiotic associations. In filarial nematodes that cause human lymphatic filariasis (Wuchereria bancrofti, Brugia malayi) or onchocerciasis (Onchocerca volvulus), Wolbachia are important for parasite development, reproduction and survival. The symbiotic bacteria rely in part on nutrients and energy sources provided by the host. Genomic analyses suggest that the strain of Wolbachia found in B. malayi (wBm) lacks the genes for two glycolytic enzymes--6-phosphofructokinase and pyruvate kinase--and is thus potentially unable to convert glucose into pyruvate, an important substrate for energy generation. The Wolbachia surface protein, wBm00432, is complexed to six B. malayi glycolytic enzymes, including aldolase. In this study we characterized two B. malayi aldolase isozymes and found that their expression is dependent on Wolbachia fitness and number. We confirmed by immuno-transmission electron microscopy that aldolase is associated with the Wolbachia surface. RNAi experiments suggested that aldolase-2 plays a significant role in both Wolbachia survival and embryogenesis in B. malayi. Treatment with doxycycline reduced Wolbachia fitness and increased the amount of both glucose and glycogen detected in the filarial parasite, indicating that glucose metabolism and glycogen storage in B. malayi are associated with Wolbachia fitness. This metabolic co-dependency between Wolbachia and its filarial nematode indicates that glycolysis could be a shared metabolic pathway between the bacteria and B. malayi, and thus a potential new target for anti-filarial therapy. PMID:27078260

  2. Insights into the structure-function relationship of Brugia malayi thymidylate kinase (BmTMK).

    Science.gov (United States)

    Doharey, Pawan Kumar; Singh, Sudhir Kumar; Verma, Pravesh; Verma, Anita; Rathaur, Sushma; Saxena, Jitendra Kumar

    2016-07-01

    Lymphatic filariasis is a debilitating disease caused by lymph dwelling nematodal parasites like Wuchereria bancrofti, Brugia malayi and Brugia timori. Thymidylate kinase of B. malayi is a key enzyme in the de novo and salvage pathways for thymidine 5'-triphosphate (dTTP) synthesis. Therefore, B. malayi thymidylate kinase (BmTMK) is an essential enzyme for DNA biosynthesis and an important drug target to rein in filariasis. In the present study, the structural and functional changes associated with recombinant BmTMK, in the presence of protein denaturant GdnHCl, urea and pH were studied. GdnHCl and urea induced unfolding of BmTMK is non-cooperative and influence the functional property of the enzyme much lower than their Cm values. The study delineate that BmTMK is more prone to ionic perturbation. The dimeric assembly of BmTMK is an absolute requirement for enzymatic acitivity and any subtle change in dimeric conformation due to denaturation leads to loss of enzymatic activity. The pH induced changes on structure and activity suggests that selective modification of active site microenvironment pertains to difference in activity profile. This study also envisages that chemical moieties which acts by modulating oligomeric assembly, could be used for better designing of inhibitors against BmTMK enzyme. PMID:27044348

  3. Effects of Doxycycline on gene expression in Wolbachia and Brugia malayi adult female worms in vivo

    Directory of Open Access Journals (Sweden)

    Rao Ramakrishna U

    2012-02-01

    Full Text Available Abstract Background Most filarial nematodes contain Wolbachia symbionts. The purpose of this study was to examine the effects of doxycycline on gene expression in Wolbachia and adult female Brugia malayi. Methods Brugia malayi infected gerbils were treated with doxycycline for 6-weeks. This treatment largely cleared Wolbachia and arrested worm reproduction. RNA recovered from treated and control female worms was labeled by random priming and hybridized to the Version 2- filarial microarray to obtain expression profiles. Results and discussion Results showed significant changes in expression for 200 Wolbachia (29% of Wolbachia genes with expression signals in untreated worms and 546 B. malayi array elements after treatment. These elements correspond to known genes and also to novel genes with unknown biological functions. Most differentially expressed Wolbachia genes were down-regulated after treatment (98.5%. In contrast, doxycycline had a mixed effect on B. malayi gene expression with many more genes being significantly up-regulated after treatment (85% of differentially expressed genes. Genes and processes involved in reproduction (gender-regulated genes, collagen, amino acid metabolism, ribosomal processes, and cytoskeleton were down-regulated after doxycycline while up-regulated genes and pathways suggest adaptations for survival in response to stress (energy metabolism, electron transport, anti-oxidants, nutrient transport, bacterial signaling pathways, and immune evasion. Conclusions Doxycycline reduced Wolbachia and significantly decreased bacterial gene expression. Wolbachia ribosomes are believed to be the primary biological target for doxycycline in filarial worms. B. malayi genes essential for reproduction, growth and development were also down-regulated; these changes are consistent with doxycycline effects on embryo development and reproduction. On the other hand, many B. malayi genes involved in energy production, electron

  4. UDP-galactopyranose mutase, a potential drug target against human pathogenic nematode Brugia malayi.

    Science.gov (United States)

    Misra, Sweta; Valicherla, Guru R; Mohd Shahab; Gupta, Jyoti; Gayen, Jiaur R; Misra-Bhattacharya, Shailja

    2016-08-01

    Lymphatic filariasis, a vector-borne neglected tropical disease affects millions of population in tropical and subtropical countries. Vaccine unavailability and emerging drug resistance against standard antifilarial drugs necessitate search of novel drug targets for developing alternate drugs. Recently, UDP-galactopyranose mutases (UGM) have emerged as a promising drug target playing an important role in parasite virulence and survival. This study deals with the cloning and characterization of Brugia malayi UGM and further exploring its antifilarial drug target potential. The recombinant protein was actively involved in conversion of UDP-galactopyranose (substrate) to UDP-galactofuranose (product) revealing Km and Vmax to be ∼51.15 μM and ∼1.27 μM/min, respectively. The purified protein appeared to be decameric in native state and its 3D homology modeling using Aspergillus fumigatus UGM enzyme as template revealed conservation of active site residues. Two specific prokaryotic inhibitors (compounds A and B) of the enzyme inhibited B. malayi UGM enzymatic activity competitively depicting Ki values ∼22.68 and ∼23.0 μM, respectively. These compounds were also active in vitro and in vivo against B. malayi The findings suggest that B. malayi UGM could be a potential antifilarial therapeutic drug target. PMID:27465638

  5. In vitro antifilarial effects of three plant species against adult worms of subperiodic Brugia malayi.

    Science.gov (United States)

    Zaridah, M Z; Idid, S Z; Omar, A W; Khozirah, S

    2001-11-01

    Five aqueous extracts from three plant species, i.e., dried husks (HX), dried seeds (SX) and dried leaves (LX) of Xylocarpus granatum (Meliaceae), dried stems (ST) of Tinospora crispa (Menispermaceae) and dried leaves (LA) of Andrographis paniculata (Acanthaceae) were tested in vitro against adult worms of subperiodic Brugia malayi. The relative movability (RM) value of the adult worms over the 24-h observation period was used as a measure of the antifilarial activity of the aqueous extracts. SX extract of X. granatum demonstrated the strongest activity, followed by the LA extract of A. paniculata, ST extract of T. crispa, HX extract and LX extract of X. granatum. PMID:11585692

  6. The Immunodominant Brugia malayi Paramyosin as a Marker of Current Infection with Wuchereria bancrofti Adult Worms

    OpenAIRE

    Langy, Sandra; Plichart, Catherine; Luquiaud, Patrick; Williams, Steven A.; Nicolas, Luc

    1998-01-01

    The full-length cDNA sequence encoding Brugia malayi L3 paramyosin has been isolated by immunoscreening a cDNA library with a mouse antiserum raised against Wuchereria bancrofti L3 infective larvae. A recombinant truncated form of paramyosin was expressed as a glutathione S-transferase fusion protein and used to evaluate humoral responses of adults from a W. bancrofti-endemic area in French Polynesia according to their parasitological status. Immunoglobulin G4 (IgG4) preferentially bound to p...

  7. The genome of Brugia malayi - all worms are not created equal.

    Science.gov (United States)

    Scott, Alan L; Ghedin, Elodie

    2009-03-01

    Filarial nematode parasites, the causative agents of elephantiasis and river blindness, undermine the livelihoods of over one hundred million people in the developing world. Recently, the Filarial Genome Project reported the draft sequence of the ~95 Mb genome of the human filarial parasite Brugia malayi - the first parasitic nematode genome to be sequenced. Comparative genome analysis with the prevailing model nematode Caenorhabditis elegans revealed similarities and differences in genome structure and organization that will prove useful as additional nematode genomes are completed. The Brugia genome provides the first opportunity to comprehensively compare the full gene repertoire of a free-living nematode species and one that has evolved as a human pathogen. The Brugia genome also provides an opportunity to gain insight into genetic basis for mutualism, as Brugia, like a majority of filarial species, harbors an endosybiotic bacterium (Wolbachia). The goal of this review is to provide an overview of the results of genomic analysis and how these observations provide new insights into the biology of filarial species. PMID:18952001

  8. Moxidectin causes adult worm mortality of human lymphatic filarial parasite Brugia malayi in rodent models.

    Science.gov (United States)

    Verma, Meenakshi; Pathak, Manisha; Shahab, Mohd; Singh, Kavita; Mitra, Kalyan; Misra-Bhattacharya, Shailja

    2014-12-01

    Moxidectin is a macrocyclic lactone belonging to milbemycin family closely related to ivermectin and is currently progressing towards Phase III clinical trial against human infection with the filaria Onchocerca volvulus (Leuckart, 1894). There is a single report on the microfilaricidal and embryostatic activity of moxidectin in case of the human lymphatic filarial parasite Brugia malayi (Brug, 1927) in Mastomys coucha (Smith) but without any adulticidal action. In the present study, the in vitro and in vivo antifilarial efficacy of moxidectin was evaluated on, B. malayi. In vitro moxidectin showed 100% reduction in adult female worm motility at 0.6 μM concentration within 7 days with 68% inhibition in the reduction of MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide dye) (which is used to detect viability of worms). A 50% inhibitory concentration (IC50) of moxidectin for adult female parasite was 0.242 μM, for male worm 0.186 μM and for microfilaria IC50 was 0.813 μM. In adult B. malayi-transplanted primary screening model (Meriones unguiculatus Milne-Edwards), moxidectin at a single optimal dose of 20 mg/kg by oral and subcutaneous route was found effective on both adult parasites and microfilariae. In secondary screening (M coucha, subcutaneously inoculated with infective larvae), moxidectin at the same dose by subcutaneous route brought about death of 49% of adult worms besides causing sterilisation in 54% of the recovered live female worms. The treated animals exhibited a continuous and sustained reduction in peripheral blood microfilaraemia throughout the observation period of 90 days. The mechanism of action of moxidectin is suggested to be similar to avermectins. The in silico studies were also designed to explore the interaction of moxidectin with glutamate-gated chloride channels of B. malayi. The docking results revealed a close interaction of moxidectin with various GluCl ligand sites of B. malayi. PMID:25651699

  9. Yeast-Based High-Throughput Screens to Identify Novel Compounds Active against Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Elizabeth Bilsland

    2016-01-01

    Full Text Available Lymphatic filariasis is caused by the parasitic worms Wuchereria bancrofti, Brugia malayi or B. timori, which are transmitted via the bites from infected mosquitoes. Once in the human body, the parasites develop into adult worms in the lymphatic vessels, causing severe damage and swelling of the affected tissues. According to the World Health Organization, over 1.2 billion people in 58 countries are at risk of contracting lymphatic filariasis. Very few drugs are available to treat patients infected with these parasites, and these have low efficacy against the adult stages of the worms, which can live for 7-15 years in the human body. The requirement for annual treatment increases the risk of drug-resistant worms emerging, making it imperative to develop new drugs against these devastating diseases.We have developed a yeast-based, high-throughput screening system whereby essential yeast genes are replaced with their filarial or human counterparts. These strains are labeled with different fluorescent proteins to allow the simultaneous monitoring of strains with parasite or human genes in competition, and hence the identification of compounds that inhibit the parasite target without affecting its human ortholog. We constructed yeast strains expressing eight different Brugia malayi drug targets (as well as seven of their human counterparts, and performed medium-throughput drug screens for compounds that specifically inhibit the parasite enzymes. Using the Malaria Box collection (400 compounds, we identified nine filarial specific inhibitors and confirmed the antifilarial activity of five of these using in vitro assays against Brugia pahangi.We were able to functionally complement yeast deletions with eight different Brugia malayi enzymes that represent potential drug targets. We demonstrated that our yeast-based screening platform is efficient in identifying compounds that can discriminate between human and filarial enzymes. Hence, we are confident

  10. The Effect of In Vitro Cultivation on the Transcriptome of Adult Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Cristina Ballesteros

    2016-01-01

    Full Text Available Filarial nematodes cause serious and debilitating infections in human populations of tropical countries, contributing to an entrenched cycle of poverty. Only one human filarial parasite, Brugia malayi, can be maintained in rodents in the laboratory setting. It has been a widely used model organism in experiments that employ culture systems, the impact of which on the worms is unknown.Using Illumina RNA sequencing, we characterized changes in gene expression upon in vitro maintenance of adult B. malayi female worms at four time points: immediately upon removal from the host, immediately after receipt following shipment, and after 48 h and 5 days in liquid culture media. The dramatic environmental change and the 24 h time lapse between removal from the host and establishment in culture caused a globally dysregulated gene expression profile. We found a maximum of 562 differentially expressed genes based on pairwise comparison between time points. After an initial shock upon removal from the host and shipping, a few stress fingerprints remained after 48 h in culture and until the experiment was stopped. This was best illustrated by a strong and persistent up-regulation of several genes encoding cuticle collagens, as well as serpins.These findings suggest that B. malayi can be maintained in culture as a valid system for pharmacological and biological studies, at least for several days after removal from the host and adaptation to the new environment. However, genes encoding several stress indicators remained dysregulated until the experiment was stopped.

  11. Identification of a highly immunoreactive epitope of Brugia malayi TPx recognized by the endemic sera.

    Science.gov (United States)

    Madhumathi, Jayaprakasam; Prince, Prabhu Rajaiah; Gayatri, Subash Chellam; Aparnaa, Ramanathan; Kaliraj, Perumal

    2010-12-01

    Filarial thiordoxin peroxidase is a major antioxidant that plays a crucial role in parasite survival. Although Brugia malayi TPx has been shown to be a potential vaccine candidate, it shares 63% homology with its mammalian counterpart, limiting its use as a vaccine or drug target. In silico analysis of TPx sequence revealed a linear B epitope in the host's nonhomologous region. The peptide sequence (TPx peptide(27-48)) was synthesized, and its reactivity with clinical sera from an endemic region was analyzed. The peptide showed significantly high reactivity (P patent infection. The high reactivity of the peptide with endemic immune sera equivalent to that of whole protein shows that it forms a dominant B epitope of TPx protein and thus could be utilized for incorporation into a multiepitope vaccine construct for filariasis. PMID:21158641

  12. Cloning and characterization of high mobility group box protein 1 (HMGB1) of Wuchereria bancrofti and Brugia malayi

    OpenAIRE

    Thirugnanam, Sivasakthivel; Munirathinam, Gnanasekar; Veerapathran, Anandharaman; Dakshinamoorthy, Gajalakshmi; Reddy, Maryada V.; RAMASWAMY, KALYANASUNDARAM

    2012-01-01

    A human homologue of high mobility group box 1 (HMGB1) protein was cloned and characterized from the human filarial parasites Wuchereria bancrofti and Brugia malayi. Sequence analysis showed that W. bancrofti HMGB1 (WbHMGB1) and B. malayi HMGB1 (BmHMGB1) proteins share 99 % sequence identity. Filarial HMGB1 showed typical architectural sequence characteristics of HMGB family of proteins and consisted of only a single HMG box domain that had significant sequence similarity to the pro-inflammat...

  13. Computational prediction of essential genes in an unculturable endosymbiotic bacterium, Wolbachia of Brugia malayi

    Directory of Open Access Journals (Sweden)

    Carlow Clotilde KS

    2009-11-01

    Full Text Available Abstract Background Wolbachia (wBm is an obligate endosymbiotic bacterium of Brugia malayi, a parasitic filarial nematode of humans and one of the causative agents of lymphatic filariasis. There is a pressing need for new drugs against filarial parasites, such as B. malayi. As wBm is required for B. malayi development and fertility, targeting wBm is a promising approach. However, the lifecycle of neither B. malayi nor wBm can be maintained in vitro. To facilitate selection of potential drug targets we computationally ranked the wBm genome based on confidence that a particular gene is essential for the survival of the bacterium. Results wBm protein sequences were aligned using BLAST to the Database of Essential Genes (DEG version 5.2, a collection of 5,260 experimentally identified essential genes in 15 bacterial strains. A confidence score, the Multiple Hit Score (MHS, was developed to predict each wBm gene's essentiality based on the top alignments to essential genes in each bacterial strain. This method was validated using a jackknife methodology to test the ability to recover known essential genes in a control genome. A second estimation of essentiality, the Gene Conservation Score (GCS, was calculated on the basis of phyletic conservation of genes across Wolbachia's parent order Rickettsiales. Clusters of orthologous genes were predicted within the 27 currently available complete genomes. Druggability of wBm proteins was predicted by alignment to a database of protein targets of known compounds. Conclusion Ranking wBm genes by either MHS or GCS predicts and prioritizes potentially essential genes. Comparison of the MHS to GCS produces quadrants representing four types of predictions: those with high confidence of essentiality by both methods (245 genes, those highly conserved across Rickettsiales (299 genes, those similar to distant essential genes (8 genes, and those with low confidence of essentiality (253 genes. These data facilitate

  14. Tissue and stage-specific distribution of Wolbachia in Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Kerstin Fischer

    2011-05-01

    Full Text Available BACKGROUND: Most filarial parasite species contain Wolbachia, obligatory bacterial endosymbionts that are crucial for filarial development and reproduction. They are targets for alternative chemotherapy, but their role in the biology of filarial nematodes is not well understood. Light microscopy provides important information on morphology, localization and potential function of these bacteria. Surprisingly, immunohistology and in situ hybridization techniques have not been widely used to monitor Wolbachia distribution during the filarial life cycle. METHODS/PRINCIPAL FINDINGS: A monoclonal antibody directed against Wolbachia surface protein and in situ hybridization targeting Wolbachia 16S rRNA were used to monitor Wolbachia during the life cycle of B. malayi. In microfilariae and vector stage larvae only a few cells contain Wolbachia. In contrast, large numbers of Wolbachia were detected in the lateral chords of L4 larvae, but no endobacteria were detected in the genital primordium. In young adult worms (5 weeks p.i., a massive expansion of Wolbachia was observed in the lateral chords adjacent to ovaries or testis, but no endobacteria were detected in the growth zone of the ovaries, uterus, the growth zone of the testis or the vas deferens. Confocal laser scanning and transmission electron microscopy showed that numerous Wolbachia are aligned towards the developing ovaries and single endobacteria were detected in the germline. In inseminated females (8 weeks p.i. Wolbachia were observed in the ovaries, embryos and in decreasing numbers in the lateral chords. In young males Wolbachia were found in distinct zones of the testis and in large numbers in the lateral chords in the vicinity of testicular tissue but never in mature spermatids or spermatozoa. CONCLUSIONS: Immunohistology and in situ hybridization show distinct tissue and stage specific distribution patterns for Wolbachia in B. malayi. Extensive multiplication of Wolbachia occurs in the

  15. Localization of Brugia malayi (sub-periodic) adults in different organs of Mastomys coucha and its influence on microfilaraemia and host antibody response

    OpenAIRE

    K Athisaya Mary; SL Hoti; Paily KP

    2006-01-01

    Lymphatic filariasis caused by nematode parasites Wuchereria bancrofti or Brugia malayi is a spectral disease and produces wide range of immune responses and varying levels ofmicrofilaraemia in infected individuals. The relationship between the immune response of host and the developmental stage of the parasite as well as the microfilariae (mf) density and specific location of the adult worms is yet to be understood. As an experimental model, B. malayi adapted in the experimental animal Masto...

  16. Dissection and PCR-based detection of Brugia malayi on Mansonia spp in Tanjung Jabung Timur District

    Directory of Open Access Journals (Sweden)

    Santoso

    2015-06-01

    Full Text Available Filariasis is a public health problem in East Tanjung Jabung. Eventhough that mass treatment had been carried out since 2002, there were still villages with microfilaria rate >1%. This study aims to detect filarial worm larvae in the mosquitoes with dissections and PCR method. The mosquitoes used in this study were Mansonia spp. The number of mosquitoes that examined was 450,133 and some of Mansonia mosquitoes were checked by PCR. The result showed that microscopic dissection did not found stage 3 (L3 of filarial worm larvae in the mosquitoes. The results from PCR test showed the presence of B. malayi DNA in 8 samples of Ma. indiana. Mansonia indiana is a potential vectors for Brugia malayi filariasis in East Tanjung Jabung. PCR method is more sensitive examination in detecting microfilaria compared with dissection method.

  17. Expression of five acetylcholine receptor subunit genes in Brugia malayi adult worms.

    Science.gov (United States)

    Li, Ben-Wen; Rush, Amy C; Weil, Gary J

    2015-12-01

    Acetylcholine receptors (AChRs) are required for body movement in parasitic nematodes and are targets of "classical" anthelmintic drugs such as levamisole and pyrantel and of newer drugs such as tribendimidine and derquantel. While neurotransmission explains the effects of these drugs on nematode movement, their effects on parasite reproduction are unexplained. The levamisole AChR type (L-AChRs) in Caenorhabditis elegans is comprised of five subunits: Cel-UNC-29, Cel-UNC-38, Cel-UNC-63, Cel-LEV-1 and Cel-LEV-8. The genome of the filarial parasite Brugia malayi contains nine AChRs subunits including orthologues of Cel-unc-29, Cel-unc-38, and Cel-unc-63. We performed in situ hybridization with RNA probes to localize the expression of five AChR genes (Bm1_35890-Bma-unc-29, Bm1_20330-Bma-unc-38, Bm1_38195-Bma-unc-63, Bm1_48815-Bma-acr-26 and Bm1_40515-Bma-acr-12) in B. malayi adult worms. Four of these genes had similar expression patterns with signals in body muscle, developing embryos, spermatogonia, uterine wall adjacent to stretched microfilariae, wall of V as deferens, and lateral cord. Three L-AChR subunit genes (Bma-unc-29, Bma-unc-38 and Bma-unc-63) were expressed in body muscle, which is a known target of levamisole. Bma-acr-12 was co-expressed with these levamisole subunit genes in muscle, and this suggests that its protein product may form receptors with other alpha subunits. Bma-acr-26 was expressed in male muscle but not in female muscle. Strong expression signals of these genes in early embryos and gametes in uterus and testis suggest that AChRs may have a role in nervous system development of embryogenesis and spermatogenesis. This would be consistent with embryotoxic effects of drugs that target these receptors in filarial worms. Our data show that the expression of these receptor genes is tightly regulated with regard to localization in adult worms and developmental stage in embryos and gametes. These results may help to explain the broad effects of

  18. Potential involvement of Brugia malayi cysteine proteases in the maintenance of the endosymbiotic relationship with Wolbachia

    Directory of Open Access Journals (Sweden)

    Sara Lustigman

    2014-12-01

    Full Text Available Brugia malayi, a parasitic nematode that causes lymphatic filariasis, harbors endosymbiotic intracellular bacteria, Wolbachia, that are required for the development and reproduction of the worm. The essential nature of this endosymbiosis led to the development of anti-Wolbachia chemotherapeutic approaches for the treatment of human filarial infections. Our study is aimed at identifying specific proteins that play a critical role in this endosymbiotic relationship leading to the identification of potential targets in the adult worms. Filarial cysteine proteases are known to be involved in molting and embryogenesis, processes shown to also be Wolbachia dependent. Based on the observation that cysteine protease transcripts are differentially regulated in response to tetracycline treatment, we focused on defining their role in symbiosis. We observe a bimodal regulation pattern of transcripts encoding cysteine proteases when in vitro tetracycline treated worms were examined. Using tetracycline-treated infertile female worms and purified embryos we established that the first peak of the bimodal pattern corresponds to embryonic transcripts while the second takes place within the hypodermis of the adult worms. Localization studies of the native proteins corresponding to Bm-cpl-3 and Bm-cpl-6 indicate that they are present in the area surrounding Wolbachia, and, in some cases, the proteins appear localized within the bacteria. Both proteins were also found in the inner bodies of microfilariae. The possible role of these cysteine proteases during development and endosymbiosis was further characterized using RNAi. Reduction in Bm-cpl-3 and Bm-cpl-6 transcript levels was accompanied by hindered microfilarial development and release, and reduced Wolbachia DNA levels, making these enzymes strong drug target candidates.

  19. The Effects of Ivermectin on Brugia malayi Females In Vitro: A Transcriptomic Approach

    Science.gov (United States)

    O’Neill, Maeghan; Burkman, Erica; Zaky, Weam I.; Xia, Jianguo; Moorhead, Andrew; Williams, Steven A.; Geary, Timothy G.

    2016-01-01

    Background Lymphatic filariasis and onchocerciasis are disabling and disfiguring neglected tropical diseases of major importance in developing countries. Ivermectin is the drug of choice for mass drug administration programs for the control of onchocerciasis and lymphatic filariasis in areas where the diseases are co-endemic. Although ivermectin paralyzes somatic and pharyngeal muscles in many nematodes, these actions are poorly characterized in adult filariae. We hypothesize that paralysis of pharyngeal pumping by ivermectin in filariae could result in deprivation of essential nutrients, especially iron, inducing a wide range of responses evidenced by altered gene expression, changes in metabolic pathways, and altered developmental states in embryos. Previous studies have shown that ivermectin treatment significantly reduces microfilariae release from females within four days of exposure in vivo, while not markedly affecting adult worms. However, the mechanisms responsible for reduced production of microfilariae are poorly understood. Methodology/Principal Findings We analyzed transcriptomic profiles from Brugia malayi adult females, an important model for other filariae, using RNAseq technology after exposure in culture to ivermectin at various concentrations (100 nM, 300 nM and 1 μM) and time points (24, 48, 72 h, and 5 days). Our analysis revealed drug-related changes in expression of genes involved in meiosis, as well as oxidative phosphorylation, which were significantly down-regulated as early as 24 h post-exposure. RNA interference phenotypes of the orthologs of these down-regulated genes in C. elegans include “maternal sterile”, “embryonic lethal”, “larval arrest”, “larval lethal” and “sick”. Conclusion/Significance These changes provide insight into the mechanisms involved in ivermectin-induced reduction in microfilaria output and impaired fertility, embryogenesis, and larval development. PMID:27529747

  20. Production of Brugia malayi BmSXP Recombinant Protein Expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Khoo, T. K.

    2010-01-01

    Full Text Available A rapid antibody detection test is very useful for detection of lymphatic filariasis, especially for certification and surveillance of post-mass drug administration. One such kit, panLF RapidTM (commercialized by Malaysian BioDiagnostic Research Sdn. Bhd. had been developed in our laboratory for the detection of all species of filarial infections. It is based on the detection of anti-filarial IgG4 antibodies that react with recombinant Brugia malayi antigens, BmR1 and BmSXP. In this study, the growth of recombinant bacteria that produce BmSXP was optimized under shake flask fermentation for high yield of the recombinant antigen. The optimizations involved selection of suitable growth medium, IPTG concentration and induction time. The medium that yielded the highest biomass as well as total protein was Terrific Broth (TB medium, which is an undefined medium. Initiation of induction of protein expression was found to be best at mid-log phase (OD600 = 1.5, with IPTG concentration of 1.0 mM, and harvest time at 9 h post-induction. This study showed that under the optimized conditions, the shake flask culture produced 4 g/L biomass (dry cell weight of recombinant Escherichia coli BmSXP/pPROEXHTa/TOP10F’, which yielded 2.42 mg/L of purified BmSXP recombinant antigen. The purified antigen was analyzed by SDS-PAGE and the antigenicity of protein was confirmed by Western blot.

  1. Brugia malayi: vaccination of jirds with /sup 60/cobalt-attenuated infective stage larvae protects against homologous challenge

    Energy Technology Data Exchange (ETDEWEB)

    Yates, J.A.; Higashi, G.I.

    1985-11-01

    Vaccination of inbred jirds (Meriones unguiculatus) with /sup 60/cobalt radiation-attenuated Brugia malayi infective stage larvae (L3) protected against homologous challenge given either subcutaneously (sc) or by the intraperitoneal (ip) route. Groups of jirds vaccinated once sc with 75, 15 Krad L3 showed from 69% to 91% reduction in recovered worms after ip challenge infection compared to infection in non-vaccinated control jirds, while 75% reduction in mean worm burden was seen in jirds receiving sc challenge infection. A single sc vaccination with 75, 10 or 20 Krad L3 produced no protection (10 Krad) and 64% reduction in recovered worms (20 Krad). Therefore the 15 Krad dose appeared to be best. A marked increase in anti-B. malayi antibody in vaccinated jirds was seen (by ELISA) immediately after challenge infection and an immunofluorescence assay showed that L3 incubated in serum from vaccinated jirds were completely and uniformly covered with specific antibody. Eosinophil-rich granulomas containing dead and moribund L3 were recovered from vaccinated jirds. This model of protective immunity in a Brugia-susceptible small rodent may provide a useful system for identification of molecularly defined filarial-protective immunogens.

  2. Immunization of Mastomys coucha with Brugia malayi recombinant trehalose-6-phosphate phosphatase results in significant protection against homologous challenge infection.

    Directory of Open Access Journals (Sweden)

    Susheela Kushwaha

    Full Text Available Development of a vaccine to prevent or reduce parasite development in lymphatic filariasis would be a complementary approach to existing chemotherapeutic tools. Trehalose-6-phosphate phosphatase of Brugia malayi (Bm-TPP represents an attractive vaccine target due to its absence in mammals, prevalence in the major life stages of the parasite and immunoreactivity with human bancroftian antibodies, especially from endemic normal subjects. We have recently reported on the cloning, expression, purification and biochemical characterization of this vital enzyme of B. malayi. In the present study, immunoprophylactic evaluation of Bm-TPP was carried out against B. malayi larval challenge in a susceptible host Mastomys coucha and the protective ability of the recombinant protein was evaluated by observing the adverse effects on microfilarial density and adult worm establishment. Immunization caused 78.4% decrease in microfilaremia and 71.04% reduction in the adult worm establishment along with sterilization of 70.06% of the recovered live females. The recombinant protein elicited a mixed Th1/Th2 type of protective immune response as evidenced by the generation of both pro- and anti-inflammatory cytokines IL-2, IFN-γ, TNF-α, IL-4 and an increased production of antibody isotypes IgG1, IgG2a, IgG2b and IgA. Thus immunization with Bm-TPP conferred considerable protection against B. malayi establishment by engendering a long-lasting effective immune response and therefore emerges as a potential vaccine candidate against lymphatic filariasis (LF.

  3. Release of Small RNA-containing Exosome-like Vesicles from the Human Filarial Parasite Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Mostafa Zamanian

    Full Text Available Lymphatic filariasis (LF is a socio-economically devastating mosquito-borne Neglected Tropical Disease caused by parasitic filarial nematodes. The interaction between the parasite and host, both mosquito and human, during infection, development and persistence is dynamic and delicately balanced. Manipulation of this interface to the detriment of the parasite is a promising potential avenue to develop disease therapies but is prevented by our very limited understanding of the host-parasite relationship. Exosomes are bioactive small vesicles (30-120 nm secreted by a wide range of cell types and involved in a wide range of physiological processes. Here, we report the identification and partial characterization of exosome-like vesicles (ELVs released from the infective L3 stage of the human filarial parasite Brugia malayi. Exosome-like vesicles were isolated from parasites in culture media and electron microscopy and nanoparticle tracking analysis were used to confirm that vesicles produced by juvenile B. malayi are exosome-like based on size and morphology. We show that loss of parasite viability correlates with a time-dependent decay in vesicle size specificity and rate of release. The protein cargo of these vesicles is shown to include common exosomal protein markers and putative effector proteins. These Brugia-derived vesicles contain small RNA species that include microRNAs with host homology, suggesting a potential role in host manipulation. Confocal microscopy shows J774A.1, a murine macrophage cell line, internalize purified ELVs, and we demonstrate that these ELVs effectively stimulate a classically activated macrophage phenotype in J774A.1. To our knowledge, this is the first report of exosome-like vesicle release by a human parasitic nematode and our data suggest a novel mechanism by which human parasitic nematodes may actively direct the host responses to infection. Further interrogation of the makeup and function of these bioactive

  4. Rapid Detection and Identification of Wuchereria bancrofti, Brugia malayi, B. pahangi, and Dirofilaria immitis in Mosquito Vectors and Blood Samples by High Resolution Melting Real-Time PCR

    OpenAIRE

    Thanchomnang, Tongjit; Intapan, Pewpan M.; Tantrawatpan, Chairat; Lulitanond, Viraphong; Chungpivat, Sudchit; Taweethavonsawat, Piyanan; Kaewkong, Worasak; Sanpool, Oranuch; Janwan, Penchom; Choochote, Wej; Maleewong, Wanchai

    2013-01-01

    A simple, rapid, and high-throughput method for detection and identification of Wuchereria bancrofti, Brugia malayi, Brugia pahangi, and Dirofilaria immitis in mosquito vectors and blood samples was developed using a real-time PCR combined with high-resolution melting (HRM) analysis. Amplicons of the 4 filarial species were generated from 5S rRNA and spliced leader sequences by the real-time PCR and their melting temperatures were determined by the HRM method. Melting of amplicons from W. ban...

  5. 蚊体内马来丝虫幼虫的基因检测%Studies on Gene Detection of Brugia malayi Larvae in Mosquito

    Institute of Scientific and Technical Information of China (English)

    陈锡欣; 黄炳成; 刘慎良; 韩广东; 刘新

    2001-01-01

    目的:探索蚊体内马来丝虫幼虫基因检测的新方法,并用于丝虫病监测。方法:利用基因工程技术合成马来丝虫寡核苷酸片段,经32P标记后作为探针,以斑点杂交法检测蚊体内马来丝虫幼虫。结果:该探针可从多种标本中特异地检出马来幼丝虫DNA,敏感性为2ng靶DNA量,蚊体内含1条幼虫即可出现阳性杂交。结论:该技术具有良好的实用性,可用于蚊体内马来丝虫幼虫的基因检测。%Objective:To establish a new method for gene detection of Brugiamalayi larvae in mosquito and use it in filariasis surveillance. Methods:Oligonucleotide fragment of Brugia malayi synthesized by genetic engineering technique was labeled with 32P and used as probe. The B.malayi larvae in mosquito was detected with dot blot. Results: Brugia malayi larvae DNA could be specifically detected in different samples with this probe and the sensitivity was 2 ng target DNA of B.malayi. Even only one larvae in mosquito could be detected after hybridization. Conclusions:This method is practicable and reliable for gene detection of Brugia malayi larvae in mosquito.

  6. Sequences necessary for trans-splicing in transiently transfected Brugia malayi

    OpenAIRE

    Liu, Canhui; Oliveira, Ana; Higazi, Tarig B.; Ghedin, Elodie; DePasse, Jay; Thomas R Unnasch

    2007-01-01

    Many genes in parasitic nematodes are both cis- and trans-spliced. Previous studies have demonstrated that a 7nt element encoded in the first intron of the B. malayi 70 kDa heat shock protein (BmHSP70) gene was necessary to permit trans-splicing of transgenic mRNAs in embryos transfected with constructs encoding portions of the BmHSP70 gene. Here we demonstrate that this element (the B. malayi HSP70 trans-splicing motif, or BmHSP70 TSM) is necessary and sufficient to direct trans-splicing of ...

  7. Structure of the trehalose-6-phosphate phosphatase from Brugia malayi reveals key design principles for anthelmintic drugs.

    Science.gov (United States)

    Farelli, Jeremiah D; Galvin, Brendan D; Li, Zhiru; Liu, Chunliang; Aono, Miyuki; Garland, Megan; Hallett, Olivia E; Causey, Thomas B; Ali-Reynolds, Alana; Saltzberg, Daniel J; Carlow, Clotilde K S; Dunaway-Mariano, Debra; Allen, Karen N

    2014-07-01

    Parasitic nematodes are responsible for devastating illnesses that plague many of the world's poorest populations indigenous to the tropical areas of developing nations. Among these diseases is lymphatic filariasis, a major cause of permanent and long-term disability. Proteins essential to nematodes that do not have mammalian counterparts represent targets for therapeutic inhibitor discovery. One promising target is trehalose-6-phosphate phosphatase (T6PP) from Brugia malayi. In the model nematode Caenorhabditis elegans, T6PP is essential for survival due to the toxic effect(s) of the accumulation of trehalose 6-phosphate. T6PP has also been shown to be essential in Mycobacterium tuberculosis. We determined the X-ray crystal structure of T6PP from B. malayi. The protein structure revealed a stabilizing N-terminal MIT-like domain and a catalytic C-terminal C2B-type HAD phosphatase fold. Structure-guided mutagenesis, combined with kinetic analyses using a designed competitive inhibitor, trehalose 6-sulfate, identified five residues important for binding and catalysis. This structure-function analysis along with computational mapping provided the basis for the proposed model of the T6PP-trehalose 6-phosphate complex. The model indicates a substrate-binding mode wherein shape complementarity and van der Waals interactions drive recognition. The mode of binding is in sharp contrast to the homolog sucrose-6-phosphate phosphatase where extensive hydrogen-bond interactions are made to the substrate. Together these results suggest that high-affinity inhibitors will be bi-dentate, taking advantage of substrate-like binding to the phosphoryl-binding pocket while simultaneously utilizing non-native binding to the trehalose pocket. The conservation of the key residues that enforce the shape of the substrate pocket in T6PP enzymes suggest that development of broad-range anthelmintic and antibacterial therapeutics employing this platform may be possible.

  8. Structure of the trehalose-6-phosphate phosphatase from Brugia malayi reveals key design principles for anthelmintic drugs.

    Directory of Open Access Journals (Sweden)

    Jeremiah D Farelli

    2014-07-01

    Full Text Available Parasitic nematodes are responsible for devastating illnesses that plague many of the world's poorest populations indigenous to the tropical areas of developing nations. Among these diseases is lymphatic filariasis, a major cause of permanent and long-term disability. Proteins essential to nematodes that do not have mammalian counterparts represent targets for therapeutic inhibitor discovery. One promising target is trehalose-6-phosphate phosphatase (T6PP from Brugia malayi. In the model nematode Caenorhabditis elegans, T6PP is essential for survival due to the toxic effect(s of the accumulation of trehalose 6-phosphate. T6PP has also been shown to be essential in Mycobacterium tuberculosis. We determined the X-ray crystal structure of T6PP from B. malayi. The protein structure revealed a stabilizing N-terminal MIT-like domain and a catalytic C-terminal C2B-type HAD phosphatase fold. Structure-guided mutagenesis, combined with kinetic analyses using a designed competitive inhibitor, trehalose 6-sulfate, identified five residues important for binding and catalysis. This structure-function analysis along with computational mapping provided the basis for the proposed model of the T6PP-trehalose 6-phosphate complex. The model indicates a substrate-binding mode wherein shape complementarity and van der Waals interactions drive recognition. The mode of binding is in sharp contrast to the homolog sucrose-6-phosphate phosphatase where extensive hydrogen-bond interactions are made to the substrate. Together these results suggest that high-affinity inhibitors will be bi-dentate, taking advantage of substrate-like binding to the phosphoryl-binding pocket while simultaneously utilizing non-native binding to the trehalose pocket. The conservation of the key residues that enforce the shape of the substrate pocket in T6PP enzymes suggest that development of broad-range anthelmintic and antibacterial therapeutics employing this platform may be possible.

  9. Functional analysis of the cathepsin-like cysteine protease genes in adult Brugia malayi using RNA interference.

    Directory of Open Access Journals (Sweden)

    Louise Ford

    Full Text Available BACKGROUND: Cathepsin-like enzymes have been identified as potential targets for drug or vaccine development in many parasites, as their functions appear to be essential in a variety of important biological processes within the host, such as molting, cuticle remodeling, embryogenesis, feeding and immune evasion. Functional analysis of Caenorhabditis elegans cathepsin L (Ce-cpl-1 and cathepsin Z (Ce-cpz-1 has established that both genes are required for early embryogenesis, with Ce-cpl-1 having a role in regulating in part the processing of yolk proteins. Ce-cpz-1 also has an important role during molting. METHODS AND FINDINGS: RNA interference assays have allowed us to verify whether the functions of the orthologous filarial genes in Brugia malayi adult female worms are similar. Treatment of B. malayi adult female worms with Bm-cpl-1, Bm-cpl-5, which belong to group Ia of the filarial cpl gene family, or Bm-cpz-1 dsRNA resulted in decreased numbers of secreted microfilariae in vitro. In addition, analysis of the intrauterine progeny of the Bm-cpl-5 or Bm-cpl Pro dsRNA- and siRNA-treated worms revealed a clear disruption in the process of embryogenesis resulting in structural abnormalities in embryos and a varied differential development of embryonic stages. CONCLUSIONS: Our studies suggest that these filarial cathepsin-like cysteine proteases are likely to be functional orthologs of the C. elegans genes. This functional conservation may thus allow for a more thorough investigation of their distinct functions and their development as potential drug targets.

  10. Brugia malayi excreted/secreted proteins at the host/parasite interface: stage- and gender-specific proteomic profiling.

    Directory of Open Access Journals (Sweden)

    Sasisekhar Bennuru

    Full Text Available Relatively little is known about the filarial proteins that interact with the human host. Although the filarial genome has recently been completed, protein profiles have been limited to only a few recombinants or purified proteins of interest. Here, we describe a large-scale proteomic analysis using microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry to identify the excretory-secretory (ES products of the L3, L3 to L4 molting ES, adult male, adult female, and microfilarial stages of the filarial parasite Brugia malayi. The analysis of the ES products from adult male, adult female, microfilariae (Mf, L3, and molting L3 larvae identified 852 proteins. Annotation suggests that the functional and component distribution was very similar across each of the stages studied; however, the Mf contributed a higher proportion to the total number of identified proteins than the other stages. Of the 852 proteins identified in the ES, only 229 had previous confirmatory expressed sequence tags (ESTs in the available databases. Moreover, this analysis was able to confirm the presence of 274 "hypothetical" proteins inferred from gene prediction algorithms applied to the B. malayi (Bm genome. Not surprisingly, the majority (160/274 of these "hypothetical" proteins were predicted to be secreted by Signal IP and/or SecretomeP 2.0 analysis. Of major interest is the abundance of previously characterized immunomodulatory proteins such as ES-62 (leucyl aminopeptidase, MIF-1, SERPIN, glutathione peroxidase, and galectin in the ES of microfilariae (and Mf-containing adult females compared to the adult males. In addition, searching the ES protein spectra against the Wolbachia database resulted in the identification of 90 Wolbachia-specific proteins, most of which were metabolic enzymes that have not been shown to be immunogenic. This proteomic analysis extends our knowledge of the ES and provides insight into the host-parasite interaction.

  11. In vitro flubendazole-induced damage to vital tissues in adult females of the filarial nematode Brugia malayi.

    Science.gov (United States)

    O'Neill, Maeghan; Geary, James F; Agnew, Dalen W; Mackenzie, Charles D; Geary, Timothy G

    2015-12-01

    The use of a microfilaricidal drug for the control of onchocerciasis and lymphatic filariasis necessitates prolonged yearly dosing. Prospects for elimination or eradication of these diseases would be enhanced by availability of a macrofilaricidal drug. Flubendazole (FLBZ), a benzimidazole anthelmintic, is an appealing candidate macrofilaricide. FLBZ has demonstrated profound and potent macrofilaricidal effects in a number of experimental filarial rodent models and one human trial. Unfortunately, FLBZ was deemed unsatisfactory for use in mass drug administration (MDA) campaigns due to its markedly limited oral bioavailability. However, a new formulation that provided sufficient bioavailability following oral administration could render FLBZ an effective treatment for onchocerciasis and LF. This study characterized the effects of FLBZ and its reduced metabolite (FLBZ-R) on filarial nematodes in vitro to determine the exposure profile which results in demonstrable damage. Adult female Brugia malayi were exposed to varying concentrations of FLBZ or FLBZ-R (100 nM-10 μM) for up to five days, after which worms were fixed for histology. Morphological damage following exposure to FLBZ was observed prominently in the hypodermis and developing embryos at concentrations as low as 100 nM following 24 h exposure. The results indicate that damage to tissues required for reproduction and survival can be achieved at pharmacologically relevant concentrations. PMID:26288741

  12. An In Vitro/In Vivo Model to Analyze the Effects of Flubendazole Exposure on Adult Female Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Maeghan O'Neill

    2016-05-01

    Full Text Available Current control strategies for onchocerciasis and lymphatic filariasis (LF rely on prolonged yearly or twice-yearly mass administration of microfilaricidal drugs. Prospects for near-term elimination or eradication of these diseases would be improved by availability of a macrofilaricide that is highly effective in a short regimen. Flubendazole (FLBZ, a benzimidazole anthelmintic registered for control of human gastrointestinal nematode infections, is a potential candidate for this role. FLBZ has profound and potent macrofilaricidal effects in many experimental animal models of filariases and in one human trial for onchocerciasis after parental administration. Unfortunately, the marketed formulation of FLBZ provides very limited oral bioavailability and parenteral administration is required for macrofilaricidal efficacy. A new formulation that provided sufficient oral bioavailability could advance FLBZ as an effective treatment for onchocerciasis and LF. Short-term in vitro culture experiments in adult filariae have shown that FLBZ damages tissues required for reproduction and survival at pharmacologically relevant concentrations. The current study characterized the long-term effects of FLBZ on adult Brugia malayi by maintaining parasites in jirds for up to eight weeks following brief drug exposure (6-24 hr to pharmacologically relevant concentrations (100 nM-10 μM in culture. Morphological damage following exposure to FLBZ was observed prominently in developing embryos and was accompanied by a decrease in microfilarial output at 4 weeks post-exposure. Although FLBZ exposure clearly damaged the parasites, exposed worms recovered and were viable 8 weeks after treatment.

  13. In vitro flubendazole-induced damage to vital tissues in adult females of the filarial nematode Brugia malayi

    Directory of Open Access Journals (Sweden)

    Maeghan O'Neill

    2015-12-01

    Full Text Available The use of a microfilaricidal drug for the control of onchocerciasis and lymphatic filariasis necessitates prolonged yearly dosing. Prospects for elimination or eradication of these diseases would be enhanced by availability of a macrofilaricidal drug. Flubendazole (FLBZ, a benzimidazole anthelmintic, is an appealing candidate macrofilaricide. FLBZ has demonstrated profound and potent macrofilaricidal effects in a number of experimental filarial rodent models and one human trial. Unfortunately, FLBZ was deemed unsatisfactory for use in mass drug administration (MDA campaigns due to its markedly limited oral bioavailability. However, a new formulation that provided sufficient bioavailability following oral administration could render FLBZ an effective treatment for onchocerciasis and LF. This study characterized the effects of FLBZ and its reduced metabolite (FLBZ-R on filarial nematodes in vitro to determine the exposure profile which results in demonstrable damage. Adult female Brugia malayi were exposed to varying concentrations of FLBZ or FLBZ-R (100 nM–10 μM for up to five days, after which worms were fixed for histology. Morphological damage following exposure to FLBZ was observed prominently in the hypodermis and developing embryos at concentrations as low as 100 nM following 24 h exposure. The results indicate that damage to tissues required for reproduction and survival can be achieved at pharmacologically relevant concentrations.

  14. An In Vitro/In Vivo Model to Analyze the Effects of Flubendazole Exposure on Adult Female Brugia malayi

    Science.gov (United States)

    O’Neill, Maeghan; Mansour, Abdelmoneim; DiCosty, Utami; Geary, James; Dzimianski, Michael; McCall, Scott D.; McCall, John W.; Mackenzie, Charles D.; Geary, Timothy G.

    2016-01-01

    Current control strategies for onchocerciasis and lymphatic filariasis (LF) rely on prolonged yearly or twice-yearly mass administration of microfilaricidal drugs. Prospects for near-term elimination or eradication of these diseases would be improved by availability of a macrofilaricide that is highly effective in a short regimen. Flubendazole (FLBZ), a benzimidazole anthelmintic registered for control of human gastrointestinal nematode infections, is a potential candidate for this role. FLBZ has profound and potent macrofilaricidal effects in many experimental animal models of filariases and in one human trial for onchocerciasis after parental administration. Unfortunately, the marketed formulation of FLBZ provides very limited oral bioavailability and parenteral administration is required for macrofilaricidal efficacy. A new formulation that provided sufficient oral bioavailability could advance FLBZ as an effective treatment for onchocerciasis and LF. Short-term in vitro culture experiments in adult filariae have shown that FLBZ damages tissues required for reproduction and survival at pharmacologically relevant concentrations. The current study characterized the long-term effects of FLBZ on adult Brugia malayi by maintaining parasites in jirds for up to eight weeks following brief drug exposure (6–24 hr) to pharmacologically relevant concentrations (100 nM—10 μM) in culture. Morphological damage following exposure to FLBZ was observed prominently in developing embryos and was accompanied by a decrease in microfilarial output at 4 weeks post-exposure. Although FLBZ exposure clearly damaged the parasites, exposed worms recovered and were viable 8 weeks after treatment. PMID:27145083

  15. Detection of Brugia malayi in laboratory and wild-caught Mansonioides mosquitoes (Diptera: Culicidae) using Hha I PCR assay.

    Science.gov (United States)

    Hoti, S L; Vasuki, V; Lizotte, M W; Patra, K P; Ravi, G; Vanamail, P; Manonmani, A; Sabesan, S; Krishnamoorthy, K; Williams, S A

    2001-04-01

    An Hha 1 based polymerase chain reaction (PCR) assay developed for the detection of Brugia malayi, the causative agent of Brugian lymphatic filariasis, was evaluated for its sensitivity in the laboratory and for its usefulness in measuring changes in transmission of the disease in the field. Laboratory studies showed that the new assay was highly sensitive in comparison with the standard dissection and microscopy technique. The assay can detect as little as 4 pg of parasite DNA or a single microfilaria in pools of up to 100 mosquitoes. The optimum pool size for convenience was found to be 50 mosquitoes per pool. The efficacy of PCR assay was evaluated in filariasis control programmes in operation in endemic areas of Kerala State, South India. The infection rates obtained by the Hha I PCR assay and the conventional dissection and microscopy technique were 1.2% and 1.7% respectively in operational areas and 8.3% and 4.4% respectively, in check areas, which were not significantly different (P used as a new epidemiological tool for assessing parasite infection in field-collected mosquitoes. PMID:11260722

  16. An In Vitro/In Vivo Model to Analyze the Effects of Flubendazole Exposure on Adult Female Brugia malayi.

    Science.gov (United States)

    O'Neill, Maeghan; Mansour, Abdelmoneim; DiCosty, Utami; Geary, James; Dzimianski, Michael; McCall, Scott D; McCall, John W; Mackenzie, Charles D; Geary, Timothy G

    2016-05-01

    Current control strategies for onchocerciasis and lymphatic filariasis (LF) rely on prolonged yearly or twice-yearly mass administration of microfilaricidal drugs. Prospects for near-term elimination or eradication of these diseases would be improved by availability of a macrofilaricide that is highly effective in a short regimen. Flubendazole (FLBZ), a benzimidazole anthelmintic registered for control of human gastrointestinal nematode infections, is a potential candidate for this role. FLBZ has profound and potent macrofilaricidal effects in many experimental animal models of filariases and in one human trial for onchocerciasis after parental administration. Unfortunately, the marketed formulation of FLBZ provides very limited oral bioavailability and parenteral administration is required for macrofilaricidal efficacy. A new formulation that provided sufficient oral bioavailability could advance FLBZ as an effective treatment for onchocerciasis and LF. Short-term in vitro culture experiments in adult filariae have shown that FLBZ damages tissues required for reproduction and survival at pharmacologically relevant concentrations. The current study characterized the long-term effects of FLBZ on adult Brugia malayi by maintaining parasites in jirds for up to eight weeks following brief drug exposure (6-24 hr) to pharmacologically relevant concentrations (100 nM-10 μM) in culture. Morphological damage following exposure to FLBZ was observed prominently in developing embryos and was accompanied by a decrease in microfilarial output at 4 weeks post-exposure. Although FLBZ exposure clearly damaged the parasites, exposed worms recovered and were viable 8 weeks after treatment. PMID:27145083

  17. Detection of enzymes dehydrogenases and proteases inBrugia malayi filarial parasites.

    Science.gov (United States)

    Bhandary, Y P; Krithika, K N; Kulkarni, Sandeep; Reddy, M V R; Harinath, B C

    2006-03-01

    Lymphatic filariasis caused mainly by infection fromW. bancrofti andB. malayi remains a major cause of clinical morbidity in tropical and subtropical countries. Analysis ofB. malayi mf, infective larval and adult worm lysates for the activity of enzymes led to the demonstration of activities of three key enzymes of carbohydrate metabolism viz., Malate dehydrogenase (MDH), Malic enzyme (ME) and Glucose-6-phosphate dehydrogenase (G6PDH) in all the three stages of the parasite. The specific activity of all the three dehydrogenases was significantly high in mf lysate compared to their activity in lysates of the other two stages (PFlouride (PMSF). In sodium do-decyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), using gelatin copolymerized gel, the microfilarial lysate showed 3 protease molecules of 40 kDa, 180 kDa and 200 kDa and the L(3) larval lysate had 6 protease molecules of 18, 25, 37, 49, 70 and 200 kDa size.

  18. Characterization of transcription factors that regulate the type IV secretion system and riboflavin biosynthesis in Wolbachia of Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Zhiru Li

    Full Text Available The human filarial parasite Brugia malayi harbors an endosymbiotic bacterium Wolbachia (wBm that is required for parasite survival. Consequently, targeting wBm is a promising approach for anti-filarial drug development. The Type IV secretion system (T4SS plays an important role in bacteria-host interactions and is under stringent regulation by transcription factors. In wBm, most T4SS genes are contained in two operons. We show the wBm is active since the essential assembly factor virB8-1, is transcribed in adult worms and larval stages, and VirB8-1 is present in parasite lysates. We also identify two transcription factors (wBmxR1 and wBmxR2 that bind to the promoter region of several genes of the T4SS. Gel shift assays show binding of wBmxR1 to regions upstream of the virB9-2 and wBmxR2 genes, whereas wBmxR2 binds to virB4-2 and wBmxR1 promoter regions. Interestingly, both transcription factors bind to the promoter of the ribA gene that precedes virB8-1, the first gene in operon 1 of the wBm T4SS. RT-PCR reveals ribA and virB8-1 genes are co-transcribed as one operon, indicating the ribA gene and T4SS operon 1 are co-regulated by both wBmxR1 and wBmxR2. RibA encodes a bi-functional enzyme that catalyzes two essential steps in riboflavin (Vitamin B2 biosynthesis. Importantly, the riboflavin pathway is absent in B. malayi. We demonstrate the pathway is functional in wBm, and observe vitamin B2 supplementation partially rescues filarial parasites treated with doxycycline, indicating Wolbachia may supply the essential vitamin to its worm host. This is the first characterization of a transcription factor(s from wBm and first report of co-regulation of genes of the T4SS and riboflavin biosynthesis pathway. In addition, our results demonstrate a requirement of vitamin B2 for worm health and fertility, and imply a nutritional role of the symbiont for the filarial parasite host.

  19. Characterization of transcription factors that regulate the type IV secretion system and riboflavin biosynthesis in Wolbachia of Brugia malayi.

    Science.gov (United States)

    Li, Zhiru; Carlow, Clotilde K S

    2012-01-01

    The human filarial parasite Brugia malayi harbors an endosymbiotic bacterium Wolbachia (wBm) that is required for parasite survival. Consequently, targeting wBm is a promising approach for anti-filarial drug development. The Type IV secretion system (T4SS) plays an important role in bacteria-host interactions and is under stringent regulation by transcription factors. In wBm, most T4SS genes are contained in two operons. We show the wBm is active since the essential assembly factor virB8-1, is transcribed in adult worms and larval stages, and VirB8-1 is present in parasite lysates. We also identify two transcription factors (wBmxR1 and wBmxR2) that bind to the promoter region of several genes of the T4SS. Gel shift assays show binding of wBmxR1 to regions upstream of the virB9-2 and wBmxR2 genes, whereas wBmxR2 binds to virB4-2 and wBmxR1 promoter regions. Interestingly, both transcription factors bind to the promoter of the ribA gene that precedes virB8-1, the first gene in operon 1 of the wBm T4SS. RT-PCR reveals ribA and virB8-1 genes are co-transcribed as one operon, indicating the ribA gene and T4SS operon 1 are co-regulated by both wBmxR1 and wBmxR2. RibA encodes a bi-functional enzyme that catalyzes two essential steps in riboflavin (Vitamin B2) biosynthesis. Importantly, the riboflavin pathway is absent in B. malayi. We demonstrate the pathway is functional in wBm, and observe vitamin B2 supplementation partially rescues filarial parasites treated with doxycycline, indicating Wolbachia may supply the essential vitamin to its worm host. This is the first characterization of a transcription factor(s) from wBm and first report of co-regulation of genes of the T4SS and riboflavin biosynthesis pathway. In addition, our results demonstrate a requirement of vitamin B2 for worm health and fertility, and imply a nutritional role of the symbiont for the filarial parasite host.

  20. Suppression of Brugia malayi (sub-periodic larval development in Aedes aegypti (Liverpool strain fed on blood of animals immunized with microfilariae

    Directory of Open Access Journals (Sweden)

    K Athisaya Mary

    2005-07-01

    Full Text Available Preliminary studies were carried out to investigate the role of filarial specific antibodies, raised in an animal model against the filarial parasite, Brugia malayi (sub-periodic, in blocking their early development in an experimental mosquito host, Aedes aegypti (Liverpool strain. In order to generate filarial specific antibodies, Mongolian gerbils, Meriones unguiculatus, were immunized either with live microfilariae (mf of B. malayi or their homogenate. Mf were harvested from the peritoneal cavity of Mongolian gerbils with patent infection of B. malayi and fed to A. aegypti along with the blood from immunized animals. Development of the parasite in infected mosquitoes was monitored until they reached infective stage larvae (L3. Fewer number of parasites developed to first stage (L1 and subsequently to L2 and L3 in mosquitoes fed with blood of immunized animals, when compared to those fed with blood of control animals. The results thus indicated that filarial parasite specific antibodies present in the blood of the immunized animals resulted in the reduction of number of larvae of B. malayi developing in the mosquito host.

  1. Brugia malayi Microfilariae Induce a Regulatory Monocyte/Macrophage Phenotype That Suppresses Innate and Adaptive Immune Responses

    Science.gov (United States)

    Venugopal, Gopinath; Rao, Gopala B.; Lucius, Richard; Srikantam, Aparna; Hartmann, Susanne

    2014-01-01

    Background Monocytes and macrophages contribute to the dysfunction of immune responses in human filariasis. During patent infection monocytes encounter microfilariae in the blood, an event that occurs in asymptomatically infected filariasis patients that are immunologically hyporeactive. Aim To determine whether blood microfilariae directly act on blood monocytes and in vitro generated macrophages to induce a regulatory phenotype that interferes with innate and adaptive responses. Methodology and principal findings Monocytes and in vitro generated macrophages from filaria non-endemic normal donors were stimulated in vitro with Brugia malayi microfilarial (Mf) lysate. We could show that monocytes stimulated with Mf lysate develop a defined regulatory phenotype, characterised by expression of the immunoregulatory markers IL-10 and PD-L1. Significantly, this regulatory phenotype was recapitulated in monocytes from Wuchereria bancrofti asymptomatically infected patients but not patients with pathology or endemic normals. Monocytes from non-endemic donors stimulated with Mf lysate directly inhibited CD4+ T cell proliferation and cytokine production (IFN-γ, IL-13 and IL-10). IFN-γ responses were restored by neutralising IL-10 or PD-1. Furthermore, macrophages stimulated with Mf lysate expressed high levels of IL-10 and had suppressed phagocytic abilities. Finally Mf lysate applied during the differentiation of macrophages in vitro interfered with macrophage abilities to respond to subsequent LPS stimulation in a selective manner. Conclusions and significance Conclusively, our study demonstrates that Mf lysate stimulation of monocytes from healthy donors in vitro induces a regulatory phenotype, characterized by expression of PD-L1 and IL-10. This phenotype is directly reflected in monocytes from filarial patients with asymptomatic infection but not patients with pathology or endemic normals. We suggest that suppression of T cell functions typically seen in lymphatic

  2. Distribution of Brugia malayi larvae and DNA in vector and non-vector mosquitoes: implications for molecular diagnostics

    Directory of Open Access Journals (Sweden)

    Christensen Bruce M

    2009-11-01

    Full Text Available Abstract Background The purpose of this study was to extend prior studies of molecular detection of Brugia malayi DNA in vector (Aedes aegypti- Liverpool and non-vector (Culex pipiens mosquitoes at different times after ingestion of infected blood. Results Parasite DNA was detected over a two week time course in 96% of pooled thoraces of vector mosquitoes. In contrast, parasite DNA was detected in only 24% of thorax pools from non-vectors; parasite DNA was detected in 56% of midgut pools and 47% of abdomen pools from non-vectors. Parasite DNA was detected in vectors in the head immediately after the blood meal and after 14 days. Parasite DNA was also detected in feces and excreta of the vector and non-vector mosquitoes which could potentially confound results obtained with field samples. However, co-housing experiments failed to demonstrate transfer of parasite DNA from infected to non-infected mosquitoes. Parasites were also visualized in mosquito tissues by immunohistololgy using an antibody to the recombinant filarial antigen Bm14. Parasite larvae were detected consistently after mf ingestion in Ae. aegypti- Liverpool. Infectious L3s were seen in the head, thorax and abdomen of vector mosquitoes 14 days after Mf ingestion. In contrast, parasites were only detected by histology shortly after the blood meal in Cx. pipiens, and these were not labeled by the antibody. Conclusion This study provides new information on the distribution of filarial parasites and parasite DNA in vector and non-vector mosquitoes. This information should be useful for those involved in designing and interpreting molecular xenomonitoring studies.

  3. A deep sequencing approach to comparatively analyze the transcriptome of lifecycle stages of the filarial worm, Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Young-Jun Choi

    2011-12-01

    Full Text Available BACKGROUND: Developing intervention strategies for the control of parasitic nematodes continues to be a significant challenge. Genomic and post-genomic approaches play an increasingly important role for providing fundamental molecular information about these parasites, thus enhancing basic as well as translational research. Here we report a comprehensive genome-wide survey of the developmental transcriptome of the human filarial parasite Brugia malayi. METHODOLOGY/PRINCIPAL FINDINGS: Using deep sequencing, we profiled the transcriptome of eggs and embryos, immature (≤3 days of age and mature microfilariae (MF, third- and fourth-stage larvae (L3 and L4, and adult male and female worms. Comparative analysis across these stages provided a detailed overview of the molecular repertoires that define and differentiate distinct lifecycle stages of the parasite. Genome-wide assessment of the overall transcriptional variability indicated that the cuticle collagen family and those implicated in molting exhibit noticeably dynamic stage-dependent patterns. Of particular interest was the identification of genes displaying sex-biased or germline-enriched profiles due to their potential involvement in reproductive processes. The study also revealed discrete transcriptional changes during larval development, namely those accompanying the maturation of MF and the L3 to L4 transition that are vital in establishing successful infection in mosquito vectors and vertebrate hosts, respectively. CONCLUSIONS/SIGNIFICANCE: Characterization of the transcriptional program of the parasite's lifecycle is an important step toward understanding the developmental processes required for the infectious cycle. We find that the transcriptional program has a number of stage-specific pathways activated during worm development. In addition to advancing our understanding of transcriptome dynamics, these data will aid in the study of genome structure and organization by facilitating

  4. Rapid detection and identification of Wuchereria bancrofti, Brugia malayi, B. pahangi, and Dirofilaria immitis in mosquito vectors and blood samples by high resolution melting real-time PCR.

    Science.gov (United States)

    Thanchomnang, Tongjit; Intapan, Pewpan M; Tantrawatpan, Chairat; Lulitanond, Viraphong; Chungpivat, Sudchit; Taweethavonsawat, Piyanan; Kaewkong, Worasak; Sanpool, Oranuch; Janwan, Penchom; Choochote, Wej; Maleewong, Wanchai

    2013-12-01

    A simple, rapid, and high-throughput method for detection and identification of Wuchereria bancrofti, Brugia malayi, Brugia pahangi, and Dirofilaria immitis in mosquito vectors and blood samples was developed using a real-time PCR combined with high-resolution melting (HRM) analysis. Amplicons of the 4 filarial species were generated from 5S rRNA and spliced leader sequences by the real-time PCR and their melting temperatures were determined by the HRM method. Melting of amplicons from W. bancrofti, B. malayi, D. immitis, and B. pahangi peaked at 81.5±0.2℃, 79.0±0.3℃, 76.8±0.1℃, and 79.9±0.1℃, respectively. This assay is relatively cheap since it does not require synthesis of hybridization probes. Its sensitivity and specificity were 100%. It is a rapid and technically simple approach, and an important tool for population surveys as well as molecular xenomonitoring of parasites in vectors. PMID:24516268

  5. Detection and quantification of Wuchereria bancrofti and Brugia malayi DNA in blood samples and mosquitoes using duplex droplet digital polymerase chain reaction.

    Science.gov (United States)

    Jongthawin, Jurairat; Intapan, Pewpan M; Lulitanond, Viraphong; Sanpool, Oranuch; Thanchomnang, Tongjit; Sadaow, Lakkhana; Maleewong, Wanchai

    2016-08-01

    Lymphatic filariasis, a mosquito-borne disease, is still a major public health problem in tropical and sub-tropical countries. Effective diagnostic tools are required for identification of infected individuals, for epidemiological assessment, and for monitoring of control programs. A duplex droplet digital polymerase chain reaction (ddPCR) was conducted to differentiate and quantify Wuchereria bancrofti DNA by targeting the long DNA repeat (LDR) element and Brugia malayi DNA by targeting the HhaI element in blood samples and mosquito vectors. The analytical sensitivity and specificity were evaluated. Our results indicated that the duplex ddPCR assay could differentiate and quantify W. bancrofti and B. malayi DNA from blood samples and mosquitoes. DNA from a single larva in 50 μl of a blood sample, or in one mosquito vector, could be detected. The analytical sensitivity and specificity for W. bancrofti are both 100 %. Corresponding values for B. malayi are 100 and 98.3 %, respectively. Therefore, duplex ddPCR is a potential tool for simultaneous diagnosis and monitoring of bancroftian and brugian filariasis in endemic areas. PMID:27085707

  6. Localization of Brugia malayi (sub-periodic adults in different organs of Mastomys coucha and its influence on microfilaraemia and host antibody response

    Directory of Open Access Journals (Sweden)

    K Athisaya Mary

    2006-05-01

    Full Text Available Lymphatic filariasis caused by nematode parasites Wuchereria bancrofti or Brugia malayi is a spectral disease and produces wide range of immune responses and varying levels ofmicrofilaraemia in infected individuals. The relationship between the immune response of host and the developmental stage of the parasite as well as the microfilariae (mf density and specific location of the adult worms is yet to be understood. As an experimental model, B. malayi adapted in the experimental animal Mastomys coucha has been used widely for various studies in filariasis. The present study was to assess microfilaraemia as well as the humoral immune response of M. coucha during various stages of B. malayi development and their localization in different organs. The result showed that the density of mf in the circulating blood of the experimental animal depended upon the number of female worms as well as the location and co-existence of male and female worms. The mf density in the blood increased with the increase in the number of females. The clearance of inoculated infective stage (L3 or single sex infection or segregation of male and female to different organs of infected host resulted in amicrofilaraemic condition. With respect to antibody response, those animals cleared L3 after inoculation and those with adult worm as well as mf showed low antibody levels. But those with developmental fourth stage and/or adult worms without mf showed significantly higher antibody levels.

  7. Presence of Wolbachia endosymbionts in microfilariae of Wuchereria bancrofti (Spirurida: Onchocercidae) from different geographical regions in India

    OpenAIRE

    Hoti SL; Sridhar A.; PK Das

    2003-01-01

    In view of the recent discovery of rickettsial endosymbionts, Wolbachia in lymphatic filarial parasites, Wuchereria bancrofti and Brugia malayi and subsequently of their vital role in the survival and development of the latter, antibiotics such as tetracycline are being suggested for the treatment of lymphatic filariasis, by way of eliminating the endosymbiont. But, it is essential to assess their presence in parasites from areas endemic for lymphatic filariasis before such a new control tool...

  8. Protection against filarial infection by 45-49 kDa molecules of Brugia malayi via IFN-γ-mediated iNOS induction.

    Science.gov (United States)

    Verma, Shiv K; Joseph, Sujith K; Verma, Richa; Kushwaha, Vikas; Parmar, Naveen; Yadav, Pawan K; Thota, Jagadeshwar Reddy; Kar, Susanta; Murthy, P Kalpana

    2015-01-15

    Nitric oxide (NO) mediated mechanisms have been implicated in killing of some life-stages of Brugia malayi/Wuchereria bancrofti and protect the host through type 1 responses and IFN-γ stimulated toxic mediators' release. However, the identity of NO stimulating molecules of the parasites is not known. Three predominantly NO-stimulating SDS-PAGE resolved fractions F8 (45.24-48.64 kDa), F11 (33.44-38.44 kDa) and F12 (28.44-33.44 kDa) from B. malayi were identified and their proteins were analyzed by 2-DE and MALDI-TOF/TOF. Tropomyosin, calponin and de novo peptides were identified by 2-DE and MALDI-TOF/TOF in F8 and immunization with F8 conferred most significant protection against L3-initiated infection in Mastomys coucha. Immunized animals showed upregulated F8-induced NO, IFN-γ, TNF-α, IL-1β, IL-10, TGF-β release, cellular proliferative responses and specific IgG and IgG1. Anti-IFN-γ, anti-TNF-α, and anti-IL-1β significantly reduced F8-mediated NO generation and iNOS induction at protein levels. Anti-IFN-γ treated cells showed maximum reduction (>74%) in NO generation suggesting a predominant role of IFN-γ in iNOS induction. In conclusion, the findings suggest that F8 which contains tropomyosin, calponin and de novo peptides protects the host via IFN-γ mediated iNOS induction and may hold promise as vaccine candidate(s). This is also the first report of identification of tropomyosin and calponin in B. malayi. PMID:25454090

  9. DETECTION OF BRUGIA MALAYI INFECTED MOSQUITOES WITH SPECIES SPECIFIC DNA PROBE pBm 15, IN RIAU, INDONESIA

    Directory of Open Access Journals (Sweden)

    L. Kurniawan

    2012-09-01

    Full Text Available A species specific DNA probe (pBm15 was used in a field area where 2 filarial infections coexist: B.malayi in man and B.pahangi in cats. In our laboratory in Jakarta, this DNA probe proved to be sensitive enough to detect 500 ng DNA. One to two infective larvae of B.malayi could be detected with ease. This DNA probe did not react with infective larvae of wuchereria bancrofti, B.pahangi, and Dirofilaria spp. Non specific binding caused by undefined mosquito components was overcome with proteinase K and chitinase treatment. This additional step, made it possible for whole body mosquitoes to be squashed directly onto nitrocellulose paper. A comparative study of experimental infections of laboratory bred mosquitoes infected with B.malayi, showed no difference in infection rate between the group examined by dissection or by DNA probing. Mosquitoes which are vectors in Riau were collected and fed on microfilaremic patients of Riau. The set of mosquitoes were tested in parallel with mosquitoes infected with B.pahangi from cats. All fed mosquitoes were tested after 10-12 days. Only mosquitoes infected with B.malayi reacted in the assay. This study shows a success in applying the DNA probe technique in Jakarta. Further application in the field should be encouraged, with some modification of the DNA probing technique, for cheaper and easier implementation.

  10. Exome and transcriptome sequencing of Aedes aegypti identifies a locus that confers resistance to Brugia malayi and alters the immune response.

    Science.gov (United States)

    Juneja, Punita; Ariani, Cristina V; Ho, Yung Shwen; Akorli, Jewelna; Palmer, William J; Pain, Arnab; Jiggins, Francis M

    2015-03-01

    Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model for studying lymphatic filariasis, is genetically variable for its capacity to harbor the filarial nematode Brugia malayi. The genome of Ae. aegypti is large and repetitive, making genome resequencing difficult and expensive. We designed exome captures to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously mapped in a line established in 1936, suggesting that this polymorphism has been maintained in the wild for the at least 80 years. We then crossed resistant and susceptible mosquitoes to place both alleles of the gene into a common genetic background, and used RNA-seq to measure the effect of this locus on gene expression. We found evidence for Toll, IMD, and JAK-STAT pathway activity in response to early stages of B. malayi infection when the parasites are beginning to die in the resistant genotype. We also found that resistant mosquitoes express anti-microbial peptides at the time of parasite-killing, and that this expression is suppressed in susceptible mosquitoes. Together, we have found that a single resistance locus leads to a higher immune response in resistant mosquitoes, and we identify genes in this region that may be responsible for this trait. PMID:25815506

  11. Exome and transcriptome sequencing of Aedes aegypti identifies a locus that confers resistance to Brugia malayi and alters the immune response.

    Directory of Open Access Journals (Sweden)

    Punita Juneja

    2015-03-01

    Full Text Available Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model for studying lymphatic filariasis, is genetically variable for its capacity to harbor the filarial nematode Brugia malayi. The genome of Ae. aegypti is large and repetitive, making genome resequencing difficult and expensive. We designed exome captures to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously mapped in a line established in 1936, suggesting that this polymorphism has been maintained in the wild for the at least 80 years. We then crossed resistant and susceptible mosquitoes to place both alleles of the gene into a common genetic background, and used RNA-seq to measure the effect of this locus on gene expression. We found evidence for Toll, IMD, and JAK-STAT pathway activity in response to early stages of B. malayi infection when the parasites are beginning to die in the resistant genotype. We also found that resistant mosquitoes express anti-microbial peptides at the time of parasite-killing, and that this expression is suppressed in susceptible mosquitoes. Together, we have found that a single resistance locus leads to a higher immune response in resistant mosquitoes, and we identify genes in this region that may be responsible for this trait.

  12. Exome and Transcriptome Sequencing of Aedes aegypti Identifies a Locus That Confers Resistance to Brugia malayi and Alters the Immune Response

    KAUST Repository

    Juneja, Punita

    2015-03-27

    Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model for studying lymphatic filariasis, is genetically variable for its capacity to harbor the filarial nematode Brugia malayi. The genome of Ae. aegypti is large and repetitive, making genome resequencing difficult and expensive. We designed exome captures to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously mapped in a line established in 1936, suggesting that this polymorphism has been maintained in the wild for the at least 80 years. We then crossed resistant and susceptible mosquitoes to place both alleles of the gene into a common genetic background, and used RNA-seq to measure the effect of this locus on gene expression. We found evidence for Toll, IMD, and JAK-STAT pathway activity in response to early stages of B. malayi infection when the parasites are beginning to die in the resistant genotype. We also found that resistant mosquitoes express anti-microbial peptides at the time of parasite-killing, and that this expression is suppressed in susceptible mosquitoes. Together, we have found that a single resistance locus leads to a higher immune response in resistant mosquitoes, and we identify genes in this region that may be responsible for this trait.

  13. A recombinant plasmid of composite cysteine proteinase inhibitor/glyceraldehyde-3-phosphate dehydrogenase gene of periodic Brugia malayi functions on DNA immunity in the host

    Directory of Open Access Journals (Sweden)

    Z Fang

    2016-01-01

    Full Text Available Objectives: Both cysteine proteinase inhibitors (CPIs and glyceraldehyde-3-phosphate dehydrogenase (GAPDH play important roles in the pathogenesis of parasites and their relationship with the hosts. We constructed a new eukaryotic recombinant expression plasmid pcDNA3.1(+-BmCPI/BmGAPDH of periodic Brugia malayi for investigation of the DNA vaccine-elicited immune responses. Materials and Methods: We cloned a gene encoding the CPIs and GAPDH from periodic B. malayi into vector pcDNA3.1. The composited plasmid or the control was injected into the tibialis anterior muscle of the hind leg in BALB/c mice, respectively. The target genes were detected by reverse transcription-polymerase chain reaction in muscle tissues. The stimulation index (SI of T-lymphocyte proliferation and the levels of interferon-gamma (INF-g and interleukin-4 ( IL-4 in serum were detected by thiazolyl blue tetrazolium blue and enzyme-linked immunosorbent assays. Results: The pcDNA3.1(+-BmCPI/BmGAPDH was amplified from muscle tissues of the mice after immunisation. The SI of the immunised group was significantly higher than that of the two control groups (P < 0.05. The levels of INF-g and IL-4 of pcDNA3.1(+-BmCPI/BmGAPDH group were both higher than those of the two control groups (P < 0.05. The level of INF-g of pcDNA3.1(+-BmCPI/BmGAPDH group was significantly higher than that of pcDNA3.1(+-BmCPI/CpG group (P < 0.05. Conclusions: We conclude that the recombinant plasmid pcDNA3.1(+-BmCPI/BmGAPDH could elicit specific humoural and cellular immune responses in mice.

  14. PENENTUAN JENIS NYAMUK MansoniaSEBAGAI TERSANGKA VEKTOR FILARIASIS Brugia malayi DAN HEWAN ZOONOSIS DI KABUPATEN MUARO JAMBI

    OpenAIRE

    Santoso Santoso; Yahya Yahya; Milana Salim

    2015-01-01

    AbstrakFilariasis merupakan penyakit yang tidak mudah menular. Filariasis adalah penyakit yang ditularkan oleh nyamuk sebagai vector. Jenis nyamuk yang dapat berperan sebagai vector filariasis dipengaruhi oleh jenis cacing penyebab filaria. Brugia spp. umumnya ditularkan oleh nyamuk Mansonia spp dan Anopheles spp. Vektor dan hewan zoonosis merupakan salah satu factor yang dapat perlu mendapat perhatian dalam pengendalian filariasis. Penelitian terhadap vector dan hewan zoonosis telah dilakuka...

  15. Immunogenicity and Protective Efficacy of Brugia malayi Heavy Chain Myosin as Homologous DNA, Protein and Heterologous DNA/Protein Prime Boost Vaccine in Rodent Model.

    Directory of Open Access Journals (Sweden)

    Jyoti Gupta

    Full Text Available We earlier demonstrated the immunoprophylactic efficacy of recombinant heavy chain myosin (Bm-Myo of Brugia malayi (B. malayi in rodent models. In the current study, further attempts have been made to improve this efficacy by employing alternate approaches such as homologous DNA (pcD-Myo and heterologous DNA/protein prime boost (pcD-Myo+Bm-Myo in BALB/c mouse model. The gene bm-myo was cloned in a mammalian expression vector pcDNA 3.1(+ and protein expression was confirmed in mammalian Vero cell line. A significant degree of protection (79.2%±2.32 against L3 challenge in pcD-Myo+Bm-Myo immunized group was observed which was much higher than that exerted by Bm-Myo (66.6%±2.23 and pcD-Myo (41.6%±2.45. In the heterologous immunized group, the percentage of peritoneal leukocytes such as macrophages, neutrophils, B cells and T cells marginally increased and their population augmented further significantly following L3 challenge. pcD-Myo+Bm-Myo immunization elicited robust cellular and humoral immune responses as compared to pcD-Myo and Bm-Myo groups as evidenced by an increased accumulation of CD4+, CD8+ T cells and CD19+ B cells in the mouse spleen and activation of peritoneal macrophages. Though immunized animals produced antigen-specific IgG antibodies and isotypes, sera of mice receiving pcD-Myo+Bm-Myo or Bm-Myo developed much higher antibody levels than other groups and there was profound antibody-dependent cellular adhesion and cytotoxicity (ADCC to B. malayi infective larvae (L3. pcD-Myo+Bm-Myo as well as Bm-Myo mice generated a mixed T helper cell phenotype as evidenced by the production of both pro-inflammatory (IL-2, IFN-γ and anti-inflammatory (IL-4, IL-10 cytokines. Mice receiving pcD-Myo on contrary displayed a polarized pro-inflammatory immune response. The findings suggest that the priming of animals with DNA followed by protein booster generates heightened and mixed pro- and anti-inflammatory immune responses that are capable of

  16. Vaccination of Gerbils with Bm-103 and Bm-RAL-2 Concurrently or as a Fusion Protein Confers Consistent and Improved Protection against Brugia malayi Infection.

    Directory of Open Access Journals (Sweden)

    Sridhar Arumugam

    2016-04-01

    Full Text Available The Brugia malayi Bm-103 and Bm-RAL-2 proteins are orthologous to Onchocerca volvulus Ov-103 and Ov-RAL-2, and which were selected as the best candidates for the development of an O. volvulus vaccine. The B. malayi gerbil model was used to confirm the efficacy of these Ov vaccine candidates on adult worms and to determine whether their combination is more efficacious.Vaccine efficacy of recombinant Bm-103 and Bm-RAL-2 administered individually, concurrently or as a fusion protein were tested in gerbils using alum as adjuvant. Vaccination with Bm-103 resulted in worm reductions of 39%, 34% and 22% on 42, 120 and 150 days post infection (dpi, respectively, and vaccination with Bm-RAL-2 resulted in worm reductions of 42%, 22% and 46% on 42, 120 and 150 dpi, respectively. Vaccination with a fusion protein comprised of Bm-103 and Bm-RAL-2 resulted in improved efficacy with significant reduction of worm burden of 51% and 49% at 90 dpi, as did the concurrent vaccination with Bm-103 and Bm-RAL-2, with worm reduction of 61% and 56% at 90 dpi. Vaccination with Bm-103 and Bm-RAL-2 as a fusion protein or concurrently not only induced a significant worm reduction of 61% and 42%, respectively, at 150 dpi, but also significantly reduced the fecundity of female worms as determined by embryograms. Elevated levels of antigen-specific IgG were observed in all vaccinated gerbils. Serum from gerbils vaccinated with Bm-103 and Bm-RAL-2 individually, concurrently or as a fusion protein killed third stage larvae in vitro when combined with peritoneal exudate cells.Although vaccination with Bm-103 and Bm-RAL-2 individually conferred protection against B. malayi infection in gerbils, a more consistent and enhanced protection was induced by vaccination with Bm-103 and Bm-RAL-2 fusion protein and when they were used concurrently. Further characterization and optimization of these filarial vaccines are warranted.

  17. Inflammatory mediator release byBrugia malayi from macrophages of susceptible hostMastomys coucha andTHP-1 andRAW 264.7 cell lines

    Institute of Scientific and Technical Information of China (English)

    Shiv Kumar Verma; Vikas Kushwaha; Vijaya Dubey; Kirti Saxena; Aakanksha Sharma; Puvvada Kalpana Murthy

    2011-01-01

    Objective:To investigate which life stage of the parasite has the ability to stimulate release of pro- or anti-inflammatory mediators from macrophages.Methods: The human macrophage/monocyte cell lineTHP-1, the mouse macrophage cell lineRAW 264.7 and naive peritoneal macrophages(PM)from the rodent hostMastomys coucha (M. coucha)were incubated at37 ℃in 5% CO2atmosphere with extracts of microfilariae(Mf), third stage infective larvae(L3) and adult worms (Ad)ofBrugia malayi. After48 hr post exposure,IL-1β, IL-6, TNF-α, IL-10 and nitric oxide (NO) in cell-free supernatants were estimated.Results: Extracts of all the life stages of the parasite were capable of stimulating pro-(IL-1β, IL-6 andTNF-α) and anti-inflammatory (IL-10)cytokines in both the cell lines and peritoneal macrophages ofM. coucha. Mf was the strongest stimulator of pro-inflammatory cytokines followed by L3 and Ad; however, Ad was a strong stimulator ofIL-10 release. Mf was found to have potential to modulateLPS-inducedNO release inRAW cells. Ad-inducedNO release was concentration dependent with maximum at 20 μg/mL in bothRAW andPMs.Conclusions:The results show that parasites at all life stages were capable of stimulating pro- (IL-1β, IL-6 and TNF-α) and anti-inflammatory(IL-10) cytokines andNO release from macrophages of susceptible hostM. coucha, human and mouse macrophage cell lines.Mf can suppress theLPS-inducedNO release inRAW cells. The findings also show that the two cell lines may provide a convenientin vitro system for assaying parasite-induced inflammatory mediator release.

  18. Bm-CPI-2, a cystatin from Brugia malayi nematode parasites, differs from Caenorhabditis elegans cystatins in a specific site mediating inhibition of the antigen-processing enzyme AEP.

    Science.gov (United States)

    Murray, Janice; Manoury, Bénédicte; Balic, Adam; Watts, Colin; Maizels, Rick M

    2005-02-01

    The filarial parasite Brugia malayi survives for many years in the human lymphatic system. One immune evasion mechanism employed by Brugia is thought to be the release of cysteine protease inhibitors (cystatins), and we have previously shown that the recombinant cystatin Bm-CPI-2 interferes with protease-dependent antigen processing in the MHC class II antigen presentation pathway. Analogy with vertebrate cystatins suggested that Bm-CPI-2 is bi-functional, with one face of the protein blocking papain-like proteases, and the other able to inhibit legumains such as asparaginyl endopeptidase (AEP). Site-directed mutagenesis was carried out on Bm-CPI-2 at Asn-77, the residue on which AEP inhibition is dependent in vertebrate homologues. Two mutations at this site (to Asp and Lys) showed 10-fold diminished and ablated activity respectively, in assays of AEP inhibition, while blocking of papain-like proteases was reduced by only a small degree. Comparison of the B. malayi cystatins with two homologues encoded by the free-living model organism, Caenorhabditis elegans, suggested that while the papain site may be intact, the AEP site would not be functional. This supposition was tested with recombinant C. elegans proteins, Ce-CPI-1 (K08B4.6) and Ce-CPI-2 (R01B10.1), both of which block cathepsins and neither of which possess the ability to block AEP. Thus, Brugia CPI-2 may have convergently evolved to inhibit an enzyme important only in the mammalian environment.

  19. In vitro silencing of Brugia malayi trehalose-6-phosphate phosphatase impairs embryogenesis and in vivo development of infective larvae in jirds.

    Directory of Open Access Journals (Sweden)

    Susheela Kushwaha

    Full Text Available BACKGROUND: The trehalose metabolic enzymes have been considered as potential targets for drug or vaccine in several organisms such as Mycobacterium, plant nematodes, insects and fungi due to crucial role of sugar trehalose in embryogenesis, glucose uptake and protection from stress. Trehalose-6-phosphate phosphatase (TPP is one of the enzymes of trehalose biosynthesis that has not been reported in mammals. Silencing of tpp gene in Caenorhabditis elegans revealed an indispensable functional role of TPP in nematodes. METHODOLOGY AND PRINCIPAL FINDINGS: In the present study, functional role of B. malayi tpp gene was investigated by siRNA mediated silencing which further validated this enzyme to be a putative antifilarial drug target. The silencing of tpp gene in adult female B. malayi brought about severe phenotypic deformities in the intrauterine stages such as distortion and embryonic development arrest. The motility of the parasites was significantly reduced and the microfilarial production as well as their in vitro release from the female worms was also drastically abridged. A majority of the microfilariae released in to the culture medium were found dead. B. malayi infective larvae which underwent tpp gene silencing showed 84.9% reduced adult worm establishment after inoculation into the peritoneal cavity of naïve jirds. CONCLUSIONS/SIGNIFICANCE: The present findings suggest that B. malayi TPP plays an important role in the female worm embryogenesis, infectivity of the larvae and parasite viability. TPP enzyme of B. malayi therefore has the potential to be exploited as an antifilarial drug target.

  20. Presence of Wolbachia endosymbionts in microfilariae of Wuchereria bancrofti (Spirurida: Onchocercidae from different geographical regions in India

    Directory of Open Access Journals (Sweden)

    Hoti SL

    2003-01-01

    Full Text Available In view of the recent discovery of rickettsial endosymbionts, Wolbachia in lymphatic filarial parasites, Wuchereria bancrofti and Brugia malayi and subsequently of their vital role in the survival and development of the latter, antibiotics such as tetracycline are being suggested for the treatment of lymphatic filariasis, by way of eliminating the endosymbiont. But, it is essential to assess their presence in parasites from areas endemic for lymphatic filariasis before such a new control tool is employed. In the present communication, we report the detection of Wolbachia endosymbionts in microfilariae of W. bancrofti parasites collected from geographically distant locations of India, such as Pondicherry (Union Territory, Calicut (Kerala, Jagadalpur (Madhya Pradesh, Thirukoilur (TamilNadu, Chinnanergunam (TamilNadu, Rajahmundry (Andhra Pradesh, and Varanasi (Uttar Pradesh, using Wolbachia specific 16S rDNA polymerase chain reaction.

  1. Brugia malayi Antigen (BmA Inhibits HIV-1 Trans-Infection but Neither BmA nor ES-62 Alter HIV-1 Infectivity of DC Induced CD4+ Th-Cells.

    Directory of Open Access Journals (Sweden)

    Emily E I M Mouser

    Full Text Available One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA and excretory-secretory product 62 (ES-62 from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs.

  2. Identification and characterization of the cofactor-independent phosphoglycerate mutases of Dirofilaria immitis and its Wolbachia endosymbiont.

    Science.gov (United States)

    Li, Zhiru; Galvin, Brendan D; Raverdy, Sylvine; Carlow, Clotilde K S

    2011-03-22

    Drug treatments for heartworm disease have not changed significantly in the last decade. Due to concerns about possible drug resistance and their lower efficacy against adult worms, there is a need for the development of new antifilarial drug therapies. The recent availability of genomic sequences for the related filarial parasite Brugia malayi and its Wolbachia endosymbiont enables genome-wide searching for new drug targets. Phosphoglycerate mutase (PGM) enzymes catalyze the critical isomerization of 3-phosphoglycerate (3-PG) and 2-phosphoglycerate (2-PG) in glycolytic and gluconeogenic metabolic pathways. There are two unrelated PGM enzymes, which are structurally distinct and possess different mechanisms of action. The mammalian enzyme requires 2,3-bisphosphoglycerate as a cofactor (dependent PGM or dPGM), while the other type of PGM does not (independent PGM or iPGM). In the present study, we have determined that Dirofilaria immitis and its Wolbachia endosymbiont both possess active iPGM. We describe the molecular characterization and catalytic properties of each enzyme. Our results will facilitate the discovery of selective inhibitors of these iPGMs as potentially novel drug treatments for heartworm disease.

  3. NCBI nr-aa BLAST: CBRC-CREM-01-1342 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-1342 ref|YP_198592.1| Predicted permease [Wolbachia endosymbiont strai...n TRS of Brugia malayi] gb|AAW71350.1| Predicted permease [Wolbachia endosymbiont strain TRS of Brugia malayi] YP_198592.1 2e-05 25% ...

  4. NCBI nr-aa BLAST: CBRC-FCAT-01-1234 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-FCAT-01-1234 ref|YP_198404.1| 50S ribosomal protein L13 [Wolbachia endosymbion...t strain TRS of Brugia malayi] gb|AAW71162.1| Ribosomal protein L13 [Wolbachia endosymbiont strain TRS of Brugia malayi] YP_198404.1 3.4 26% ...

  5. 周期型马来丝虫3-磷酸甘油醛脱氢酶基因真核表达载体的构建及DNA免疫研究%Construction of pcDNA3. 1-Brugia malayi glyceraldehyde phosphate dehydrogenase eukaryotic recombinant plasmid and study on its role in DNA immunity

    Institute of Scientific and Technical Information of China (English)

    童海燕; 方政; 谢东方; 黄为群; 方浩; 徐邦生

    2009-01-01

    Objective To construct the pcDNA3. 1-Brugia malayi (Bm) glyceraldehyde-3-phosphate dehydrogenase (GAPDH) eukaryotic recombinant plasmid and to study its effect on mouse cellular immunity response. Methods Total RNA was prepared from periodic Bm. The target gene fragments were amplified by reverse transcription-polymerase chain reaction (RT-PCR) technique and then were inserted into the cloning vector. pGEM-T Easy, and sub-cloned into pcDNA3. 1. Purified pcDNA 3. 1-BmGAPDH recombinant plasmid and CpG were injected into the anterior tibial muscle of BALB/c mice in order to induce host immunity response. Mice injected with PBS and mice injected with blank plasmid were prepared as controls. The mouse models were immunized for 3 times with an interval of 2 weeks. RT-PCR was utilized to detect target gene expression in the muscle tissue. MTT method was used to measure the immunized mice T lymphocytes stimulation index, while enzyme-linked immunoassay (ELISA) was used to determine the serum interleukin (IL)-4 and interferon (IFN)-γ level. Means were compared using t test with SPSS software. Results The recombinant plasmid pcDNA3. 1-BmGAPDH was constructed sucessfully. The target gene was 1020 bp long and its homology with known gene sequence in database was 99%. BmGAPDH gene in the injected muscle of the immunized mice was detected by PCR. The proliferation of spleen T lymphocytes was higher in pcDNA3-BmGAPDH group than in the 2 control groups which were 1. 398, 1. 006 and 1. 017,respectively (P< 0. 05). The levels of IFN-γ and IL-4 in serums from the immunized mice were significantly higher than those of the PBS control group and blank plasmid control group which were 163.905, 58.589, 51. 317 and 107. 906, 27.111, 34.627, respectively (P<0. 05). Immune adjuvant CpG could accelerate and boost antigen-specific immune responses induced by vaccine, which presented as significant increase of IFN-γ and lymphocyte proliferation at 4 weeks after immunization.Conclusion The

  6. Essential proteins and possible therapeutic targets of Wolbachia endosymbiont and development of FiloBase--a comprehensive drug target database for Lymphatic filariasis.

    Science.gov (United States)

    Sharma, Om Prakash; Kumar, Muthuvel Suresh

    2016-01-01

    Lymphatic filariasis (Lf) is one of the oldest and most debilitating tropical diseases. Millions of people are suffering from this prevalent disease. It is estimated to infect over 120 million people in at least 80 nations of the world through the tropical and subtropical regions. More than one billion people are in danger of getting affected with this life-threatening disease. Several studies were suggested its emerging limitations and resistance towards the available drugs and therapeutic targets for Lf. Therefore, better medicine and drug targets are in demand. We took an initiative to identify the essential proteins of Wolbachia endosymbiont of Brugia malayi, which are indispensable for their survival and non-homologous to human host proteins. In this current study, we have used proteome subtractive approach to screen the possible therapeutic targets for wBm. In addition, numerous literatures were mined in the hunt for potential drug targets, drugs, epitopes, crystal structures, and expressed sequence tag (EST) sequences for filarial causing nematodes. Data obtained from our study were presented in a user friendly database named FiloBase. We hope that information stored in this database may be used for further research and drug development process against filariasis. URL: http://filobase.bicpu.edu.in. PMID:26806463

  7. Essential proteins and possible therapeutic targets of Wolbachia endosymbiont and development of FiloBase-a comprehensive drug target database for Lymphatic filariasis

    Science.gov (United States)

    Sharma, Om Prakash; Kumar, Muthuvel Suresh

    2016-01-01

    Lymphatic filariasis (Lf) is one of the oldest and most debilitating tropical diseases. Millions of people are suffering from this prevalent disease. It is estimated to infect over 120 million people in at least 80 nations of the world through the tropical and subtropical regions. More than one billion people are in danger of getting affected with this life-threatening disease. Several studies were suggested its emerging limitations and resistance towards the available drugs and therapeutic targets for Lf. Therefore, better medicine and drug targets are in demand. We took an initiative to identify the essential proteins of Wolbachia endosymbiont of Brugia malayi, which are indispensable for their survival and non-homologous to human host proteins. In this current study, we have used proteome subtractive approach to screen the possible therapeutic targets for wBm. In addition, numerous literatures were mined in the hunt for potential drug targets, drugs, epitopes, crystal structures, and expressed sequence tag (EST) sequences for filarial causing nematodes. Data obtained from our study were presented in a user friendly database named FiloBase. We hope that information stored in this database may be used for further research and drug development process against filariasis. URL: http://filobase.bicpu.edu.in. PMID:26806463

  8. Diversifying selection and host adaptation in two endosymbiont genomes

    Directory of Open Access Journals (Sweden)

    Slatko Barton

    2007-04-01

    Full Text Available Abstract Background The endosymbiont Wolbachia pipientis infects a broad range of arthropod and filarial nematode hosts. These diverse associations form an attractive model for understanding host:symbiont coevolution. Wolbachia's ubiquity and ability to dramatically alter host reproductive biology also form the foundation of research strategies aimed at controlling insect pests and vector-borne disease. The Wolbachia strains that infect nematodes are phylogenetically distinct, strictly vertically transmitted, and required by their hosts for growth and reproduction. Insects in contrast form more fluid associations with Wolbachia. In these taxa, host populations are most often polymorphic for infection, horizontal transmission occurs between distantly related hosts, and direct fitness effects on hosts are mild. Despite extensive interest in the Wolbachia system for many years, relatively little is known about the molecular mechanisms that mediate its varied interactions with different hosts. We have compared the genomes of the Wolbachia that infect Drosophila melanogaster, wMel and the nematode Brugia malayi, wBm to that of an outgroup Anaplasma marginale to identify genes that have experienced diversifying selection in the Wolbachia lineages. The goal of the study was to identify likely molecular mechanisms of the symbiosis and to understand the nature of the diverse association across different hosts. Results The prevalence of selection was far greater in wMel than wBm. Genes contributing to DNA metabolism, cofactor biosynthesis, and secretion were positively selected in both lineages. In wMel there was a greater emphasis on DNA repair, cell division, protein stability, and cell envelope synthesis. Conclusion Secretion pathways and outer surface protein encoding genes are highly affected by selection in keeping with host:parasite theory. If evidence of selection on various cofactor molecules reflects possible provisioning, then both insect as

  9. High pressure freezing/freeze substitution fixation improves the ultrastructural assessment of Wolbachia endosymbiont-filarial nematode host interaction.

    Directory of Open Access Journals (Sweden)

    Kerstin Fischer

    Full Text Available BACKGROUND: Wolbachia α-proteobacteria are essential for growth, reproduction and survival for many filarial nematode parasites of medical and veterinary importance. Endobacteria were discovered in filarial parasites by transmission electron microscopy in the 1970's using chemically fixed specimens. Despite improvements of fixation and electron microscopy techniques during the last decades, methods to study the Wolbachia/filaria interaction on the ultrastructural level remained unchanged and the mechanisms for exchange of materials and for motility of endobacteria are not known. METHODOLOGY/PRINCIPAL FINDING: We used high pressure freezing/freeze substitution to improve fixation of Brugia malayi and its endosymbiont, and this led to improved visualization of different morphological forms of Wolbachia. The three concentric, bilayer membranes that surround the endobacterial cytoplasm were well preserved. Vesicles with identical membrane structures were identified close to the endobacteria, and multiple bacteria were sometimes enclosed within a single outer membrane. Immunogold electron microscopy using a monoclonal antibody directed against Wolbachia surface protein-1 labeled the membranes that enclose Wolbachia and Wolbachia-associated vesicles. High densities of Wolbachia were observed in the lateral chords of L4 larvae, immature, and mature adult worms. Extracellular Wolbachia were sometimes present in the pseudocoelomic cavity near the developing female reproductive organs. Wolbachia-associated actin tails were not observed. Wolbachia motility may be explained by their residence within vacuoles, as they may co-opt the host cell's secretory pathway to move within and between cells. CONCLUSIONS/SIGNIFICANCE: High pressure freezing/freeze substitution significantly improved the preservation of filarial tissues for electron microscopy to reveal membranes and sub cellular structures that could be crucial for exchange of materials between Wolbachia

  10. Proinflammatory Cytokine Gene Expression by Murine Macrophages in Response to Brugia malayi Wolbachia Surface Protein

    Directory of Open Access Journals (Sweden)

    Chantima Porksakorn

    2007-01-01

    Full Text Available Wolbachia, an endosymbiotic bacterium found in most species of filarial parasites, is thought to play a significant role in inducing innate inflammatory responses in lymphatic filariasis patients. However, the Wolbachia-derived molecules that are recognized by the innate immune system have not yet been identified. In this study, we exposed the murine macrophage cell line RAW 264.7 to a recombinant form of the major Wolbachia surface protein (rWSP to determine if WSP is capable of innately inducing cytokine transcription. Interleukin (IL-1β, IL-6, and tumor necrosis factor (TNF mRNAs were all upregulated by the rWSP stimulation in a dose-dependant manner. TNF transcription peaked at 3 hours, whereas IL-1β and IL-6 transcription peaked at 6 hours post-rWSP exposure. The levels of innate cytokine expression induced by a high-dose (9.0 μg/mL rWSP in the RAW 264.7 cells were comparable to the levels induced by 0.1 μg/mL E. coli-derived lipopolysaccharides. Pretreatment of the rWSP with proteinase-K drastically reduced IL-1β, IL-6, and TNF transcription. However, the proinflammatory response was not inhibited by polymyxin B treatment. These results strongly suggest that the major Wolbachia surface protein molecule WSP is an important inducer of innate immune responses during filarial infections.

  11. Novel drug designing rationale againstBrugia malayi microfilariae using herbal extracts

    Institute of Scientific and Technical Information of China (English)

    SharmaRD; PetareS; ShindeGB; KalyanGoswami; ReddyMVR

    2010-01-01

    Objective:To explore the effect of herbal polyphenolics on filariasisin vitro.Methods: Two herbal extracts, methanolic extracts of roots ofVitex negundo Linn. (Nirgundi) and leaves ofAegle marmelos Juss. (Beal) in different concentrations ranging from40-80ng/mL were tested for their antifilarial activity either alone or in combination with diethyl carbonate (DEC)(300μg/mL) and/orH2O2 (0.5 mM).Results:Combination of DEC and each extract had significant anti-filarial effect. And fractions of both extracts were not effective as crude herbal extract.Conclusions:Such unique pharmacodynamics reported in this study might provide new drug development stratagem against filariasis.

  12. Filamentation temperature-sensitive protein Z (FtsZ) of Wolbachia, endosymbiont of Wuchereria bancrofti: a potential target for anti-filarial chemotherapy.

    Science.gov (United States)

    Sharma, Rohit; Hoti, S L; Vasuki, V; Sankari, T; Meena, R L; Das, P K

    2013-03-01

    Lymphatic filariasis (LF) is a leading cause of morbidity in the tropical world. It is caused by the filarial parasites Wuchereria bancrofti, Brugia malayi and Brugia timori and transmitted by vector mosquitoes. Currently a programme for the elimination of LF, Global programme for Elimination of Lymphatic Filariasis (GPELF), is underway with the strategy of mass administration of single dose of diethylcarbamazine or ivermectin, in combination with an anthelmintic drug, albendazole. However, antifilarial drugs used in the programme are only microfilaricidal but not or only partially macrofilaricidal. Hence, there is a need to identify new targets for developing antifilarial drugs. Filarial parasites harbor rickettsial endosymbionts, Wolbachia sp., which play an important role in their biology and hence are considered as potential targets for antifilarial chemotherapy development. In this study, one of the cell division proteins of Wolbachia of the major lymphatic filarial parasite, W. bancrofti, viz., filamentation temperature-sensitive protein Z (FtsZ), was explored as a drug target. The gene coding for FtsZ protein was amplified from the genomic DNA of W. bancrofti, cloned and sequenced. The derived amino acid sequence of the gene revealed that FtsZ protein is 396 amino acids long and contained the tubulin motif (GGGTGTG) involved in GTP binding and the GTP hydrolyzing motif (NLDFAD). The FtsZ gene of endosymbiont showed limited sequence homology, but exhibited functional homology with β-tubulin of its host, W. bancrofti, as it had both the functional motifs and conserved amino acids that are critical for enzymatic activity. β-tubulin is the target for the anti-helminthic activity of albendazole and since FtsZ shares functional homology with, β-tubulin it may also be sensitive to albendazole. Therefore, the effect of albendazole was tested against Wolbachia occurring in mosquitoes instead of filarial parasites as the drug has lethal effect on the latter. Third

  13. A multicenter evaluation of a new antibody test kit for lymphatic filariasis employing recombinant Brugia malayi antigen Bm-14

    OpenAIRE

    Weil, Gary J; Curtis, Kurt C.; Fischer, Peter U.; Kimberly Y Won; Lammie, Patrick J; Joseph, Hayley; Melrose, Wayne D; Brattig, Norbert W.

    2010-01-01

    Antibody tests are useful for mapping the distribution of lymphatic filariasis (LF) in countries and regions and for monitoring progress in elimination programs based on mass drug administration (MDA). Prior antibody tests have suffered from poor sensitivity and/or specificity or from a lack of standardization. We conducted a multicenter evaluation of a new commercial ELISA that detects IgG4 antibodies to the recombinant filarial antigen Bm14. Four laboratories tested a shared panel of coded ...

  14. Effectiveness of two rounds of mass drug administration using DEC combined with albendazole on the prevalence of Brugia malayi

    OpenAIRE

    Santoso Santoso; Aprioza Yenni; Reni Oktarina; Tri Wurisastuti

    2015-01-01

    Background: Filariasis mass drug administration carried out for 5 consecutive years aims to reduce the prevalence rate of < 1%. Evaluation of treatment needs to be done, one of them with a finger blood survey. This study aims to assess the effectiveness of mass treatment and factors that influence. Methods:The study design was cross-sectional study. Blood sampling performed at night in four selected villages with a number of samples for blood tests as many as 1,209 people. Results:The numb...

  15. Effectiveness of two rounds of mass drug administration using DEC combined with albendazole on the prevalence of Brugia malayi

    Directory of Open Access Journals (Sweden)

    Santoso Santoso

    2015-11-01

    Full Text Available Background: Filariasis mass drug administration carried out for 5 consecutive years aims to reduce the prevalence rate of < 1%. Evaluation of treatment needs to be done, one of them with a finger blood survey. This study aims to assess the effectiveness of mass treatment and factors that influence. Methods:The study design was cross-sectional study. Blood sampling performed at night in four selected villages with a number of samples for blood tests as many as 1,209 people. Results:The number of microfilaria positive population of 10 people. The Village with the most number of cases (6 people with a microfilaria rate of 2.08% is Nibung Putih villages. History of fever, behavior taking medication, age and gender related to the incidence of filariasis. Regency East Tanjung Jabung is endemic filariasis because they found villages with Mf rate > 1%. Conclusions: Implementation of filariasis mass treatment was less effective because they can not derive filariasis endemicity. Recommendation: Implementation of filariasis mass treatment needs to be improved by increasing the participation of local community leaders in order to reach all levels of society, including isolated communities.

  16. Brugia lepori sp. n. (Filarioidea: Onchocercidae) from rabbits (Sylvilagus aquaticus, S. floridanus) in Louisiana.

    Science.gov (United States)

    Eberhard, M L

    1984-08-01

    Brugia lepori sp. n., a filarial nematode from the abdominal lymphatics and subcutaneous tissues of rabbits (Sylvilagus aquaticus, S. floridanus), from St. Tammany Parish, Louisiana, is described. Brugia lepori is of moderate size (males 12 to 19 mm, females 39 to 45 mm) and within the genus most closely resembles Brugia beaveri of the raccoon, from which it can be distinguished by its larger size, smaller spicules, and smaller microfilaria which has a shorter cephalic space. Brugia lepori is only the second species of Brugia described from North America and the third species reported from the Western Hemisphere. PMID:6502360

  17. Genomics of Loa loa, a Wolbachia-free filarial parasite of humans

    OpenAIRE

    Desjardins, Christopher A.; Cerqueira, Gustavo C.; Goldberg, Jonathan M.; Hotopp, Julie C Dunning; Haas, Brian J.; Zucker, Jeremy; Ribeiro, Jose’ M.C.; Saif, Sakina; Levin, Joshua Z.; Fan, Lin; Zeng, Qiandong; Russ, Carsten; Wortman, Jennifer R.; Fink, Doran L.; Birren, Bruce W.

    2014-01-01

    Loa loa, the African eyeworm, is a major filarial pathogen of humans. Unlike most filariae, Loa loa does not contain the obligate intracellular Wolbachia endosymbiont. We describe the 91.4 Mb genome of Loa loa, and the genome of the related filarial parasite Wuchereria bancrofti, and predict 14,907 Loa loa genes based on microfilarial RNA sequencing. By comparing these genomes to that of another filarial parasite, Brugia malayi, and to several other nematode genomes, we demonstrate synteny am...

  18. Possible implication of oxidative stress in anti filarial effect of certain traditionally used medicinal plants in vitro against Brugia malayi microfilariae

    Directory of Open Access Journals (Sweden)

    R D Sharma

    2010-01-01

    Full Text Available Introduction: Tropical disease research scheme of World Health Organization has duly recognized traditional medicine as alternative for antifilarial drug development. Polyphenolic compounds present in traditionally used herbal medicines are natural antioxidants; however, paradoxically they may exert pro-oxidant effect. Popular drug diethyl carbamazine citrate harnesses the innate inflammatory response and the consequent oxidative assault to combat invading microbes. Methods: With this perspective, extracts of Vitex negundo L. (roots, Butea monosperma L. (leaves, Aegle marmelos Corr. (leaves, and Ricinus communis L. (leaves were selected to explore the possible role of oxidative rationale in the antifilarial effect in vitro. Results: Apart from the last, other three plant extracts were reported to have polyphenolic compounds. Dose-dependent increase was found in the levels of lipid peroxidation and protein carbonylation for all the three plant extracts except Ricinus communis L. (leaves. Such increase in oxidative parameters also showed some degree of plant-specific predilection in terms of relatively higher level of particular oxidative parameter. High degree of correlation was observed between the antifilarial effect and the levels of corresponding oxidative stress parameters for these three plants. However, extracts of Ricinus communis L. (leaves which is relatively deficient in polyphenolic ingredients recorded maximum 30% loss of motility and also did not show any significant difference in various stress parameters from corresponding control levels. Conclusion: These results reveal that targeted oxidative stress might be crucial in the pharmacodynamics.

  19. Gene : CBRC-TTRU-01-0063 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available AMILY PROTEIN [Brugia malayi] gb|EDP39170.1| PPE FAMILY PROTEIN, putative [Brugia malayi] 6e-73 33% METVHMVKVPRVTLPMVTVLMVT...MPMVMVLMVKLPIVTVPMVIVPVVTVLTVKVPMVTLPTVITLKVTELTVIVAMLTVPLLRVLMVILLTVTVPMVRVLMLRLLMMTTLMVAVPMVT...MLIVAVLMVIVLMLTVLPVTLSMVSVSMVTVLTMILLTVAVLLVTLLRVTVCTVPMVSVPTVTFPMVTVPTVTVSMVRVCMETVHIVTFPTVKMPMVT...VLTMTVPMVTVPMVTVPMVIVPMVTVLMVTVPMVRVLMVTVPMVTVTTVTMPMLTVLTIKMLIVTVPMVILPMGSVLTVKVPMVTLPTVIVHKVRVLTVLVPMVT...VPMVAVPMVTVPMVIVLMVIEPMVTVPMVAVPMVTMFTVSMPMVTLLMVTVLTVKVLTVLVLTVIVLMVIAPW ...

  20. Brugia timori INFECTION IN LEKEBAI, FLORES: clinical aspects

    Directory of Open Access Journals (Sweden)

    Arbain Joesoef

    2012-09-01

    Full Text Available Pengamatan filariasis pada penduduk Nualolo-Lekebai, Pulau Flores telah dilakukan pada bulan Februari 1975. Kampung Nualolo-Lekebai berpenduduk 680 jiwa, pekerjaan bertani dan menganut agama Nasrani. Kebiasaan hidup di antara penduduk di daerah ini adalah menyerahkan pelaksanaan pekerjaan berat pada kaum wanita, baik di rumah ataupun di kebun. Dalam perjalanan jauh baik ke kebun atau ke pasar, kaum wanitanya selalu berjalan kaki sedangkan kaum prianya menunggang kuda. Sejumlah 80% dari penduduk kampung ini telah diperiksa terhadap infeksi parasit filaria dan terhadap gejala filariasis. Dari hasil yang ditemukan ternyata penduduk kampung ini menderita infeksi Brugia timori dengan angka derajat infeksi sebesar 7.0% dan angka derajat elephantiasis sebesar 10.3%. Hal yang menarik yang ditemukan dalam pengamatan ini adalah tingginya angka derajat elephantiasis pada kaum wanita dibandingkan dengan pada kaum pria. Fenomena ini mungkin disebabkan oleh kebiasaan hidup kaum wanita di daerah ini sehari-hari yang bekerja lebih berat dan berjalan kaki lebih sering dan lebih jauh dibandingkan kaum prianya.

  1. Wolbachia endosymbionts and human disease control.

    Science.gov (United States)

    Slatko, Barton E; Luck, Ashley N; Dobson, Stephen L; Foster, Jeremy M

    2014-07-01

    Most human filarial nematode parasites and arthropods are hosts for a bacterial endosymbiont, Wolbachia. In filaria, Wolbachia are required for normal development, fertility and survival, whereas in arthropods, they are largely parasitic and can influence development and reproduction, but are generally not required for host survival. Due to their obligate nature in filarial parasites, Wolbachia have been a target for drug discovery initiatives using several approaches including diversity and focused library screening and genomic sequence analysis. In vitro and in vivo anti-Wolbachia antibiotic treatments have been shown to have adulticidal activity, a long sought goal of filarial parasite drug discovery. In mosquitoes, it has been shown that the presence of Wolbachia can inhibit the transmission of certain viruses, such as Dengue, Chikungunya, Yellow Fever, West Nile, as well as the infectivity of the malaria-causing protozoan, Plasmodium and filarial nematodes. Furthermore, Wolbachia can cause a form of conditional sterility that can be used to suppress populations of mosquitoes and additional medically important insects. Thus Wolbachia, a pandemic endosymbiont offers great potential for elimination of a wide-variety of devastating human diseases. PMID:25046729

  2. Effect of cyclophosphamide on the immune responsiveness of jirds infected with Brugia pahangi.

    OpenAIRE

    Katz, S P; Lammie, P. J.

    1984-01-01

    The in vitro immune responsiveness of lymphocytes from Brugia pahangi-infected jirds was examined after serial administration of cyclophosphamide (20 mg/kg). Cyclophosphamide had no effect on parasite burdens, anti-B. pahangi antibody titers, or suppressed spleen cell reactivity to B. pahangi antigens. Cyclophosphamide restored cellular responsiveness to the mitogens phytohemagglutinin, concanavalin A, and pokeweed mitogen.

  3. Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia

    OpenAIRE

    Mueller Martin J; Stoll Sascha; Berthold Kristina; Krischke Markus; Straka Josef; Feldhaar Heike; Gross Roy

    2007-01-01

    Abstract Background Carpenter ants (genus Camponotus) are considered to be omnivores. Nonetheless, the genome sequence of Blochmannia floridanus, the obligate intracellular endosymbiont of Camponotus floridanus, suggests a function in nutritional upgrading of host resources by the bacterium. Thus, the strongly reduced genome of the endosymbiont retains genes for all subunits of a functional urease, as well as those for biosynthetic pathways for all but one (arginine) of the amino acids essent...

  4. Functional Relationship between a Dinoflagellate Host and Its Diatom Endosymbiont.

    Science.gov (United States)

    Hehenberger, Elisabeth; Burki, Fabien; Kolisko, Martin; Keeling, Patrick J

    2016-09-01

    While we know much about the evolutionary patterns of endosymbiotic organelle origins, we know less about how the actual process unfolded within each system. This is partly due to the massive changes endosymbiosis appears to trigger, and partly because most organelles evolved in the distant past. The dinotoms are dinoflagellates with diatom endosymbionts, and they represent a relatively recent but nevertheless obligate endosymbiotic association. We have carried out deep sequencing of both the host and endosymbiont transcriptomes from two dinotoms, Durinskia baltica and Glenodinium foliaceum, to examine how the nucleocytosolic compartments have functionally integrated. This analysis showed little or no functional reduction in either the endosymbiont or host, and no evidence for genetic integration. Rather, host and endosymbiont seem to be bound to each other via metabolites, such as photosynthate exported from the endosymbiont to the host as indicated by the presence of plastidic phosphate translocators in the host transcriptome. The host is able to synthesize starch, using plant-specific starch synthases, as a way to store imported photosynthate. PMID:27297471

  5. Effects of gamma radiation on development of Brugia pahangi in a susceptible strain of Aedes aegypti

    Energy Technology Data Exchange (ETDEWEB)

    Richey, T.J.; Rodriguez, P.H.

    1976-08-01

    Female mosquitoes were fed on an infected jird having a microfilarial density of 201 per mm/sup 3/ of blood. Mosquitoes were exposed to doses of 3,000 and 5,000 rads of gamma radiation before and after infection. Mosquitoes were dissected 8 to 10 days later and the number of active larvae was recorded. Results indicated that postinfection radiation affected the development of Brugia pahangi. (HLW)

  6. Brugia filariasis differentially modulates persistent Helicobacter pylori gastritis in the gerbil model

    OpenAIRE

    Martin, Heather R.; Shakya, Krishna P.; MUTHUPALANI, SURESHKUMAR; Ge, Zhongming; Klei, Thomas R.; Whary, Mark T.; James G Fox

    2010-01-01

    In select Helicobacter pylori-infected populations with low gastric cancer, nematode coinfections are common and both helicobacter gastritis and filariasis are modeled in gerbils. We evaluated gastritis, worm counts, tissue cytokine gene expression levels and Th1/Th2-associated antibody responses in H. pylori and Brugia pahangi mono- and coinfected gerbils. H. pylori-associated gastritis indices were significantly lower 21 weeks post-infection in coinfected gerbils (p ≤ 0.05) and were inverse...

  7. Multiple endosymbionts in populations of the ant Formica cinerea

    Directory of Open Access Journals (Sweden)

    Pamilo Pekka

    2010-11-01

    Full Text Available Abstract Background Many insects, including ants, are infected by maternally inherited Wolbachia endosymbiotic bacteria though other secondary endosymbionts have not been reported in ants. It has been suggested that the ability of Wolbachia to invade and remain in an ant population depends on the number of coexisting queens in a colony. We study the genetic and social structure of populations in the ant Formica cinerea which is known to have populations with either monogynous or polygynous colonies. We screen populations for several endosymbiotic bacteria to evaluate the presence of different endosymbionts, possible association between their prevalence and the social structure, and the association between endosymbiont prevalence and genetic differentiation of ant populations. Results We found three endosymbiotic bacteria; 19% of the nests were infected by Wolbachia, 3.8% by Cardinium and 33% by Serratia. There was significant variation among the populations regarding the proportion of nests infected by Serratia, Wolbachia and the pooled set of all the endosymbionts. Some individuals and colonies carried two of the bacteria, the frequency of double infections agreeing with the random expectation. The proportion of infected ants (individuals or colonies did not correlate significantly with the population level relatedness values. The difference in the prevalence of Wolbachia between population pairs correlated significantly with the genetic distance (microsatellites of the populations. Conclusions The discovery of several endosymbionts and co-infections by Wolbachia and Cardinium demonstrate the importance of screening several endosymbionts when evaluating their possible effects on social life and queen-worker conflicts over sex allocation. The low prevalence of Wolbachia in F. cinerea departs from the pattern observed in many other Formica ants in which all workers have been infected. It is likely that the strain of Wolbachia in F. cinerea

  8. Endosymbiont dominated bacterial communities in a dwarf spider.

    Directory of Open Access Journals (Sweden)

    Bram Vanthournout

    Full Text Available The microbial community of spiders is little known, with previous studies focussing primarily on the medical importance of spiders as vectors of pathogenic bacteria and on the screening of known cytoplasmic endosymbiont bacteria. These screening studies have been performed by means of specific primers that only amplify a selective set of endosymbionts, hampering the detection of unreported species in spiders. In order to have a more complete overview of the bacterial species that can be present in spiders, we applied a combination of a cloning assay, DGGE profiling and high-throughput sequencing on multiple individuals of the dwarf spider Oedothorax gibbosus. This revealed a co-infection of at least three known (Wolbachia, Rickettsia and Cardinium and the detection of a previously unreported endosymbiont bacterium (Rhabdochlamydia in spiders. 16S rRNA gene sequences of Rhabdochlamydia matched closely with those of Candidatus R. porcellionis, which is currently only reported as a pathogen from a woodlouse and with Candidatus R. crassificans reported from a cockroach. Remarkably, this bacterium appears to present in very high proportions in one of the two populations only, with all investigated females being infected. We also recovered Acinetobacter in high abundance in one individual. In total, more than 99% of approximately 4.5M high-throughput sequencing reads were restricted to these five bacterial species. In contrast to previously reported screening studies of terrestrial arthropods, our results suggest that the bacterial communities in this spider species are dominated by, or even restricted to endosymbiont bacteria. Given the high prevalence of endosymbiont species in spiders, this bacterial community pattern could be widespread in the Araneae order.

  9. Evolutionary relationships among primary endosymbionts of the mealybug subfamily phenacoccinae (hemiptera: Coccoidea: Pseudococcidae).

    Science.gov (United States)

    Gruwell, Matthew E; Hardy, Nate B; Gullan, Penny J; Dittmar, Katharina

    2010-11-01

    Mealybugs (Coccoidea: Pseudococcidae) are sap-sucking plant parasites that harbor bacterial endosymbionts within specialized organs. Previous studies have identified two subfamilies, Pseudococcinae and Phenacoccinae, within mealybugs and determined the primary endosymbionts (P-endosymbionts) of the Pseudococcinae to be Betaproteobacteria ("Candidatus Tremblaya princeps") containing Gammaproteobacteria secondary symbionts. Here, the P-endosymbionts of phenacoccine mealybugs are characterized based on 16S rRNA from the bacteria of 20 species of phenacoccine mealybugs and four outgroup Puto species (Coccoidea: Putoidae) and aligned to more than 100 published 16S rRNA sequences from symbiotic and free-living bacteria. Phylogenetic analyses recovered three separate lineages of bacteria from the Phenacoccinae, and these are considered to be the P-endosymbionts of their respective mealybug hosts, with those from (i) the mealybug genus Rastrococcus belonging to the Bacteroidetes, (ii) the subterranean mealybugs, tribe Rhizoecini, also within Bacteroidetes, in a clade sister to cockroach endosymbionts (Blattabacterium), and (iii) the remaining Phenacoccinae within the Betaproteobacteria, forming a well-supported sister group to "Candidatus Tremblaya princeps." Names are proposed for two strongly supported lineages: "Candidatus Brownia rhizoecola" for P-endosymbionts of Rhizoecini and "Candidatus Tremblaya phenacola" for P-endosymbionts of Phenacoccinae excluding Rastrococcus and Rhizoecini. Rates of nucleotide substitution among lineages of Tremblaya were inferred to be significantly faster than those of free-living Betaproteobacteria. Analyses also recovered a clade of Gammaproteobacteria, sister to the P-endosymbiont lineage of aphids ("Candidatus Buchnera aphidicola"), containing the endosymbionts of Putoidae, the secondary endosymbionts of pseudococcine mealybugs, and the endosymbionts of several other insect groups.

  10. Nondegenerative Evolution in Ancient Heritable Bacterial Endosymbionts of Fungi.

    Science.gov (United States)

    Mondo, Stephen J; Salvioli, Alessandra; Bonfante, Paola; Morton, Joseph B; Pawlowska, Teresa E

    2016-09-01

    Bacterial endosymbionts are critical to the existence of many eukaryotes. Among them, vertically transmitted endobacteria are uniquely typified by reduced genomes and molecular evolution rate acceleration relative to free-living taxa. These patterns are attributable to genetic drift-dominated degenerative processes associated with reproductive dependence on the host. The degenerative evolution scenario is well supported in endobacteria with strict vertical transmission, such as essential mutualists of insects. In contrast, heritable endosymbionts that are nonessential to their hosts and engage occasionally in horizontal transmission are expected to display deviations from the degenerative evolution model. To explore evolution patterns in such nonessential endobacteria, we focused on Candidatus Glomeribacter gigasporarum ancient heritable mutualists of fungi. Using a collection of genomes, we estimated in Glomeribacter mutation rate at 2.03 × 10(-9) substitutions per site per year and effective population size at 1.44 × 10(8) Both fall within the range of values observed in free-living bacteria. To assess the ability of Glomeribacter to purge slightly deleterious mutations, we examined genome-wide dN/dS values and distribution patterns. We found that these dN/dS profiles cluster Glomeribacter with free-living bacteria as well as with other nonessential endosymbionts, while distinguishing it from essential heritable mutualists of insects. Finally, our evolutionary simulations revealed that the molecular evolution rate acceleration in Glomeribacter is caused by limited recombination in a largely clonal population rather than by increased fixation of slightly deleterious mutations. Based on these patterns, we propose that genome evolution in Glomeribacter is nondegenerative and exemplifies a departure from the model of degenerative evolution in heritable endosymbionts. PMID:27189571

  11. Genome evolution and systems biology in bacterial endosymbionts of insects

    OpenAIRE

    Belda Cuesta, Eugeni

    2010-01-01

    Gene loss is the most important event in the process of genome reduction that appears associated with bacterial endosymbionts of insects. These small genomes were derived features evolved from ancestral prokaryotes with larger genome sizes, consequence of a massive process of genome reduction due to drastic changes in the ecological conditions and evolutionary pressures acting on these prokaryotic lineages during their ecological transition to host-dependent lifestyle. In the present thesis, ...

  12. Evolutionary implications of endosymbiont diversity within lucinid bivalves

    Science.gov (United States)

    Garcia, A. M.; Thiessen, M.; Aronowsky, A.; Anderson, L.; Bao, H.; Engel, A.

    2007-12-01

    Bacterial endosymbiosis is widespread among Bivalvia. Symbiosis between lucinid bivalves and sulfur-oxidizing (thiotrophic) bacteria has received recent attention, as lucinids are one of the geologically oldest extant bivalve clades to possess endosymbionts. However, the ecological and evolutionary relationships between host and symbiont are poorly understood, and reconstructing the evolutionary history and geological significance of lucinid endosymbiosis requires additional knowledge and characterization of endosymbiont ecology and taxonomic diversity. Our goal was to characterize the bacterial diversity of a modern lucinid habitat in order to evaluate possible lucinid endosymbiont diversity. Host organisms ( Lucinisca nassula and Phacoides pectinatus) and sediment cores were collected from geochemically reducing and sulfide-rich sea grass beds. PCR amplification and sequencing of bacterial 16S rRNA genes from the sediment cores retrieved 13 major taxonomic groups, including equally dominant Chloroflexi, Delta-, and Gammaproteobacteria, and rare Bacteroides, Acidobacteria, Spirochaetes, and Firmicutes. Less than 2% of the sequences were affiliated with uncultured gammaproteobacterial symbiont groups, but were not closely related to the sequences retrieved from the lucinid gills. Moreover, our analyses uncovered multiple gene sequence populations within an individual, as well as across individuals within the same sampling site. Additional habitat-host-symbiont diversity from three other lucinid taxa and from six geographically distinct habitat sites is also expanding the previously understood diversity of thiotrophic endosymbionts, and specifically that the lucinid symbionts are probably not a monophyletic species. These data suggest that thiotrophic bacteria are recruitable for endosymbiosis and are widely distributed in reducing marine environments. But, because of the diversity of bacteria in any one habitat, symbionts may be metabolically and physiologically

  13. Assay strategies for the discovery and validation of therapeutics targeting Brugia pahangi Hsp90.

    Directory of Open Access Journals (Sweden)

    Tony Taldone

    Full Text Available The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target.

  14. Diversity of secondary endosymbionts among different putative species of the whitefly Bemisia tabaci

    Institute of Scientific and Technical Information of China (English)

    Xiao-Li Bing; Yong-Ming Ruan; Qiong Rao; Xiao-Wei Wang; Shu-Sheng Liu

    2013-01-01

    Endosymbionts are important components of arthropod biology.The whitefly Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae) is a cryptic species complex composed of≥28 putative species.In addition to the primary endosymbiont Portiera aleyrodidarum,six secondary endosymbionts (S-endosymbionts),Hamiltonella,Rickettsia,Wolbachia,Cardinium,Arsenophonus and Fritschea,have been identified in B.tabaci thus far.Here,we tested five of the six S-endosymbiont lineages (excluding Fritschea) from 340 whitely individuals representing six putative species from China.Hamiltonella was detected only in the two exotic invaders,Middle East-Asia Minor 1 (MEAM 1) and Mediterranean (MED).Rickettsia was absent in Asia Ⅱ 1 and MED,scarce in Asia Ⅱ 3 (13%),but abundant in Asia Ⅱ 7 (63.2%),China 1 (84.7%) and MEAM1 (100%).Wolbachia,Cardinium and Arsenophonus were absent in the invasive MEAM 1 and MED but mostly abundant in the native putative species.Furthermore,phylogenetic analyses revealed that some S-endosymbionts have several clades and different B.tabaci putative species can harbor different clades of a given S-endosymbiont,demonstrating further the complexity of S-endosymbionts in B.tabaci.All together,our results demonstrate the variation and diversity of S-endosymbionts in different putative species ofB.tabaci,especially between invasive and native whiteflies.

  15. Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia

    Directory of Open Access Journals (Sweden)

    Mueller Martin J

    2007-10-01

    Full Text Available Abstract Background Carpenter ants (genus Camponotus are considered to be omnivores. Nonetheless, the genome sequence of Blochmannia floridanus, the obligate intracellular endosymbiont of Camponotus floridanus, suggests a function in nutritional upgrading of host resources by the bacterium. Thus, the strongly reduced genome of the endosymbiont retains genes for all subunits of a functional urease, as well as those for biosynthetic pathways for all but one (arginine of the amino acids essential to the host. Results Nutritional upgrading by Blochmannia was tested in 90-day feeding experiments with brood-raising in worker-groups on chemically defined diets with and without essential amino acids and treated or not with antibiotics. Control groups were fed with cockroaches, honey water and Bhatkar agar. Worker-groups were provided with brood collected from the queenright mother-colonies (45 eggs and 45 first instar larvae each. Brood production did not differ significantly between groups of symbiotic workers on diets with and without essential amino acids. However, aposymbiotic worker groups raised significantly less brood on a diet lacking essential amino acids. Reduced brood production by aposymbiotic workers was compensated when those groups were provided with essential amino acids in their diet. Decrease of endosymbionts due to treatment with antibiotic was monitored by qRT-PCR and FISH after the 90-day experimental period. Urease function was confirmed by feeding experiments using 15N-labelled urea. GC-MS analysis of 15N-enrichment of free amino acids in workers revealed significant labelling of the non-essential amino acids alanine, glycine, aspartic acid, and glutamic acid, as well as of the essential amino acids methionine and phenylalanine. Conclusion Our results show that endosymbiotic Blochmannia nutritionally upgrade the diet of C. floridanus hosts to provide essential amino acids, and that it may also play a role in nitrogen recycling

  16. Evidence for horizontal transmission of secondary endosymbionts in the Bemisia tabaci cryptic species complex.

    Directory of Open Access Journals (Sweden)

    Muhammad Z Ahmed

    Full Text Available Bemisia tabaci (Hemiptera: Aleyrodidae is a globally distributed pest composed of at least 34 morphologically indistinguishable cryptic species. At least seven species of endosymbiont have been found infecting some or all members of the complex. The origin(s of the associations between specific endosymbionts and their whitefly hosts is unknown. Infection is normally vertical, but horizontal transmission does occur and is one way for new infections to be introduced into individuals. The relationships between the different members of the cryptic species complex and the endosymbionts have not been well explored. In this study, the phylogenies of different cryptic species of the host with those of their endosymbionts were compared. Of particular interest was whether there was evidence for both coevolution and horizontal transmission. Congruence was observed for the primary endosymbiont, Portiera aleyrodidarum, and partial incongruence in the case of two secondary endosymbionts, Arsenophonus and Cardinium and incongruence for a third, Wolbachia. The patterns observed for the primary endosymbiont supported cospeciation with the host while the patterns for the secondary endosymbionts, and especially Wolbachia showed evidence of host shifts and extinctions through horizontal transmission rather than cospeciation. Of particular note is the observation of several very recent host shift events in China between exotic invader and indigenous members of the complex. These shifts were from indigenous members of the complex to the invader as well as from the invader to indigenous relatives.

  17.  Serial replacement of diatom endosymbiont in two freshwater dinoflagellates, Peridiniopsis spp., (Peridiniales, Dinophyceae)

    DEFF Research Database (Denmark)

    Takano, Y.; Hansen, Gert; Fujita, D.;

    2008-01-01

    -harbouring dinoflagellates. On the contrary, the phylogenetic analyses based on plastid-encoded rbcL and nuclear-encoded SSU rDNA of the endosymbionts included the endosymbiont of these two freshwater dinoflagellates in the Thalassiosira/Skeletonema-clade (Centrales), whereas the endosymbionts of other diatom...

  18. Genome sequence of Candidatus Riesia pediculischaeffi, endosymbiont of chimpanzee lice, and genomic comparison of recently acquired endosymbionts from human and chimpanzee lice.

    Science.gov (United States)

    Boyd, Bret M; Allen, Julie M; de Crécy-Lagard, Valérie; Reed, David L

    2014-11-01

    The obligate-heritable endosymbionts of insects possess some of the smallest known bacterial genomes. This is likely due to loss of genomic material during symbiosis. The mode and rate of this erosion may change over evolutionary time: faster in newly formed associations and slower in long-established ones. The endosymbionts of human and anthropoid primate lice present a unique opportunity to study genome erosion in newly established (or young) symbionts. This is because we have a detailed phylogenetic history of these endosymbionts with divergence dates for closely related species. This allows for genome evolution to be studied in detail and rates of change to be estimated in a phylogenetic framework. Here, we sequenced the genome of the chimpanzee louse endosymbiont (Candidatus Riesia pediculischaeffi) and compared it with the closely related genome of the human body louse endosymbiont. From this comparison, we found evidence for recent genome erosion leading to gene loss in these endosymbionts. Although gene loss was detected, it was not significantly greater than in older endosymbionts from aphids and ants. Additionally, we searched for genes associated with B-vitamin synthesis in the two louse endosymbiont genomes because these endosymbionts are believed to synthesize essential B vitamins absent in the louse's diet. All of the expected genes were present, except those involved in thiamin synthesis. We failed to find genes encoding for proteins involved in the biosynthesis of thiamin or any complete exogenous means of salvaging thiamin, suggesting there is an undescribed mechanism for the salvage of thiamin. Finally, genes encoding for the pantothenate de novo biosynthesis pathway were located on a plasmid in both taxa along with a heat shock protein. Movement of these genes onto a plasmid may be functionally and evolutionarily significant, potentially increasing production and guarding against the deleterious effects of mutation. These data add to a growing

  19. Genome sequence of "Candidatus Walczuchella monophlebidarum" the flavobacterial endosymbiont of Llaveia axin axin (Hemiptera: Coccoidea: Monophlebidae).

    Science.gov (United States)

    Rosas-Pérez, Tania; Rosenblueth, Mónica; Rincón-Rosales, Reiner; Mora, Jaime; Martínez-Romero, Esperanza

    2014-03-01

    Scale insects (Hemiptera: Coccoidae) constitute a very diverse group of sap-feeding insects with a large diversity of symbiotic associations with bacteria. Here, we present the complete genome sequence, metabolic reconstruction, and comparative genomics of the flavobacterial endosymbiont of the giant scale insect Llaveia axin axin. The gene repertoire of its 309,299 bp genome was similar to that of other flavobacterial insect endosymbionts though not syntenic. According to its genetic content, essential amino acid biosynthesis is likely to be the flavobacterial endosymbiont's principal contribution to the symbiotic association with its insect host. We also report the presence of a γ-proteobacterial symbiont that may be involved in waste nitrogen recycling and also has amino acid biosynthetic capabilities that may provide metabolic precursors to the flavobacterial endosymbiont. We propose "Candidatus Walczuchella monophlebidarum" as the name of the flavobacterial endosymbiont of insects from the Monophlebidae family.

  20. Genome Sequence of Candidatus Riesia pediculischaeffi, Endosymbiont of Chimpanzee Lice, and Genomic Comparison of Recently Acquired Endosymbionts from Human and Chimpanzee Lice

    OpenAIRE

    Boyd, Bret M.; Allen, Julie M; de Crécy-Lagard, Valérie; Reed, David L

    2014-01-01

    The obligate-heritable endosymbionts of insects possess some of the smallest known bacterial genomes. This is likely due to loss of genomic material during symbiosis. The mode and rate of this erosion may change over evolutionary time: faster in newly formed associations and slower in long-established ones. The endosymbionts of human and anthropoid primate lice present a unique opportunity to study genome erosion in newly established (or young) symbionts. This is because we have a detailed ph...

  1. Survival and transfer ability of phylogenetically diverse bacterial endosymbionts in environmental Acanthamoeba isolates.

    Science.gov (United States)

    Matsuo, Junji; Kawaguchi, Kouhei; Nakamura, Shinji; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Takahashi, Kaori; Mizutani, Yoshihiko; Yao, Takashi; Yamaguchi, Hiroyuki

    2010-08-01

    Obligate intracellular bacteria are commonly found as endosymbionts of acanthamoebae; however, their survival in and ability to transfer to amoebae are currently uncharacterized. In this study, six bacterial endosymbionts, found in five environmental Acanthamoeba isolates (S13, R18, S23, S31, S40) from different locations of Sapporo city, Japan, were characterized. Phylogenetic analysis revealed that three bacterial endosymbionts (eS23, eS31, eS40a) belonged to α- and β-Proteobacteria phyla and the remaining endosymbionts (eS13, eR18, eS40b) belonged to the order Chlamydiales. The Acanthamoeba isolate (S40) contained two phylogenetically different bacterial endosymbionts (eS40a, eS40b). Fluorescent in situ hybridization analysis showed that all bacterial endosymbionts were diffusely localized within amoebae. Transmission electron microscopy also showed that the endosymbionts were rod-shaped (eS23, eS31, eS40a) or sphere- or crescent-shaped (eS13, eR18, eS40b). No successful culture of these bacteria was achieved using conventional culture methods, but the viability of endosymbionts was confirmed by live/dead staining and RT-PCR methods. However, endosymbionts (except eR18) derived from original host cells lost the ability to be transferred to another Acanthamoebae strains [ATCC strain (C3), environmental strains (S14, R23, S24)]. Thus, our data demonstrate that phylogenetically diverse bacterial endosymbionts found in amoebae maintain a stable interaction with amoebae, but the transferability is limited.

  2. Molecular identification of rickettsial endosymbionts in the non-phagotrophic volvocalean green algae.

    Directory of Open Access Journals (Sweden)

    Kaoru Kawafune

    Full Text Available BACKGROUND: The order Rickettsiales comprises gram-negative obligate intracellular bacteria (also called rickettsias that are mainly associated with arthropod hosts. This group is medically important because it contains human-pathogenic species that cause dangerous diseases. Until now, there has been no report of non-phagotrophic photosynthetic eukaryotes, such as green plants, harboring rickettsias. METHODOLOGY/PRINCIPAL FINDINGS: We examined the bacterial endosymbionts of two freshwater volvocalean green algae: unicellular Carteria cerasiformis and colonial Pleodorina japonica. Epifluorescence microscopy using 4'-6-deamidino-2-phenylindole staining revealed the presence of endosymbionts in all C. cerasiformis NIES-425 cells, and demonstrated a positive correlation between host cell size and the number of endosymbionts. Strains both containing and lacking endosymbionts of C. cerasiformis (NIES-425 and NIES-424 showed a >10-fold increase in cell number and typical sigmoid growth curves over 192 h. A phylogenetic analysis of 16 S ribosomal (rRNA gene sequences from the endosymbionts of C. cerasiformis and P. japonica demonstrated that they formed a robust clade (hydra group with endosymbionts of various non-arthropod hosts within the family Rickettsiaceae. There were significantly fewer differences in the 16 S rRNA sequences of the rickettsiacean endosymbionts between C. cerasiformis and P. japonica than in the chloroplast 16 S rRNA or 18 S rRNA of the host volvocalean cells. Fluorescence in situ hybridization demonstrated the existence of the rickettsiacean endosymbionts in the cytoplasm of two volvocalean species. CONCLUSIONS/SIGNIFICANCE: The rickettsiacean endosymbionts are likely not harmful to their volvocalean hosts and may have been recently transmitted from other non-arthropod organisms. Because rickettsias are the closest relatives of mitochondria, incipient stages of mitochondrial endosymbiosis may be deduced using both strains with

  3. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica.

    Science.gov (United States)

    López-Sánchez, Maria J; Neef, Alexander; Peretó, Juli; Patiño-Navarrete, Rafael; Pignatelli, Miguel; Latorre, Amparo; Moya, Andrés

    2009-11-01

    Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state.

  4. GAMBARAN PERKEMBANGAN ANTIBODI TERHADAP KOMPONEN PROTEIN CACING MIKROFILARIA MALAYI DARI TRANSMIGRAN DI SULAWESI TENGGARA

    Directory of Open Access Journals (Sweden)

    Basundari Sri Utami

    2012-09-01

    Full Text Available The immune response to microfilarial antigen in malayan filariasis was found more prominent in ami-crofilaremic individuals than in the micro filaremics. It has been shown that in amicrofilaremic individuals antibody plays a role in reducing micro filaremiae. The targets antigens of antibody (IgG were shown to be protein components of microfilariae with molecular weight of 75, 70 and 25 Kd. This prospective study was aimed at detecting IgG against microfilariae in transmigrats, who had settled into an filarial endemic area. Sera of 10 individuals at 8, 13, 26, 39 and 52 moths after settling, were examined by ELISA and Wes­tern Blott against microfilaria of B. malayi. Four out of 10 transmigrants showed IgG that recognized the protein components of 77, 70 and 31 Kd and were shown at 39, 52 and 8 months after settling respectively, The IgG against components of 77 and 70 Kd were revealed later than the one against 31 Kd.

  5. Manipulation of arthropod sex determination by endosymbionts : Diversity and molecular mechanisms

    NARCIS (Netherlands)

    Ma, W. -J.; Vavre, F.; Beukeboom, L. W.

    2014-01-01

    Arthropods exhibit a large variety of sex determination systems both at the chromosomal and molecular level. Male heterogamety, female heterogamety, and haplodiploidy occur frequently, but partially different genes are involved. Endosymbionts, such as Wolbachia, Cardinium, Rickettsia, and Spiroplasm

  6. Temporal variation and lack of host specificity among bacterial endosymbionts of Osedax bone worms (Polychaeta: Siboglinidae

    Directory of Open Access Journals (Sweden)

    Salathé Rahel M

    2012-09-01

    Full Text Available Abstract Background Osedax worms use a proliferative root system to extract nutrients from the bones of sunken vertebrate carcasses. The roots contain bacterial endosymbionts that contribute to the nutrition of these mouthless and gutless worms. The worms acquire these essential endosymbionts locally from the environment in which their larvae settle. Here we report on the temporal dynamics of endosymbiont diversity hosted by nine Osedax species sampled during a three-year investigation of an experimental whale fall at 1820-m depth in the Monterey Bay, California. The host species were identified by their unique mitochondrial COI haplotypes. The endosymbionts were identified by ribotyping with PCR primers specifically designed to target Oceanospirillales. Results Thirty-two endosymbiont ribotypes associated with these worms clustered into two distinct bacterial ribospecies that together comprise a monophyletic group, mostly restricted to deep waters (>1000 m. Statistical analyses confirmed significant changes in the relative abundances of host species and the two dominant endosymbiont ribospecies during the three-year sampling period. Bone type (whale vs. cow also had a significant effect on host species, but not on the two dominant symbiont ribospecies. No statistically significant association existed between the host species and endosymbiont ribospecies. Conclusions Standard PCR and direct sequencing proved to be an efficient method for ribotyping the numerically dominant endosymbiont strains infecting a large sample of host individuals; however, this method did not adequately represent the frequency of mixed infections, which appears to be the rule rather than an exception for Osedax individuals. Through cloning and the use of experimental dilution series, we determined that minority ribotypes constituting less than 30% of a mixture would not likely be detected, leading to underestimates of the frequency of multiple infections in host

  7. A member of the TGF-beta receptor gene family in the parasitic nematode Brugia pahangi.

    Science.gov (United States)

    Gomez-Escobar, N; van den Biggelaar, A; Maizels, R

    1997-10-15

    The full length cDNA sequence of a Type I transforming growth factor-beta (TGF-beta) receptor has been isolated from the filarial parasitic nematode Brugia pahangi. This new gene, designated Bp-trk-1, encodes a predicted 645 amino acid sequence with an N-terminal hydrophobic stretch which may act as a signal peptide. The extracellular portion (residues 15-187) is cysteine-rich and has three potential N-glycosylation sites. At positions 250-255 the protein contains the glycine-serine rich motif characteristic of Type I receptors. The closest homologue is a Caenorhabditis elegans gene (Q09488) in cosmid C32D5.2 which shares 67% amino acid identity with Bp-trk-1 in the most conserved kinase domain (aa 259-482). Other type I receptors such as C. elegans daf-1 and Drosophila tkv show 38-53% identity in the same region. Some residues conserved in Drosophila and vertebrates are not present in the B. pahangi sequence. RT-PCR amplification has been used to show that the transcript is expressed in the three main stages of the B. pahangi life cycle: microfilariae, infective larvae and adults. The ligand remains unknown at this time but is likely to be most similar to that for C. elegans Q09488. PMID:9358045

  8. Experimental infection of plants with an herbivore-associated bacterial endosymbiont influences herbivore host selection behavior.

    Directory of Open Access Journals (Sweden)

    Thomas Seth Davis

    Full Text Available Although bacterial endosymbioses are common among phloeophagous herbivores, little is known regarding the effects of symbionts on herbivore host selection and population dynamics. We tested the hypothesis that plant selection and reproductive performance by a phloem-feeding herbivore (potato psyllid, Bactericera cockerelli is mediated by infection of plants with a bacterial endosymbiont. We controlled for the effects of herbivory and endosymbiont infection by exposing potato plants (Solanum tuberosum to psyllids infected with "Candidatus Liberibacter solanacearum" or to uninfected psyllids. We used these treatments as a basis to experimentally test plant volatile emissions, herbivore settling and oviposition preferences, and herbivore population growth. Three important findings emerged: (1 plant volatile profiles differed with respect to both herbivory and herbivory plus endosymbiont infection when compared to undamaged control plants; (2 herbivores initially settled on plants exposed to endosymbiont-infected psyllids but later defected and oviposited primarily on plants exposed only to uninfected psyllids; and (3 plant infection status had little effect on herbivore reproduction, though plant flowering was associated with a 39% reduction in herbivore density on average. Our experiments support the hypothesis that plant infection with endosymbionts alters plant volatile profiles, and infected plants initially recruited herbivores but later repelled them. Also, our findings suggest that the endosymbiont may not place negative selection pressure on its host herbivore in this system, but plant flowering phenology appears correlated with psyllid population performance.

  9. Screening of spider mites (Acari: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history.

    Science.gov (United States)

    Zhang, Yan-Kai; Chen, Ya-Ting; Yang, Kun; Qiao, Ge-Xia; Hong, Xiao-Yue

    2016-01-01

    Reproductive endosymbionts have been shown to have wide-ranging effects on many aspects of their hosts' biology. A first step to understanding how these endosymbionts interact with their hosts is to determine their incidences. Here, we screened for four reproductive endosymbionts (Wolbachia, Cardinium, Spiroplasma and Rickettsia) in 28 populations of spider mites (Acari: Tetranychidae) representing 12 species. Each of the four endosymbionts were identified in at least some of the tested specimens, and their infection patterns showed variations at the species-level and population-level, suggesting their distributions can be correlated with both the phylogeny and ecology of the hosts. Co-infections of unrelated bacteria, especially double infections of Wolbachia and Cardinium within the same individuals were common. Spiroplasma and Rickettsia infections were specific to particular host species, respectively. Further, the evolutionary histories of these endosymbionts were inferred by comparing the phylogenies of them and their hosts. These findings can help to clarify the interactions between endosymbionts and arthropods.

  10. Genetic variability of the whitefly Bemisia tabaci and its secondary endosymbionts in the Arabian Peninsula

    KAUST Repository

    Ragab, Alaa I.

    2013-05-01

    The whitefly Bemisia tabaci species complex has been well documented as one of the most economically important emergent plant virus vectors, through serious feeding damage to its broad range of plant hosts and transmission of plant viruses to important agricultural crops. It has been shown to have associations with endosymbionts which have significant effects on the insect fitness. The purpose of this study was to provide information for the biotype and secondary endosymbiont distribution for B. tabaci populations in the relatively unstudied Arabian peninsula. The geographical localization and variation in endosymbiont populations across the region were identified using a sequence-driven analysis of the population genetics of the secondary endosymbiont. Live field specimens were collected from 22 different locations in the region and preserved in 70% ethanol for genetic studies. Previously established procedures were used to extract and purify total insect DNA from 24-30 individual whiteflies for each location (Frohlich et al., 1999; Chiel et al., 2007). Specimens were subjected to PCR amplification using the respective 16S rDNAprimers for the Rickettsia, Hamiltonella, and Wolbachia to amplify endosymbiont DNA. PCR was run with primers for the highly conserved whitefly mitochondrial cytochrome oxidase subunit I (COI) gene for biotyping. Samples were sequenced using the Sanger method and the data analyzed to correlate the presence, prevalence and geographical distribution of endosymbionts in B. tabaci. Phylogenies 5 were constructed to track evolutionary differences amongst the endosymbionts and insects and how they have influenced the evolution of the regional populations. Samples were characterized by differences in the genomes and endosymbionts of common whitefly ‘biotypes’ that have different host plant preferences, vector capacities and insecticide resistance characteristics. It was found that the B biotype is the predominant haplotype, with no evidence of

  11. NCBI nr-aa BLAST: CBRC-TTRU-01-0887 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TTRU-01-0887 ref|XP_001902801.1| Transmembrane amino acid transporter protein ...[Brugia malayi] gb|EDP28347.1| Transmembrane amino acid transporter protein [Brugia malayi] XP_001902801.1 0.065 28% ...

  12. NCBI nr-aa BLAST: CBRC-TTRU-01-1053 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TTRU-01-1053 ref|XP_001901891.1| endoplasmic reticulum multispan transmembrane... protein [Brugia malayi] gb|EDP29450.1| endoplasmic reticulum multispan transmembrane protein, putative [Brugia malayi] XP_001901891.1 0.15 23% ...

  13. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica.

    Science.gov (United States)

    López-Sánchez, Maria J; Neef, Alexander; Peretó, Juli; Patiño-Navarrete, Rafael; Pignatelli, Miguel; Latorre, Amparo; Moya, Andrés

    2009-11-01

    Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state. PMID:19911043

  14. Inter-Population Variability of Endosymbiont Densities in the Asian Citrus Psyllid (Diaphorina citri Kuwayama).

    Science.gov (United States)

    Chu, Chia-Ching; Gill, Torrence A; Hoffmann, Mark; Pelz-Stelinski, Kirsten S

    2016-05-01

    The Asian citrus psyllid (Diaphorina citri Kuwayama) is an insect pest capable of transmitting Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening in North America. D. citri also harbors three endosymbionts, Wolbachia, Candidatus Carsonella ruddii, and Candidatus Profftella armatura, which may influence D. citri physiology and fitness. Although genomic researches on these bacteria have been conducted, much remains unclear regarding their ecology and inter-population variability in D. citri. The present work examined the densities of each endosymbiont in adult D. citri sampled from different populations using quantitative PCR. Under field conditions, the densities of all three endosymbionts positively correlated with each other, and they are associated with D. citri gender and locality. In addition, the infection density of CLas also varied across populations. Although an analysis pooling D. citri from different populations showed that CLas-infected individuals tended to have lower endosymbiont densities compared to uninfected individuals, the difference was not significant when the population was included as a factor in the analysis, suggesting that other population-specific factors may have stronger effects on endosymbiont densities. To determine whether there is a genetic basis to the density differences, endosymbiont densities between aged CLas-negative females of two D. citri populations reared under standardized laboratory conditions were compared. Results suggested that inter-population variability in Wolbachia infection density is associated with the genotypes of the endosymbiont or the host. Findings from this work could facilitate understanding of D. citri-bacterial associations that may benefit the development of approaches for managing citrus greening, such as prevention of CLas transmission. PMID:26846216

  15. Inter-Population Variability of Endosymbiont Densities in the Asian Citrus Psyllid (Diaphorina citri Kuwayama).

    Science.gov (United States)

    Chu, Chia-Ching; Gill, Torrence A; Hoffmann, Mark; Pelz-Stelinski, Kirsten S

    2016-05-01

    The Asian citrus psyllid (Diaphorina citri Kuwayama) is an insect pest capable of transmitting Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening in North America. D. citri also harbors three endosymbionts, Wolbachia, Candidatus Carsonella ruddii, and Candidatus Profftella armatura, which may influence D. citri physiology and fitness. Although genomic researches on these bacteria have been conducted, much remains unclear regarding their ecology and inter-population variability in D. citri. The present work examined the densities of each endosymbiont in adult D. citri sampled from different populations using quantitative PCR. Under field conditions, the densities of all three endosymbionts positively correlated with each other, and they are associated with D. citri gender and locality. In addition, the infection density of CLas also varied across populations. Although an analysis pooling D. citri from different populations showed that CLas-infected individuals tended to have lower endosymbiont densities compared to uninfected individuals, the difference was not significant when the population was included as a factor in the analysis, suggesting that other population-specific factors may have stronger effects on endosymbiont densities. To determine whether there is a genetic basis to the density differences, endosymbiont densities between aged CLas-negative females of two D. citri populations reared under standardized laboratory conditions were compared. Results suggested that inter-population variability in Wolbachia infection density is associated with the genotypes of the endosymbiont or the host. Findings from this work could facilitate understanding of D. citri-bacterial associations that may benefit the development of approaches for managing citrus greening, such as prevention of CLas transmission.

  16. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica.

    Directory of Open Access Journals (Sweden)

    Maria J López-Sánchez

    2009-11-01

    Full Text Available Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state.

  17. Macrofilaricidal and microfilaricidal effects of Neurolaena lobata, a Guatemalan medicinal plant, on Brugia pahangi.

    Science.gov (United States)

    Fujimaki, Y; Kamachi, T; Yanagi, T; Cáceres, A; Maki, J; Aoki, Y

    2005-03-01

    Twelve extracts of 11 Guatemalan medicinal plants were initially screened in vitro for potential macrofilaricidal activity against Brugia pahangi, a lymphatic dwelling filarial worm, using concentrations from 125 to 1000 microg ml(-1) of each extract that could be dissolved in the culture medium. Of 12 extracts used, the ethanol extract of leaves of Neurolaena lobata showed the strongest activity against the motility of adult worms. Subsequently, the extract of N. lobata was extensively examined in vitro for macro- and micro-filaricidal effects using a series of concentrations of 500, 250, 100, 50 and 10 microg ml(-1). The effects were assessed by worm motility, microfilarial release by female worms and a MTT assay. The effect on the motility of adult worms was observed in a concentration- and time-dependent manner. The time required to stop motility of both sexes of adult worms was 6 h at 500 microg ml(-1), 24 h at 250 microg ml(-1), and 3 days for females and 4 days for males at 100 microg ml(-1). The movement of females ceased at 4 days at a concentration of 50 microg ml(-1) whereas the motility of males was only reduced. The loss of worm's viability was confirmed by the MTT assay and was similar to the motility results. These concentrations, including 10 microg ml(-1), prevented microfilarial release by females in a concentration- and time-dependent manner. Concentrations higher than 100 microg ml(-1) even induced mortality of the microfilariae. The present study suggested that the ethanol extract of Neurolaena lobata has potential macro- and micro-filaricidal activities. PMID:15831109

  18. Origin and examination of a leafhopper facultative endosymbiont.

    Science.gov (United States)

    Degnan, Patrick H; Bittleston, Leonora S; Hansen, Allison K; Sabree, Zakee L; Moran, Nancy A; Almeida, Rodrigo P P

    2011-05-01

    Eukaryotes engage in intimate interactions with microbes that range in age and type of association. Although many conspicuous examples of ancient insect associates are studied (e.g., Buchnera aphidicola), fewer examples of younger associations are known. Here, we further characterize a recently evolved bacterial endosymbiont of the leafhopper Euscelidius variegatus (Hemiptera, Cicadellidae), called BEV. We found that BEV, continuously maintained in E. variegatus hosts at UC Berkeley since 1984, is vertically transmitted with high fidelity. Unlike many vertically transmitted, ancient endosymbioses, the BEV-E. variegatus association is not obligate for either partner, and BEV can be cultivated axenically. Sufficient BEV colonies were grown and harvested to estimate its genome size and provide a partial survey of the genome sequence. The BEV chromosome is about 3.8 Mbp, and there is evidence for an extrachromosomal element roughly 53 kb in size (e.g., prophage or plasmid). We sequenced 438 kb of unique short-insert clones, representing about 12% of the BEV genome. Nearly half of the gene fragments were similar to mobile DNA, including 15 distinct types of insertion sequences (IS). Analyses revealed that BEV not only shares virulence genes with plant pathogens, but also is closely related to the plant pathogenic genera Dickeya, Pectobacterium, and Brenneria. However, the slightly reduced genome size, abundance of mobile DNA, fastidious growth in culture, and efficient vertical transmission suggest that symbiosis with E. variegatus has had a significant impact on genome evolution in BEV. PMID:21336565

  19. Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea

    Directory of Open Access Journals (Sweden)

    Urban Julie M

    2012-06-01

    Full Text Available Abstract Background Members of the hemipteran suborder Auchenorrhyncha (commonly known as planthoppers, tree- and leafhoppers, spittlebugs, and cicadas are unusual among insects known to harbor endosymbiotic bacteria in that they are associated with diverse assemblages of bacterial endosymbionts. Early light microscopic surveys of species representing the two major lineages of Auchenorrhyncha (the planthopper superfamily Fulgoroidea; and Cicadomorpha, comprising Membracoidea [tree- and leafhoppers], Cercopoidea [spittlebugs], and Cicadoidea [cicadas], found that most examined species harbored at least two morphologically distinct bacterial endosymbionts, and some harbored as many as six. Recent investigations using molecular techniques have identified multiple obligate bacterial endosymbionts in Cicadomorpha; however, much less is known about endosymbionts of Fulgoroidea. In this study, we present the initial findings of an ongoing PCR-based survey (sequencing 16S rDNA of planthopper-associated bacteria to document endosymbionts with a long-term history of codiversification with their fulgoroid hosts. Results Results of PCR surveys and phylogenetic analyses of 16S rDNA recovered a monophyletic clade of Betaproteobacteria associated with planthoppers; this clade included Vidania fulgoroideae, a recently described bacterium identified in exemplars of the planthopper family Cixiidae. We surveyed 77 planthopper species representing 18 fulgoroid families, and detected Vidania in 40 species (representing 13 families. Further, we detected the Sulcia endosymbiont (identified as an obligate endosymbiont of Auchenorrhyncha in previous studies in 30 of the 40 species harboring Vidania. Concordance of the Vidania phylogeny with the phylogeny of the planthopper hosts (reconstructed based on sequence data from five genes generated from the same insect specimens from which the bacterial sequences were obtained was supported by statistical tests of

  20. Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont.

    Directory of Open Access Journals (Sweden)

    Araceli Lamelas

    2011-11-01

    Full Text Available The genome sequencing of Buchnera aphidicola BCc from the aphid Cinara cedri, which is the smallest known Buchnera genome, revealed that this bacterium had lost its symbiotic role, as it was not able to synthesize tryptophan and riboflavin. Moreover, the biosynthesis of tryptophan is shared with the endosymbiont Serratia symbiotica SCc, which coexists with B. aphidicola in this aphid. The whole-genome sequencing of S. symbiotica SCc reveals an endosymbiont in a stage of genome reduction that is closer to an obligate endosymbiont, such as B. aphidicola from Acyrthosiphon pisum, than to another S. symbiotica, which is a facultative endosymbiont in this aphid, and presents much less gene decay. The comparison between both S. symbiotica enables us to propose an evolutionary scenario of the transition from facultative to obligate endosymbiont. Metabolic inferences of B. aphidicola BCc and S. symbiotica SCc reveal that most of the functions carried out by B. aphidicola in A. pisum are now either conserved in B. aphidicola BCc or taken over by S. symbiotica. In addition, there are several cases of metabolic complementation giving functional stability to the whole consortium and evolutionary preservation of the actors involved.

  1. Multiple endosymbiont infections and reproductive manipulations in a linyphiid spider population.

    Science.gov (United States)

    Curry, M M; Paliulis, L V; Welch, K D; Harwood, J D; White, J A

    2015-08-01

    In many arthropods, maternally inherited endosymbiotic bacteria can increase infection frequency by manipulating host reproduction. Multiple infections of different bacteria in a single host population are common, yet few studies have documented concurrent endosymbiont phenotypes or explored their potential interactions. We hypothesized that spiders might be a particularly useful taxon for investigating endosymbiont interactions, because they are host to a plethora of endosymbiotic bacteria and frequently exhibit multiple infections. We established two matrilines from the same population of the linyphiid spider Mermessus fradeorum and then used antibiotic curing and controlled mating assays to demonstrate that each matriline was subject to a distinct endosymbiotic reproductive manipulation. One matriline was co-infected with Rickettsia and Wolbachia and produced offspring with a radical female bias. Antibiotic treatment eliminated both endosymbionts and restored an even sex ratio to subsequent generations. Chromosomal and fecundity observations suggest a feminization mechanism. In the other matriline, a separate factorial mating assay of cured and infected spiders demonstrated strong cytoplasmic incompatibility (CI) induced by a different strain of Wolbachia. However, males with this Wolbachia induced only mild CI when mated with the Rickettsia-Wolbachia females. In a subsequent survey of a field population of M. fradeorum, we detected these same three endosymbionts infecting 55% of the spiders in almost all possible combinations, with nearly half of the infected spiders exhibiting multiple infection. Our results suggest that a dynamic network of endosymbionts may interact both within multiply infected hosts and within a population subject to multiple strong reproductive manipulations. PMID:25899011

  2. The nutrient supplying capabilities of Uzinura, an endosymbiont of armoured scale insects.

    Science.gov (United States)

    Sabree, Zakee L; Huang, Charlie Y; Okusu, Akiko; Moran, Nancy A; Normark, Benjamin B

    2013-07-01

    An emerging common physiological feature of plant sap-feeding insects is the presence of bacterial endosymbionts capable of providing essential nutrients to their host. These microbial partners are inviable outside of specialized host tissues, and therefore a cultivation-independent approach, namely high-throughput next-generation genome sequencing, can be used to characterize their gene content and metabolic potential. To this end, we sequenced the first complete genome of the obligate endosymbiont, Candidatus 'Uzinura diaspidicola', of armoured scale insects. At 263 431 bp, Uzinura has an extremely reduced genome that is composed largely of genes encoding enzymes involved in translation and amino acid biosynthesis. The tiny size of the Uzinura genome parallels that observed in some other insect endosymbionts. Despite this extreme genome reduction, the absence of a known obligate partner bacterial symbiont suggests that Uzinura alone can supply sufficient nutrients to its host.

  3. Novel oligonucleotide probes for in situ detection of pederin-producing endosymbionts of Paederus riparius rove beetles (Coleoptera: Staphylinidae).

    Science.gov (United States)

    Kador, Matthias; Horn, Marcus A; Dettner, Konrad

    2011-06-01

    Bacterial endosymbionts from female Paederus rove beetles are hitherto uncultured, phylogenetically related to Pseudomonas sp., and produce the polyketide pederin, which exhibits strong cytotoxic effects and antitumoral activities. The location of such endosymbionts inside beetles and on beetles' eggs is hypothesized based on indirect evidence rather than elucidated. Thus, an endosymbiont-specific and a competitor oligonucleotide probe (Cy3-labelled PAE444 and unlabelled cPAE444, respectively) were designed and utilized for FISH with semi-thin sections of Paederus riparius eggs. Cy3-PAE444-positive cells were densely packed and covered the whole eggshell. Hundred percent of EUB338-Mix-positive total bacterial cells were PAE444 positive, indicating a biofilm dominated by Paederus endosymbionts. Analysis of different egg deposition stadiums by electron microscopy and pks (polyketide synthase gene, a structural gene associated with pederin biosynthesis)-PCR supported results obtained by FISH and revealed that the endosymbiont-containing layer is applied to the eggshell inside the efferent duct. These findings suggest that P. riparius endosymbionts are located inside unknown structures of the female genitalia, which allow for a well-regulated release of endosymbionts during oviposition. The novel oligonucleotide probes developed in this study will facilitate (1) the identification of symbiont-containing structures within genitalia of their beetle hosts and (2) directed cultivation approaches in the future.

  4. Population dynamics and growth rates of endosymbionts during Diaphorina citri (Hemiptera, Liviidae) ontogeny.

    Science.gov (United States)

    Dossi, Fabio Cleisto Alda; da Silva, Edney Pereira; Cônsoli, Fernando Luis

    2014-11-01

    The infection density of symbionts is among the major parameters to understand their biological effects in host-endosymbionts interactions. Diaphorina citri harbors two bacteriome-associated bacterial endosymbionts (Candidatus Carsonella ruddii and Candidatus Profftella armatura), besides the intracellular reproductive parasite Wolbachia. In this study, the density dynamics of the three endosymbionts associated with the psyllid D. citri was investigated by real-time quantitative PCR (qPCR) at different developmental stages. Bacterial density was estimated by assessing the copy number of the 16S rRNA gene for Carsonella and Profftella, and of the ftsZ gene for Wolbachia. Analysis revealed a continuous growth of the symbionts during host development. Symbiont growth and rate curves were estimated by the Gompertz equation, which indicated a negative correlation between the degree of symbiont-host specialization and the time to achieve the maximum growth rate (t*). Carsonella densities were significantly lower than those of Profftella at all host developmental stages analyzed, even though they both displayed a similar trend. The growth rates of Wolbachia were similar to those of Carsonella, but Wolbachia was not as abundant. Adult males displayed higher symbiont densities than females. However, females showed a much more pronounced increase in symbiont density as they aged if compared to males, regardless of the incorporation of symbionts into female oocytes and egg laying. The increased density of endosymbionts in aged adults differs from the usual decrease observed during host aging in other insect-symbiont systems. PMID:25037159

  5. Population dynamics and growth rates of endosymbionts during Diaphorina citri (Hemiptera, Liviidae) ontogeny.

    Science.gov (United States)

    Dossi, Fabio Cleisto Alda; da Silva, Edney Pereira; Cônsoli, Fernando Luis

    2014-11-01

    The infection density of symbionts is among the major parameters to understand their biological effects in host-endosymbionts interactions. Diaphorina citri harbors two bacteriome-associated bacterial endosymbionts (Candidatus Carsonella ruddii and Candidatus Profftella armatura), besides the intracellular reproductive parasite Wolbachia. In this study, the density dynamics of the three endosymbionts associated with the psyllid D. citri was investigated by real-time quantitative PCR (qPCR) at different developmental stages. Bacterial density was estimated by assessing the copy number of the 16S rRNA gene for Carsonella and Profftella, and of the ftsZ gene for Wolbachia. Analysis revealed a continuous growth of the symbionts during host development. Symbiont growth and rate curves were estimated by the Gompertz equation, which indicated a negative correlation between the degree of symbiont-host specialization and the time to achieve the maximum growth rate (t*). Carsonella densities were significantly lower than those of Profftella at all host developmental stages analyzed, even though they both displayed a similar trend. The growth rates of Wolbachia were similar to those of Carsonella, but Wolbachia was not as abundant. Adult males displayed higher symbiont densities than females. However, females showed a much more pronounced increase in symbiont density as they aged if compared to males, regardless of the incorporation of symbionts into female oocytes and egg laying. The increased density of endosymbionts in aged adults differs from the usual decrease observed during host aging in other insect-symbiont systems.

  6. Immune response of the ant Camponotus floridanus against pathogens and its obligate mutualistic endosymbiont.

    Science.gov (United States)

    Ratzka, Carolin; Liang, Chunguang; Dandekar, Thomas; Gross, Roy; Feldhaar, Heike

    2011-08-01

    Numerous insect species harbor mutualistic endosymbionts that play a role in nutrient cycling or confer other fitness benefits to their hosts. Insect hosts face the problem of having to maintain such mutualistic bacteria while staging an immune response towards pathogens upon infection. In addition, hosts may regulate the number of endosymbionts present in their tissues via the innate immune system. Camponotus floridanus ants harbor the obligate endosymbiont Blochmannia floridanus in specialized midgut cells and ovaries. We identified genes transcriptionally induced in response to septic injury by suppression subtractive hybridization (SSH). Among these were genes involved in pathogen recognition (e.g. GNBP), signal transduction (e.g. MAPK-kinase), antimicrobial activity (e.g. defensin and hymenoptaecin), or general stress response (e.g. heat shock protein). A quantitative analysis of immune-gene expression revealed different expression kinetics of individual factors and also characteristic expression profiles after injection of gram-negative and gram-positive bacteria. Likewise, B. floridanus injected into the hemocoel elicited a comparable immune response of its host C. floridanus. Thus, the host immune system may contribute to controlling the endosymbiont population. PMID:21440063

  7. Gene expression analysis of the endosymbiont-bearing midgut tissue during ontogeny of the carpenter ant Camponotus floridanus.

    Science.gov (United States)

    Ratzka, Carolin; Gross, Roy; Feldhaar, Heike

    2013-06-01

    Insects have frequently evolved mutualistic relationships with extracellular and/or intracellular bacterial endosymbionts. Infection with endosymbionts seems to affect several cellular functions of the host such as immune pathways, oxidative stress regulation and autophagy. Our current knowledge about specific host factors leading to endosymbiont tolerance and/or control is still scarce and is based on very few associations between insect hosts and bacteria only. Camponotus floridanus ants harbour the obligate intracellular bacterium Blochmannia floridanus within specialized midgut cells called bacteriocytes. The number of Blochmannia endosymbionts within the midgut tissue increases strongly during host development and reaches a maximum at the late pupal stage, where the entire midgut is transformed into a symbiotic organ. After eclosion of workers the number of Blochmannia strongly decreases again. We chose 15 candidate genes from C. floridanus likely to be involved in host-symbiont interactions based on their significant homology to previously investigated symbiosis-relevant genes from other insects. We determined the expression of these genes in the endosymbiont-bearing midgut tissue in comparison to the residual body tissue at different developmental stages of C. floridanus in order to reveal changes in gene expression correlating with changes in endosymbiont number per host. Strikingly, two pattern recognition receptors (amidase PGRP-LB and PGRP-SC2) were highly expressed in the midgut tissue at the pupal stage, potentially down-modulating the IMD pathway to enable endosymbiont tolerance. Moreover, we investigated the immune gene expression in response to bacterial challenge at the pupal stage. Results showed that the midgut tissue differs in expression pattern in contrast to the residual body. Our results support a key role for amidase PGRPs, especially PGRP-LB, in regulation of the immune response towards endosymbionts in C. floridanus and suggest an

  8. Gene expression analysis of the endosymbiont-bearing midgut tissue during ontogeny of the carpenter ant Camponotus floridanus.

    Science.gov (United States)

    Ratzka, Carolin; Gross, Roy; Feldhaar, Heike

    2013-06-01

    Insects have frequently evolved mutualistic relationships with extracellular and/or intracellular bacterial endosymbionts. Infection with endosymbionts seems to affect several cellular functions of the host such as immune pathways, oxidative stress regulation and autophagy. Our current knowledge about specific host factors leading to endosymbiont tolerance and/or control is still scarce and is based on very few associations between insect hosts and bacteria only. Camponotus floridanus ants harbour the obligate intracellular bacterium Blochmannia floridanus within specialized midgut cells called bacteriocytes. The number of Blochmannia endosymbionts within the midgut tissue increases strongly during host development and reaches a maximum at the late pupal stage, where the entire midgut is transformed into a symbiotic organ. After eclosion of workers the number of Blochmannia strongly decreases again. We chose 15 candidate genes from C. floridanus likely to be involved in host-symbiont interactions based on their significant homology to previously investigated symbiosis-relevant genes from other insects. We determined the expression of these genes in the endosymbiont-bearing midgut tissue in comparison to the residual body tissue at different developmental stages of C. floridanus in order to reveal changes in gene expression correlating with changes in endosymbiont number per host. Strikingly, two pattern recognition receptors (amidase PGRP-LB and PGRP-SC2) were highly expressed in the midgut tissue at the pupal stage, potentially down-modulating the IMD pathway to enable endosymbiont tolerance. Moreover, we investigated the immune gene expression in response to bacterial challenge at the pupal stage. Results showed that the midgut tissue differs in expression pattern in contrast to the residual body. Our results support a key role for amidase PGRPs, especially PGRP-LB, in regulation of the immune response towards endosymbionts in C. floridanus and suggest an

  9. Diversity and localization of bacterial endosymbionts from whitefly species collected in Brazil.

    Directory of Open Access Journals (Sweden)

    Julio Massaharu Marubayashi

    Full Text Available Whiteflies (Hemiptera: Aleyrodidae are sap-sucking insect pests, and some cause serious damage in agricultural crops by direct feeding and by transmitting plant viruses. Whiteflies maintain close associations with bacterial endosymbionts that can significantly influence their biology. All whitefly species harbor a primary endosymbiont, and a diverse array of secondary endosymbionts. In this study, we surveyed 34 whitefly populations collected from the states of Sao Paulo, Bahia, Minas Gerais and Parana in Brazil, for species identification and for infection with secondary endosymbionts. Sequencing the mitochondrial Cytochrome Oxidase I gene revealed the existence of five whitefly species: The sweetpotato whitefly Bemisia tabaci B biotype (recently termed Middle East-Asia Minor 1 or MEAM1, the greenhouse whitefly Trialeurodes vaporariorum, B. tabaci A biotype (recently termed New World 2 or NW2 collected only from Euphorbia, the Acacia whitefly Tetraleurodes acaciae and Bemisia tuberculata both were detected only on cassava. Sequencing rRNA genes showed that Hamiltonella and Rickettsia were highly prevalent in all MEAM1 populations, while Cardinium was close to fixation in only three populations. Surprisingly, some MEAM1 individuals and one NW2 population were infected with Fritschea. Arsenopnohus was the only endosymbiont detected in T. vaporariorum. In T. acaciae and B. tuberculata populations collected from cassava, Wolbachia was fixed in B. tuberculata and was highly prevalent in T. acaciae. Interestingly, while B. tuberculata was additionally infected with Arsenophonus, T. acaciae was infected with Cardinium and Fritschea. Fluorescence in situ hybridization analysis on representative individuals showed that Hamiltonella, Arsenopnohus and Fritschea were localized inside the bacteriome, Cardinium and Wolbachia exhibited dual localization patterns inside and outside the bacteriome, and Rickettsia showed strict localization outside the

  10. Diversity and localization of bacterial endosymbionts from whitefly species collected in Brazil.

    Science.gov (United States)

    Marubayashi, Julio Massaharu; Kliot, Adi; Yuki, Valdir Atsushi; Rezende, Jorge Alberto Marques; Krause-Sakate, Renate; Pavan, Marcelo Agenor; Ghanim, Murad

    2014-01-01

    Whiteflies (Hemiptera: Aleyrodidae) are sap-sucking insect pests, and some cause serious damage in agricultural crops by direct feeding and by transmitting plant viruses. Whiteflies maintain close associations with bacterial endosymbionts that can significantly influence their biology. All whitefly species harbor a primary endosymbiont, and a diverse array of secondary endosymbionts. In this study, we surveyed 34 whitefly populations collected from the states of Sao Paulo, Bahia, Minas Gerais and Parana in Brazil, for species identification and for infection with secondary endosymbionts. Sequencing the mitochondrial Cytochrome Oxidase I gene revealed the existence of five whitefly species: The sweetpotato whitefly Bemisia tabaci B biotype (recently termed Middle East-Asia Minor 1 or MEAM1), the greenhouse whitefly Trialeurodes vaporariorum, B. tabaci A biotype (recently termed New World 2 or NW2) collected only from Euphorbia, the Acacia whitefly Tetraleurodes acaciae and Bemisia tuberculata both were detected only on cassava. Sequencing rRNA genes showed that Hamiltonella and Rickettsia were highly prevalent in all MEAM1 populations, while Cardinium was close to fixation in only three populations. Surprisingly, some MEAM1 individuals and one NW2 population were infected with Fritschea. Arsenopnohus was the only endosymbiont detected in T. vaporariorum. In T. acaciae and B. tuberculata populations collected from cassava, Wolbachia was fixed in B. tuberculata and was highly prevalent in T. acaciae. Interestingly, while B. tuberculata was additionally infected with Arsenophonus, T. acaciae was infected with Cardinium and Fritschea. Fluorescence in situ hybridization analysis on representative individuals showed that Hamiltonella, Arsenopnohus and Fritschea were localized inside the bacteriome, Cardinium and Wolbachia exhibited dual localization patterns inside and outside the bacteriome, and Rickettsia showed strict localization outside the bacteriome. This study is

  11. Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina citri) (7th Annual SFAF Meeting, 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Surya [Cornell University

    2012-06-01

    Surya Saha on "Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina citri)" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  12. Survey of Endosymbionts in the Diaphorina citri Metagenome and Assembly of a Wolbachia wDi Draft Genome

    OpenAIRE

    Surya Saha; Hunter, Wayne B.; Justin Reese; J Kent Morgan; Mizuri Marutani-Hert; Hong Huang; Magdalen Lindeberg

    2012-01-01

    Diaphorina citri (Hemiptera: Psyllidae), the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D. citri metagenome has been initiated to gain better understanding of the biology of this organism and the potential roles of its bacterial endosymbionts. To corroborate candidate endosymbionts previously identified by rDNA amplification, raw reads from the D. citri metagenome sequence were mapped to reference ge...

  13. Widespread occurrence of two carbon fixation pathways in tubeworm endosymbionts: lessons from hydrothermal vent associated tubeworms from the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Vera eThiel

    2012-12-01

    Full Text Available Vestimentiferan tubeworms (siboglinid polychaetes of the genus Lamellibrachia are common members of cold-seep faunal communities and have also been found at sedimented hydrothermal vent sites in the Pacific. As they lack a digestive system, they are nourished by chemoautotrophic bacterial endosymbionts growing in a specialized tissue called the trophosome. Here we present the results of investigations of tubeworms and endosymbionts from a shallow hydrothermal vent field in the Western Mediterranean Sea. The tubeworms, which are the first reported vent-associated tubeworms outside the Pacific, are identified as Lamellibrachia anaximandri using mitochondrial ribosomal and cytochrome oxidase I gene sequences. They harbor a single gammaproteobacterial endosymbiont. Carbon isotopic data, as well as the analysis of genes involved in carbon and sulfur metabolism indicate a sulfide-oxidizing chemoautotrophic endosymbiont. The detection of a hydrogenase gene fragment suggests the potential for hydrogen oxidation as alternative energy source. Surprisingly, the endosymbiont harbors genes for two different carbon fixation pathways, the Calvin-Benson-Bassham (CBB cycle as well as the reductive tricarboxylic acid (rTCA cycle, as has been reported for the endosymbiont of the giant vent tubeworm Riftia pachyptila. In addition to RubisCO genes we detected ATP citrate lyase (ACL, the key enzyme of the rTCA cycle type II gene sequences using newly designed primer sets. Comparative investigations with additional tubeworm species (Lamellibrachia luymesi, Lamellibrachia sp. 1, Lamellibrachia sp. 2, Escarpia laminata, Seepiophila jonesi from multiple cold seep sites in the Gulf of Mexico revealed the presence of acl genes in these species as well. Thus, our study suggests that the presence of two different carbon fixation pathways, the CBB cycle and the rTCA cycle, is not restricted to the Riftia endosymbiont, but rather might be common in vestimentiferan tubeworm

  14. STATUS OF BRUGIAN FILARIASIS RESEARCH IN INDONESIA AND FUTURE STUDIES

    Directory of Open Access Journals (Sweden)

    Lim Boo Liat

    2012-09-01

    Full Text Available Penyebab penyakit filariasis di Indonesia adalah Brugia malayi dan B. timori. Penyebaran kedua jenis parasit tersebut, serta berbagai masalah perbedaan geografis dari B. malayi, baik pengobatannya dengan chemotherapy maupun immunodiagnosisnya telah diketahui. B. pahangi yang bersumber pada binatang juga telah dilaporkan. Nyamuk-nyamuk sebagai vector untuk B. malayi dan B. timori telah pula disebut. Binatang-binatang liar juga telah dilaporkan sebagai sumber penularan yang sangat potensial melalui subperiodic B. malayi.

  15. Screening of spider mites (Acari: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history.

    Science.gov (United States)

    Zhang, Yan-Kai; Chen, Ya-Ting; Yang, Kun; Qiao, Ge-Xia; Hong, Xiao-Yue

    2016-01-01

    Reproductive endosymbionts have been shown to have wide-ranging effects on many aspects of their hosts' biology. A first step to understanding how these endosymbionts interact with their hosts is to determine their incidences. Here, we screened for four reproductive endosymbionts (Wolbachia, Cardinium, Spiroplasma and Rickettsia) in 28 populations of spider mites (Acari: Tetranychidae) representing 12 species. Each of the four endosymbionts were identified in at least some of the tested specimens, and their infection patterns showed variations at the species-level and population-level, suggesting their distributions can be correlated with both the phylogeny and ecology of the hosts. Co-infections of unrelated bacteria, especially double infections of Wolbachia and Cardinium within the same individuals were common. Spiroplasma and Rickettsia infections were specific to particular host species, respectively. Further, the evolutionary histories of these endosymbionts were inferred by comparing the phylogenies of them and their hosts. These findings can help to clarify the interactions between endosymbionts and arthropods. PMID:27291078

  16. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice.

    Science.gov (United States)

    Allen, Julie M; Burleigh, J Gordon; Light, Jessica E; Reed, David L

    2016-01-01

    Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain. PMID:27547523

  17. The olive fly endosymbiont, "Candidatus Erwinia dacicola," switches from an intracellular existence to an extracellular existence during host insect development.

    Science.gov (United States)

    Estes, Anne M; Hearn, David J; Bronstein, Judith L; Pierson, Elizabeth A

    2009-11-01

    As polyphagous, holometabolous insects, tephritid fruit flies (Diptera: Tephritidae) provide a unique habitat for endosymbiotic bacteria, especially those microbes associated with the digestive system. Here we examine the endosymbiont of the olive fly [Bactrocera oleae (Rossi) (Diptera: Tephritidae)], a tephritid of great economic importance. "Candidatus Erwinia dacicola" was found in the digestive systems of all life stages of wild olive flies from the southwestern United States. PCR and microscopy demonstrated that "Ca. Erwinia dacicola" resided intracellularly in the gastric ceca of the larval midgut but extracellularly in the lumen of the foregut and ovipositor diverticulum of adult flies. "Ca. Erwinia dacicola" is one of the few nonpathogenic endosymbionts that transitions between intracellular and extracellular lifestyles during specific stages of the host's life cycle. Another unique feature of the olive fly endosymbiont is that unlike obligate endosymbionts of monophagous insects, "Ca. Erwinia dacicola" has a G+C nucleotide composition similar to those of closely related plant-pathogenic and free-living bacteria. These two characteristics of "Ca. Erwinia dacicola," the ability to transition between intracellular and extracellular lifestyles and a G+C nucleotide composition similar to those of free-living relatives, may facilitate survival in a changing environment during the development of a polyphagous, holometabolous host. We propose that insect-bacterial symbioses should be classified based on the environment that the host provides to the endosymbiont (the endosymbiont environment).

  18. Targeting the Wolbachia cell division protein FtsZ as a new approach for antifilarial therapy.

    Science.gov (United States)

    Li, Zhiru; Garner, Amanda L; Gloeckner, Christian; Janda, Kim D; Carlow, Clotilde K

    2011-11-01

    The use of antibiotics targeting the obligate bacterial endosymbiont Wolbachia of filarial parasites has been validated as an approach for controlling filarial infection in animals and humans. Availability of genomic sequences for the Wolbachia (wBm) present in the human filarial parasite Brugia malayi has enabled genome-wide searching for new potential drug targets. In the present study, we investigated the cell division machinery of wBm and determined that it possesses the essential cell division gene ftsZ which was expressed in all developmental stages of B. malayi examined. FtsZ is a GTPase thereby making the protein an attractive Wolbachia drug target. We described the molecular characterization and catalytic properties of Wolbachia FtsZ. We also demonstrated that the GTPase activity was inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. Furthermore, berberine was also effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel anti-symbiotic approach for controlling filarial infection. NOTE: The nucleotide sequences reported in this paper are available in GenBank™ Data Bank under the accession number wAlB-FtsZ (JN616286).

  19. Targeting the Wolbachia cell division protein FtsZ as a new approach for antifilarial therapy.

    Directory of Open Access Journals (Sweden)

    Zhiru Li

    2011-11-01

    Full Text Available The use of antibiotics targeting the obligate bacterial endosymbiont Wolbachia of filarial parasites has been validated as an approach for controlling filarial infection in animals and humans. Availability of genomic sequences for the Wolbachia (wBm present in the human filarial parasite Brugia malayi has enabled genome-wide searching for new potential drug targets. In the present study, we investigated the cell division machinery of wBm and determined that it possesses the essential cell division gene ftsZ which was expressed in all developmental stages of B. malayi examined. FtsZ is a GTPase thereby making the protein an attractive Wolbachia drug target. We described the molecular characterization and catalytic properties of Wolbachia FtsZ. We also demonstrated that the GTPase activity was inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. Furthermore, berberine was also effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel anti-symbiotic approach for controlling filarial infection. NOTE: The nucleotide sequences reported in this paper are available in GenBank™ Data Bank under the accession number wAlB-FtsZ (JN616286.

  20. Vibrio Zinc-Metalloprotease Causes Photoinactivation of Coral Endosymbionts and Coral Tissue Lesions

    OpenAIRE

    Meir Sussman; Mieog, Jos C.; Jason Doyle; Steven Victor; Willis, Bette L.; Bourne, David G.

    2009-01-01

    BACKGROUND: Coral diseases are emerging as a serious threat to coral reefs worldwide. Of nine coral infectious diseases, whose pathogens have been characterized, six are caused by agents from the family Vibrionacae, raising questions as to their origin and role in coral disease aetiology. METHODOLOGY/PRINCIPAL FINDINGS: Here we report on a Vibrio zinc-metalloprotease causing rapid photoinactivation of susceptible Symbiodinium endosymbionts followed by lesions in coral tissue. Symbiodinium pho...

  1. Closely coupled evolutionary history of ecto- and endosymbionts from two distantly related animal phyla.

    Science.gov (United States)

    Zimmermann, Judith; Wentrup, Cecilia; Sadowski, Miriam; Blazejak, Anna; Gruber-Vodicka, Harald R; Kleiner, Manuel; Ott, Jörg A; Cronholm, Bodil; De Wit, Pierre; Erséus, Christer; Dubilier, Nicole

    2016-07-01

    The level of integration between associated partners can range from ectosymbioses to extracellular and intracellular endosymbioses, and this range has been assumed to reflect a continuum from less intimate to evolutionarily highly stable associations. In this study, we examined the specificity and evolutionary history of marine symbioses in a group of closely related sulphur-oxidizing bacteria, called Candidatus Thiosymbion, that have established ecto- and endosymbioses with two distantly related animal phyla, Nematoda and Annelida. Intriguingly, in the ectosymbiotic associations of stilbonematine nematodes, we observed a high degree of congruence between symbiont and host phylogenies, based on their ribosomal RNA (rRNA) genes. In contrast, for the endosymbioses of gutless phallodriline annelids (oligochaetes), we found only a weak congruence between symbiont and host phylogenies, based on analyses of symbiont 16S rRNA genes and six host genetic markers. The much higher degree of congruence between nematodes and their ectosymbionts compared to those of annelids and their endosymbionts was confirmed by cophylogenetic analyses. These revealed 15 significant codivergence events between stilbonematine nematodes and their ectosymbionts, but only one event between gutless phallodrilines and their endosymbionts. Phylogenetic analyses of 16S rRNA gene sequences from 50 Cand. Thiosymbion species revealed seven well-supported clades that contained both stilbonematine ectosymbionts and phallodriline endosymbionts. This closely coupled evolutionary history of marine ecto- and endosymbionts suggests that switches between symbiotic lifestyles and between the two host phyla occurred multiple times during the evolution of the Cand. Thiosymbion clade, and highlights the remarkable flexibility of these symbiotic bacteria. PMID:26826340

  2. Insect Sex Determination Manipulated by Their Endosymbionts: Incidences, Mechanisms and Implications

    Directory of Open Access Journals (Sweden)

    Masaya Watanabe

    2012-02-01

    Full Text Available The sex-determining systems of arthropods are surprisingly diverse. Some species have male or female heterogametic sex chromosomes while other species do not have sex chromosomes. Most species are diploids but some species, including wasps, ants, thrips and mites, are haplodiploids (n in males; 2n in females. Many of the sexual aberrations, such as sexual mosaics, sex-specific lethality and conversion of sexuality, can be explained by developmental defects including double fertilization of a binucleate egg, loss of a sex chromosome or perturbation of sex-determining gene expression, which occur accidentally or are induced by certain environmental conditions. However, recent studies have revealed that such sexual aberrations can be caused by various groups of vertically-transmitted endosymbiotic microbes such as bacteria of the genera Wolbachia, Rickettsia, Arsenophonus, Spiroplasma and Cardinium, as well as microsporidian protists. In this review, we first summarize the accumulated data on endosymbiont-induced sexual aberrations, and then discuss how such endosymbionts affect the developmental system of their hosts and what kinds of ecological and evolutionary effects these endosymbionts have on their host populations.

  3. A screen of maternally inherited microbial endosymbionts in oribatid mites (Acari: Oribatida).

    Science.gov (United States)

    Konecka, Edyta; Olszanowski, Ziemowit

    2015-08-01

    We determined the distribution of microbial endosymbionts as possible agents of parthenogenesis in Oribatida. We screened mites from 20 species of 14 families suspected to be parthenogenetic from the absence or rarity of males. Our research included parthenogenesis-inducing bacteria Wolbachia spp., Cardinium spp., Rickettsia spp., and additionally Arsenophonus, Spiroplasma and microsporidia that can also manipulate host reproduction. We detected the endosymbionts by PCR-based methods and transmission electron microscopy (TEM) observation of fixed and stained preparations of host cells. We detected Wolbachia only in one Oribatida species, Oppiella nova, by identifying Wolbachia genes using PCR. TEM observations confirmed infection by the endosymbiont in O. nova and its lack in other Oribatida species. Sequence analysis of hcpA and fbpA genes showed that the Wolbachia strain from O. nova was different from strains characterized in some insects, crustaceans (Isopoda), mites (Tetranychidae), springtails (Hexapoda) and roundworms (Nematoda). The analysis strongly suggested that the Wolbachia sp. strain found in O. nova did not belong to supergroups A, B, C, D, E, F, H or M. We found that the sequences of Wolbachia from O. nova were clearly distantly related to sequences from the bacteria of the other supergroups. This observation makes O. nova a unique Wolbachia host in terms of the distinction of the strain. The role of these micro-organisms in O. nova remains unknown and is an issue to investigate. PMID:25991706

  4. Nature lessons: The whitefly bacterial endosymbiont is a minimal amino acid factory with unusual energetics.

    Science.gov (United States)

    Calle-Espinosa, Jorge; Ponce-de-Leon, Miguel; Santos-Garcia, Diego; Silva, Francisco J; Montero, Francisco; Peretó, Juli

    2016-10-21

    Reductive genome evolution is a universal phenomenon observed in endosymbiotic bacteria in insects. As the genome reduces its size and irreversibly losses coding genes, the functionalities of the cell system, including the energetics processes, are more restricted. Several energetic pathways can also be lost. How do these reduced metabolic networks sustain the energy needs of the system? Among the bacteria with reduced genomes Candidatus Portiera aleyrodidarum, obligate endosymbiont of whiteflies, represents an extreme case since lacks several key mechanisms for ATP generation. Thus, to analyze the cell energetics in this system, a genome-scale metabolic model of this endosymbiont was constructed, and its energy production capabilities dissected using stoichiometric analysis. Our results suggest that energy generation is coupled to the synthesis of essential amino acids and carotenoids, crucial metabolites in the symbiotic association. A deeper insight showed that ATP production via carotenoid synthesis is also connected with amino acid production. This unusual association of energy production with anabolism suggests that, although minimized, endosymbiont metabolic networks maintain a remarkable biosynthetic potential. PMID:27473768

  5. The bacterium endosymbiont of Crithidia deanei undergoes coordinated division with the host cell nucleus.

    Directory of Open Access Journals (Sweden)

    Maria Cristina Machado Motta

    Full Text Available In trypanosomatids, cell division involves morphological changes and requires coordinated replication and segregation of the nucleus, kinetoplast and flagellum. In endosymbiont-containing trypanosomatids, like Crithidia deanei, this process is more complex, as each daughter cell contains only a single symbiotic bacterium, indicating that the prokaryote must replicate synchronically with the host protozoan. In this study, we used light and electron microscopy combined with three-dimensional reconstruction approaches to observe the endosymbiont shape and division during C. deanei cell cycle. We found that the bacterium replicates before the basal body and kinetoplast segregations and that the nucleus is the last organelle to divide, before cytokinesis. In addition, the endosymbiont is usually found close to the host cell nucleus, presenting different shapes during the protozoan cell cycle. Considering that the endosymbiosis in trypanosomatids is a mutualistic relationship, which resembles organelle acquisition during evolution, these findings establish an excellent model for the understanding of mechanisms related with the establishment of organelles in eukaryotic cells.

  6. Evidence for Wolbachia symbiosis in microfilariae of Wuchereria bancrofti from West Bengal, India

    Indian Academy of Sciences (India)

    Prajna Gayen; Sudipta Maitra; Sutapa Datta; Santi P Sinha Babu

    2010-03-01

    Wolbachia are symbiotic endobacteria that infect the majority of filarial nematodes, including Wuchereria bancrofti, Brugia malayi and Onchocerca volvulus. Recent studies have suggested that Wolbachia are necessary for the reproduction and survival of filarial nematodes and have highlighted the use of antibiotic therapy such as tetracycline/doxycycline as a novel method of treatment for infections caused by these organisms. Before such therapy is conceived and implemented on a large scale, it is necessary to assess the prevalence of the endosymbiont in W. bancrofti from different geographical locations. We present data from molecular and electron microscopic studies to provide evidence for Wolbachia symbiosis in W. bancrofti microfilariae collected from two districts (Bankura and Birbhum) of West Bengal, India.

  7. Nitric Oxide Limits the Expansion of Antigen-Specific T Cells in Mice Infected with the Microfilariae of Brugia pahangi

    Science.gov (United States)

    O'Connor, Richard A.; Devaney, Eileen

    2002-01-01

    Infection of BALB/c mice with the microfilariae (Mf) of the filarial nematode Brugia pahangi results in an antigen-specific proliferative defect that is induced by high levels of NO. Using carboxyfluorescein diacetate succinimydl ester and cell surface labeling, it was possible to identify a population of antigen-specific T cells from Mf-infected BALB/c mice that expressed particularly high levels of CD4 (CD4hi). These cells proliferated in culture only when inducible NO synthase was inhibited and accounted for almost all of the antigen-specific proliferative response under those conditions. CD4hi cells also expressed high levels of CD44, consistent with their status as activated T cells. A similar population of CD4hi cells was observed in cultures from Mf-infected gamma interferon receptor knockout (IFN-γR−/−) mice. Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling staining revealed that the CD4+ T cells from Mf-infected wild-type mice were preferentially susceptible to apoptosis compared to CD4+ T cells from IFN-γR−/− mice. These studies suggest that the expansion of antigen-specific T cells in Mf-infected mice is limited by NO. PMID:12379675

  8. Assessment of bacterial endosymbiont diversity in Otiorhynchus spp. (Coleoptera: Curculionidae larvae using a multitag 454 pyrosequencing approach

    Directory of Open Access Journals (Sweden)

    Hirsch Jacqueline

    2012-01-01

    Full Text Available Abstract Background Weevils of the genus Otiorhynchus are regarded as devastating pests in a wide variety of horticultural crops worldwide. So far, little is known on the presence of endosymbionts in Otiorhynchus spp.. Investigation of endosymbiosis in this genus may help to understand the evolution of different reproductive strategies in these weevils (parthenogenesis or sexual reproduction, host-symbiont interactions, and may provide a future basis for novel pest management strategy development. Here, we used a multitag 454 pyrosequencing approach to assess the bacterial endosymbiont diversity in larvae of four economically important Otiorhynchus species. Results High-throughput tag-encoded FLX amplicon pyrosequencing of a bacterial 16S rDNA fragment was used to characterise bacterial communities associated with different Otiorhynchus spp. larvae. By sequencing a total of ~48,000 PCR amplicons, we identified 49 different operational taxonomic units (OTUs as bacterial endosymbionts in the four studied Otiorhynchus species. More than 90% of all sequence reads belonged either to the genus Rickettsia or showed homology to the phylogenetic group of “Candidatus Blochmannia” and to endosymbionts of the lice Pedicinus obtusus and P. badii. By using specific primers for the genera Rickettsia and “Candidatus Blochmannia”, we identified a new phylogenetic clade of Rickettsia as well as “Candidatus Nardonella” endosymbionts in Otiorhynchus spp. which are closely related to “Candidatus Blochmannia” bacteria. Conclusions Here, we used multitag 454 pyrosequencing for assessment of insect endosymbiotic communities in weevils. As 454 pyrosequencing generates only quite short sequences, results of such studies can be regarded as a first step towards identifying respective endosymbiotic species in insects. In the second step of our study, we analysed sequences of specific gene regions for a more detailed phylogeny of selected endosymbiont genera

  9. Rickettsial endosymbiont in the "early-diverging" streptophyte green alga Mesostigma viride.

    Science.gov (United States)

    Yang, Ashley; Narechania, Apurva; Kim, Eunsoo

    2016-04-01

    A bacterial endosymbiont was unexpectedly found in the "axenic" culture strain of the streptophyte green alga Mesostigma viride (NIES-995). Phylogenetic analyses based on 16S rRNA gene sequences showed that the symbiont belongs to the order Rickettsiales, specifically to the recently designated clade "Candidatus Megaira," which is closely related to the well-known Rickettsia clade. Rickettsiales bacteria of the "Ca. Megaira" clade are found in a taxonomically diverse array of eukaryotic hosts, including chlorophycean green algae, several ciliate species, and invertebrates such as Hydra. Transmission electron microscopy, fluorescence in situ hybridi-zation, and SYBR Green I staining experiments revealed that the endosymbiont of M. viride NIES-995 is rod shaped, typically occurs in clusters, and is surrounded by a halo-like structure, presumably formed by secretory substances from the bacterium. Two additional M. viride strains (NIES-296 and NIES-475), but not SAG50-1, were found to house the rickettsial endosymbiont. Analyses of strain NIES-995 transcriptome data indicated the presence of at least 91 transcriptionally active genes of symbiont origins. These include genes for surface proteins (e.g., rOmpB) that are known to play key roles in bacterial attachment onto host eukaryotes in related Rickettsia species. The assembled M. viride transcriptome includes transcripts that code for a suite of predicted algal-derived proteins, such as Ku70, WASH, SCAR, and CDC42, which may be important in the formation of the algal-rickettsial association.

  10. Diversity in parasitic nematode genomes: the microRNAs of Brugia pahangi and Haemonchus contortus are largely novel

    Directory of Open Access Journals (Sweden)

    Winter Alan D

    2012-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play key roles in regulating post-transcriptional gene expression and are essential for development in the free-living nematode Caenorhabditis elegans and in higher organisms. Whether microRNAs are involved in regulating developmental programs of parasitic nematodes is currently unknown. Here we describe the the miRNA repertoire of two important parasitic nematodes as an essential first step in addressing this question. Results The small RNAs from larval and adult stages of two parasitic species, Brugia pahangi and Haemonchus contortus, were identified using deep-sequencing and bioinformatic approaches. Comparative analysis to known miRNA sequences reveals that the majority of these miRNAs are novel. Some novel miRNAs are abundantly expressed and display developmental regulation, suggesting important functional roles. Despite the lack of conservation in the miRNA repertoire, genomic positioning of certain miRNAs within or close to specific coding genes is remarkably conserved across diverse species, indicating selection for these associations. Endogenous small-interfering RNAs and Piwi-interacting (piRNAs, which regulate gene and transposon expression, were also identified. piRNAs are expressed in adult stage H. contortus, supporting a conserved role in germline maintenance in some parasitic nematodes. Conclusions This in-depth comparative analysis of nematode miRNAs reveals the high level of divergence across species and identifies novel sequences potentially involved in development. Expression of novel miRNAs may reflect adaptations to different environments and lifestyles. Our findings provide a detailed foundation for further study of the evolution and function of miRNAs within nematodes and for identifying potential targets for intervention.

  11. Incidence of Wolbachia and Cardinium endosymbionts in the Osmia community in Korea.

    Science.gov (United States)

    Jeong, Gilsang; Lee, Kyeongyong; Choi, Jiyoung; Hwang, Seokjo; Park, Byeongdo; Kim, Wontae; Choi, Youngcheol; Park, Ingyun; Kim, Jonggill

    2009-02-01

    Sex ratio distorting endosymbionts induce reproductive anomalies in their arthropod hosts. They have recently been paid much attention as firstly texts of evolution of host-symbiont relationships and secondly potential biological control agents to control arthropod pests. Among such organisms, Wolbachia and Cardinium bacteria are well characterized. This study aims at probing such bacteria in the Osmia community to evaluate their potential utilization to control arthropod pests. Among 17 PCR tested species, Osmia cornifrons and a parasitic fly are infected with Wolbachia and a mite species is infected with Cardinium. Phylogenetic tree analyses suggest that horizontal transfer of the bacteria occurred between phylogenetically distant hosts. PMID:19229488

  12. Absence of Wolbachia endobacteria in the non-filariid nematodes Angiostrongylus cantonensis and A. costaricensis

    Directory of Open Access Journals (Sweden)

    Graeff-Teixeira Carlos

    2008-09-01

    Full Text Available Abstract The majority of filarial nematodes harbour Wolbachia endobacteria, including the major pathogenic species in humans, Onchocerca volvulus, Brugia malayi and Wuchereria bancrofti. These obligate endosymbionts have never been demonstrated unequivocally in any non-filariid nematode. However, a recent report described the detection by PCR of Wolbachia in the metastrongylid nematode, Angiostrongylus cantonensis (rat lungworm, a leading cause of eosinophilic meningitis in humans. To address the intriguing possibility of Wolbachia infection in nematode species distinct from the Family Onchocercidae, we used both PCR and immunohistochemistry to screen samples of A. cantonensis and A. costaricensis for the presence of this endosymbiont. We were unable to detect Wolbachia in either species using these methodologies. In addition, bioinformatic and phylogenetic analyses of the Wolbachia gene sequences reported previously from A. cantonensis indicate that they most likely result from contamination with DNA from arthropods and filarial nematodes. This study demonstrates the need for caution in relying solely on PCR for identification of new endosymbiont strains from invertebrate DNA samples.

  13. Genetic manipulation of endosymbionts to control vector and vector borne diseases

    Directory of Open Access Journals (Sweden)

    Jay Prakash Gupta

    Full Text Available Vector borne diseases (VBD are on the rise because of failure of the existing methods of control of vector and vector borne diseases and the climate change. A steep rise of VBDs are due to several factors like selection of insecticide resistant vector population, drug resistant parasite population and lack of effective vaccines against the VBDs. Environmental pollution, public health hazard and insecticide resistant vector population indicate that the insecticides are no longer a sustainable control method of vector and vector-borne diseases. Amongst the various alternative control strategies, symbiont based approach utilizing endosymbionts of arthropod vectors could be explored to control the vector and vector borne diseases. The endosymbiont population of arthropod vectors could be exploited in different ways viz., as a chemotherapeutic target, vaccine target for the control of vectors. Expression of molecules with antiparasitic activity by genetically transformed symbiotic bacteria of disease-transmitting arthropods may serve as a powerful approach to control certain arthropod-borne diseases. Genetic transformation of symbiotic bacteria of the arthropod vector to alter the vector’s ability to transmit pathogen is an alternative means of blocking the transmission of VBDs. In Indian scenario, where dengue, chikungunya, malaria and filariosis are prevalent, paratransgenic based approach can be used effectively. [Vet World 2012; 5(9.000: 571-576

  14. Novel Detection of Coxiella spp., Theileria luwenshuni, and T. ovis Endosymbionts in Deer Keds (Lipoptena fortisetosa)

    Science.gov (United States)

    Lee, Seung-Hun; Kim, Kyoo-Tae; Kwon, Oh-Deog; Ock, Younsung; Kim, Taeil; Choi, Donghag

    2016-01-01

    We describe for the first time the detection of Coxiella-like bacteria (CLB), Theileria luwenshuni, and T. ovis endosymbionts in blood-sucking deer keds. Eight deer keds attached to a Korean water deer were identified as Lipoptena fortisetosa (Diptera: Hippoboscidae) by morphological and genetic analyses. Among the endosymbionts assessed, CLB, Theileria luwenshuni, and T. ovis were identified in L. fortisetosa by PCR and nucleotide sequencing. Based on phylogeny, CLB 16S rRNA sequences were classified into clade B, sharing 99.4% identity with CLB from Haemaphysalis longicornis in South Korea. Although the virulence of CLB to vertebrates is still controversial, several studies have reported clinical symptoms in birds due to CLB infections. The 18S rRNA sequences of T. luwenshuni and T. ovis in this study were 98.8–100% identical to those in GenBank, and all of the obtained sequences of T. ovis and T. luwenshuni in this study were 100% identical to each other, respectively. Although further studies are required to positively confirm L. fortisetosa as a biological vector of these pathogens, strong genetic relationships among sequences from this and previous studies suggest potential transmission among mammalian hosts by ticks and keds. PMID:27244561

  15. Novel Detection of Coxiella spp., Theileria luwenshuni, and T. ovis Endosymbionts in Deer Keds (Lipoptena fortisetosa.

    Directory of Open Access Journals (Sweden)

    Seung-Hun Lee

    Full Text Available We describe for the first time the detection of Coxiella-like bacteria (CLB, Theileria luwenshuni, and T. ovis endosymbionts in blood-sucking deer keds. Eight deer keds attached to a Korean water deer were identified as Lipoptena fortisetosa (Diptera: Hippoboscidae by morphological and genetic analyses. Among the endosymbionts assessed, CLB, Theileria luwenshuni, and T. ovis were identified in L. fortisetosa by PCR and nucleotide sequencing. Based on phylogeny, CLB 16S rRNA sequences were classified into clade B, sharing 99.4% identity with CLB from Haemaphysalis longicornis in South Korea. Although the virulence of CLB to vertebrates is still controversial, several studies have reported clinical symptoms in birds due to CLB infections. The 18S rRNA sequences of T. luwenshuni and T. ovis in this study were 98.8-100% identical to those in GenBank, and all of the obtained sequences of T. ovis and T. luwenshuni in this study were 100% identical to each other, respectively. Although further studies are required to positively confirm L. fortisetosa as a biological vector of these pathogens, strong genetic relationships among sequences from this and previous studies suggest potential transmission among mammalian hosts by ticks and keds.

  16. Methane Production from Protozoan Endosymbionts Following Stimulation of Microbial Metabolism within Subsurface Sediments

    Directory of Open Access Journals (Sweden)

    Dawn Elena Holmes

    2014-08-01

    Full Text Available Previous studies have suggested that protozoa prey on Fe(III- and sulfate-reducing bacteria that are enriched when acetate is added to uranium contaminated subsurface sediments to stimulate U(VI reduction. In order to determine whether protozoa continue to impact subsurface biogeochemistry after these acetate amendments have stopped, 18S rRNA and ß-tubulin sequences from this phase of an in situ uranium bioremediation field experiment were analyzed. Sequences most similar to Metopus species predominated, with the majority of sequences most closely related to M. palaeformis, a cilitated protozoan known to harbor methanogenic symbionts. Quantification of mcrA mRNA transcripts in the groundwater suggested that methanogens closely related to Metopus endosymbionts were metabolically active at this time. There was a strong correlation between the number of mcrA transcripts from the putative endosymbiotic methanogen and Metopus ß-tubulin mRNA transcripts during the course of the field experiment, suggesting that the activity of the methanogens was dependent upon the activity of the Metopus species. Addition of the eukaryotic inhibitors cyclohexamide and colchicine to laboratory incubations of acetate-amended subsurface sediments significantly inhibited methane production and there was a direct correlation between methane concentration and Metopus ß-tubulin and putative symbiont mcrA gene copies. These results suggest that, following the stimulation of subsurface microbial growth with acetate, protozoa harboring methanogenic endosymbionts become important members of the microbial community, feeding on moribund biomass and producing methane.

  17. Systematics of a kleptoplastidal dinoflagellate, Gymnodinium eucyaneum Hu (Dinophyceae, and its cryptomonad endosymbiont.

    Directory of Open Access Journals (Sweden)

    Shuang Xia

    Full Text Available New specimens of the kleptoplastidal dinoflagellate Gymnodinium eucyaneum Hu were collected in China. We investigated the systematics of the dinoflagellate and the origin of its endosymbiont based on light morphology and phylogenetic analyses using multiple DNA sequences. Cells were dorsoventrally flattened with a sharply acute hypocone and a hemispherical epicone. The confusion between G. eucyaneum and G. acidotum Nygaard still needs to be resolved. We found that the hypocone was conspicuously larger than the epicone in most G. eucyaneum cells, which differed from G. acidotum, but there were a few cells whose hypocone and epicone were of nearly the same size. In addition, there was only one site difference in the partial nuclear LSU rDNA sequences of a sample from Japan given the name G. acidotum and G. eucyaneum in the present study, which suggest that G. eucyaneum may be a synonym of G. acidotum. Spectroscopic analyses and phylogenetic analyses based on nucleomorph SSU rDNA sequences and chloroplast 23 s rDNA sequences suggested that the endosymbiont of G. eucyaneum was derived from Chroomonas (Cryptophyta, and that it was most closely related to C. coerulea Skuja. Moreover, the newly reported kleptoplastidal dinoflagellates G. myriopyrenoides and G. eucyaneum in our study were very similar, and the taxonomy of kleptoplastidal dinoflagellates was discussed.

  18. Characteristics of the draft genome of "Candidatus Arsenophonus nilaparvatae", a facultative endosymbiont of Nilaparvata lugens.

    Science.gov (United States)

    Fan, Hai-Wei; Lu, Jia-Bao; Ye, Yu-Xuan; Yu, Xiao-Ping; Zhang, Chuan-Xi

    2016-06-01

    There exists a kind of symbiotic bacterium named "Candidatus Arsenophonus nilaparvatae" in the brown planthopper (BPH), Nilaparvata lugens. After being filtered and assembled from the BPH genome sequencing project, the genome sequence of this bacterial symbiont was obtained. After initial analysis based on the genome, we have found its potential role to synthesize B vitamins for the host. In order to better understand the lifestyle and the genomic changes of this symbiotic bacterium after the symbiotic relationship was established, we further report the characteristics of this draft genome. Compared with several other related bacteria, "Candidatus Arsenophonus nilaparvatae" has proven to be a facultative endosymbiont at the genomic level. Concurrently, the presence of fimbriae and flagella formation related genes indicates this maternally transmitted endosymbiont is most likely to retain the capacity to invade new hosts. Through further analysis of annotated gene sets, we also find evidence of genome reduction in its secretion system and metabolic pathways. These findings reflect its evolutionary trend to be an obligate one and enable a deeper study of microbe-insect interactions. PMID:26792263

  19. Evaluation of Enrichment Protocols for Bacterial Endosymbionts of Ciliates by Real-Time PCR.

    Science.gov (United States)

    Castelli, Michele; Lanzoni, Olivia; Rossi, Leonardo; Potekhin, Alexey; Schrallhammer, Martina; Petroni, Giulio

    2016-06-01

    Large-scale studies on obligate bacterial endosymbionts may frequently require preliminary purification and enrichment protocols, which are often elaborate to set up and to evaluate, especially if the host organism is a protist. The purpose of this study was to develop a real-time PCR-based strategy and employ it for assessing two of such enrichment protocols for Holospora caryophila, hosted by the ciliate Paramecium. Four SSU rRNA gene-targeted real-time PCR assays were designed, which allowed to compare the amount of H. caryophila to other organisms, namely the host, its food bacterium (Raoultella planticola), and free-living bacteria present in the culture medium. By the use of the real-time PCR assays in combination, it was possible to conclude that the "cell fractionation" protocol was quite successful in the enrichment of the symbiont, while the "Percoll gradient" protocol will need further refinements to be fully repeatable. The proposed approach has the potential to facilitate and encourage future studies on the yet underexplored field of bacterial endosymbionts of ciliates and other protists. It can also find valuable applications for experimental questions other than those tested, such as fast and precise assessment of symbiont abundance in natural populations and comparison among multiple coexisting symbionts. PMID:26894821

  20. The link between independent acquisition of intracellular gamma-endosymbionts and concerted evolution in Tremblaya princeps

    Directory of Open Access Journals (Sweden)

    Sergio eLópez-Madrigal

    2015-06-01

    Full Text Available Many insect species establish mutualistic symbiosis with intracellular bacteria that complement their unbalanced diets. The betaproteobacterium Candidatus Tremblaya maintains an ancient symbiosis with mealybugs (Hemiptera: Pseudococcidae, which are classified in subfamilies Phenacoccinae and Pseudococcinae. Most Phenacoccinae mealybugs have Candidatus Tremblaya phenacola as their unique endosymbiont, while most Pseudococcinae mealybugs show a nested symbiosis (a bacterial symbiont placed inside another one where every Candidatus Tremblaya princeps cell harbors several cells of a gammaproteobacterium. Genomic characterization of the endosymbiotic consortium from Planococcus citri, composed by Ca. Tremblaya princeps and Candidatus Moranella endobia, unveiled several atypical features of the former’s genome, including the concerted evolution of paralogous loci. Its comparison with the genome of Ca. Tremblaya phenacola PAVE, single endosymbiont of Phenacoccus avenae, suggests that the atypical reductive evolution of Ca. Tremblaya princeps could be linked to the acquisition of Ca. Moranella endobia, which possess an almost complete set of genes encoding proteins involved in homologous recombination. In order to test this hypothesis, we performed comparative genomics between Ca. Tremblaya phenacola and Ca. Tremblaya princeps and searched for the co-occurrence of concerted evolution and homologous recombination genes in endosymbiotic consortia from four unexplored mealybug species, Dysmicoccus boninsis, Planococcus ficus, Pseudococcus longispinus and Pseudococcus viburni. Our results support a link between concerted evolution and nested endosymbiosis.

  1. The link between independent acquisition of intracellular gamma-endosymbionts and concerted evolution in Tremblaya princeps

    Science.gov (United States)

    López-Madrigal, Sergio; Latorre, Amparo; Moya, Andrés; Gil, Rosario

    2015-01-01

    Many insect species establish mutualistic symbiosis with intracellular bacteria that complement their unbalanced diets. The betaproteobacterium “Candidatus Tremblaya” maintains an ancient symbiosis with mealybugs (Hemiptera: Pseudococcidae), which are classified in subfamilies Phenacoccinae and Pseudococcinae. Most Phenacoccinae mealybugs have “Candidatus Tremblaya phenacola” as their unique endosymbiont, while most Pseudococcinae mealybugs show a nested symbiosis (a bacterial symbiont placed inside another one) where every “Candidatus Tremblaya princeps” cell harbors several cells of a gammaproteobacterium. Genomic characterization of the endosymbiotic consortium from Planococcus citri, composed by “Ca. Tremblaya princeps” and “Candidatus Moranella endobia,” unveiled several atypical features of the former's genome, including the concerted evolution of paralogous loci. Its comparison with the genome of “Ca. Tremblaya phenacola” PAVE, single endosymbiont of Phenacoccus avenae, suggests that the atypical reductive evolution of “Ca. Tremblaya princeps” could be linked to the acquisition of “Ca. Moranella endobia,” which possess an almost complete set of genes encoding proteins involved in homologous recombination. In order to test this hypothesis, we performed comparative genomics between “Ca. Tremblaya phenacola” and “Ca. Tremblaya princeps” and searched for the co-occurrence of concerted evolution and homologous recombination genes in endosymbiotic consortia from four unexplored mealybug species, Dysmicoccus boninsis, Planococcus ficus, Pseudococcus longispinus, and Pseudococcus viburni. Our results support a link between concerted evolution and nested endosymbiosis. PMID:26161080

  2. Evolutionary relationships of flavobacterial and enterobacterial endosymbionts with their scale insect hosts (Hemiptera: Coccoidea).

    Science.gov (United States)

    Rosenblueth, Mónica; Sayavedra, L; Sámano-Sánchez, H; Roth, A; Martínez-Romero, E

    2012-11-01

    Flavobacteria and Enterobacteriaceae have been previously reported as scale insect endosymbionts. The purpose of this work was twofold: first, to screen different scale insect families for the presence of these endosymbionts by PCR analyses and second, to elucidate the history of cophylogeny between these bacteria and the insects by analysing a portion of 16S rRNA and 18S rRNA gene sequences by two reconciliation tools, CoRe-PA and Jane. From a survey of 27 scale insects within seven families, we identified Flavobacteria and Enterobacteriaceae as coexisting in ten species that belong to the Ortheziidae, Monophlebidae, Diaspididae and Coccidae families, and we frequently found two closely related enterobacteria harboured in the same individual. Analyses performed with CoRe-PA and Jane suggest that Flavobacteria from the scale insects analysed have a unique origin, except for Candidatus Brownia rhizoecola (Flavobacteria of Pseudococcidae, Phenacoccinae), which seems to come from a nonscale insect. Nevertheless, cospeciation between Flavobacteria and scale insects is suggested only within the families Monophlebidae, Ortheziidae and Diaspididae, and host switches seem to have occurred from the ancestors of Monophlebidae and Ortheziidae to insects from families Coccidae, Lecanodiaspididae, Eriococcidae and Pseudococcidae. Our analyses suggest that Enterobacteriaceae underwent more evolutionary events (losses, duplications and host switches), and their phylogenies showed a lower proportion of congruent nodes between host and bacteria, indicating a more relaxed relationship with scale insects compared with Flavobacteria.

  3. Infection of Bacterial Endosymbionts in Insects: A Comparative Study of Two Techniques viz PCR and FISH for Detection and Localization of Symbionts in Whitefly, Bemisia tabaci.

    Directory of Open Access Journals (Sweden)

    Harpreet Singh Raina

    Full Text Available Bacterial endosymbionts have been associated with arthropods and large number of the insect species show interaction with such bacteria. Different approaches have been used to understand such symbiont- host interactions. The whitefly, Bemisia tabaci, a highly invasive agricultural pest, harbors as many as seven different bacterial endosymbionts. These bacterial endosymbionts are known to provide various nutritional, physiological, environmental and evolutionary benefits to its insect host. In this study, we have tried to compare two techniques, Polymerase chain reaction (PCR and Flourescence in situ Hybridisation (FISH commonly used for identification and localization of bacterial endosymbionts in B. tabaci as it harbors one of the highest numbers of endosymbionts which have helped it in becoming a successful global invasive agricultural pest. The amplified PCR products were observed as bands on agarose gel by electrophoresis while the FISH samples were mounted on slides and observed under confocal microscope. Analysis of results obtained by these two techniques revealed the advantages of FISH over PCR. On a short note, performing FISH, using LNA probes proved to be more sensitive and informative for identification as well as localization of bacterial endosymbionts in B. tabaci than relying on PCR. This study would help in designing more efficient experiments based on much reliable detection procedure and studying the role of endosymbionts in insects.

  4. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event : field evidence of acclimatization

    NARCIS (Netherlands)

    Jones, A. M.; Berkelmans, R.; van Oppen, M. J. H.; Mieog, J. C.; Sinclair, W.

    2008-01-01

    The symbiosis between reef-building corals and their algal endosymbionts (zooxanthellae of the genus Symbiodinium) is highly sensitive to temperature stress, which makes coral reefs vulnerable to climate change. Thermal tolerance in corals is known to be substantially linked to the type of zooxanthe

  5. Manipulation of plant defense responses by the tomato psyllid (Bactericerca cockerelli and its associated endosymbiont Candidatus Liberibacter psyllaurous.

    Directory of Open Access Journals (Sweden)

    Clare L Casteel

    Full Text Available Some plant pathogens form obligate relationships with their insect vector and are vertically transmitted via eggs analogous to insect endosymbionts. Whether insect endosymbionts manipulate plant defenses to benefit their insect host remains unclear. The tomato psyllid, Bactericerca cockerelli (Sulc, vectors the endosymbiont "Candidatus Liberibacter psyllaurous" (Lps during feeding on tomato (Solanum lycopersicum L.. Lps titer in psyllids varied relative to the psyllid developmental stage with younger psyllids harboring smaller Lps populations compared to older psyllids. In the present study, feeding by different life stages of B. cockerelli infected with Lps, resulted in distinct tomato transcript profiles. Feeding by young psyllid nymphs, with lower Lps levels, induced tomato genes regulated by jasmonic acid (JA and salicylic acid (SA (Allene oxide synthase, Proteinase inhibitor 2, Phenylalanine ammonia-lyase 5, Pathogenesis-related protein 1 compared to feeding by older nymphs and adults, where higher Lps titers were found. In addition, inoculation of Lps without insect hosts suppressed accumulation of these defense transcripts. Collectively, these data suggest that the endosymbiont-like pathogen Lps manipulates plant signaling and defensive responses to benefit themselves and the success of their obligate insect vector on their host plant.

  6. First Indonesian record of Fungiacava eilatensis Goreau et al., 1968 (Bivalvia: Mytilidae), endosymbiont of Fungia spp. (Scleractinia: Fungiidae)

    NARCIS (Netherlands)

    Hoeksema, B.W.; Achituv, Y.

    1993-01-01

    The mytilid bivalve Fungiacava eilatensis Goreau, Goreau, Neumann & Yonge, 1968, previously mistakenly referred to as F. eilatensis Soot-Ryen, 1969, is reported for the first time from Indonesia. It lives as an obligate endosymbiont of mushroom corals, particulary Fungia spp., reef-dwelling corals r

  7. Identification of endosymbionts in ticks by broad-range polymerase chain reaction and electrospray ionization mass spectrometry

    Science.gov (United States)

    Many organisms, such as insects, filarial nematodes, and ticks, contain heritable bacterial endosymbionts that are often closely related to transmissible tickborne pathogens. These intracellular bacteria are sometimes unique to the host species, presumably due to isolation and genetic drift. We used...

  8. Tertiary endosymbiosis in two dinotoms has generated little change in the mitochondrial genomes of their dinoflagellate hosts and diatom endosymbionts.

    Directory of Open Access Journals (Sweden)

    Behzad Imanian

    Full Text Available BACKGROUND: Mitochondria or mitochondrion-derived organelles are found in all eukaryotes with the exception of secondary or tertiary plastid endosymbionts. In these highly reduced systems, the mitochondrion has been lost in all cases except the diatom endosymbionts found in a small group of dinoflagellates, called 'dinotoms', the only cells with two evolutionarily distinct mitochondria. To investigate the persistence of this redundancy and its consequences on the content and structure of the endosymbiont and host mitochondrial genomes, we report the sequences of these genomes from two dinotoms. METHODOLOGY/PRINCIPAL FINDINGS: The endosymbiont mitochondrial genomes of Durinskia baltica and Kryptoperidinium foliaceum exhibit nearly identical gene content with other diatoms, and highly conserved gene order (nearly identical to that of the raphid pennate diatom Fragilariopsis cylindrus. These two genomes are differentiated from other diatoms' by the fission of nad11 and by an insertion within nad2, in-frame and unspliced from the mRNA. Durinskia baltica is further distinguished from K. foliaceum by two gene fusions and its lack of introns. The host mitochondrial genome in D. baltica encodes cox1 and cob plus several fragments of LSU rRNA gene in a hugely expanded genome that includes numerous pseudogenes, and a trans-spliced cox3 gene, like in other dinoflagellates. Over 100 distinct contigs were identified through 454 sequencing, but intact full-length genes for cox1, cob and the 5' exon of cox3 were present as a single contig each, suggesting most of the genome is pseudogenes. The host mitochondrial genome of K. foliaceum was difficult to identify, but fragments of all the three protein-coding genes, corresponding transcripts, and transcripts of several LSU rRNA fragments were all recovered. CONCLUSIONS/SIGNIFICANCE: Overall, the endosymbiont and host mitochondrial genomes in the two dinotoms have changed surprisingly little from those of free

  9. Identification and phylogenetic analysis of heme synthesis genes in trypanosomatids and their bacterial endosymbionts.

    Directory of Open Access Journals (Sweden)

    João M P Alves

    Full Text Available It has been known for decades that some insect-infecting trypanosomatids can survive in culture without heme supplementation while others cannot, and that this capability is associated with the presence of a betaproteobacterial endosymbiont in the flagellate's cytoplasm. However, the specific mechanisms involved in this process remained obscure. In this work, we sequence and phylogenetically analyze the heme pathway genes from the symbionts and from their hosts, as well as from a number of heme synthesis-deficient Kinetoplastida. Our results show that the enzymes responsible for synthesis of heme are encoded on the symbiont genomes and produced in close cooperation with the flagellate host. Our evidence suggests that this synergistic relationship is the end result of a history of extensive gene loss and multiple lateral gene transfer events in different branches of the phylogeny of the Trypanosomatidae.

  10. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress.

    Directory of Open Access Journals (Sweden)

    Jeremy C Brownlie

    2009-04-01

    Full Text Available Wolbachia are ubiquitous inherited endosymbionts of invertebrates that invade host populations by modifying host reproductive systems. However, some strains lack the ability to impose reproductive modification and yet are still capable of successfully invading host populations. To explain this paradox, theory predicts that such strains should provide a fitness benefit, but to date none has been detected. Recently completed genome sequences of different Wolbachia strains show that these bacteria may have the genetic machinery to influence iron utilization of hosts. Here we show that Wolbachia infection can confer a positive fecundity benefit for Drosophila melanogaster reared on iron-restricted or -overloaded diets. Furthermore, iron levels measured from field-collected flies indicated that nutritional conditions in the field were overall comparable to those of flies reared in the laboratory on restricted diets. These data suggest that Wolbachia may play a previously unrecognized role as nutritional mutualists in insects.

  11. The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis.

    Directory of Open Access Journals (Sweden)

    Daniel J Hunter

    Full Text Available Ticks and other arthropods often are hosts to nutrient providing bacterial endosymbionts, which contribute to their host's fitness by supplying nutrients such as vitamins and amino acids. It has been detected, in our lab, that Ixodes pacificus is host to Rickettsia species phylotype G021. This endosymbiont is predominantly present, and 100% maternally transmitted in I. pacificus. To study roles of phylotype G021 in I. pacificus, bioinformatic and molecular approaches were carried out. MUMmer genome alignments of whole genome sequence of I. scapularis, a close relative to I. pacificus, against completely sequenced genomes of R. bellii OSU85-389, R. conorii, and R. felis, identified 8,190 unique sequences that are homologous to Rickettsia sequences in the NCBI Trace Archive. MetaCyc metabolic reconstructions revealed that all folate gene orthologues (folA, folC, folE, folKP, ptpS required for de novo folate biosynthesis are present in the genome of Rickettsia buchneri in I. scapularis. To examine the metabolic capability of phylotype G021 in I. pacificus, genes of the folate biosynthesis pathway of the bacterium were PCR amplified using degenerate primers. BLAST searches identified that nucleotide sequences of the folA, folC, folE, folKP, and ptpS genes possess 98.6%, 98.8%, 98.9%, 98.5% and 99.0% identity respectively to the corresponding genes of Rickettsia buchneri. Phylogenetic tree constructions show that the folate genes of phylotype G021 and homologous genes from various Rickettsia species are monophyletic. This study has shown that all folate genes exist in the genome of Rickettsia species phylotype G021 and that this bacterium has the genetic capability for de novo folate synthesis.

  12. Sequence context of indel mutations and their effect on protein evolution in a bacterial endosymbiont.

    Science.gov (United States)

    Williams, Laura E; Wernegreen, Jennifer J

    2013-01-01

    Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochmannia chromaiodes, an obligate bacterial endosymbiont of carpenter ants, and compared it with the close relative, B. pennsylvanicus. The genetic distance between these species is small enough for accurate whole genome alignment but large enough to provide a meaningful spectrum of indel mutations. We found that indels are subjected to purifying selection in coding regions and even intergenic regions, which show a reduced rate of indel base pairs per kilobase compared with nonfunctional pseudogenes. Indels occur almost exclusively in repeat regions composed of homopolymers and multimeric simple sequence repeats, demonstrating the importance of sequence context for indel mutations. Despite purifying selection, some indels occur in protein-coding genes. Most are multiples of three, indicating selective pressure to maintain the reading frame. The deleterious effect of frameshift-inducing indels is minimized by either compensation from a nearby indel to restore reading frame or the indel's location near the 3'-end of the gene. We observed amino acid divergence exceeding nucleotide divergence in regions affected by frameshift-inducing indels, suggesting that these indels may either drive adaptive protein evolution or initiate gene degradation. Our results shed light on how indel mutations impact processes of molecular evolution underlying endosymbiont genome evolution. PMID:23475937

  13. Deep sequencing of the transcriptomes of soybean aphid and associated endosymbionts.

    Directory of Open Access Journals (Sweden)

    Sijun Liu

    Full Text Available BACKGROUND: The soybean aphid has significantly impacted soybean production in the U.S. Transcriptomic analyses were conducted for further insight into leads for potential novel management strategies. METHODOLOGY/PRINCIPAL FINDINGS: Transcriptomic data were generated from whole aphids and from 2,000 aphid guts using an Illumina GAII sequencer. The sequence data were assembled de novo using the Velvet assembler. In addition to providing a general overview, we demonstrate (i the use of the Multiple-k/Multiple-C method for de novo assembly of short read sequences, followed by BLAST annotation of contigs for increased transcript identification: From 400,000 contigs analyzed, 16,257 non-redundant BLAST hits were identified; (ii analysis of species distributions of top non-redundant hits: 80% of BLAST hits (minimum e-value of 1.0-E3 were to the pea aphid or other aphid species, representing about half of the pea aphid genes; (iii comparison of relative depth of sequence coverage to relative transcript abundance for genes with high (membrane alanyl aminopeptidase N or low transcript abundance; (iv analysis of the Buchnera transcriptome: Transcripts from 57.6% of the genes from Buchnera aphidicola were identified; (v identification of Arsenophonus and Wolbachia as potential secondary endosymbionts; (vi alignment of full length sequences from RNA-seq data for the putative salivary gland protein C002, the silencing of which has potential for aphid management, and the putative Bacillus thuringiensis Cry toxin receptors, aminopeptidase N and alkaline phosphatase. CONCLUSIONS/SIGNIFICANCE: THIS STUDY PROVIDES THE MOST COMPREHENSIVE DATA SET TO DATE FOR SOYBEAN APHID GENE EXPRESSION: This work also illustrates the utility of short-read transcriptome sequencing and the Multiple-k/Multiple-C method followed by BLAST annotation for rapid identification of target genes for organisms for which reference genome sequences are not available, and extends the utility

  14. Sequence context of indel mutations and their effect on protein evolution in a bacterial endosymbiont.

    Science.gov (United States)

    Williams, Laura E; Wernegreen, Jennifer J

    2013-01-01

    Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochmannia chromaiodes, an obligate bacterial endosymbiont of carpenter ants, and compared it with the close relative, B. pennsylvanicus. The genetic distance between these species is small enough for accurate whole genome alignment but large enough to provide a meaningful spectrum of indel mutations. We found that indels are subjected to purifying selection in coding regions and even intergenic regions, which show a reduced rate of indel base pairs per kilobase compared with nonfunctional pseudogenes. Indels occur almost exclusively in repeat regions composed of homopolymers and multimeric simple sequence repeats, demonstrating the importance of sequence context for indel mutations. Despite purifying selection, some indels occur in protein-coding genes. Most are multiples of three, indicating selective pressure to maintain the reading frame. The deleterious effect of frameshift-inducing indels is minimized by either compensation from a nearby indel to restore reading frame or the indel's location near the 3'-end of the gene. We observed amino acid divergence exceeding nucleotide divergence in regions affected by frameshift-inducing indels, suggesting that these indels may either drive adaptive protein evolution or initiate gene degradation. Our results shed light on how indel mutations impact processes of molecular evolution underlying endosymbiont genome evolution.

  15. Sequencing and annotation of the Wolbachia endosymbiont of Diaphorina citri by the CG-HLB Genome Resources group reveals candidate sources of interaction with the insect host

    OpenAIRE

    Saha, Surya; Hunter, Wayne; Lindeberg, Magdalen

    2014-01-01

    The Citrus Greening – Huanglongbing (CG-HLB) Genome Resources group serves as a bioinformatics resource for diverse projects related to the biology of CG-HLB.  A major recent project concerns the generation and annotation of a draft genome sequence for the Wolbachia endosymbiont (wDi) of the Asian citrus psyllid, of particular interest given the potential for control of psyllid behavior through manipulation of its bacterial endosymbionts.   The Wolbachia draft genome was assembled and contigs...

  16. Distribution of the Primary Endosymbiont (Candidatus Uzinura Diaspidicola Within Host Insects from the Scale Insect Family Diaspididae

    Directory of Open Access Journals (Sweden)

    Katharina Dittmar

    2012-02-01

    Full Text Available It has long been known that armored scale insects harbor endosymbiotic bacteria inside specialized cells called bacteriocytes. Originally, these endosymbionts were thought to be fungal symbionts but they are now known to be bacterial and have been named Uzinura diaspidicola. Bacteriocyte and endosymbiont distribution patterns within host insects were visualized using in situ hybridization via 16S rRNA specific probes. Images of scale insect embryos, eggs and adult scale insects show patterns of localized bacteriocytes in embryos and randomly distributed bacteriocytes in adults. The symbiont pocket was not found in the armored scale insect eggs that were tested. The pattern of dispersed bacteriocytes in adult scale insects suggest that Uzinura and Blattabacteria may share some homologous traits that coincide with similar life style requirements, such as dispersal in fat bodies and uric acid recycling.

  17. Distribution of the Primary Endosymbiont (Candidatus Uzinura Diaspidicola) Within Host Insects from the Scale Insect Family Diaspididae.

    Science.gov (United States)

    Gruwell, Matthew E; Flarhety, Meghan; Dittmar, Katharina

    2012-01-01

    It has long been known that armored scale insects harbor endosymbiotic bacteria inside specialized cells called bacteriocytes. Originally, these endosymbionts were thought to be fungal symbionts but they are now known to be bacterial and have been named Uzinura diaspidicola. Bacteriocyte and endosymbiont distribution patterns within host insects were visualized using in situ hybridization via 16S rRNA specific probes. Images of scale insect embryos, eggs and adult scale insects show patterns of localized bacteriocytes in embryos and randomly distributed bacteriocytes in adults. The symbiont pocket was not found in the armored scale insect eggs that were tested. The pattern of dispersed bacteriocytes in adult scale insects suggest that Uzinura and Blattabacteria may share some homologous traits that coincide with similar life style requirements, such as dispersal in fat bodies and uric acid recycling.

  18. Stable-Carbon-Isotope Composition of Fatty Acids in Hydrothermal Vent Mussels Containing Methanotrophic and Thiotrophic Bacterial Endosymbionts

    OpenAIRE

    Pond, David W; Bell, Michael V; Dixon, David R.; Fallick, Anthony E.; Segonzac, Michel; Sargent, John R.

    1998-01-01

    Fatty acid biomarker analysis coupled with gas chromatography-isotope ratio mass spectrometry was used to confirm the presence of methanotrophic and thiotrophic bacterial endosymbionts in the tissues of a hydrothermal vent mussel (Bathymodiolus sp.), collected from the Menez Gwen vent field on the mid-Atlantic ridge. Monounsaturated (n-8) fatty acids, which are diagnostic of methanotrophic bacteria, were detected in all three types of tissues examined (gill, posterior adductor, and mantle), a...

  19. Assessment of bacterial endosymbiont diversity in Otiorhynchus spp. (Coleoptera: Curculionidae) larvae using a multitag 454 pyrosequencing approach

    OpenAIRE

    Hirsch Jacqueline; Strohmeier Stephan; Pfannkuchen Martin; Reineke Annette

    2012-01-01

    Abstract Background Weevils of the genus Otiorhynchus are regarded as devastating pests in a wide variety of horticultural crops worldwide. So far, little is known on the presence of endosymbionts in Otiorhynchus spp.. Investigation of endosymbiosis in this genus may help to understand the evolution of different reproductive strategies in these weevils (parthenogenesis or sexual reproduction), host-symbiont interactions, and may provide a future basis for novel pest management strategy develo...

  20. LNA probes substantially improve the detection of bacterial endosymbionts in whole mount of insects by fluorescent in-situ hybridization

    Directory of Open Access Journals (Sweden)

    Priya Natarajan

    2012-05-01

    Full Text Available Abstract Background Detection of unculturable bacteria and their localization in the host, by fluorescent in-situ hybridization (FISH, is a powerful technique in the study of host-bacteria interaction. FISH probes are designed to target the 16 s rRNA region of the bacteria to be detected. LNA probes have recently been used in FISH studies and proven to be more efficient. To date no report has employed LNA probes for FISH detection of bacterial endosymbiont in the whole mount tissues. Further, though speculated, bacteriocytes have not been reported from males of Bemisia tabaci. Results In this study, we compared the efficiency in detecting bacteria by fluorescent DNA oligonucleotides versus modified probes containing Locked Nucleic Acid (LNA substitution in their structure. We used the insect Bemisia tabaci as the experimental material since it carried simultaneous infection by two bacteria: one a primary endosymbiont, Portiera (and present in more numbers while the other a secondary endosymbiont Arsenophonus (and present in less numbers. Thus a variation in the abundance of bacteria was expected. While detecting both the bacteria, we found a significant increase in the signal whenever LNA probes were used. However, the difference was more pronounced in detecting the secondary endosymbiont, wherein DNA probes gave weak signals when compared to LNA probes. Also, signal to noise ratio for LNA probes was higher than DNA probes. We found that LNA considerably improved sensitivity of FISH, as compared to the commonly used DNA oligonucleotide probe. Conclusion By employing LNA probes we could detect endosymbiotic bacteria in males, which have never been reported previously. We were able to detect bacteriocytes containing Portiera and Arsenophonus in the males of B. tabaci. Thus, employing LNA probes at optimized conditions will help to significantly improve detection of bacteria at the lowest concentration and may give a comprehensible depiction

  1. The cockroach Blattella germanica obtains nitrogen from uric acid through a metabolic pathway shared with its bacterial endosymbiont.

    Science.gov (United States)

    Patiño-Navarrete, Rafael; Piulachs, Maria-Dolors; Belles, Xavier; Moya, Andrés; Latorre, Amparo; Peretó, Juli

    2014-07-01

    Uric acid stored in the fat body of cockroaches is a nitrogen reservoir mobilized in times of scarcity. The discovery of urease in Blattabacterium cuenoti, the primary endosymbiont of cockroaches, suggests that the endosymbiont may participate in cockroach nitrogen economy. However, bacterial urease may only be one piece in the entire nitrogen recycling process from insect uric acid. Thus, in addition to the uricolytic pathway to urea, there must be glutamine synthetase assimilating the released ammonia by the urease reaction to enable the stored nitrogen to be metabolically usable. None of the Blattabacterium genomes sequenced to date possess genes encoding for those enzymes. To test the host's contribution to the process, we have sequenced and analysed Blattella germanica transcriptomes from the fat body. We identified transcripts corresponding to all genes necessary for the synthesis of uric acid and its catabolism to urea, as well as for the synthesis of glutamine, asparagine, proline and glycine, i.e. the amino acids required by the endosymbiont. We also explored the changes in gene expression with different dietary protein levels. It appears that the ability to use uric acid as a nitrogen reservoir emerged in cockroaches after its age-old symbiotic association with bacteria.

  2. ACUTE TOXICITY OF METALS: NICKEL AND ZINC TO PARAMECIUM BURSARIA AND ITS ENDOSYMBIONTS

    Directory of Open Access Journals (Sweden)

    Patrycja Zagata

    2015-02-01

    Full Text Available Paramecium bursaria is an unicellular organism, widely distributed in the freshwater environment, where heavy metals are common contaminants. The ciliates, also including Paramecium bursaria, are a very abundant group in aquatic ecosystems, what makes them effective biological indicators of water pollutants. Paramecium bursaria is the only Paramecium which has evolved a mutualistic relationship with algae and it harbors these endosymbionts in its own cytoplasm. The algae are also very effective bioindicators of some pollutants because of their ability to biosorption and bioaccumulation of heavy metals. The aim of this study was to determine the acute toxicity of two metals’ compounds: nickel chloride (NiCl2 and zinc chloride (ZnCl2 to Paramecium bursaria and its endosymbionts. The ciliates were incubated in solutions with 5x10-8 to 5x10-2g/dm3 of NiCl2 and with 5x10-8 to 5x10-2g/dm3 of ZnCl2, at the temperature of 180C, in the light/dark conditions (12L/12D. Microscopic observations of cell divisions rate, cell shape changes as well as the swimming behavior, were conducted after 24, 48, 72 and 120 hours of incubation in the tested solutions and were compared to the control sample. Microscopic observations revealed the lethal doses for both compounds, for nickel chloride 5x10-5g/dm3 and for zinc chloride 5x10-3. These observations also revealed that in lesser concentrations than the lethal one, the slowdown and characteristic movements occur after metal addition. The PEA measurements of Fv/Fm parameter were carried out within 4 days, the first one after 24 hours of incubations. The results of this investigation has given us a view of a fluorescence efficiency by revealing that both compounds solutions can have the stimulating effect on Photosystem II, because the lowest fluorescence efficiency was measured in control samples.

  3. GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense.

    Science.gov (United States)

    Chaudhary, Ritu; Atamian, Hagop S; Shen, Zhouxin; Briggs, Steven P; Kaloshian, Isgouhi

    2014-06-17

    Aphids are sap-feeding plant pests and harbor the endosymbiont Buchnera aphidicola, which is essential for their fecundity and survival. During plant penetration and feeding, aphids secrete saliva that contains proteins predicted to alter plant defenses and metabolism. Plants recognize microbe-associated molecular patterns and induce pattern-triggered immunity (PTI). No aphid-associated molecular pattern has yet been identified. By mass spectrometry, we identified in saliva from potato aphids (Macrosiphum euphorbiae) 105 proteins, some of which originated from Buchnera, including the chaperonin GroEL. Because GroEL is a widely conserved bacterial protein with an essential function, we tested its role in PTI. Applying or infiltrating GroEL onto Arabidopsis (Arabidopsis thaliana) leaves induced oxidative burst and expression of PTI early marker genes. These GroEL-induced defense responses required the known coreceptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1. In addition, in transgenic Arabidopsis plants, inducible expression of groEL activated PTI marker gene expression. Moreover, Arabidopsis plants expressing groEL displayed reduced fecundity of the green peach aphid (Myzus persicae), indicating enhanced resistance against aphids. Furthermore, delivery of GroEL into tomato (Solanum lycopersicum) or Arabidopsis through Pseudomonas fluorescens, engineered to express the type III secretion system, also reduced potato aphid and green peach aphid fecundity, respectively. Collectively our data indicate that GroEL is a molecular pattern that triggers PTI. PMID:24927572

  4. Effects of Trace Metal Concentrations on the Growth of the Coral Endosymbiont Symbiodinium kawagutii.

    Science.gov (United States)

    Rodriguez, Irene B; Lin, Senjie; Ho, Jiaxuan; Ho, Tung-Yuan

    2016-01-01

    Symbiodinium is an indispensable endosymbiont in corals and the most important primary producer in coral reef ecosystems. During the past decades, coral bleaching attributed to the disruption of the symbiosis has frequently occurred resulting in reduction of coral reef coverage globally. Growth and proliferation of corals require some specific trace metals that are essential components of pertinent biochemical processes, such as in photosynthetic systems and electron transport chains. In addition, trace metals are vital in the survival of corals against oxidative stress because these metals serve as enzymatic cofactors in antioxidative defense mechanisms. The basic knowledge about trace metal requirements of Symbiodinium is lacking. Here we show that the requirement of Symbiodinium kawagutii for antioxidant-associated trace metals exhibits the following order: Fe > Cu/Zn/Mn > Ni. In growth media with Cu, Zn, Mn, and varying Fe concentrations, we observed that Cu, Zn, and Mn cellular quotas were inversely related to Fe concentrations. In the absence of Cu, Zn, and Mn, growth rates increased with increasing inorganic Fe concentrations up to 1250 pM, indicating the relatively high Fe requirement for Symbiodinium growth and potential functional complementarity of these metals. These results demonstrate the relative importance of trace metals to sustain Symbiodinium growth and a potential metal inter replacement strategy in Symbiodinium to ensure survival of coral reefs in an oligotrophic and stressful environment. PMID:26903964

  5. Effects of trace metal concentrations on the growth of the coral endosymbiont Symbiodinium kawagutii

    Directory of Open Access Journals (Sweden)

    Irene Barra Rodriguez

    2016-02-01

    Full Text Available Symbiodinium is an indispensable endosymbiont in corals and the most important primary producer in coral reef ecosystems. During the past decades, coral bleaching attributed to the disruption of the symbiosis has frequently occurred resulting in reduction of coral reef coverage globally. Growth and proliferation of corals require some specific trace metals that are essential components of pertinent biochemical processes, such as in photosynthetic systems and electron transport chains. In addition, trace metals are vital in the survival of corals against oxidative stress because these metals serve as enzymatic cofactors in antioxidative defense mechanisms. The basic knowledge about trace metal requirement of Symbiodinium is lacking. Here we show that the requirement of S. kawagutii for antioxidant-associated trace metals exhibits the following order: Fe >> Cu/Zn/Mn >> Ni. In growth media with Cu, Zn, Mn and varying Fe concentrations, we observed that Cu, Zn and Mn cellular quotas were inversely related to Fe concentrations. In the absence of Cu, Zn and Mn, growth rates increased with increasing inorganic Fe concentrations up to 1250 pM, indicating the relatively high Fe requirement for Symbiodinium growth and potential functional complementarity of these metals. These results demonstrate the relative importance of trace metals to sustain Symbiodinium growth and a potential metal interreplacement strategy in Symbiodinium to ensure survival of coral reefs in an oligotrophic and stressful environment.

  6. Predicting the Proteins of Angomonas deanei, Strigomonas culicis and Their Respective Endosymbionts Reveals New Aspects of the Trypanosomatidae Family

    Science.gov (United States)

    Motta, Maria Cristina Machado; Martins, Allan Cezar de Azevedo; de Souza, Silvana Sant’Anna; Catta-Preta, Carolina Moura Costa; Silva, Rosane; Klein, Cecilia Coimbra; de Almeida, Luiz Gonzaga Paula; de Lima Cunha, Oberdan; Ciapina, Luciane Prioli; Brocchi, Marcelo; Colabardini, Ana Cristina; de Araujo Lima, Bruna; Machado, Carlos Renato; de Almeida Soares, Célia Maria; Probst, Christian Macagnan; de Menezes, Claudia Beatriz Afonso; Thompson, Claudia Elizabeth; Bartholomeu, Daniella Castanheira; Gradia, Daniela Fiori; Pavoni, Daniela Parada; Grisard, Edmundo C.; Fantinatti-Garboggini, Fabiana; Marchini, Fabricio Klerynton; Rodrigues-Luiz, Gabriela Flávia; Wagner, Glauber; Goldman, Gustavo Henrique; Fietto, Juliana Lopes Rangel; Elias, Maria Carolina; Goldman, Maria Helena S.; Sagot, Marie-France; Pereira, Maristela; Stoco, Patrícia H.; de Mendonça-Neto, Rondon Pessoa; Teixeira, Santuza Maria Ribeiro; Maciel, Talles Eduardo Ferreira; de Oliveira Mendes, Tiago Antônio; Ürményi, Turán P.; de Souza, Wanderley; Schenkman, Sergio; de Vasconcelos, Ana Tereza Ribeiro

    2013-01-01

    Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. In an effort to better understand such symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted 16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing trypanosomatids, Angomonas deanei (previously named as Crithidia deanei) and Strigomonas culicis (first known as Blastocrithidia culicis), respectively. Identification of each ORF was based primarily on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from EMBOSS and Newbler 2.6 when necessary. The monoxenic organisms revealed conserved housekeeping functions when compared to other trypanosomatids, especially compared with Leishmania major. However, major differences were found in ORFs corresponding to the cytoskeleton, the kinetoplast, and the paraflagellar structure. The monoxenic organisms also contain a large number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced number of compartmentalized cysteine proteases in comparison to other TriTryp organisms, reflecting adaptations to the presence of the symbiont. The assembled bacterial endosymbiont sequences exhibit a high A+T content with a total of 787 and 769 ORFs for the Angomonas deanei and Strigomonas culicis endosymbionts, respectively, and indicate that these organisms hold a common ancestor related to the Alcaligenaceae family. Importantly, both symbionts contain enzymes that complement essential host cell biosynthetic pathways, such as those for amino acid, lipid and purine/pyrimidine metabolism

  7. Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family.

    Directory of Open Access Journals (Sweden)

    Maria Cristina Machado Motta

    Full Text Available Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. In an effort to better understand such symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted 16,960 and 12,162 open reading frames (ORFs in two symbiont-bearing trypanosomatids, Angomonas deanei (previously named as Crithidia deanei and Strigomonas culicis (first known as Blastocrithidia culicis, respectively. Identification of each ORF was based primarily on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from EMBOSS and Newbler 2.6 when necessary. The monoxenic organisms revealed conserved housekeeping functions when compared to other trypanosomatids, especially compared with Leishmania major. However, major differences were found in ORFs corresponding to the cytoskeleton, the kinetoplast, and the paraflagellar structure. The monoxenic organisms also contain a large number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced number of compartmentalized cysteine proteases in comparison to other TriTryp organisms, reflecting adaptations to the presence of the symbiont. The assembled bacterial endosymbiont sequences exhibit a high A+T content with a total of 787 and 769 ORFs for the Angomonas deanei and Strigomonas culicis endosymbionts, respectively, and indicate that these organisms hold a common ancestor related to the Alcaligenaceae family. Importantly, both symbionts contain enzymes that complement essential host cell biosynthetic pathways, such as those for amino acid, lipid and purine

  8. Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines☆

    Science.gov (United States)

    Alberdi, M. Pilar; Dalby, Matthew J.; Rodriguez-Andres, Julio; Fazakerley, John K.; Kohl, Alain; Bell-Sakyi, Lesley

    2012-01-01

    As well as being vectors of many viral, bacterial, and protozoan pathogens of medical and veterinary importance, ticks harbour a variety of microorganisms which are not known to be pathogenic for vertebrate hosts. Continuous cell lines established from ixodid and argasid ticks could be infected with such endosymbiotic bacteria and endogenous viruses, but to date very few cell lines have been examined for their presence. DNA and RNA extracted from over 50 tick cell lines deposited in the Roslin Wellcome Trust Tick Cell Biobank (http://tickcells.roslin.ac.uk) were screened for presence of bacteria and RNA viruses, respectively. Sequencing of PCR products amplified using pan-16S rRNA primers revealed the presence of DNA sequences from bacterial endosymbionts in several cell lines derived from Amblyomma and Dermacentor spp. ticks. Identification to species level was attempted using Rickettsia- and Francisella-specific primers. Pan-Nairovirus primers amplified PCR products of uncertain specificity in cell lines derived from Rhipicephalus, Hyalomma, Ixodes, Carios, and Ornithodoros spp. ticks. Further characterisation attempted with primers specific for Crimean-Congo haemorrhagic fever virus segments confirmed the absence of this arbovirus in the cells. A set of pan-Flavivirus primers did not detect endogenous viruses in any of the cell lines. Transmission electron microscopy revealed the presence of endogenous reovirus-like viruses in many of the cell lines; only 4 of these lines gave positive results with primers specific for the tick Orbivirus St Croix River virus, indicating that there may be additional, as yet undescribed ‘tick-only’ viruses inhabiting tick cell lines. PMID:22743047

  9. Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines.

    Science.gov (United States)

    Alberdi, M Pilar; Dalby, Matthew J; Rodriguez-Andres, Julio; Fazakerley, John K; Kohl, Alain; Bell-Sakyi, Lesley

    2012-06-01

    As well as being vectors of many viral, bacterial, and protozoan pathogens of medical and veterinary importance, ticks harbour a variety of microorganisms which are not known to be pathogenic for vertebrate hosts. Continuous cell lines established from ixodid and argasid ticks could be infected with such endosymbiotic bacteria and endogenous viruses, but to date very few cell lines have been examined for their presence. DNA and RNA extracted from over 50 tick cell lines deposited in the Roslin Wellcome Trust Tick Cell Biobank (http://tickcells.roslin.ac.uk) were screened for presence of bacteria and RNA viruses, respectively. Sequencing of PCR products amplified using pan-16S rRNA primers revealed the presence of DNA sequences from bacterial endosymbionts in several cell lines derived from Amblyomma and Dermacentor spp. ticks. Identification to species level was attempted using Rickettsia- and Francisella-specific primers. Pan-Nairovirus primers amplified PCR products of uncertain specificity in cell lines derived from Rhipicephalus, Hyalomma, Ixodes, Carios, and Ornithodoros spp. ticks. Further characterisation attempted with primers specific for Crimean-Congo haemorrhagic fever virus segments confirmed the absence of this arbovirus in the cells. A set of pan-Flavivirus primers did not detect endogenous viruses in any of the cell lines. Transmission electron microscopy revealed the presence of endogenous reovirus-like viruses in many of the cell lines; only 4 of these lines gave positive results with primers specific for the tick Orbivirus St Croix River virus, indicating that there may be additional, as yet undescribed 'tick-only' viruses inhabiting tick cell lines.

  10. Algal endosymbionts as vectors of horizontal gene transfer in photosynthetic eukaryotes

    Directory of Open Access Journals (Sweden)

    Huan eQiu

    2013-09-01

    Full Text Available Photosynthesis in eukaryotes occurs in the plastid, an organelle that is derived from a single cyanobacterial primary endosymbiosis in the common ancestor of the supergroup Plantae (or Archaeplastida that includes green, red, and glaucophyte algae and plants. However a variety of other phytoplankton such as the chlorophyll c-containing diatoms, dinoflagellates, and haptophytes contain a red alga-derived plastid that traces its origin to secondary or tertiary (eukaryote engulfs eukaryote endosymbiosis. The hypothesis of Plantae monophyly has only recently been substantiated, however the extent and role of endosymbiotic and horizontal gene transfer (EGT and HGT in algal genome evolution still remain to be fully understood. What is becoming clear from analysis of complete genome data is that algal gene complements can no longer be considered essentially eukaryotic in provenance; i.e., with the expected addition of several hundred cyanobacterial genes derived from EGT and a similar number derived from the mitochondrial ancestor. For example, we now know that foreign cells such as Chlamydiae and other prokaryotes have made significant contributions to plastid functions in Plantae. Perhaps more surprising is the recent finding of extensive bacterium-derived HGT in the nuclear genome of the unicellular red alga Porphyridium purpureum that does not relate to plastid functions. These non-endosymbiont gene transfers not only shaped the evolutionary history of Plantae but also were propagated via secondary endosymbiosis to a multitude of other phytoplankton. Here we discuss the idea that Plantae (in particular red algae are one of the major players in eukaryote genome evolution by virtue of their ability to act as sinks and sources of foreign genes through HGT and endosymbiosis, respectively. This hypothesis recognizes the often under-appreciated Rhodophyta as major sources of genetic novelty among photosynthetic eukaryotes.

  11. Ixodes pacificus ticks maintain embryogenesis and egg hatching after antibiotic treatment of Rickettsia endosymbiont.

    Science.gov (United States)

    Kurlovs, Andre H; Li, Jinze; Cheng, Du; Zhong, Jianmin

    2014-01-01

    Rickettsia is a genus of intracellular bacteria that causes a variety of diseases in humans and other mammals and associates with a diverse group of arthropods. Although Rickettsia appears to be common in ticks, most Rickettsia-tick relationships remain generally uncharacterized. The most intimate of these associations is Rickettsia species phylotype G021, a maternally and transstadially transmitted endosymbiont that resides in 100% of I. pacificus in California. We investigated the effects of this Rickettsia phylotype on I. pacificus reproductive fitness using selective antibiotic treatment. Ciprofloxacin was 10-fold more effective than tetracycline in eliminating Rickettsia from I. pacificus, and quantitative PCR results showed that eggs from the ciprofloxacin-treated ticks contained an average of 0.02 Rickettsia per egg cell as opposed to the average of 0.2 in the tetracycline-treated ticks. Ampicillin did not significantly affect the number of Rickettsia per tick cell in adults or eggs compared to the water-injected control ticks. We found no relationship between tick embryogenesis and rickettsial density in engorged I. pacificus females. Tetracycline treatment significantly delayed oviposition of I. pacificus ticks, but the antibiotic's effect was unlikely related to Rickettsia. We also demonstrated that Rickettsia-free eggs could successfully develop into larvae without any significant decrease in hatching compared to eggs containing Rickettsia. No significant differences in the incubation period, egg hatching rate, and the number of larvae were found between any of the antibiotic-treated groups and the water-injected tick control. We concluded that Rickettsia species phylotype G021 does not have an apparent effect on embryogenesis, oviposition, and egg hatching of I. pacificus.

  12. The microbial community of Ophrydium versatile colonies: endosymbionts, residents, and tenants

    Science.gov (United States)

    Duval, B.; Margulis, L.

    1995-01-01

    Ophrydium versatile is a sessile peritrichous ciliate (Kingdom Protoctista, class Oligohymenophora, order Peritrichida, suborder Sessilina) that forms green, gelatinous colonies. Chlorophyll a and b impart a green color to Ophrydium masses due to 400-500 Chlorella-like endosymbionts in each peritrich. Ophrydium colonies, collected from two bog wetlands (Hawley and Leverett, Massachusetts) were analyzed for their gel inhabitants. Other protists include ciliates, mastigotes, euglenids, chlorophytes, and heliozoa. Routine constituents include from 50-100,000 Nitzschia per ml of gel and at least four other diatom genera (Navicula, Pinnularia, Gyrosigma, Cymbella) that may participate in synthesis of the gel matrix. Among the prokaryotes are filamentous and coccoid cyanobacteria, large rod-shaped bacteria, at least three types of spirochetes and one unidentified Saprospira-like organism. Endosymbiotic methanogenic bacteria, observed using fluorescence microscopy, were present in unidentified hypotrichous ciliates. Animals found inside the gel include rotifers, nematodes, and occasional copepods. The latter were observed in the water reservoir of larger Ophrydium masses. From 30-46% of incident visible radiation could be attenuated by Ophrydium green jelly masses in laboratory observations. Protargol staining was used to visualize the elongate macronuclei and small micronucleus of O. versatile zooids and symbiotic algal nuclei. Electron microscopic analysis of the wall of the Chlorella-like symbiont suggests that although the Ophrydium zooids from British Columbia harbor Chlorella vulgaris, those from Hawley Bog contain Graesiella sp. The growth habit in the photic zone and loose level of individuation of macroscopic Ophrydium masses are interpretable as extant analogs of certain Ediacaran biota: colonial protists in the Vendian fossil record.

  13. Description of a new dinoflagellate with a diatom endosymbiont, Durinskia capensis sp. nov. (Peridiniales, Dinophyceae) from South Africa.

    Science.gov (United States)

    Pienaar, Richard N; Sakai, Hiroto; Horiguchi, Takeo

    2007-03-01

    A new dinoflagellate Durinskia capensis Pienaar, Sakai et Horiguchi sp. nov. (Peridiniales, Dinophyceae), from tidal pools along the west coast of the Cape Peninsula, Republic of South Africa, is described. The dinoflagellate produces characteristic dense orange-red colored blooms in tidal pools. The organism is characterized by having a eukaryotic endosymbiotic alga. Ultrastructure study revealed the organism has a cellular construction similar to that of other diatom-harboring dinoflagellates. The cell is thecate and the plate formula is: Po, x, 4', 2a, 6'', 5c, 4s, 5''', 2'''', which is the same as that of Durinskia baltica, the type species of the genus Durinskia. D. capensis can, however, be distinguished from D. baltica by overall cell shape, the relative size of the 1a and 2a plates, the degree of cingular displacement, and the shape of the eyespot. Our molecular analysis based on SSU rDNA revealed that D. capensis is closely allied to D. baltica, thus supporting the assignment of this new species to this genus. This Durinskia clade takes a sister position to another diatom-harboring dinoflagellate clade, which includes Kryptoperidinium foliaceum and Galeidinium rugatum. Molecular analysis based on the rbcL gene sequence and ultrastructure study revealed that the endosymbiont of D. capensis is a diatom. The SSU rDNA gene trees indicated that four species with a diatom endosymbiont formed a clade, suggesting a single endosymbiotic origin. PMID:17139418

  14. Antibiotic treatment leads to the elimination of Wolbachia endosymbionts and sterility in the diplodiploid collembolan Folsomia candida

    Directory of Open Access Journals (Sweden)

    Kingcombe Rachel

    2009-08-01

    Full Text Available Abstract Background Wolbachia is an extremely widespread bacterial endosymbiont of arthropods and nematodes that causes a variety of reproductive peculiarities. Parthenogenesis is one such peculiarity but it has been hypothesised that this phenomenon may be functionally restricted to organisms that employ haplodiploid sex determination. Using two antibiotics, tetracycline and rifampicin, we attempted to eliminate Wolbachia from the diplodiploid host Folsomia candida, a species of springtail which is a widely used study organism. Results Molecular assays confirmed that elimination of Wolbachia was successfully achieved through continuous exposure of populations (over two generations and several weeks to rifampicin administered as 2.7% dry weight of their yeast food source. The consequence of this elimination was total sterility of all individuals, despite the continuation of normal egg production. Conclusion Microbial endosymbionts play an obligatory role in the reproduction of their diplodiploid host, most likely one in which the parthenogenetic process is facilitated by Wolbachia. A hitherto unknown level of host-parasite interdependence is thus recorded.

  15. Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus.

    Science.gov (United States)

    Partida-Martinez, Laila P; Groth, Ingrid; Schmitt, Imke; Richter, Walter; Roth, Martin; Hertweck, Christian

    2007-11-01

    Several strains of the fungus Rhizopus microsporus harbour endosymbiotic bacteria for the production of the causal agent of rice seedling blight, rhizoxin, and the toxic cyclopeptide rhizonin. R. microsporus and isolated endobacteria were selected for freeze-fracture electron microscopy, which allowed visualization of bacterial cells within the fungal cytosol by their two parallel-running envelope membranes and by the fine structure of the lipopolysaccharide layer of the outer membrane. Two representatives of bacterial endosymbionts were chosen for phylogenetic analyses on the basis of full 16S rRNA gene sequences, which revealed that the novel fungal endosymbionts formed a monophyletic group within the genus Burkholderia. Inter-sequence similarities ranged from 98.94 to 100%, and sequence similarities to members of the Burkholderia pseudomallei group, the closest neighbours, were 96.74-97.38%. In addition, the bacterial strains were distinguished from their phylogenetic neighbours by their fatty acid profiles and other biochemical characteristics. The phylogenetic studies based on 16S rRNA gene sequence data, together with conclusive DNA-DNA reassociation experiments, strongly support the proposal that these strains represent two novel species within the genus Burkholderia, for which the names Burkholderia rhizoxinica sp. nov. (type strain, HKI 454T=DSM 19002T=CIP 109453T) and Burkholderia endofungorum sp. nov. (type strain, HKI 456T=DSM 19003T=CIP 109454T) are proposed. PMID:17978222

  16. Survey of endosymbionts in the Diaphorina citri metagenome and assembly of a Wolbachia wDi draft genome.

    Science.gov (United States)

    Saha, Surya; Hunter, Wayne B; Reese, Justin; Morgan, J Kent; Marutani-Hert, Mizuri; Huang, Hong; Lindeberg, Magdalen

    2012-01-01

    Diaphorina citri (Hemiptera: Psyllidae), the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D. citri metagenome has been initiated to gain better understanding of the biology of this organism and the potential roles of its bacterial endosymbionts. To corroborate candidate endosymbionts previously identified by rDNA amplification, raw reads from the D. citri metagenome sequence were mapped to reference genome sequences. Results of the read mapping provided the most support for Wolbachia and an enteric bacterium most similar to Salmonella. Wolbachia-derived reads were extracted using the complete genome sequences for four Wolbachia strains. Reads were assembled into a draft genome sequence, and the annotation assessed for the presence of features potentially involved in host interaction. Genome alignment with the complete sequences reveals membership of Wolbachia wDi in supergroup B, further supported by phylogenetic analysis of FtsZ. FtsZ and Wsp phylogenies additionally indicate that the Wolbachia strain in the Florida D. citri isolate falls into a sub-clade of supergroup B, distinct from Wolbachia present in Chinese D. citri isolates, supporting the hypothesis that the D. citri introduced into Florida did not originate from China.

  17. Survey of endosymbionts in the Diaphorina citri metagenome and assembly of a Wolbachia wDi draft genome.

    Directory of Open Access Journals (Sweden)

    Surya Saha

    Full Text Available Diaphorina citri (Hemiptera: Psyllidae, the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D. citri metagenome has been initiated to gain better understanding of the biology of this organism and the potential roles of its bacterial endosymbionts. To corroborate candidate endosymbionts previously identified by rDNA amplification, raw reads from the D. citri metagenome sequence were mapped to reference genome sequences. Results of the read mapping provided the most support for Wolbachia and an enteric bacterium most similar to Salmonella. Wolbachia-derived reads were extracted using the complete genome sequences for four Wolbachia strains. Reads were assembled into a draft genome sequence, and the annotation assessed for the presence of features potentially involved in host interaction. Genome alignment with the complete sequences reveals membership of Wolbachia wDi in supergroup B, further supported by phylogenetic analysis of FtsZ. FtsZ and Wsp phylogenies additionally indicate that the Wolbachia strain in the Florida D. citri isolate falls into a sub-clade of supergroup B, distinct from Wolbachia present in Chinese D. citri isolates, supporting the hypothesis that the D. citri introduced into Florida did not originate from China.

  18. Blochmannia endosymbionts improve colony growth and immune defence in the ant Camponotus fellah

    Directory of Open Access Journals (Sweden)

    Depoix Delphine

    2009-02-01

    Full Text Available Abstract Background Microorganisms are a large and diverse form of life. Many of them live in association with large multicellular organisms, developing symbiotic relations with the host and some have even evolved to form obligate endosymbiosis 1. All Carpenter ants (genus Camponotus studied hitherto harbour primary endosymbiotic bacteria of the Blochmannia genus. The role of these bacteria in ant nutrition has been demonstrated 2 but the omnivorous diet of these ants lead us to hypothesize that the bacteria might provide additional advantages to their host. In this study, we establish links between Blochmannia, growth of starting new colonies and the host immune response. Results We manipulated the number of bacterial endosymbionts in incipient laboratory-reared colonies of Camponotus fellah by administrating doses of an antibiotic (Rifampin mixed in honey-solution. Efficiency of the treatment was estimated by quantitative polymerase chain reaction and Fluorescent in situ hybridization (FISH, using Blochmannia specific primers (qPCR and two fluorescent probes (one for all Eubacterial and other specific for Blochmannia. Very few or no bacteria could be detected in treated ants. Incipient Rifampin treated colonies had significantly lower numbers of brood and adult workers than control colonies. The immune response of ants from control and treated colonies was estimated by inserting nylon filaments in the gaster and removing it after 24 h. In the control colonies, the encapsulation response was positively correlated to the bacterial amount, while no correlation was observed in treated colonies. Indeed, antibiotic treatment increased the encapsulation response of the workers, probably due to stress conditions. Conclusion The increased growth rate observed in non-treated colonies confirms the importance of Blochmannia in this phase of colony development. This would provide an important selective advantage during colony founding, where the colonies

  19. Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: proposal of the new taxon Candidatus Blochmannia gen. nov.

    Science.gov (United States)

    Sauer, C; Stackebrandt, E; Gadau, J; Hölldobler, B; Gross, R

    2000-09-01

    The systematic relationships of intracellular bacteria of 13 Camponotus species (carpenter ants) from America and Europe were compared to those of their hosts. Phylogenetic trees of the bacteria and the ants were based on 16S rDNA (rrs) gene sequences and mitochondrial cytochrome oxidase subunit I (COI) gene sequences, respectively. The bacterial endosymbionts of Camponotus spp. form a distinct lineage in the y-subclass of the Proteobacteria. The taxa most closely related to these bacteria are endosymbionts of aphids and the tsetse fly. The bacterial and host phylogenies deduced from the sequence data show a high degree of congruence, providing significant evidence for cospeciation of the bacteria and the ants and a maternal transmission route of the symbionts. The cloned rrs genes of the endosymbionts contain putative intervening sequences (IVSs) with a much lower G+C content than the mean of the respective rrs genes. By in situ hybridization specific 16S rDNA oligonucleotide probes verified the presence of the bacteria within tissues of three of the eukaryotic hosts. It is proposed that the endosymbionts of these three carpenter ants be assigned to a new taxon 'Candidatus Blochmannia gen. nov.' with the symbionts of the individual ants being species named according to their host, 'Candidatus Blochmannia floridanus sp. nov.', 'Candidatus Blochmannia herculeanus sp. nov.' and 'Candidatus Blochmannia rufipes sp. nov.'. PMID:11034499

  20. Screening for bacterial DNA in the hard tick Hyalomma marginatum (Ixodidae from Socotra Island (Yemen: detection of Francisella-like endosymbiont

    Directory of Open Access Journals (Sweden)

    M. Montagna

    2012-12-01

    Full Text Available Thirty-four adult ticks collected from livestock on Socotra Island (Yemen were identified as Hyalomma marginatum using traditional morphological characteristics. Morphological identification was confirmed for all the collected specimens using a molecular approach targeting a fragment of the mitochondrial gene 12S rRNA. All the specimens were examined for the presence of tick-borne pathogens and the tick endosymbiont Candidatus Midichloria mitochondrii using polymerase chain reaction. Three specimens out of the 34 analyzed tested positive to the presence of Francisella spp. leading to the first detection of these bacteria in H. marginatum on Socotra Island. The phylogenetic analyses conducted on a 660 bp fragment of the ribosomal gene 16S rRNA of Francisella spp. (including F. philomiragia as outgroup, the four subspecies of F. tularensis and the Francisella-like endosymbiont of ticks confirm that the newly detected Francisella strains cluster into the Francisella-like endosymbionts of ticks. Interestingly, the detected Francisella-like endosymbiont, shows a different genotype to that previously isolated from H. marginatum collected in Bulgaria. No specimen was positive for the presence of Rickettsia spp., Coxiella burnetii, Borrelia burgdorferi or M. mitochondrii.

  1. Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: proposal of the new taxon Candidatus Blochmannia gen. nov.

    Science.gov (United States)

    Sauer, C; Stackebrandt, E; Gadau, J; Hölldobler, B; Gross, R

    2000-09-01

    The systematic relationships of intracellular bacteria of 13 Camponotus species (carpenter ants) from America and Europe were compared to those of their hosts. Phylogenetic trees of the bacteria and the ants were based on 16S rDNA (rrs) gene sequences and mitochondrial cytochrome oxidase subunit I (COI) gene sequences, respectively. The bacterial endosymbionts of Camponotus spp. form a distinct lineage in the y-subclass of the Proteobacteria. The taxa most closely related to these bacteria are endosymbionts of aphids and the tsetse fly. The bacterial and host phylogenies deduced from the sequence data show a high degree of congruence, providing significant evidence for cospeciation of the bacteria and the ants and a maternal transmission route of the symbionts. The cloned rrs genes of the endosymbionts contain putative intervening sequences (IVSs) with a much lower G+C content than the mean of the respective rrs genes. By in situ hybridization specific 16S rDNA oligonucleotide probes verified the presence of the bacteria within tissues of three of the eukaryotic hosts. It is proposed that the endosymbionts of these three carpenter ants be assigned to a new taxon 'Candidatus Blochmannia gen. nov.' with the symbionts of the individual ants being species named according to their host, 'Candidatus Blochmannia floridanus sp. nov.', 'Candidatus Blochmannia herculeanus sp. nov.' and 'Candidatus Blochmannia rufipes sp. nov.'.

  2. Armored scale insect endosymbiont diversity at the species level: genealogical patterns of Uzinura diasipipdicola in the Chionaspis pinifoliae-Chionaspis heterophyllae species complex (Hemiptera: Coccoidea: Diaspididae).

    Science.gov (United States)

    Andersen, J C; Gwiazdowski, R A; Gdanetz, K; Gruwell, M E

    2015-02-01

    Armored scale insects and their primary bacterial endosymbionts show nearly identical patterns of co-diversification when viewed at the family level, though the persistence of these patterns at the species level has not been explored in this group. Therefore we investigated genealogical patterns of co-diversification near the species level between the primary endosymbiont Uzinura diaspidicola and its hosts in the Chionaspis pinifoliae-Chionaspis heterophyllae species complex. To do this we generated DNA sequence data from three endosymbiont loci (rspB, GroEL, and 16S) and analyzed each locus independently using statistical parsimony network analyses and as a concatenated dataset using Bayesian phylogenetic reconstructions. We found that for two endosymbiont loci, 16S and GroEL, sequences from U. diaspidicola were broadly associated with host species designations, while for rspB this pattern was less clear as C. heterophyllae (species S1) shared haplotypes with several other Chionaspis species. We then compared the topological congruence of the phylogenetic reconstructions generated from a concatenated dataset of endosymbiont loci (including all three loci, above) to that from a concatenated dataset of armored scale hosts, using published data from two nuclear loci (28S and EF1α) and one mitochondrial locus (COI-COII) from the armored scale hosts. We calculated whether the two topologies were congruent using the Shimodaira-Hasegawa test. We found no significant differences (P = 0.4892) between the topologies suggesting that, at least at this level of resolution, co-diversification of U. diaspidicola with its armored scale hosts also occurs near the species level. This is the first such study of co-speciation at the species level between U. diaspidicola and a group of armored scale insects.

  3. The endosymbionts Wolbachia and Cardinium and their effects in three populations of the predatory mite Neoseiulus paspalivorus.

    Science.gov (United States)

    Famah Sourassou, Nazer; Hanna, Rachid; Breeuwer, Johannes A J; Negloh, Koffi; de Moraes, Gilberto J; Sabelis, Maurice W

    2014-10-01

    Whereas endosymbiont-induced incompatibility is known to occur in various arthropod taxa, such as spider mites, insects and isopods, it has been rarely reported in plant-inhabiting predatory mites (Acari: Phytoseiidae). Recent cross-breeding studies with the phytoseiid mite Neoseiulus paspalivorus De Leon revealed a complete post-mating reproductive isolation between specimens collected from three geographic origins-Northeast Brazil (South America), Benin and Ghana (West Africa)-even though they are morphologically similar. We carried out a study to assess to what extent these populations exhibit genetic differences and whether endosymbionts are involved in the incompatibility. First, we used the mitochondrial cytochrome oxidase I (COI) gene to assess genetic diversity among the three populations. Second, we used a PCR-based method to check for the presence of Wolbachia and/or Cardinium in these populations, and we determined their phylogenetic relationships using specific primers for Wolbachia and Cardinium 16S rDNA genes. Third, we also conducted a test using an antibiotic (tetracycline) in an attempt to eliminate the symbionts and evaluate their effects on the reproductive compatibility of their host. Based on the DNA sequences of their COI genes, specimens of the three populations appear to be genetically similar. However, the 16S rDNA gene sequences of their associated endosymbionts differed among the three populations: the Benin and Brazil populations harbour different strains of Wolbachia symbionts, whereas the Ghana population harbours Cardinium symbionts. In response to antibiotic treatment females of each of the three populations became incompatible with untreated males of their own population, similar to that observed in crossings between females from one geographic population and males from another. Compatibility was restored in crosses involving uninfected Brazil females and uninfected Benin males, whereas the reciprocal crosses remained incompatible

  4. Modification of Insect and Arachnid Behaviours by Vertically Transmitted Endosymbionts: Infections as Drivers of Behavioural Change and Evolutionary Novelty

    Directory of Open Access Journals (Sweden)

    Sara L. Goodacre

    2012-02-01

    Full Text Available Vertically acquired, endosymbiotic bacteria such as those belonging to the Rickettsiales and the Mollicutes are known to influence the biology of their arthropod hosts in order to favour their own transmission. In this study we investigate the influence of such reproductive parasites on the behavior of their insects and arachnid hosts. We find that changes in host behavior that are associated with endosymbiont infections are not restricted to characteristics that are directly associated with reproduction. Other behavioural traits, such as those involved in intraspecific competition or in dispersal may also be affected. Such behavioural shifts are expected to influence the level of intraspecific variation and the rate at which adaptation can occur through their effects on effective population size and gene flow amongst populations. Symbionts may thus influence both levels of polymorphism within species and the rate at which diversification can occur.

  5. Genetic diversity of Wolbachia endosymbionts in Culex quinquefasciatus from Hawai`i, Midway Atoll, and Samoa

    Science.gov (United States)

    Atkinson, Carter T.; Watcher-Weatherwax, William; Lapointe, Dennis

    2016-01-01

    Incompatible insect techniques are potential methods for controlling Culex quinquefasciatus and avian disease transmission in Hawai‘i without the use of pesticides or genetically modified organisms. The approach is based on naturally occurring sperm-egg incompatibilities within the Culex pipiens complex that are controlled by different strains of the bacterial endosymbiont Wolbachia pipientis (wPip). Incompatibilities can be unidirectional (crosses between males infected with strain A and females infected with strain B are fertile, while reciprocal crosses are not) or bidirectional (reciprocal crosses between sexes with different wPip strains are infertile). The technique depends on release of sufficient numbers of male mosquitoes infected with an incompatible wPip strain to suppress mosquito populations and reduce transmission of introduced avian malaria (Plasmodium relictum) and Avipoxvirus in native forest bird habitats. Both diseases are difficult to manage using more traditional methods based on removal and treatment of larval habitats and coordination of multiple approaches may be needed to control this vector. We characterized the diversity of Wolbachia strains in C. quinquefasciatus from Hawai‘i, Kaua‘i, Midway Atoll, and American Samoa with a variety of genetic markers to identify compatibility groups and their distribution within and between islands. We confirmed the presence of wPip with multilocus sequence typing, tested for local genetic variability using 16 WO prophage genes, and identified similarities to strains from other parts of the world with a transposable element (tr1). We also tested for genetic differences in ankyrin motifs (ank2 and pk1) which have been used to classify wPip strains into five worldwide groups (wPip1–wPip5) that vary in compatibility with each other based on experimental crosses. We found a mixture of both widely distributed and site specific genotypes based on presence or absence of WO prophage and transposable

  6. Immune response studies with Wuchereria bancrofti vespid allergen homologue (WbVAH) in human lymphatic filariasis

    OpenAIRE

    Anand, Setty Balakrishnan; Gnanasekar, Munirathinam; Thangadurai, Mani; Prabhu, Prince R.; Kaliraj, Perumal; RAMASWAMY, KALYANASUNDARAM

    2007-01-01

    A homologue of Brugia malayi venom allergen (BmVAH) was cloned from the infective stages (L3) of Wuchereria bancrofti. Sequence analysis showed 90% sequence identity between WbVAH and BmVAH. Recombinant WbVAH was then expressed and purified. VAH from other nematode parasites is being evaluated as potential vaccine candidates. Because W. bancrofti infections are more prevalent than B. malayi, it will significantly benefit using W. bancrofti antigens for vaccine development. In this study, we h...

  7. Diagnosis of Brugian Filariasis by Loop-Mediated Isothermal Amplification

    OpenAIRE

    Poole, Catherine B.; Tanner, Nathan A.; Zhang, Yinhua; Thomas C Evans; Carlow, Clotilde K. S.

    2012-01-01

    Author Summary Brugian filariasis is a debilitating neglected tropical disease caused by infection with the filarial parasites Brugia malayi or Brugia timori. Adult worms live in the lymphatic system and produce large numbers of microfilariae that predominantly circulate in the blood at night. Bloodsucking mosquitoes spread the disease by ingesting microfilariae that develop into infective stage larvae in the insect. In rural areas, diagnosis still relies largely on microscopic examination of...

  8. Lipoprotein biosynthesis as a target for anti-Wolbachia treatment of filarial nematodes

    Directory of Open Access Journals (Sweden)

    Slatko Barton E

    2010-10-01

    Full Text Available Abstract Background Lymphatic filariasis and onchocerciasis are debilitating diseases caused by filarial nematodes. Disease pathogenesis is induced by inflammatory responses following the death of the parasite. Wolbachia endosymbionts of filariae are potent inducers of innate and adaptive inflammation and bacterial lipoproteins have been identified as the ligands that bind toll-like receptors (TLR 2 and TLR6. Lipoproteins are important structural and functional components of bacteria and therefore enzymes involved in Wolbachia lipoprotein biosynthesis are potential chemotherapeutic targets. Results Globomycin, a signal peptidase II (LspA inhibitor, has activity against Gram-negative bacteria and a putative lspA gene has been identified from the Wolbachia genome of Brugia malayi (wBm. The amino acids required for function are strictly conserved and functionality was verified by complementation tests in a temperature-sensitive Escherichia coli lspA mutant. Also, transformation of wild type E. coli with Wolbachia lspA conferred significant globomycin resistance. A cell-based screen has been developed utilizing a Wolbachia-containing Aedes albopictus cell line to assay novel compounds active against Wolbachia. Globomycin was screened using this assay, which resulted in a dose-dependent reduction in Wolbachia load. Furthermore, globomycin was also effective in reducing the motility and viability of adult B. malayi in vitro. Conclusions These studies validate lipoprotein biosynthesis as a target in an organism for which no genetic tools are available. Further studies to evaluate drugs targeting this pathway are underway as part of the A-WOL drug discovery and development program.

  9. Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67-100 m depths coral Leptoseris

    Directory of Open Access Journals (Sweden)

    Kahng Samuel E

    2009-09-01

    Full Text Available Abstract Background Mesophotic corals (light-dependent corals in the deepest half of the photic zone at depths of 30 - 150 m provide a unique opportunity to study the limits of the interactions between corals and endosymbiotic dinoflagellates in the genus Symbiodinium. We sampled Leptoseris spp. in Hawaii via manned submersibles across a depth range of 67 - 100 m. Both the host and Symbiodinium communities were genotyped, using a non-coding region of the mitochondrial ND5 intron (NAD5 and the nuclear ribosomal internal transcribed spacer region 2 (ITS2, respectively. Results Coral colonies harbored endosymbiotic communities dominated by previously identified shallow water Symbiodinium ITS2 types (C1_ AF333515, C1c_ AY239364, C27_ AY239379, and C1b_ AY239363 and exhibited genetic variability at mitochondrial NAD5. Conclusion This is one of the first studies to examine genetic diversity in corals and their endosymbiotic dinoflagellates sampled at the limits of the depth and light gradients for hermatypic corals. The results reveal that these corals associate with generalist endosymbiont types commonly found in shallow water corals and implies that the composition of the Symbiodinium community (based on ITS2 alone is not responsible for the dominance and broad depth distribution of Leptoseris spp. The level of genetic diversity detected in the coral NAD5 suggests that there is undescribed taxonomic diversity in the genus Leptoseris from Hawaii.

  10. Molecular Investigation of Francisella-Like Endosymbiont in Ticks and Francisella tularensis in Ixodid Ticks and Mosquitoes in Turkey.

    Science.gov (United States)

    Duzlu, Onder; Yildirim, Alparslan; Inci, Abdullah; Gumussoy, Kadir Semih; Ciloglu, Arif; Onder, Zuhal

    2016-01-01

    This study was carried out to investigate the molecular prevalence of Francisella-like endosymbionts (FLEs) and Francisella tularensis in ticks (Acari: Ixodidae) and mosquitoes in Turkey. Genomic DNA pools were constructed from a total of 1477 adult hard ticks of Rhipicephalus (Rh.) annulatus, Rh. turanicus, Rh. sanguineus, Rh. bursa, Haemaphysalis (Hae.) parva, Hae. sulcata, Hyalomma marginatum marginatum, H. anatolicum anatolicum, H. anatolicum excavatum, H. detritum detritum, H. dromedarii, Dermacentor marginatus, and Ixodes ricinus species, which were collected from several barns, cattle, and people. Genomic DNA was also extracted from pools consisting of 6203 adult female mosquito species belonging to Aedes vexans, Culex (Cx.) pipiens, Cx. hortensis, Cx. theileri, Culiseta annulata, and Anopheles maculipennis species. Conventional PCR and TaqMan probe-based real- time PCR targeting the 16S rRNA gene for FLEs and the lpnA gene for F. tularensis, respectively, were performed on the DNA isolates obtained. FLEs and F. tularensis were not found in any genomic DNA pools constructed from ixodid ticks and mosquitos. This study represents the first investigation of F. tularensis and FLEs in potential vector ticks and mosquitoes by molecular methods in Turkey. The present study provides useful insights into the molecular epidemiology of F. tularensis and FLEs. One of the major conclusions of the study is that tularemia outbreaks may be essentially due to direct transmission from the environment (especially from water) in Turkey and not to vector-borne transmission.

  11. Molecular Investigation of Francisella-Like Endosymbiont in Ticks and Francisella tularensis in Ixodid Ticks and Mosquitoes in Turkey.

    Science.gov (United States)

    Duzlu, Onder; Yildirim, Alparslan; Inci, Abdullah; Gumussoy, Kadir Semih; Ciloglu, Arif; Onder, Zuhal

    2016-01-01

    This study was carried out to investigate the molecular prevalence of Francisella-like endosymbionts (FLEs) and Francisella tularensis in ticks (Acari: Ixodidae) and mosquitoes in Turkey. Genomic DNA pools were constructed from a total of 1477 adult hard ticks of Rhipicephalus (Rh.) annulatus, Rh. turanicus, Rh. sanguineus, Rh. bursa, Haemaphysalis (Hae.) parva, Hae. sulcata, Hyalomma marginatum marginatum, H. anatolicum anatolicum, H. anatolicum excavatum, H. detritum detritum, H. dromedarii, Dermacentor marginatus, and Ixodes ricinus species, which were collected from several barns, cattle, and people. Genomic DNA was also extracted from pools consisting of 6203 adult female mosquito species belonging to Aedes vexans, Culex (Cx.) pipiens, Cx. hortensis, Cx. theileri, Culiseta annulata, and Anopheles maculipennis species. Conventional PCR and TaqMan probe-based real- time PCR targeting the 16S rRNA gene for FLEs and the lpnA gene for F. tularensis, respectively, were performed on the DNA isolates obtained. FLEs and F. tularensis were not found in any genomic DNA pools constructed from ixodid ticks and mosquitos. This study represents the first investigation of F. tularensis and FLEs in potential vector ticks and mosquitoes by molecular methods in Turkey. The present study provides useful insights into the molecular epidemiology of F. tularensis and FLEs. One of the major conclusions of the study is that tularemia outbreaks may be essentially due to direct transmission from the environment (especially from water) in Turkey and not to vector-borne transmission. PMID:26741324

  12. Long-range dispersal and high-latitude environments influence the population structure of a "stress-tolerant" dinoflagellate endosymbiont.

    Directory of Open Access Journals (Sweden)

    D Tye Pettay

    Full Text Available The migration and dispersal of stress-tolerant symbiotic dinoflagellates (genus Symbiodinium may influence the response of symbiotic reef-building corals to a warming climate. We analyzed the genetic structure of the stress-tolerant endosymbiont, Symbiodinium glynni nomen nudum (ITS2 - D1, obtained from Pocillopora colonies that dominate eastern Pacific coral communities. Eleven microsatellite loci identified genotypically diverse populations with minimal genetic subdivision throughout the Eastern Tropical Pacific, encompassing 1000's of square kilometers from mainland Mexico to the Galapagos Islands. The lack of population differentiation over these distances corresponds with extensive regional host connectivity and indicates that Pocillopora larvae, which maternally inherit their symbionts, aid in the dispersal of this symbiont. In contrast to its host, however, subtropical populations of S. glynni in the Gulf of California (Sea of Cortez were strongly differentiated from populations in tropical eastern Pacific. Selection pressures related to large seasonal fluctuations in temperature and irradiance likely explain this abrupt genetic discontinuity. We infer that S. glynni genotypes harbored by host larvae arriving from more southern locations are rapidly replaced by genotypes adapted to more temperate environments. The strong population structure of S. glynni corresponds with fluctuating environmental conditions and suggests that these genetically diverse populations have the potential to evolve rapidly to changing environments and reveals the importance of environmental extremes in driving microbial eukaryote (e.g., plankton speciation in marine ecosystems.

  13. Effects of a sex-ratio distorting endosymbiont on mtDNA variation in a global insect pest

    Science.gov (United States)

    Delgado, Ana M; Cook, James M

    2009-01-01

    Background Patterns of mtDNA variation within a species reflect long-term population structure, but may also be influenced by maternally inherited endosymbionts, such as Wolbachia. These bacteria often alter host reproductive biology and can drive particular mtDNA haplotypes through populations. We investigated the impacts of Wolbachia infection and geography on mtDNA variation in the diamondback moth, a major global pest whose geographic distribution reflects both natural processes and transport via human agricultural activities. Results The mtDNA phylogeny of 95 individuals sampled from 10 countries on four continents revealed two major clades. One contained only Wolbachia-infected individuals from Malaysia and Kenya, while the other contained only uninfected individuals, from all countries including Malaysia and Kenya. Within the uninfected group was a further clade containing all individuals from Australasia and displaying very limited sequence variation. In contrast, a biparental nuclear gene phylogeny did not have infected and uninfected clades, supporting the notion that maternally-inherited Wolbachia are responsible for the mtDNA pattern. Only about 5% (15/306) of our global sample of individuals was infected with the plutWB1 isolate and even within infected local populations, many insects were uninfected. Comparisons of infected and uninfected isofemale lines revealed that plutWB1 is associated with sex ratio distortion. Uninfected lines have a 1:1 sex ratio, while infected ones show a 2:1 female bias. Conclusion The main correlate of mtDNA variation in P. xylostella is presence or absence of the plutWB1 infection. This is associated with substantial sex ratio distortion and the underlying mechanisms deserve further study. In contrast, geographic origin is a poor predictor of moth mtDNA sequences, reflecting human activity in moving the insects around the globe. The exception is a clade of Australasian individuals, which may reflect a bottleneck during

  14. Effects of a sex-ratio distorting endosymbiont on mtDNA variation in a global insect pest

    Directory of Open Access Journals (Sweden)

    Cook James M

    2009-03-01

    Full Text Available Abstract Background Patterns of mtDNA variation within a species reflect long-term population structure, but may also be influenced by maternally inherited endosymbionts, such as Wolbachia. These bacteria often alter host reproductive biology and can drive particular mtDNA haplotypes through populations. We investigated the impacts of Wolbachia infection and geography on mtDNA variation in the diamondback moth, a major global pest whose geographic distribution reflects both natural processes and transport via human agricultural activities. Results The mtDNA phylogeny of 95 individuals sampled from 10 countries on four continents revealed two major clades. One contained only Wolbachia-infected individuals from Malaysia and Kenya, while the other contained only uninfected individuals, from all countries including Malaysia and Kenya. Within the uninfected group was a further clade containing all individuals from Australasia and displaying very limited sequence variation. In contrast, a biparental nuclear gene phylogeny did not have infected and uninfected clades, supporting the notion that maternally-inherited Wolbachia are responsible for the mtDNA pattern. Only about 5% (15/306 of our global sample of individuals was infected with the plutWB1 isolate and even within infected local populations, many insects were uninfected. Comparisons of infected and uninfected isofemale lines revealed that plutWB1 is associated with sex ratio distortion. Uninfected lines have a 1:1 sex ratio, while infected ones show a 2:1 female bias. Conclusion The main correlate of mtDNA variation in P. xylostella is presence or absence of the plutWB1 infection. This is associated with substantial sex ratio distortion and the underlying mechanisms deserve further study. In contrast, geographic origin is a poor predictor of moth mtDNA sequences, reflecting human activity in moving the insects around the globe. The exception is a clade of Australasian individuals, which may

  15. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization.

    Science.gov (United States)

    Jones, A M; Berkelmans, R; van Oppen, M J H; Mieog, J C; Sinclair, W

    2008-06-22

    The symbiosis between reef-building corals and their algal endosymbionts (zooxanthellae of the genus Symbiodinium) is highly sensitive to temperature stress, which makes coral reefs vulnerable to climate change. Thermal tolerance in corals is known to be substantially linked to the type of zooxanthellae they harbour and, when multiple types are present, the relative abundance of types can be experimentally manipulated to increase the thermal limits of individual corals. Although the potential exists for this to translate into substantial thermal acclimatization of coral communities, to date there is no evidence to show that this takes place under natural conditions. In this study, we show field evidence of a dramatic change in the symbiont community of Acropora millepora, a common and widespread Indo-Pacific hard coral species, after a natural bleaching event in early 2006 in the Keppel Islands (Great Barrier Reef). Before bleaching, 93.5% (n=460) of the randomly sampled and tagged colonies predominantly harboured the thermally sensitive Symbiodinium type C2, while the remainder harboured a tolerant Symbiodinium type belonging to clade D or mixtures of C2 and D. After bleaching, 71% of the surviving tagged colonies that were initially C2 predominant changed to D or C1 predominance. Colonies that were originally C2 predominant suffered high mortality (37%) compared with D-predominant colonies (8%). We estimate that just over 18% of the original A. millepora population survived unchanged leaving 29% of the population C2 and 71% D or C1 predominant six months after the bleaching event. This change in the symbiont community structure, while it persists, is likely to have substantially increased the thermal tolerance of this coral population. Understanding the processes that underpin the temporal changes in symbiont communities is key to assessing the acclimatization potential of reef corals.

  16. 棘阿米巴CB/S1内共生细菌的超微结构%Ultrastructure of Endosymbiont of Acanthamoeba sp.CB/S1 Isolated from Soil of China

    Institute of Scientific and Technical Information of China (English)

    延根; 郑善子; 玄英花

    2012-01-01

    目的:观察棘阿米巴内共生细菌的超微结构.方法:用地衣红-卡红染色确认棘阿米巴土壤分离株CB/S1内存在共生细菌,在透射电镜下观察其超微结构.结果:透射电镜下可见在棘阿米巴胞质内不规则分布的共生细菌,呈棒状,具有双层膜,膜外附着许多棘阿米巴宿主的核糖体.结论:内共生细菌的存在对宿主阿米巴的结构没有引起特殊的改变.%Objective: To observe the ultrastructure of bacterial endosymbiont of Acanthamoeba sp. CB/ SI. Methods; The endosymbionts of Acanthamoeba CB/S1 isolated from soil of China were characterized by orcein-stain under transmission electron microscopic examination. Results: Double membrane bound and rod-shaped endosymbionts were randomly distributed in trophozoites of Acanthamoeba isolate. The bacterial cell walls of endosymbionts of Acanthamoeba CB/S1 were studded with host ribosomes. Conclusion: Rode-shaped endosymbionts were randomly distributed within the cytoplasm of trophozoite of Acanthamoeba sp. CB/S1. The endosymbionts have double membranes, and the bacterial cell surfaces are studded with a number of host cell ribosomes. No specific feature could be observed within the amoeba.

  17. MID TERM ASSESSMENT OF MASS DRUG ADMINISTRATION IN LYMPHATIC FILARIASIS ENDEMIC AREA OF DAMOH AND SAGAR DISTRICT OF MADHYA PRADESH

    OpenAIRE

    Mohan; Yash; Ankur

    2015-01-01

    BACKGROUND: Lymphatic filariasis caused by Wuchereria bancrofti and Brugia malayi is an important public health problem in India. Filariasis is a major social and the fourth most common cause of disability all over the globe. Filariasis is endemic in 17 States and six Union Territories, with about 553 million people at risk of infection...

  18. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission.

    Science.gov (United States)

    Cilia, M; Tamborindeguy, C; Fish, T; Howe, K; Thannhauser, T W; Gray, S

    2011-03-01

    Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid

  19. The Transcriptome of Bathymodiolus azoricus Gill Reveals Expression of Genes from Endosymbionts and Free-Living Deep-Sea Bacteria

    Directory of Open Access Journals (Sweden)

    Raul Bettencourt

    2012-08-01

    Full Text Available Deep-sea environments are largely unexplored habitats where a surprising number of species may be found in large communities, thriving regardless of the darkness, extreme cold, and high pressure. Their unique geochemical features result in reducing environments rich in methane and sulfides, sustaining complex chemosynthetic ecosystems that represent one of the most surprising findings in oceans in the last 40 years. The deep-sea Lucky Strike hydrothermal vent field, located in the Mid Atlantic Ridge, is home to large vent mussel communities where Bathymodiolus azoricus represents the dominant faunal biomass, owing its survival to symbiotic associations with methylotrophic or methanotrophic and thiotrophic bacteria. The recent transcriptome sequencing and analysis of gill tissues from B. azoricus revealed a number of genes of bacterial origin, hereby analyzed to provide a functional insight into the gill microbial community. The transcripts supported a metabolically active microbiome and a variety of mechanisms and pathways, evidencing also the sulfur and methane metabolisms. Taxonomic affiliation of transcripts and 16S rRNA community profiling revealed a microbial community dominated by thiotrophic and methanotrophic endosymbionts of B. azoricus and the presence of a Sulfurovum-like epsilonbacterium.

  20. 'Candidatus Adiutrix intracellularis', an endosymbiont of termite gut flagellates, is the first representative of a deep-branching clade of Deltaproteobacteria and a putative homoacetogen.

    Science.gov (United States)

    Ikeda-Ohtsubo, Wakako; Strassert, Jürgen F H; Köhler, Tim; Mikaelyan, Aram; Gregor, Ivan; McHardy, Alice C; Tringe, Susannah Green; Hugenholtz, Phil; Radek, Renate; Brune, Andreas

    2016-09-01

    Termite gut flagellates are typically colonized by specific bacterial symbionts. Here we describe the phylogeny, ultrastructure and subcellular location of 'Candidatus Adiutrix intracellularis', an intracellular symbiont of Trichonympha collaris in the termite Zootermopsis nevadensis. It represents a novel, deep-branching clade of uncultured Deltaproteobacteria widely distributed in intestinal tracts of termites and cockroaches. Fluorescence in situ hybridization and transmission electron microscopy localized the endosymbiont near hydrogenosomes in the posterior part and near the ectosymbiont 'Candidatus Desulfovibrio trichonymphae' in the anterior part of the host cell. The draft genome of 'Ca. Adiutrix intracellularis' obtained from a metagenomic library revealed the presence of a complete gene set encoding the Wood-Ljungdahl pathway, including two homologs of fdhF encoding hydrogenase-linked formate dehydrogenases (FDHH ) and all other components of the recently described hydrogen-dependent carbon dioxide reductase (HDCR) complex, which substantiates previous claims that the symbiont is capable of reductive acetogenesis from CO2 and H2 . The close phylogenetic relationship between the HDCR components and their homologs in homoacetogenic Firmicutes and Spirochaetes suggests that the deltaproteobacterium acquired the capacity for homoacetogenesis via lateral gene transfer. The presence of genes for nitrogen fixation and the biosynthesis of amino acids and cofactors indicate the nutritional nature of the symbiosis. PMID:26914459

  1. Vigna unguiculata is nodulated in Spain by endosymbionts of Genisteae legumes and by a new symbiovar (vignae) of the genus Bradyrhizobium.

    Science.gov (United States)

    Bejarano, Ana; Ramírez-Bahena, Martha-Helena; Velázquez, Encarna; Peix, Alvaro

    2014-10-01

    Vigna unguiculata was introduced into Europe from its distribution centre in Africa, and it is currently being cultivated in Mediterranean regions with adequate edapho-climatic conditions where the slow growing rhizobia nodulating this legume have not yet been studied. Previous studies based on rrs gene and ITS region analyses have shown that Bradyrhizobium yuanmingense and B. elkanii nodulated V. unguiculata in Africa, but these two species were not found in this study. Using the same phylogenetic markers it was shown that V. unguiculata, a legume from the tribe Phaseolae, was nodulated in Spain by two species of group I, B. cytisi and B. canariense, which are common endosymbionts of Genisteae in both Europe and Africa. These species have not been found to date in V. unguiculata nodules in its African distribution centres. All strains from Bradyrhizobium group I isolated in Spain belonged to the symbiovar genistearum, which is found at present only in Genisteae legumes in both Africa and Europe. V. unguiculata was also nodulated in Spain by a strain from Bradyrhizobium group II that belonged to a novel symbiovar (vignae). Some African V. unguiculata-nodulating strains also belonged to this proposed new symbiovar. PMID:24867807

  2. Coxiella-like endosymbiont in argasid ticks (Ornithodoros muesebecki) from a Socotra Cormorant colony in Umm Al Quwain, United Arab Emirates.

    Science.gov (United States)

    Al-Deeb, Mohammad A; Frangoulidis, Dimitrios; Walter, Mathias C; Kömpf, Daniela; Fischer, Silke F; Petney, Trevor; Muzaffar, Sabir Bin

    2016-02-01

    Coxiella burnetii is a pathogen causing Q fever in domestic animals and humans. Seabirds have been implicated as possible reservoirs of this bacterium in the Arabian Gulf and in the Western Indian Ocean. Recently, Coxiella species closely related to C. burnetii was detected from ticks collected from oil rigs used as roosting areas by Socotra Cormorants (Phalacrocorax nigrogularis) in the western Arabian Gulf. We collected ticks from the largest breeding colony of Socotra Cormorants in the United Arab Emirates on the eastern extreme of the species' breeding range to determine the prevalence of C. burnetii and evaluate its role as a wild reservoir. All ticks were identified as Ornithodoros muesebecki and genomic DNA was extracted from larval and nymph/adult tick pools. Multiplex PCR tests were performed targeting three C. burnetii specific genes. C. burnetii was not detected although a Coxiella-like endosymbiont was identified that was closely related to Coxiella symbionts from Ornithodoros capensis ticks. Because domestic and wild ungulates are the primary source of C. burnetii, we suggest that the presence of free-ranging, native and non-native ungulates in some off-shore islands in the Arabian Gulf could disseminate C. burnetii to seabirds. More comprehensive studies on seabird colonies are needed to better understand the diversity and prevalence of Coxiella symbionts and to establish if C. burnetii is endemic on some of these islands.

  3. Can the tight co-speciation between reed beetles (Col., Chrysomelidae, Donaciinae) and their bacterial endosymbionts, which provide cocoon material, clarify the deeper phylogeny of the hosts?

    Science.gov (United States)

    Kölsch, Gregor; Pedersen, Bo V

    2010-03-01

    In most mutualistic symbioses of insects and intracellular bacteria, the endosymbionts provide additional nutrients to a host that feeds on an unbalanced diet. A strictly vertical transmission leads to co-speciation between the two partners. We have investigated an insect-bacteria relationship with a non-nutritional basis. The reed beetles (Donaciinae) harbor bacteria that produce a secretion used by the larvae for building a cocoon for pupation in mud underwater. The 16S rRNA of the bacteria and the cytochrome c oxidase I and elongation factor 1alpha of the beetles have been partially sequenced. The bacterial and the host phylogeny were highly congruent. Larger taxonomic units (genera) and host species groups/pairs have been recovered in the bacterial phylogeny. The symbiont data still cannot clarify the hitherto unresolved deeper phylogeny of the hosts, which is interpreted as a sign of rapid adaptive radiation of the reed beetles soon after their origin. The rate of sequence evolution among/within host species is discussed.

  4. Cloning and sequence analysis of partial genomic DNA coding for HtrA-type serine protease of Wolbachia from human lymphatic filarial parasite, Wuchereria bancrofti

    Science.gov (United States)

    Dhamodharan, R; Hoti, SL; Sivapragasam, G; Das, MK

    2011-01-01

    Background: Periplasmic serine proteases of HtrA type of Wolbachia have been shown to play a role in the pathogenesis of filarial disease. Aims: This study was aimed to sequence Wb-HtrA serine protease and analyze its phylogenetic position by comparing with other filarial and non-filarial nematode homologs. Materials and Methods: Partial HtrA gene fragment was amplified from DNA isolated from periodic and sub-periodic Wuchereria bancrofti parasites collected from Pondicherry and Nicobar islands, respectively. The amplicons were sequenced, and sequence homology and phylogenetic relationship with other filarial and non-filarial nematodes were analyzed. Results: Partial orthologue of HtrA-type serine protease from Wolbachia of W. bancrofti was amplified, cloned and sequenced. The deduced amino acid sequence exhibited 87%, 81% and 74% identity with the homologous Wolbachia proteases identified from Brugia malayi, Onchocerca volvulus and Drosophila melanogaster, respectively. The Wb-HtrA has arthologues in several proteobacteria with very high homology and hence is highly conserved not only among Wolbachia of filarial parasites but also across proteobacteria. The phylogenetic tree constructed using Neighbor-Joining method showed two main clusters: cluster-I containing bacteria that dwell in diverse habitats such as soil, fresh and marine waters and plants and cluster-II comprising Anaplasma sp. and Erlichia, and Wolbachia endosymbionts of insects and nematodes, in distinct groups. Conclusions: HtrA-type serine protease from Wolbachia of W. bancrofti is highly conserved among filarial parasites. It will be of interest to know whether filarial Wolbachia HtrA type of serine protease might influence apoptosis and lymphatic epithelium, thereby playing a role in the filarial pathogenesis. Such information will be useful for identifying targets for the development of newer drugs for filariasis treatment, especially for preventing lymphatic pathology. PMID:23508470

  5. "Filarial dance sign" real-time ultrasound diagnosis of filarial oophoritis.

    Science.gov (United States)

    Panditi, Surekha; Shelke, Ashwini G; Thummalakunta, Laxmi Narasimha Praveen

    2016-10-01

    Filariasis is a parasitic disease caused by Filarial nematodes (Wuchereria bancrofti, Brugia malayi, and Brugia timori) that commonly causes lymphatic obstruction resulting in edema and increase in the size of the affected organ. Filariasis is diagnosed by identifying microfilariae on Giemsa stain. The immunochromatographic card test is diagnostic. Ultrasound is the imaging modality of choice for detecting adult filarial worms/microfilaria in the lymphatic system, which are responsible for the classic "filarial dance sign" caused by twirling movements of the microfilariae. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 44:500-501, 2016. PMID:27130361

  6. ASPEK ZOONOTIK PARASIT NEMATODA PADA KERA DAN BINATANG MENGERAT DI BENGKULU, SUMATERA. INDONESIA

    Directory of Open Access Journals (Sweden)

    Untung S.

    2012-09-01

    Full Text Available Twentyfive monkeys and 481 rats were examined for parasitic nematodes in Bengkulu, nine species of nematode were found infecting these animals. Five of filarían nematodes, i.e. Brugia malayi, Brugia pahangi, Dirofilaria magnilarvatum and Edesonfilaria malayensis were infecting monkeys and one speciesTBreinlia booliati, was found infecting rats. Three species of gastrointestinal helminths, i.e. Trichuris trichiura, Enterobius vermicularis and Oestophagomomum spp were found in monkeys; a lung worm, Angiostrongylus cantonensis, was found in rats. The most important nematode species is B. malayi, which was found in Presbytis cristatus (36.8 % and in Macaca fascicularis (20.0 %. T. trichiura was found in R. cristatus (47.9 % and A. cantonensis in Rattus argentiventer (4.0 % and Rattus tiomanicus (2.9%.

  7. ROLE OF FINE NEEDLE ASPIRATION CYTOLOGY (FNAC) IN DIAGNOSIS OF ASYMPTOMATIC MICROFILARIASIS

    OpenAIRE

    Reena; Rajesh; Nitin

    2015-01-01

    Filariasis is a tropical and subtropical disease caused by Wuchereria Bancrofti and Brugia Malayi and transmitted by Culex mosquito. Lymphatic Filariasis is a major health problem in countries like India, China, Indonesia, and Africa. Diagnosis of Filari a is done by conventional methods like peripheral blood smear examination, Fluorescent capillary method and filarial antigen detection by Rapid card method. Here we present four unusual cases with swellings presented in surg...

  8. A review of the complexity of biology of lymphatic filarial parasites

    OpenAIRE

    K. P. Paily; Hoti, S. L.; Das, P K

    2009-01-01

    There are about five more common, including Wuchereria bancrofti and Brugia malayi, and four less common filarial parasites infecting human. Genetic analysis of W. bancrofti populations in India showed that two strains of the species are prevalent in the country. The adult filarial parasites are tissue specific in the human host and their embryonic stage, called microfilariae (mf), are found in the blood or skin of the host, depending upon the species of the parasite. Three genetically determ...

  9. Multiplex Bead Assay for Serum Samples from Children in Haiti Enrolled in a Drug Study for the Treatment of Lymphatic Filariasis

    OpenAIRE

    Moss, Delynn M.; Priest, Jeffrey W.; Boyd, Alexis; Weinkopff, Tiffany; Kucerova, Zuzana; Beach, Michael J.; Lammie, Patrick J

    2011-01-01

    A multiplex bead assay (MBA) was used to analyze serum samples collected longitudinally from children enrolled in a drug trial for treatment of filariasis in Leogane, Haiti. Recombinant antigens Bm14 and Bm33 from Brugia malayi, third polar tube protein (PTP3) from Encephalitozoon cuniculi, and merozoite surface protein-119 (MSP-119) from Plasmodium falciparum were coupled to carboxylated polystyrene microspheres. IgG responses to PTP3 and MSP-119 were not affected by albendazole (ALB), dieth...

  10. Random Amplified Polymorphic DNA (RAPD) for differentiation between Thai and Myanmar strains of Wuchereria bancrofti

    OpenAIRE

    Nuchprayoon, Surang; Junpee, Alisa; Poovorawan, Yong

    2007-01-01

    Background Lymphatic filariasis (LF) is a mosquito-borne disease caused by mosquito-transmitted filarial nematodes, including Wuchereria bancrofti and Brugia malayi. The Lymphatic Filariasis Elimination Program in Thailand has reduced the prevalence of nocturnally subperiodic W. bancrofti (Thai strain), mainly transmitted by the Ochlerotatus (Aedes) niveus group in Thailand to 0.57/100,000 population. However, it is estimated that more than one million Myanmar migrants with high prevalence of...

  11. The complete mitochondrial genome sequence of the filarial nematode Wuchereria bancrofti from three geographic isolates provides evidence of complex demographic history

    OpenAIRE

    Ramesh, Akshaya; Small, Scott T; Kloos, Zachary A.; Kazura, James W; Nutman, Thomas B.; Serre, David; Zimmerman, Peter A

    2012-01-01

    Mitochondrial (mt) genome sequences have enabled comparison of population genetics and evolution for numerous free-living and parasitic nematodes. Here we define the complete mt genome of Wuchereria bancrofti through analysis of isolates from Papua New Guinea, India and West Africa. Sequences were assembled for each isolate and annotated with reference to the mt genome sequence for Brugia malayi. The length of the W. bancrofti mt genome is approximately 13,637 nucleotides, contains 2 ribosoma...

  12. Plasmodium knowlesi and Wuchereria bancrofti: Their Vectors and Challenges for the Future

    OpenAIRE

    Vythilingam, Indra

    2012-01-01

    Malaria and filariasis still continue to pose public health problems in developing countries of the tropics. Although plans are in progress for the elimination of both these parasitic vector borne diseases, we are now faced with a daunting challenge as we have a fifth species, Plasmodium knowlesi a simian malaria parasite affecting humans. Similarly in peninsular Malaysia, filariasis was mainly due to Brugia malayi. However, we now see cases of Wuchereria bancrofti in immigrant workers coming...

  13. Host protective immunity and vaccine development studies in lymphatic filariasis

    OpenAIRE

    Reddy, M. V. R.; Alli, R.; Harinath, B. C.

    2000-01-01

    Lymphatic filariasis caused mainly by infection fromWuchereria bancrofti andBrugia malayi remains as the major cause of clinical morbidity in tropical and subtropical countries. Development of vaccine against filarial infection can act as additional measure to the existing therapeutic and vector control methods in the control of this disease. The main hurdles in the development of anti-filarial vaccine are the strict primate specificity ofWuchereria bancrofti, the paucity of parasite material...

  14. Repurposing Auranofin as a Lead Candidate for Treatment of Lymphatic Filariasis and Onchocerciasis

    OpenAIRE

    Bulman, Christina A.; Bidlow, Chelsea M.; Sara Lustigman; Fidelis Cho-Ngwa; David Williams; Rascón, Alberto A; Nancy Tricoche; Moses Samje; Aaron Bell; Brian Suzuki; K C Lim; Nonglak Supakorndej; Prasit Supakorndej; Wolfe, Alan R.; Knudsen, Giselle M.

    2015-01-01

    Two major human diseases caused by filariid nematodes are onchocerciasis, or river blindness, and lymphatic filariasis, which can lead to elephantiasis. The drugs ivermectin, diethylcarbamazine (DEC), and albendazole are used in control programs for these diseases, but are mainly effective against the microfilarial stage and have minimal or no effect on adult worms. Adult Onchocerca volvulus and Brugia malayi worms (macrofilariae) can live for up to 15 years, reproducing and allowing the infe...

  15. Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis

    OpenAIRE

    Joseph, SK; Ramaswamy, K.

    2013-01-01

    The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to...

  16. Role of fine needle aspiration cytology in diagnosing filarial arm cysts

    OpenAIRE

    Tandon, Nishi; Bansal, Cherry; Sharma, Richa; Irfan, Sumaiya

    2013-01-01

    Filariasis is prevalent in tropical and subtropical areas and is endemic in regions of India. Lymphatic filariasis in India is caused mainly by two species of nematodes: Wuchereria bancrofti and Brugia malayi, which invade the human lymphatic system. We report two cases of superficial cystic lesions of the upper limb revealed on fine needle aspiration (FNA) to be clinically unsuspected filariasis. Despite similar aetiologies, both cases revealed variations in aspirate nature, smear morphology...

  17. Characterizing Ancylostoma caninum transcriptome and exploring nematode parasitic adaptation

    OpenAIRE

    Hawdon John; Wilson Richard K; Martin John; Abubucker Sahar; Wang Zhengyuan; Mitreva Makedonka

    2010-01-01

    Abstract Background Hookworm infection is one of the most important neglected diseases in developing countries, with approximately 1 billion people infected worldwide. To better understand hookworm biology and nematode parasitism, the present study generated a near complete transcriptome of the canine hookworm Ancylostoma caninum to a very high coverage using high throughput technology, and compared it to those of the free-living nematode Caenorhabditis elegans and the parasite Brugia malayi....

  18. A genomic island present along the bacterial chromosome of the Parachlamydiaceae UWE25, an obligate amoebal endosymbiont, encodes a potentially functional F-like conjugative DNA transfer system

    Directory of Open Access Journals (Sweden)

    Guy Lionel

    2004-12-01

    Full Text Available Abstract Background The genome of Protochlamydia amoebophila UWE25, a Parachlamydia-related endosymbiont of free-living amoebae, was recently published, providing the opportunity to search for genomic islands (GIs. Results On the residual cumulative G+C content curve, a G+C-rich 19-kb region was observed. This sequence is part of a 100-kb chromosome region, containing 100 highly co-oriented ORFs, flanked by two 17-bp direct repeats. Two identical gly-tRNA genes in tandem are present at the proximal end of this genetic element. Several mobility genes encoding transposases and bacteriophage-related proteins are located within this chromosome region. Thus, this region largely fulfills the criteria of GIs. The G+C content analysis shows that several modules compose this GI. Surprisingly, one of them encodes all genes essential for F-like conjugative DNA transfer (traF, traG, traH, traN, traU, traW, and trbC, involved in sex pilus retraction and mating pair stabilization, strongly suggesting that, similarly to the other F-like operons, the parachlamydial tra unit is devoted to DNA transfer. A close relatedness of this tra unit to F-like tra operons involved in conjugative transfer is confirmed by phylogenetic analyses performed on concatenated genes and gene order conservation. These analyses and that of gly-tRNA distribution in 140 GIs suggest a proteobacterial origin of the parachlamydial tra unit. Conclusions A GI of the UWE25 chromosome encodes a potentially functional F-like DNA conjugative system. This is the first hint of a putative conjugative system in chlamydiae. Conjugation most probably occurs within free-living amoebae, that may contain hundreds of Parachlamydia bacteria tightly packed in vacuoles. Such a conjugative system might be involved in DNA transfer between internalized bacteria. Since this system is absent from the sequenced genomes of Chlamydiaceae, we hypothesize that it was acquired after the divergence between

  19. Improved resolution of reef-coral endosymbiont (Symbiodinium species diversity, ecology, and evolution through psbA non-coding region genotyping.

    Directory of Open Access Journals (Sweden)

    Todd C LaJeunesse

    Full Text Available Ribosomal DNA sequence data abounds from numerous studies on the dinoflagellate endosymbionts of corals, and yet the multi-copy nature and intragenomic variability of rRNA genes and spacers confound interpretations of symbiont diversity and ecology. Making consistent sense of extensive sequence variation in a meaningful ecological and evolutionary context would benefit from the application of additional genetic markers. Sequences of the non-coding region of the plastid psbA minicircle (psbA(ncr were used to independently examine symbiont genotypic and species diversity found within and between colonies of Hawaiian reef corals in the genus Montipora. A single psbA(ncr haplotype was recovered in most samples through direct sequencing (~80-90% and members of the same internal transcribed spacer region 2 (ITS2 type were phylogenetically differentiated from other ITS2 types by substantial psbA(ncr sequence divergence. The repeated sequencing of bacterially-cloned fragments of psbA(ncr from samples and clonal cultures often recovered a single numerically common haplotype accompanied by rare, highly-similar, sequence variants. When sequence artifacts of cloning and intragenomic variation are factored out, these data indicate that most colonies harbored one dominant Symbiodinium genotype. The cloning and sequencing of ITS2 DNA amplified from these same samples recovered numerically abundant variants (that are diagnostic of distinct Symbiodinium lineages, but also generated a large amount of sequences comprising PCR/cloning artifacts combined with ancestral and/or rare variants that, if incorporated into phylogenetic reconstructions, confound how small sequence differences are interpreted. Finally, psbA(ncr sequence data from a broad sampling of Symbiodinium diversity obtained from various corals throughout the Indo-Pacific were concordant with ITS lineage membership (defined by denaturing gradient gel electrophoresis screening, yet exhibited

  20. A PRELIMINARY STUDY OF MALAYAN FILARIASIS IN PUDING VILLAGE, JAMBI PROVINCE (SUMATERA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Sudomo M.

    2012-09-01

    Full Text Available Beberapa daerah di Propinsi Jambi akan dikembangkan menjadi daerah transmigrasi, satu di antara­nya adalah daerah Kumpeh yang terletak berdekatan dengan daerah endemik filariasis malayi. Desa yang paling dekat dengan lokasi transmigrasi tersebut adalah desa Puding. Penelitian pendahuluan tentang penyakit filariasis telah dikerjakan di desa Puding untuk mengetahui tingkat endemisitas, periodisitas B. malayi, fauna nyamuk, jenis nyamuk yang potensial menjadi vektor filariasis, hospes reservoir dan keadaan sosial-ekonomi-budaya penduduk setempat. Mf rate pada penduduk desa Puding adalah 18,7% dan dari B. malayi jenis subperiodiknokturna. Nyamuk yang tertangkap terdiri dari enam genera yaitu genus Anopheles, Aedes, Culex, Coquilletidia, Mansonia dan Tripteroides. Dari enam genera tersebut yang potensial untuk menjadi vektor filariasis adalah genus Mansonia dan ini didukung dengan diketemukannyd larva stadium L3 (infektif Brugia sp di tubuh nyamuk tersebut. Keadaan sosial-ekonomi-budaya, khususnya menyangkut adat istiadat dan kebiasaan penduduk setempat, telah dipelajari.

  1. Diagnosis of brugian filariasis by loop-mediated isothermal amplification.

    Directory of Open Access Journals (Sweden)

    Catherine B Poole

    Full Text Available In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis.

  2. Diagnosis of brugian filariasis by loop-mediated isothermal amplification.

    Science.gov (United States)

    Poole, Catherine B; Tanner, Nathan A; Zhang, Yinhua; Evans, Thomas C; Carlow, Clotilde K S

    2012-01-01

    In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis.

  3. Diagnosis of brugian filariasis by loop-mediated isothermal amplification.

    Science.gov (United States)

    Poole, Catherine B; Tanner, Nathan A; Zhang, Yinhua; Evans, Thomas C; Carlow, Clotilde K S

    2012-01-01

    In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis. PMID:23272258

  4. 棘阿米巴土壤分离株CB/S1内共生细菌的16SrDNA序列分析%Sequence Analysis of 16S rDNA Gene of Endosymbiont of Acanthamoeba sp.CB/S1 Isolated from Soil

    Institute of Scientific and Technical Information of China (English)

    玄英花; 崔春权; 郑善子

    2011-01-01

    The endosymbiont of Acanthamoeba sp. CB/S1 was identified by orcein-carmine staining and 16S rDNA sequence analysis. The endosymbiont bacteria were rod-shaped and darkly stained, and irregularly localized within the cytoplasm. The length of the 16S rDNA was 1534 bp and its DNA sequence was closely related to those of Candidatus A moebophilus asiaticus and A canthamoeba sp. KA/E21 with 98% homology. Phylogenetic analysis showed that the endosymbiont of CB/S1,the endosymbiont of KA/E21, Candidatus Amoebophilus asiaticus, the endosymbiont of Ixodes scapularis , and the endosymbiont of Encarsia pergandiella constitute a monophyletic lineage in phylogenetic tree.%用地衣红-卡红染色进行共生菌的形态观察,鉴定棘阿米巴CB/S1内共生细菌.克隆内共生细菌的16S rDNA基因,进行基因序列分析.结果 表明,经地衣红-卡红染色棘阿米巴CB/S1内共生细菌呈黑色和棒状,在胞质内不规则分布.棘阿米巴CB/S1内共生细菌的16S rDNA基因长1 534 bp,与类亚洲嗜阿米巴杆菌(Candidatus Amoebophilus asiaticus 5a2)和韩国棘阿米巴分离株 KA/E21内共生细菌的16S rDNA基因的同源性均为98%.进化树分析表明,棘阿米巴CB/S1内共生细菌与韩国棘阿米巴KA/E21内共生细菌、类亚洲嗜阿米巴杆菌、黑脚硬蜱内共生细菌和伯恩蚜小蜂内共生细菌等细菌构成单系.

  5. Tissue partitioning of micro-essential metals in the vent bivalve Bathymodiolus azoricus and associated organisms (endosymbiont bacteria and a parasite polychaete) from geochemically distinct vents of the Mid-Atlantic Ridge

    Science.gov (United States)

    Kádár, Enikõ; Costa, Valentina; Santos, Ricardo S.; Powell, Jonathan J.

    2006-07-01

    Hydrothermal communities are built on highly specialised organisms possessing effective adaptation mechanisms to tolerate elevated levels of toxic heavy metals typical of these extreme habitats. Bioavailability and tissue compartmentalisation of micro-essential metals (Cu, Zn, and Fe) were investigated in the bivalve Bathymodiolus azoricus from three geochemically distinct hydrothermal vents (Rainbow, Lucky Strike, Menez Gwen). Additionally , in order to make inferences on the effect of biological interactions on the metal uptake, the bivalves' endosymbiont bacteria and commensal parasite Branchipolynoe seepensis were analysed for metal bioaccumulation. Micro-essential metal concentrations in byssus threads exceeded many-fold concentrations in the gill and digestive gland, which in turn were consistently one order of magnitude above levels measured in the mantle. In spite of its high metal concentrations, the byssus is unlikely to be an active bioaccumulator. Its high surface to mass ratio and its binding sites for metals suggest a reversible adsorption of micro-essential metals in the vent mussel. Inter-site comparison showed highest Fe concentrations in tissues of mussels from the Rainbow site, whereas Zn and Cu in all tissues were highest in mussels from the Lucky Strike site, reflecting metal concentrations in the water surrounding macro-invertebrates at these vent sites. The omnipresence of the commensal parasite polychaete in gills of B. azoricus from the Lucky Strike vent field, unlike the other sites, is suggested to be an adaptation to the typically elevated Fe concentrations in the water column near mussel beds. Unprecedented Fe concentrations measured in the digestive gland of mussels from the Rainbow site (4000 μg g - 1 , three times higher than levels in bivalves from polluted sites) call for further post-capture ecotoxicological investigations of potentially novel Fe-handling strategies. We provide the first information on the bioaccumulation

  6. Mosquito infection responses to developing filarial worms.

    Directory of Open Access Journals (Sweden)

    Sara M Erickson

    Full Text Available Human lymphatic filariasis is a mosquito-vectored disease caused by the nematode parasites Wuchereria bancrofti, Brugia malayi and Brugia timori. These are relatively large roundworms that can cause considerable damage in compatible mosquito vectors. In order to assess how mosquitoes respond to infection in compatible mosquito-filarial worm associations, microarray analysis was used to evaluate transcriptome changes in Aedes aegypti at various times during B. malayi development. Changes in transcript abundance in response to the different stages of B. malayi infection were diverse. At the early stages of midgut and thoracic muscle cell penetration, a greater number of genes were repressed compared to those that were induced (20 vs. 8. The non-feeding, intracellular first-stage larvae elicited few differences, with 4 transcripts showing an increased and 9 a decreased abundance relative to controls. Several cecropin transcripts increased in abundance after parasites molted to second-stage larvae. However, the greatest number of transcripts changed in abundance after larvae molted to third-stage larvae and migrated to the head and proboscis (120 induced, 38 repressed, including a large number of putative, immunity-related genes (approximately 13% of genes with predicted functions. To test whether the innate immune system of mosquitoes was capable of modulating permissiveness to the parasite, we activated the Toll and Imd pathway controlled rel family transcription factors Rel1 and Rel2 (by RNA interference knockdown of the pathway's negative regulators Cactus and Caspar during the early stages of infection with B. malayi. The activation of either of these immune signaling pathways, or knockdown of the Toll pathway, did not affect B. malayi in Ae. aegypti. The possibility of LF parasites evading mosquito immune responses during successful development is discussed.

  7. Phylogenetic Analyses of Three Genes of Pedinomonas noctilucae, the Green Endosymbiont of the Marine Dinoflagellate Noctiluca scintillans, Reveal its Affiliation to the Order Marsupiomonadales (Chlorophyta, Pedinophyceae) under the Reinstated Name Protoeuglena noctilucae.

    Science.gov (United States)

    Wang, Lu; Lin, Xin; Goes, Joaquim I; Lin, Senjie

    2016-04-01

    In the last decade, field studies in the northern Arabian Sea showed a drastic shift from diatom-dominated phytoplankton blooms to thick and widespread blooms of the green dinoflagellate, Noctiluca scintillans. Unlike the exclusively heterotrophic red form, which occurs widely in tropical to temperate coastal waters, the green Noctiluca contains a large number of endosymbiotic algal cells that can perform photosynthesis. These symbiotic microalgae were first described under the genus Protoeuglena Subrahmanyan and further transferred to Pedinomonas as P. noctilucae Sweeney. In this study, we used the 18S rDNA, rbcL and chloroplast 16S rDNA as gene markers, in combination with the previously reported morphological features, to re-examine the phylogenetic position of this endosymbiotic algal species. Phylogenetic trees inferred from these genes consistently indicated that P. noctilucae is distantly related to the type species of Pedinomonas. The sequences formed a monophyletic clade sister to the clade of Marsupiomonas necessitating the placement of the algal symbionts as an independent genus within the family Marsupiomonadaceae. Based on the phylogenetic affiliation and ecological characteristics of this alga as well as the priority rule of nomenclature, we reinstate the genus Protoeuglena and reclassify the endosymbiont as Protoeuglena noctilucae. PMID:27033730

  8. Midgut barrier imparts selective resistance to filarial worm infection in Culex pipiens pipiens.

    Directory of Open Access Journals (Sweden)

    Michelle L Michalski

    Full Text Available Mosquitoes in the Culex pipiens complex thrive in temperate and tropical regions worldwide, and serve as efficient vectors of Bancroftian lymphatic filariasis (LF caused by Wuchereria bancrofti in Asia, Africa, the West Indies, South America, and Micronesia. However, members of this mosquito complex do not act as natural vectors for Brugian LF caused by Brugia malayi, or for the cat parasite B. pahangi, despite their presence in South Asia where these parasites are endemic. Previous work with the Iowa strain of Culex pipiens pipiens demonstrates that it is equally susceptible to W. bancrofti as is the natural Cx. p. pipiens vector in the Nile Delta, however it is refractory to infection with Brugia spp. Here we report that the infectivity barrier for Brugia spp. in Cx. p. pipiens is the mosquito midgut, which inflicts internal and lethal damage to ingested microfilariae. Following per os Brugia exposures, the prevalence of infection is significantly lower in Cx. p. pipiens compared to susceptible mosquito controls, and differs between parasite species with <50% and <5% of Cx. p. pipiens becoming infected with B. pahangi and B. malayi, respectively. When Brugia spp. mf were inoculated intrathoracically to bypass the midgut, larvae developed equally well as in controls, indicating that, beyond the midgut, Cx. p. pipiens is physiologically compatible with Brugia spp. Mf isolated from Cx. p. pipiens midguts exhibited compromised motility, and unlike mf derived from blood or isolated from the midguts of Ae. aegypti, failed to develop when inoculated intrathoracically into susceptible mosquitoes. Together these data strongly support the role of the midgut as the primary infection barrier for Brugia spp. in Cx. p. pipiens. Examination of parasites recovered from the Cx. p. pipiens midgut by vital staining, and those exsheathed with papain, suggest that the damage inflicted by the midgut is subcuticular and disrupts internal tissues. Microscopic studies

  9. 2 case of lymphatico-calyceal fistula causing chyluria

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seoung Oh; Hong, Seung Mo; Park, Jae Hyung; Han, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1983-03-15

    After advent of lymphangiographic technique, the causes of chyluria can be evaluated by lymphangiography. The most common etiology known until today is parasitic origin, especially filariasis. In Korea, established organism of filariasis is Brugia malayi. And other nonparasitic etiologies such as retroperitoneal malignancy, chronic inflammatory diseases, trauma, pregnancy, aneurysm are very rate. The authors experienced two cases of lymphatico-calyceal fistulas causing chyluria demonstrated by lymphangiography. The etiology of these two cases were unknown exactly, but the clinical diagnosis were filariasis. These cases are reported with emphasis on the lymphangiographic findings of chyluria.

  10. A case report of Brugian filariasis outside an endemic area in Thailand.

    Science.gov (United States)

    Yokmek, S; Warunyuwong, W; Rojanapanus, S; Jiraamornimit, C; Boitano, J J; Wongkamchai, S

    2013-12-01

    A 2-year-old boy living outside the endemic area of lymphatic filariasis in Surat Thani Province, Thailand, developed a high fever. To investigate the cause of his presenting symptoms, blood was collected and microfilariae were detected and identified as Brugia malayi using thick blood smear staining. The sources of the infection were investigated. Microfilariae from two domestic cats residing in the boy's village were detected and identified as B. pahangi using a high-resolution melting real-time polymerase chain reaction analysis. The possible sources of this cryptic infection are discussed.

  11. ROLE OF FINE NEEDLE ASPIRATION CYTOLOGY (FNAC IN DIAGNOSIS OF ASYMPTOMATIC MICROFILARIASIS

    Directory of Open Access Journals (Sweden)

    Reena

    2015-05-01

    Full Text Available Filariasis is a tropical and subtropical disease caused by Wuchereria Bancrofti and Brugia Malayi and transmitted by Culex mosquito. Lymphatic Filariasis is a major health problem in countries like India, China, Indonesia, and Africa. Diagnosis of Filari a is done by conventional methods like peripheral blood smear examination, Fluorescent capillary method and filarial antigen detection by Rapid card method. Here we present four unusual cases with swellings presented in surgical outdoor and referred for FN AC. Our aim is to evaluate and emphasize the utility and importance of Fine Needle Aspiration in diagnosing Microfilarasis in clinically unsuspected cases.

  12. Endosymbiont detection and phylogeny of Wolbachia in Diaphorina citri and Dialeurodes citri%华南地区柑橘木虱与柑橘粉虱内共生菌检测及其Wolbachia共生菌的系统发育关系分析

    Institute of Scientific and Technical Information of China (English)

    孙秀新; 师沛琼; 许炜明; 覃振强; 任顺祥; 邱宝利

    2016-01-01

    [Objectives] To survey the infection rates of different symbiotic bacteria in different geographic populations of the citrus psyllid and citrus whitefly, and to analyze the phylogenetic relationships between different Wolbachia populations in order to provide endosymbiont-based scientific support for the continuous management of the citrus psyllid and citrus whitefly. [Methods] Endosymbionts in citrus psyllids from Guangzhou, Zhanjiang, Xiamen, Guilin and Nanning, and citrus whiteflies from Guangzhou, were detected using PCR. The phylogenetic relationships of Wolbachia were analyzed using a phylogenetic tree constructed with MEGA 5.0 based on the Wolbachia wsp and MLST genes detected in citrus psyllids and citrus whiteflies. [Results] All citrus psyllid and whitefly populations in the current study were infected with the primary endosymbiont Portiera and the secondary endosymbionts Wolbachia, Cardinium, Rickettsia, but infection rates of these three endosymbionts varied between different geographical populations. Arsenophonus was only detectable in Guangzhou and Zhanjiang psyllid populations. Phylogenetic analysis revealed that Wolbachia endosymbionts in all citrus psyllid and whitefly populations were very similar and belonged to the Con group of the Wolbachia B supergroup. [Conclusion] The species and infection rates of endosymbionts varied among different geographical populations of the citrus psyllid and whitefly. There is no apparent coevolutionary relationship between Wolbachia and its psyllid hosts. Indeed, the high homology of Wolbachia in different hosts suggests plant-mediated horizontal transmission of Wolbachia between different psyllid hosts.%【目的】探明不同地理种群的柑橘木虱Diaphorina citri Kuwayama和柑橘粉虱Dialeurodes citri Ashmead体内昆虫内共生菌的种类及其感染率,并以Wolbachia共生菌为代表,对其系统发育关系进行分析,为今后自共生菌角度研发柑橘木虱和柑橘粉虱的新型

  13. A comparative study of the removal of endosymbionts in Bemisia tabaci biotypes B and Q using three antibiotics%三种抗生素对B型和Q型烟粉虱内共生菌的去除效果比较研究

    Institute of Scientific and Technical Information of China (English)

    苏奇; 潘慧鹏; 王少丽; 吴青君; 徐宝云; 张友军

    2012-01-01

    利用烟粉虱Bemisia tabaci (Gennadius)内共生菌特异性引物,研究了内共生菌在B、Q型烟粉虱种群中的分布和感染率,同时评价了3种不同的抗生素利福平、氨苄青霉素和硫酸卡那霉素分别在3种不同的浓度下(100.0、50.0及25.0 μg/mL)对烟粉虱内共生菌的去除效果.结果表明:B、Q型烟粉虱原生内共生细菌Portiera 的带菌率均为100.0%;B、Q型烟粉虱次生内共生菌Hamiltonella的带菌率分别为91.7%和100.0%;B型烟粉虱次生内共生菌Rickettsia的带菌率为87.5%,Q型为0;其它次生内共生菌在B、Q型烟粉虱中均未检测到.利福平、氨苄青霉素和硫酸卡那霉素在3种不同的浓度下均不能去除B、Q型烟粉虱Portiera;利福平、氨苄青霉素在3种不同的浓度下均能完全去除B型烟粉虱Rickettsia,硫酸卡那霉素在不同浓度下去除Rickettsia的效果不同;3种抗生素去除Hamiltonella的能力受抗生素种类以及浓度的影响.同一抗生素在不同浓度下去除Hamiltonella的效果均是100.0 μg/mL >50.0 μg/mL >25.0 μg/mL;不同浓度的抗生素去除Hamiltonella的效果均是利福平>氨苄青霉素>硫酸卡那霉素,各浓度与各抗生素之间的去除Hamiltonella的效果均具有显著性差异.%A PCR survey of endosymbionts in one B and one Q Bemisia tabaci biotype was conducted. Kanamycin sulfate, ampicillin trihydrate, and rifampicin were used to investigate the sensitivity of endosymbionts in the two biotypes to antibiotics. The results show that 100% of all individuals of the both biotypes had Portiera. Hamiltonella was also found in both biotypes, with an infection frequency of 91. 7% and 100.0%, respectively. Rickettsia was only detected in 87.5% of the B biotype. Other endosymbionts including Wolbachia, Fritschea, Arsenophonus, and Cardinium were not detected in either biotype. The three antibiotics failed to eliminated Portiera from any individual of the B and Q biotypes

  14. In search of a potential diagnostic tool for molecular characterization of lymphatic filariasis.

    Science.gov (United States)

    Saeed, Mohd; Adnan, Mohd; Khan, Saif; Al-Shammari, Eyad; Mustafa, Huma

    2016-01-01

    Lymphatic filariasis (LF) is a chronic disease and is caused by the parasites Wuchereria bancrofti (W. bancrofti), Brugia malayi (B. malayi) and Brugia timori (B. timori). In the present study, Setaria cervi (S. cervi), a bovine filarial parasite has been used. Previously, it has been reported that the S. cervi shares some common proteins and antigenic determinants with that of human filarial parasite. The larval stages of filarial species usually cannot be identified by classical morphology. Hence, molecular characterization allows the identification of the parasites throughout all their developmental stages. The genomic DNA of S. cervi adult were isolated and estimated spectrophotometrically for the quantitative presence of DNA content. Screening of DNA sequences from filarial DNA GenBank and Expressed Sequence Tags (EST's) were performed for homologous sequences and then multiple sequence alignment was executed. The conserved sequences from multiple sequence alignment were used for In Silico primer designing. The successfully designed primers were used further in PCR amplifications. Therefore, in search of a promising diagnostic tool few genes were identified to be conserved in the human and bovine filariasis and these novel primers deigned may help to develop a promising diagnostic tool for identification of lymphatic filariasis. PMID:26751881

  15. Repurposing auranofin as a lead candidate for treatment of lymphatic filariasis and onchocerciasis.

    Directory of Open Access Journals (Sweden)

    Christina A Bulman

    2015-02-01

    Full Text Available Two major human diseases caused by filariid nematodes are onchocerciasis, or river blindness, and lymphatic filariasis, which can lead to elephantiasis. The drugs ivermectin, diethylcarbamazine (DEC, and albendazole are used in control programs for these diseases, but are mainly effective against the microfilarial stage and have minimal or no effect on adult worms. Adult Onchocerca volvulus and Brugia malayi worms (macrofilariae can live for up to 15 years, reproducing and allowing the infection to persist in a population. Therefore, to support control or elimination of these two diseases, effective macrofilaricidal drugs are necessary, in addition to current drugs. In an effort to identify macrofilaricidal drugs, we screened an FDA-approved library with adult worms of Brugia spp. and Onchocerca ochengi, third-stage larvae (L3s of Onchocerca volvulus, and the microfilariae of both O. ochengi and Loa loa. We found that auranofin, a gold-containing drug used for rheumatoid arthritis, was effective in vitro in killing both Brugia spp. and O. ochengi adult worms and in inhibiting the molting of L3s of O. volvulus with IC50 values in the low micromolar to nanomolar range. Auranofin had an approximately 43-fold higher IC50 against the microfilariae of L. loa compared with the IC50 for adult female O. ochengi, which may be beneficial if used in areas where Onchocerca and Brugia are co-endemic with L. loa, to prevent severe adverse reactions to the drug-induced death of L. loa microfilariae. Further testing indicated that auranofin is also effective in reducing Brugia adult worm burden in infected gerbils and that auranofin may be targeting the thioredoxin reductase in this nematode.

  16. Repurposing auranofin as a lead candidate for treatment of lymphatic filariasis and onchocerciasis.

    Science.gov (United States)

    Bulman, Christina A; Bidlow, Chelsea M; Lustigman, Sara; Cho-Ngwa, Fidelis; Williams, David; Rascón, Alberto A; Tricoche, Nancy; Samje, Moses; Bell, Aaron; Suzuki, Brian; Lim, K C; Supakorndej, Nonglak; Supakorndej, Prasit; Wolfe, Alan R; Knudsen, Giselle M; Chen, Steven; Wilson, Chris; Ang, Kean-Hooi; Arkin, Michelle; Gut, Jiri; Franklin, Chris; Marcellino, Chris; McKerrow, James H; Debnath, Anjan; Sakanari, Judy A

    2015-02-01

    Two major human diseases caused by filariid nematodes are onchocerciasis, or river blindness, and lymphatic filariasis, which can lead to elephantiasis. The drugs ivermectin, diethylcarbamazine (DEC), and albendazole are used in control programs for these diseases, but are mainly effective against the microfilarial stage and have minimal or no effect on adult worms. Adult Onchocerca volvulus and Brugia malayi worms (macrofilariae) can live for up to 15 years, reproducing and allowing the infection to persist in a population. Therefore, to support control or elimination of these two diseases, effective macrofilaricidal drugs are necessary, in addition to current drugs. In an effort to identify macrofilaricidal drugs, we screened an FDA-approved library with adult worms of Brugia spp. and Onchocerca ochengi, third-stage larvae (L3s) of Onchocerca volvulus, and the microfilariae of both O. ochengi and Loa loa. We found that auranofin, a gold-containing drug used for rheumatoid arthritis, was effective in vitro in killing both Brugia spp. and O. ochengi adult worms and in inhibiting the molting of L3s of O. volvulus with IC50 values in the low micromolar to nanomolar range. Auranofin had an approximately 43-fold higher IC50 against the microfilariae of L. loa compared with the IC50 for adult female O. ochengi, which may be beneficial if used in areas where Onchocerca and Brugia are co-endemic with L. loa, to prevent severe adverse reactions to the drug-induced death of L. loa microfilariae. Further testing indicated that auranofin is also effective in reducing Brugia adult worm burden in infected gerbils and that auranofin may be targeting the thioredoxin reductase in this nematode. PMID:25700363

  17. MALAYAN FILARIASIS STUDIES IN KENDARI REGENCY, SOUTHEAST SULAWESI, INDONESIA I: Parasitological survey

    Directory of Open Access Journals (Sweden)

    Arbain Joesoef

    2012-09-01

    Full Text Available Observasi penyakit filaría telah dilakukan pada penduduk di desa-desa Teteona, Lalohao, Pondi-daha dan Wawolemo, Kecamatan Wawotobi, Kabupaten Kendari, Sulawesi Tenggara antara bulan No­vember 1980 dan Oktober 1982. Sejumlah 3,499 jiwa atau antara 71.2% sampai 83.8% dari penduduk di desa-desa ini telah diperiksa darah jarinya masing-masing sebanyak 20 cumm terhadap adanya parasit filaría. Morphologi dan periodisitas dari embrio parasit yang ditemukan di dalam darah penduduk di­periksa dan begitu pula gejala-gejala klinis yang disebabkannya. Nyamuk penular dari parasit di desa-desa ini ditentukan pula. Adanya jenis parasit yang sama pada binatang di sekitar kampung dipelajari dan diteliti lebih lanjut dengan percobaan eksperimental di laboratorium menggunakan hewan percobaan. Dari hasil observasi ini ditemukan bahwa penduduk desa-desa ini telah diserang parasit filaría, masing-masing dengan derajad infeksi sebesar 9.6%, 15.8%, 9.3% dan 19.7% Parasit yang ditemukan adalah dari jenis Brugia malayi dengan tipe mikrofilaria yang periodik nokturna. Sekitar 57.3% dari microfilaria ini melepaskan diri dari selubungnya. Gejala klinis berupa adenolymphangitis, lymphade-nopathy, lymphscars, dan lymphedema pada penduduk masing-masing desa adalah 15.8%, 30.8%, 35.0% dan 52.0%. Gejala elephantiasis ditemukan pada tiga desa kecuali pada desa Teteona Nyamuk dari jenis Anopheles barbirostris, Anopheles nigerrimus, Mansonia uniformis dan Mansonia indiana merupakan nyamuk penular alamiah dari parasit ini. Pada pemeriksaan darah kucing di sekitar kampung ini ditemukan pula embrio parasit: microfilaria yang menyerupai microfilaria malayi pada darah pendu­duk namun pada penelitian lebih lanjut dengan percobaan eksperimental menggunakan hewan percobaan belum dapat dipastikan jenis mikrofilaria dari kucing ini berasal dari Brugia malayi. Penelitian lebih lan­jut dari parasit filaría pada binatang seperti kucing dan kera di desa-desa ini masih perlu dilanjutkan.

  18. Characterization of cofactor-independent phosphoglycerate mutase isoform-1 (Wb-iPGM) gene: a drug and diagnostic target from human lymphatic filarial parasite, Wuchereria bancrofti.

    Science.gov (United States)

    Dhamodharan, R; Hoti, S L; Sankari, T

    2012-07-01

    The inter-conversion of 3-phosphoglycerate and 2-phosphoglycerate during glycolysis and gluconeogenesis in filarial nematodes, is catalyzed by a co-factor-independent phosphoglycerate mutase (iPGM). The gene encoding iPGM isoform-1 was amplified from Wuchereria bancrofti, the major causative agent of human lymphatic filariasis. Partial genomic DNA (gDNA) fragment of the gene was also amplified from periodic and sub-periodic forms of W. bancrofti and Brugia malayi and sequenced. The Wb-iPGM isoform-1 gene encodes an ORF of 515 amino acids and is found to share 99.4%, 96.0%, and 64.0% amino acid sequence identity with iPGM of B. malayi, Onchocerca volvulus, and Caenorhabditis elegans, respectively. Serine and all the other 13 amino acid residues involved in the catalytic function of iPGM are highly conserved. Further comparison of iPGM nucleotide and amino acid sequences of Wolbachia of B. malayi with Wb-iPGM showed 41% and 54.4% similarity, respectively. The analysis of partial genomic and amino acid sequences and phylogenetic tree of Wb-iPGM indicated that this gene, apart from being a potential drug target, could provide diagnostic, taxonomical, and evolutionary markers. This is the first report of the characterization of iPGM gene from W. bancrofti. PMID:22386851

  19. Antifilarial Lead Molecules Isolated from Trachyspermum ammi

    Directory of Open Access Journals (Sweden)

    Kalyanasundaram Muthuswamy

    2008-09-01

    Full Text Available Lymphatic filariasis is caused by infection with the parasitic filarial nematodes Wuchereria bancrofti, Brugia malayi and B. timori, transmitted by mosquitoes. The lack of an adulticidal drug poses a challenge to filariasis elimination, hence it is essential to develop an effective antifilarial drug which could either kill or permanently sterilize the adult worms. In the reported work the in vitro activity of a methanolic extract of fruits of Trachyspermum ammi (Apiaceae against adult bovine filarial Setaria digitata worms has been investigated. A bioassay-guided fractionation was carried out by subjecting the crude extract to flash chromatography. HPLC analysis was done for the crude extract and active fraction. The crude extract and the active fraction showed significant activity against the adult S. digitata by both a worm motility and MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] reduction assays. The isolated active principle was chemically characterized by IR, 1H-NMR and MS analysis and identified as a phenolic monoterpene. It was screened for in vivo antifilarial activity against the human filarial worm B. malayi in Mastomys coucha, showing macrofilaricidal activity and female worm sterility in vivo against B. malayi. The findings thus provide a new lead for development of a macrofilaricidal drug from natural products

  20. Gender-associated genes in filarial nematodes are important for reproduction and potential intervention targets.

    Directory of Open Access Journals (Sweden)

    Ben-Wen Li

    Full Text Available BACKGROUND: A better understanding of reproductive processes in parasitic nematodes may lead to development of new anthelmintics and control strategies for combating disabling and disfiguring neglected tropical diseases such as lymphatic filariasis and onchocerciasis. Transcriptomatic analysis has provided important new insights into mechanisms of reproduction and development in other invertebrates. We have performed the first genome-wide analysis of gender-associated (GA gene expression in a filarial nematode to improve understanding of key reproductive processes in these parasites. METHODOLOGY/PRINCIPAL FINDINGS: The Version 2 Filarial Microarray with 18,104 elements representing ∼85% of the filarial genome was used to identify GA gene transcripts in adult Brugia malayi worms. Approximately 19% of 14,293 genes were identified as GA genes. Many GA genes have potential Caenorhabditis elegans homologues annotated as germline-, oogenesis-, spermatogenesis-, and early embryogenesis- enriched. The potential C. elegans homologues of the filarial GA genes have a higher frequency of severe RNAi phenotypes (such as lethal and sterility than other C. elegans genes. Molecular functions and biological processes associated with GA genes were gender-segregated. Peptidase, ligase, transferase, regulator activity for kinase and transcription, and rRNA and lipid binding were associated with female GA genes. In contrast, catalytic activity from kinase, ATP, and carbohydrate binding were associated with male GA genes. Cell cycle, transcription, translation, and biological regulation were increased in females, whereas metabolic processes of phosphate and carbohydrate metabolism, energy generation, and cell communication were increased in males. Significantly enriched pathways in females were associated with cell growth and protein synthesis, whereas metabolic pathways such as pentose phosphate and energy production pathways were enriched in males. There were

  1. Antifilarial and Antibiotic Activities of Methanolic Extracts of Melaleuca cajuputi Flowers.

    Science.gov (United States)

    Al-Abd, Nazeh M; Nor, Zurainee Mohamed; Mansor, Marzida; Hasan, M S; Kassim, Mustafa

    2016-06-01

    We evaluated the activity of methanolic extracts of Melaleuca cajuputi flowers against the filarial worm Brugia pahangi and its bacterial endosymbiont Wolbachia. Anti-Wolbachia activity was measured in worms and in Aedes albopictus Aa23 cells by PCR, electron microscopy, and other biological assays. In particular, microfilarial release, worm motility, and viability were determined. M. cajuputi flower extracts were found to significantly reduce Wolbachia endosymbionts in Aa23 cells, Wolbachia surface protein, and microfilarial release, as well as the viability and motility of adult worms. Anti-Wolbachia activity was further confirmed by observation of degraded and phagocytized Wolbachia in worms treated with the flower extracts. The data provided in vitro and in vivo evidence that M. cajuputi flower extracts inhibit Wolbachia, an activity that may be exploited as an alternative strategy to treat human lymphatic filariasis. PMID:27417081

  2. Subperiodic, asymptomatic microfilaremia in an adult male from Mysore: A nonendemic area

    Directory of Open Access Journals (Sweden)

    Sumana M

    2009-01-01

    Full Text Available Wuchereria bancrofti is found throughout tropics and subtropics like Asia, Pacific islands, Africa, areas of South America and Caribbean basin. In all these areas, except Pacific islands, microfilaria occurs in the periodic form, in which case the microfilaria are found in large numbers in the peripheral blood during night. In the Pacific islands, they occur in the subperiodic form, i.e., microfilaria are present in the peripheral blood at all times and reach the maximum level of parasitemia in the afternoon. Microfilaria of Wuchereria bancrofti and Brugia malayi occurring in India displays a nocturnal periodicity, appearing in large numbers at night. This is the biological adaptation to the nocturnal biting habits of the vector mosquitoes. The maximum density in blood is reported between 10 PM and 2 AM. Here is a case report of asymptomatic microfilaremia showing subperiodicity, which is very unusual in India.

  3. Filariose linfática: doença potencialmente eliminável

    Directory of Open Access Journals (Sweden)

    Dreyer Gerusa

    1997-01-01

    Full Text Available Os resultados obtidos com o uso de esquemas terapêuticos simples, como dose única anual ou bianual de Ivermectina (IV, Dietilcarbamazina (DEC sozinhas ou combinadas, têm sido surpreendentemente promissores na redução da infecção linfática causada pela Wuchereria bancrofti e Brugia malayi. Assim, perspectivas existem de eliminar a doença dos países endêmicos, se programas de controle forem empregados usando-se o tratamento em massa, complementado ou não pelo controle do vetor. Uma breve revisão é feita sobre cada droga em relação à eficácia e às reações adversas causadas pela morte dos diversos estágios do parasita no homem infectado.

  4. Lymphatic filariasis in India: Epidemiology and control measures

    Directory of Open Access Journals (Sweden)

    Sabesan S

    2010-01-01

    Full Text Available Lymphatic filariasis caused by Wuchereria bancrofti and Brugia malayi is an important public health problem in India. Both parasites produce essentially similar clinical presentations in man, related mainly to the pathology of the lymphatic system. Filariasis is endemic in 17 States and six Union Territories, with about 553 million people at risk of infection. The Government of India has accorded a high priority for elimination of this infection through mass chemotherapy programme (annual, single dose of Diethylcarbamazine citrate, i.e. DEC - 6 mg/kg of bodyweight, plus Albendazole repeated four to six times. This campaign has become a part of the National Vector-Borne Disease Control Programme in 2003 under the National Health Policy 2002 and aims to eliminate filariasis by 2015. We discuss here the epidemiology and current control strategy for filariasis; highlighting key issues, challenges and options in the implementation of the programme, and suggesting measures for mid-course corrections in the elimination strategy.

  5. Filariose linfática: doença potencialmente eliminável

    Directory of Open Access Journals (Sweden)

    Gerusa Dreyer

    1997-09-01

    Full Text Available Os resultados obtidos com o uso de esquemas terapêuticos simples, como dose única anual ou bianual de Ivermectina (IV, Dietilcarbamazina (DEC sozinhas ou combinadas, têm sido surpreendentemente promissores na redução da infecção linfática causada pela Wuchereria bancrofti e Brugia malayi. Assim, perspectivas existem de eliminar a doença dos países endêmicos, se programas de controle forem empregados usando-se o tratamento em massa, complementado ou não pelo controle do vetor. Uma breve revisão é feita sobre cada droga em relação à eficácia e às reações adversas causadas pela morte dos diversos estágios do parasita no homem infectado.

  6. Plasmodium knowlesi and Wucheriria bancrofti: Their vectors and challenges for the future

    Directory of Open Access Journals (Sweden)

    Indra eVythilingam

    2012-05-01

    Full Text Available Malaria and filariasis still continue to pose public health problems in developing countries of the tropics. Although plans are ongoing for the elimination of both these parasitic vector borne diseases, we are now faced with a daunting challenge as we have a fifth species, Plasmodium knowlesi a simian malaria parasite affecting humans. Similarly in peninsular Malaysia, filariasis was mainly due to Brugia malayi, however, we now see cases of W. bancrofti in immigrant workers coming into the country. Work is on going to eliminate malaria and filariasis from the country. In order to be successful we need to revamp our control measures. Thus this paper attempts to review the vectors of malaria and filariasis in Southeast Asia with special emphasis on P. knowlesi and W. bancrofti and their control strategies.

  7. Subtilisin-like proteases in nematodes.

    Science.gov (United States)

    Poole, Catherine B; Jin, Jingmin; McReynolds, Larry A

    2007-09-01

    Cleavage by subtilisin-like proteases (subtilases) is an essential step in post-translational processing of proteins found in organisms ranging from yeast to mammals. Our knowledge of the diversity of this protease family in nematodes is aided by the rapid increase in sequence information, especially from the Brugia malayi genome project. Genetic studies of the subtilases in Caenorhabitis elegans give valuable insight into the biological function of these proteases in other nematode species. In this review, we focus on the subtilases in filarial nematodes as well as other parasitic and free-living nematodes in comparison to what is known in C. elegans. Topics to be addressed include expansion and diversity of the subtilase gene family during evolution, enhanced complexity created by alternative RNA splicing, molecular and biochemical characterization of the different subtilases and the challenges of designing subtilase-specific inhibitors for parasitic nematodes. PMID:17570539

  8. Les filarioses humaines sur le territoire français

    OpenAIRE

    2013-01-01

    1. La filariose lymphatique 1.1. Cycle de la maladie 1.1.1. Agent Sur les territoires français, l’agent est le nématode Wuchereria bancrofti, Onchocercidae, Filarioidea. Mais deux autres espèces de filaires provoquent des filarioses lymphatiques similaires : Brugia malayi, dont l'aire d'extension va de l'Inde et du Sud-Est asiatique à la Corée, et B. timori, limité à quelques îles d'Indonésie. Les filaires mâles de W. bancrofti sont longues de 40 mm et larges de 0,1 mm, les femelles de 80-100...

  9. STUDI ENDEMISITAS FILARIASIS DI WILAYAH KECAMATAN PEMAYUNG, KABUPATEN BATANGHARI PASCA PENGOBATAN MASSAL TAHAP III

    Directory of Open Access Journals (Sweden)

    Yahya Yahya

    2013-05-01

    Full Text Available Abstract Filariasis endemicity research in District Pemayung, Batanghari Regency Post-Mass Drug Administration Phase III has been implemented. The study aims to determine the prevalence of filariasis, microfilaria worm species, the periodicity, reservoir determination and evaluate the results of mass treatment activities that have been 3 times. The number of people who checked their blood preparation for the examination as many as 538. Blood sampling for the periodicity of the parasite examinations performed on 4 persons, each carried out blood sampling every 2 hours for 24 hours. People microfilariae with microfilariae positive number as many as 8 people to rate microfilariae (Mf rate 1.5%.. The highest parasite density of 17.493 per 20 cu mm of blood occurred at 1:00 am and decresing to 0,415 per 20 cu mm of blood at 07.00 am. The parasite was found in sub periodic nokturna 3 subjects and 1 subject was found only be found in the morning and afternoon. The results of examination of 12 cats and two monkeys were found two positive cats with Brugia malayi microfilariae. Cats that were examined and the positive was one house cat and one stray cat. The conclusion from this study showed that filariasis was still endemic with periodicity of microfilariae was sub periodic nokturna and was zoonotic. Recommendations of this study was that mass treatment  was done by giving the drug directly and took medicine in front of the officers, examination and treatment of microfilariae positive cats. Key words: microfilariae rate, periodicity, Brugia malayi, reservoir. Abstrak  Submit : 28-03-2012  Review : 04-04-2012 Review : 11-06-2012 revisi : 29–08-2012Penelitian untuk menentukan tingkat endemisitas filariasis di wilayah Kecamatan Pemayung, Kabupaten Batanghari Pasca Pengobatan Massal Tahap III telah dilaksanakan. Penelitian bertujuan untuk mengetahui prevalensi filariasis, mengetahui spesies cacing mikrofilaria, periodisitas mikrofilaria dan pemeriksaan

  10. Interdomain lateral gene transfer of an essential ferrochelatase gene in human parasitic nematodes.

    Science.gov (United States)

    Wu, Bo; Novelli, Jacopo; Jiang, Daojun; Dailey, Harry A; Landmann, Frédéric; Ford, Louise; Taylor, Mark J; Carlow, Clotilde K S; Kumar, Sanjay; Foster, Jeremy M; Slatko, Barton E

    2013-05-01

    Lateral gene transfer events between bacteria and animals highlight an avenue for evolutionary genomic loss/gain of function. Herein, we report functional lateral gene transfer in animal parasitic nematodes. Members of the Nematoda are heme auxotrophs, lacking the ability to synthesize heme; however, the human filarial parasite Brugia malayi has acquired a bacterial gene encoding ferrochelatase (BmFeCH), the terminal step in heme biosynthesis. BmFeCH, encoded by a 9-exon gene, is a mitochondrial-targeted, functional ferrochelatase based on enzyme assays, complementation, and inhibitor studies. Homologs have been identified in several filariae and a nonfilarial nematode. RNAi and ex vivo inhibitor experiments indicate that BmFeCH is essential for viability, validating it as a potential target for filariasis control.

  11. Development of loop-mediated isothermal amplification method for detecting Wuchereria bancrofti DNA in human blood and vector mosquitoes.

    Science.gov (United States)

    Takagi, Hidekazu; Itoh, Makoto; Kasai, Shinji; Yahathugoda, Thishan C; Weerasooriya, Mirani V; Kimura, Eisaku

    2011-12-01

    We have developed loop-mediated isothermal amplification (LAMP) method to detect Wuchereria bancrofti DNA. The sensitivity and specificity of LAMP method were equivalent to those of PCR method which detects SspI repeat sequence in W. bancrofti genomic DNA: both methods detected one thousandth of W. bancrofti DNA from one microfilaria (Mf), and did not cross-react with DNAs of Brugia malayi, B. pahangi, Dirofilaria immitis, human and Culex quinquefasciatus. We also examined the sensitivity of LAMP using the mimic samples of patient's blood or blood-fed mosquitoes containing one W. bancrofti Mf per sample. The LAMP method was able to detect W. bancrofti DNA in 1000 μl of blood or in a pool of 60 mosquitoes, indicating its usefulness in detecting/monitoring W. bancrofti infection in humans and vector mosquitoes in endemic areas. PMID:21930238

  12. Long-term follow-up of treatment with diethylcarbamazine on anti-filarial IgG4: dosage, compliance, and differential patterns in adults and children.

    Science.gov (United States)

    Terhell, A J; Haarbrink, M; van den Biggelaar, A; Mangali, A; Sartono, E; Yazdanbakhsh, M

    2003-01-01

    We have followed a population in an area endemic for Brugia malayi for three years after intensive treatment with diethylcarbamazine (DEC). Microfilariae were cleared from the circulation within four months in all eligible study participants (n = 60). There appeared to be a strong correlation between the maximum reduction in specific IgG4 and the number of days drug was taken under supervision (p = 0.41, P or = 15 years old) showed a gradual decrease in anti-filarial IgG4; 53% of these showed complete clearance of worm burden by the end of the study. In contrast, another group of male IgG4+ adults showed IgG4 patterns that started to increase between nine months and two years after treatment, indicating either a partial efficacy of DEC that allowed recovery of resident adult worms or reinfection. PMID:12556144

  13. Cystatin F Ensures Eosinophil Survival by Regulating Granule Biogenesis.

    Science.gov (United States)

    Matthews, Stephen P; McMillan, Sarah J; Colbert, Jeff D; Lawrence, Rachel A; Watts, Colin

    2016-04-19

    Eosinophils are now recognized as multifunctional leukocytes that provide critical homeostatic signals to maintain other immune cells and aid tissue repair. Paradoxically, eosinophils also express an armory of granule-localized toxins and hydrolases believed to contribute to pathology in inflammatory disease. How eosinophils deliver their supporting functions while avoiding self-inflicted injury is poorly understood. We have demonstrated that cystatin F (CF) is a critical survival factor for eosinophils. Eosinophils from CF null mice had reduced lifespan, reduced granularity, and disturbed granule morphology. In vitro, cysteine protease inhibitors restored granularity, demonstrating that control of cysteine protease activity by CF is critical for normal eosinophil development. CF null mice showed reduced pulmonary pathology in a model of allergic lung inflammation but also reduced ability to combat infection by the nematode Brugia malayi. These data identify CF as a "cytoprotectant" that promotes eosinophil survival and function by ensuring granule integrity. VIDEO ABSTRACT. PMID:27067058

  14. Cystatin F Ensures Eosinophil Survival by Regulating Granule Biogenesis.

    Science.gov (United States)

    Matthews, Stephen P; McMillan, Sarah J; Colbert, Jeff D; Lawrence, Rachel A; Watts, Colin

    2016-04-19

    Eosinophils are now recognized as multifunctional leukocytes that provide critical homeostatic signals to maintain other immune cells and aid tissue repair. Paradoxically, eosinophils also express an armory of granule-localized toxins and hydrolases believed to contribute to pathology in inflammatory disease. How eosinophils deliver their supporting functions while avoiding self-inflicted injury is poorly understood. We have demonstrated that cystatin F (CF) is a critical survival factor for eosinophils. Eosinophils from CF null mice had reduced lifespan, reduced granularity, and disturbed granule morphology. In vitro, cysteine protease inhibitors restored granularity, demonstrating that control of cysteine protease activity by CF is critical for normal eosinophil development. CF null mice showed reduced pulmonary pathology in a model of allergic lung inflammation but also reduced ability to combat infection by the nematode Brugia malayi. These data identify CF as a "cytoprotectant" that promotes eosinophil survival and function by ensuring granule integrity. VIDEO ABSTRACT.

  15. HUMAN PARASITE SURVEY ON NASI AND BERAS ISLANDS ACEH PROVINCE, SUMATRA

    Directory of Open Access Journals (Sweden)

    E. E. Stafford

    2012-09-01

    Full Text Available Survey parasit usus dan darah manusia terhadap penduduk pulau-pulau Nasi/Beras Propinsi Aceh, Sumatra, telah diadakan dihulan Januari, 1975. Sebanyak 83 pulasan darah dari 67 pria dan 16 wanita, serta 87 contoh tinja diperoleh dari 52 pria dan 35 wanita. Brugia malayi microfilaria ditemukan dalam 3 atau 3 persen dari darah yang diperiksa dan juga parasitemia yang disebabkan oleh Plasmodium malariae 1 atau 1 persen dan P. falciparum 2 atau 2 persen. Trichuris trichiura (86 persen , merupakan parasit usus yang paling banyak ditemukan, diikuti oleh cacing tambang (77 persen, Ascaris lumbricoides (60 persen, Entamoeba histolyrica (11 per sen, H. coli (10 persen . Endolimax nana hanya 5 atau 6 persen dan Iodamoeba butschlii dan Giardia lamblia, masing-masing 3 persen. Tidak ada ditemukan Schistosoma japonicum atau pun ova cestoda diantara penduduk yang diperiksa.

  16. Serine proteases of parasitic helminths.

    Science.gov (United States)

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-02-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  17. Filariose linfática: doença potencialmente eliminável Lymphatic filariasis: a potentially eradicable disease

    Directory of Open Access Journals (Sweden)

    Gerusa Dreyer

    1997-09-01

    Full Text Available Os resultados obtidos com o uso de esquemas terapêuticos simples, como dose única anual ou bianual de Ivermectina (IV, Dietilcarbamazina (DEC sozinhas ou combinadas, têm sido surpreendentemente promissores na redução da infecção linfática causada pela Wuchereria bancrofti e Brugia malayi. Assim, perspectivas existem de eliminar a doença dos países endêmicos, se programas de controle forem empregados usando-se o tratamento em massa, complementado ou não pelo controle do vetor. Uma breve revisão é feita sobre cada droga em relação à eficácia e às reações adversas causadas pela morte dos diversos estágios do parasita no homem infectado.The recent demonstration that single-dose ivermectin, diethylcarbamazine, or a combination of these drugs can profoundly suppress Wuchereria bancrofti and Brugia malayi microfilaremia for periods of six months to two years has led to renewed hope that transmission can be interrupted and lymphatic filariasis eradicated. Based in part on the availability of these new chemotherapeutic tools, the International Task Force for Disease Eradication recently identified lymphatic filariasis as one of the few diseases that could potentially be eradicated. Thus, control programs based on mass treatment (whether supplemented or not by vector control have begun to be implemented in some endemic areas. We provide a brief review of available anti-filarial drugs for use in humans, including their tolerance and efficacy.

  18. Differential Evolutionary Selection and Natural Evolvability Observed in ALT Proteins of Human Filarial Parasites.

    Directory of Open Access Journals (Sweden)

    Neil C Devoe

    Full Text Available The abundant larval transcript (ALT-2 protein is present in all members of the Filarioidea, and has been reported as a potential candidate antigen for a subunit vaccine against lymphatic filariasis. To assess the potential for vaccine escape or heterologous protection, we examined the evolutionary selection acting on ALT-2. The ratios of nonsynonymous (K(a to synonymous (K(s mutation frequencies (ω were calculated for the alt-2 genes of the lymphatic filariasis agents Brugia malayi and Wuchereria bancrofti and the agents of river blindness and African eyeworm disease Onchocerca volvulus and Loa loa. Two distinct Bayesian models of sequence evolution showed that ALT-2 of W. bancrofti and L. loa were under significant (P<0.05; P < 0.001 diversifying selection, while ALT-2 of B. malayi and O. volvulus were under neutral to stabilizing selection. Diversifying selection as measured by ω values was notably strongest on the region of ALT-2 encoding the signal peptide of L. loa and was elevated in the variable acidic domain of L. loa and W. bancrofti. Phylogenetic analysis indicated that the ALT-2 consensus sequences formed three clades: the first consisting of B. malayi, the second consisting of W. bancrofti, and the third containing both O. volvulus and L. loa. ALT-2 selection was therefore not predictable by phylogeny or pathology, as the two species parasitizing the eye were selected differently, as were the two species parasitizing the lymphatic system. The most immunogenic regions of L. loa and W. bancrofti ALT-2 sequence as modeled by antigenicity prediction analysis did not correspond with elevated levels of diversifying selection, and were not selected differently than predicted antigenic epitopes in B. malayi and O. volvulus. Measurements of ALT-2 evolvability made by χ2 analysis between alleles that were stable (O. volvulus and B. malayi and those that were under diversifying selection (W. bancrofti and L. loa indicated significant (P<0

  19. Dynamics of the endosymbiont Rickettsia in an insect pest.

    Science.gov (United States)

    Cass, Bodil N; Yallouz, Rachel; Bondy, Elizabeth C; Mozes-Daube, Netta; Horowitz, A Rami; Kelly, Suzanne E; Zchori-Fein, Einat; Hunter, Martha S

    2015-07-01

    A new heritable bacterial association can bring a fresh set of molecular capabilities, providing an insect host with an almost instantaneous genome extension. Increasingly acknowledged as agents of rapid evolution, inherited microbes remain underappreciated players in pest management programs. A Rickettsia bacterium was tracked sweeping through populations of an invasive whitefly provisionally described as the "B" or "MEAM1" of the Bemisia tabaci species complex, in the southwestern USA. In this population, Rickettsia provides strong fitness benefits and distorts whitefly sex ratios under laboratory conditions. In contrast, whiteflies in Israel show few apparent fitness benefits from Rickettsia under laboratory conditions, only slightly decreasing development time. A survey of B. tabaci B samples revealed the distribution of Rickettsia across the cotton-growing regions of Israel and the USA. Thirteen sites from Israel and 22 sites from the USA were sampled. Across the USA, Rickettsia frequencies were heterogeneous among regions, but were generally very high, whereas in Israel, the infection rates were lower and declining. The distinct outcomes of Rickettsia infection in these two countries conform to previously reported phenotypic differences. Intermediate frequencies in some areas in both countries may indicate a cost to infection in certain environments or that the frequencies are in flux. This suggests underlying geographic differences in the interactions between bacterial symbionts and this serious agricultural pest. PMID:25626393

  20. Identifying endosymbiont bacteria associated with free-living amoebae.

    Science.gov (United States)

    Goñi, Pilar; Fernández, María Teresa; Rubio, Encarnación

    2014-02-01

    The association between free-living amoebae and pathogenic bacteria is an issue that has gained great importance due to the environmental and health consequences that it implies. In this paper, we analyse the techniques to follow an epidemiological study to identify associations between genera, species, genotypes and subgenotypes of amoebae with pathogenic bacteria, analysing their evolution and considering their usefulness. In this sense, we highlight the combination of microscopic and molecular techniques as the most appropriate way to obtain fully reliable results as well as the need to achieve the standardization of these techniques to allow the comparison of both environmental and clinical results.

  1. Molecular Identification of a Wolbachia endosymbiont in Trichogramma dendrolimi

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Wolbachia is a common and widespread group of bacteria found in arthropods. These bacteria have evolved various mechanisms for manipulating reproduction of their host. The presence of Wolbachia in a lab strain of the arrhenotokous species Trichogramma dendrolimi was observed by the amplification and sequencing of part of the wsp gene. Aligning the resulting sequences with already published ones, the phylogenetic relationships between Wolbachia found in Trichogramma dendrolimi and in other Trichogramma wasps was established, and the phylogenetic relationships of Wolbachia in Trichogramma were not congruent with their hosts Trichogramma. Some factors contributing to this uncongruence are discussed here.

  2. Exploration for facultative endosymbionts of glassy-wingedsharpshooter (Hemiptera: Cicadellidae)

    Energy Technology Data Exchange (ETDEWEB)

    Montllor-Curley, C.; Brodie, E.L.; Lechner, M.G.; Purcell, A.H.

    2006-07-01

    Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae),glassy-winged sharpshooter, was collected in California and severalstates in the southeastern United States in 2002 and 2003 and analyzedfor endosymbiotic bacteria. Hemolymph, eggs, and bacteriomes wereexamined for the presence of bacteria by polymerase chain reaction. Asubset of hemolymph and egg samples had their 16S rRNA gene ampliconscloned and sequenced or analyzed by restriction digest patterns ofsamples compared with known bacterial DNA. Baumannia cicadellinicola, oneof the primary symbionts of glassy-winged sharpshooter, was found in themajority of hemolymph samples, although it has been considered until nowto reside primarily inside the specialized host bacteriocytes. Wolbachiasp., a common secondary symbiont in many insect taxa investigated todate, was the second most frequently detected bacterium in hemolymphsamples. In addition, we detected bacteria that were most closely related(by 16S rRNA gene sequence) to Pseudomonas, Stenotrophomonas, andAcinetobacter in hemolymph samples of one and/or two glassy-wingedsharpshooters, but their origin is uncertain.

  3. Molecular Evidences for the Biosynthesis of Pederin by Endosymbiont

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-ping; WU Xuan; WANG Jin-jun; HUANG Fang

    2009-01-01

    Pederin belongs to a group of antitumor compounds found in terrestrial beetles and marine sponges. It is apparently used by some members of the rove beetle Paederus as a chemical defense against predators. A recent cluster analysis of the putative pederin biosynthesis gene (ped) strongly suggests that pederin is produced by bacterial symbionts. This paper reviewed the criteria for proving symbiontic origin of bioactive metabolite, indirect and molecular evidences for pederin bacterial origin, as well as three sets ofped clusters and putative biosynthesis process of pederin.

  4. Dynamics of the endosymbiont Rickettsia in an insect pest.

    Science.gov (United States)

    Cass, Bodil N; Yallouz, Rachel; Bondy, Elizabeth C; Mozes-Daube, Netta; Horowitz, A Rami; Kelly, Suzanne E; Zchori-Fein, Einat; Hunter, Martha S

    2015-07-01

    A new heritable bacterial association can bring a fresh set of molecular capabilities, providing an insect host with an almost instantaneous genome extension. Increasingly acknowledged as agents of rapid evolution, inherited microbes remain underappreciated players in pest management programs. A Rickettsia bacterium was tracked sweeping through populations of an invasive whitefly provisionally described as the "B" or "MEAM1" of the Bemisia tabaci species complex, in the southwestern USA. In this population, Rickettsia provides strong fitness benefits and distorts whitefly sex ratios under laboratory conditions. In contrast, whiteflies in Israel show few apparent fitness benefits from Rickettsia under laboratory conditions, only slightly decreasing development time. A survey of B. tabaci B samples revealed the distribution of Rickettsia across the cotton-growing regions of Israel and the USA. Thirteen sites from Israel and 22 sites from the USA were sampled. Across the USA, Rickettsia frequencies were heterogeneous among regions, but were generally very high, whereas in Israel, the infection rates were lower and declining. The distinct outcomes of Rickettsia infection in these two countries conform to previously reported phenotypic differences. Intermediate frequencies in some areas in both countries may indicate a cost to infection in certain environments or that the frequencies are in flux. This suggests underlying geographic differences in the interactions between bacterial symbionts and this serious agricultural pest.

  5. Immunoadjuvant effect of diethylcarbamazine in experimental filariasis.

    Science.gov (United States)

    Parasurama Jawaharlal, Jeya Prita; Rajaiah Prabhu, Prince; Gandhirajan, Anugraha; Krishnan, Nithya; Perumal, Kaliraj

    2015-02-01

    Lymphatic filariasis caused by tissue dwelling nematodes is endemic in 73 countries and drugs have been administered to control or stop the infection. Resurgence of the infection after mass drug administration necessitates the study of several parasite antigens or adjuvants for vaccine developments. In this study, diethylcarbamazine (DEC) was evaluated for its efficacy as adjuvant against the filarial parasite; Brugia malayi microfilariae (mf) by combining with the Escherichia coli expressed recombinant BmShp-1 protein. Shp-1 is one of the sheath proteins expressed by adult female and microfilarial stage of the filarial parasite. Hence, immunoprophylactic efficacy of Shp-1 using DEC and alum adjuvants was compared in BALB/c mice model by an in situ micropore chamber method. Shp-1 antibody titre was high when the mice were immunized with Shp-1 along with DEC and they exhibited balanced Th1/Th2 profile. DEC also induced significantly high T-cell proliferation (P<0.001) when stimulated with Shp-1 compared to alum. Significantly high percentage protection against B. malayi microfilariae was observed in Shp-1+DEC immunized mice groups (P<0.05) and hence it is concluded that the need of repeated drug administration can be controlled when there is a possibility of developing protective immunity in the host against mf by vaccination.

  6. Therapeutic efficacy of poly (lactic-co-glycolic acid) nanoparticles encapsulated ivermectin (nano-ivermectin) against brugian filariasis in experimental rodent model.

    Science.gov (United States)

    Ali, Mohammad; Afzal, Mohammad; Verma, Meenakshi; Bhattacharya, Shailja Misra; Ahmad, F J; Samim, Mohammad; Abidin, M Z; Dinda, A K

    2014-02-01

    The present study reports on the antifilarial activity of poly (lactic-co-glycolic acid) nanoparticles encapsulated ivermectin (nano-IVM) against human lymphatic filariid Brugia malayi in rodent host Mastomys coucha. Nano-IVM was prepared and optimized by nanoprecipitation method. The selected nano-IVM (F5) showed a uniform spherical shape with 96 nm diameter and 74.12 % entrapment efficiency, and when used at a suboptimal dose of 100 μg/kg body weight, completely eliminated filarial parasites from systemic circulation on 60 days post-infection in animals inflicted with B. malayi. In contrast, the coadministration of nano-IVM (F5) along with standard filaricide diethylcarbamazine (DEC) was found to be competent enough to suppress microfilarial stage of parasites and successfully eliminated microfilaria at 45 days posttreatment. However, the free form of both the drugs alone or in combination was unable to impart such suppression and followed by recurrence of the infection. Interestingly, nano-IVM (F5) was also found to be effective against adult stage parasites causing 36.67 % worm mortality and 75.89 % in combination with DEC; however, female sterilization remain almost similar. Thus, the combination of entrapped IVM with DEC exhibited enhanced microfilaricidal and marginally better macrofilaricidal efficacy than any of the single formulation or drugs combination.

  7. Immunization with Wuchereria bancrofti Glutathione-S-transferase Elicits a Mixed Th1/Th2 Type of Protective Immune Response Against Filarial Infection in Mastomys.

    Science.gov (United States)

    Andure, Dhananjay; Pote, Kiran; Khatri, Vishal; Amdare, Nitin; Padalkar, Ramchandra; Reddy, Maryada Venkata Rami

    2016-10-01

    Lymphatic filariasis is a mosquito borne parasitic infection and can severely affect the normal working ability of an individual. Currently there is no vaccine available to prevent this infection and the development of a potential vaccine could effectively support the on-going mass drug administration program by World Health Organization (WHO). Filarial parasites have complex mechanisms to modulate the host immune responses against them. The glutathione-S-transferases (GST) are the important enzymes effectively involved to counteract the oxidative free radicals produced by the host. In the present study, we have shown that the mastomys which are fully permissible rodents for Brugia malayi when immunized with Wuchereria bancrofti recombinant GST (rWbGST) could induce 65.5 % in situ cytotoxicity against B. malayi infective (L3) larvae. There was a balanced Th1/Th2 immune response in the vaccinated animals, characterized by higher levels of WbGST-specific IgG1 and IgG2a antibodies and pronounced IFN-γ, IL-10 and IL-4 cytokines production by the spleen cells. PMID:27605739

  8. Polyanhydride Nanoparticle Delivery Platform Dramatically Enhances Killing of Filarial Worms.

    Directory of Open Access Journals (Sweden)

    Andrea M Binnebose

    Full Text Available Filarial diseases represent a significant social and economic burden to over 120 million people worldwide and are caused by endoparasites that require the presence of symbiotic bacteria of the genus Wolbachia for fertility and viability of the host parasite. Targeting Wolbachia for elimination is a therapeutic approach that shows promise in the treatment of onchocerciasis and lymphatic filariasis. Here we demonstrate the use of a biodegradable polyanhydride nanoparticle-based platform for the co-delivery of the antibiotic doxycycline with the antiparasitic drug, ivermectin, to reduce microfilarial burden and rapidly kill adult worms. When doxycycline and ivermectin were co-delivered within polyanhydride nanoparticles, effective killing of adult female Brugia malayi filarial worms was achieved with approximately 4,000-fold reduction in the amount of drug used. Additionally the time to death of the macrofilaria was also significantly reduced (five-fold when the anti-filarial drug cocktail was delivered within polyanhydride nanoparticles. We hypothesize that the mechanism behind this dramatically enhanced killing of the macrofilaria is the ability of the polyanhydride nanoparticles to behave as a Trojan horse and penetrate the cuticle, bypassing excretory pumps of B. malayi, and effectively deliver drug directly to both the worm and Wolbachia at high enough microenvironmental concentrations to cause death. These provocative findings may have significant consequences for the reduction in the amount of drug and the length of treatment required for filarial infections in terms of patient compliance and reduced cost of treatment.

  9. Towards novel antifilarial drugs: challenges and recent developments.

    Science.gov (United States)

    Singh, Prashant Kumar; Ajay, Arya; Kushwaha, Susheela; Tripathi, Rama Pati; Misra-Bhattacharya, Shailja

    2010-02-01

    Filariasis is caused by thread-like nematode worms, classified according to their presence in the vertebrate host. The cutaneous group includes Onchocerca volvulus, Loa loa and Mansonella streptocerca; the lymphatic group includes Wuchereria bancrofti, Brugia malayi and Brugia timori and the body cavity group includes Mansonella perstans and Mansonella ozzardi. Lymphatic filariasis, a mosquito-borne disease, is one of the most prevalent diseases in tropical and subtropical countries and is accompanied by a number of pathological conditions. In recent years, there has been rapid progress in filariasis research, which has provided new insights into the pathogenesis of filarial disease, diagnosis, chemotherapy, the host-parasite relationship and the genomics of the parasite. Together, these insights are assisting the identification of novel drug targets and the discovery of antifilarial agents and candidate vaccine molecules. This review discusses the antifilarial activity of various chemical entities, the merits and demerits of antifilarial drugs currently in use, their mechanisms of action, in addition to antifilarial drug targets and their validation. PMID:21426193

  10. A target repurposing approach identifies N-myristoyltransferase as a new candidate drug target in filarial nematodes.

    Directory of Open Access Journals (Sweden)

    Brendan D Galvin

    2014-09-01

    Full Text Available Myristoylation is a lipid modification involving the addition of a 14-carbon unsaturated fatty acid, myristic acid, to the N-terminal glycine of a subset of proteins, a modification that promotes their binding to cell membranes for varied biological functions. The process is catalyzed by myristoyl-CoA:protein N-myristoyltransferase (NMT, an enzyme which has been validated as a drug target in human cancers, and for infectious diseases caused by fungi, viruses and protozoan parasites. We purified Caenorhabditis elegans and Brugia malayi NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and peptide substrates. Biochemical and structural analyses both revealed that the nematode enzymes are canonical NMTs, sharing a high degree of conservation with protozoan NMT enzymes. Inhibitory compounds that target NMT in protozoan species inhibited the nematode NMTs with IC50 values of 2.5-10 nM, and were active against B. malayi microfilariae and adult worms at 12.5 µM and 50 µM respectively, and C. elegans (25 µM in culture. RNA interference and gene deletion in C. elegans further showed that NMT is essential for nematode viability. The effects observed are likely due to disruption of the function of several downstream target proteins. Potential substrates of NMT in B. malayi are predicted using bioinformatic analysis. Our genetic and chemical studies highlight the importance of myristoylation in the synthesis of functional proteins in nematodes and have shown for the first time that NMT is required for viability in parasitic nematodes. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against nematode diseases including filariasis.

  11. Cofactor-independent phosphoglycerate mutase from nematodes has limited druggability, as revealed by two high-throughput screens.

    Science.gov (United States)

    Crowther, Gregory J; Booker, Michael L; He, Min; Li, Ting; Raverdy, Sylvine; Novelli, Jacopo F; He, Panqing; Dale, Natalie R G; Fife, Amy M; Barker, Robert H; Kramer, Martin L; Van Voorhis, Wesley C; Carlow, Clotilde K S; Wang, Ming-Wei

    2014-01-01

    Cofactor-independent phosphoglycerate mutase (iPGAM) is essential for the growth of C. elegans but is absent from humans, suggesting its potential as a drug target in parasitic nematodes such as Brugia malayi, a cause of lymphatic filariasis (LF). iPGAM's active site is small and hydrophilic, implying that it may not be druggable, but another binding site might permit allosteric inhibition. As a comprehensive assessment of iPGAM's druggability, high-throughput screening (HTS) was conducted at two different locations: ∼220,000 compounds were tested against the C. elegans iPGAM by Genzyme Corporation, and ∼160,000 compounds were screened against the B. malayi iPGAM at the National Center for Drug Screening in Shanghai. iPGAM's catalytic activity was coupled to downstream glycolytic enzymes, resulting in NADH consumption, as monitored by a decline in visible-light absorbance at 340 nm. This assay performed well in both screens (Z'-factor >0.50) and identified two novel inhibitors that may be useful as chemical probes. However, these compounds have very modest potency against the B. malayi iPGAM (IC50 >10 µM) and represent isolated singleton hits rather than members of a common scaffold. Thus, despite the other appealing properties of the nematode iPGAMs, their low druggability makes them challenging to pursue as drug targets. This study illustrates a "druggability paradox" of target-based drug discovery: proteins are generally unsuitable for resource-intensive HTS unless they are considered druggable, yet druggability is often difficult to predict in the absence of HTS data.

  12. A target repurposing approach identifies N-myristoyltransferase as a new candidate drug target in filarial nematodes.

    Science.gov (United States)

    Galvin, Brendan D; Li, Zhiru; Villemaine, Estelle; Poole, Catherine B; Chapman, Melissa S; Pollastri, Michael P; Wyatt, Paul G; Carlow, Clotilde K S

    2014-09-01

    Myristoylation is a lipid modification involving the addition of a 14-carbon unsaturated fatty acid, myristic acid, to the N-terminal glycine of a subset of proteins, a modification that promotes their binding to cell membranes for varied biological functions. The process is catalyzed by myristoyl-CoA:protein N-myristoyltransferase (NMT), an enzyme which has been validated as a drug target in human cancers, and for infectious diseases caused by fungi, viruses and protozoan parasites. We purified Caenorhabditis elegans and Brugia malayi NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and peptide substrates. Biochemical and structural analyses both revealed that the nematode enzymes are canonical NMTs, sharing a high degree of conservation with protozoan NMT enzymes. Inhibitory compounds that target NMT in protozoan species inhibited the nematode NMTs with IC50 values of 2.5-10 nM, and were active against B. malayi microfilariae and adult worms at 12.5 µM and 50 µM respectively, and C. elegans (25 µM) in culture. RNA interference and gene deletion in C. elegans further showed that NMT is essential for nematode viability. The effects observed are likely due to disruption of the function of several downstream target proteins. Potential substrates of NMT in B. malayi are predicted using bioinformatic analysis. Our genetic and chemical studies highlight the importance of myristoylation in the synthesis of functional proteins in nematodes and have shown for the first time that NMT is required for viability in parasitic nematodes. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against nematode diseases including filariasis.

  13. Cofactor-independent phosphoglycerate mutase from nematodes has limited druggability, as revealed by two high-throughput screens.

    Directory of Open Access Journals (Sweden)

    Gregory J Crowther

    Full Text Available Cofactor-independent phosphoglycerate mutase (iPGAM is essential for the growth of C. elegans but is absent from humans, suggesting its potential as a drug target in parasitic nematodes such as Brugia malayi, a cause of lymphatic filariasis (LF. iPGAM's active site is small and hydrophilic, implying that it may not be druggable, but another binding site might permit allosteric inhibition. As a comprehensive assessment of iPGAM's druggability, high-throughput screening (HTS was conducted at two different locations: ∼220,000 compounds were tested against the C. elegans iPGAM by Genzyme Corporation, and ∼160,000 compounds were screened against the B. malayi iPGAM at the National Center for Drug Screening in Shanghai. iPGAM's catalytic activity was coupled to downstream glycolytic enzymes, resulting in NADH consumption, as monitored by a decline in visible-light absorbance at 340 nm. This assay performed well in both screens (Z'-factor >0.50 and identified two novel inhibitors that may be useful as chemical probes. However, these compounds have very modest potency against the B. malayi iPGAM (IC50 >10 µM and represent isolated singleton hits rather than members of a common scaffold. Thus, despite the other appealing properties of the nematode iPGAMs, their low druggability makes them challenging to pursue as drug targets. This study illustrates a "druggability paradox" of target-based drug discovery: proteins are generally unsuitable for resource-intensive HTS unless they are considered druggable, yet druggability is often difficult to predict in the absence of HTS data.

  14. The uptake in vitro of dyes, monosaccharides and amino acids by the filarial worm Brugia pahangi

    International Nuclear Information System (INIS)

    The uptake of D-glucose and L-leucine by B. pahangi was demonstrated using autoradiographic and scintillation counting techniques and incorporation into worm tissues was detected. Glucose was found to be readily incorporated in the apical, glycogen-rich areas of the myocytes of worms of all ages studied and in the uterine epithelium of the adult female. In contrast, a lower incorporation of D-glucose was found in the eggs, embryos and vas deferens and especially in the gut. The incorporation of L-leucine occurred throughout the tissue of the worms during a 30 min incubation. Labelling was also located over the surface of the cuticle of the worms, when incubated for a period of 15 to 60 min in L-[3H]leucine. Scintillation counting techniques demonstrated that there was no uptake of 14C-labelled L-glucose or sucrose by B. pahangi. The data presented on the uptake in vitro of nutrients or other compounds by infective larvae and adult stages of B. pahangi did not demonstrate an intestinal route of uptake but indicated that the transcuticular route of uptake may be employed. (author)

  15. Filarial worms reduce Plasmodium infectivity in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Matthew T Aliota

    Full Text Available BACKGROUND: Co-occurrence of malaria and filarial worm parasites has been reported, but little is known about the interaction between filarial worm and malaria parasites with the same Anopheles vector. Herein, we present data evaluating the interaction between Wuchereria bancrofti and Anopheles punctulatus in Papua New Guinea (PNG. Our field studies in PNG demonstrated that An. punctulatus utilizes the melanization immune response as a natural mechanism of filarial worm resistance against invading W. bancrofti microfilariae. We then conducted laboratory studies utilizing the mosquitoes Armigeres subalbatus and Aedes aegypti and the parasites Brugia malayi, Brugia pahangi, Dirofilaria immitis, and Plasmodium gallinaceum to evaluate the hypothesis that immune activation and/or development by filarial worms negatively impact Plasmodium development in co-infected mosquitoes. Ar. subalbatus used in this study are natural vectors of P. gallinaceum and B. pahangi and they are naturally refractory to B. malayi (melanization-based refractoriness. METHODOLOGY/PRINCIPAL FINDINGS: Mosquitoes were dissected and Plasmodium development was analyzed six days after blood feeding on either P. gallinaceum alone or after taking a bloodmeal containing both P. gallinaceum and B. malayi or a bloodmeal containing both P. gallinaceum and B. pahangi. There was a significant reduction in the prevalence and mean intensity of Plasmodium infections in two species of mosquito that had dual infections as compared to those mosquitoes that were infected with Plasmodium alone, and was independent of whether the mosquito had a melanization immune response to the filarial worm or not. However, there was no reduction in Plasmodium development when filarial worms were present in the bloodmeal (D. immitis but midgut penetration was absent, suggesting that factors associated with penetration of the midgut by filarial worms likely are responsible for the observed reduction in malaria

  16. Large extracellular loop of tetraspanin as a potential vaccine candidate for filariasis.

    Science.gov (United States)

    Dakshinamoorthy, Gajalakshmi; Munirathinam, Gnanasekar; Stoicescu, Kristen; Reddy, Maryada Venkatarami; Kalyanasundaram, Ramaswamy

    2013-01-01

    Lymphatic filariasis affects nearly 120 million people worldwide and mass preventive chemotherapy is currently used as a strategy to control this infection. This has substantially reduced the incidence of the infection in several parts of the world. However, a prophylactic vaccine would be more effective in preventing future infections and will supplement the mass chemotherapy efforts. Unfortunately, there is no licensed vaccine available currently to prevent this infection. Molecules expressed on the surface of the parasite are potential candidates for vaccine development as they are exposed to the host immune system. In this study we show that the large extracellular loop of tetraspanin (TSP LEL), a protein expressed on the cuticle of Brugia malayi and Wuchereria bancrofti is a potential vaccine candidate. Our results showed that BmTSP LEL is expressed on the surface of B. malayi infective third stage larvae (L3) and sera from human subjects who are putatively immune to lymphatic filariasis carry high titer of IgG1 and IgG3 antibodies against BmTSP LEL and WbTSP LEL. We also showed that these antibodies in the sera of human subjects can participate in the killing of B. malayi L3 in an antibody dependent cell-mediated cytotoxicity mechanism. Vaccination trials in mice showed that close to 64% protection were achieved against challenge infections with B. malayi L3. Immunized animals showed high titer of anti-WbTSP LEL IgG1, IgG2a and IgG2b antibodies in the sera and IFN-γ secreting cells in the spleen. Onchocerca volvulus another filarial parasite also expresses TSP LEL. Cross-reactivity studies showed that IgG1 antibody in the sera of endemic normal subjects, recognize OvTSP LEL. Similarly, anti-OvTSP LEL antibodies in the sera of subjects who are immune to O. volvulus were also shown to cross-react with rWbTSP LEL and rBmTSP LEL. These findings thus suggested that rTSP LEL can be developed as a potential vaccine candidate against multiple filarial infections

  17. Large extracellular loop of tetraspanin as a potential vaccine candidate for filariasis.

    Directory of Open Access Journals (Sweden)

    Gajalakshmi Dakshinamoorthy

    Full Text Available Lymphatic filariasis affects nearly 120 million people worldwide and mass preventive chemotherapy is currently used as a strategy to control this infection. This has substantially reduced the incidence of the infection in several parts of the world. However, a prophylactic vaccine would be more effective in preventing future infections and will supplement the mass chemotherapy efforts. Unfortunately, there is no licensed vaccine available currently to prevent this infection. Molecules expressed on the surface of the parasite are potential candidates for vaccine development as they are exposed to the host immune system. In this study we show that the large extracellular loop of tetraspanin (TSP LEL, a protein expressed on the cuticle of Brugia malayi and Wuchereria bancrofti is a potential vaccine candidate. Our results showed that BmTSP LEL is expressed on the surface of B. malayi infective third stage larvae (L3 and sera from human subjects who are putatively immune to lymphatic filariasis carry high titer of IgG1 and IgG3 antibodies against BmTSP LEL and WbTSP LEL. We also showed that these antibodies in the sera of human subjects can participate in the killing of B. malayi L3 in an antibody dependent cell-mediated cytotoxicity mechanism. Vaccination trials in mice showed that close to 64% protection were achieved against challenge infections with B. malayi L3. Immunized animals showed high titer of anti-WbTSP LEL IgG1, IgG2a and IgG2b antibodies in the sera and IFN-γ secreting cells in the spleen. Onchocerca volvulus another filarial parasite also expresses TSP LEL. Cross-reactivity studies showed that IgG1 antibody in the sera of endemic normal subjects, recognize OvTSP LEL. Similarly, anti-OvTSP LEL antibodies in the sera of subjects who are immune to O. volvulus were also shown to cross-react with rWbTSP LEL and rBmTSP LEL. These findings thus suggested that rTSP LEL can be developed as a potential vaccine candidate against multiple

  18. Differential Evolutionary Selection and Natural Evolvability Observed in ALT Proteins of Human Filarial Parasites.

    Science.gov (United States)

    Devoe, Neil C; Corbett, Ian J; Barker, Linsey; Chang, Robert; Gudis, Polyxeni; Mullen, Nathan; Perez, Kailey; Raposo, Hugo; Scholz, John; May, Meghan

    2016-01-01

    The abundant larval transcript (ALT-2) protein is present in all members of the Filarioidea, and has been reported as a potential candidate antigen for a subunit vaccine against lymphatic filariasis. To assess the potential for vaccine escape or heterologous protection, we examined the evolutionary selection acting on ALT-2. The ratios of nonsynonymous (K(a)) to synonymous (K(s)) mutation frequencies (ω) were calculated for the alt-2 genes of the lymphatic filariasis agents Brugia malayi and Wuchereria bancrofti and the agents of river blindness and African eyeworm disease Onchocerca volvulus and Loa loa. Two distinct Bayesian models of sequence evolution showed that ALT-2 of W. bancrofti and L. loa were under significant (Pvolvulus were under neutral to stabilizing selection. Diversifying selection as measured by ω values was notably strongest on the region of ALT-2 encoding the signal peptide of L. loa and was elevated in the variable acidic domain of L. loa and W. bancrofti. Phylogenetic analysis indicated that the ALT-2 consensus sequences formed three clades: the first consisting of B. malayi, the second consisting of W. bancrofti, and the third containing both O. volvulus and L. loa. ALT-2 selection was therefore not predictable by phylogeny or pathology, as the two species parasitizing the eye were selected differently, as were the two species parasitizing the lymphatic system. The most immunogenic regions of L. loa and W. bancrofti ALT-2 sequence as modeled by antigenicity prediction analysis did not correspond with elevated levels of diversifying selection, and were not selected differently than predicted antigenic epitopes in B. malayi and O. volvulus. Measurements of ALT-2 evolvability made by χ2 analysis between alleles that were stable (O. volvulus and B. malayi) and those that were under diversifying selection (W. bancrofti and L. loa) indicated significant (P<0.01) deviations from a normal distribution for both W. bancrofti and L. loa. The

  19. Dual RNA-seq of parasite and host reveals gene expression dynamics during filarial worm-mosquito interactions.

    Directory of Open Access Journals (Sweden)

    Young-Jun Choi

    2014-05-01

    Full Text Available BACKGROUND: Parasite biology, by its very nature, cannot be understood without integrating it with that of the host, nor can the host response be adequately explained without considering the activity of the parasite. However, due to experimental limitations, molecular studies of parasite-host systems have been predominantly one-sided investigations focusing on either of the partners involved. Here, we conducted a dual RNA-seq time course analysis of filarial worm parasite and host mosquito to better understand the parasite processes underlying development in and interaction with the host tissue, from the establishment of infection to the development of infective-stage larva. METHODOLOGY/PRINCIPAL FINDINGS: Using the Brugia malayi-Aedes aegypti system, we report parasite gene transcription dynamics, which exhibited a highly ordered developmental program consisting of a series of cyclical and state-transitioning temporal patterns. In addition, we contextualized these parasite data in relation to the concurrent dynamics of the host transcriptome. Comparative analyses using uninfected tissues and different host strains revealed the influence of parasite development on host gene transcription as well as the influence of the host environment on parasite gene transcription. We also critically evaluated the life-cycle transcriptome of B. malayi by comparing developmental stages in the mosquito relative to those in the mammalian host, providing insight into gene expression changes underpinning the mosquito-borne parasitic lifestyle of this heteroxenous parasite. CONCLUSIONS/SIGNIFICANCE: The data presented herein provide the research community with information to design wet lab experiments and select candidates for future study to more fully dissect the whole set of molecular interactions of both organisms in this mosquito-filarial worm symbiotic relationship. Furthermore, characterization of the transcriptional program over the complete life cycle of

  20. A reverse transcriptase-PCR assay for detecting filarial infective larvae in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Sandra J Laney

    Full Text Available BACKGROUND: Existing molecular assays for filarial parasite DNA in mosquitoes cannot distinguish between infected mosquitoes that contain any stage of the parasite and infective mosquitoes that harbor third stage larvae (L3 capable of establishing new infections in humans. We now report development of a molecular L3-detection assay for Brugia malayi in vectors based on RT-PCR detection of an L3-activated gene transcript. METHODOLOGY/PRINCIPAL FINDINGS: Candidate genes identified by bioinformatics analysis of EST datasets across the B. malayi life cycle were initially screened by PCR using cDNA libraries as templates. Stage-specificity was confirmed using RNA isolated from infected mosquitoes. Mosquitoes were collected daily for 14 days after feeding on microfilaremic cat blood. RT-PCR was performed with primer sets that were specific for individual candidate genes. Many promising candidates with strong expression in the L3 stage were excluded because of low-level transcription in less mature larvae. One transcript (TC8100, which encodes a particular form of collagen was only detected in mosquitoes that contained L3 larvae. This assay detects a single L3 in a pool of 25 mosquitoes. CONCLUSIONS/SIGNIFICANCE: This L3-activated gene transcript, combined with a control transcript (tph-1, accession # U80971 that is constitutively expressed by all vector-stage filarial larvae, can be used to detect filarial infectivity in pools of mosquito vectors. This general approach (detection of stage-specific gene transcripts from eukaryotic pathogens may also be useful for detecting infective stages of other vector-borne parasites.

  1. Utilization of computer processed high definition video imaging for measuring motility of microscopic nematode stages on a quantitative scale: “The Worminator”

    Directory of Open Access Journals (Sweden)

    Bob Storey

    2014-12-01

    Full Text Available A major hindrance to evaluating nematode populations for anthelmintic resistance, as well as for screening existing drugs, new compounds, or bioactive plant extracts for anthelmintic properties, is the lack of an efficient, objective, and reproducible in vitro assay that is adaptable to multiple life stages and parasite genera. To address this need we have developed the “Worminator” system, which objectively and quantitatively measures the motility of microscopic stages of parasitic nematodes. The system is built around the computer application “WormAssay”, developed at the Center for Discovery and Innovation in Parasitic Diseases at the University of California, San Francisco. WormAssay was designed to assess motility of macroscopic parasites for the purpose of high throughput screening of potential anthelmintic compounds, utilizing high definition video as an input to assess motion of adult stage (macroscopic parasites (e.g. Brugia malayi. We adapted this assay for use with microscopic parasites by modifying the software to support a full frame analysis mode that applies the motion algorithm to the entire video frame. Thus, the motility of all parasites in a given well are recorded and measured simultaneously. Assays performed on third-stage larvae (L3 of the bovine intestinal nematode Cooperia spp., as well as microfilariae (mf of the filarioid nematodes B. malayi and Dirofilaria immitis, yielded reproducible dose responses using the macrocyclic lactones ivermectin, doramectin, and moxidectin, as well as the nicotinic agonists, pyrantel, oxantel, morantel, and tribendimidine. This new computer based-assay is simple to use, requires minimal new investment in equipment, is robust across nematode genera and developmental stage, and does not require subjective scoring of motility by an observer. Thus, the “Worminator” provides a relatively low-cost platform for developing genera- and stage-specific assays with high efficiency and

  2. Infection Outcome and Cytokine Gene Expression in Brugia pahangi- Infected Gerbils (Meriones unguiculatus) Sensitized with Brucella abortus

    OpenAIRE

    Chirgwin, Sharon R.; Elzer, Philip H.; Coleman, Sharon U.; Nowling, Jena M.; Hagius, Sue D.; Edmonds, Matthew D.; Klei, Thomas R

    2002-01-01

    Filarial infections have been associated with the development of a strongly polarized Th2 host immune response and a severe impairment of mitogen-driven proliferation and type 1 cytokine production in mice and humans. The role of this polarization in the development of the broad spectra of clinical manifestations of lymphatic filariasis is still unknown. Recently, data gathered from humans as well as from immunocompromised mouse models suggest that filariasis elicits a complex host immune res...

  3. Evaluation of a Multivalent Vaccine against Lymphatic Filariasis in Rhesus macaque Model

    Science.gov (United States)

    Dakshinamoorthy, Gajalakshmi; von Gegerfelt, Agneta; Andersen, Hanne; Lewis, Mark; Kalyanasundaram, Ramaswamy

    2014-01-01

    Lymphatic filariasis affects 120 million people worldwide and another 1.2 billion people are at risk of acquiring the infection. Chemotherapy with mass drug administration is substantially reducing the incidence of the infection. Nevertheless, an effective vaccine is needed to prevent the infection and eradicate the disease. Previously we reported that a multivalent fusion protein vaccine (rBmHAT) composed of small heat shock proteins 12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and large extracellular domain of tetraspanin (TSP LEL) could confer >95% protection against the challenge infection with Brugia malayi infective larvae (L3) in mouse and gerbil models. In this study we evaluated the immunogenicity and efficacy of rBmHAT fusion protein vaccine in a rhesus macaque model. Our results show that rBmHAT is highly immunogenic in rhesus macaques. All the vaccinated monkeys developed significant titers of antigen-specific IgG antibodies against each of the component antigens (16,000 for rBmHSP12.6), (24,000 for rBmALT-2) and (16,000 for rBmTSP-LEL). An in vitro antibody dependent cellular cytotoxicity (ADCC) assay performed using the sera samples from vaccinated monkeys showed that the anti-rBmHAT antibodies are functional with 35% killing of B. malayi L3s. Vaccinated monkeys also had antigen responding cells in the peripheral blood. Vaccine-induced protection was determined after challenging the monkeys with 500 B. malayi L3. Following challenge infection, 3 out of 5 vaccinated macaques failed to develop the infection. These three protected macaques had high titers of IgG1 antibodies and their PBMC secreted significantly high levels of IFN-γ in response to the vaccine antigens. The two vaccinated macaques that picked the infection had slightly low titers of antibodies and their PBMC secreted high levels of IL-10. Based on these findings we conclude that the rBmHAT vaccine is highly immunogenic and safe and can confer significant protection against

  4. Longitudinal monitoring of the development of antifilarial antibodies and acquisition of Wuchereria bancrofti in a highly endemic area of Haiti.

    Directory of Open Access Journals (Sweden)

    Katy L Hamlin

    Full Text Available Antifilarial antibody testing has been established as a sensitive and specific method of diagnosing lymphatic filariasis. However, the development of serological responses to specific filarial antigens and their relationship to acquisition of infection is poorly understood. In order to evaluate whether the development of antigen specific antifilarial antibodies precedes microfilaremia and antigenemia, we compared the antibody responses of serum samples collected between 1990 and 1999 from a cohort of 142 Haitian children followed longitudinally. Antigen status was determined using the Og4C3 ELISA and the presence of microfilaremia was detected using microscopy. Antibody responses to Wb123, a Wuchereria bancrofti L3 antigen, were measured using a Luciferase Immunoprecipitation System (LIPS assay. Antibody responses to Bm14 and Bm33, Brugia malayi antigens and to a major surface protein (WSP from Wolbachia were analyzed using a multiplex bead assay. Over follow-up, 80 (56% of the children became antigen-positive and 30 (21% developed microfilaremia. Detectable antibody responses to Bm14, Bm33, Wb123, and WSP developed in 95%, 100%, 92%, and 29% of children, respectively. With the exception of WSP, the development of antibody responses generally preceded detection of filarial antigen. Our results show that antifilarial antibody responses can serve as an important epidemiological indicator in a sentinel population of young children and thus, may be valuable as tool for surveillance in the context of lymphatic filariasis elimination programs.

  5. 我国基本消灭丝虫病后流行病学监测进展

    Institute of Scientific and Technical Information of China (English)

    李玉民; 高本健; 高长兰; 程义亮

    2001-01-01

    @@ 淋巴丝虫病是严重危害人民健康的寄生虫病之一,在我国流行的丝虫病有班氏丝虫病和马来丝虫病两种,分别由班氏吴策线虫(wuchereria bancrofti)和马来布鲁线虫(brugia malayi)引起.防治前在1 5个省(市、区)的864个县流行,受威胁人口达3.3亿.其中流行班氏丝虫病的有1 5个省(市、区)的461个县(市);流行马来丝虫病的有1 3个省(市、区)的222个县;班氏、马来丝虫病混合流行的有11个省(市、区)的181个县(市).估计全国有丝虫病人(包括微丝蚴血症和症状体征)3 099.4万人,其中班氏丝虫病人2 196.2万人,马来丝虫病人903.2万人.在864个流行县(市)中,班氏丝虫病约占三分之一[1].

  6. Prospects, drawbacks and future needs of xenomonitoring for the endpoint evaluation of lymphatic filariasis elimination programs in Africa.

    Science.gov (United States)

    Okorie, Patricia N; de Souza, Dziedzom K

    2016-02-01

    Lymphatic filariasis (LF) is a debilitating disease caused by Wuchereria bancrofti, Brugia malayi and B. timori parasitic worms and transmitted by Culex, Anopheles, Aedes and Mansonia mosquitoes. Mass drug administration (MDA) to reduce the infection levels in the human population is the key component of LF elimination programs. However, the potential of the use of vector control is gaining recognition as a tool that can complement MDA. The method of monitoring the parasites in mosquito vectors is known as xenomonitoring. Monitoring of vectors for filarial larvae is an important assessment tool for LF elimination programs. Xenomonitoring has the advantage of giving a real-time estimate of disease, because the pre-patent period may take months after infection in humans. It is a non-invasive sensitive tool for assessing the presence of LF in endemic areas. The aim of this review is to discuss the prospects, challenges and needs of xenomonitoring as a public health tool, in the post-MDA evaluation activities of national LF elimination programs. PMID:26822601

  7. RECOMBINANT PROTEIN PRODUCTION OF ABUNDANT LARVAL TRANSCRIPT (ALT-2 IN ESCHERICHIA COLI

    Directory of Open Access Journals (Sweden)

    Kamran Ashraf

    2013-02-01

    Full Text Available Lymphatic filariasis is a major tropical disease caused by mosquito born nematodes Brugia malayi and Wuchereria bancrofti. Vaccine against filariasis must generate immunity to infective mosquito derived L3 stage. Two highly expressed genes designated abundant larval transcript-1 and -2 (alt-1 and alt-2. ALT-1 and ALT-2 represent closely related protein (79% it. Now, expression of this alt gene in E. coli BL21plysS for the production of vaccine is major challenge as no vaccine is available against this disease. Work was carried out to express this protein at laboratory scale bioreactor. At first optimization of different parameter like suitability of media, inducer concentration, induction time was done for getting maximum amount of recombinant protein. In shake flask studies, after induction (max cell density and max specific growth rate stage good expression of ALT-2 protein was found. However, at laboratory scale production done in bioreactor, expression level drastically decreased. Plasmid stability analysis was done in reactor and was found to be cause for decreased productivity. The stability was improved by increasing antibiotic concentration in the medium and also by pulsing antibiotic during induction. This led to better plasmid stability and increased expression levels in reactor similar to expression levels in shake flask studies.

  8. Immunoadjuvant effect of diethylcarbamazine in experimental filariasis.

    Science.gov (United States)

    Parasurama Jawaharlal, Jeya Prita; Rajaiah Prabhu, Prince; Gandhirajan, Anugraha; Krishnan, Nithya; Perumal, Kaliraj

    2015-02-01

    Lymphatic filariasis caused by tissue dwelling nematodes is endemic in 73 countries and drugs have been administered to control or stop the infection. Resurgence of the infection after mass drug administration necessitates the study of several parasite antigens or adjuvants for vaccine developments. In this study, diethylcarbamazine (DEC) was evaluated for its efficacy as adjuvant against the filarial parasite; Brugia malayi microfilariae (mf) by combining with the Escherichia coli expressed recombinant BmShp-1 protein. Shp-1 is one of the sheath proteins expressed by adult female and microfilarial stage of the filarial parasite. Hence, immunoprophylactic efficacy of Shp-1 using DEC and alum adjuvants was compared in BALB/c mice model by an in situ micropore chamber method. Shp-1 antibody titre was high when the mice were immunized with Shp-1 along with DEC and they exhibited balanced Th1/Th2 profile. DEC also induced significantly high T-cell proliferation (Pdrug administration can be controlled when there is a possibility of developing protective immunity in the host against mf by vaccination. PMID:25576657

  9. An ELISA kit with two detection modes for the diagnosis of lymphatic filariasis.

    Science.gov (United States)

    Wongkamchai, S; Satimai, W; Loymek, S; Nochot, H; Boitano, J J

    2015-09-01

    The aim of this study was to develop a low-cost antifilarial immunoglobulin (Ig) G4 detection kit for the diagnosis of lymphatic filariasis. The kit was designed to be used by minimally trained personnel without the constraints of expensive laboratory equipment. We provide a description of the development and validation of a single-serum-dilution based enzyme-linked immunosorbent assay (ELISA) kit with ready-to-use reagents for measuring antifilarial IgG4 antibodies. The kit was tested on residents in Brugia malayi-endemic areas in southern Thailand. Detection was performed by naked-eye observation of the resultant colour of the immunological reactivity. The coefficient of variation (CV) was used to assess the reproducibility of the results. Long-term stability was measured over a 6-month period. Sensitivity of the test kit was 97% when compared with microfilariae detection in thick blood smears. Specificity was 98.7% based on the sera of 57 patients living outside the endemic areas who were infected with other parasites and 100 parasite-free subjects. All positive CVs were filariasis-endemic areas and compared with outcome colours of the test samples by the naked eye. Subsequent ELISA evaluation of these results using an ELISA reader indicated high agreement by the kappa statistic. These results demonstrate that the test kit is efficient and useful for public health laboratories as an alternative tool for the diagnosis of lymphatic filarial infection.

  10. Tandem antioxidant enzymes confer synergistic protective responses in experimental filariasis.

    Science.gov (United States)

    Prince, P R; Madhumathi, J; Anugraha, G; Jeyaprita, P J; Reddy, M V R; Kaliraj, P

    2014-12-01

    Helminth parasites use antioxidant defence strategies for survival during oxidative stress due to free radicals in the host. Accordingly, tissue-dwelling filarial parasites counteract host responses by releasing a number of antioxidants. Targeting these redox regulation proteins together, would facilitate effective parasite clearance. Here, we report the combined effect of protective immune responses trigged by recombinant Wuchereria bancrofti thioredoxin (WbTRX) and thioredoxin peroxidase (WbTPX) in an experimental filarial model. The expression of WbTRX and WbTPX in different stages of the parasite and their cross-reactivity were analysed by enzyme-linked immunosorbent assay (ELISA). The immunogenicity of recombinant proteins and their protective efficacy were studied in animal models when immunized in single or cocktail mode. The antigens showed cross-reactive epitopes and induced high humoral and cellular immune responses in mice. Further, parasite challenge against Brugia malayi L3 larvae in Mastomys coucha conferred significant protection of 57% and 62% against WbTRX and WbTPX respectively. The efficacy of L3 clearance was significantly higher (71%) (P filariasis.

  11. Ocular Filariasis in US Residents, Returning Travelers, and Expatriates.

    Science.gov (United States)

    Diaz, James H

    2015-01-01

    Several factors acting in concert now place US residents, returning travelers, and expatriates at risks of contracting ocular filariasis including increasing seroprevalence rates of zoonotic filariasis, international travel bringing tourists to and expatriates from filariasis-endemic regions, and warming temperatures extending distribution ranges of arthropod vectors. To describe the epidemiology and outcomes of ocular filariasis and to recommend strategies for the diagnosis, management, and prevention of ocular filariasis, internet search engines were queried with the key words in order to examine case reports and series of ocular filariasis in the US and elsewhere. Descriptive epidemiological, morphological, and molecular evidence now support increasing cases of ocular filariasis in domestic and wild animals and humans, with most cases caused by filarial worms including Dirofilaria repens and other zoonotic Dirofilaria species and Onchocerca lupi and other zoonotic Onchocerca species. Clinicians should maintain early suspicion of ocular filariasis in US residents, returning travelers, and expatriates who complain of combinations of red eye, eye pain, foreign body sensation, reduced visual acuity, and migrating ocular worms, even without significant peripheral eosinophilia or microfilaremia. Microfilariae of Wuchereria bancrofti, Brugia malayi, and O. volvulus may traverse the eye, but can usually be treated medically. Mobile adult worms trapped in the subconjunctiva or anterior chamber should be removed by ophthalmologists to permit species identification, prevent posterior uveitis and iritis, and stop worm migration into the posterior chamber which could require lens removal and vitrectomy for worm extraction causing further eye damage.

  12. Limitations of the radioimmunoprecipitation polyethylene glycol assay (RIPEGA) for detection of filarial antigens in serum

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, R.G.; Alexander, E.; Adkinson, N.F. (Johns Hopkins Univ., Baltimore, MD (USA). School of Medicine); Hussain, R. (National Institutes of Health, Bethesda, MD (USA))

    1984-03-30

    The performance of the radioimmunoprecipitation polyethylene glycol assay (RIPEGA) was examined for quantitation of filarial antigens (Brugia malayi and Dirofilaria immitis) in serum from infected human and animal hosts and non-infected controls. Multiple PEG concentrations were employed to determine the level of non-specific binding (NSB) in non-exposed human sera (NEHS) containing no filarial antigen. The NSB observed when 3 different /sup 125/I-labelled IgG antibodies were added to 26 NEHS varied 3-fold and was correlated significantly with total serum IgM (r = 0.80, P < 0.005, n = 24) but not with serum IgA (r = 0.37) or IgG (r = 0.45). NSB levels were significantly reduced when a Fab'/sub 2/ fragment of the /sup 125/I-labelled antibody was used, but the correlation of NSB with total serum IgM remained significant (r = 0.57, P < 0.01). The presence of rheumatoid factor in NEHS sera also significantly increased NSB by an average of 3-fold. These effects eliminated the assay's ability to detect in sera from infected hosts filarial antigen the presence of which could be readily demonstrated by an immunoradiometric assay. The RIPEGA's precision (intra-assay coefficient of variation (CV) = 21% at 35% Bsub(max)) and reproducibility (inter-assay CV = 29% at 35% Bsub(max)) are less satisfactory than many alternative immunoassays.

  13. Chimeric Epitope Vaccine from Multistage Antigens for Lymphatic Filariasis.

    Science.gov (United States)

    Anugraha, G; Madhumathi, J; Prince, P R; Prita, P J Jeya; Khatri, V K; Amdare, N P; Reddy, M V R; Kaliraj, P

    2015-10-01

    Lymphatic filariasis, a mosquito-borne parasitic disease, affects more than 120 million people worldwide. Vaccination for filariasis by targeting different stages of the parasite will be a boon to the existing MDA efforts of WHO which required repeated administration of the drug to reduce the infection level and sustained transmission. Onset of a filaria-specific immune response achieved through antigen vaccines can act synergistically with these drugs to enhance the parasite killing. Multi-epitope vaccine approach has been proved to be successful against several parasitic diseases as it overcomes the limitations associated with the whole antigen vaccines. Earlier results from our group suggested the protective efficacy of multi-epitope vaccine comprising two immunodominant epitopes from Brugia malayi antioxidant thioredoxin (TRX), several epitopes from transglutaminase (TGA) and abundant larval transcript-2 (ALT-2). In this study, the prophylactic efficacy of the filarial epitope protein (FEP), a chimera of selective epitopes identified from our earlier study, was tested in a murine model (jird) of filariasis with L3 larvae. FEP conferred a significantly (P < 0.0001) high protection (69.5%) over the control in jirds. We also observed that the multi-epitope recombinant construct (FEP) induces multiple types of protective immune responses, thus ensuring the successful elimination of the parasite; this poses FEP as a potential vaccine candidate.

  14. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence.

    Directory of Open Access Journals (Sweden)

    Kacy L Gordon

    2015-05-01

    Full Text Available Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2 from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements.

  15. ACUTE FILARIAL INFECTION PRESENTING WITH FITS AND A LTERED SENSORIUM- RARE PRESENTATION. A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Mona

    2013-05-01

    Full Text Available INTRODUCTION: Filarial worms are nematodes that live in lymphatic s and subcutaneous tissues. Eight filarial species are known to infect humans out of which most serious filarial infections are caused mostly by four parasites like Wuchereria bancrofti, Brugia malayi, Onchocerca volvulus and Loa loa. These parasites ar e transmitted by specific species of mosquitoes or other arthropods. The clinical manife stations of filarial diseases develop relatively slowly, these infections should be consi dered to induce chronic diseases with possible long- term debilitating effects. Characteristically , filarial disease is more acute and intense in newly exposed individuals than in natives of endemic areas. [1] Lymphatic filariasis (LF causes lymphoedema, hydrocele and acute attacks of dermato- lymphangio-adenitis. [2] It represents a major public health problem in tropical and subtropical regions of the world. [3] It is mainly a disease of the adult and older age-classes and appear s to be more prevalent in males. [4] Lymphatic filariasis is a major tropical disease aff ecting approximately 120 million people worldwide. India contributes about 40% of the tota l global burden and accounts for about 50% of the people at the risk of infection. A recent sur vey has shown that out of the 25 States/Union territories in India, 22 are endemic and nine state s (Andhra Pradesh, Bihar, Gujarat, Kerala, Maharashtra, Orissa, Tamil Nadu, Utter Pradesh and West Bengal contribute to about 95% of total burden. W. bancrofti is the predominant species accounting for about 98% of the national burden. [5

  16. Rendering the Intractable More Tractable: Tools from Caenorhabditis elegans Ripe for Import into Parasitic Nematodes.

    Science.gov (United States)

    Ward, Jordan D

    2015-12-01

    Recent and rapid advances in genetic and molecular tools have brought spectacular tractability to Caenorhabditis elegans, a model that was initially prized because of its simple design and ease of imaging. C. elegans has long been a powerful model in biomedical research, and tools such as RNAi and the CRISPR/Cas9 system allow facile knockdown of genes and genome editing, respectively. These developments have created an additional opportunity to tackle one of the most debilitating burdens on global health and food security: parasitic nematodes. I review how development of nonparasitic nematodes as genetic models informs efforts to import tools into parasitic nematodes. Current tools in three commonly studied parasites (Strongyloides spp., Brugia malayi, and Ascaris suum) are described, as are tools from C. elegans that are ripe for adaptation and the benefits and barriers to doing so. These tools will enable dissection of a huge array of questions that have been all but completely impenetrable to date, allowing investigation into host-parasite and parasite-vector interactions, and the genetic basis of parasitism.

  17. [Scanning microscopical observations on the foregut structures o mosquitoes and their role for the ingestion of microfilariae (author's transl)].

    Science.gov (United States)

    Buse, E; Kuhlow, F

    1979-12-01

    Experiments on the transmission of Brugia malayi by various mosquitoes had shown that microfilariae ingested by some species were badly damaged when they reached the stomach, but were much less hurt in others. The structures of the foregut likely to cause these injuries, were investigated and documented by scanning microscope techniques. In Anopheles albimanus, A. arabiensis, A. stephensi and A. pharoensis which have well developed armatures the microfilariae showed a high rate of destruction. In A. stroparvus as well as in Aedes aegypti, Ae. togoi and Culex fatigans in which these structures are missing or poorly developed the larvae were much less affected. From the size, shape and position of the different papillae, spines, rods and cones observed it can be concluded and confirmed that the pharyngeal armature (buccopharyngeal bar) will be by far the most important structure responsible for the injuries of the microfilariae. However, it appears that the characteristics of different filaria species can play an important role in preventing such damages.

  18. Evaluation of immune response elicited by inulin as an adjuvant with filarial antigens in mice model.

    Science.gov (United States)

    Mahalakshmi, N; Aparnaa, R; Kaliraj, P

    2014-10-01

    Filariasis caused by infectious parasitic nematodes has been identified as the second leading source of permanent and long-term disability in Sub-Saharan Africa, Asia and Latin America. Several vaccine candidates were identified from infective third-stage larvae (L3) which involves in the critical transition from arthropod to human. Hitherto studies of these antigens in combination with alum adjuvant have shown to elicit its characteristic Th2 responses. Inulin is a safe, non-toxic adjuvant that principally stimulates the innate immune response through the alternative complement pathway. In the present study, the immune response elicited by inulin and alum as adjuvants were compared with filarial antigens from different aetiological agents: secreted larval acidic protein 1 (SLAP1) from Onchocerca volvulus and venom allergen homologue (VAH) from Brugia malayi as single or as cocktail vaccines in mice model. The study revealed that inulin can induce better humoral response against these antigens than alum adjuvant. Antibody isotyping disclosed inulin's ability to elevate the levels of IgG2a and IgG3 antibodies which mediates in complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC), respectively, in mice. Splenocyte analysis showed that T cells prestimulated with inulin have higher stimulation index (P inulin formulation had induced higher cytotoxicity with filarial antigens (as single P inulin to deplete the levels of Treg and brought a balance in Th1/Th2 arms against filarial antigens in mice.

  19. Assembly of the genome of the disease vector Aedes aegypti onto a genetic linkage map allows mapping of genes affecting disease transmission.

    Directory of Open Access Journals (Sweden)

    Punita Juneja

    Full Text Available The mosquito Aedes aegypti transmits some of the most important human arboviruses, including dengue, yellow fever and chikungunya viruses. It has a large genome containing many repetitive sequences, which has resulted in the genome being poorly assembled - there are 4,758 scaffolds, few of which have been assigned to a chromosome. To allow the mapping of genes affecting disease transmission, we have improved the genome assembly by scoring a large number of SNPs in recombinant progeny from a cross between two strains of Ae. aegypti, and used these to generate a genetic map. This revealed a high rate of misassemblies in the current genome, where, for example, sequences from different chromosomes were found on the same scaffold. Once these were corrected, we were able to assign 60% of the genome sequence to chromosomes and approximately order the scaffolds along the chromosome. We found that there are very large regions of suppressed recombination around the centromeres, which can extend to as much as 47% of the chromosome. To illustrate the utility of this new genome assembly, we mapped a gene that makes Ae. aegypti resistant to the human parasite Brugia malayi, and generated a list of candidate genes that could be affecting the trait.

  20. A new member of the GM130 golgin subfamily is expressed in the optic lobe anlagen of the metamorphosing brain of Manduca sexta

    Directory of Open Access Journals (Sweden)

    Chiou-Miin Wang

    2003-12-01

    Full Text Available During metamorphosis of the insect brain, the optic lobe anlagen generate the proliferation centers for the visual cortices. We show here that, in the moth Manduca sexta, an 80 kDa Golgi complex protein (Ms-golgin80 is abundantly expressed in the cytoplasm of neuroblasts and ganglion mother cells in the optic lobe anlagen and proliferation centers. The predicted amino acid sequence for Ms-golgin80 is similar to that of several members of the GM130 subfamily of Golgi-associated proteins, including rat GM130 and human golgin-95. Homologs of Ms-golgin80 from Drosophila melanogaster, Caenorhabditis elegans, and Brugia malayi were identified through homology sequence search. Sequence similarities are present in three regions: the N-terminus, an internal domain of 89 amino acids, and another domain of 89 amino acids near the C-terminus. Structural similarities further suggest that these molecules play the same cellular role as GM130. GM130 is involved in the docking and fusion of coatomer (COP I coated vesicles to the Golgi membranes; it also regulates the fragmentation and subsequent reassembly of the Golgi complex during mitosis. Abundant expression of Ms-golgin80 in neuroblasts and ganglion mother cells and its reduced expression in the neuronal progeny of these cells suggest that this protein may be involved in the maintenance of the proliferative state.

  1. Recent Advances on the Use of Biochemical Extracts as Filaricidal Agents

    Directory of Open Access Journals (Sweden)

    Nazeh M. Al-Abd

    2013-01-01

    Full Text Available Lymphatic filariasis is a parasitic infection that causes a devastating public health and socioeconomic burden with an estimated infection of over 120 million individuals worldwide. The infection is caused by three closely related nematode parasites, namely, Wuchereria bancrofti, Brugia malayi, and B. timori, which are transmitted to human through mosquitoes of Anopheles, Culex, and Aedes genera. The species have many ecological variants and are diversified in terms of their genetic fingerprint. The rapid spread of the disease and the genetic diversification cause the lymphatic filarial parasites to respond differently to diagnostic and therapeutic interventions. This in turn prompts the current challenge encountered in its management. Furthermore, most of the chemical medications used are characterized by adverse side effects. These complications urgently warrant intense prospecting on bio-chemicals that have potent efficacy against either the filarial worms or thier vector. In lieu of this, we presented a review on recent literature that reported the efficacy of filaricidal biochemicals and those employed as vector control agents. In addition, methods used for biochemical extraction, screening procedures, and structure of the bioactive compounds were also presented.

  2. MID TERM ASSESSMENT OF MASS DRUG ADMINISTRATION IN LYMPHATIC FILARIASIS ENDEMIC AREA OF DAMOH AND SAGAR DISTRICT OF MADHYA PRADESH

    Directory of Open Access Journals (Sweden)

    Mohan

    2015-03-01

    Full Text Available BACKGROUND: Lymphatic filariasis caused by Wuchereria bancrofti and Brugia malayi is an important public health problem in India. Filariasis is a major social and the fourth most common cause of disability all over the globe. Filariasis is endemic in 17 States and six Union Territories, with about 553 million people at risk of infection. It has been a major public health problem in India. The Global Programme for Elimination of Lymphatic filariasis was launched by the WHO in 2000 with the goal of eliminating Lymphatic filariasis as a public health problem by the year 2020. For the effective control of filariasis >65% population of endemic areas should be covered by single dose of Diethylcarbamazine 6mg/kg (DEC. OBJECTIVES: To assess the coverage and compliance of mass drug administration in the selected District and to make independent assessment with respect to process and out - come indicators. MATERIAL AND METHODS : A community based cross sectional study through house to house survey method in selected clusters was adopted. An independent evaluation was done and the outcome was assessed as the coverage and compliance of mass drug administration. RESULTS: In both Damoh and Sagar Districts of Madhya Pradesh, the coverage level for DEC was > 80% in all the Blocks. CONCL USION: The mass drug administration was aimed only to distribute the drug and the issues related to compliance, proper health education and side effects management were not given enough attention. These issues are important to make programme effective.

  3. Molecular and biochemical characterization of nematode cofactor independent phosphoglycerate mutases.

    Science.gov (United States)

    Raverdy, Sylvine; Zhang, Yinhua; Foster, Jeremy; Carlow, Clotilde K S

    2007-12-01

    Phosphoglycerate mutase (PGM, EC 5.4.2.1) catalyzes the isomerization of 3-phosphoglycerate and 2-phosphoglycerate in glycolysis and gluconeogenesis. Two distinct types of PGM exist in nature, one that requires 2,3-bisphosphoglycerate as a cofactor (dPGM) and another that does not (iPGM). The two enzymes are structurally distinct and possess different mechanisms of action. In any particular organism, one form may exist or both. Nematodes possess the iPGM form whereas mammals have dPGM. In the present study, we have cloned and expressed iPGM from Onchocerca volvulus and described the catalytic properties of O. volvulus, Brugia malayi and Caenorhabditis elegans iPGM enzymes. Temperature and pH optima were determined for each enzyme. Like other iPGM enzymes, the activities of the nematode iPGM enzymes were dependent on the presence of divalent ions. Inactivation by EDTA could be restored most effectively by magnesium and manganese ions. Kinetic parameters and specific activities of the various recombinant enzymes were determined. The high similarity in catalytic properties among the enzymes indicates that a single enzyme inhibitor would likely be effective against all nematode enzymes. Inhibition of iPGM activity in vivo may lead to lethality as indicated by RNAi studies in C. elegans. Our results support the development of iPGM as a promising drug target in parasitic nematodes.

  4. Cofactor-independent phosphoglycerate mutase has an essential role in Caenorhabditis elegans and is conserved in parasitic nematodes.

    Science.gov (United States)

    Zhang, Yinhua; Foster, Jeremy M; Kumar, Sanjay; Fougere, Marjorie; Carlow, Clotilde K S

    2004-08-27

    Phosphoglycerate mutases catalyze the interconversion of 2- and 3-phosphoglycerate in the glycolytic and gluconeogenic pathways. They exist in two unrelated forms that are either cofactor (2,3-diphosphoglycerate)-dependent or cofactor-independent. The two enzymes have no similarity in amino acid sequence, tertiary structure, or catalytic mechanism. Certain organisms including vertebrates have only the cofactor-dependent form, whereas other organisms can possess the independent form or both. Caenorhabditis elegans has been predicted to have only independent phosphoglycerate mutase. In this study, we have cloned and produced recombinant, independent phosphoglycerate mutases from C. elegans and the human-parasitic nematode Brugia malayi. They are 70% identical to each other and related to known bacterial, fungal, and protozoan enzymes. The nematode enzymes possess the catalytic serine, and other key amino acids proposed for catalysis and recombinant enzymes showed typical phosphoglycerate mutase activities in both the glycolytic and gluconeogenic directions. The gene is essential in C. elegans, because the reduction of its activity by RNA interference led to embryonic lethality, larval lethality, and abnormal body morphology. Promoter reporter analysis indicated widespread expression in larval and adult C. elegans with the highest levels apparent in the nerve ring, intestine, and body wall muscles. The enzyme was found in a diverse group of nematodes representing the major clades, indicating that it is conserved throughout this phylum. Our results demonstrate that nematodes, unlike vertebrates, utilize independent phosphoglycerate mutase in glycolytic and gluconeogenic pathways and that the enzyme is probably essential for all nematodes.

  5. Chimeric Epitope Vaccine from Multistage Antigens for Lymphatic Filariasis.

    Science.gov (United States)

    Anugraha, G; Madhumathi, J; Prince, P R; Prita, P J Jeya; Khatri, V K; Amdare, N P; Reddy, M V R; Kaliraj, P

    2015-10-01

    Lymphatic filariasis, a mosquito-borne parasitic disease, affects more than 120 million people worldwide. Vaccination for filariasis by targeting different stages of the parasite will be a boon to the existing MDA efforts of WHO which required repeated administration of the drug to reduce the infection level and sustained transmission. Onset of a filaria-specific immune response achieved through antigen vaccines can act synergistically with these drugs to enhance the parasite killing. Multi-epitope vaccine approach has been proved to be successful against several parasitic diseases as it overcomes the limitations associated with the whole antigen vaccines. Earlier results from our group suggested the protective efficacy of multi-epitope vaccine comprising two immunodominant epitopes from Brugia malayi antioxidant thioredoxin (TRX), several epitopes from transglutaminase (TGA) and abundant larval transcript-2 (ALT-2). In this study, the prophylactic efficacy of the filarial epitope protein (FEP), a chimera of selective epitopes identified from our earlier study, was tested in a murine model (jird) of filariasis with L3 larvae. FEP conferred a significantly (P < 0.0001) high protection (69.5%) over the control in jirds. We also observed that the multi-epitope recombinant construct (FEP) induces multiple types of protective immune responses, thus ensuring the successful elimination of the parasite; this poses FEP as a potential vaccine candidate. PMID:26179420

  6. Minocycline as a re-purposed anti-Wolbachia macrofilaricide: superiority compared with doxycycline regimens in a murine infection model of human lymphatic filariasis.

    Science.gov (United States)

    Sharma, Raman; Al Jayoussi, Ghaith; Tyrer, Hayley E; Gamble, Joanne; Hayward, Laura; Guimaraes, Ana F; Davies, Jill; Waterhouse, David; Cook, Darren A N; Myhill, Laura J; Clare, Rachel H; Cassidy, Andrew; Steven, Andrew; Johnston, Kelly L; Ford, Louise; Turner, Joseph D; Ward, Stephen A; Taylor, Mark J

    2016-01-01

    Lymphatic filariasis and onchocerciasis are parasitic helminth diseases, which cause severe morbidities such as elephantiasis, skin disease and blindness, presenting a major public health burden in endemic communities. The anti-Wolbachia consortium (A·WOL: http://www.a-wol.com/) has identified a number of registered antibiotics that target the endosymbiotic bacterium, Wolbachia, delivering macrofilaricidal activity. Here we use pharmacokinetics/pharmacodynamics (PK/PD) analysis to rationally develop an anti-Wolbachia chemotherapy by linking drug exposure to pharmacological effect. We compare the pharmacokinetics and anti-Wolbachia efficacy in a murine Brugia malayi model of minocycline versus doxycycline. Doxycycline exhibits superior PK in comparison to minocycline resulting in a 3-fold greater exposure in SCID mice. Monte-Carlo simulations confirmed that a bi-daily 25-40 mg/Kg regimen is bioequivalent to a clinically effective 100-200 mg/day dose for these tetracyclines. Pharmacodynamic studies showed that minocycline depletes Wolbachia more effectively than doxycycline (99.51% vs. 90.35%) after 28 day 25 mg/Kg bid regimens with a more potent block in microfilarial production. PK/PD analysis predicts that minocycline would be expected to be 1.7 fold more effective than doxycycline in man despite lower exposure in our infection models. Our findings warrant onward clinical investigations to examine the clinical efficacy of minocycline treatment regimens against lymphatic filariasis and onchocerciasis. PMID:26996237

  7. First analysis of the secretome of the canine heartworm, Dirofilaria immitis

    Directory of Open Access Journals (Sweden)

    Geary James

    2012-07-01

    Full Text Available Abstract Background The characterization of proteins released from filariae is an important step in addressing many of the needs in the diagnosis and treatment of these clinically important parasites, as well as contributing to a clearer understanding of their biology. This report describes findings on the proteins released during in vitro cultivation of adult Dirofilaria immitis , the causative agent of canine and feline heartworm disease. Differences in protein secretion among nematodes in vivo may relate to the ecological niche of each parasite and the pathological changes that they induce. Methods The proteins in the secretions of cultured adult worms were run on Tris-Glycine gels, bands separated and peptides from each band analysed by ultra mass spectrometry and compared with a FastA dataset of predicted tryptic peptides derived from a genome sequence of D. immitis. Results This study identified 110 proteins. Of these proteins, 52 were unique to D. immitis . A total of 23 (44% were recognized as proteins likely to be secreted. Although these proteins were unique, the motifs were conserved compared with proteins secreted by other nematodes. Conclusion The present data indicate that D. immitis secretes proteins that are unique to this species, when compared with Brugia malayi. The two major functional groups of molecules represented were those representing cellular and of metabolic processes. Unique proteins might be important for maintaining an infection in the host environment, intimately involved in the pathogenesis of disease and may also provide new tools for the diagnosis of heartworm infection.

  8. Assembly of the Genome of the Disease Vector Aedes aegypti onto a Genetic Linkage Map Allows Mapping of Genes Affecting Disease Transmission

    KAUST Repository

    Juneja, Punita

    2014-01-30

    The mosquito Aedes aegypti transmits some of the most important human arboviruses, including dengue, yellow fever and chikungunya viruses. It has a large genome containing many repetitive sequences, which has resulted in the genome being poorly assembled - there are 4,758 scaffolds, few of which have been assigned to a chromosome. To allow the mapping of genes affecting disease transmission, we have improved the genome assembly by scoring a large number of SNPs in recombinant progeny from a cross between two strains of Ae. aegypti, and used these to generate a genetic map. This revealed a high rate of misassemblies in the current genome, where, for example, sequences from different chromosomes were found on the same scaffold. Once these were corrected, we were able to assign 60% of the genome sequence to chromosomes and approximately order the scaffolds along the chromosome. We found that there are very large regions of suppressed recombination around the centromeres, which can extend to as much as 47% of the chromosome. To illustrate the utility of this new genome assembly, we mapped a gene that makes Ae. aegypti resistant to the human parasite Brugia malayi, and generated a list of candidate genes that could be affecting the trait. © 2014 Juneja et al.

  9. Rendering the Intractable More Tractable: Tools from Caenorhabditis elegans Ripe for Import into Parasitic Nematodes.

    Science.gov (United States)

    Ward, Jordan D

    2015-12-01

    Recent and rapid advances in genetic and molecular tools have brought spectacular tractability to Caenorhabditis elegans, a model that was initially prized because of its simple design and ease of imaging. C. elegans has long been a powerful model in biomedical research, and tools such as RNAi and the CRISPR/Cas9 system allow facile knockdown of genes and genome editing, respectively. These developments have created an additional opportunity to tackle one of the most debilitating burdens on global health and food security: parasitic nematodes. I review how development of nonparasitic nematodes as genetic models informs efforts to import tools into parasitic nematodes. Current tools in three commonly studied parasites (Strongyloides spp., Brugia malayi, and Ascaris suum) are described, as are tools from C. elegans that are ripe for adaptation and the benefits and barriers to doing so. These tools will enable dissection of a huge array of questions that have been all but completely impenetrable to date, allowing investigation into host-parasite and parasite-vector interactions, and the genetic basis of parasitism. PMID:26644478

  10. Ocular Filariasis in US Residents, Returning Travelers, and Expatriates.

    Science.gov (United States)

    Diaz, James H

    2015-01-01

    Several factors acting in concert now place US residents, returning travelers, and expatriates at risks of contracting ocular filariasis including increasing seroprevalence rates of zoonotic filariasis, international travel bringing tourists to and expatriates from filariasis-endemic regions, and warming temperatures extending distribution ranges of arthropod vectors. To describe the epidemiology and outcomes of ocular filariasis and to recommend strategies for the diagnosis, management, and prevention of ocular filariasis, internet search engines were queried with the key words in order to examine case reports and series of ocular filariasis in the US and elsewhere. Descriptive epidemiological, morphological, and molecular evidence now support increasing cases of ocular filariasis in domestic and wild animals and humans, with most cases caused by filarial worms including Dirofilaria repens and other zoonotic Dirofilaria species and Onchocerca lupi and other zoonotic Onchocerca species. Clinicians should maintain early suspicion of ocular filariasis in US residents, returning travelers, and expatriates who complain of combinations of red eye, eye pain, foreign body sensation, reduced visual acuity, and migrating ocular worms, even without significant peripheral eosinophilia or microfilaremia. Microfilariae of Wuchereria bancrofti, Brugia malayi, and O. volvulus may traverse the eye, but can usually be treated medically. Mobile adult worms trapped in the subconjunctiva or anterior chamber should be removed by ophthalmologists to permit species identification, prevent posterior uveitis and iritis, and stop worm migration into the posterior chamber which could require lens removal and vitrectomy for worm extraction causing further eye damage. PMID:27159510

  11. Genome mining offers a new starting point for parasitology research.

    Science.gov (United States)

    Lv, Zhiyue; Wu, Zhongdao; Zhang, Limei; Ji, Pengyu; Cai, Yifeng; Luo, Shiqi; Wang, Hongxi; Li, Hao

    2015-02-01

    Parasites including helminthes, protozoa, and medical arthropod vectors are a major cause of global infectious diseases, affecting one-sixth of the world's population, which are responsible for enormous levels of morbidity and mortality important and remain impediments to economic development especially in tropical countries. Prevalent drug resistance, lack of highly effective and practical vaccines, as well as specific and sensitive diagnostic markers are proving to be challenging problems in parasitic disease control in most parts of the world. The impressive progress recently made in genome-wide analysis of parasites of medical importance, including trematodes of Clonorchis sinensis, Opisthorchis viverrini, Schistosoma haematobium, S. japonicum, and S. mansoni; nematodes of Brugia malayi, Loa loa, Necator americanus, Trichinella spiralis, and Trichuris suis; cestodes of Echinococcus granulosus, E. multilocularis, and Taenia solium; protozoa of Babesia bovis, B. microti, Cryptosporidium hominis, Eimeria falciformis, E. histolytica, Giardia intestinalis, Leishmania braziliensis, L. donovani, L. major, Plasmodium falciparum, P. vivax, Trichomonas vaginalis, Trypanosoma brucei and T. cruzi; and medical arthropod vectors of Aedes aegypti, Anopheles darlingi, A. sinensis, and Culex quinquefasciatus, have been systematically covered in this review for a comprehensive understanding of the genetic information contained in nuclear, mitochondrial, kinetoplast, plastid, or endosymbiotic bacterial genomes of parasites, further valuable insight into parasite-host interactions and development of promising novel drug and vaccine candidates and preferable diagnostic tools, thereby underpinning the prevention and control of parasitic diseases. PMID:25563615

  12. Proteomic analysis of the urine of Dirofilaria immitis infected dogs.

    Science.gov (United States)

    Hormaeche, Marta; Carretón, Elena; González-Miguel, Javier; Gussoni, Stefania; Montoya-Alonso, José Alberto; Simón, Fernando; Morchón, Rodrigo

    2014-06-16

    Canine cardiopulmonary dirofilariosis caused by Dirofilaria immitis habitually develops as a chronic disease affecting pulmonary arteries, lung parenchyma and heart. Other organs like kidneys can also be involved. Renal pathology is a consequence of glomerulonephritis whose main sign is proteinuria. The aim of the present work is to identify proteins excreted in the urine of D. immitis infected dogs showing proteinuria, and the possible contribution of their loss to heartworm disease. Proteinuria is higher in microfilaremic (mf+) than in amicrofilaremic (mf-) dogs. Using bidimensional electrophoresis and mass spectrometry 9 different proteins from Canis lupus familiaris in the urine of both mf- and mf+ dogs were identified (serotransferrin isoform 6, serum albumin precursor, albumin, immunoglobulin gamma heavy chain D, apolipoprotein A-I, immunoglobulin lambda-like polypeptide 5-like, arginine esterase precursor, inmunoglobulin gamma heavy chain B and hemoglobin subunit alpha). Furthermore, 3 additional proteins were identified only in the urine of mf+ dogs, corresponding to dog fibrinogen alpha chain and immunoglobulin gamma heavy chain A and actin 2 homologous to a protein of Brugia malayi. The loss of these proteins and other in the urine of D. immitis infected dogs could affect the general condition of parasitized dogs through the interference in the cholesterol metabolism and O₂ transport, among other mechanisms. PMID:24566125

  13. Restriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti

    Energy Technology Data Exchange (ETDEWEB)

    Severson, D.W.; Thathy, V.; Mori, A. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1995-04-01

    Susceptibility of the mosquito Aedes aegypti to the malarial parasite Plasmodium gallinaceum was investigated as a quantitative trait using restriction fragment length polymorphisms (RFLP). Two F{sub 2} populations of mosquitoes were independently prepared from pairwise matings between a highly susceptible and a refractory strain of A. aegypti. RFLP were tested for association with oocyst development on the mosquito midgut. Two putative quantitative trait loci (QTL) were identified that significantly affect susceptibility. One QTL, pgs [2,LF98], is located on chromosome 2 and accounted for 65 and 49% of the observed phenotypic variance in the two populations, respectively. A second QTL, pgs[3,MalI], is located on chromosome 3 and accounted for 14 and 10% of the observed phenotypic variance in the two populations, respectively. Both QTL exhibit a partial dominance effect on susceptibility, wherein the dominance effect is derived from the refractory parent. No indication of epistasis between these QTL was detected. Evidence suggests that either a tightly linked cluster of independent genes or a single locus affecting susceptibility to various mosquito-borne parasites and pathogens has evolved near the LF98 locus; in addition to P. gallinaceum susceptibility, this general genome region has previously been implicated in susceptibility to the filaria nematode Brugia malayi and the yellow fever virus. 35 refs., 2 figs., 3 tabs.

  14. Epidemiological screening of lymphatic filariasis among immigrants using dipstick colloidal dye immunoassay.

    Science.gov (United States)

    Wan Omar, A; Sulaiman, O; Yusof, S; Ismail, G; Fatmah, M S; Rahmah, N; Khairul, A A

    2001-07-01

    We have recently reported that a dipstick colloidal dye immunoassay (DIA) that detect parasite antigens in human serum is sensitive and specific for the diagnosis of active infection of lymphatic filariasis. Rabbit polyclonal antibodies (RbBmCAg) labelled with a commercial dye, palanil navy blue was used to detect filarial antigenemia among Indonesian and Bangladeshi immigrant workers (N= 630) at oil palm estates at Hulu Trengganu District, Peninsular Malaysia. Microfilaremia with Brugia malayi were detected in 51 (8.10 %) individuals, of which 42 (6.67 %) were among the Indonesians and 9 (1.98 %) among the Bangladeshis. Microfilaremia with Wuchereria bancrofti were detected in 33 (5.24 %) individuals of which 15 (2.38 %) were among the Indonesians and 18 (2.86 %) among the Bangladeshis workers. The DIA detected 96 (15.24 %) antigenemic cases which comprise of all the microfilaremic cases and 15 (2.38 %) amicrofilaremic cases. The amicrofilaremic cases with filarial antigenemia consisted of 9 (1. 43 %) Indonesians and 6 (0.95%) Bangladeshis. We have used 6 ul of the RbBmCAg and diluted (1:10) patients' sera per dipstick which make the DIA reagent conservative. The DIA is a rapid test and can be read in approximate 2 hours.. Additionally, coloured dots developed in the DIA can be qualitatively assessed visually for intensity. The DIA does not require sophisticated equipment or radioactivity, and therefore suitable for field application.

  15. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont.

    Science.gov (United States)

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom. PMID:23822984

  16. Blochmannia endosymbionts and their host, the ant Camponotus fellah: cuticular hydrocarbons and melanization.

    Science.gov (United States)

    José de Souza, Danival; Devers, Séverine; Lenoir, Alain

    2011-10-01

    Carpenter ants (genus Camponotus) have mutualistic, endosymbiotic bacteria of the genus Blochmannia whose main contribution to their hosts is alimentary. It was also recently demonstrated that they play a role in improving immune function as well. In this study, we show that treatment with an antibiotic produces a physiological response inducing an increase in both the quantity of cuticular hydrocarbons and in the melanization of the cuticle probably due to a nutritive and immunological deficit. We suggest that this is because it enhances the protection the cuticle provides from desiccation and also from invasions by pathogens and parasites. Nevertheless, the cuticular hydrocarbon profile is not modified by the antibiotic treatment, which indicates that nestmate recognition is not modified. PMID:21943523

  17. Comparative Genomics of Blattabacterium cuenoti: The Frozen Legacy of an Ancient Endosymbiont Genome

    OpenAIRE

    Patiño-Navarrete, Rafael; Moya, Andrés; Latorre, Amparo; Peretó, Juli

    2013-01-01

    Many insect species have established long-term symbiotic relationships with intracellular bacteria. Symbiosis with bacteria has provided insects with novel ecological capabilities, which have allowed them colonize previously unexplored niches. Despite its importance to the understanding of the emergence of biological complexity, the evolution of symbiotic relationships remains hitherto a mystery in evolutionary biology. In this study, we contribute to the investigation of the evolutionary lea...

  18. From Endosymbiont to Host-Controlled Organelle: The Hijacking of Mitochondrial Protein Synthesis and Metabolism

    NARCIS (Netherlands)

    Gabaldon, T.; Huynen, M.A.

    2007-01-01

    Mitochondria are eukaryotic organelles that originated from the endosymbiosis of an alpha-proteobacterium. To gain insight into the evolution of the mitochondrial proteome as it proceeded through the transition from a free-living cell to a specialized organelle, we compared a reconstructed ancestral

  19. From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism.

    NARCIS (Netherlands)

    Gabaldon, T.; Huynen, M.A.

    2007-01-01

    Mitochondria are eukaryotic organelles that originated from the endosymbiosis of an alpha-proteobacterium. To gain insight into the evolution of the mitochondrial proteome as it proceeded through the transition from a free-living cell to a specialized organelle, we compared a reconstructed ancestral

  20. Transient hypermutagenesis accelerates the evolution of legume endosymbionts following horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Philippe Remigi

    2014-09-01

    Full Text Available Horizontal gene transfer (HGT is an important mode of adaptation and diversification of prokaryotes and eukaryotes and a major event underlying the emergence of bacterial pathogens and mutualists. Yet it remains unclear how complex phenotypic traits such as the ability to fix nitrogen with legumes have successfully spread over large phylogenetic distances. Here we show, using experimental evolution coupled with whole genome sequencing, that co-transfer of imuABC error-prone DNA polymerase genes with key symbiotic genes accelerates the evolution of a soil bacterium into a legume symbiont. Following introduction of the symbiotic plasmid of Cupriavidus taiwanensis, the Mimosa symbiont, into pathogenic Ralstonia solanacearum we challenged transconjugants to become Mimosa symbionts through serial plant-bacteria co-cultures. We demonstrate that a mutagenesis imuABC cassette encoded on the C. taiwanensis symbiotic plasmid triggered a transient hypermutability stage in R. solanacearum transconjugants that occurred before the cells entered the plant. The generated burst in genetic diversity accelerated symbiotic adaptation of the recipient genome under plant selection pressure, presumably by improving the exploration of the fitness landscape. Finally, we show that plasmid imuABC cassettes are over-represented in rhizobial lineages harboring symbiotic plasmids. Our findings shed light on a mechanism that may have facilitated the dissemination of symbiotic competency among α- and β-proteobacteria in natura and provide evidence for the positive role of environment-induced mutagenesis in the acquisition of a complex lifestyle trait. We speculate that co-transfer of complex phenotypic traits with mutagenesis determinants might frequently enhance the ecological success of HGT.

  1. Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L.

    Science.gov (United States)

    Erlacher, Armin; Cernava, Tomislav; Cardinale, Massimiliano; Soh, Jung; Sensen, Christoph W; Grube, Martin; Berg, Gabriele

    2015-01-01

    Rhizobiales (Alphaproteobacteria) are well-known beneficial partners in plant-microbe interactions. Less is known about the occurrence and function of Rhizobiales in the lichen symbiosis, although it has previously been shown that Alphaproteobacteria are the dominating group in growing lichen thalli. We have analyzed the taxonomic structure and assigned functions to Rhizobiales within a metagenomic dataset of the lung lichen Lobaria pulmonaria L. One third (32.2%) of the overall bacteria belong to the Rhizobiales, in particular to the families Methylobacteriaceae, Bradyrhizobiaceae, and Rhizobiaceae. About 20% of our metagenomic assignments could not be placed in any of the Rhizobiales lineages, which indicates a yet undescribed bacterial diversity. SEED-based functional analysis focused on Rhizobiales and revealed functions supporting the symbiosis, including auxin and vitamin production, nitrogen fixation and stress protection. We also have used a specifically developed probe to localize Rhizobiales by confocal laser scanning microscopy after fluorescence in situ hybridization (FISH-CLSM). Bacteria preferentially colonized fungal surfaces, but there is clear evidence that members of the Rhizobiales are able to intrude at varying depths into the interhyphal gelatinous matrix of the upper lichen cortical layer and that at least occasionally some bacteria also are capable to colonize the interior of the fungal hyphae. Interestingly, the gradual development of an endosymbiotic bacterial life was found for lichen- as well as for fungal- and plant-associated bacteria. The new tools to study Rhizobiales, FISH microscopy and comparative metagenomics, suggest a similar beneficial role for lichens than for plants and will help to better understand the Rhizobiales-host interaction and their biotechnological potential. PMID:25713563

  2. Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L.

    Directory of Open Access Journals (Sweden)

    Armin eErlacher

    2015-02-01

    Full Text Available Rhizobiales (Alphaproteobacteria are well-known beneficial partners in plant-microbe interactions. Less is known about the occurrence and function of Rhizobiales in the lichen symbiosis, although it has previously been shown that Alphaproteobacteria are the dominating group in growing lichen thalli. We have analyzed the taxonomic structure and assigned functions to Rhizobiales within a metagenomic dataset of the lung lichen Lobaria pulmonaria L. One third (32.2% of the overall bacteria belong to the Rhizobiales, in particular to the families Methylobacteriaceae, Bradyrhizobiaceae and Rhizobiaceae. About 20% of our metagenomic assignments could not be placed in any of the Rhizobiales lineages, which indicates a yet undescribed bacterial diversity. SEED-based functional analysis focused on Rhizobiales and revealed functions supporting the symbiosis, including auxin and vitamin production, nitrogen fixation and stress protection. We also have used a specifically developed probe to localize Rhizobiales by confocal laser scanning microscopy after fluorescence in situ hybridization (FISH-CLSM. Bacteria preferentially colonized fungal surfaces, but there is clear evidence that members of the Rhizobiales are able to intrude at varying depths into the interhyphal gelatinous matrix of the upper lichen cortical layer and that at least occasionally some bacteria also are capable to colonize the interior of the fungal hyphae. Interestingly, the gradual development of an endosymbiotic bacterial life was found for lichen- as well as for plant-associated bacteria. The new tools to study Rhizobiales applied in this study, FISH microscopy and comparative metagenomics will help to better understand the beneficial roles for their hosts and their biotechnological potential.

  3. A Fungal Endosymbiont Affects Host Plant Recruitment Through Seed- and Litter-mediated Mechanisms

    Science.gov (United States)

    1. Many grass species are associated with maternally transmitted fungal endophytes. Increasing evidence shows that endophytes enhance host plant success under varied conditions, yet studies have rarely considered alternative mechanisms whereby these mutualistic symbionts may affect regeneration from...

  4. Quantification of algal endosymbionts (Symbiodinium) in coral tissue using real-time PCR

    NARCIS (Netherlands)

    Mieog, J. C.; Van Oppen, M. J. H.; Berkelmans, R.; Stam, W. T.; Olsen, J. L.

    2009-01-01

    Understanding the flexibility of the endosymbioses between scleractinian corals and single-cell algae of the genus Symbiodinium will provide valuable insights into the future of coral reefs. Here, a real-time polymerase chain reaction (PCR) assay is presented to accurately determine the cell densiti

  5. Contribution by the methanogenic endosymbionts of anaerobic ciliates to methane production in Dutch freshwater sediments

    NARCIS (Netherlands)

    Hoek, van A.H.A.M.; Alen, T.A.; Vogels, G.D.; Hackstein, J.H.P.

    2006-01-01

    Biogenic methane contributes substantially to the atmospheric methane concentration and thus to global warming. This trace gas is predominantly produced by strictly anaerobic methanogenic archaea, which thrive in the most divergent ecological niches, e. g. paddy fields, sediments, landfills, and the

  6. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial Endosymbiont.

    Directory of Open Access Journals (Sweden)

    Weiwen Zheng

    Full Text Available Programmed cell death (PCD is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20% of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays, together with visualization of cytoskeleton alterations (FITC-phalloidin staining, showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20 further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom.

  7. Ixodes ricinus and Its Endosymbiont Midichloria mitochondrii: A Comparative Proteomic Analysis of Salivary Glands and Ovaries.

    Directory of Open Access Journals (Sweden)

    Monica Di Venere

    Full Text Available Hard ticks are hematophagous arthropods that act as vectors of numerous pathogenic microorganisms of high relevance in human and veterinary medicine. Ixodes ricinus is one of the most important tick species in Europe, due to its role of vector of pathogenic bacteria such as Borrelia burgdorferi and Anaplasma phagocytophilum, of viruses such as tick borne encephalitis virus and of protozoans as Babesia spp. In addition to these pathogens, I. ricinus harbors a symbiotic bacterium, Midichloria mitochondrii. This is the dominant bacteria associated to I. ricinus, but its biological role is not yet understood. Most M. mitochondrii symbionts are localized in the tick ovaries, and they are transmitted to the progeny. M. mitochondrii bacteria have however also been detected in the salivary glands and saliva of I. ricinus, as well as in the blood of vertebrate hosts of the tick, prompting the hypothesis of an infectious role of this bacterium. To investigate, from a proteomic point of view, the tick I. ricinus and its symbiont, we generated the protein profile of the ovary tissue (OT and of salivary glands (SG of adult females of this tick species. To compare the OT and SG profiles, 2-DE profiling followed by LC-MS/MS protein identification were performed. We detected 21 spots showing significant differences in the relative abundance between the OT and SG, ten of which showed 4- to 18-fold increase/decrease in density. This work allowed to establish a method to characterize the proteome of I. ricinus, and to detect multiple proteins that exhibit a differential expression profile in OT and SG. Additionally, we were able to use an immunoproteomic approach to detect a protein from the symbiont. Finally, the method here developed will pave the way for future studies on the proteomics of I. ricinus, with the goals of better understanding the biology of this vector and of its symbiont M. mitochondrii.

  8. Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community

    NARCIS (Netherlands)

    P. Bongaerts; P.R. Frade; K.B. Hay; N. Englebert; K.R.W. Latijnhouwers; R.P.M. Bak; M.J.A. Vermeij; O Hoegh-Guldberg

    2015-01-01

    The composition, ecology and environmental conditions of mesophotic coral ecosystems near the lower limits of their bathymetric distributions remain poorly understood. Here we provide the first in-depth assessment of a lower mesophotic coral community (60-100 m) in the Southern Caribbean through vis

  9. Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community

    NARCIS (Netherlands)

    Bongaerts, P.; Frade, P.R.; Hay, K.B.; Englebert, N.; Latijnhouwers, K.R.W.; Bak, R.P.M.; Vermeij, M.J.A.; Hoegh-Guldberg, O.

    2015-01-01

    The composition, ecology and environmental conditions of mesophotic coral ecosystems near the lower limits of their bathymetric distributions remain poorly understood. Here we provide the first in-depth assessment of a lower mesophotic coral community (60–100 m) in the Southern Caribbean through vis

  10. Blochmannia endosymbionts and their host, the ant Camponotus fellah: cuticular hydrocarbons and melanization.

    Science.gov (United States)

    José de Souza, Danival; Devers, Séverine; Lenoir, Alain

    2011-10-01

    Carpenter ants (genus Camponotus) have mutualistic, endosymbiotic bacteria of the genus Blochmannia whose main contribution to their hosts is alimentary. It was also recently demonstrated that they play a role in improving immune function as well. In this study, we show that treatment with an antibiotic produces a physiological response inducing an increase in both the quantity of cuticular hydrocarbons and in the melanization of the cuticle probably due to a nutritive and immunological deficit. We suggest that this is because it enhances the protection the cuticle provides from desiccation and also from invasions by pathogens and parasites. Nevertheless, the cuticular hydrocarbon profile is not modified by the antibiotic treatment, which indicates that nestmate recognition is not modified.

  11. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales

    KAUST Repository

    Neave, Matthew J

    2016-07-08

    Reef-building corals are well regarded not only for their obligate association with endosymbiotic algae, but also with prokaryotic symbionts, the specificity of which remains elusive. To identify the central microbial symbionts of corals, their specificity across species and conservation over geographic regions, we sequenced partial SSU ribosomal RNA genes of Bacteria and Archaea from the common corals Stylophora pistillata and Pocillopora verrucosa across 28 reefs within seven major geographical regions. We demonstrate that both corals harbor Endozoicomonas bacteria as their prevalent symbiont. Importantly, catalyzed reporter deposition–fluorescence in situ hybridization (CARD–FISH) with Endozoicomonas-specific probes confirmed their residence as large aggregations deep within coral tissues. Using fine-scale genotyping techniques and single-cell genomics, we demonstrate that P. verrucosa harbors the same Endozoicomonas, whereas S. pistillata associates with geographically distinct genotypes. This specificity may be shaped by the different reproductive strategies of the hosts, potentially uncovering a pattern of symbiont selection that is linked to life history. Spawning corals such as P. verrucosa acquire prokaryotes from the environment. In contrast, brooding corals such as S. pistillata release symbiont-packed planula larvae, which may explain a strong regional signature in their microbiome. Our work contributes to the factors underlying microbiome specificity and adds detail to coral holobiont functioning.

  12. Bacterial Endo-Symbiont Inhabiting Tridax procumbens L. and Their Antimicrobial Potential

    Directory of Open Access Journals (Sweden)

    Syed Baker

    2015-01-01

    Full Text Available Bacterial symbionts inhabiting Tridax procumbens L. were screened for antimicrobial potential with the aim to isolate potent bacteria bearing significant activity against test pathogens. The selected isolate was subjected to large scale fermentation to extract antimicrobial metabolite. The organic phase was reduced under vacuum pressure and crude ethyl acetate extract (10 mg/mL was evaluated for antimicrobial activity against panel of test pathogens. The antibacterial activity was measured as a zone of inhibition and compared with standard antibiotics, gentamicin and tetracycline. Similarly, antifungal activity was compared with miconazole and bavistin. Significant activity was conferred against Shigella flexneri (MTCC 731 with 27±1.5 mm zone across the disc. Partially, purification of antimicrobial metabolite with TLC-bioautography and HPLC resulted in active fraction bearing activity at Rf 0.65 and eluting between 4 and 5 retention times. The obtained results are promising enough for future purification and characterization of antimicrobial metabolite. Thus, the study attributes to the growing knowledge on endophytes as one of the rich sources of antimicrobial potentials.

  13. Did group II intron proliferation in an endosymbiont-bearing archaeon create eukaryotes?

    Directory of Open Access Journals (Sweden)

    Poole Anthony M

    2006-12-01

    Full Text Available Abstract Martin & Koonin recently proposed that the eukaryote nucleus evolved as a quality control mechanism to prevent ribosome readthrough into introns. In their scenario, the bacterial ancestor of mitochondria was resident in an archaeal cell, and group II introns (carried by the fledgling mitochondrion inserted into coding regions in the archaeal host genome. They suggest that if transcription and translation were coupled, and because splicing is expected to have been slower than translation, the effect of insertion would have been ribosome readthrough into introns, resulting in production of aberrant proteins. The emergence of the nuclear compartment would thus have served to separate transcription and splicing from translation, thereby alleviating this problem. In this article, I argue that Martin & Koonin's model is not compatible with current knowledge. The model requires that group II introns would spread aggressively through an archaeal genome. It is well known that selfish elements can spread through an outbreeding sexual population despite a substantial fitness cost to the host. The same is not true for asexual lineages however, where both theory and observation argue that such elements will be under pressure to reduce proliferation, and may be lost completely. The recent introduction of group II introns into archaea by horizontal transfer provides a natural test case with which to evaluate Martin & Koonin's model. The distribution and behaviour of these introns fits prior theoretical expectations, not the scenario of aggressive proliferation advocated by Martin & Koonin. I therefore conclude that the mitochondrial seed hypothesis for the origin of eukaryote introns, on which their model is based, better explains the early expansion of introns in eukaryotes. The mitochondrial seed hypothesis has the capacity to separate the origin of eukaryotes from the origin of introns, leaving open the possibility that the cell that engulfed the ancestor of mitochondria was a sexually outcrossing eukaryote cell.

  14. Vibrio Zinc-Metalloprotease Causes Photoinactivation of Coral Endosymbionts and Coral Tissue Lesions

    NARCIS (Netherlands)

    Sussman, Meir; Mieog, Jos C.; Doyle, Jason; Victor, Steven; Willis, Bette L.; Bourne, David G.

    2009-01-01

    Background: Coral diseases are emerging as a serious threat to coral reefs worldwide. Of nine coral infectious diseases, whose pathogens have been characterized, six are caused by agents from the family Vibrionacae, raising questions as to their origin and role in coral disease aetiology. Methodolog

  15. Metatranscriptional Response of Chemoautotrophic Ifremeria nautilei Endosymbionts to Differing Sulfur Regimes.

    Science.gov (United States)

    Seston, Sherry L; Beinart, Roxanne A; Sarode, Neha; Shockey, Abigail C; Ranjan, Piyush; Ganesh, Sangita; Girguis, Peter R; Stewart, Frank J

    2016-01-01

    Endosymbioses between animals and chemoautotrophic bacteria are ubiquitous at hydrothermal vents. These environments are distinguished by high physico-chemical variability, yet we know little about how these symbioses respond to environmental fluctuations. We therefore examined how the γ-proteobacterial symbionts of the vent snail Ifremeria nautilei respond to changes in sulfur geochemistry. Via shipboard high-pressure incubations, we subjected snails to 105 μM hydrogen sulfide (LS), 350 μM hydrogen sulfide (HS), 300 μM thiosulfate (TS) and seawater without any added inorganic electron donor (ND). While transcript levels of sulfur oxidation genes were largely consistent across treatments, HS and TS treatments stimulated genes for denitrification, nitrogen assimilation, and CO2 fixation, coincident with previously reported enhanced rates of inorganic carbon incorporation and sulfur oxidation in these treatments. Transcripts for genes mediating oxidative damage were enriched in the ND and LS treatments, potentially due to a reduction in O2 scavenging when electron donors were scarce. Oxidative TCA cycle gene transcripts were also more abundant in ND and LS treatments, suggesting that I. nautilei symbionts may be mixotrophic when inorganic electron donors are limiting. These data reveal the extent to which I. nautilei symbionts respond to changes in sulfur concentration and species, and, interpreted alongside coupled biochemical metabolic rates, identify gene targets whose expression patterns may be predictive of holobiont physiology in environmental samples. PMID:27486438

  16. Factors affecting population dynamics of maternally transmitted endosymbionts in Bemisia tabaci.

    Directory of Open Access Journals (Sweden)

    Huipeng Pan

    Full Text Available While every individual of Bemisia tabaci (Hemiptera: Aleyrodidae harbors the primary symbiont (P-symbiont Portiera, the infection frequencies of the six secondary symbionts (S-symbionts including Hamiltonella, Arsenophonus, Cardinium, Wolbachia, Rickettsia and Fritschea vary greatly among different populations. To characterize the factors influencing the infection dynamics of the six S-symbionts in B. tabaci, gene-specific PCR were conducted to screen for the presence of the P-symbiont Portiera and the six S-symbionts in 61 (17 B and 44 Q biotypes field populations collected from different plant species and locations in China. All individuals of the 61 populations hosted the P-symbiont Portiera, but none of them harbored Arsenophonus and Fritschea. The presence and infection rates of Hamiltonella, Cardinium, Rickettsia, Wolbachia and their co-infections Rickettsia + Hamiltonella (RH, Rickettsia + Cardinium (RC, Hamiltonella + Cardinium (HC and Rickettsia + Hamiltonella + Cardinium (RHC varied significantly among the 61 field populations; and the observed variations can be explained by biotypes, sexes, host plants and geographical locations of these field populations. Taken together, at least three factors including biotype, host plant and geographical location affect the infection dynamics of S-symbionts in B. tabaci.

  17. Subcutaneously Administered Ultrafine PLGA Nanoparticles Containing Doxycycline Hydrochloride Target Lymphatic Filarial Parasites.

    Science.gov (United States)

    Singh, Yuvraj; Srinivas, Adepu; Gangwar, Mamta; Meher, Jaya Gopal; Misra-Bhattacharya, Shailja; Chourasia, Manish K

    2016-06-01

    Systemic chemotherapeutic targeting of filarial parasites is unfocused due to their deep seated location in lymphatic vessels. This warrants a prolonged dosing regimen in high doses for an anthelmintic like doxycycline hydrochloride (DOX). In order to provide an alternative, we have constructed ultrafine PLGA nanoparticles of DOX (DPNPs), so as to exploit the peculiarity of lymphatic vasculature underneath the subcutaneous layer of skin, which preferentially allows entry of only 10-100 nm sized particles. DPNPs were constructed using a novel solvent diffusion method aided by probe sonication, which resulted in an average size 95.43 ± 0.8 nm as per DLS, PDI 0.168 ± 0.03, zeta potential -7.38 ± 0.32, entrapment efficiency 75.58 ± 1.94%, and refrigerator stability of 7 days with respect to size in the optimized batch. TEM further substantiated the spherical shape of DPNPs along with their actual nonhydrated size as being well below 100 nm. FTIR analysis of DOX, dummy nanoparticles, and freeze-dried DPNPs revealed that the formulation step did not induce prominent changes in the chemical nature of DOX. The drug release was significantly altered (p < 0.05) with 64.6 ± 1.67% release in 48 h from DPNPs and was dictated by Fickian diffusion. Pharmacokinetic studies in Wistar rats further revealed that DPNPs caused a 16-fold prolongation in attainment of plasma Tmax and a 2-fold extension of elimination half-life (28.569 ± 1.27 h) at a dose of 5 mg/kg when compared to native drug (DOX solution) of the same strength. Contrastingly the trend was reversed in regional lymph nodes where Cmax for DPNPs (820 ± 84 ng/mg) was 4-fold greater, and lymphatic Tmax was attained in one-fourth of what was required for DOX solution. This size based preferential lymphatic targeting resulted in significantly greater in vivo antifilarial activity of DPNPs when compared to DOX solution as gauged by several parameters in Brugia malayi infected Mastomys coucha. Interestingly, the

  18. Comparing the mitochondrial genomes of Wolbachia-dependent and independent filarial nematode species

    Directory of Open Access Journals (Sweden)

    McNulty Samantha N

    2012-04-01

    Full Text Available Abstract Background Many species of filarial nematodes depend on Wolbachia endobacteria to carry out their life cycle. Other species are naturally Wolbachia-free. The biological mechanisms underpinning Wolbachia-dependence and independence in filarial nematodes are not known. Previous studies have indicated that Wolbachia have an impact on mitochondrial gene expression, which may suggest a role in energy metabolism. If Wolbachia can supplement host energy metabolism, reduced mitochondrial function in infected filarial species may account for Wolbachia-dependence. Wolbachia also have a strong influence on mitochondrial evolution due to vertical co-transmission. This could drive alterations in mitochondrial genome sequence in infected species. Comparisons between the mitochondrial genome sequences of Wolbachia-dependent and independent filarial worms may reveal differences indicative of altered mitochondrial function. Results The mitochondrial genomes of 5 species of filarial nematodes, Acanthocheilonema viteae, Chandlerella quiscali, Loa loa, Onchocerca flexuosa, and Wuchereria bancrofti, were sequenced, annotated and compared with available mitochondrial genome sequences from Brugia malayi, Dirofilaria immitis, Onchocerca volvulus and Setaria digitata. B. malayi, D. immitis, O. volvulus and W. bancrofti are Wolbachia-dependent while A. viteae, C. quiscali, L. loa, O. flexuosa and S. digitata are Wolbachia-free. The 9 mitochondrial genomes were similar in size and AT content and encoded the same 12 protein-coding genes, 22 tRNAs and 2 rRNAs. Synteny was perfectly preserved in all species except C. quiscali, which had a different order for 5 tRNA genes. Protein-coding genes were expressed at the RNA level in all examined species. In phylogenetic trees based on mitochondrial protein-coding sequences, species did not cluster according to Wolbachia dependence. Conclusions Thus far, no discernable differences were detected between the mitochondrial

  19. Impact of two rounds of mass drug administration using diethylcarbamazine combined with albendazole on the prevalence of Brugia timori and of intestinal helminths on Alor Island, Indonesia

    OpenAIRE

    Oqueka, Tim; Supali, Taniawati; Ismid, Is Suhariah; Purnomo,; Rückert, Paul; Bradley, Mark; Fischer, Peter

    2005-01-01

    Background Annual mass drug administration (MDA) using diethylcarbamizine (DEC, 6 mg/kg) combined with albendazole (alb, 400 mg) is recommended by the Global Programme to Eliminate Lymphatic Filariasis (GPELF). This strategy has been shown to be efficient in the of control bancroftian filariasis, but data on brugian filariasis as well as on the positive side effects on intestinal helminths are lacking. Methods The effect of one selective treatment and two rounds of MDA using DEC and alb on th...

  20. VECTORS OF MALARIA AND FILARIASIS IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Hoedojo Hoedojo

    2012-09-01

    Full Text Available Malaria at present is still one of the important mosquito-borne diseases in Indonesia. The disease is widespread all over the country and involves nearly all islands. Sixteen Anopheles species have been reconfirmed as malaria vectors. They were distributed geographi­cally as follows: Coastal areas and lagoons ------------------------------------- An sundaicus and An.subpictus Cultivated ricefields and swampy areas -------------------- An.aconitus, An.barbirostris, An.nigerrimus and An.sinensis Forest inland areas in shaded temporary pools, muddy animal wallows and hoof-prints -------------------------------------------------------- An.balabacensis, An.bancrofti, An.farauti, An.koliensis and An.punctulatus Swamp forest edge in ditches with vegeta- ---------------- An.letifer and An.ludlowae don Hilly areas in seepages, streams and clear moving water ---------------------------------------------- Anflavirostris, An.maculatus and Anminimus.   The species (of most general importance is An.sundaicus, which is restricted by its preference for brackish water and is prevalent in coastal areas of Java. Their types in behaviour of An.sundaicus appear as follows : 1. An.sundaicus in South Coast of Java in general. This species is essentially anthropophilic, exophagic and rests outdoor. It shows susceptible to DDT. 2. An.sundaicus in Cilacap, Central Java. This mosquito is a pure anthropophilic form. It bites man in houses and outdoors, rests indoors and is known resistant to DDT. 3. An.sundaicus in Yogyakarta and Purworejo, Central Java. This mosquito is a strong zoophilic species. It rests and prefers to bite outdoors and shows tolerance to DDT. Human filariasis in Indonesia is the result of infection by three endemic species, namely, Wuchereria bancrofti, Brugia malayi, and Brugia timori.W.bancrofti infection is found in both urban and rural areas. Twenty species of mosquitoes are confirmed as filariasis vectors. The urban type bancroftian filariasis

  1. Eosinophils are important for protection, immunoregulation and pathology during infection with nematode microfilariae.

    Directory of Open Access Journals (Sweden)

    Emma T Cadman

    2014-03-01

    Full Text Available Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO and major basic protein-1 (MBP-1, during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL, we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity.

  2. 50年来我国蚊媒研究进展

    Institute of Scientific and Technical Information of China (English)

    陆宝麟

    1999-01-01

    @@ 蚊类不仅吸血骚扰,而且传播多种严重疾病,我国就存在疟疾、淋巴丝虫病、乙型脑炎(JE)和登革/登革出血热(DF/DHF),其媒介研究是它们流行病学和防治的首要工作之一.早在1877年,Patrick Manson在我国厦门发现致倦库蚊(Culex fatigans)(=Cx.quinquefasciatus Say,1821)是班氏丝虫(Wuchereria bancrofti)的中间宿主,揭开了蚊类与人类疾病关系的新篇章.本世纪初,我国学者就开始对疟疾以及班氏丝虫病和由马来丝虫(Brugia malayi)所致的马来丝虫病的媒介,进行了实验感染和自然感染调查.然而由于受当时条件和水平的限制,在这方面仅有了初步认识.新中国成立以后,我国医学媒介才得以广泛和深入研究,不仅纠正和补充了早期工作的不足,更搞清了上述4类蚊媒病的重要媒介及其生态习性,包括以前未涉及的JE和DF/DHF媒介,为病媒蚊虫防制打下了坚实基础.这是我国蚊类研究,也是预防医学的重大成就.

  3. An integrated linkage, chromosome, and genome map for the yellow fever mosquito Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Vladimir A Timoshevskiy

    Full Text Available BACKGROUND: Aedes aegypti, the yellow fever mosquito, is an efficient vector of arboviruses and a convenient model system for laboratory research. Extensive linkage mapping of morphological and molecular markers localized a number of quantitative trait loci (QTLs related to the mosquito's ability to transmit various pathogens. However, linking the QTLs to Ae. aegypti chromosomes and genomic sequences has been challenging because of the poor quality of polytene chromosomes and the highly fragmented genome assembly for this species. METHODOLOGY/PRINCIPAL FINDINGS: Based on the approach developed in our previous study, we constructed idiograms for mitotic chromosomes of Ae. aegypti based on their banding patterns at early metaphase. These idiograms represent the first cytogenetic map developed for mitotic chromosomes of Ae. aegypti. One hundred bacterial artificial chromosome clones carrying major genetic markers were hybridized to the chromosomes using fluorescent in situ hybridization. As a result, QTLs related to the transmission of the filarioid nematode Brugia malayi, the avian malaria parasite Plasmodium gallinaceum, and the dengue virus, as well as sex determination locus and 183 Mbp of genomic sequences were anchored to the exact positions on Ae. aegypti chromosomes. A linear regression analysis demonstrated a good correlation between positions of the markers on the physical and linkage maps. As a result of the recombination rate variation along the chromosomes, 12 QTLs on the linkage map were combined into five major clusters of QTLs on the chromosome map. CONCLUSION: This study developed an integrated linkage, chromosome, and genome map-iMap-for the yellow fever mosquito. Our discovery of the localization of multiple QTLs in a few major chromosome clusters suggests a possibility that the transmission of various pathogens is controlled by the same genomic loci. Thus, the iMap will facilitate the identification of genomic determinants of

  4. Comparative studies on the biology and filarial susceptibility of selected blood-feeding and autogenous Aedes togoi sub-colonies

    Directory of Open Access Journals (Sweden)

    Anuluck Junkum

    2003-06-01

    Full Text Available Blood-feeding and autogenous sub-colonies were selected from a laboratory, stock colony of Aedes togoi, which was originally collected from Koh Nom Sao, Chanthaburi province, Southeast Thailand. Comparative biology and filarial susceptibility between the two sub-colonies (blood-feeding: F11, F13; autogeny: F38, F40 were investigated to evaluate their viability and vectorial capacity. The results of comparison on biology revealed intraspecific differences, i.e., the average egg deposition/gravid female (F11/F38; F13/F40, embryonation rate (F13/F40, hatchability rate (F11/F38; F13/F40, egg width (F11/F38, wing length of females (F13/F40, and wing length and width of males (F11/F38 in the blood-feeding sub-colony were significantly greater than that in the autogenous sub-colony; and egg length (F11/F38 and width (F13/F40, and mean longevity of adult females (F11/F38 and males (F13/F40 in the blood-feeding sub-colony were significantly less than that in the autogenous sub-colony. The results of comparison on filarial susceptibility demonstrated that both sub-colonies yielded similar susceptibilities to Brugia malayi [blood-feeding/autogeny = 56.7% (F11/53.3%(F38, 60%(F13/83.3%(F40] and Dirofilaria immitis [blood-feeding/autogeny = 85.7%(F11/75%(F38, 45%(F13/29.4%(F40], suggesting autogenous Ae. togoi sub-colony was an efficient laboratory vector in study of filariasis.

  5. 东南亚及西太平洋区的丝虫病%Filariasis in Southeast Asia and the Western Pacific

    Institute of Scientific and Technical Information of China (English)

    周钦贤

    2002-01-01

    淋巴丝虫病为东南亚、西太平洋及南太平洋的重要公共卫生问题.此为慢性病,丝虫之成虫寄生于淋巴管或淋巴结,长达10~18年之久,致淋巴循环受阻塞而形成象皮病.根据微丝蚴在人体末梢血液之出现时间,分为日间及夜间之周期型与亚周期型.媒介多达40余种.防治方法主要赖药物治疗,世界卫生组织预期以现有的药物可于2020年消灭全球之淋巴丝虫病.本文将班氏丝虫、马未丝虫及帝汶丝虫发现之经过,微丝蚴定期性,病媒蚊种及防治原则,作了相当完整的综述.笔者曾在文中所提及的多数国家实地防治丝虫病.%Summary Lymphatic filariasis is a major public health problem in Southeast Asia and the Western Pacific.Periodic and subperiodic Wuchereria bancrofti and Brugia malayi occur in many countries. There are about 40 species of mosquito vectors with diverse ecology. Their importance in transmitting different forms of filariasis in different localities is summarized. For filariasis control, chemotherapy is the fundamental method. It is expected that a global elimination of lymphatic filariasis by drug treatment may be achieved by the year 2020.

  6. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential.

    Directory of Open Access Journals (Sweden)

    Stéphane Bellafiore

    2008-10-01

    Full Text Available The root knot nematode, Meloidogyne incognita, is an obligate parasite that causes significant damage to a broad range of host plants. Infection is associated with secretion of proteins surrounded by proliferating cells. Many parasites are known to secrete effectors that interfere with plant innate immunity, enabling infection to occur; they can also release pathogen-associated molecular patterns (PAMPs, e.g., flagellin that trigger basal immunity through the nematode stylet into the plant cell. This leads to suppression of innate immunity and reprogramming of plant cells to form a feeding structure containing multinucleate giant cells. Effectors have generally been discovered using genetics or bioinformatics, but M. incognita is non-sexual and its genome sequence has not yet been reported. To partially overcome these limitations, we have used mass spectrometry to directly identify 486 proteins secreted by M. incognita. These proteins contain at least segmental sequence identity to those found in our 3 reference databases (published nematode proteins; unpublished M. incognita ESTs; published plant proteins. Several secreted proteins are homologous to plant proteins, which they may mimic, and they contain domains that suggest known effector functions (e.g., regulating the plant cell cycle or growth. Others have regulatory domains that could reprogram cells. Using in situ hybridization we observed that most secreted proteins were produced by the subventral glands, but we found that phasmids also secreted proteins. We annotated the functions of the secreted proteins and classified them according to roles they may play in the development of root knot disease. Our results show that parasite secretomes can be partially characterized without cognate genomic DNA sequence. We observed that the M. incognita secretome overlaps the reported secretome of mammalian parasitic nematodes (e.g., Brugia malayi, suggesting a common parasitic behavior and a possible

  7. Genome Filtering for New DNA Biomarkers of Loa loa Infection Suitable for Loop-Mediated Isothermal Amplification.

    Directory of Open Access Journals (Sweden)

    Catherine B Poole

    Full Text Available Loa loa infections have emerged as a serious public health problem in patients co-infected with Onchocerca volvulus or Wuchereria bancrofti because of severe adverse neurological reactions after treatment with ivermectin. Accurate diagnostic tests are needed for careful mapping in regions where mass drug administration is underway. Loop-mediated isothermal amplification (LAMP has become a widely adopted screening method because of its operational simplicity, rapidity and versatility of visual detection readout options. Here, we present a multi-step bioinformatic pipeline to generate diagnostic candidates suitable for LAMP and experimentally validate this approach using one of the identified candidates to develop a species-specific LAMP assay for L. loa. The pipeline identified ~140 new L. loa specific DNA repeat families as putative biomarkers of infection. The consensus sequence of one family, repeat family 4 (RF4, was compiled from ~ 350 sequences dispersed throughout the L. loa genome and maps to a L. loa-specific region of the long terminal repeats found at the boundaries of Bel/Pao retrotransposons. PCR and LAMP primer sets targeting RF4 specifically amplified L. loa but not W. bancrofti, O. volvulus, Brugia malayi, human or mosquito DNA. RF4 LAMP detects the DNA equivalent of one microfilaria (100 pg in 25-30 minutes and as little as 0.060 pg of L. loa DNA (~1/1600th of a microfilaria purified from spiked blood samples in approximately 50 minutes. In summary, we have successfully employed a bioinformatic approach to mine the L. loa genome for species-specific repeat families that can serve as new DNA biomarkers for LAMP. The RF4 LAMP assay shows promise as a field tool for the implementation and management of mass drug administration programs and warrants further testing on clinical samples as the next stage in development towards this goal.

  8. Genome Filtering for New DNA Biomarkers of Loa loa Infection Suitable for Loop-Mediated Isothermal Amplification.

    Science.gov (United States)

    Poole, Catherine B; Ettwiller, Laurence; Tanner, Nathan A; Evans, Thomas C; Wanji, Samuel; Carlow, Clotilde K S

    2015-01-01

    Loa loa infections have emerged as a serious public health problem in patients co-infected with Onchocerca volvulus or Wuchereria bancrofti because of severe adverse neurological reactions after treatment with ivermectin. Accurate diagnostic tests are needed for careful mapping in regions where mass drug administration is underway. Loop-mediated isothermal amplification (LAMP) has become a widely adopted screening method because of its operational simplicity, rapidity and versatility of visual detection readout options. Here, we present a multi-step bioinformatic pipeline to generate diagnostic candidates suitable for LAMP and experimentally validate this approach using one of the identified candidates to develop a species-specific LAMP assay for L. loa. The pipeline identified ~140 new L. loa specific DNA repeat families as putative biomarkers of infection. The consensus sequence of one family, repeat family 4 (RF4), was compiled from ~ 350 sequences dispersed throughout the L. loa genome and maps to a L. loa-specific region of the long terminal repeats found at the boundaries of Bel/Pao retrotransposons. PCR and LAMP primer sets targeting RF4 specifically amplified L. loa but not W. bancrofti, O. volvulus, Brugia malayi, human or mosquito DNA. RF4 LAMP detects the DNA equivalent of one microfilaria (100 pg) in 25-30 minutes and as little as 0.060 pg of L. loa DNA (~1/1600th of a microfilaria) purified from spiked blood samples in approximately 50 minutes. In summary, we have successfully employed a bioinformatic approach to mine the L. loa genome for species-specific repeat families that can serve as new DNA biomarkers for LAMP. The RF4 LAMP assay shows promise as a field tool for the implementation and management of mass drug administration programs and warrants further testing on clinical samples as the next stage in development towards this goal.

  9. An ELISA kit with two detection modes for the diagnosis of lymphatic filariasis.

    Science.gov (United States)

    Wongkamchai, S; Satimai, W; Loymek, S; Nochot, H; Boitano, J J

    2015-09-01

    The aim of this study was to develop a low-cost antifilarial immunoglobulin (Ig) G4 detection kit for the diagnosis of lymphatic filariasis. The kit was designed to be used by minimally trained personnel without the constraints of expensive laboratory equipment. We provide a description of the development and validation of a single-serum-dilution based enzyme-linked immunosorbent assay (ELISA) kit with ready-to-use reagents for measuring antifilarial IgG4 antibodies. The kit was tested on residents in Brugia malayi-endemic areas in southern Thailand. Detection was performed by naked-eye observation of the resultant colour of the immunological reactivity. The coefficient of variation (CV) was used to assess the reproducibility of the results. Long-term stability was measured over a 6-month period. Sensitivity of the test kit was 97% when compared with microfilariae detection in thick blood smears. Specificity was 98.7% based on the sera of 57 patients living outside the endemic areas who were infected with other parasites and 100 parasite-free subjects. All positive CVs were < 10%. The test kit was remarkably stable over 6 months. Field validation was performed by the detection of antifilarial IgG4 in 4365 serum samples collected from residents of brugian filariasis-endemic areas and compared with outcome colours of the test samples by the naked eye. Subsequent ELISA evaluation of these results using an ELISA reader indicated high agreement by the kappa statistic. These results demonstrate that the test kit is efficient and useful for public health laboratories as an alternative tool for the diagnosis of lymphatic filarial infection. PMID:24916386

  10. Molecular expression and characterization of a homologue of host cytokine macrophage migration inhibitory factor from Trichinella spp.

    Science.gov (United States)

    Wu, Z; Boonmars, T; Nagano, I; Nakada, T; Takahashi, Y

    2003-06-01

    A homologue of cytokine macrophage migration inhibitory factor (MIF) from complementary DNA (cDNA) of Trichinella spiralis and Trichinella pseudospiralis was expressed in Escherichia coli and characterized. The sequence analysis indicated that the predicted amino acid sequence has an identity of 57 and 44% with the MIF of nematodes Trichuris trichiura and Brugia malayi respectively, and 41 and 40% with that of a human and a mouse, respectively. The identity in sequences of cDNA and amino acids between T. spiralis and T. pseudospiralis was 91 and 86%, respectively. Western blot analysis showed that anti-MIF antibodies positively stained proteins from the extracts of adult worms or muscle larvae migrating at about 12.5 kDa (3 isoforms with isoelectric point 5.23, 5.72, and 6.29). Semiquantitative reverse transcriptase-polymerase chain reaction revealed that the gene was expressed in various developmental stages, including in adult worms, newborn larvae, precyst muscle larvae, and postcyst muscle larvae, although there was difference in the expression level among these stages. The immunohistochemical analysis showed the MIF exists in the muscle cells of the body wall and some stichocytes of larvae. Histopathology of T. spiralis-infected muscles revealed an accumulation of mononuclear cells around the worms, and immunocytochemical staining showed these cells were not macrophages. Mononuclear cells, including macrophages, were, however, observed in cardiac muscles where the parasite did not encyst. Macrophages accumulated around the Sephadex beads transplanted in mice subcutaneously, but this accumulation was profoundly inhibited when the beads were pretreated with MIF recombinant protein. PMID:12880250

  11. Identification of attractive drug targets in neglected-disease pathogens using an in silico approach.

    Directory of Open Access Journals (Sweden)

    Gregory J Crowther

    Full Text Available BACKGROUND: The increased sequencing of pathogen genomes and the subsequent availability of genome-scale functional datasets are expected to guide the experimental work necessary for target-based drug discovery. However, a major bottleneck in this has been the difficulty of capturing and integrating relevant information in an easily accessible format for identifying and prioritizing potential targets. The open-access resource TDRtargets.org facilitates drug target prioritization for major tropical disease pathogens such as the mycobacteria Mycobacterium leprae and Mycobacterium tuberculosis; the kinetoplastid protozoans Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi; the apicomplexan protozoans Plasmodium falciparum, Plasmodium vivax, and Toxoplasma gondii; and the helminths Brugia malayi and Schistosoma mansoni. METHODOLOGY/PRINCIPAL FINDINGS: Here we present strategies to prioritize pathogen proteins based on whether their properties meet criteria considered desirable in a drug target. These criteria are based upon both sequence-derived information (e.g., molecular mass and functional data on expression, essentiality, phenotypes, metabolic pathways, assayability, and druggability. This approach also highlights the fact that data for many relevant criteria are lacking in less-studied pathogens (e.g., helminths, and we demonstrate how this can be partially overcome by mapping data from homologous genes in well-studied organisms. We also show how individual users can easily upload external datasets and integrate them with existing data in TDRtargets.org to generate highly customized ranked lists of potential targets. CONCLUSIONS/SIGNIFICANCE: Using the datasets and the tools available in TDRtargets.org, we have generated illustrative lists of potential drug targets in seven tropical disease pathogens. While these lists are broadly consistent with the research community's current interest in certain specific proteins, and suggest

  12. Draft genome of neurotropic nematode parasite Angiostrongylus cantonensis, causative agent of human eosinophilic meningitis.

    Science.gov (United States)

    Yong, Hoi-Sen; Eamsobhana, Praphathip; Lim, Phaik-Eem; Razali, Rozaimi; Aziz, Farhanah Abdul; Rosli, Nurul Shielawati Mohamed; Poole-Johnson, Johan; Anwar, Arif

    2015-08-01

    Angiostrongylus cantonensis is a bursate nematode parasite that causes eosinophilic meningitis (or meningoencephalitis) in humans in many parts of the world. The genomic data from A. cantonensis will form a useful resource for comparative genomic and chemogenomic studies to aid the development of diagnostics and therapeutics. We have sequenced, assembled and annotated the genome of A. cantonensis. The genome size is estimated to be ∼260 Mb, with 17,280 genomic scaffolds, 91X coverage, 81.45% for complete and 93.95% for partial score based on CEGMA analysis of genome completeness. The number of predicted genes of ≥300 bp was 17,482. A total of 7737 predicted protein-coding genes of ≥50 amino acids were identified in the assembled genome. Among the proteins of known function, kinases are the most abundant followed by transferases. The draft genome contains 34 excretory-secretory proteins (ES), a minimum of 44 Nematode Astacin (NAS) metalloproteases, 12 Homeobox (HOX) genes, and 30 neurotransmitters. The assembled genome size (260 Mb) is larger than those of Pristionchus pacificus, Caenorhabditis elegans, Necator americanus, Caenorhabditis briggsae, Trichinella spiralis, Brugia malayi and Loa loa, but smaller than Haemonchus contortus and Ascaris suum. The repeat content (25%) is similar to H. contortus. The GC content (41.17%) is lower compared to P. pacificus (42.7%) and H. contortus (43.1%) but higher compared to C. briggsae (37.69%), A. suum (37.9%) and N. americanus (40.2%) while the scaffold N50 is 42,191. This draft genome will facilitate the understanding of many unresolved issues on the parasite and the disorder it causes. PMID:25910624

  13. Characterization of the Ca2+-gated and voltage-dependent K+-channel Slo-1 of nematodes and its interaction with emodepside.

    Science.gov (United States)

    Kulke, Daniel; von Samson-Himmelstjerna, Georg; Miltsch, Sandra M; Wolstenholme, Adrian J; Jex, Aaron R; Gasser, Robin B; Ballesteros, Cristina; Geary, Timothy G; Keiser, Jennifer; Townson, Simon; Harder, Achim; Krücken, Jürgen

    2014-12-01

    The cyclooctadepsipeptide emodepside and its parent compound PF1022A are broad-spectrum nematicidal drugs which are able to eliminate nematodes resistant to other anthelmintics. The mode of action of cyclooctadepsipeptides is only partially understood, but involves the latrophilin Lat-1 receptor and the voltage- and calcium-activated potassium channel Slo-1. Genetic evidence suggests that emodepside exerts its anthelmintic activity predominantly through Slo-1. Indeed, slo-1 deficient Caenorhabditis elegans strains are completely emodepside resistant. However, direct effects of emodepside on Slo-1 have not been reported and these channels have only been characterized for C. elegans and related Strongylida. Molecular and bioinformatic analyses identified full-length Slo-1 cDNAs of Ascaris suum, Parascaris equorum, Toxocara canis, Dirofilaria immitis, Brugia malayi, Onchocerca gutturosa and Strongyloides ratti. Two paralogs were identified in the trichocephalids Trichuris muris, Trichuris suis and Trichinella spiralis. Several splice variants encoding truncated channels were identified in Trichuris spp. Slo-1 channels of trichocephalids form a monophyletic group, showing that duplication occurred after the divergence of Enoplea and Chromadorea. To explore the function of a representative protein, C. elegans Slo-1a was expressed in Xenopus laevis oocytes and studied in electrophysiological (voltage-clamp) experiments. Incubation of oocytes with 1-10 µM emodepside caused significantly increased currents over a wide range of step potentials in the absence of experimentally increased intracellular Ca2+, suggesting that emodepside directly opens C. elegans Slo-1a. Emodepside wash-out did not reverse the effect and the Slo-1 inhibitor verruculogen was only effective when applied before, but not after, emodepside. The identification of several splice variants and paralogs in some parasitic nematodes suggests that there are substantial differences in channel properties among

  14. Characterization of the Ca2+-gated and voltage-dependent K+-channel Slo-1 of nematodes and its interaction with emodepside.

    Directory of Open Access Journals (Sweden)

    Daniel Kulke

    2014-12-01

    Full Text Available The cyclooctadepsipeptide emodepside and its parent compound PF1022A are broad-spectrum nematicidal drugs which are able to eliminate nematodes resistant to other anthelmintics. The mode of action of cyclooctadepsipeptides is only partially understood, but involves the latrophilin Lat-1 receptor and the voltage- and calcium-activated potassium channel Slo-1. Genetic evidence suggests that emodepside exerts its anthelmintic activity predominantly through Slo-1. Indeed, slo-1 deficient Caenorhabditis elegans strains are completely emodepside resistant. However, direct effects of emodepside on Slo-1 have not been reported and these channels have only been characterized for C. elegans and related Strongylida. Molecular and bioinformatic analyses identified full-length Slo-1 cDNAs of Ascaris suum, Parascaris equorum, Toxocara canis, Dirofilaria immitis, Brugia malayi, Onchocerca gutturosa and Strongyloides ratti. Two paralogs were identified in the trichocephalids Trichuris muris, Trichuris suis and Trichinella spiralis. Several splice variants encoding truncated channels were identified in Trichuris spp. Slo-1 channels of trichocephalids form a monophyletic group, showing that duplication occurred after the divergence of Enoplea and Chromadorea. To explore the function of a representative protein, C. elegans Slo-1a was expressed in Xenopus laevis oocytes and studied in electrophysiological (voltage-clamp experiments. Incubation of oocytes with 1-10 µM emodepside caused significantly increased currents over a wide range of step potentials in the absence of experimentally increased intracellular Ca2+, suggesting that emodepside directly opens C. elegans Slo-1a. Emodepside wash-out did not reverse the effect and the Slo-1 inhibitor verruculogen was only effective when applied before, but not after, emodepside. The identification of several splice variants and paralogs in some parasitic nematodes suggests that there are substantial differences in

  15. Transcriptome analysis of stress tolerance in entomopathogenic nematodes of the genus Steinernema.

    Science.gov (United States)

    Yaari, Mor; Doron-Faigenboim, Adi; Koltai, Hinanit; Salame, Liora; Glazer, Itamar

    2016-02-01

    Entomopathogenic nematodes of the genus Steinernema are effective biological control agents. The infective stage of these parasites can withstand environmental stresses such as desiccation and heat, but the molecular and physiological mechanisms involved in this tolerance are poorly understood. We used 454 pyrosequencing to analyse transcriptome expression in Steinernema spp. that differ in their tolerance to stress. We compared these species, following heat and desiccation treatments, with their non-stressed counterparts. More than 98% of the transcripts found matched homologous sequences in the UniRef90 database, mostly nematode genes (85%). Among those, 60.8% aligned to the vertebrate parasites including Ascaris suum, Loa loa, and Brugia malayi, 23.3% aligned to bacteriovores, mostly from the genus Caenorhabditis, and 1% aligned to EPNs. Analysing gene expression patterns of the stress response showed a large fraction of down-regulated genes in the desiccation-tolerant nematode Steinernema riobrave, whereas a larger fraction of the genes in the susceptible Steinernema feltiae Carmiel and Gvulot strains were up-regulated. We further compared metabolic pathways and the expression of specific stress-related genes. In the more tolerant nematode, more genes were down-regulated whereas in the less tolerant strains, more genes were up-regulated. This phenomenon warrants further exploration of the mechanism governing induction of the down-regulation process. The present study revealed many genes and metabolic cycles that are differentially expressed in the stressed nematodes. Some of those are well known in other nematodes or anhydrobiotic organisms, but several are new and should be further investigated for their involvement in desiccation and heat tolerance. Our data establish a foundation for further exploration of stress tolerance in entomopathogenic nematodes and, in the long term, for improving their ability to withstand suboptimal environmental conditions. PMID

  16. Novel parasitic nematode-specific protein of bovine filarial parasite Setaria digitata displays conserved gene structure and ubiquitous expression.

    Science.gov (United States)

    Rodrigo, W W; Dassanayake, R S; Weerasena, S J; Silva Gunawardene, Y I

    2014-09-01

    Setaria digitata is an animal filarial parasite, which can cause fatal diseases to livestock such as cattle, sheep, goat, buffaloes, horses etc. inflicting considerable economic losses to livelihood of livestock farmers. In spite of this, the biology and parasitic nature of this organism is largely unknown. As a step towards understanding these, we screened the cDNA library of S. digitata and identified an open reading frame that code for parasitic nematode-specific protein, which showed a significant homology to functionally and structurally unannotated sequences of parasitic nematodes Wuchereria bancrofti, Brugia malayi, Onchocerca volvulus, Loa loa etc., suggesting its role in parasitism. RT-PCR analysis indicated that the S. digitata novel gene (SDNP) is expressed in adult female and male, and microfilariae. Southern hybridization studies revealed that this gene is a single-copy gene. Sequence analysis of the genomic region obtained from overlapping PCR amplification indicated that the size of the genomic region is 1819 bp in which four exons encoding 205 amino acids were interrupted by three introns of varying lengths of 419, 659 and 123 bp, and also the expansion of the size of the introns of S. digitata compared to its orthologues by integrating micro and mini-satellite containing sequence. Sequences around the splice junctions were conserved and agreed with the general GT-AG splicing rule. The gene was found to be AT rich with a GC content of 38.1%. Bioinformatic analysis indicated that the gene structure of SDNP and its orthologues is conserved and it expressed ubiqutously in all the stages of nematode's life cycle. Therefore, taking these outcomes together, it can be concluded that SDNP is a parasitic nematode-specific, single copy gene having conserved gene structure of four exons interrupted by three introns and that the gene is expressed ubiquitously throughout nematode's life cycle. PMID:25382479

  17. Genome Filtering for New DNA Biomarkers of Loa loa Infection Suitable for Loop-Mediated Isothermal Amplification.

    Science.gov (United States)

    Poole, Catherine B; Ettwiller, Laurence; Tanner, Nathan A; Evans, Thomas C; Wanji, Samuel; Carlow, Clotilde K S

    2015-01-01

    Loa loa infections have emerged as a serious public health problem in patients co-infected with Onchocerca volvulus or Wuchereria bancrofti because of severe adverse neurological reactions after treatment with ivermectin. Accurate diagnostic tests are needed for careful mapping in regions where mass drug administration is underway. Loop-mediated isothermal amplification (LAMP) has become a widely adopted screening method because of its operational simplicity, rapidity and versatility of visual detection readout options. Here, we present a multi-step bioinformatic pipeline to generate diagnostic candidates suitable for LAMP and experimentally validate this approach using one of the identified candidates to develop a species-specific LAMP assay for L. loa. The pipeline identified ~140 new L. loa specific DNA repeat families as putative biomarkers of infection. The consensus sequence of one family, repeat family 4 (RF4), was compiled from ~ 350 sequences dispersed throughout the L. loa genome and maps to a L. loa-specific region of the long terminal repeats found at the boundaries of Bel/Pao retrotransposons. PCR and LAMP primer sets targeting RF4 specifically amplified L. loa but not W. bancrofti, O. volvulus, Brugia malayi, human or mosquito DNA. RF4 LAMP detects the DNA equivalent of one microfilaria (100 pg) in 25-30 minutes and as little as 0.060 pg of L. loa DNA (~1/1600th of a microfilaria) purified from spiked blood samples in approximately 50 minutes. In summary, we have successfully employed a bioinformatic approach to mine the L. loa genome for species-specific repeat families that can serve as new DNA biomarkers for LAMP. The RF4 LAMP assay shows promise as a field tool for the implementation and management of mass drug administration programs and warrants further testing on clinical samples as the next stage in development towards this goal. PMID:26414073

  18. Evaluation of immune response elicited by inulin as an adjuvant with filarial antigens in mice model.

    Science.gov (United States)

    Mahalakshmi, N; Aparnaa, R; Kaliraj, P

    2014-10-01

    Filariasis caused by infectious parasitic nematodes has been identified as the second leading source of permanent and long-term disability in Sub-Saharan Africa, Asia and Latin America. Several vaccine candidates were identified from infective third-stage larvae (L3) which involves in the critical transition from arthropod to human. Hitherto studies of these antigens in combination with alum adjuvant have shown to elicit its characteristic Th2 responses. Inulin is a safe, non-toxic adjuvant that principally stimulates the innate immune response through the alternative complement pathway. In the present study, the immune response elicited by inulin and alum as adjuvants were compared with filarial antigens from different aetiological agents: secreted larval acidic protein 1 (SLAP1) from Onchocerca volvulus and venom allergen homologue (VAH) from Brugia malayi as single or as cocktail vaccines in mice model. The study revealed that inulin can induce better humoral response against these antigens than alum adjuvant. Antibody isotyping disclosed inulin's ability to elevate the levels of IgG2a and IgG3 antibodies which mediates in complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC), respectively, in mice. Splenocyte analysis showed that T cells prestimulated with inulin have higher stimulation index (P < 0.05) than alum except for BmVAH antigen. In vitro ADCC assay showed that inulin formulation had induced higher cytotoxicity with filarial antigens (as single P < 0.01 and as cocktail P < 0.05, respectively) than alum. The results had confirmed the capability of inulin to deplete the levels of Treg and brought a balance in Th1/Th2 arms against filarial antigens in mice. PMID:25041426

  19. Phylogenetic relationships of the Wolbachia of nematodes and arthropods.

    Directory of Open Access Journals (Sweden)

    Katelyn Fenn

    2006-10-01

    Full Text Available Wolbachia are well known as bacterial symbionts of arthropods, where they are reproductive parasites, but have also been described from nematode hosts, where the symbiotic interaction has features of mutualism. The majority of arthropod Wolbachia belong to clades A and B, while nematode Wolbachia mostly belong to clades C and D, but these relationships have been based on analysis of a small number of genes. To investigate the evolution and relationships of Wolbachia symbionts we have sequenced over 70 kb of the genome of wOvo, a Wolbachia from the human-parasitic nematode Onchocerca volvulus, and compared the genes identified to orthologues in other sequenced Wolbachia genomes. In comparisons of conserved local synteny, we find that wBm, from the nematode Brugia malayi, and wMel, from Drosophila melanogaster, are more similar to each other than either is to wOvo. Phylogenetic analysis of the protein-coding and ribosomal RNA genes on the sequenced fragments supports reciprocal monophyly of nematode and arthropod Wolbachia. The nematode Wolbachia did not arise from within the A clade of arthropod Wolbachia, and the root of the Wolbachia clade lies between the nematode and arthropod symbionts. Using the wOvo sequence, we identified a lateral transfer event whereby segments of the Wolbachia genome were inserted into the Onchocerca nuclear genome. This event predated the separation of the human parasite O. volvulus from its cattle-parasitic sister species, O. ochengi. The long association between filarial nematodes and Wolbachia symbionts may permit more frequent genetic exchange between their genomes.

  20. RNAi effector diversity in nematodes.

    Directory of Open Access Journals (Sweden)

    Johnathan J Dalzell

    2011-06-01

    Full Text Available While RNA interference (RNAi has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (dsRNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii The Argonautes (AGOs responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii Secondary Argonautes (SAGOs are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research

  1. Leishmania aethiopica field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response.

    OpenAIRE

    Haroun Zangger; Asrat Hailu; Chantal Desponds; Lon-Fye Lye; Natalia S Akopyants; Dobson, Deborah E.; Catherine Ronet; Hashim Ghalib; Beverley, Stephen M.; Nicolas Fasel

    2014-01-01

    BACKGROUND: Infection with Leishmania parasites causes mainly cutaneous lesions at the site of the sand fly bite. Inflammatory metastatic forms have been reported with Leishmania species such as L. braziliensis, guyanensis and aethiopica. Little is known about the factors underlying such exacerbated clinical presentations. Leishmania RNA virus (LRV) is mainly found within South American Leishmania braziliensis and guyanensis. In a mouse model of L. guyanensis infection, its presence is respon...

  2. Repurposing of approved drugs from the human pharmacopoeia to target Wolbachia endosymbionts of onchocerciasis and lymphatic filariasis

    Directory of Open Access Journals (Sweden)

    Kelly L. Johnston

    2014-12-01

    Full Text Available Lymphatic filariasis and onchocerciasis are debilitating diseases caused by parasitic filarial nematodes infecting around 150 million people throughout the tropics with more than 1.5 billion at risk. As with other neglected tropical diseases, classical drug-discovery and development is lacking and a 50 year programme of macrofilaricidal discovery failed to deliver a drug which can be used as a public health tool. Recently, antibiotic targeting of filarial Wolbachia, an essential bacterial symbiont, has provided a novel drug treatment for filariasis with macrofilaricidal activity, although the current gold-standard, doxycycline, is unsuitable for use in mass drug administration (MDA. The anti-Wolbachia (A·WOL Consortium aims to identify novel anti-Wolbachia drugs, compounds or combinations that are suitable for use in MDA. Development of a Wolbachia cell-based assay has enabled the screening of the approved human drug-pharmacopoeia (∼2600 drugs for a potential repurposing. This screening strategy has revealed that approved drugs from various classes show significant bacterial load reduction equal to or superior to the gold-standard doxycycline, with 69 orally available hits from different drug categories being identified. Based on our defined hit criteria, 15 compounds were then selectively screened in a Litomosoides sigmodontis mouse model, 4 of which were active. These came from the tetracycline, fluoroquinolone and rifamycin classes. This strategy of repurposing approved drugs is a promising development in the goal of finding a novel treatment against filariasis and could also be a strategy applicable for other neglected tropical diseases.

  3. Shedding light on microbial dark matter: a TM6 bacterium as natural endosymbiont of a free-living amoeba.

    Science.gov (United States)

    Delafont, Vincent; Samba-Louaka, Ascel; Bouchon, Didier; Moulin, Laurent; Héchard, Yann

    2015-12-01

    The TM6 phylum belongs to the so-called microbial dark matter that gathers uncultivated bacteria detected only via DNA sequencing. Recently, the genome sequence of a TM6 bacterium (TM6SC1) has led to suggest that this bacterium would adopt an endosymbiotic life. In the present paper, free-living amoebae bearing a TM6 strain were isolated from a water network. The amoebae were identified as Vermamoeba vermiformis and the presence of a TM6 strain was detected by polymerase chain reaction and microscopy. The partial sequence of its 16S rRNA gene showed this strain to be closely related to the sequenced TM6SC1 strain. These bacteria displayed a pyriform shape and were found within V. vermiformis. Therefore, these bacteria were named Vermiphilus pyriformis. Interactions studies showed that V. pyriformis was highly infectious and that its relation with V. vermiformis was specific and highly stable. Finally, it was found that V. pyriformis inhibited the encystment of V. vermiformis. Overall, this study describes for the first time an endosymbiotic relationship between a TM6 bacterium and a free-living amoeba in the environment. It suggests that other bacteria of the TM6 phylum might also be endosymbiotic bacteria and may be found in other free-living amoebae or other organisms.

  4. Cloning and characterization of a gene encoding phage-related tail protein (PrTP) of endosymbiont Wolbachia

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Wolbachia is an obligatory, maternally inherited intracellular bacterium, known to infect a wide range of arthropods. It has been implicated in causing cytoplasmic incompatibility (CI), parthenogenesis, the feminization of genetic males and male-killing in different hosts. However, the molecular mechanisms by which this fastidious bacterium causes these reproductive abnormalities have not yet been determined. In this study, we report on the cloning and characterization of the gene encoding phage-related tail protein (PrTP) from Wolbachia in Drosophila melanogaster CantonS (wMelCS) and from Wolbachia in Drosophila melanogaster yw67c23 (wMel) by representational difference analysis (RDA) and ligation-mediated PCR (LM-PCR). The functionality of a bipartite nuclear localization signal sequence (NLS) of the gene was also successfully tested in Drosophila S2 cells. PrTP expression in various strains of Wolbachia was investigated. Our results suggest that PrTP may not induce CI directly. However, the existence of prtp provided direct evidence of phage-mediated horizontal gene transfer (HGT) that might play an important role in a variety of reproductive abnormalities of Wolbachia.

  5. Horizontal gene acquisition of Liberibacter plant pathogens from a bacteriome-confined endosymbiont of their psyllid vector.

    Science.gov (United States)

    Nakabachi, Atsushi; Nikoh, Naruo; Oshima, Kenshiro; Inoue, Hiromitsu; Ohkuma, Moriya; Hongoh, Yuichi; Miyagishima, Shin-ya; Hattori, Masahira; Fukatsu, Takema

    2013-01-01

    he Asian citrus psyllid Diaphorina citri is a notorious agricultural pest that transmits the phloem-inhabiting alphaproteobacterial 'Candidatus Liberibacter asiaticus' and allied plant pathogens, which cause the devastating citrus disease called Huanglongbing or greening disease. D. citri harbors two distinct bacterial mutualists in the symbiotic organ called bacteriome: the betaproteobacterium 'Candidatus Profftella armatura' in the syncytial cytoplasm at the center of the bacteriome, and the gammaproteobacterium 'Candidatus Carsonella ruddii' in uninucleate bacteriocytes. Here we report that a putative amino acid transporter LysE of Profftella forms a highly supported clade with proteins of L. asiaticus, L. americanus, and L. solanacearum. L. crescens, the most basal Liberibacter lineage currently known, lacked the corresponding gene. The Profftella-Liberibacter subclade of LysE formed a clade with proteins from betaproteobacteria of the order Burkholderiales, to which Profftella belongs. This phylogenetic pattern favors the hypothesis that the Liberibacter lineage acquired the gene from the Profftella lineage via horizontal gene transfer (HGT) after L. crescens diverged from other Liberibacter lineages. K A/K S analyses further supported the hypothesis that the genes encoded in the Liberibacter genomes are functional. These findings highlight the possible evolutionary importance of HGT between plant pathogens and their insect vector's symbionts that are confined in the symbiotic organ and seemingly sequestered from external microbial populations. PMID:24349319

  6. The role of endosymbionts in the evolution of haploid-male genetic systems in scale insects (Coccoidea)

    NARCIS (Netherlands)

    Ross, Laura; Shuker, David M.; Normark, Benjamin B.; Pen, Ido

    2012-01-01

    There is an extraordinary diversity in genetic systems across species, but this variation remains poorly understood. In part, this is because the mechanisms responsible for transitions between systems are often unknown. A recent hypothesis has suggested that conflict between hosts and endosymbiotic

  7. Wolbachia endosymbiont infection in two Indian butterflies and female-biased sex ratio in the Red Pierrot, Talicada nyseus

    Indian Academy of Sciences (India)

    Kunal Ankola; Dorothea Brueckner; H P Puttaraju

    2011-12-01

    The maternally inherited obligate bacteria Wolbachia is known to infect various lepidopteran insects. However, so far only a few butterfly species harbouring this bacterium have been thoroughly studied. The current study aims to identify the infection status of these bacteria in some of the commonly found butterfly species in India. A total of nine butterfly species belonging to four different families were screened using PCR with Wolbachia-specific wsp and ftsZ primers. The presence of the Wolbachia super group ‘B’ in the butterflies Red Pierrot, Talicada nyseus (Guerin) (Lepidoptera: Lycaenidae) and Blue Mormon, Papilio polymnestor Cramer (Papilionidae), is documented for the first time in India. The study also gives an account on the lifetime fecundity and female-biased sex ratio in T. nyseus, suggesting a putative role for Wolbachia in the observed female-biased sex ratio distortion.

  8. Repurposing of approved drugs from the human pharmacopoeia to target Wolbachia endosymbionts of onchocerciasis and lymphatic filariasis

    OpenAIRE

    Kelly L. Johnston; Louise Ford; Indira Umareddy; Simon Townson; Sabine Specht; Kenneth Pfarr; Achim Hoerauf; Ralf Altmeyer; Taylor, Mark J

    2014-01-01

    Lymphatic filariasis and onchocerciasis are debilitating diseases caused by parasitic filarial nematodes infecting around 150 million people throughout the tropics with more than 1.5 billion at risk. As with other neglected tropical diseases, classical drug-discovery and development is lacking and a 50 year programme of macrofilaricidal discovery failed to deliver a drug which can be used as a public health tool. Recently, antibiotic targeting of filarial Wolbachia, an essential bacterial sym...

  9. Repurposing of approved drugs from the human pharmacopoeia to target Wolbachia endosymbionts of onchocerciasis and lymphatic filariasis.

    Science.gov (United States)

    Johnston, Kelly L; Ford, Louise; Umareddy, Indira; Townson, Simon; Specht, Sabine; Pfarr, Kenneth; Hoerauf, Achim; Altmeyer, Ralf; Taylor, Mark J

    2014-12-01

    Lymphatic filariasis and onchocerciasis are debilitating diseases caused by parasitic filarial nematodes infecting around 150 million people throughout the tropics with more than 1.5 billion at risk. As with other neglected tropical diseases, classical drug-discovery and development is lacking and a 50 year programme of macrofilaricidal discovery failed to deliver a drug which can be used as a public health tool. Recently, antibiotic targeting of filarial Wolbachia, an essential bacterial symbiont, has provided a novel drug treatment for filariasis with macrofilaricidal activity, although the current gold-standard, doxycycline, is unsuitable for use in mass drug administration (MDA). The anti-Wolbachia (A·WOL) Consortium aims to identify novel anti-Wolbachia drugs, compounds or combinations that are suitable for use in MDA. Development of a Wolbachia cell-based assay has enabled the screening of the approved human drug-pharmacopoeia (∼2600 drugs) for a potential repurposing. This screening strategy has revealed that approved drugs from various classes show significant bacterial load reduction equal to or superior to the gold-standard doxycycline, with 69 orally available hits from different drug categories being identified. Based on our defined hit criteria, 15 compounds were then selectively screened in a Litomosoides sigmodontis mouse model, 4 of which were active. These came from the tetracycline, fluoroquinolone and rifamycin classes. This strategy of repurposing approved drugs is a promising development in the goal of finding a novel treatment against filariasis and could also be a strategy applicable for other neglected tropical diseases. PMID:25516838

  10. Stability of coral-endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef

    Science.gov (United States)

    Stat, M.; Loh, W. K. W.; Lajeunesse, T. C.; Hoegh-Guldberg, O.; Carter, D. A.

    2009-09-01

    Shifts in the community of symbiotic dinoflagellates to those that are better suited to the prevailing environmental condition may provide reef-building corals with a rapid mechanism by which to adapt to changes in the environment. In this study, the dominant Symbiodinium in 10 coral species in the southern Great Barrier Reef was monitored over a 1-year period in 2002 that coincided with a thermal stress event. Molecular genetic profiling of Symbiodinium communities using single strand conformational polymorphism of the large subunit rDNA and denaturing gradient gel electrophoresis of the internal transcribed spacer 2 region did not detect any changes in the communities during and after this thermal-stress event. Coral colonies of seven species bleached but recovered with their original symbionts. This study suggests that the shuffling or switching of symbionts in response to thermal stress may be restricted to certain coral species and is probably not a universal feature of the coral-symbiont relationship.

  11. Horizontal gene acquisition of Liberibacter plant pathogens from a bacteriome-confined endosymbiont of their psyllid vector.

    Directory of Open Access Journals (Sweden)

    Atsushi Nakabachi

    Full Text Available he Asian citrus psyllid Diaphorina citri is a notorious agricultural pest that transmits the phloem-inhabiting alphaproteobacterial 'Candidatus Liberibacter asiaticus' and allied plant pathogens, which cause the devastating citrus disease called Huanglongbing or greening disease. D. citri harbors two distinct bacterial mutualists in the symbiotic organ called bacteriome: the betaproteobacterium 'Candidatus Profftella armatura' in the syncytial cytoplasm at the center of the bacteriome, and the gammaproteobacterium 'Candidatus Carsonella ruddii' in uninucleate bacteriocytes. Here we report that a putative amino acid transporter LysE of Profftella forms a highly supported clade with proteins of L. asiaticus, L. americanus, and L. solanacearum. L. crescens, the most basal Liberibacter lineage currently known, lacked the corresponding gene. The Profftella-Liberibacter subclade of LysE formed a clade with proteins from betaproteobacteria of the order Burkholderiales, to which Profftella belongs. This phylogenetic pattern favors the hypothesis that the Liberibacter lineage acquired the gene from the Profftella lineage via horizontal gene transfer (HGT after L. crescens diverged from other Liberibacter lineages. K A/K S analyses further supported the hypothesis that the genes encoded in the Liberibacter genomes are functional. These findings highlight the possible evolutionary importance of HGT between plant pathogens and their insect vector's symbionts that are confined in the symbiotic organ and seemingly sequestered from external microbial populations.

  12. A Native Wolbachia Endosymbiont Does Not Limit Dengue Virus Infection in the Mosquito Aedes notoscriptus (Diptera: Culicidae).

    Science.gov (United States)

    Skelton, Ellie; Rancès, Edwige; Frentiu, Francesca D; Kusmintarsih, Endang Srimurni; Iturbe-Ormaetxe, Iñaki; Caragata, Eric P; Woolfit, Megan; O'Neill, Scott L

    2016-03-01

    The endosymbiotic bacterium Wolbachia pipientis infects many species of insects and has been transinfected into the mosquito Aedes aegypti (L.), the primary vector of dengue virus (DENV). Recently, it has been shown that Wolbachia blocks the replication and transmission of RNA viruses, such as DENV, in a number of mosquito species including Ae. aegypti and Aedes albopictus (Skuse), which is naturally infected with Wolbachia and considered a secondary vector for DENV. The mosquito species Aedes notoscriptus (Skuse) is highly prevalent in Australia, including in areas where DENV outbreaks have been recorded. The mosquito has been implicated in the transmission of Ross River and Barmah Forest viruses, but not DENV. We investigated whether Wolbachia naturally infects this mosquito species and whether it has an impact on the ability of Ae. notoscriptus to transmit DENV. We show, for the first time, that Ae. notoscriptus is naturally infected with a strain of Wolbachia that belongs to supergroup B and is localized only in the ovaries. However, Wolbachia infection in Ae. notoscriptus did not induce resistance to DENV and had no effect on overall DENV infection rate or titer. The presence of a native Wolbachia in Ae. notoscriptus cannot explain why this mosquito is an ineffective vector of DENV.

  13. Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress

    DEFF Research Database (Denmark)

    Abrego, David; Ulstrup, Karin E; Willis, Bette L;

    2008-01-01

    The impacts of warming seas on the frequency and severity of bleaching events are well documented, but the potential for different Symbiodinium types to enhance the physiological tolerance of reef corals is not well understood. Here we compare the functionality and physiological properties...... of juvenile corals when experimentally infected with one of two homologous Symbiodinium types and exposed to combined heat and light stress. A suite of physiological indicators including chlorophyll a fluorescence, oxygen production and respiration, as well as pigment concentration consistently demonstrated...... Acropora millepora. Our results challenge speculations that associations with type D are universally most robust to thermal stress. Although the heat tolerance of corals may be contingent on the Symbiodinium strain in hospite, our results highlight the complexity of interactions between symbiotic partners...

  14. Cloning and Characterization of a Gene Encoding the Major Surface Protein of the Bacterial Endosymbiont Wolbachia pipientis

    OpenAIRE

    Braig, Henk R.; Zhou, Weiguo; DOBSON, STEPHEN L.; O’Neill, Scott L.

    1998-01-01

    The maternally inherited intracellular symbiont Wolbachia pipientis is well known for inducing a variety of reproductive abnormalities in the diverse arthropod hosts it infects. It has been implicated in causing cytoplasmic incompatibility, parthenogenesis, and the feminization of genetic males in different hosts. The molecular mechanisms by which this fastidious intracellular bacterium causes these reproductive and developmental abnormalities have not yet been determined. In this paper, we r...

  15. Evolution of hedgehog and hedgehog-related genes, their origin from Hog proteins in ancestral eukaryotes and discovery of a novel Hint motif

    Directory of Open Access Journals (Sweden)

    Bürglin Thomas R

    2008-03-01

    Full Text Available Abstract Background The Hedgehog (Hh signaling pathway plays important roles in human and animal development as well as in carcinogenesis. Hh molecules have been found in both protostomes and deuterostomes, but curiously the nematode Caenorhabditis elegans lacks a bona-fide Hh. Instead a series of Hh-related proteins are found, which share the Hint/Hog domain with Hh, but have distinct N-termini. Results We performed extensive genome searches of the cnidarian Nematostella vectensis and several nematodes to gain further insights into Hh evolution. We found six genes in N. vectensis with a relationship to Hh: two Hh genes, one gene with a Hh N-terminal domain fused to a Willebrand factor type A domain (VWA, and three genes containing Hint/Hog domains with distinct novel N-termini. In the nematode Brugia malayi we find the same types of hh-related genes as in C. elegans. In the more distantly related Enoplea nematodes Xiphinema and Trichinella spiralis we find a bona-fide Hh. In addition, T. spiralis also has a quahog gene like C. elegans, and there are several additional hh-related genes, some of which have secreted N-terminal domains of only 15 to 25 residues. Examination of other Hh pathway components revealed that T. spiralis - like C. elegans - lacks some of these components. Extending our search to all eukaryotes, we recovered genes containing a Hog domain similar to Hh from many different groups of protists. In addition, we identified a novel Hint gene family present in many eukaryote groups that encodes a VWA domain fused to a distinct Hint domain we call Vint. Further members of a poorly characterized Hint family were also retrieved from bacteria. Conclusion In Cnidaria and nematodes the evolution of hh genes occurred in parallel to the evolution of other genes that contain a Hog domain but have different N-termini. The fact that Hog genes comprising a secreted N-terminus and a Hog domain are also found in many protists suggests that this

  16. Pan-phylum Comparison of Nematode Metabolic Potential.

    Directory of Open Access Journals (Sweden)

    Rahul Tyagi

    2015-05-01

    Full Text Available Nematodes are among the most important causative pathogens of neglected tropical diseases. The increased availability of genomic and transcriptomic data for many understudied nematode species provides a great opportunity to investigate different aspects of their biology. Increasingly, metabolic potential of pathogens is recognized as a critical determinant governing their development, growth and pathogenicity. Comparing metabolic potential among species with distinct trophic ecologies can provide insights on overall biology or molecular adaptations. Furthermore, ascertaining gene expression at pathway level can help in understanding metabolic dynamics over development. Comparison of biochemical pathways (or subpathways, i.e. pathway modules among related species can also retrospectively indicate potential mistakes in gene-calling and functional annotation. We show with numerous illustrative case studies that comparisons at the level of pathway modules have the potential to uncover biological insights while remaining computationally tractable. Here, we reconstruct and compare metabolic modules found in the deduced proteomes of 13 nematodes and 10 non-nematode species (including hosts of the parasitic nematode species. We observed that the metabolic potential is, in general, concomitant with phylogenetic and/or ecological similarity. Varied metabolic strategies are required among the nematodes, with only 8 out of 51 pathway modules being completely conserved. Enzyme comparison based on topology of metabolic modules uncovered diversification between parasite and host that can potentially guide therapeutic intervention. Gene expression data from 4 nematode species were used to study metabolic dynamics over their life cycles. We report unexpected differential metabolism between immature and mature microfilariae of the human filarial parasite Brugia malayi. A set of genes potentially important for parasitism is also reported, based on an analysis of

  17. Pan-phylum Comparison of Nematode Metabolic Potential.

    Science.gov (United States)

    Tyagi, Rahul; Rosa, Bruce A; Lewis, Warren G; Mitreva, Makedonka

    2015-05-01

    Nematodes are among the most important causative pathogens of neglected tropical diseases. The increased availability of genomic and transcriptomic data for many understudied nematode species provides a great opportunity to investigate different aspects of their biology. Increasingly, metabolic potential of pathogens is recognized as a critical determinant governing their development, growth and pathogenicity. Comparing metabolic potential among species with distinct trophic ecologies can provide insights on overall biology or molecular adaptations. Furthermore, ascertaining gene expression at pathway level can help in understanding metabolic dynamics over development. Comparison of biochemical pathways (or subpathways, i.e. pathway modules) among related species can also retrospectively indicate potential mistakes in gene-calling and functional annotation. We show with numerous illustrative case studies that comparisons at the level of pathway modules have the potential to uncover biological insights while remaining computationally tractable. Here, we reconstruct and compare metabolic modules found in the deduced proteomes of 13 nematodes and 10 non-nematode species (including hosts of the parasitic nematode species). We observed that the metabolic potential is, in general, concomitant with phylogenetic and/or ecological similarity. Varied metabolic strategies are required among the nematodes, with only 8 out of 51 pathway modules being completely conserved. Enzyme comparison based on topology of metabolic modules uncovered diversification between parasite and host that can potentially guide therapeutic intervention. Gene expression data from 4 nematode species were used to study metabolic dynamics over their life cycles. We report unexpected differential metabolism between immature and mature microfilariae of the human filarial parasite Brugia malayi. A set of genes potentially important for parasitism is also reported, based on an analysis of gene expression in

  18. IMPORTANT NEMATODE INFECTIONS IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Sri Oemijati

    2012-09-01

    Full Text Available At least 13 species of intestinal nematodes and 4 species of blood and tissue nematodes have been reported infecting man in Indonesia. Five species of intestinal nematodes are very common and highly prevalent, especially in the rural areas and slums of the big cities. Those species are Ascaris lumbricoides, Necator americanus, Ancylostoma duodenale, Trichuris trichiura and Oxyuris vermicularis, while Strongyloides stercoralis is disappearing. The prevalence of the soil transmitted helminths differs from place to place, depending on many factors such as the type of soil, human behaviour etc. Three species of lymph dwelling filarial worms are known to be endemic, the urban Wuchereria bancrofti is low endemic in Jakarta and a few other cities along the north coast of Java, with Culex incriminated as vector, high endemicity is found in Irian Jaya, where Anopheline mosquitoes act as vectors. Brugia malayi is widely distributed and is still highly endemic in many areas. The zoonotic type is mainly endemic in swampy areas, and has many species of Mansonia mosquitoes as vectors. B.timori so far has been found only in the south eastern part of the archipelago and has Anopheles barbirostris as vector. Human infections with animal parasites have been diagnosed properly only when adult stages were found either in autopsies or removed tissues. Cases of infections with A. caninum, A.braziliense, A.ceylanicum, Trichostrongylus colubriformis, T.axei and Oesophagostomum apiostomum have been desribed from autopsies, while infections with Gnathostoma spiningerum have been reported from removed tissues. Infections with the larval stages such as VLM, eosinophylic meningitis, occult filanasis and other could only be suspected, since the diagnosis was extremely difficult and based on the finding and identification of the parasite. Many cases of creeping eruption which might be caused by the larval stages of A.caninum and A.braziliense and Strongyloides stercoralis

  19. Targeting Lysine Deacetylases (KDACs in Parasites.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum, kinetoplastids (Trypanosoma brucei and Leishmania donovani, and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus. Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast in order to determine potential parasite-versus-host selectivity. The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC

  20. Targeting Lysine Deacetylases (KDACs) in Parasites.

    Science.gov (United States)

    Wang, Qi; Rosa, Bruce A; Nare, Bakela; Powell, Kerrie; Valente, Sergio; Rotili, Dante; Mai, Antonello; Marshall, Garland R; Mitreva, Makedonka

    2015-01-01

    Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in

  1. Molecular cloning and analysis of Ancylostoma ceylanicum glutamate-cysteine ligase.

    Science.gov (United States)

    Wiśniewski, Marcin; Lapiński, Maciej; Zdziarska, Anna; Długosz, Ewa; Bąska, Piotr

    2014-08-01

    Glutamate-cysteine ligase (GCL) is a heterodimer enzyme composed of a catalytic subunit (GCLC) and a modifier subunit (GCLM). This enzyme catalyses the synthesis of γ-glutamylcysteine, a precursor of glutathione. cDNAs of the putative glutamate-cysteine ligase catalytic (Ace-GCLC) and modifier subunits (Ace-GCLM) of Ancylostoma ceylanicum were cloned using the RACE-PCR amplification method. The Ace-gclc and Ace-gclm cDNAs encode proteins with 655 and 254 amino acids and calculated molecular masses of 74.76 and 28.51kDa, respectively. The Ace-GCLC amino acid sequence shares about 70% identity and 80% sequence similarity with orthologs in Loa loa, Onchocerca volvulus, Brugia malayi, and Ascaris suum, whereas the Ace-GCLM amino acid sequence has only about 30% sequence identity and 50% similarity to homologous proteins in those species. Real-time PCR analysis of mRNA expression in L3, serum stimulated L3 and adult stages of A. ceylanicum showed the highest level of Ace-GCLC and Ace-GCLM expression occurred in adult worms. No differences were detected among adult hookworms harvested 21 and 35dpi indicating expression of Ace-gclc and Ace-gclm in adult worms is constant during the course of infection. Positive interaction between two subunits of glutamate-cysteine ligase was detected using the yeast two-hybrid system, and by specific enzymatic reaction. Ace-GCL is an intracellular enzyme and is not exposed to the host immune system. Thus, as expected, we did not detect IgG antibodies against Ace-GCLC or Ace-GCLM on days 21, 60 and 120 of A. ceylanicum infection in hamsters. Furthermore, vaccination with one or both antigens did not reduce worm burdens, and resulted in no improvement of clinical parameters (hematocrit and hemoglobin) of infected hamsters. Therefore, due to the significant role of the enzyme in parasite metabolism, our analyses raises hope for the development of a successful new drug against ancylostomiasis based on the specific GCL inhibitor. PMID

  2. Molecular characterization and evaluation of Onchocerca volvulus-secreted larval acidic protein 1 (SLAP1) as a putative vaccine candidate on endemic population of lymphatic filariasis.

    Science.gov (United States)

    Mahalakshmi, Natarajan; Aparnaa, Ramanathan; Ansel Vishal, Lawrance; Kaliraj, Perumal

    2013-09-01

    Filarial parasites infected nearly 160 million of the global population with onchocerciasis and lymphatic filariasis, and further, a billion of people are estimated to be at risk of infection, rendering them among the most prevalent infectious agents in the world today. Given the complexity of their life cycle and the immune evasion mechanisms of these organisms, development of a vaccine remains to be a long-term challenge. Though a number of immunodominant antigens have been characterized, the presence of homologous proteins in humans or the allelic variants are some of the major drawbacks. One of the extensively studied vaccine candidates is abundant larval transcripts (ALT) family of proteins for the following properties: highly regulated expression, abundance, excreted-secreted product of infective stage larvae, and essentially for parasite establishment and survival in the host. In the present study, stage-specific expression of secreted larval acidic protein 1 (SLAP1) was identified; an ALT orthologue from Onchocerca volvulus was cloned, expressed, and purified as a recombinant protein. Immunogenicity of OvSLAP1 was demonstrated with sera and peripheral blood mononuclear cells from endemic regions of Brugia malayi and Wuchereria bancrofti. OvSLAP1 antibodies were predominated by IgG1 and IgG2 in endemic normal (EN) and chronic pathology (CP) subjects. It has also induced marked cellular response as observed by lymphoproliferation assay. The study revealed that OvSLAP1 can segregate humoral (EN mean optical density (OD) = 0.87 ± 0.035, CP mean OD = 0.59 ± 0.029) and cellular (EN mean stimulation index (SI) = 5.87 ± 0.167, CP mean SI = 3.5 ± 0.134) immune responses between EN and CP individuals (P < 0.001), signifying its prophylactic ability and vitality for protection from filarial infections in endemic population. PMID:23828189

  3. Novel microfilaricidal activity of nanosilver

    Directory of Open Access Journals (Sweden)

    Singh SK

    2012-02-01

    Full Text Available Sunil K Singh1, Kalyan Goswami2, Richa D Sharma2, Maryada VR Reddy2, Debabrata Dash11Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 2Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram, IndiaPurpose: The currently available drug repertoire against lymphatic filariasis, a major health hazard in the developing world, is inadequate and is fraught with serious limitations. Thus, the development of an effective antifilarial strategy has become a global research thrust mandated by the World Health Organization. Nanoparticles of silver endowed with antibacterial potency are known to induce apoptosis in eukaryotic cells. The present study was designed to investigate the possible microfilaricidal efficacy of silver nanoparticles and to establish the validity of apoptotic rationale in antifilarial drug designing.Methods: This report analyzed the effect of nanoparticles of silver as well as gold (size range: 10–15 nm on the microfilariae of Brugia malayi obtained from the lavage of peritoneal cavities of infected jirds (Meriones unguiculatus. The study included a microfilarial motility assay, a trypan blue exclusion test, a poly(adenosine diphosphate-ribose polymerase activity study, ethidium bromide/acridine orange differential staining, and transmission, as well as scanning electron microscopic evaluation of ultrastructural changes in microfilariae.Results: The study demonstrates that nanoparticles of silver, but not of gold, elicited significant loss in microfilarial motility. Differential staining of parasites with ethidium bromide and acridine orange, poly(adenosine diphosphate-ribose polymerase activity in microfilarial lysate, and electron microscopic findings underscored apoptotic death of parasites attributable to nanosilver. In a trypan blue exclusion test, the 50% lethal dose of nanosilver was measured to be 101.2 µM, which was higher than the recorded complete

  4. Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita

    Directory of Open Access Journals (Sweden)

    Guillemaud Thomas

    2010-10-01

    Full Text Available Abstract Background Microsatellites are the most popular source of molecular markers for studying population genetic variation in eukaryotes. However, few data are currently available about their genomic distribution and abundance across the phylum Nematoda. The recent completion of the genomes of several nematode species, including Meloidogyne incognita, a major agricultural pest worldwide, now opens the way for a comparative survey and analysis of microsatellites in these organisms. Results Using MsatFinder, the total numbers of 1-6 bp perfect microsatellites detected in the complete genomes of five nematode species (Brugia malayi, Caenorhabditis elegans, M. hapla, M. incognita, Pristionchus pacificus ranged from 2,842 to 61,547, and covered from 0.09 to 1.20% of the nematode genomes. Under our search criteria, the most common repeat motifs for each length class varied according to the different nematode species considered, with no obvious relation to the AT-richness of their genomes. Overall, (ATn, (AGn and (CTn were the three most frequent dinucleotide microsatellite motifs found in the five genomes considered. Except for two motifs in P. pacificus, all the most frequent trinucleotide motifs were AT-rich, with (AATn and (ATTn being the only common to the five nematode species. A particular attention was paid to the microsatellite content of the plant-parasitic species M. incognita. In this species, a repertoire of 4,880 microsatellite loci was identified, from which 2,183 appeared suitable to design markers for population genetic studies. Interestingly, 1,094 microsatellites were identified in 801 predicted protein-coding regions, 99% of them being trinucleotides. When compared against the InterPro domain database, 497 of these CDS were successfully annotated, and further assigned to Gene Ontology terms. Conclusions Contrasted patterns of microsatellite abundance and diversity were characterized in five nematode genomes, even in the case of

  5. The Recent Evolution of a Maternally-Inherited Endosymbiont of Ticks Led to the Emergence of the Q Fever Pathogen, Coxiella burnetii.

    Directory of Open Access Journals (Sweden)

    Olivier Duron

    2015-05-01

    Full Text Available Q fever is a highly infectious disease with a worldwide distribution. Its causative agent, the intracellular bacterium Coxiella burnetii, infects a variety of vertebrate species, including humans. Its evolutionary origin remains almost entirely unknown and uncertainty persists regarding the identity and lifestyle of its ancestors. A few tick species were recently found to harbor maternally-inherited Coxiella-like organisms engaged in symbiotic interactions, but their relationships to the Q fever pathogen remain unclear. Here, we extensively sampled ticks, identifying new and atypical Coxiella strains from 40 of 58 examined species, and used this data to infer the evolutionary processes leading to the emergence of C. burnetii. Phylogenetic analyses of multi-locus typing and whole-genome sequencing data revealed that Coxiella-like organisms represent an ancient and monophyletic group allied to ticks. Remarkably, all known C. burnetii strains originate within this group and are the descendants of a Coxiella-like progenitor hosted by ticks. Using both colony-reared and field-collected gravid females, we further establish the presence of highly efficient maternal transmission of these Coxiella-like organisms in four examined tick species, a pattern coherent with an endosymbiotic lifestyle. Our laboratory culture assays also showed that these Coxiella-like organisms were not amenable to culture in the vertebrate cell environment, suggesting different metabolic requirements compared to C. burnetii. Altogether, this corpus of data demonstrates that C. burnetii recently evolved from an inherited symbiont of ticks which succeeded in infecting vertebrate cells, likely by the acquisition of novel virulence factors.

  6. Comparisons of host mitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig wasp species and the effects of Wolbachia on host mtDNA evolution and diversity

    Directory of Open Access Journals (Sweden)

    Feng Gui

    2011-04-01

    Full Text Available Abstract Background Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps. Results We surveyed 76 pollinator wasp specimens from nine Ficus microcarpa trees each growing at a different location in Hainan and Fujian Provinces, China. We found that all wasps were morphologically identified as Eupristina verticillata, but diverged into three clades with 4.22-5.28% mtDNA divergence and 2.29-20.72% nuclear gene divergence. We also found very strong concordance between E. verticillata clades and Wolbachia infection status, and the predicted effects of Wolbachia on both mtDNA diversity and evolution by decreasing mitochondrial haplotypes. Conclusions Our study reveals that the pollinating wasp E. verticillata on F. microcarpa has diverged into three cryptic species, and Wolbachia may have a role in this divergence. The results also indicate that Wolbachia strains infecting E. verticillata have likely resulted in selective sweeps on host mitochondrial DNA.

  7. Replacing a native Wolbachia with a novel strain results in an increase in endosymbiont load and resistance to dengue virus in a mosquito vector.

    Directory of Open Access Journals (Sweden)

    Guowu Bian

    Full Text Available Wolbachia is a maternally transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce pathogen interference and spread into mosquito vector populations makes it possible to develop Wolbachia as a biological control agent for vector-borne disease control. Although Wolbachia induces resistance to dengue virus (DENV, filarial worms, and Plasmodium in mosquitoes, species like Aedes polynesiensis and Aedes albopictus, which carry native Wolbachia infections, are able to transmit dengue and filariasis. In a previous study, the native wPolA in Ae. polynesiensis was replaced with wAlbB from Ae. albopictus, and resulted in the generation of the transinfected "MTB" strain with low susceptibility for filarial worms. In this study, we compare the dynamics of DENV serotype 2 (DENV-2 within the wild type "APM" strain and the MTB strain of Ae. polynesiensis by measuring viral infection in the mosquito whole body, midgut, head, and saliva at different time points post infection. The results show that wAlbB can induce a strong resistance to DENV-2 in the MTB mosquito. Evidence also supports that this resistance is related to a dramatic increase in Wolbachia density in the MTB's somatic tissues, including the midgut and salivary gland. Our results suggests that replacement of a native Wolbachia with a novel infection could serve as a strategy for developing a Wolbachia-based approach to target naturally infected insects for vector-borne disease control.

  8. The endosymbiont Arsenophonus is widespread in soybean aphid, Aphis glycines, but does not provide protection from parasitoids or a fungal pathogen

    Science.gov (United States)

    Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont, Arsenophonus sp., ...

  9. Intestinal Endocellular Symbiotic Bacterium of the Macaque Louse Pedicinus obtusus: Distinct Endosymbiont Origins in Anthropoid Primate Lice and the Old World Monkey Louse▿ †

    OpenAIRE

    Fukatsu, Takema; Hosokawa, Takahiro; Koga, Ryuichi; Nikoh, Naruo; KATO,Takuya; HAYAMA, Shin-ichi; Takefushi, Haruo; Tanaka, Ichirou

    2009-01-01

    A symbiotic bacterium of the macaque louse, Pedicinus obtusus, was characterized. The symbiont constituted a gammaproteobacterial lineage distinct from the symbionts of anthropoid primate lice, localized in the midgut epithelium and the ovaries and exhibiting AT-biased genes and accelerated molecular evolution. The designation “Candidatus Puchtella pedicinophila” was proposed for it.

  10. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont

    Directory of Open Access Journals (Sweden)

    Sunagawa Shinichi

    2009-06-01

    Full Text Available Abstract Background The most diverse marine ecosystems, coral reefs, depend upon a functional symbiosis between cnidarian hosts and unicellular dinoflagellate algae. The molecular mechanisms underlying the establishment, maintenance, and breakdown of the symbiotic partnership are, however, not well understood. Efforts to dissect these questions have been slow, as corals are notoriously difficult to work with. In order to expedite this field of research, we generated and analyzed a collection of expressed sequence tags (ESTs from the sea anemone Aiptasia pallida and its dinoflagellate symbiont (Symbiodinium sp., a system that is gaining popularity as a model to study cellular, molecular, and genomic questions related to cnidarian-dinoflagellate symbioses. Results A set of 4,925 unique sequences (UniSeqs comprising 1,427 clusters of 2 or more ESTs (contigs and 3,498 unclustered ESTs (singletons was generated by analyzing 10,285 high-quality ESTs from a mixed host/symbiont cDNA library. Using a BLAST-based approach to predict which unique sequences derived from the host versus symbiont genomes, we found that the contribution of the symbiont genome to the transcriptome was surprisingly small (1.6–6.4%. This may reflect low levels of gene expression in the symbionts, low coverage of alveolate genes in the sequence databases, a small number of symbiont cells relative to the total cellular content of the anemones, or failure to adequately lyse symbiont cells. Furthermore, we were able to identify groups of genes that are known or likely to play a role in cnidarian-dinoflagellate symbioses, including oxidative stress pathways that emerged as a prominent biological feature of this transcriptome. All ESTs and UniSeqs along with annotation results and other tools have been made accessible through the implementation of a publicly accessible database named AiptasiaBase. Conclusion We have established the first large-scale transcriptomic resource for Aiptasia pallida and its dinoflagellate symbiont. These data provide researchers with tools to study questions related to cnidarian-dinoflagellate symbioses on a molecular, cellular, and genomic level. This groundwork represents a crucial step towards the establishment of a tractable model system that can be utilized to better understand cnidarian-dinoflagellate symbioses. With the advent of next-generation sequencing methods, the transcriptomic inventory of A. pallida and its symbiont, and thus the extent of AiptasiaBase, should expand dramatically in the near future.

  11. Genetic Diversity of the Invasive Gall Wasp Leptocybe invasa (Hymenoptera: Eulophidae) and of its Rickettsia Endosymbiont, and Associated Sex-Ratio Differences.

    Science.gov (United States)

    Nugnes, Francesco; Gebiola, Marco; Monti, Maurilia Maria; Gualtieri, Liberata; Giorgini, Massimo; Wang, Jianguo; Bernardo, Umberto

    2015-01-01

    The blue-gum chalcid Leptocybe invasa Fisher & LaSalle (Hymenoptera: Eulophidae) is a gall wasp pest of Eucalyptus species, likely native to Australia. Over the past 15 years it has invaded 39 countries on all continents where eucalypts are grown. The worldwide invasion of the blue gum chalcid was attributed to a single thelytokous morphospecies formally described in 2004. Subsequently, however, males have been recorded in several countries and the sex ratio of field populations has been found to be highly variable in different areas. In order to find an explanation for such sex ratio differences, populations of L. invasa from a broad geographical area were screened for the symbionts currently known as reproductive manipulators, and both wasps and symbionts were genetically characterized using multiple genes. Molecular analyses suggested that L. invasa is in fact a complex of two cryptic species involved in the rapid and efficient spread of the wasp, the first recovered from the Mediterranean region and South America, the latter from China. All screened specimens were infected by endosymbiotic bacteria belonging to the genus Rickettsia. Two closely related Rickettsia strains were found, each infecting one of the two putative cryptic species of L. invasa and associated with different average sex ratios. Rickettsia were found to be localized in the female reproductive tissues and transovarially transmitted, suggesting a possible role of Rickettsia as the causal agent of thelytokous parthenogenesis in L. invasa. Implications for the variation of sex ratio and for the management of L. invasa are discussed.

  12. Two types of endosymbiotic bacteria in the enigmatic marine worm Xenoturbella

    DEFF Research Database (Denmark)

    Kjeldsen, Kasper Urup; Obst, Matthias; Nakano, Hiroaki;

    2010-01-01

    Two types of endosymbiotic bacteria were identified in the gastrodermis of the marine invertebrate Xenoturbella bocki (Xenoturbellida, Bilateria). While previously described Chlamydia-like endosymbionts were rare, Gammaproteobacteria distantly related to other endosymbionts and pathogens were...

  13. Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families.

    OpenAIRE

    Munson, M. A.; Baumann, P.; Clark, M A; Baumann, L; Moran, N A; Voegtlin, D J; Campbell, B C

    1991-01-01

    Aphids (superfamily Aphidoidea) contain eubacterial endosymbionts localized within specialized cells (mycetocytes). The endosymbionts are essential for the survival of the aphid hosts. Sequence analyses of the 16S rRNAs from endosymbionts of 11 aphid species from seven tribes and four families have indicated that the endosymbionts are monophyletic. Furthermore, phylogenetic relationships within the symbiont clade parallel the relationships of the corresponding aphid hosts. Our findings sugges...

  14. 半胱氨酸蛋白酶抑制剂的系统发生分析%Phylogenetic Analysis of Cystatin

    Institute of Scientific and Technical Information of China (English)

    李凤梅; 盖雪梅

    2010-01-01

    [目的]对已知半胱氨酸蛋白酶抑制剂基因编码蛋白的分子量、等电点、信号肽、结构域等进行分析.[方法]在NCBI中检索半胱氨酸蛋白酶抑制剂基因,下载相应的氨基酸序列.采用SMART软件预测结构域,用SingalP程序查找信号肽,用TMHMM程序搜寻预测跨膜区.多序列比对采用CLUSTAL W程序.运用MEGA3.1软件,采用Neighbor-joining 法构建进化树.[结果]半胱氨酸蛋白酶抑制A(Homo sapiens)、半胱氨酸蛋白酶抑制M(H. sapiens)、半胱氨酸蛋白酶抑制F(H. sapiens)、半胱氨酸蛋白酶抑制(Mus musculus)、半胱氨酸蛋白酶抑制C(M. musculus)、半胱氨酸蛋白酶抑制F(Rattus norvegicus)、半胱氨酸蛋白酶抑制C(R. norvegicus)、半胱氨酸蛋白酶抑制S(R. norvegicus)、半胱氨酸蛋白酶抑制I(Zea mays)、半胱氨酸蛋白酶抑制(Brugia malayi)、半胱氨酸蛋白酶抑制(Onchocerca volvulus)和半胱氨酸蛋白酶抑制(Acanthocheilonema viteae)有信号肽,其余的半胱氨酸蛋白酶抑制基因没有信号肽,TMHMM程序搜寻结果显示,这些半胱氨酸蛋白酶抑制都没有跨膜区,均为胞外蛋白.SMART软件分析结果表明它们均含有1个高度保守的半胱氨酸蛋白酶抑制剂结构域.多序列比对结果表明半胱氨酸蛋白酶抑制剂基因存在高度保守的QxVxG基序,意味着该基序可能对半胱氨酸蛋白酶抑制剂的抑制活性具有重要意义.系统进化分析可预示半胱氨酸蛋白酶抑制半胱氨酸蛋白酶活性在进化过程中可能也是保守的.[结论]该研究可为半胱氨酸蛋白酶抑制剂抑制半胱氨酸蛋白酶的功能研究方面提供理论参考.

  15. Detection and analysis of Wolbachia endosymbiont in Megachile rotundata (F.) and Pteromalus venustus%苜蓿切叶蜂、金小蜂体内共生菌沃尔巴克氏体测定与分析

    Institute of Scientific and Technical Information of China (English)

    王翠敏; 丛斌; 米丰泉; 戴秋慧; 张兆琳

    2005-01-01

    沃尔巴克氏体(Wolbachia)是广泛分布于节肢动物体内的一类共生菌,它们参与调控其寄主多种生殖活动的机制.本研究利用PCR方法对wsp基因的特异性扩增和测序,证实了Wolbachia在金小蜂体内的共生.并利用所测序列和其他已发表的序列建立系统树,为研究寄主与拟寄生物间的水平传播机制奠定了基础.

  16. NCBI nr-aa BLAST: CBRC-TTRU-01-0707 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TTRU-01-0707 ref|NP_966022.1| hypothetical protein WD0211 [Wolbachia endosymbi...ont of Drosophila melanogaster] ref|ZP_00373155.1| membrane protein, putative [Wolbachia endosymbiont of Dro...sophila ananassae] ref|YP_002726826.1| hypothetical protein WRi_002030 [Wolbachia sp. wRi] gb|AAS13956.1| me...mbrane protein, putative [Wolbachia endosymbiont of Drosophila melanogaster] gb|E...AL59341.1| membrane protein, putative [Wolbachia endosymbiont of Drosophila ananassae] gb|ACN95035.1| hypothetical protein WRi_002030 [Wolbachia sp. wRi] NP_966022.1 0.029 30% ...

  17. NCBI nr-aa BLAST: CBRC-TTRU-01-0973 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TTRU-01-0973 ref|NP_966022.1| hypothetical protein WD0211 [Wolbachia endosymbi...ont of Drosophila melanogaster] ref|ZP_00373155.1| membrane protein, putative [Wolbachia endosymbiont of Dro...sophila ananassae] ref|YP_002726826.1| hypothetical protein WRi_002030 [Wolbachia sp. wRi] gb|AAS13956.1| me...mbrane protein, putative [Wolbachia endosymbiont of Drosophila melanogaster] gb|E...AL59341.1| membrane protein, putative [Wolbachia endosymbiont of Drosophila ananassae] gb|ACN95035.1| hypothetical protein WRi_002030 [Wolbachia sp. wRi] NP_966022.1 0.031 25% ...

  18. NCBI nr-aa BLAST: CBRC-TTRU-01-1056 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TTRU-01-1056 ref|NP_966022.1| hypothetical protein WD0211 [Wolbachia endosymbi...ont of Drosophila melanogaster] ref|ZP_00373155.1| membrane protein, putative [Wolbachia endosymbiont of Dro...sophila ananassae] ref|YP_002726826.1| hypothetical protein WRi_002030 [Wolbachia sp. wRi] gb|AAS13956.1| me...mbrane protein, putative [Wolbachia endosymbiont of Drosophila melanogaster] gb|E...AL59341.1| membrane protein, putative [Wolbachia endosymbiont of Drosophila ananassae] gb|ACN95035.1| hypothetical protein WRi_002030 [Wolbachia sp. wRi] NP_966022.1 0.009 31% ...

  19. Identification of Paenibacillus as a Symbiont in Acanthamoeba.

    Science.gov (United States)

    Maschio, Vinicius José; Corção, Gertrudes; Bücker, Francielle; Caumo, Karin; Rott, Marilise Brittes

    2015-09-01

    Amoebae of the genus Acanthamoeba occur worldwide and in addition to being pathogens, are important vehicles for microorganisms with clinical and environmental importance. This study aimed to evaluate the profiling of endosymbionts in 12 isolates of Acanthamoeba using V3 region of 16S rDNA denaturing gradient gel electrophoresis (DGGE) and sequencing. The DGGE enabled us to characterize the endosymbionts diversity in isolates of Acanthamoeba, and to identify Paenibacillus sp., an emerging pathogen, as an amoebic endosymbiont. The results of this study demonstrated that Acanthamoeba is capable of transporting a large number of endosymbionts. This is the first study that reports, the presence of Paenibacillus sp. as amebic symbiont.

  20. NCBI nr-aa BLAST: CBRC-LAFR-01-0324 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-0324 ref|NP_871160.1| hypothetical protein WGLp157 [Wigglesworthia gloss...inidia endosymbiont of Glossina brevipalpis] dbj|BAC24303.1| yajR [Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis] NP_871160.1 0.10 27% ...

  1. NCBI nr-aa BLAST: CBRC-CFAM-18-0006 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CFAM-18-0006 ref|NP_871103.1| hypothetical protein WGLp100 [Wigglesworthia gloss...inidia endosymbiont of Glossina brevipalpis] dbj|BAC24246.1| ycfU [Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis] NP_871103.1 0.79 23% ...

  2. NCBI nr-aa BLAST: CBRC-ETEL-01-0850 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ETEL-01-0850 ref|NP_871494.1| hypothetical protein WGLp491 [Wigglesworthia gloss...inidia endosymbiont of Glossina brevipalpis] dbj|BAC24637.1| ftsK [Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis] NP_871494.1 0.13 46% ...

  3. NCBI nr-aa BLAST: CBRC-VPAC-01-1556 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-VPAC-01-1556 ref|ZP_04699523.1| heme exporter protein B [Rickettsia endosymbiont... of Ixodes scapularis] gb|EER22070.1| heme exporter protein B [Rickettsia endosymbiont of Ixodes scapularis] ZP_04699523.1 1.0 27% ...

  4. NCBI nr-aa BLAST: CBRC-AGAM-02-0155 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-02-0155 ref|ZP_00373744.1| SD27140p [Wolbachia endosymbiont of Drosophila... ananassae] gb|EAL58741.1| SD27140p [Wolbachia endosymbiont of Drosophila ananassae] ZP_00373744.1 0.0 39% ...

  5. NCBI nr-aa BLAST: CBRC-AGAM-04-0091 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-04-0091 ref|ZP_00373744.1| SD27140p [Wolbachia endosymbiont of Drosophila... ananassae] gb|EAL58741.1| SD27140p [Wolbachia endosymbiont of Drosophila ananassae] ZP_00373744.1 1e-163 38% ...

  6. NCBI nr-aa BLAST: CBRC-FCAT-01-1234 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-FCAT-01-1234 ref|ZP_00373077.1| ribosomal protein L13 [Wolbachia endosymbiont ...of Drosophila ananassae] gb|EAL59382.1| ribosomal protein L13 [Wolbachia endosymbiont of Drosophila ananassae] ZP_00373077.1 0.40 26% ...

  7. NCBI nr-aa BLAST: CBRC-CBRE-01-0069 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CBRE-01-0069 ref|ZP_00373744.1| SD27140p [Wolbachia endosymbiont of Drosophila... ananassae] gb|EAL58741.1| SD27140p [Wolbachia endosymbiont of Drosophila ananassae] ZP_00373744.1 1e-103 27% ...

  8. NCBI nr-aa BLAST: CBRC-DNOV-01-2378 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DNOV-01-2378 ref|ZP_00372308.1| oxidoreductase, putative [Wolbachia endosymbio...nt of Drosophila simulans] gb|EAL60174.1| oxidoreductase, putative [Wolbachia endosymbiont of Drosophila simulans] ZP_00372308.1 0.090 26% ...

  9. NCBI nr-aa BLAST: CBRC-TTRU-01-0564 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TTRU-01-0564 ref|ZP_00372671.1| cell division protein ftsw [Wolbachia endosymb...iont of Drosophila simulans] gb|EAL59812.1| cell division protein ftsw [Wolbachia endosymbiont of Drosophila simulans] ZP_00372671.1 0.011 25% ...

  10. NCBI nr-aa BLAST: CBRC-AGAM-02-0094 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-02-0094 ref|ZP_00373744.1| SD27140p [Wolbachia endosymbiont of Drosophila... ananassae] gb|EAL58741.1| SD27140p [Wolbachia endosymbiont of Drosophila ananassae] ZP_00373744.1 0.0 39% ...

  11. NCBI nr-aa BLAST: CBRC-AGAM-03-0010 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-03-0010 ref|ZP_00373744.1| SD27140p [Wolbachia endosymbiont of Drosophila... ananassae] gb|EAL58741.1| SD27140p [Wolbachia endosymbiont of Drosophila ananassae] ZP_00373744.1 0.0 39% ...

  12. NCBI nr-aa BLAST: CBRC-AGAM-04-0093 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-04-0093 ref|ZP_00373744.1| SD27140p [Wolbachia endosymbiont of Drosophila... ananassae] gb|EAL58741.1| SD27140p [Wolbachia endosymbiont of Drosophila ananassae] ZP_00373744.1 0.0 40% ...

  13. NCBI nr-aa BLAST: CBRC-CREM-01-1095 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-1095 ref|ZP_00373744.1| SD27140p [Wolbachia endosymbiont of Drosophila... ananassae] gb|EAL58741.1| SD27140p [Wolbachia endosymbiont of Drosophila ananassae] ZP_00373744.1 5e-91 28% ...

  14. NCBI nr-aa BLAST: CBRC-CREM-01-0077 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-0077 ref|ZP_00373744.1| SD27140p [Wolbachia endosymbiont of Drosophila... ananassae] gb|EAL58741.1| SD27140p [Wolbachia endosymbiont of Drosophila ananassae] ZP_00373744.1 4e-77 29% ...

  15. NCBI nr-aa BLAST: CBRC-AGAM-05-0053 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-05-0053 ref|ZP_00373744.1| SD27140p [Wolbachia endosymbiont of Drosophila... ananassae] gb|EAL58741.1| SD27140p [Wolbachia endosymbiont of Drosophila ananassae] ZP_00373744.1 0.0 39% ...

  16. NCBI nr-aa BLAST: CBRC-FCAT-01-1234 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-FCAT-01-1234 ref|NP_965895.1| 50S ribosomal protein L13 [Wolbachia endosymbion...t of Drosophila melanogaster] gb|AAS13829.1| ribosomal protein L13 [Wolbachia endosymbiont of Drosophila melanogaster] NP_965895.1 0.40 26% ...

  17. NCBI nr-aa BLAST: CBRC-AGAM-03-0057 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-03-0057 ref|ZP_00373744.1| SD27140p [Wolbachia endosymbiont of Drosophila... ananassae] gb|EAL58741.1| SD27140p [Wolbachia endosymbiont of Drosophila ananassae] ZP_00373744.1 0.0 37% ...

  18. Identification of Ecdysone Hormone Receptor Agonists as a Therapeutic Approach for Treating Filarial Infections

    Science.gov (United States)

    Mhashilkar, Amruta S.; Vankayala, Sai L.; Liu, Canhui; Kearns, Fiona; Mehrotra, Priyanka; Tzertzinis, George; Palli, Subba R.; Woodcock, H. Lee; Unnasch, Thomas R.

    2016-01-01

    Background A homologue of the ecdysone receptor has previously been identified in human filarial parasites. As the ecdysone receptor is not found in vertebrates, it and the regulatory pathways it controls represent attractive potential chemotherapeutic targets. Methodology/ Principal Findings Administration of 20-hydroxyecdysone to gerbils infected with B. malayi infective larvae disrupted their development to adult stage parasites. A stable mammalian cell line was created incorporating the B. malayi ecdysone receptor ligand-binding domain, its heterodimer partner and a secreted luciferase reporter in HEK293 cells. This was employed to screen a series of ecdysone agonist, identifying seven agonists active at sub-micromolar concentrations. A B. malayi ecdysone receptor ligand-binding domain was developed and used to study the ligand-receptor interactions of these agonists. An excellent correlation between the virtual screening results and the screening assay was observed. Based on both of these approaches, steroidal ecdysone agonists and the diacylhydrazine family of compounds were identified as a fruitful source of potential receptor agonists. In further confirmation of the modeling and screening results, Ponasterone A and Muristerone A, two compounds predicted to be strong ecdysone agonists stimulated expulsion of microfilaria and immature stages from adult parasites. Conclusions The studies validate the potential of the B. malayi ecdysone receptor as a drug target and provide a means to rapidly evaluate compounds for development of a new class of drugs against the human filarial parasites. PMID:27300294

  19. Symbiotic bacterium modifies aphid body color.

    Science.gov (United States)

    Tsuchida, Tsutomu; Koga, Ryuichi; Horikawa, Mitsuyo; Tsunoda, Tetsuto; Maoka, Takashi; Matsumoto, Shogo; Simon, Jean-Christophe; Fukatsu, Takema

    2010-11-19

    Color variation within populations of the pea aphid influences relative susceptibility to predators and parasites. We have discovered that infection with a facultative endosymbiont of the genus Rickettsiella changes the insects' body color from red to green in natural populations. Approximately 8% of pea aphids collected in Western Europe carried the Rickettsiella infection. The infection increased amounts of blue-green polycyclic quinones, whereas it had less of an effect on yellow-red carotenoid pigments. The effect of the endosymbiont on body color is expected to influence prey-predator interactions, as well as interactions with other endosymbionts. PMID:21097935

  20. Preliminary research on the distribution and transmission efficiency of Rickettsia, an endosymbiont of whitefly Bemisia tabaci%烟粉虱内共生菌 Rickettsia 在植物体内的分布及转移效率初探

    Institute of Scientific and Technical Information of China (English)

    安璇; 李翌菡; 李绍建; 郭长飞; 任顺祥; 邱宝利

    2015-01-01

    【目的】检测 Q 型烟粉虱 Bemisia tabaci (Gennadius)体内 Rickettsia 的感染情况,研究分析Rickettsia 共生菌经烟粉虱传入豇豆植物后的分布、转移效率等。【方法】以 Q 型烟粉虱为实验材料,利用常规 PCR 及荧光原位杂交技术(FISH),检测了烟粉虱体内 Rickettsia 的感染率,以及 Rickettsia 传入豇豆植物体内后的存留情况。【结果】 Q 型烟粉虱可以通过取食将 Rickettsia 传至豇豆植株内;接虫数量与 Rickettsia传入效率及其在取食部位相邻的下部叶片中检测到的起始时间呈负相关;Rickettsia 经烟粉虱取食传入豇豆叶片后,集中分布在叶片的韧皮部筛管中;基于16S rRNA 的系统发育分析结果表明,Q 型烟粉虱体内的Rickettsia 与经取食传入豇豆叶片的 Rickettsia 高度同源。【结论】 Rickettsia 可以通过烟粉虱的取食传入植物体内,并且可以在相邻叶片之间转移传播,Rickettsia 在由寄主昆虫向植株传播过程中高度保守。%Objectives] To detect the infection of Bemisia tabaci by Rickettsia, and the distribution and dissemination of Rickettsia after its transmission to cowpea leaves through whitefly feeding. [Methods] Infection of the B. tabaci Q biotype by Rickettsia, and its persistence in cowpea plants, were detected by PCR and fluoresent in situ hybridization (FISH). [Results] The distribution of Rickettsia was limited to the phloem vessels of cowpea leaves, Rickettsia could move along the vessels between different leaves, and its efficiency of dissemination was highly related to the initial population size of Rickettsia-positive B. tabaci individuals that fed on the cowpea leaves. Phylogenetic analysis based on 16S rRNA variation showed that Rickettsia in cowpea plants and whiteflies was 100% identical. [Conclusion] Rickettsia can be horizontally transmitted to cowpea plants through the feeding of the B. tabaci Q biotype and little genetic variation appears to be associated with horizontal transmission from insect to host plants.

  1. Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves

    OpenAIRE

    Distel, D L; Cavanaugh, Colleen Marie

    1994-01-01

    The discovery of bacterium-bivalve symbioses capable of utilizing methane as a carbon and energy source indicates that the endosymbionts of hydrothermal vent and cold seep bivalves are not restricted to sulfur-oxidizing chemoautotrophic bacteria but also include methanotrophic bacteria. The phylogenetic origin of methanotrophic endosymbionts and their relationship to known symbiotic and free-living bacteria, however, have remained unexplored. In situ localization and phylogenetic analysis of ...

  2. cDNA microarray-based studies of thermal stress-induced bleaching in the Caribbean corals Montastraea faveolata and Acropora palmata

    OpenAIRE

    DeSalvo, Michael Kenneth

    2010-01-01

    The reef-building coral species of tropical seas worldwide, together with their algal endosymbionts, drive the productivity of coral reef ecosystems by forming the three-dimensional structure of reefs and by functioning as primary producers. The photosynthetic endosymbionts (of the genus Symbiodinium) are key to the role of primary production. This mutualism is under intense investigation because high temperature anomalies in coastal seas trigger a breakdown in the symbiosis known as coral bl...

  3. The Calyptogena magnifica chemoautotrophic symbiont genome

    Energy Technology Data Exchange (ETDEWEB)

    Newton, I.L.; Woyke, T.; Auchtung, T.A.; Dilly, G.F.; Dutton,R.J.; Fisher, M.C.; Fontanez, K.M.; Lau, E.; Stewart, F.J.; Richardson,P.M.; Barry, K.W.; Saunders, E.; Detter, J.C.; Wu, D.; Eisen, J.A.; Cavanaugh, C.M.

    2007-03-01

    Chemoautotrophic endosymbionts are the metabolic cornerstone of hydrothermal vent communities, providing invertebrate hosts with nearly all of their nutrition. The Calyptogena magnifica (Bivalvia: Vesicomyidae) symbiont, Candidatus Ruthia magnifica, is the first intracellular sulfur-oxidizing endosymbiont to have its genome sequenced, revealing a suite of metabolic capabilities. The genome encodes major chemoautotrophic pathways as well as pathways for biosynthesis of vitamins, cofactors, and all 20 amino acids required by the clam.

  4. Wolbachia and DNA Barcoding Insects: Patterns, Potential, and Problems

    OpenAIRE

    M. Alex Smith; Claudia Bertrand; Kate Crosby; Eveleigh, Eldon S.; Jose Fernandez-Triana; Fisher, Brian L.; Jason Gibbs; Mehrdad Hajibabaei; Winnie Hallwachs; Katharine Hind; Jan Hrcek; Da-Wei Huang; Milan Janda; Janzen, Daniel H.; Yanwei Li

    2012-01-01

    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Us...

  5. Phylogeny of 16S rRNA, Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase, and Adenosine 5′-Phosphosulfate Reductase Genes from Gamma- and Alphaproteobacterial Symbionts in Gutless Marine Worms (Oligochaeta) from Bermuda and the Bahamas

    OpenAIRE

    Blazejak, Anna; Kuever, Jan; Erséus, Christer; Amann, Rudolf; Dubilier, Nicole

    2006-01-01

    Gutless oligochaetes are small marine worms that live in obligate associations with bacterial endosymbionts. While symbionts from several host species belonging to the genus Olavius have been described, little is known of the symbionts from the host genus Inanidrilus. In this study, the diversity of bacterial endosymbionts in Inanidrilus leukodermatus from Bermuda and Inanidrilus makropetalos from the Bahamas was investigated using comparative sequence analysis of the 16S rRNA gene and fluore...

  6. Mitochondrial origins.

    OpenAIRE

    Yang, D.; Oyaizu, Y; Oyaizu, H; Olsen, G J; Woese, C R

    1985-01-01

    The 16S ribosomal RNA sequences from Agrobacterium tumefaciens and Pseudomonas testosteroni have been determined to further delimit the origin of the endosymbiont that gave rise to the mitochondrion. These two prokaryotes represent the alpha and beta subdivisions, respectively, of the so-called purple bacteria. The endosymbiont that gave rise to the mitochondrion belonged to the alpha subdivision, a group that also contains the rhizobacteria, the agrobacteria, and the rickettsias--all prokary...

  7. Genome evolution in an ancient bacteria-ant symbiosis: parallel gene loss among Blochmannia spanning the origin of the ant tribe Camponotini

    OpenAIRE

    Williams, Laura E; Wernegreen, Jennifer J.

    2015-01-01

    Stable associations between bacterial endosymbionts and insect hosts provide opportunities to explore genome evolution in the context of established mutualisms and assess the roles of selection and genetic drift across host lineages and habitats. Blochmannia, obligate endosymbionts of ants of the tribe Camponotini, have coevolved with their ant hosts for ∼40 MY. To investigate early events in Blochmannia genome evolution across this ant host tribe, we sequenced Blochmannia from two divergent ...

  8. Avoidance and Potential Remedy Solutions of Chimeras in Reconstructing the Phylogeny of Aphids Using the 16S rRNA Gene of Buchnera: A Case in Lachninae (Hemiptera).

    Science.gov (United States)

    Chen, Rui; Wang, Zhe; Chen, Jing; Qiao, Ge-Xia

    2015-08-25

    It is known that PCR amplification of highly homologous genes from complex DNA mixtures can generate a significant proportion of chimeric sequences. The 16S rRNA gene is not only widely used in estimating the species diversity of endosymbionts in aphids but also used to explore the co-diversification of aphids and their endosymbionts. Thus, chimeric sequences may lead to the discovery of non-existent endosymbiont species and mislead Buchnera-based phylogenetic analysis that lead to false conclusions. In this study, a high probability (6.49%) of chimeric sequence occurrence was found in the amplified 16S rRNA gene sequences of endosymbionts from aphid species in the subfamily Lachninae. These chimeras are hybrid products of multiple parent sequences from the dominant species of endosymbionts in each corresponding host. It is difficult to identify the chimeric sequences of a new or unidentified species due to the high variability of their main parent, Buchnera aphidicola, and because the chimeric sequences can confuse the phylogenetic analysis of 16S rRNA gene sequences. These chimeras present a challenge to Buchnera-based phylogenetic research in aphids. Thus, our study strongly suggests that using appropriate methods to detect chimeric 16S rRNA sequences may avoid some false conclusions in endosymbiont-based aphid research.

  9. Symbiosis in the green leafhopper, Cicadella viridis (Hemiptera, Cicadellidae). Association in statu nascendi?

    Science.gov (United States)

    Michalik, Anna; Jankowska, Władysława; Kot, Marta; Gołas, Aniela; Szklarzewicz, Teresa

    2014-11-01

    The green leafhopper, Cicadella viridis lives in symbiotic association with microorganisms. The ultrastructural and molecular analyses have shown that in the body of the C. viridis two types of bacteriocyte endosymbionts are present. An amplification and sequencing of 16S rRNA genes revealed that large, pleomorphic bacteria display a high similarity (94-100%) to the endosymbiont 'Candidatus Sulcia muelleri' (phylum Bacteroidetes), whereas long, rod-shaped microorganisms are closely related to the γ-proteobacterial symbiont Sodalis (97-99% similarity). Both endosymbionts may be harbored in their own bacteriocytes as well as may co-reside in the same bacteriocytes. The ultrastructural observations have revealed that the Sodalis-like bacteria harboring the same bacteriocytes as bacterium Sulcia may invade the cells of the latter. Bacteria Sulcia and Sodalis-like endosymbionts are transovarially transmitted from one generation to the next. However, Sodalis-like endosymbionts do not invade the ovaries individually, but only inside Sulcia cells. Apart from bacteriocyte endosymbionts, in the body of C. viridis small, rod-shaped bacteria have been detected, and have been identified as being closely related to γ-proteobacterial microorganism Pectobacterium (98-99% similarity). The latter are present in the sheath cells of the bacteriomes containing bacterium Sulcia as well as in fat body cells.

  10. Predicted binding of certain antifilarial compounds with glutathione-S-transferase of human Filariids

    OpenAIRE

    Saeed, Mohd; Baig, Mohd. Hassan; Bajpai, Preeti; Srivastava, Ashwini Kumar; Ahmad, Khurshid; Mustafa, Huma

    2013-01-01

    Glutathione-S-transferase is a major phase-II detoxification enzyme in parasitic helminthes. Previous research highlights the importance of GSTs in the establishment of chronic infections in cytotoxic microenvironments. Filarial nematodes depend on these detoxification enzymes for their survival in the host. GST plays an important role in filariasis and other diseases. GST from W.bancrofti and B.malayi are very much different from human GST. This structural difference makes GST potential chem...

  11. An integrated in vitro imaging platform for characterizing filarial parasite behavior within a multicellular microenvironment.

    Directory of Open Access Journals (Sweden)

    Timothy Kassis

    2014-11-01

    Full Text Available Lymphatic Filariasis, a Neglected Tropical Disease, is caused by thread-like parasitic worms, including B. malayi, which migrate to the human lymphatic system following transmission. The parasites reside in collecting lymphatic vessels and lymph nodes for years, often resulting in lymphedema, elephantiasis or hydrocele. The mechanisms driving worm migration and retention within the lymphatics are currently unknown. We have developed an integrated in vitro imaging platform capable of quantifying B. malayi migration and behavior in a multicellular microenvironment relevant to the initial site of worm injection by incorporating the worm in a Polydimethylsiloxane (PDMS microchannel in the presence of human dermal lymphatic endothelial cells (LECs and human dermal fibroblasts (HDFs. The platform utilizes a motorized controllable microscope with CO2 and temperature regulation to allow for worm tracking experiments with high resolution over large length and time scales. Using post-acquisition algorithms, we quantified four parameters: 1 speed, 2 thrashing intensity, 3 percentage of time spent in a given cell region and 4 persistence ratio. We demonstrated the utility of our system by quantifying these parameters for L3 B. malayi in the presence of LECs and HDFs. Speed and thrashing increased in the presence of both cell types and were altered within minutes upon exposure to the anthelmintic drug, tetramisole. The worms displayed no targeted migration towards either cell type for the time course of this study (3 hours. When cells were not present in the chamber, worm thrashing correlated directly with worm speed. However, this correlation was lost in the presence of cells. The described platform provides the ability to further study B. malayi migration and behavior.

  12. Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes.

    Science.gov (United States)

    Suh, Alexander; Witt, Christopher C; Menger, Juliana; Sadanandan, Keren R; Podsiadlowski, Lars; Gerth, Michael; Weigert, Anne; McGuire, Jimmy A; Mudge, Joann; Edwards, Scott V; Rheindt, Frank E

    2016-01-01

    Parasite host switches may trigger disease emergence, but prehistoric host ranges are often unknowable. Lymphatic filariasis and loiasis are major human diseases caused by the insect-borne filarial nematodes Brugia, Wuchereria and Loa. Here we show that the genomes of these nematodes and seven tropical bird lineages exclusively share a novel retrotransposon, AviRTE, resulting from horizontal transfer (HT). AviRTE subfamilies exhibit 83-99% nucleotide identity between genomes, and their phylogenetic distribution, paleobiogeography and invasion times suggest that HTs involved filarial nematodes. The HTs between bird and nematode genomes took place in two pantropical waves, >25-22 million years ago (Myr ago) involving the Brugia/Wuchereria lineage and >20-17 Myr ago involving the Loa lineage. Contrary to the expectation from the mammal-dominated host range of filarial nematodes, we hypothesize that these major human pathogens may have independently evolved from bird endoparasites that formerly infected the global breadth of avian biodiversity. PMID:27097561

  13. FILARIASIS DAN BEBERAPA FAKTOR YANG BERHUBUNGAN DENGAN PENULARANNYA DI DESA PANGKU-TOLOLE, KECAMATAN AMPIBABO, KABUPATEN PARIGI-MOUTONG, PROVINSI SULAWESI TENGAH

    Directory of Open Access Journals (Sweden)

    Triwibowo Ambar Garjito

    2014-06-01

    Full Text Available Sejak    dilakukannya    survey    darah    jari    filariasis    pada    tahun    2004,    Desa    Pangku-Tolole    telah    ditetapkan    sebagaidesa    endemis    filariasis.    Namun    demikian,    sejak    diketahui    sebagai    daerah    endemis    sampai    kegiatan    penelitianini    dilakukan,    informasi    mengenai    aspek    penentu    penularan    filariasis    dalam    hubungannya    dengan    parasit,vektor    dan    manusia    di    wilayah    tersebut    masih    sangat    terbatas.    Studi    ini    dilakukan    untuk    mengetahui    angkaprevalensi    mikrofilaria    penduduk    pada    saat    penelitian    dan    faktor-faktor    yang    berhubungan    dengan    kejadianfilariasis    di    desa    tersebut.    Penelitian    ini    termasuk    dalam    jenis    observasional    dengan    rancangan    crosssectional    study,    karena    pengukuran    faktor    risiko    dan    efek    diukur    dalam    waktu    yang    bersamaan.    Kegiatanyang    dilakukan    meliputi    pengambilan    darah    jari    penderita    filariasis    dan    wawancara    pengetahuan,    sikapdan    perilaku    masyarakat    di    daerah    tersebut.    Hasil    penelitian    menunjukkan    bahwa    207    warga    dari    total    700penduduk    yang    diambil    darahnya,    sebanyak    28    warga    diantaranya    (13,53%    positif    terinfeksi    Brugia    malayi.Hasil    tersebut    menggambarkan    bahwa    Desa    Pangku-Tolole    merupakan    desa    endemis    tinggi    filariasis.    Faktorfaktor    individu  

  14. Lymphedema secondary to filariasis

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J.C.; Humphrey, G.B.; Basmadjian, G.

    1985-03-01

    A 1-year-old immunodeficient boy developed brawny edema of the left foot. Lymphoscintigraphy revealed no evidence of left inguinal activity following pedal injection of Tc-99m-Sn phosphate. Over the next two months, the patient developed lymphedema on the right and repeat scintigraphy demonstrated no movement of isotope from the dorsum of either foot. Subsequent studies identified microfilaria in a nocturnal blood smear, which were thought to represent Brugia beaveri acquired by mosquito transmission in Oklahoma.

  15. Lymphedema secondary to filariasis

    International Nuclear Information System (INIS)

    A 1-year-old immunodeficient boy developed brawny edema of the left foot. Lymphoscintigraphy revealed no evidence of left inguinal activity following pedal injection of Tc-99m-Sn phosphate. Over the next two months, the patient developed lymphedema on the right and repeat scintigraphy demonstrated no movement of isotope from the dorsum of either foot. Subsequent studies identified microfilaria in a nocturnal blood smear, which were thought to represent Brugia beaveri acquired by mosquito transmission in Oklahoma

  16. Endosymbiotic Bacteria Associated with the Mealy Bug, Rhizoecus amorphophalli (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Sreerag, Ravikumar Sreekala; Jayaprakas, C A; Ragesh, L; Kumar, Sasidharan Nishanth

    2014-01-01

    The mealy bug, Rhizoecus amorphophalli, is a menace to the aroid farmers due to the intensive infestation on stored tubers. Spraying of pesticides was able to control this pest but it always left a chance for fungal growth. Bacterial endosymbionts associated with the insects provide several benefits to their host. Since such endosymbionts play a vital role even in the physiology of their host, revealing the types of bacteria associated with mealy bug will give basic information, which may throw light on the management of this noxious pest. The present study is the first to identify bacterial endosymbionts associated with R. amorphophalli employing phenotypic characterization and 16S rDNA sequencing. Three culturable bacteria, namely, Bacillus subtilis, Staphylococcus gallinarum, and Staphylococcus saprophyticus, were isolated from R. amorphophalli. Moreover, the antibiotic susceptibility tests against the isolated bacteria showed that all the isolates were susceptible to the three antibiotics tested, except cephalexin. Recently, endosymbionts are used as effective biocontrol agents (BCAs) and the present study will stand as a connecting link in identification and effective utilization of these endosymbionts as BCAs for management of R. amorphophalli.

  17. Hidden suppression of sex ratio distortion suggests Red queen dynamics between Wolbachia and its dwarf spider host.

    Science.gov (United States)

    Vanthournout, B; Hendrickx, F

    2016-08-01

    Genetic conflict theory predicts strong selection for host nuclear factors suppressing endosymbiont effects on reproduction; however, evidence of these suppressors is currently scarce. This can either be caused by a low suppressor evolution rate, or if suppressors originate frequently, by rapid spread and concurrent masking of their activity by silencing the endosymbiont effect. To explore this, we use two populations of a dwarf spider with a similar female bias, caused by a Wolbachia infection. Using inter- and intrapopulation crosses, we determine that one of these populations demonstrates a higher suppressing capability towards Wolbachia despite having a similar population sex ratio. This suggests that spider and endosymbiont are locked in so-called red queen dynamics where, despite continuous coevolution, average fitness remains the same, hence hiding the presence of the suppressor. Finding different suppressor activity in populations that even lack phenotypic differentiation (i.e. similar sex ratio) further supports the hypothesis that suppressors originate often, but are often hidden by their own mode of action by countering endosymbiont effects. PMID:26995349

  18. Limited Multiplication of Symbiotic Cyanobacteria of Azolla spp. on Artificial Media

    OpenAIRE

    Tang, L F; Watanabe, I.(Graduate School of Science, Kobe University, Kobe, Japan); Liu, C C

    1990-01-01

    We examined various media and conditions to isolate symbiotic cyanobacteria from the leaf cavities of Azolla spp. Cyanobacteria survived and multiplied to a limited extent on a medium with fructose, Casamino Acids, yeast extract, and NaNO3 under 1% O2. These cyanobacteria were antigenically identical to the endosymbionts.

  19. An indigenous gut bacterium, Enterococcus faecalis (Lactobacillales: Enterococcaceae), increases seed consumption by Harpalus pensylvanicus (Coleoptera: Carabidae)

    Science.gov (United States)

    Harpalus pensylvanicus is a beneficial beetle contributing to insect control and seed predation in North American cropland. The bacterial endosymbiont Enterococcus faecalis is found in the intestinal tract of H. pensylvanicus and is thought to contribute to the digestion of the insect's seed diet. W...

  20. Characterization of the nifA regulatory gene of Rhizobium leguminosarum PRE.

    NARCIS (Netherlands)

    Roelvink, P.W.

    1989-01-01

    This thesis describes the characterization of the nif A regulatory gene of the pea endosymbiont Rhizobiumleguminosarum PRE.Chapter I gives a general overview on the regulation of nitrogen fixation in diazotrophs, with special focus on the regulatory NifA pr

  1. Endosymbiosis In Statu Nascendi: Close Phylogenetic RelationshipBetween Obligately Endosymbiotic and Obligately Free-LivingPolynucleobacter Strains (Betaproteobacteria)

    Energy Technology Data Exchange (ETDEWEB)

    Vannini, Claudia; Pockl, Matthias; Petroni, Giulio; Wu, Qinglong; Lang, Elke; Stackebrandt, Erko; Schrallhammer, Martina; Richardson, PaulM.; Hahn, Martin W.

    2006-07-21

    Bacterial strains affiliated to the phylogenetically shallowsubcluster C (PnecC) of the 28 Polynucleobacter cluster, which ischaracterized by a minimal 16S rRNA gene sequence similarity of approx.98.5 percent, have been reported to occur as obligate endosymbionts of 30ciliates (Euplotes spp.), as well as to occur as free-living cells in thepelagic zone of freshwater habitats. We investigated if these two groupsof closely related bacteria represent 32 strains fundamentally differingin lifestyle, or if they simply represent different stages of afacultative endosymbiotic lifestyle. The phylogenetic analysis of 16SrRNA gene and 16S34 23S ITS sequences of five endosymbiont strains fromtwo different Euplotes species and 40 pure culture strains demonstratedhost-species-specific clustering of the endosymbiont 36 sequences withinthe PnecC subcluster. The sequences of the endosymbionts showedcharacteristics indicating an obligate endosymbiotic lifestyle.Cultivation experiments 38 revealed fundamental differences inphysiological adaptations, and determination of the genome sizesindicated a slight size reduction in endosymbiotic strains. We concludethat the 40 two groups of PnecC bacteria represent obligately free-livingand obligately endosymbiotic strains, respectively, and do not representdifferent stages of the same complex lifecycle. 42 These closely relatedstrains occupy completely separated ecological niches. To our bestknowledge, this is the closest phylogenetic relationship between obligateendosymbionts and 44 obligately free-living bacteria everrevealed.

  2. "Candidatus Mesochlamydia elodeae" (Chlamydiae: Parachlamydiaceae), a novel chlamydia parasite of free-living amoebae.

    Science.gov (United States)

    Corsaro, Daniele; Müller, Karl-Dieter; Wingender, Jost; Michel, Rolf

    2013-02-01

    Vannella sp. isolated from waterweed Elodea sp. was found infected by a chlamydia-like organism. This organism behaves like a parasite, causing the death through burst of its host. Once the vannellae degenerated, the parasite was successfully kept in laboratory within a Saccamoeba sp. isolated from the same waterweed sample, which revealed in fine through electron microscopy to harbor two bacterial endosymbionts: the chlamydial parasite we introduce and another endosymbiont initially and naturally present in the host. Herein, we provide molecular-based identification of both the amoeba host and its two endosymbionts, with special focus on the chlamydia parasite. High sequence similarity values of the 18S rDNA permitted to assign the amoeba to the species Saccamoeba lacustris (Amoebozoa, Tubulinea). The bacterial endosymbiont naturally harbored by the host belonged to Sphingomonas koreensis (Alpha-Proteobacteria). The chlamydial parasite showed a strict specificity for Saccamoeba spp., being unable to infect a variety of other amoebae, including Acanthamoeba, and it was itself infected by a bacteriophage. Sequence similarity values of the 16S rDNA and phylogenetic analysis indicated that this strain is a new member of the family Parachlamydiaceae, for which we propose the name "Candidatus Mesochlamydia elodeae."

  3. Influence of CH4 and H2S availability on symbiont distribution, carbon assimilation and transfer in the dual symbiotic vent mussel Bathymodiolus azoricus

    NARCIS (Netherlands)

    Riou, V.; Halary, S.; Duperron, S.; Bouillon, S.; Elskens, M.; Bettencourt, R.; Santos, R.; Dehairs, F.; Colaço, A.

    2008-01-01

    High densities of mussels of the genus Bathymodiolus are present at hydrothermal vents of the Mid-Atlantic Ridge. It was previously proposed that the chemistry at vent sites would affect their sulphide- and methane-oxidizing endosymbionts' abundance. In this study, we confirmed the latter assumption

  4. Microbial manipulation of host sex determination

    NARCIS (Netherlands)

    Beukeboom, Leo W.

    2012-01-01

    A recent study in the lepidopteran Ostrinia scapulalis shows that endosymbionts can actively manipulate the sex determination mechanism of their host. Wolbachia bacteria alter the sex-specific splicing of the doublesex master switch gene. In ZZ males of this female heterogametic system, the female i

  5. Dicty_cDB: Contig-U14519-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available ankyrin domain... 47 0.002 A44269( A44269 ;A44268) ankyrin repeat acidic protein cactus...9_1( DQ000469 |pid:none) Wolbachia endosymbiont of Culex qu... 47 0.002 L03367_1( L03367 |pid:none) Drosophila melanogaster cactus

  6. Nitrate metabolism in the gromiid microbial universe

    DEFF Research Database (Denmark)

    Høgslund, Signe; Risgaard-Petersen, Nils; Cedhagen, Tomas

    to the findings of eukaryotic mediated nitrate reduction in some foraminifera and diatoms, nitrate respiration in gromiids seems to be mediated by bacterial endosymbionts. The role of endobionts in nitrate accumulating eukaryotes is of fundamental importance for understanding the evolutionary path...

  7. Juvenile corals can acquire more carbon from high-performance algal symbionts

    NARCIS (Netherlands)

    Cantin, N. E.; van Oppen, M. J. H.; Willis, B. L.; Mieog, J. C.; Negri, A. P.

    2009-01-01

    Algal endosymbionts of the genus Symbiodinium play a key role in the nutrition of reef building corals and strongly affect the thermal tolerance and growth rate of the animal host. This study reports that (14)C photosynthate incorporation into juvenile coral tissues was doubled in Acropora millepora

  8. Highly Prevalent Coxiella sp. Bacterium in the Tick Vector Amblyomma americanum▿

    OpenAIRE

    Jasinskas, Algimantas; Zhong, Jianmin; Barbour, Alan G.

    2006-01-01

    Laboratory-reared and field-collected Amblyomma americanum ticks were hosts of a Coxiella sp. and a Rickettsia sp. While the Coxiella sp. was detected in 50 of 50 field-collected ticks, the Rickettsia sp. was absent from 32% of ticks. The Coxiella sp. showed evidence of a reduced genome and may be an obligate endosymbiont.

  9. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility.

    Science.gov (United States)

    Gall, Cory A; Reif, Kathryn E; Scoles, Glen A; Mason, Kathleen L; Mousel, Michelle; Noh, Susan M; Brayton, Kelly A

    2016-08-01

    Ticks are of medical importance owing to their ability to transmit pathogens to humans and animals. The Rocky Mountain wood tick, Dermacentor andersoni, is a vector of a number of pathogens, including Anaplasma marginale, which is the most widespread tick-borne pathogen of livestock. Although ticks host pathogenic bacteria, they also harbor bacterial endosymbionts that have a role in tick physiology, survival, as well as pathogen acquisition and transmission. The goal of this study was to characterize the bacterial microbiome and examine the impact of microbiome disruption on pathogen susceptibility. The bacterial microbiome of two populations of D. andersoni with historically different susceptibilities to A. marginale was characterized. In this study, the microbiome was disrupted and then ticks were exposed to A. marginale or Francisella novicida to determine whether the microbiome correlated with pathogen susceptibility. Our study showed that an increase in proportion and quantity of Rickettsia bellii in the microbiome was negatively correlated to A. marginale levels in ticks. Furthermore, a decrease in Francisella endosymbionts was associated with lower F. novicida infection levels, demonstrating a positive pathogen-endosymbiont relationship. We demonstrate that endosymbionts and pathogens have varying interactions, and suggest that microbiome manipulation may provide a possible method for biocontrol by decreasing pathogen susceptibility of ticks. PMID:26882265

  10. Metabolic Interplay between the Asian citrus psyllid and its Profftella symbiont: An Achilles’ heel of the citrus greening insect vector

    Science.gov (United States)

    ‘Candidatus Liberibacter asiaticus’ (CLas), the bacterial pathogen associated with citrus greening disease, is transmitted by Diaphorina citri, the Asian citrus psyllid. Interactions among D. citri and its microbial endosymbionts, including ‘Candidatus Profftella armatura’, are likely to impact tra...

  11. Evolutionary genomics place the origin of Wolbachia in nematodes, not arthropods

    Science.gov (United States)

    Wolbachia, the most widely studied endosymbiont in arthropods, is a target for biological control of mosquito-borne diseases (malaria and dengue virus), and antibiotic elimination of infectious filarial nematodes. We sequenced and analyzed the genome of a new strain (wPpe) in the plant-parasitic nem...

  12. Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef : implications for symbiont shuffling

    NARCIS (Netherlands)

    Mieog, J. C.; van Oppen, M. J. H.; Cantin, N. E.; Stam, W. T.; Olsen, J. L.

    2007-01-01

    Reef corals form associations with an array of genetically and physiologically distinct endosymbionts from the genus Symbiodinium. Some corals harbor different clades of symbionts simultaneously, and over time the relative abundances of these clades may change through a process called symbiont shuff

  13. The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes

    NARCIS (Netherlands)

    Gil, R.; Silva, F.J.; Zientz, E.; Delmotte, F.; Gonzalez-Candelas, F.; Latorre, A.; Rausell, C.; Kamerbeek, J.; Gadau, J.; Hölldobler, B.; Ham, van R.C.H.J.; Gross, R.; Moya, A.

    2003-01-01

    Bacterial symbioses are widespread among insects, probably being one of the key factors of their evolutionary success. We present the complete genome sequence of Blochmannia floridanus, the primary endosymbiont of carpenter ants. Although these ants feed on a complex diet, this symbiosis very likely

  14. Flow cytometric sexing of spider sperm reveals an equal sperm production ratio in a female-biased species

    DEFF Research Database (Denmark)

    Vanthournout, Bram; Deswarte, K; Hammad, H;

    2014-01-01

    research. Pinpointing the underlying mechanism of sex ratio bias is challenging owing to the multitude of potential sex ratio-biasing factors. In the dwarf spider, Oedothorax gibbosus, infection with the bacterial endosymbiont Wolbachia results in a female bias. However, pedigree analysis reveals...

  15. Nutritional and reproductive strategies in a chemosymbiotic bivalve living in a tropical intertidal seagrass bed

    NARCIS (Netherlands)

    van der Geest, M.; Sall, A.A.; Ely, S.O.; Nauta, R.W.; van Gils, J.A.; Piersma, T.

    2014-01-01

    Sulphide-oxidizing endosymbiont-bearing bivalves often dominate the infauna of seagrass-covered sediments, where they control sulphide levels and contribute to carbon cycling by feeding on chemosynthetically fixed carbon and suspended particulate organic matter (SPOM). Previous studies from temperat

  16. Nutritional and reproductive strategies in a chemsoymbiotic bivalve living in a tropical intertidal seagrass bed

    NARCIS (Netherlands)

    van der Geest, Matthijs; Sall, Amadou Abderahmane; Ely, SIdi Ould; Nauta, Reindert W.; Gils, Jan A. van; Piersma, Theunis

    2014-01-01

    Sulphide-oxidizing endosymbiont-bearing bivalves often dominate the infauna of seagrass-covered sediments, where they control sulphide levels and contribute to carbon cycling by feeding on chemosynthetically fixed carbon and suspended particulate organic matter (SPOM). Previous studies from temperat

  17. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs

    OpenAIRE

    Curtis, Bruce A.; Tanifuji, Goro; Burki, Fabien; Gruber, Ansgar; Kroth, Peter G.

    2012-01-01

    Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia the...

  18. How does Tremblaya princeps get essential proteins from its nested partner Moranella endobia in the Mealybug Planoccocus citri?

    Directory of Open Access Journals (Sweden)

    Sergio López-Madrigal

    Full Text Available Many insects maintain intracellular mutualistic symbiosis with a wide range of bacteria which are considered essential for their survival (primary or P-endosymbiont and typically suffer drastic genome degradation. Progressive loss of P-endosymbiont metabolic capabilities could lead to the recruitment of co-existent facultative endosymbiont (secondary or S-endosymbiont, thus adding more complexity to the symbiotic system. Planococcus citri, among other mealybug species, harbors an unconventional nested endosymbiotic system where every Tremblaya princeps cell (β-proteobacterium harbors many Moranella endobia cells (γ-proteobacterium. In this system, T. princeps possess one of the smallest prokaryote genome known so far. This extreme genome reduction suggests the supply of many metabolites and essential gene products by M. endobia. Although sporadic cell lysis is plausible, the bacterial participation on the regulation of the predicted molecular exchange (at least to some extent cannot be excluded. Although the comprehensive analysis of the protein translocation ability of M. endobia PCVAL rules out the existence of specific mechanisms for the exportation of proteins from M. endobia to T. princeps, immunolocation of two M. endobia proteins points towards a non-massive but controlled protein provision. We propose a sporadic pattern for the predicted protein exportation events, which could be putatively controlled by the host and/or mediated by local osmotic stress.

  19. Wolbachia infection does not alter attraction of the mosquito Aedes (Stegomyia) aegypti to human odours

    NARCIS (Netherlands)

    Turley, A.P.; Smallegange, R.C.; Takken, W.; Zalucki, M.P.; O'Neill, S.L.; McGraw, E.A.

    2014-01-01

    The insect endosymbiont Wolbachia pipientis (Rickettsiales: Rickettsiaceae) is undergoing field trials around the world to determine if it can reduce transmission of dengue virus from the mosquito Stegomyia aegypti to humans. Two different Wolbachia strains have been released to date. The primary ef

  20. Conserved rates and patterns of transcription errors across bacterial growth states and lifestyles.

    Science.gov (United States)

    Traverse, Charles C; Ochman, Howard

    2016-03-22

    Errors that occur during transcription have received much less attention than the mutations that occur in DNA because transcription errors are not heritable and usually result in a very limited number of altered proteins. However, transcription error rates are typically several orders of magnitude higher than the mutation rate. Also, individual transcripts can be translated multiple times, so a single error can have substantial effects on the pool of proteins. Transcription errors can also contribute to cellular noise, thereby influencing cell survival under stressful conditions, such as starvation or antibiotic stress. Implementing a method that captures transcription errors genome-wide, we measured the rates and spectra of transcription errors in Escherichia coli and in endosymbionts for which mutation and/or substitution rates are greatly elevated over those of E. coli Under all tested conditions, across all species, and even for different categories of RNA sequences (mRNA and rRNAs), there were no significant differences in rates of transcription errors, which ranged from 2.3 × 10(-5) per nucleotide in mRNA of the endosymbiont Buchnera aphidicola to 5.2 × 10(-5) per nucleotide in rRNA of the endosymbiont Carsonella ruddii The similarity of transcription error rates in these bacterial endosymbionts to that in E. coli (4.63 × 10(-5) per nucleotide) is all the more surprising given that genomic erosion has resulted in the loss of transcription fidelity factors in both Buchnera and Carsonella.