WorldWideScience

Sample records for bruce-1 reactor

  1. Flux distribution measurements in the Bruce A unit 1 reactor

    International Nuclear Information System (INIS)

    Okazaki, A.; Kettner, D.A.; Mohindra, V.K.

    1977-07-01

    Flux distribution measurements were made by copper wire activation during low power commissioning of the unit 1 reactor of the Bruce A generating station. The distribution was measured along one diameter near the axial and horizontal midplanes of the reactor core. The activity distribution along the copper wire was measured by wire scanners with NaI detectors. The experiments were made for five configurations of reactivity control mechanisms. (author)

  2. Steam generator replacement in Bruce A Unit 1 and Unit 2

    International Nuclear Information System (INIS)

    Hart, R.S.

    2006-01-01

    The Bruce A Generating Station consists of four 900 MW class CANDU units. The reactor and Primary Heat Transport System for each Unit are housed within a reinforced concrete reactor vault. A large duct running below the reactor vaults accommodates the shared fuel handling system, and connects the four reactor vaults to the vacuum building. The reactor vaults, fuelling system duct and the vacuum building constitute the station vacuum containment system. Bruce A Unit 2 was shut down in 1995 and Bruce A Units 1, 3 and 4 were shutdown in 1997. Bruce A Units 3 and 4 were returned to service in late 2003 and are currently operating. Units 1 and 2 remain out of service. Bruce Power is currently undertaking a major rehabilitation of Bruce A Unit 1 and Units 2 that will extend the in-service life of these units by at least 25 years. Replacement of the Steam Generators (eight in each unit) is required; this work was awarded to SNC-Lavalin Nuclear (SLN). The existing steam drums (which house the steam separation and drying equipment) will be retained. Unit 2 is scheduled to be synchronized with the grid in 2009, followed by Unit 1 in 2009. Each Bruce A unit has two steam generating assemblies, one located above and to each end of the reactor. Each steam generating assembly consists of a horizontal cylindrical steam drum and four vertical Steam Generators. The vertical Steam Generators connect to individual nozzles that are located on the underside of the Steam Drum (SD). The steam drums are located in concrete shielding structures (steam drum enclosures). The lower sections of the Steam Generators penetrate the top of the reactor vaults: the containment pressure boundary is established by bellows assemblies that connect between the reactor vault roof slab and the Steam Generators. Each Steam Generators is supported from the bottom by a trapeze that is suspended from the reactor vault top structure. The Steam Generator Replacement (SGR) methodology developed by SLN for Unit 1

  3. The fuel string relocation effect - why the Bruce reactors were derated

    Energy Technology Data Exchange (ETDEWEB)

    Gold, M; Farooqui, M Z; Adebiyi, A S; Chu, R Y; Le, N T; Oliva, A F [Ontario Hydro, Toronto, ON (Canada); Balog, G; Qu, T; DeBuda, P G [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A

    1996-12-31

    In the CANDU Safety Analysis process, a series of design basis accidents are chosen and analyzed to confirm safety system effectiveness. Of all the postulated accidents, the Large Break Loss of Coolant Accident (LBLOCA) - a postulated break in the Heat Transport System piping near a component that services a large number of fuel channels - sets the most demanding requirements on the speed and reactivity depth of the shutdown system devices - shutoff rods and liquid poison injection. While the event is extremely improbable, it is reanalyzed periodically and its consequences examined to ensure continued shutdown system effectiveness. In March 1993, an additional effect was identified: if the break occurred in the piping on the inlet side of the core, this would cause sudden movement of the fuel bundles (so-called fuel string relocation) in a large number of channels. In Ontario Hydro`s Bruce NGS A, Bruce NGS B and Darlington reactors, each channel is fuelled against the flow. In this situation, the relocation of the fuel string results in a sudden positive reactivity increase. This reactivity increase is in addition to the reactivity due to the core coolant voiding. The combined reactivity effect could lead to power pulses much higher than those that would arise due to coolant voiding alone. To maintain safety margins in the event of such a postulated accident, the eight Bruce NGS A and Bruce NGS B units were initially derated to 60 percent power within 2 days of the identification and confirmation of this effect. This paper: describes the fuel string relocation phenomenon in detail; explains why the consequences differ at the various Ontario Hydro reactors; outlines the actions taken with respect to each of the Ontario Hydro reactors in the months following March 1993; describes the design solutions implemented to mitigate the problem and return the Bruce reactors to higher powers. 6 refs., 1 tab., 6 figs.

  4. Steam generator replacement in Bruce A Unit 1 and Unit 2

    International Nuclear Information System (INIS)

    Hart, R.S.

    2007-01-01

    The Bruce A Generating Station consists of four 900 MW class CANDU units. The reactor and Primary Heat Transport System for each Unit are housed within a reinforced concrete reactor vault. A large duct running below the reactor vaults accommodates the shared fuel handling system, and connects the four reactor vaults to the vacuum building. The reactor vaults, fuelling system duct and the vacuum building constitute the station vacuum containment system. Bruce A Unit 2 was shut down in 1995 and Bruce A Units 1, 3 and 4 were shutdown in 1997. Bruce A Units 3 and 4 were returned to service in late 2003 and are currently operating. Units 1 and 2 remain out of service. Bruce Power is currently undertaking a major rehabilitation of Bruce A Unit 1 and Unit 2 that will extend the in-service tile of these units by at least 25 years. Replacement of the Steam Generators (eight in each unit) is required; this work was awarded to SNC-Lavalin Nuclear (SLN). The existing steam drums (which house the steam separation and drying equipment) will be retained. Unit 2 is scheduled to be synchronized with the grid in 2009, followed by Unit 1 in 2009. Each Bruce A unit has two steam generating assemblies, one located above and to each end of the reactor. Each steam generating assembly consists of a horizontal cylindrical steam drum and four vertical Steam Generators. The vertical Steam Generators connect to individual nozzles that are located on the underside of the Steam Drum (SD). The steam drums are located in concrete shielding structures (steam drum enclosures). The lower sections of the Steam Generators penetrate the top of the reactor vaults: the containment pressure boundary is established by bellows assemblies that connect between the reactor vault roof slab and the Steam Generators. Each Steam Generators is supported from he bottom by a trapeze that is suspended from the reactor vault top structure. The Steam Generator Replacement (SGR) methodology developed by SLN for Unit 1

  5. Review of Bruce A reactor regulating system software

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Each of the four reactor units at the Ontario Hydro Bruce A Nuclear Generating Station is controlled by the Reactor Regulating System (RRS) software running on digital computers. This research report presents an assessment of the quality and reliability of the RRS software based on a review of the RRS design documentation, an analysis of certain significant Event Reports (SERs), and an examination of selected software changes. We found that the RRS software requirements (i.e., what the software should do) were never clearly documented, and that design documents, which should describe how the requirements are implemented, are incomplete and inaccurate. Some RRS-related SERs (i.e., reports on unexpected incidents relating to the reactor control) implied that there were faults in the RRS, or that RRS changes should be made to help prevent certain unexpected events. The follow-up investigations were generally poorly documented, and so it could not usually be determined that problems were properly resolved. The Bruce A software change control procedures require improvement. For the software changes examined, there was insufficient evidence provided by Ontario Hydro that the required procedures regarding change approval, independent review, documentation updates, and testing were followed. Ontario Hydro relies on the expertise of their technical staff to modify the RRS software correctly; they have confidence in the software code itself, even if the documentation is not up-to-date. Ontario Hydro did not produce the documentation required for an independent formal assessment of the reliability of the RRS. (author). 37 refs., 3 figs.

  6. Review of Bruce A reactor regulating system software

    International Nuclear Information System (INIS)

    1995-12-01

    Each of the four reactor units at the Ontario Hydro Bruce A Nuclear Generating Station is controlled by the Reactor Regulating System (RRS) software running on digital computers. This research report presents an assessment of the quality and reliability of the RRS software based on a review of the RRS design documentation, an analysis of certain significant Event Reports (SERs), and an examination of selected software changes. We found that the RRS software requirements (i.e., what the software should do) were never clearly documented, and that design documents, which should describe how the requirements are implemented, are incomplete and inaccurate. Some RRS-related SERs (i.e., reports on unexpected incidents relating to the reactor control) implied that there were faults in the RRS, or that RRS changes should be made to help prevent certain unexpected events. The follow-up investigations were generally poorly documented, and so it could not usually be determined that problems were properly resolved. The Bruce A software change control procedures require improvement. For the software changes examined, there was insufficient evidence provided by Ontario Hydro that the required procedures regarding change approval, independent review, documentation updates, and testing were followed. Ontario Hydro relies on the expertise of their technical staff to modify the RRS software correctly; they have confidence in the software code itself, even if the documentation is not up-to-date. Ontario Hydro did not produce the documentation required for an independent formal assessment of the reliability of the RRS. (author). 37 refs., 3 figs

  7. Bruce A units 1 and 2 restart project

    International Nuclear Information System (INIS)

    Routledge, K.

    2006-01-01

    This presentation provides an overview of the Bruce A Units 1 and 2 Restart project from the vantage point of the Project Management Contractor (PMC). The presentation will highlight the unique structure of the project, which has been designed to maximize project efficiencies while minimizing the impact to the Bruce Power operational reactors. Efficiency improvements covered in the presentation includes: support services provided to the direct work contractors, radiation protection, worker protection, engineering, field execution, maintenance and facilities. The presentation focusses on the roles of the PMC in helping to ensure the successful outcome of this ambitious reactor refurbishment project. In addition, the Construction Island concept that has been implemented on the project will be presented, with some of the innovative thinking that has gone into its creation. The organization of the PMC and an overview of the project schedule is also presented. AMEC NCL is a privately held consultancy in the Canadian nuclear industry which provides experienced and flexible multi-disciplined resources to support full project management, engineering solutions and safety consultancy services throughout the life cycle of nuclear facilities in Canada, and for customers in related markets in North America and overseas. AMEC NCL is a wholly-owned subsidiary of AMEC plc

  8. Bruce unit 1 moderator to end shield cooling leak repairs

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, P; Ashton, A [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A

    1996-12-31

    In October 1994, a leak developed between the heavy water Moderator System and the light water End Shield Cooling System at Ontario Hydro`s Bruce A Generating Station Unit 1. The interface between these two systems consists of numerous reactor components all within the reactor vessel. This paper describes the initial discovery and determination of the leak source. The techniques used to pinpoint the leak location are described. The repair strategies and details are outlined. Flushing and refilling of the Moderator system are discussed. The current status of the Unit 1 End Shield Cooling System is given with possible remedial measures for clean-up. Recommendations and observations are provided for future references. (author). 7 figs.

  9. Power raise through improved reactor inlet header temperature measurement at Bruce A Nuclear Generation Station

    International Nuclear Information System (INIS)

    Basu, S.; Bruggemn, D.

    1997-01-01

    Reactor Inlet Header (RIH) temperature has become a factor limiting the performance of the Ontario Hydro Bruce A units. Specifically, the RIH temperature is one of several parameters that is preventing the Bruce A units from returning to 94% power operation. RIH temperature is one of several parameters which affect the critical heat flux in the reactor channel, and hence the integrity of the fuel. Ideally, RIH temperature should be lowered, but this cannot be done without improving the heat transfer performance of the boilers and feedwater pre-heaters. Unfortunately, the physical performance of the boilers and pre-heaters has decayed and continues to decay over time and as a result the RIH temperature has been rising and approaching its defined limit. With an understanding of the current RIH temperature measurement loop and methods available to improve it, a solution to reduce the measurement uncertainty is presented

  10. Implementation of a radiological emergency monitoring system for Bruce Power nuclear power plant (Canada); Implementierung eines radiologischen Umgebungsueberwachungsmesssystems fuer das Kernkraftwerk Bruce Power (Kanada)

    Energy Technology Data Exchange (ETDEWEB)

    Madaric, M. [Saphymo GmbH, Frankfurt (Germany)

    2016-07-01

    The Bruce Power nuclear power plant (BP NPP) in Ontario, Canada, is the largest nuclear generating station in the world, operating 8 nuclear reactors producing 6300 MW. In correlation with Bruce Power's safety culture, ''Safety first'' and continuous improvements are essential and substantial parts of the Bruce Power philosophy and management system. After the Fukushima nuclear accident the existing radiological emergency monitoring was analyzed and improved.

  11. Responses of platinum, vanadium and cobalt self-powered flux detectors near simulated booster rods in a ZED-2 mockup of a Bruce reactor core

    International Nuclear Information System (INIS)

    French, P.M.; Shields, R.B.; Kroon, J.C.

    1978-02-01

    The static responses of Pt, V and Co self-powered detectors have been compared with copper-foil neutron activation profiles in reference and perturbed Bruce reactor core mockups assembled in the ZED-2 test reactor at Chalk River Nuclear Laboratories. The results indicate that the normalized response of each self-powered detector is an accurate measure of the thermal-neutron flux at locations greater than one lattice pitch from either a booster rod or the core boundary. They indicate that, in the Bruce booster/detector configuration, the normalized static Pt response overestimates the neutron flux by less than 3.5% upon full booster-rod insertion. (author)

  12. Ion chamber repairs in Bruce A

    International Nuclear Information System (INIS)

    Millard, J.; Edwards, T.; Kerker, J.; Pletch, R.; Edwards, T.

    2012-01-01

    This paper discusses identification and successful remediation of leakage of shield tank water on vertical and horizontal Ion Chambers in Bruce A. In doing so, it discusses real events moving from the initial investigation to understand the problem, through looking at options for solutions, and moving to site work and actual resolution.. In multiunit 900 MW class CANDU® reactors, the calandria vessel is suspended within a larger shield tank. Due to temperature changes or changes in moderator fluid levels in the calandria, the calandria can move relative to the shield tank and its reactivity deck. Thimbles which contain the reactivity sensors and controls connect the two vessels and allow the reactivity drives and controls connections to be placed on the deck structure on the top of the reactor assembly for RRS and SDS1 and horizontally for SDS2. These thimbles have expansion joints with metal bellows where they meet the deck structure or shield tank walls. The deck structure lies on a vault containment boundary. The horizontal ion chambers are not in the containment boundary as they connect the outside of the calandria and shield tank around mid plane in the reactor vault, but due to geometry difference provides a more challenging work environment. Bruce had a beetle alarm (1-63851-MIA2-ME30 in alarm state (vertical IC housing)) at the start of April 2012 on Unit 1 channel F vertical Ion chamber expansion joint at the deck connection. This occurred after the moderator levels had been raised after the several years long refurbishment outage and the expansion joint had a significant travel. The investigation showed shield tank water in the collection chamber at the beetle. In addition, Channel J of the horizontal ion chamber had a seized instrument, which on removal was found to relate to oxide build up as a result of minor water leakage into the site. Repairs in both cases were performed as part of the long Bruce 1 & 2 refurbishment outage to completely stop the

  13. Challenges of restarting Bruce Units 3 and 4 from a chemistry and materials perspective

    International Nuclear Information System (INIS)

    Roberts, J.G.; Langguth, K.

    2005-01-01

    In 2001, Bruce Power leased the Bruce Units 1-8 reactors from Ontario Power Generation. Bruce Power decided to restart Bruce Units 3 and 4 following a condition assessment of Bruce A Units 3 and 4. This paper describes the challenges that were encountered and how they were overcome, specifically for heat transport system chemistry in order to adequately protect carbon steel surfaces. The heat transport system, by design, has close inter-relations with other station systems and the related issues of some of these systems are also discussed. Considerations of material impacts have significant influences on the approach to, and control of, chemistry. Specific material impacts led to a novel, and successful, approach. This approach was arrived at following significant efforts by a multi-disciplinary team of operations, maintenance and chemistry staff. The issues, approaches considered and solutions used for a successful outcome will be presented. (author)

  14. Challenges of restarting Bruce Units 3 and 4 from a chemistry and materials perspective

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.G.; Langguth, K. [Bruce Power, Tiverton, Ontario (Canada)

    2005-07-01

    In 2001, Bruce Power leased the Bruce Units 1-8 reactors from Ontario Power Generation. Bruce Power decided to restart Bruce Units 3 and 4 following a condition assessment of Bruce A Units 3 and 4. This paper describes the challenges that were encountered and how they were overcome, specifically for heat transport system chemistry in order to adequately protect carbon steel surfaces. The heat transport system, by design, has close inter-relations with other station systems and the related issues of some of these systems are also discussed. Considerations of material impacts have significant influences on the approach to, and control of, chemistry. Specific material impacts led to a novel, and successful, approach. This approach was arrived at following significant efforts by a multi-disciplinary team of operations, maintenance and chemistry staff. The issues, approaches considered and solutions used for a successful outcome will be presented. (author)

  15. AECB staff annual assessment of the Bruce B Nuclear Generating Station for the year 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The Atomic Energy Control Board is the independent federal agency that controls all nuclear activities in Canada. A major use of nuclear energy in Canada is electricity production. The AECB assesses every station's performance against legal requirements, including the conditions in the operating licence. Each station is inspected and all aspects of the station's operation and management is reviewed. This report is the AECB staff assessment of reactor safety at the Bruce Nuclear Generating Station B for 1996. It was concluded that Ontario Hydro operated Bruce B safely in 1996. Although the Bruce B plant is safe,it was noted that the number of outages and the number of secondary and tertiary equipment failures during reactor unit upsets increased. Ontario Hydro needs to pay special attention to prevent such a decrease in the safety performance at Bruce B

  16. CECIL lances Bruce's boilers

    International Nuclear Information System (INIS)

    Malaugh, J.; Monaghan, D.

    1994-01-01

    Over the past few years Ontario Hydro has become increasingly concerned about accumulations of sludge in its nuclear plant boilers, so a comprehensive sludge management programme has been instituted to combat build-up. This included developing the tele-operated robot CECIL (Consolidated Edison Combined Inspection and Lancing) equipment, originally designed for work in PWRs, for CANDU boilers. This required a significantly reconfigured robotic system as well as modifications to the boilers themselves. Work on the Bruce A reactor is described. (4 figures). (author)

  17. Flux distribution measurements in the Bruce B Unit 6 reactor using a transportable traveling flux detector system

    International Nuclear Information System (INIS)

    Leung, T.C.; Drewell, N.H.; Hall, D.S.; Lopez, A.M.

    1987-01-01

    A transportable traveling flux detector (TFD) system for use in power reactors has been developed and tested at Chalk River Nuclear Labs. in Canada. It consists of a miniature fission chamber, a motor drive mechanism, a computerized control unit, and a data acquisition subsystem. The TFD system was initially designed for the in situ calibration of fixed self-powered detectors in operating power reactors and for flux measurements to verify reactor physics calculations. However, this system can also be used as a general diagnostic tool for the investigation of apparent detector failures and flux anomalies and to determine the movement of reactor internal components. This paper describes the first successful use of the computerized TFD system in an operating Canada deuterium uranium (CANDU) power reactor and the results obtained from the flux distribution measurements. An attempt is made to correlate minima in the flux profile with the locations of fuel channels so that future measurements can be used to determine the sag of the channels. Twenty-seven in-core flux detector assemblies in the 855-MW (electric) Unit 6 reactor of the Ontario Hydro Bruce B Generating Station were scanned

  18. Clean energy for a new generation. Steam generator life cycle management and Bruce restart

    International Nuclear Information System (INIS)

    Newman, G.W.

    2009-01-01

    In the mid to late 1990s, Ontario Hydro decided to lay-up and write-down the Bruce A Nuclear Reactors. Upon transition to Bruce Power L.P., Canada's first and only private nuclear operator, new life and prospects were injected into the site, local economy and the provincial energy portfolio. The first step in this provincial power recovery initiative involved restart of Bruce Units 3 and 4 in the 2003/04 time-frame. Units 3 and 4 have performed beyond expectation during the last five-year operating interval. A combination of steam generator and fuel channel issues precluded a similar restart of Units 1 and 2. Enter the refurbishment of Bruce Units 1 and 2. This first-of-a-kind undertaking within the Canadian nuclear power industry is testament to the demonstrated industry leadership by Bruce Power L.P., their investors and the significant vendor community contribution that is supporting this major power infrastructure enhancement. Initiated as a 'turn-key' project solution separated from the operating units, this major refurbishment project has evolved to a fully managed in-house refurbishment project with the continued support from the broader vendor community. As part of this first-of-kind undertaking, Bruce Power L.P. is in the process of accomplishing such initiatives as a complete fuel channel re-tube (i.e. full core calandria and pressure tube replacement), replacement of all boilers (i.e. 16 in total) and the majority of feeder pipe replacement. Complimentary major upgrades and replacement of the remainder of plant equipment including both nuclear and non-nuclear valves, heat exchangers, electrical infrastructure, service water systems and components, all while meeting a parallel evolving/maturing regulatory environment related to achieving compliance with IAEA derived modern codes and standards. Returning to ground level, boiler replacement is a key part of the refurbishment undertaking and this further reflected a meeting of the 'old' and the 'new'. Pre

  19. Design and verification of computer-based reactor control system modification at Bruce-A candu nuclear generating station

    International Nuclear Information System (INIS)

    Basu, S.; Webb, N.

    1995-01-01

    The Reactor Control System at Bruce-A Nuclear Generating Station is going through some design modifications, which involve a rigorous design process including independent verification and validation. The design modification includes changes to the control logic, alarms and annunciation, hardware and software. The design (and verification) process includes design plan, design requirements, hardware and software specifications, hardware and software design, testing, technical review, safety evaluation, reliability analysis, failure mode and effect analysis, environmental qualification, seismic qualification, software quality assurance, system validation, documentation update, configuration management, and final acceptance. (7 figs.)

  20. The Bruce Energy Centre

    International Nuclear Information System (INIS)

    Jones, R.I.

    1982-06-01

    The Bruce Energy Centre Development Corporation is a joint venture of the Ontario Energy Corporation and 6 private companies formed to market surplus steam from the Bruce Nuclear Power Development. The corporation will also sell or lease land near Bruce NPD. The Bruce Energy Centre has an energy output of 900 BTU per day per dollar invested. Potential customers include greenhouse operators, aquaculturalists, food and beverage manufacturers, and traditional manufacturers

  1. RCM: the Bruce B experience

    International Nuclear Information System (INIS)

    Hill, Earl S.; Doyle, E.K.

    1995-01-01

    The use of RCM techniques have begun to change maintenance practice at Bruce B. This paper identifies the status of the program at Bruce B, and examines a new methodology for completing system analysis studies by incorporating lessons learned and results from Bruce A. (author)

  2. AECB staff review of Bruce NGS 'B' operation for the year 1989

    International Nuclear Information System (INIS)

    1990-06-01

    The operation of the Bruce Nuclear Generating Station 'B' is monitored and licensing requirements are enforced by the Atomic Energy Control Board (AECB), which observes operation of the reactors, conducts audits, witnesses important activities, reviews station documentation and reports, and issue approvals, where appropriate, in accordance with licence conditions. This report records the conclusions of the AECB staff assessment of Bruce NGS 'B' during 1989. In general, the station operated within acceptable safety standards. Quality improvement initiatives started in 1989 should lead to improved station maintenance and operation in coming years. Ontario Hydro still needs to improve the administration of operating memos, deficiency reports and call-ups. Station management must ensure that shift supervisors and reactor first operators operate the station in a conservative manner at all times and put safety interests first when responding to a unit upset. (2 tabs.)

  3. Criticality safety issues associated with the introduction of low void reactivity fuel in the Bruce reactors - a management and technical overview

    International Nuclear Information System (INIS)

    Thompson, J.W.; Austman, G.; Iglesias, F.; Schmeing, H.; Elliott, C.; Archinoff, G.

    2004-01-01

    The concept of criticality for operating reactor staff, particularly in a natural uranium-fuelled reactor, is relatively benign - the reactor is controlled at the critical condition by the regulating system. That is, issues related to criticality exist only within the reactor, in a set of carefully managed circumstances. With the introduction of enriched Low Void Reactivity Fuel (LVRF) into this operating environment comes a new 'concept of criticality', one which, although physically the same, cannot be treated in the same fashion. It may be the case that criticality can be achieved outside the reactor, albeit with a set of very pessimistic assumptions. Such 'inadvertent criticality' outside the reactor, should it occur, cannot be controlled. The consequences of such an inadvertent criticality could have far-reaching effects, not only in terms of severe health effects to those nearby, but also in terms of the negative impact on Bruce Power, and the Canadian nuclear industry in general. Thus the introduction of LVRF in the Bruce B reactors, and therefore the introduction of this new hazard, inadvertent criticality, warrants the development of a governance structure for its management. Such a program will consist of various elements, including the establishment of a framework to administer the criticality safety program, analytical assessment to support the process design, the development of operational procedures, the development of enhanced emergency procedures if necessary, and the implementation of a criticality safety training program. The entire package must be sufficient to demonstrate to station management, and the regulator, that the criticality safety risks associated with the implementation of enriched fuel have been properly evaluated, and that all necessary steps have been taken to effectively manage these risks. A well-founded Criticality Safety Program will offer such assurance. In this paper, we describe the establishment of a Criticality Safety

  4. AECB staff annual report of Bruce NGS 'B' for the year 1988

    International Nuclear Information System (INIS)

    1989-05-01

    The operation of the Bruce 'B' Nuclear Generating Station is monitored and licensing requirements are enforced by the Atomic Energy Control Board (AECB) Bruce project staff, with appropriate support from other AECB personnel. The staff observes operation of the reactors, conducts audits, witnesses important activities, reviews station documentation and reports, and issues approvals where appropriate in accordance with license conditions. As required by a condition of its Operating Licence, Ontario Hydro each year submits Technical Reports which summarize various aspects of the operation of Bruce NGS 'B' during the year. When these reports have been reviewed by AECB staff, a formal Annual Review Meeting is held with the station management to discuss safety-related aspects of the station operation, and to inform Ontario Hydro of AECB staff conclusions with respect to the performance of Ontario Hydro in operating the station during the year

  5. Performance of Bruce natural UO2 fuel irradiated to extended burnups

    International Nuclear Information System (INIS)

    Zhou, Y.N.; Floyd, M.R.; Ryz, M.A.

    1995-11-01

    Bruce-type bundles XY, AAH and GF were successfully irradiated in the NRU reactor at Chalk River Laboratories to outer-element burnups of 570-900 MWh/kgU. These bundles were of the Bruce Nuclear Generating Station (NGS)-A 'first-charge' design that contained gas plenums in the outer elements. The maximum outer-element linear powers were 33-37 kW/m. Post-irradiation examination of these bundles confirmed that all the elements were intact. Bundles XY and AAH, irradiated to outer-element burnups of 570-700 MWh/kgU, experienced low fission-gas release (FGR) ( 500 MWh/kgU (equivalent to bundle-average 450 MWh/kgU) when maximum outer-element linear powers are > 50 kW/m. The analysis in this paper suggests that CANDU 37-element fuel can be successfully irradiated (low-FGR/defect-free) to burnups of at least 700 MWh/kgU, provided maximum power do not exceed 40 kW/m. (author). 5 refs., 1 tab., 8 figs

  6. Bruce A refurbishment - an update

    International Nuclear Information System (INIS)

    Liddle, R.

    2007-01-01

    Running slightly ahead of schedule on the critical path work, the Bruce A Restart Project has not been without its challenges. About a dozen major contractors with a workforce of 1,700 tradespeople share space inside the Units 1 and 2 Construction Island. They share support services, provided by project management contractor AMEC NCL, and they share the consequences when one part of the project advances ahead of schedule or another falls behind. They also share Bruce Power's safety values and are well on their way to surpassing five-million hours without an acute lost time injury. (author)

  7. AECB staff annual assessment of the Bruce A Nuclear Generating Station for the year 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The Atomic Energy Control Board is the independent federal agency that controls all nuclear activities in Canada. A major use of nuclear energy in Canada is electricity production. The AECB assesses every station's performance against legal requirements, including the conditions in the operating licence. Each station is inspected and all aspects of the station's operation and management is reviewed. This report is the AECB staff assessment of reactor safety at the Bruce Nuclear Generating Station A for 1996. Ontario Hydro operated Bruce A safely in 1996, maintaining the risk to workers and the public at an acceptably low level. Special safety system performance at Bruce A was adequate. Availability targets were all met. Improvement is needed to reduce the number of operating licence non-compliances

  8. The operation and maintenance of the SLAR system at Bruce A

    Energy Technology Data Exchange (ETDEWEB)

    Ahuja, S [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A

    1997-12-31

    The SLAR (Spacer Location And Repositioning) system at Bruce A consists of two (2) Delivery Machines and a Fuelling Machine Trolley equipped with the D{sub 2}0 and Air auxiliary systems. The Delivery Machines are designed to perform all the Fuelling Machine operations and have the capability to rapidly defuel/refuel a reactor channel and traverse the SLAR tool to locate and reposition the spacers in the channel. The number of functions that a Delivery Machine must perform makes it more complex as compared to the operations of a Fuelling Machine. The paper discusses the operation of the SLAR Delivery Machines and the problems encountered with the operation and maintenance of this system at Bruce A. (author). 8 figs.

  9. Carsten Niebuhr and James Bruce

    DEFF Research Database (Denmark)

    Friis, Ib

    2013-01-01

    In 1791 Carsten Niebuhr published a review of the first two volumes of Bruce’s Reisen zur Entdeckung der Quellen des Nils (1790). Niebuhr’s strongest criticism of Bruce was that he seemed to have plagiarized some of Niebuhr’s astronomical observations (“adopted them without examination”) and that......In 1791 Carsten Niebuhr published a review of the first two volumes of Bruce’s Reisen zur Entdeckung der Quellen des Nils (1790). Niebuhr’s strongest criticism of Bruce was that he seemed to have plagiarized some of Niebuhr’s astronomical observations (“adopted them without examination...... as written by Bruce in 1770 at Gondar, Abyssinia, contains information about latitudes identical with some of Niebuhr’s observations which were unpublished in 1770; possible explanations for this are proposed. In summary, it seems that Niebuhr is right; it is almost certain that Bruce plagiarized some...

  10. Fuel deposits, chemistry and CANDU® reactor operation

    International Nuclear Information System (INIS)

    Roberts, J.G.

    2014-01-01

    'Hot conditioning' is a process which occurs as part of commissioning and initial start-up of each CANDU® reactor, the first being the Nuclear Power Demonstration - 2 reactor (NPD). Later, understanding of the cause of the failure of the Pickering Unit 1 G16 fuel channelled to a revised approach to 'hot conditioning', initially demonstrated on Bruce Unit 5. The difference being that during 'hot conditioning' of CANDU® heat transport systems fuel was not in-core until Bruce Unit 5. The 'hot conditioning' processes will be briefly described along with the consequences to fuel. (author)

  11. The Bruce nuclear project

    International Nuclear Information System (INIS)

    Rose, J.B.

    1981-01-01

    This case study assesses the industrial relations impact of the construction of the Bruce Nuclear Power Development. It examines the labour relations system in the Ontario electric power sector and in major building construction. Industrial relations problems and practices at the Bruce project are reviewed. The focus of the study is on the relationship between the project and the rest of the Ontario industrial construction industry

  12. Bruce A restart (execution and lessons-learned)

    International Nuclear Information System (INIS)

    Soini, J.

    2011-01-01

    Lessons learned with the Bruce Units 3 and 4 restart have been incorporated into the current refurbishment of Units 1 and 2. In addition, lessons learned on the lead unit (U2) are aggressively applied on the lagging unit (U1) to maximize efficiency and productivity. There will be a discussion on how this internal OPEX, along with external lessons learned, are used to continuously improve all aspects of the Bruce A Restart project management cycle, from scope selection, through planning and scheduling, to execution.

  13. Experience of oil in CANDU moderator during A831 planned outage at Bruce Power

    International Nuclear Information System (INIS)

    Ma, G.; Nashiem, R.; Matheson, S.; Stuart, C.; Roberts, J.G.

    2011-01-01

    In their address to the Nuclear Plant Chemistry Conference 2009, Bruce Power staff will describe the effects of oil ingress to the moderator of a CANDU reactor. During the A831 planned outage of Bruce Power Unit 3, an incident of oil ingress into moderator was discovered on Oct 17, 2008. An investigation identified the cause of the oil ingress. Atomic Energy of Canada Ltd. (AECL) assessed operability of the reactor with the oil present and made recommendations with respect to the effect on unit start-up with oil present. The principal concern was the radiolytic generation of deuterium from the breakdown of the oil in-core. Various challenges were presented during start-up which were overcome via innovative approaches. The subsequent actions and consequential effects on moderator chemistry are discussed in this paper. Examination of the plant chemistry data revealed some interesting aspects of moderator system chemistry under upset conditions which will also be presented. (author)

  14. Experience of oil in CANDU® moderator during A831 planned outage at Bruce Power

    International Nuclear Information System (INIS)

    Ma, G.; Nashiem, R.; Matheson, S.; Stuart, C.; Roberts, J.G.

    2010-01-01

    In their address to the Nuclear Plant Chemistry Conference 2009, Bruce Power staff will describe the effects of oil ingress to the moderator of a CANDU® reactor. During the A831 planned outage of Bruce Power Unit 3, an incident of oil ingress into moderator was discovered on Oct 17, 2008. An investigation identified the cause of the oil ingress. Atomic Energy of Canada Ltd. (AECL) assessed operability of the reactor with the oil present and made recommendations with respect to the effect on unit start-up with oil present. The principal concern was the radiolytic generation of deuterium from the breakdown of the oil in-core. Various challenges were presented during start-up which were overcome via innovative approaches. The subsequent actions and consequential effects on moderator chemistry are discussed in this paper. Examination of the plant chemistry data revealed some interesting aspects of moderator system chemistry under upset conditions which will also be presented. (author)

  15. Experience of oil in CANDU® moderator during A831 planned outage at Bruce Power

    Energy Technology Data Exchange (ETDEWEB)

    Ma, G.; Nashiem, R.; Matheson, S. [Bruce Power, Tiverton, Ontario (Canada); Stuart, C. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Roberts, J.G. [CANTECH Associates Ltd., Burlington, Ontario (Canada)

    2010-07-01

    In their address to the Nuclear Plant Chemistry Conference 2009, Bruce Power staff will describe the effects of oil ingress to the moderator of a CANDU® reactor. During the A831 planned outage of Bruce Power Unit 3, an incident of oil ingress into moderator was discovered on Oct 17, 2008. An investigation identified the cause of the oil ingress. Atomic Energy of Canada Ltd. (AECL) assessed operability of the reactor with the oil present and made recommendations with respect to the effect on unit start-up with oil present. The principal concern was the radiolytic generation of deuterium from the breakdown of the oil in-core. Various challenges were presented during start-up which were overcome via innovative approaches. The subsequent actions and consequential effects on moderator chemistry are discussed in this paper. Examination of the plant chemistry data revealed some interesting aspects of moderator system chemistry under upset conditions which will also be presented. (author)

  16. Experience of oil in CANDU moderator during A831 planned outage at Bruce Power

    Energy Technology Data Exchange (ETDEWEB)

    Ma, G.; Nashiem, R.; Matheson, S. [Bruce Power, Tiverton, Ontario (Canada); Stuart, C. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Roberts, J.G. [CANTECH Associates Ltd., Burlington, Ontario (Canada)

    2011-03-15

    In their address to the Nuclear Plant Chemistry Conference 2009, Bruce Power staff will describe the effects of oil ingress to the moderator of a CANDU reactor. During the A831 planned outage of Bruce Power Unit 3, an incident of oil ingress into moderator was discovered on Oct 17, 2008. An investigation identified the cause of the oil ingress. Atomic Energy of Canada Ltd. (AECL) assessed operability of the reactor with the oil present and made recommendations with respect to the effect on unit start-up with oil present. The principal concern was the radiolytic generation of deuterium from the breakdown of the oil in-core. Various challenges were presented during start-up which were overcome via innovative approaches. The subsequent actions and consequential effects on moderator chemistry are discussed in this paper. Examination of the plant chemistry data revealed some interesting aspects of moderator system chemistry under upset conditions which will also be presented. (author)

  17. Ontario Hydro's operating experience with steam generators with specifics on Bruce A and Bruce B problems

    Energy Technology Data Exchange (ETDEWEB)

    Eatock, J W; Patterson, R W [Ontario Hydro, Toronto, ON (Canada); Dyck, R W [Ontario Hydro, Central Production Services Division, Toronto, ON (Canada)

    1991-04-01

    The performance of the steam generators in Ontario Hydro nuclear power stations is reviewed. This performance has generally been outstanding compared to world averages, with very low tube failure and plugging rates. Steam generator problems have made only minor contributions to Ontario Hydro nuclear station incapability factors. The mechanisms responsible for the the observed tube degradation and failures are described. The majority of the leaks have been due fatigue in the U-bend of the Bruce 'A' steam generators. There have been very few failures attributed to corrosion of the three tube materials used in Ontario Hydro steam generators. Recent performance has been deteriorating primarily due to deposit accumulation in the steam generators. Plugging of the broached holes in the upper support plates at Bruce 'A' has caused some derating of two units. Increases have been observed in the primary heat transport system reactor inlet temperature of several units. These increases may be attributed to steam generator tube surface fouling. In addition, several units have accumulated deep, hard sludge piles on the tube sheet, although little damage been observed. Recently some fretting of tubes has been observed at BNGSB in the U-bend support region. Remedial measures are being taken to address the current problems. Solutions are being evaluated to reduce the generation of corrosion products in the feedtrain and their subsequent transport to the steam generators. (author)

  18. Ontario Hydro's operating experience with steam generators with specifics on Bruce A and Bruce B problems

    International Nuclear Information System (INIS)

    Eatock, J.W.; Patterson, R.W.; Dyck, R.W.

    1991-01-01

    The performance of the steam generators in Ontario Hydro nuclear power stations is reviewed. This performance has generally been outstanding compared to world averages, with very low tube failure and plugging rates. Steam generator problems have made only minor contributions to Ontario Hydro nuclear station incapability factors. The mechanisms responsible for the the observed tube degradation and failures are described. The majority of the leaks have been due fatigue in the U-bend of the Bruce 'A' steam generators. There have been very few failures attributed to corrosion of the three tube materials used in Ontario Hydro steam generators. Recent performance has been deteriorating primarily due to deposit accumulation in the steam generators. Plugging of the broached holes in the upper support plates at Bruce 'A' has caused some derating of two units. Increases have been observed in the primary heat transport system reactor inlet temperature of several units. These increases may be attributed to steam generator tube surface fouling. In addition, several units have accumulated deep, hard sludge piles on the tube sheet, although little damage been observed. Recently some fretting of tubes has been observed at BNGSB in the U-bend support region. Remedial measures are being taken to address the current problems. Solutions are being evaluated to reduce the generation of corrosion products in the feedtrain and their subsequent transport to the steam generators. (author)

  19. Fuel handling solutions to power pulse at Bruce NGS A

    International Nuclear Information System (INIS)

    Day, R.C.

    1996-01-01

    In response to the discovery of the power pulse problem in March of 1993, Bruce A has installed flow straightening shield plugs in the inner zone channels of all units to partially reduce the gap and gain an increase in reactor power to 75%. After review and evaluation of solutions to manage the gap, including creep compensators and long fuel bundles, efforts have focused on a different solution involving reordering the fuel bundles to reverse the burnup profile. This configuration is maintained by fuelling with the flow and providing better support to the highly irradiated downstream fuel bundles by changing the design of the outlet shield plug. Engineering changes to the fuel handling control system and outlet shield plug are planned to be implemented starting in June 1996, thereby eliminating the power pulse problem and restrictions on reactor operating power. (author). 2 refs., 1 tab., 2 figs

  20. Fuel handling solutions to power pulse at Bruce NGS A

    Energy Technology Data Exchange (ETDEWEB)

    Day, R C [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A

    1997-12-31

    In response to the discovery of the power pulse problem in March of 1993, Bruce A has installed flow straightening shield plugs in the inner zone channels of all units to partially reduce the gap and gain an increase in reactor power to 75%. After review and evaluation of solutions to manage the gap, including creep compensators and long fuel bundles, efforts have focused on a different solution involving reordering the fuel bundles to reverse the burnup profile. This configuration is maintained by fuelling with the flow and providing better support to the highly irradiated downstream fuel bundles by changing the design of the outlet shield plug. Engineering changes to the fuel handling control system and outlet shield plug are planned to be implemented starting in June 1996, thereby eliminating the power pulse problem and restrictions on reactor operating power. (author). 2 refs., 1 tab., 2 figs.

  1. Business health reporting process at Bruce Power helps drive successful plant performance

    International Nuclear Information System (INIS)

    Krane, J.C.

    2007-01-01

    Developing and implementing consistent and comprehensive measures of performance on a large multi-reactor unit nuclear power plant site is a significant challenge. Linking these performance measures back to licence compliance standards and all aspects of the operations, engineering, maintenance and support activities is needed to ensure cohesive site-wide safe operations and satisfy regulatory needs. At Bruce Power, Canada's largest independently-owned nuclear power producer, a Business Health reporting process has been developed to provide a standardized performance rating scheme. The reporting process ties all self assessment activities to common management principles and process structure areas that comprise the Bruce Power Management System. The principles used for performance ratings link directly back to the operating licenses and the primary referenced management system standard. The Business Health reporting process provides a natural business and regulatory oversight framework report that is easily understood and consistently measured over time. The rating data is derived from easily understood quantitative and qualitative descriptions that can be trended over time. The results derived from semi-annual Business Health reports provide an ongoing overall measure of Bruce Power's management system effectiveness for enabling and sustaining required business results and high standards of safety. (author)

  2. AECB staff annual assessment of the Bruce B Nuclear Generating Station for the year 1994

    International Nuclear Information System (INIS)

    1995-06-01

    AECB staff believes Ontario Hydro operated Bruce B safely in 1994. The Bruce B reactors will remain limited to 88% full power until Ontario Hydro is able to demonstrate that it is safe to operate at higher powers. Ontario Hydro's compliance with AECB regulations and the Operating Licence was satisfactory. AECB found no major violations. The station performance was similar to previous years. Radiation doses to workers and the public were well below the legal limits and also remained below Ontario Hydro's internal targets. Worker radiation doses increased slightly but were comparable to previous years. Inspection of pressure tubes and steam generator tubes by Ontario Hydro showed continuing tube degradation. However, we believe that Ontario Hydro made progress in correcting and managing these problems. Ontario Hydro carried out a full-scale fire drill at Bruce B in 1994. AECB witnessed the drill and were pleased to observe a significant improvement in the station's fire-fighting capability. 7 tabs., 4 figs

  3. Impact of bundle deformation on CHF: ASSERT-PV assessment of extended burnup Bruce B bundle G85159W

    International Nuclear Information System (INIS)

    Rao, Y.F.; Manzer, A.M.

    2005-01-01

    This paper presents a subchannel thermalhydraulic analysis of the effect on critical heat flux (CHF) of bundle deformation such as element bow and diametral creep. The bundle geometry is based on the post-irradiation examination (PIE) data of a single bundle from the Bruce B Nuclear Generating Station, Bruce B bundle G85159W, which was irradiated for more than two years in the core during reactor commissioning. The subchannel code ASSERT-PV IST is used to assess changes in CHF and dryout power due to bundle deformation, compared to the reference, undeformed bundle. (author)

  4. GRA model development at Bruce Power

    International Nuclear Information System (INIS)

    Parmar, R.; Ngo, K.; Cruchley, I.

    2011-01-01

    In 2007, Bruce Power undertook a project, in partnership with AMEC NSS Limited, to develop a Generation Risk Assessment (GRA) model for its Bruce B Nuclear Generating Station. The model is intended to be used as a decision-making tool in support of plant operations. Bruce Power has recognized the strategic importance of GRA in the plant decision-making process and is currently implementing a pilot GRA application. The objective of this paper is to present the scope of the GRA model development project, methodology employed, and the results and path forward for the model implementation at Bruce Power. The required work was split into three phases. Phase 1 involved development of GRA models for the twelve systems most important to electricity production. Ten systems were added to the model during each of the next two phases. The GRA model development process consists of developing system Failure Modes and Effects Analyses (FMEA) to identify the components critical to the plant reliability and determine their impact on electricity production. The FMEAs were then used to develop the logic for system fault tree (FT) GRA models. The models were solved and post-processed to provide model outputs to the plant staff in a user-friendly format. The outputs consisted of the ranking of components based on their production impact expressed in terms of lost megawatt hours (LMWH). Another key model output was the estimation of the predicted Forced Loss Rate (FLR). (author)

  5. Steam generator leak detection at Bruce A Unit 1

    International Nuclear Information System (INIS)

    Maynard, K.J.; McInnes, D.E.; Singh, V.P.

    1997-01-01

    A new steam generator leak detection system was recently developed and utilized at Bruce A. The equipment is based on standard helium leak detection, with the addition of moisture detection and several other capability improvements. All but 1% of the Unit 1 Boiler 03 tubesheet was inspected, using a sniffer probe which inspected tubes seven at a time and followed by individual tube inspections. The leak search period was completed in approximately 24 hours, following a prerequisite period of several days. No helium leak indications were found anywhere on the boiler. A single water leak indication was found, which was subsequently confirmed as a through-wall defect by eddy current inspection. (author)

  6. Review of the reliability of Bruce 'B' RRS dual computer system

    International Nuclear Information System (INIS)

    Arsenault, J.E.; Manship, R.A.; Levan, D.G.

    1995-07-01

    The review presents an analysis of the Bruce 'B' Reactor Regulating System (RRS) Digital Control Computer (DCC) system, based on system documentation, significant event reports (SERs), question sets, and a site visit. The intent is to evaluate the reliability of the RRS DCC and to identify the possible scenarios that could lead to a serious process failure. The evaluation is based on three relatively independent analyses, which are integrated and presented in the form of Conclusions and Recommendations

  7. Innovations in RCM at Bruce B

    International Nuclear Information System (INIS)

    Hill, E.S.; Doyle, E.K.

    1996-01-01

    The use of RCM techniques have begun to change maintenance practice at Bruce B. This paper discusses innovative practices begun recently. Bruce B has decided to evaluate plant systems using different methods based on the effects of system failure. This approach reduces costs, by using a streamlined method, while maintaining the accuracy of analysis. In addition, the approach increases the likelihood that program recommendations will be implemented by the maintenance department by providing maintenance craft with input to the process. Bruce B has also developed techniques to accelerate the analysis process by evaluating analyses performed at other units. These innovations have been successful piloted at the station

  8. Bruce Power - the first 24 exciting months

    International Nuclear Information System (INIS)

    Mottram, R.

    2003-01-01

    In this presentation, Ron Mottram will review the 2 year business evolution since the inception of Bruce Power - Ontario's largest independent electricity generator. Mr. Mottram will provide an overview of the Bruce Power business and operating history, along with specific emphasis on the project to Restart Bruce Units 3 and 4. Ron will share many of the project successes and challenges, and will provide insight into the myriad of issues faced by a large multi-faceted project of this type. (author)

  9. Bruce A refurbishment - preparatory work completed, major tasks to begin soon

    International Nuclear Information System (INIS)

    Boyd, F.

    2006-01-01

    Over the past year Bruce Power has been planning and organizing for an extensive refurbishment of the Units 1 and 2 of the Bruce A station. Now the company and its several major contractors are ready to proceed with the most challenging aspects of the actual work. The largest tasks are the replacement of the 8 steam generators and of the 480 complete fuel channels in each unit Bruce Power has created a separate website connected to their basic one to provide ongoing information about the progress of the work. The following brief note is intended to provide an outline of this challenging refurbishment program and to invite readers to visit this website to follow its progress. To provide background the writer was accorded an informative and interesting tour of the units by Rob Liddle, of Bruce Power, on September 28, 2006 the day after the ceremony commemorating the Douglas Point station held at the Bruce site. (author)

  10. Fuel deposits, chemistry and CANDU reactor operation

    International Nuclear Information System (INIS)

    Roberts, J.G.

    2013-01-01

    'Hot conditioning' is a process which occurs as part of commissioning and initial start-up of each CANDU reactor, the first being the Nuclear Power Demonstration-2 reactor (NPD). Later, understanding of the cause of the failure of the Pickering Unit 1 G16 fuel channel led to a revised approach to 'hot conditioning', initially demonstrated on Bruce Unit 5, and subsequently utilized for each CANDU unit since. The difference being that during 'hot conditioning' of CANDU heat transport systems fuel was not in-core until Bruce Unit 5. The 'hot conditioning' processes will be briefly described along with the consequences to fuel. (author)

  11. Bruce NGS a loss of flow analysis for effectiveness of level 2 defence-in-depth provisions

    International Nuclear Information System (INIS)

    Won, W.; Jiang, Y.; Kwee, M.; Xue, J.

    2014-01-01

    The concept of defence-in-depth is applied to CANDU (CANada Deuterium Uranium) reactor designs and operations to provide series of levels of defence to prevent accidents progressing and to provide protection for reactor and public safety. The level 2 defence-in-depth provisions are designed to detect and intercept deviation from normal operation in order to prevent anticipated operating occurrences (AOOs) from escalating to accident conditions, and to return the plant to a state of normal operations, according to the Canada Nuclear Safety Commission (CNSC) regulatory document RD-337. Historically, safety analysis has focused on the effectiveness of level 3 defence-in-depth provisions in accident conditions, and the effectiveness of level 2 defence-in-depth has not been assessed. In this study, the effectiveness of Level 2 defence-in-depth is assessed for loss of flow (LOF) events for Bruce Nuclear Generating Station (NGS) A reactors. The level 2 defence-in-depth in Bruce NGS A design is identified to be the stepback function of reactor regulating system (RRS). The behavior of RRS stepback following the initiation of loss of flow event is simulated using RFSP/TUF/RRS - em coupled code. The behavior of full system and single channel is simulated and assessed against the acceptance criteria - fitness for service of systems, structures and components (SSCs). (author)

  12. Bruce NGS a loss of flow analysis for effectiveness of level 2 defence-in-depth provisions

    Energy Technology Data Exchange (ETDEWEB)

    Won, W. [AMEC NSS, Toronto, ON (Canada); Jiang, Y.; Kwee, M.; Xue, J. [Bruce Power, Toronto, ON (Canada)

    2014-07-01

    The concept of defence-in-depth is applied to CANDU (CANada Deuterium Uranium) reactor designs and operations to provide series of levels of defence to prevent accidents progressing and to provide protection for reactor and public safety. The level 2 defence-in-depth provisions are designed to detect and intercept deviation from normal operation in order to prevent anticipated operating occurrences (AOOs) from escalating to accident conditions, and to return the plant to a state of normal operations, according to the Canada Nuclear Safety Commission (CNSC) regulatory document RD-337. Historically, safety analysis has focused on the effectiveness of level 3 defence-in-depth provisions in accident conditions, and the effectiveness of level 2 defence-in-depth has not been assessed. In this study, the effectiveness of Level 2 defence-in-depth is assessed for loss of flow (LOF) events for Bruce Nuclear Generating Station (NGS) A reactors. The level 2 defence-in-depth in Bruce NGS A design is identified to be the stepback function of reactor regulating system (RRS). The behavior of RRS stepback following the initiation of loss of flow event is simulated using RFSP/TUF/RRS{sub -}em coupled code. The behavior of full system and single channel is simulated and assessed against the acceptance criteria - fitness for service of systems, structures and components (SSCs). (author)

  13. Fuel string supporting shield plug (f3sp) for Ontario Hydro - Bruce NGSA

    Energy Technology Data Exchange (ETDEWEB)

    Henry, P T [Canadian General Electric Co. Ltd., Peterborough, ON (Canada)

    1997-12-31

    A reactor `power pulse` problem was identified for the Ontario Hydro Bruce generating stations. On a postulated inlet header break, the fuel strings in a large number of channels could relocate toward the upstream end, resulting in a power pulse. The solution adopted for Bruce GSA is to change the direction of fuelling, from against the flow, to fuelling with the flow. In this revised fuelling scheme, given a postulated inlet header failure, the fuel bundle with the highest burnup would relocate into the reactor core and introduce a negative reactivity during the accident. However, this fuelling configuration results in a highly irradiated fuel bundle residing in the most downstream position against the latch. The latch supports only the outer ring of elements, not the end plate. A resulting high stress on the end plate coupled with high levels of hydrogen and deuterium may result in Zr hydride assisted cracking in the end plate during hot shutdown conditions. (In fuelling against flow, this is not a problem, since the latch supported bundle is not irradiated and has only low levels of hydrogen and deuterium.) A fuel string supporting shield plug (f3sp) which supports the bundle end plate has been developed as a solution to the fuel bundle end plate cracking problem. It would replace the existing outlet shield plug in all channels. This paper will describe the f3sp design, associated fuel handling, operation and qualification for reactor use. (author). 8 figs.

  14. Fuel string supporting shield plug (f3sp) for Ontario Hydro - Bruce NGSA

    International Nuclear Information System (INIS)

    Henry, P.T.

    1996-01-01

    A reactor 'power pulse' problem was identified for the Ontario Hydro Bruce generating stations. On a postulated inlet header break, the fuel strings in a large number of channels could relocate toward the upstream end, resulting in a power pulse. The solution adopted for Bruce GSA is to change the direction of fuelling, from against the flow, to fuelling with the flow. In this revised fuelling scheme, given a postulated inlet header failure, the fuel bundle with the highest burnup would relocate into the reactor core and introduce a negative reactivity during the accident. However, this fuelling configuration results in a highly irradiated fuel bundle residing in the most downstream position against the latch. The latch supports only the outer ring of elements, not the end plate. A resulting high stress on the end plate coupled with high levels of hydrogen and deuterium may result in Zr hydride assisted cracking in the end plate during hot shutdown conditions. (In fuelling against flow, this is not a problem, since the latch supported bundle is not irradiated and has only low levels of hydrogen and deuterium.) A fuel string supporting shield plug (f3sp) which supports the bundle end plate has been developed as a solution to the fuel bundle end plate cracking problem. It would replace the existing outlet shield plug in all channels. This paper will describe the f3sp design, associated fuel handling, operation and qualification for reactor use. (author). 8 figs

  15. An Appreciation of the Scientific Life and Acheivements of Bruce Merrifield

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R

    2007-06-15

    Bruce Merrifield's scientific biography, 'Life During a Golden Age of Peptide Chemistry: The Concept and Development of Solid-Phase Peptide Synthesis', provides a history of solid phase-peptide synthesis (SPPS) from 1959 to 1993 [1]. While many readers will be familiar with SPPS literature after 1963, the inclusion of unpublished material from Merrifield's early laboratory notebooks opens a fascinating window on the development of SPPS from the formulation of concept in 1959 (p. 56, ref. 1) to the synthesis of a tetrapeptide four years later [2]. This early period was characterized by slow progress interrupted by numerous setbacks that led Bruce to later record (p. 90, ref. 1): 'At the end of the first two years the results were so poor, I wonder what made me think that this approach would ever succeed; but from the outset I had a strong conviction that this was a good idea, and I am glad that I stayed with it long enough'. Garland Marshall, Bruce's first graduate student (1963-1966), as well as later colleagues, were essentially unaware of the many highways, byways and dead ends that Bruce had explored in the early years [3].

  16. Bruce nuclear power development (BNPD) postoperational aquatic studies

    International Nuclear Information System (INIS)

    Carey, W.E.

    1984-01-01

    This report summarizes the results of three years of postoperational aquatic study conducted between 1979 and 1981 at the Bruce Nuclear Power Development site. An increase in the rate of organic and inorganic sedimentation during the summer was noted, and was possibly related to construction activity at the Bruce GS 'B' intake site. Vertical thermal stratification persisted later in the year at the 7 m contour of Bruce GS 'A' discharge than at other locations sampled. Water quality conditions reflected the oliogtrophic state of Lake Huron. Several changes were noted in the biotic community. The taxonomic composition of attached algae, zooplankton and benthic macroinvertebrates varied between sampling years. The number of common naids, amphipods and the trichopteran Cheumatopsyche increased substantially in the 1981 rock cage collections. The relative abundance of adult walleye, channel catfish and round whitefish in gill nets increased, with the former two species being more abundant (15 fish per net in September, 1980, and 33 fish per net in July, 1981, respectively) at the 3 m contour of the Bruce GS 'A' discharge transect than at other shoreline sampling locations

  17. AECB assessment of Bruce A comments on the proposed STPA tritium releases

    International Nuclear Information System (INIS)

    Gerdingh, R.F.

    1995-04-01

    In 1993, Ontario Hydro submitted a proposal to the AECB to discharge slightly tritiated water, arising from the steam supplied by Bruce A, through the Steam Transformer Plant A (STPA) discharge lines. The purpose of the proposal is to eliminate the current practice of shipping this water back to Bruce A where it is discharged through the active liquid waste discharge line. One of the STPA lines discharges to the Bruce A intake channel. A small fraction of this water is processed and used as drinking water at Bruce A. At our request, Bruce A management informed Bruce A personnel of the proposal and gave them the opportunity to raise concerns. As part of our evaluation, we assessed those concerns and concluded that they were not an impediment to accept this proposal. This report documents our assessment of the concerns expressed. (author)

  18. AECB assessment of Bruce A comments on the proposed STPA tritium releases

    Energy Technology Data Exchange (ETDEWEB)

    Gerdingh, R F

    1995-04-01

    In 1993, Ontario Hydro submitted a proposal to the AECB to discharge slightly tritiated water, arising from the steam supplied by Bruce A, through the Steam Transformer Plant A (STPA) discharge lines. The purpose of the proposal is to eliminate the current practice of shipping this water back to Bruce A where it is discharged through the active liquid waste discharge line. One of the STPA lines discharges to the Bruce A intake channel. A small fraction of this water is processed and used as drinking water at Bruce A. At our request, Bruce A management informed Bruce A personnel of the proposal and gave them the opportunity to raise concerns. As part of our evaluation, we assessed those concerns and concluded that they were not an impediment to accept this proposal. This report documents our assessment of the concerns expressed. (author).

  19. Development and implementation of the heavy water program at Bruce Power

    International Nuclear Information System (INIS)

    Davloor, R.; Bourassa, C.

    2014-01-01

    Bruce Power operates 8 pressurized heavy water reactor units requiring more than 6000 mega grams (Mg) of heavy water. A Heavy Water Management Program that has been developed to administer this asset over the past 3 years. Through a corporate management system the Program provides governance, oversight and support to the stations. It is implemented through organizational structure, program and procedure documents and an information management system that provides benchmarked metrics, business intelligence and analytics for decision making and prediction. The program drives initiatives such as major maintenance activities, capital programs, detritiation strategies and ensures heavy water systems readiness for outages and rehabilitation of units. (author)

  20. Development and implementation of the heavy water program at Bruce Power

    Energy Technology Data Exchange (ETDEWEB)

    Davloor, R.; Bourassa, C., E-mail: ram.davloor@brucepower.com, E-mail: carl.bourassa@brucepower.com [Bruce Power, Tiverton, ON (Canada)

    2014-07-01

    Bruce Power operates 8 pressurized heavy water reactor units requiring more than 6000 mega grams (Mg) of heavy water. A Heavy Water Management Program that has been developed to administer this asset over the past 3 years. Through a corporate management system the Program provides governance, oversight and support to the stations. It is implemented through organizational structure, program and procedure documents and an information management system that provides benchmarked metrics, business intelligence and analytics for decision making and prediction. The program drives initiatives such as major maintenance activities, capital programs, detritiation strategies and ensures heavy water systems readiness for outages and rehabilitation of units. (author)

  1. Fans af Bruce

    DEFF Research Database (Denmark)

    Vaaben, Nana Katrine

    2007-01-01

    Analysen viser, hvordan det samme ritual under en koncert forener og opdeler de fans, der orienterer sig mod Bruce Springsteen. På den ene side forener ritualet hele publikum i en stor fælles "Intimitet for mange" og på den anden side splitter det dem, fordi det bliver tydeligt, hvem der er de...... rigtige fans, og hvem der tilhører "pøbelen"....

  2. Nuclear process steam for industry: potential for the development of an Industrial Energy Park adjacent to the Bruce Nuclear Power Development

    Energy Technology Data Exchange (ETDEWEB)

    Seddon, W A

    1981-11-01

    This report summarizes the results of an industrial survey jointly funded by the Bruce County Council, the Ontario Energy Corporation, Atomic Energy of Canada Limited and conducted with the cooperation of Ontario Hydro and the Ontario Ministry of Industry and Tourism. The objective of the study was to identify and assess the future needs and interest of energy-intensive industries in the concept of an Industrial Energy Park adjacent tof the Bruce Nuclear Power Development. The proposed Energy Park would capitalize on the infrastructure of the existing CANDU reactors and Ontario Hydro's proven and unique capability to produce steam, as well as electricity, at a cost currently about half that from a comparable coal-fired station.

  3. Instrument calibration optimization at Bruce Power: ECI loops

    International Nuclear Information System (INIS)

    Chugh, V.; Angelova, M.; Ghias, S.; Parmar, R.; Wang, V.; Xie, H.; Higgs, J.; Schut, J.; Cruchley, I.

    2011-01-01

    Most instruments in a nuclear power plant are calibrated at regular intervals to ensure consistency with the assumptions in the plant Technical Specifications and/or Safe Operating Envelope (SOE) compliance limits (e.g., As-Found Tolerance). In the Instrument Uncertainty Calculations (IUC), As-Found Tolerance for instrument drift is estimated based on statistical analysis of As-Found and As-Left calibration data such as that carried out for Bruce NGS by EPRI (Electric Power Research Institute) in 1998. Bruce specific drift values were found to compare favorably with industry benchmarks. Recently a significant amount of work has been done by EPRI and IAEA (International Atomic Energy Agency) on extending calibration intervals of safety related instruments. Reduction in calibration frequency reduces time commitments on the part of Authorized Nuclear Operators and safety system qualified Control Maintenance Technicians, and allows more schedule flexibility. To establish the proof of concept, As-Left/As-Found tolerances and available margins have been evaluated for the Bruce B Emergency Coolant Injection (ECI) system instrument loops to determine whether an extension of the calibration period from one or two year to three years is justifiable on the basis that these loops will still be in compliance with SOE. The analysis showed that 60% of instruments in the ECI system are qualified for calibration interval extension up to three years. Sensitivity assessment of the effect of proposed changes in calibration intervals for 60% of the instruments on the ECI system unavailability has also been performed using the current Bruce Power ECI unavailability model. The results show that, the largest ECI Predicted Future Unavailability (PFU) is 9.2E-4 year/year for in-core LOCA accident. This value is still below the target unavailability of 1.0E-3 year/year. (author)

  4. Instrument calibration optimization at Bruce Power: ECI loops

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, V.; Angelova, M.; Ghias, S.; Parmar, R.; Wang, V.; Xie, H. [AMEC NSS, Toronto, Ontario (Canada); Higgs, J.; Schut, J.; Cruchley, I. [Bruce Power, Tiverton, Ontario (Canada)

    2011-07-01

    Most instruments in a nuclear power plant are calibrated at regular intervals to ensure consistency with the assumptions in the plant Technical Specifications and/or Safe Operating Envelope (SOE) compliance limits (e.g., As-Found Tolerance). In the Instrument Uncertainty Calculations (IUC), As-Found Tolerance for instrument drift is estimated based on statistical analysis of As-Found and As-Left calibration data such as that carried out for Bruce NGS by EPRI (Electric Power Research Institute) in 1998. Bruce specific drift values were found to compare favorably with industry benchmarks. Recently a significant amount of work has been done by EPRI and IAEA (International Atomic Energy Agency) on extending calibration intervals of safety related instruments. Reduction in calibration frequency reduces time commitments on the part of Authorized Nuclear Operators and safety system qualified Control Maintenance Technicians, and allows more schedule flexibility. To establish the proof of concept, As-Left/As-Found tolerances and available margins have been evaluated for the Bruce B Emergency Coolant Injection (ECI) system instrument loops to determine whether an extension of the calibration period from one or two year to three years is justifiable on the basis that these loops will still be in compliance with SOE. The analysis showed that 60% of instruments in the ECI system are qualified for calibration interval extension up to three years. Sensitivity assessment of the effect of proposed changes in calibration intervals for 60% of the instruments on the ECI system unavailability has also been performed using the current Bruce Power ECI unavailability model. The results show that, the largest ECI Predicted Future Unavailability (PFU) is 9.2E-4 year/year for in-core LOCA accident. This value is still below the target unavailability of 1.0E-3 year/year. (author)

  5. Steam generator tubesheet waterlancing at Bruce B

    Energy Technology Data Exchange (ETDEWEB)

    Persad, R. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada); Eybergen, D. [Bruce Power, Tiverton, Ontario (Canada)

    2006-07-01

    High pressure water cleaning of steam generator secondary side tubesheet surfaces is an important and effective strategy for reducing or eliminating under-deposit chemical attack of the tubing. At the Bruce B station, reaching the interior of the tube bundle with a high-pressure water lance is particularly challenging due to the requirement to setup on-boiler equipment within the containment bellows. This paper presents how these and other design constraints were solved with new equipment. Also discussed is the application of new high-resolution inter-tube video probe capability to the Bruce B steam generator tubesheets. (author)

  6. Fuel bundle to pressure tube fretting in Bruce and Darlington

    Energy Technology Data Exchange (ETDEWEB)

    Norsworthy, A G; Ditschun, A [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    As the fuel channel elongates due to creep, the fuel string moves relative to the inlet until the fuel pads at the inboard end eventually separate from the spacer sleeve, and the fuel resides on the burnish mark of the pressure tube. The bundle is then supported in a fashion which contributes to increased levels of vibration. Those pads which (due to geometric variation) have contact loads with the pressure tube within a certain range, vibrate, and cause significant fretting on the burnish mark, and further along at the midplane of the bundle. Inspection of the pressure tubes in Bruce A, Bruce B, and Darlington has revealed fret damage up to 0.55 mm at the burnish mark and slightly lower than this at the inlet bundle midplane. To date, all fret marks have been dealt with successfully without the need for tube replacement, but a program of work has been initiated to understand the mechanism and reduce the fretting. Such understanding is necessary to guide future design changes to the fuel bundle, to guide future inspection programs, to guide maintenance programs, and for longer term strategic planning. This paper discusses how the understanding of fretting has evolved and outlines a current hypothesis for the mechanism of fretting. The role of bundle geometry, excitation forces, and reactor conditions are reviewed, along with options under consideration to mitigate damage. (author). 4 refs., 2 tabs., 13 figs.

  7. Fuel bundle to pressure tube fretting in Bruce and Darlington

    International Nuclear Information System (INIS)

    Norsworthy, A.G.; Ditschun, A.

    1995-01-01

    As the fuel channel elongates due to creep, the fuel string moves relative to the inlet until the fuel pads at the inboard end eventually separate from the spacer sleeve, and the fuel resides on the burnish mark of the pressure tube. The bundle is then supported in a fashion which contributes to increased levels of vibration. Those pads which (due to geometric variation) have contact loads with the pressure tube within a certain range, vibrate, and cause significant fretting on the burnish mark, and further along at the midplane of the bundle. Inspection of the pressure tubes in Bruce A, Bruce B, and Darlington has revealed fret damage up to 0.55 mm at the burnish mark and slightly lower than this at the inlet bundle midplane. To date, all fret marks have been dealt with successfully without the need for tube replacement, but a program of work has been initiated to understand the mechanism and reduce the fretting. Such understanding is necessary to guide future design changes to the fuel bundle, to guide future inspection programs, to guide maintenance programs, and for longer term strategic planning. This paper discusses how the understanding of fretting has evolved and outlines a current hypothesis for the mechanism of fretting. The role of bundle geometry, excitation forces, and reactor conditions are reviewed, along with options under consideration to mitigate damage. (author). 4 refs., 2 tabs., 13 figs

  8. Steam generator replacement at Bruce A: approach, results, and lessons learned

    International Nuclear Information System (INIS)

    Tomkiewicz, W.; Savage, B.; Smith, J.

    2008-01-01

    Steam Generator Replacement is now complete in Bruce A Units 1 and 2. In each reactor, eight steam generators were replaced; these were the first CANDU steam generator replacements performed anywhere in the world. The plans for replacement were developed in 2004 and 2005, and were summarized in an earlier paper for the CNS Conference held in November, 2006. The present paper briefly summarizes the methodologies and special processes used such as metrology, cutting and welding and heavy lifting. The paper provides an update since the earlier report and focuses on the project achievements to date, such as: - A combination of engineered methodology, laser metrology and precise remote machining led to accurate first time fit-ups of each new replacement steam generator and steam drums - Lessons learned in the first unit led to schedule improvements in the second unit - Dose received was lowest recorded for any steam generator replacement project. The experience gained and lessons learned from Units 1 and 2 will be valuable in planning and executing future replacement steam generator projects. A video was presented

  9. Geoscientific Characterization of the Bruce Site, Tiverton, Ontario

    Science.gov (United States)

    Raven, K.; Jackson, R.; Avis, J.; Clark, I.; Jensen, M.

    2009-05-01

    Ontario Power Generation is proposing a Deep Geologic Repository (DGR) for the long-term management of its Low and Intermediate Level Radioactive Waste (L&ILW) within a Paleozoic-age sedimentary sequence beneath the Bruce site near Tiverton, Ontario, Canada. The concept envisions that the DGR would be excavated at a depth of approximately 680 m within the Ordovician Cobourg Formation, a massive, dense, low- permeability, argillaceous limestone. Characterization of the Bruce site for waste disposal is being conducted in accordance with a four year multi-phase Geoscientific Site Characterization Plan (GSCP). The GSCP, initially developed in 2006 and later revised in 2008 to account for acquired site knowledge based on successful completion of Phase I investigations, describes the tools and methods selected for geological, hydrogeological and geomechanical site characterization. The GSCP was developed, in part, on an assessment of geoscience data needs and collection methods, review of the results of detailed geoscientific studies completed in the same bedrock formations found off the Bruce site, and recent international experience in geoscientific characterization of similar sedimentary rocks for long-term radioactive waste management purposes. Field and laboratory work related to Phase 1 and Phase 2A are nearing completion and have focused on the drilling, testing and monitoring of four continuously cored vertical boreholes through Devonian, Silurian, Ordovician and Cambrian bedrock to depths of about 860 mBGS. Work in 2009 will focus on drilling and testing of inclined boreholes to assess presence of vertical structure. The available geological, hydrogeological and hydrogeochemical data indicate the presence of remarkably uniform and predictable geology, physical hydrogeologic and geochemical properties over well separation distances exceeding 1 km. The current data set including 2-D seismic reflection surveys, field and lab hydraulic testing, lab petrophysical and

  10. David Bruce Payton : väikeriigid mõistavad üksteist / David Bruce Payton ; interv. Marianne Mikko

    Index Scriptorium Estoniae

    Payton, David Bruce

    2003-01-01

    Uus-Meremaa suursaadik Eestis David Bruce Payton talupidaja toetamise loobumisest Uus-Meremaal, Uus-Meremaa põllumajandussektorist, veinidest, ekspordist, Eesti saamisest EL-i ja NATO liikmeks, Uus-Meremaa rahvastikust, elatustasemest, Iraagi võimalikust ründamisest, Põhja-Koreast

  11. Bruce Springsteen as a Symbol

    DEFF Research Database (Denmark)

    Gitz-Johansen, Thomas

    2018-01-01

    The article explores how Bruce Springsteen and his music function as a symbol. The article first presents the Jungian theory of symbols and of music as symbol. The central argument of the article is that, by functioning symbolically, Springsteen has the potential to influence the psyche of his au...

  12. Evolution of CANDU reactor design

    International Nuclear Information System (INIS)

    Pon, G.A.

    1978-08-01

    The CANDU (CANada Deuterium Uranium) design had its begin-ings in the early 1950's with the preliminary engineering studies that led to the 20 MW(e) NPD (Nuclear Power Demonstration) and the 200 MW(e) Douglas Point station . The next decade saw the first operation of both these stations and the commitment of the 2000 MW(e) Pickering and 3000 MW(e) Bruce plants. The present decade has witnessed the excellent performance of Pickering and Bruce and commitments to construct Gentilly-2, Cordoba, Pt. Lepreau, Wolsung, Pickering B, Bruce B and Darlington. In most cases, successive CANDU designs have meant an increase in plant output. Evolutionary developments have been made to fit the requirements of higher ratings and sizes, new regulations, better reliability and maintainability and lower costs. These changes, which are described system by system, have been introduced in the course of engineering parallel reactor projects with overlapping construction schedules -circumstances which ensure close contact with the practical realities of economics, manufacturing functions, construction activities and performance in commissioning. Features for one project furnished alternative concepts for others still on the drawing board and the experience gained in the first application yielded a sound basis for its re-use in succeeding projects. Thus the experiences gained in NPD, Douglas Point, Gentilly-1 and KANUPP have contributed to Pickering and Bruce, which in turn have contributed to the design of Gentilly-2. (author)

  13. Bruce and Darlington power pulse and pressure tube integrity programs -status 1995

    Energy Technology Data Exchange (ETDEWEB)

    Field, G J [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Wylie, J [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A

    1996-12-31

    The optimum solution to pressure tube fretting at the inlet of the Bruce and Darlington channels, a concern which became very serious following inspections in early 1992, is to remove the inlet bundle and operate with a 12 fuel bundle channel. During analysis of this operating mode a `power pulse` was identified which could occur during an inlet header break where all the fuel in the channel moved rapidly to the inlet of the channel. The pulse was unacceptable and the units were derated until solutions could be implemented. A number of solutions were identified and each station has begun implementation of their specific solution. Implementation has not been without problems and this paper provides a status report on the progress to date of the long bundle implementation solution for Bruce B and Darlington and the fuelling with the flow solution being implemented at Bruce A. Both types of solution have a significant impact on the original concern, fretting of the pressure tube. (author). 1 ref., 6 figs.

  14. Safety benefits from CANDU reactor replacement - a case study

    International Nuclear Information System (INIS)

    Mottram, R.; Millard, J.W.F.; Purdy, P.

    2011-01-01

    Both total core replacement and core retubing have been used in the CANDU industry. For future plant refurbishments, based on experience both in new construction and in recent refurbishments, the concept of total core replacement has been revisited. This builds on practices for replacement of other large plant equipment like boilers. The Bruce CANDU reactors, with their local shield tanks built around the Calandria and containment closely located around that Calandria Shield Tank Assembly (CSTA), are believed to be good candidates for core replacement. A structured process was used to design a replacement CSTA suitable for Bruce A use. The work started with a study of opportunities for safety enhancements in the core. This progressed into design studies and related design assist safety analysis on the reactor. A key element of the work involved consideration of how verified features from later CANDU designs, and from our new reactor design work, could be tailored to fit this replacement core. The replacement reactor core brings in structural improvements in both calandria and end shield, and safety improvements like the natural circulation enhancing moderator cooling layout and further optimized reactivity layouts to improve shutdown system performance. Bruce Power are currently studying the business implications of this and retube techniques as part of preparation for future refurbishments. The work explained in this paper is in the context of the safety related changes and the work to choose and quantify them. (author)

  15. Safety benefits from CANDU reactor replacement. A case study

    International Nuclear Information System (INIS)

    Mottram, R.; Millard, J.W.F.; Purdy, P.

    2011-01-01

    Both total core replacement and core retubing have been used in the CANDU industry. For future plant refurbishments, based on experience both in new construction and in recent refurbishments, the concept of total core replacement has been revisited. This builds on practices for replacement of other large plant equipment like boilers. The Bruce CANDU reactors, with their local shield tanks built around the Calandria and containment closely located around that Calandria Shield Tank Assembly (CSTA), are believed to be good candidates for core replacement. A structured process was used to design a replacement CSTA suitable for Bruce A use. The work started with a study of opportunities for safety enhancements in the core. This progressed into design studies and related design assist safety analysis on the reactor. A key element of the work involved consideration of how verified features from later CANDU designs, and from our new reactor design work, could be tailored to fit this replacement core. The replacement reactor core brings in structural improvements in both calandria and end shield, and safety improvements like the natural circulation enhancing moderator cooling layout and further optimized reactivity layouts to improve shutdown system performance. Bruce Power are currently studying the business implications of this and retube techniques as part of preparation for future refurbishments. The work explained in this paper is in the context of the safety related changes and the work to choose and quantify them. (author)

  16. Analogue to digital upgrade project-boiler feedwater control system for Bruce Power nuclear units 1 & 2

    International Nuclear Information System (INIS)

    Long, R.

    2012-01-01

    Bruce Power Nuclear Generating Station A, “Bruce A” is in the final stages of its Restart Project. This capital project will see a large scale rehabilitation of Units 1 and 2 resulting in addition of 1500MW of safe, reliable, clean electricity to the Ontario grid. Restart Project Scope 375, Boiler Feedwater Controls Upgrade was sanctioned to replace obsolete analog devices with a modern digital control system. This project replaced the existing Foxboro H Line analog controls which comprised of 81 individual control modules and support instrumentation. The replacement system was a Triconex Triple Modular Redundant PLC which interfaces with two redundant touch screen monitors. The upgraded digital system incorporates the following controls: 1. Boiler Level Control Loops 2. Dearator Level Control Loops 3. Dearator Pressure Control Loops 4. Boiler Feedwater Recirculation Flow Control Loops A number of technical challenges were addressed when installing a new digital system within the existing plant configuration. Interfaces to new, old and refurbished field devices must be understood as well as implications of connecting to the plant’s Digital Control Computers (DCC’s) and newly installed Steam Generators. The overall project involved many stakeholders to address various requirements from conceptual / design stage through procurement, construction, commissioning and return to service. In addition, the project highlighted the unique requirements found in Nuclear Industry with respect to Human Factors and Software Quality Assurance. (author)

  17. Universal delivery machine - design of the Bruce and Darlington heads

    International Nuclear Information System (INIS)

    Gray, M.G.; Brown, R.

    2003-01-01

    The Universal Delivery Machine (UDM) was designed and supplied to reduce the time required to perform channel inspection services. The Bruce UDM was the first to be completed followed by Pickering and Darlington. The Bruce and Darlington machines are nearly identical. Design concepts applied include a rotating, multiple tool station magazine, a rigid chain driving telescoping rams, a common drive package, and an external support frame to meet seismic qualification requirements. (author)

  18. Bruce used fuel dry storage project evolution from Pickering to Bruce

    International Nuclear Information System (INIS)

    Young, R.E.

    1996-01-01

    Additional fuel storage capacity is required at Bruce Nuclear Generating Station, which otherwise would soon fill up all its pool storage capacity. The recommended option was to use a dry storage container similar to that at Pickering. The changes made to the Pickering type of container included: fuel to be stored in trays; the container's capacity increased to 600 bundles; the container's lid to be changed to a metal one; the single concrete lid to be changed to a double metal lid system; the container not to be transportable; the container would be dry-loaded. 7 figs

  19. Bruce used fuel dry storage project evolution from Pickering to Bruce

    Energy Technology Data Exchange (ETDEWEB)

    Young, R E [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A

    1997-12-31

    Additional fuel storage capacity is required at Bruce Nuclear Generating Station, which otherwise would soon fill up all its pool storage capacity. The recommended option was to use a dry storage container similar to that at Pickering. The changes made to the Pickering type of container included: fuel to be stored in trays; the container`s capacity increased to 600 bundles; the container`s lid to be changed to a metal one; the single concrete lid to be changed to a double metal lid system; the container not to be transportable; the container would be dry-loaded. 7 figs.

  20. Life extension of CANDU reactor cores

    International Nuclear Information System (INIS)

    Millard, J.; Kerker, J.; Albert, M.

    2011-01-01

    Candu Energy (formerly AECL), in partnership with station operators, has developed a robust methodology for demonstrating the fitness of reactor core structures, and associated reactivity control devices, as an essential element in conducting a station life extension project. The ageing of reactors is affected by ageing mechanisms impacted by operational history and design related factors such as materials, chemistries and stress distributions. The methodology of this life extension work is based on the IAEA TECDOC 1197; which documents practices for ageing management in CANDU reactors. This paper uses the work in Bruce Units 1 and 2, conducted from 2007 through to 2011, to explain the methodology. The work started with analysis of historical operational conditions and identification of the forms of degradation that could have occurred. The assessment and related inspections considered the safety and pressure boundary significance of each item, as well as its failure modes and margins. It then moved through both general and local inspection, focused mainly inside the calandria vessel once the calandria tubes were removed. The inspection found the bulk of the hardware to be in good condition, with a small number of remediation opportunities. In the course of that remediation some foreign material was sampled and removed. The minor remediation was successful and the work was completed through formal documentation of the fitness for extended life. It has been demonstrated through these analyses and visual inspections that the reactor structures and components inspected are free of indications and active degradation mechanisms that would prevent the safe and reliable operation of Bruce A Units 1 and 2 through its next 25 years of life. (author)

  1. Bruce A - performance power

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, P. [Bruce Power, Tiverton, ON (Canada)

    2015-07-01

    This paper discusses the strategy for improving performance at Bruce Power. The key to excellence is changing behaviours. Reinforcing and enforcing expectations, aligned with the 2015 operating to the Highest Standards Site Initiative. Long term equipment strategies, supported by the 2015 Equipment Health Site Initiative, individual and group accountability for online/outage Work Management, with further gains through 2015 Maintenance Alignment and Resource Strategy (MARS) Site Initiative. Results showed human performance improvement, more reliable and predictable units and outage performance improvement.

  2. The Bruce Medalists

    Science.gov (United States)

    Tenn, J. S.

    2001-12-01

    The Astronomical Society of the Pacific (ASP) has presented the Catherine Wolfe Bruce gold medal for lifetime contributions to astronomy most years since 1898. The 94 medalists include most of the scientists whose work has greatly changed astronomy since the late nineteenth century: Huggins, Pickering, Campbell, Hale, Eddington, Russell, Adams, Slipher, Hertzsprung, Hubble, Shapley, Oort, Baade, ... Major exceptions include those who died young, those who worked in teams, and, in the early years, women. Mathematicians appear to have been as likely to be honored as astronomers from the beginning, but the fortunes of physicist nominees have varied. The nomination process is an unusual one, with the directors of six observatories, three in the U.S. and three abroad, asked to nominate up to three candidates each year. For the first six decades the observatories rarely varied, and directors had long tenures. They nominated the same individuals repeatedly. Now both observatories and their directors vary regularly. Much can be learned about the changes in astronomy from the late nineteenth century, when observers worked alone with long refractors and a theorist could spend a lifetime computing the orbit of one comet, to the present, when most papers have multiple authors and a single project may include millions of objects. For example, celestial mechanics was the specialty of many of the early medalists but none since 1966. I have posted photographs, brief biographies, extensive bibliographies, and links to publications by and about all of the medalists, from Simon Newcomb in 1898 to Hans Bethe in 2001, at http://phys-astro.sonoma.edu/BruceMedalists/. I will discuss a bit of the history of the medal and some of the medalists.

  3. Future plans for performance analysis and maintenance/inspection optimization of shutoff rods based on the case study of Bruce Power Unit-3 Shutoff Rod 5 inspection

    International Nuclear Information System (INIS)

    Nasimi, E.; Gabbar, H.A.

    2011-01-01

    Shutdown System 1 (SDS1) is a preferred method for a quick shutdown of nuclear fission process in CANDU (CANada Deuterium Uranium) reactor units. Failure of a routine SDS1 safety test during Fall 2009 outage resulted in the need to develop and execute a new methodology for Shutoff Rod inspection and re-evaluate the known degradation mechanisms and failure modes. This paper describes the development of this methodology and the obtained results. It also proposes several alternative solutions for the future performance analysis and maintenance/inspection optimization for SDS1 Shutoff Rods based on the Bruce Power Unit-3 Shutoff Rod 5 case study. (author)

  4. Non intrusive check valve diagnostics at Bruce A

    International Nuclear Information System (INIS)

    Marsch, S.P.

    1997-01-01

    Bruce A purchased non intrusive check valve diagnostic equipment in 1995 to ensure operability and availability of critical check valves in the Station. Diagnostics can be used to locate and monitor check valve degradation modes. Bruce A initiated a pilot program targeting check valves with flow through them and ones that completed open or close cycles. Approaches to determine how to confirm operability of passive check valves using non intrusive techniques were explored. A sample population of seventy-three check valves was selected to run the pilot program on prior to complete implementation. The pilot program produced some significant results and some inconclusive results. The program revealed a major finding that check valve performance modeling is required to ensure continuous operability of check valves. (author)

  5. Non intrusive check valve diagnostics at Bruce A

    Energy Technology Data Exchange (ETDEWEB)

    Marsch, S.P. [Ontario Hydro, Bruce Nuclear Generating Station A, Tiverton, ON (Canada)

    1997-07-01

    Bruce A purchased non intrusive check valve diagnostic equipment in 1995 to ensure operability and availability of critical check valves in the Station. Diagnostics can be used to locate and monitor check valve degradation modes. Bruce A initiated a pilot program targeting check valves with flow through them and ones that completed open or close cycles. Approaches to determine how to confirm operability of passive check valves using non intrusive techniques were explored. A sample population of seventy-three check valves was selected to run the pilot program on prior to complete implementation. The pilot program produced some significant results and some inconclusive results. The program revealed a major finding that check valve performance modeling is required to ensure continuous operability of check valves. (author)

  6. Mitigation of organically bound sulphate from water treatment plants at Bruce NGS and impact on steam generator secondary side chemistry control

    Energy Technology Data Exchange (ETDEWEB)

    Nashiem, R.; Davloor, R.; Harper, B.; Smith, K. [Bruce Power, Tiverton, Ontario (Canada); Gauthier, C. [CTGIX Services Inc., Burlington, Ontario (Canada); Schexnailder, S. [GE Water and Process Technologies, Dallas, Texas (United States)

    2010-07-01

    Bruce Power is the source of more than 20 per cent of Ontario's electricity and currently operates six reactor units at the Bruce Nuclear Generating Station A (two units) and B (four units) stations located on Lake Huron. This paper discusses the challenges faced and operating experience (OPEX) gained in meeting WANO 1.0 chemistry performance objectives for steam generator secondary side chemistry control, particularly with control of steam generator sulphates. A detailed sampling and analysis program conducted as part of this study concluded that a major contributor to steam generator (SG) elevated sulphates is Organically Bound Sulphate (OBS) in Water Treatment Plants (WTP) effluent. The Bruce A and B WTPs consist of clarification with downstream sand and carbon filtration for Lake Water pre-treatment, which are followed by conventional Ion Exchange (IX) demineralization. Samples taken from various locations in the process stream were analyzed for a variety of parameters including both organic bound and inorganic forms of sulphate. The results are inconclusive with respect to finding the definitive source of OBS. This is primarily due to the condition that the OBS in the samples, which are in relatively low levels, are masked during chemical analysis by the considerably higher inorganic sulphate background. Additionally, it was also determined that on-line Total Organic Carbon (TOC) levels at different WTP locations did not always correlate well with OBS levels in the effluent, such that TOC could not be effectively used as a control parameter to improve OBS performance of the WTP operation. Improvement efforts at both plants focused on a number of areas including optimization of clarifier operation, replacement of IX resins, addition of downstream mobile polishing trailers, testing of new resins and adsorbents, pilot-scale testing with a Reverse Osmosis (RO) rig, review of resin regeneration and backwashing practices, and operating procedure improvements

  7. Mitigation of organically bound sulphate from water treatment plants at Bruce NGS and impact on steam generator secondary side chemistry control

    International Nuclear Information System (INIS)

    Nashiem, R.; Davloor, R.; Harper, B.; Smith, K.; Gauthier, C.; Schexnailder, S.

    2010-01-01

    Bruce Power is the source of more than 20 per cent of Ontario's electricity and currently operates six reactor units at the Bruce Nuclear Generating Station A (two units) and B (four units) stations located on Lake Huron. This paper discusses the challenges faced and operating experience (OPEX) gained in meeting WANO 1.0 chemistry performance objectives for steam generator secondary side chemistry control, particularly with control of steam generator sulphates. A detailed sampling and analysis program conducted as part of this study concluded that a major contributor to steam generator (SG) elevated sulphates is Organically Bound Sulphate (OBS) in Water Treatment Plants (WTP) effluent. The Bruce A and B WTPs consist of clarification with downstream sand and carbon filtration for Lake Water pre-treatment, which are followed by conventional Ion Exchange (IX) demineralization. Samples taken from various locations in the process stream were analyzed for a variety of parameters including both organic bound and inorganic forms of sulphate. The results are inconclusive with respect to finding the definitive source of OBS. This is primarily due to the condition that the OBS in the samples, which are in relatively low levels, are masked during chemical analysis by the considerably higher inorganic sulphate background. Additionally, it was also determined that on-line Total Organic Carbon (TOC) levels at different WTP locations did not always correlate well with OBS levels in the effluent, such that TOC could not be effectively used as a control parameter to improve OBS performance of the WTP operation. Improvement efforts at both plants focused on a number of areas including optimization of clarifier operation, replacement of IX resins, addition of downstream mobile polishing trailers, testing of new resins and adsorbents, pilot-scale testing with a Reverse Osmosis (RO) rig, review of resin regeneration and backwashing practices, and operating procedure improvements

  8. Structural and metamorphic evolution of the Mid-Late Proterozoic Rayner Complex, Cape Bruce, East Antarctica

    International Nuclear Information System (INIS)

    Dunkley, D.J.; Clarke, G.L.; White, R.W.

    2002-01-01

    Granulite to transitional granulite facies gneisses exposed at Cape Bruce, Rayner Complex, East Antarctica, record three main orogenic/magmatic phases: (1) intrusion of c. 1000-980 Ma felsic orthogneisses into Mid-Proterozoic metasediments, contemporary with the development of north-trending reclined to recumbent folds; (2) extensive c. 980-900 Ma felsic magmatism, including equivalents of the Mawson Charnockite, which accompanied the development of upright, east-northeast-trending folds; and (3) ultramylonite zones of uncertain age. The first two phases are known as the Rayner Structrual Episode, the effects of which are similar in rocks to the east of Cape Bruce, at Mawson, and in the northern Prince Charles Mountains. Archaean rocks immediately to the west of Cape Bruce were tectonically reworked during the Rayner Structural Episode. The first orogenic phase is inferred to represent the collision between a wedge-shaped Proterozoic block comprising rocks of the Mawson Coast and Eastern Ghats Province, with the Archaean Napier Complex. The second orogenic phase included a major period of crustal growth through emplacement of the Mawson Charnockite and equivalents. (author). 41 refs., 6 figs., 1 tab

  9. Bruce NGS A Unit 4 preheater divider plate failure

    International Nuclear Information System (INIS)

    Landridge, M.; McInnes, D.

    1995-01-01

    On May 19, 1995, without any prior operational indications, Bruce A discovered preheater divider plate damage in Unit 4 that had the potential to have a major impact on the continued safe operation of the station. Further investigations indicated that Unit 4 may have been operating with this damage for as long as ten years. In the two months following the discovery, Bruce A has procured and replaced the 4 divider plates, located most of the missing pieces, retrieved pieces from the PHT system, investigated historical operational information, performed detailed analytical investigations, investigated root cause, performed in-situ and mock-up testing, updated operational procedures and installed DP monitoring equipment

  10. AECB staff annual assessment of the Bruce A Nuclear Generating Station for the year 1995

    International Nuclear Information System (INIS)

    1996-06-01

    The Atomic Energy Control Board conducts a staff assessment of safety at Bruce Nuclear Generating Station A for 1995. On-site Project Officers and Ottawa based specialists monitored the station throughout the year. Ontario Hydro operated Bruce A safely in 1995, maintaining the risk to workers and the public at an acceptably low level. Radiation doses to workers and releases to the environment were well below regulatory limits. However, Ontario Hydro must improve contamination control at Bruce A. Special safety system performance a Bruce A was less than adequate. The negative pressure containment system and units 4's shutdown system two exceeded unavailability targets in 1995. However, we are satisfied Ontario Hydro is taking appropriate action to correct this. 5 tabs., 5 figs

  11. Integrated inspection programs at Bruce Heavy Water Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K C [Ontario Hydro, Tiverton, ON (Canada)

    1993-12-31

    Quality pressure boundary maintenance and an excellent loss prevention record at Bruce Heavy Water Plant are the results of the Material and Inspection Unit`s five inspection programs. Experienced inspectors are responsible for the integrity of the pressure boundary in their own operating area. Inspectors are part of the Technical Section, and along with unit engineering staff, they provide technical input before, during, and after the job. How these programs are completed, and the results achieved, are discussed. 5 figs., 1 appendix.

  12. Integrated inspection programs at Bruce Heavy Water Plant

    International Nuclear Information System (INIS)

    Brown, K.C.

    1992-01-01

    Quality pressure boundary maintenance and an excellent loss prevention record at Bruce Heavy Water Plant are the results of the Material and Inspection Unit's five inspection programs. Experienced inspectors are responsible for the integrity of the pressure boundary in their own operating area. Inspectors are part of the Technical Section, and along with unit engineering staff, they provide technical input before, during, and after the job. How these programs are completed, and the results achieved, are discussed. 5 figs., 1 appendix

  13. Analysis of log rate noise in Ontario's CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hinds, H.W. [Dynamic Simulation and Analysis Corp., Deep River, Ontario (Canada); Banica, C.; Arguner, D. [Ontario Power Generation, Ajax, Ontario (Canada); Scharfenberg, R. [Bruce Power, Tiverton, Ontario (Canada)

    2007-07-01

    In the fall of 2003, the operators noticed that in the recently-refurbished Bruce A Shutdown System no. 1 (SDS1) the noise level in Log Rate signals were much larger than before. At the request of the Canadian Nuclear Safety Commission (CNSC), all Canadian CANDU reactors took action to characterize their Log Rate noise. Staff of the Inspection and Maintenance Services division of Ontario Power Generation (OPG) has collected high-speed high-accuracy noise data from nearly all 16 Ontario reactors, either as part of routine measurements before planned outages or as a dedicated noise recording. This paper gives the results of examining a suitable subset of this data, with respect to the characteristics and possible causes of Log Rate noise. The reactor and instrumentation design is different at each station: the locations of the moderator injection nozzles, the location of the ion chambers for each system, and the design of the Log Rate amplifiers. It was found that the Log noise (source of Log Rate noise) was much larger for those ion chambers in the path of the moderator injection nozzles, compared to those which were not in the path. This 'extra' Log noise would then be either attenuated or amplified depending on the transfer function (time constants) of the Log Rate amplifier. It was also observed that most of the Log and Log Rate noise is independent of any other signal measured. Although all CANDU reactors in Ontario have Log and Log Rate noise, the Bruce A SDS1 system has the largest amount of Log Rate noise, because (a) its SDS1 (and RRS) ion chambers are at the top of the reactor in the path of the moderator injection nozzles, and (b) its SDS1 Log Rate amplifiers have the smallest time constants. (author)

  14. Bruce Power's nuclear pressure boundary quality assurance program requirements, implementation and transition

    International Nuclear Information System (INIS)

    Krane, J.C.

    2009-01-01

    The development of a full scope nuclear pressure boundary quality assurance program in Canada requires extensive knowledge of the structure and detailed requirements of codes and standards published by the Canadian Standards Association (CSA) and American Society of Mechanical Engineers (ASME). Incorporation into company governance documents and implementation of these requirements while managing the transition to more recent revisions of these codes and standards represents a significant challenge for Bruce Power, Canada's largest independent nuclear operator. This paper explores the key developments and innovative changes that are used to ensure successful regulatory compliance and effective implementation of the Bruce Power Pressure Boundary Quality Assurance Program. Challenges and mitigating strategies to sustain this large compliance based program at Bruce Power's 8 unit nuclear power plant site will also be detailed. (author)

  15. Design of the MiniSLAR system for Bruce A

    International Nuclear Information System (INIS)

    Gray, M.G.

    1995-01-01

    Cancellation of Bruce A Retube created the need to perform SLAR on Unit 1. The existing SLAR system cannot reach Unit 1 and alternative systems had limitations. The concept and design of MiniSLAR were driven by the availability of existing components made for Retube. The MiniSLAR concept was developed by a team with members representing operators, technicians, and designers from various departments within Ontario Hydro and GE Canada. Overall project leadership was provided by Bruce A Projects and Modifications Department with assistance from Ontario Hydro Nuclear Technology Services. The responsibility for detailed design was assigned by Ontario Hydro to GE Canada. The detailed design proceeded with continual input and review by the team. The MiniSLAR delivery machine consists of a closure removal ram, a shield plug removal ram and a SLAR tool delivery ram attached to the sliding plate of a horizontal indexing mechanism. The moving plate is constrained by guide rails to a fixed plate and seals against it with o-rings. A snout and clamping mechanism mounts on the front of the fixed plate. The machine mounts atop a work table which provides the various motions required for endfitting engagement. Some operations are performed manually while others are remote and automatic. (author)

  16. Exercise testing of pre-school children using the Bruce treadmill protocol: new reference values

    NARCIS (Netherlands)

    M.H.M. van der Cammen-van Zijp (Monique); H. IJsselstijn (Hanneke); T. Takken (Tim); S.P. Willemsen (Sten); D. Tibboel (Dick); H.J. Stam (Henk); H.J.G. van den Berg-Emons (Rita)

    2010-01-01

    textabstractThe Bruce treadmill protocol is an often-used exercise test for children and adults. Few and mainly old normative data are available for young children. In this cross-sectional observational study we determined new reference values for the original Bruce protocol in children aged 4 and 5

  17. Waste repository planned for Bruce Site

    International Nuclear Information System (INIS)

    King, F.

    2004-01-01

    Ontario Power Generation (OPG) and Kincardine, the municipality nearest the Bruce site, have agreed in principal to the construction of a deep geologic repository for low and medium level radioactive waste on the site. The two parties signed the 'Kincardine Hosting Agreement' on October 13, 2004 to proceed with planning, seek regulatory approval and further public consultation of the proposed project. A construction Licence is not expected before 2013. (author)

  18. Corrosion-product inventory: the Bruce-B secondary system

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Price, J.; Brett, M.E.

    1995-01-01

    Corrosion inspection and corrosion-product characterization in water and steam systems are important for component and systems maintenance in nuclear power stations. Corrosion products are produced, released and redeposited at various sites in the secondary system. Depending on the alloys used in the condenser and feedwater heaters, particulate iron oxides and hydroxides can account for about 95-99% of the total corrosion-product transport. Where brass or cupro-nickel alloys are present, copper and zinc contribute significantly to the total transport and deposition. Particulates are transported by the feedwater to the steam generators, where they accumulate and can cause a variety of problems, such as loss of heat transfer capability through deposition on boiler tubes, blockage of flow through boiler-tube support plates and accelerated corrosion in crevices, either in deep sludge piles or at blocked tube supports. The influx of oxidized corrosion products may have a particularly adverse effect on the redox environment of steam generator tubing, thereby increasing the probability of localized corrosion and other degradation mechanisms. In this paper, there is a description of a survey of general corrosion deposits in Bruce-B, Units 5-8, which helps to identify the origin, evolution and inventory of corrosion products along the secondary system of Candu reactors

  19. Status of the reliability centered maintenance program at Ontario Hydro's Bruce 'A' Nuclear Division

    International Nuclear Information System (INIS)

    Khan, I.

    1995-01-01

    Bruce A started a preventive maintenance (PM) quality improvement program in August of 1991. This initiative was taken to address the concerns expressed by the AECB and the Peer Audits finding. The concerns were on the quality of the Bruce A PM Program and its execution in the field. Reliability Centered Maintenance (RCM) analysis was selected as the PM program quality improvement and optimization technique. Therefore, RCM became a key component of Bruce A's Integrated PM program and maintenance strategy. As a result of RCM implementation, and improvements in the work planning and scheduling process, Bruce A is seeing downward trends in the corrective maintenance work load, maintenance preventable forced outages, overdue/missed PM tasks and corrective maintenance backlog. Control Room Operators have reported observing an improvement in systems and equipment response to transients. Other benefits include a documented, controlled and traceable PM program. In addition, the team approach required by RCM has started to improve staff confidence in the PM program which, in turn, is improving the compliance with the PM program. (author)

  20. Reactor core flow measurements during plant start-up using non-intrusive flow meter CROSSFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, V.; Sharp, B.; Gurevich, A., E-mail: vkanda@amag-inc.com, E-mail: bsharp@amag-inc.com, E-mail: agurevich@amag-inc.com [Advanced Measurement & Analysis Group Inc., Ontario (Canada); Gurevich, Y., E-mail: yuri.gurevich@daystartech.ca [Daystar Technologies Inc., Ontario (Canada); Selvaratnarajah, S.; Lopez, A., E-mail: sselvaratnarajah@amag-inc.com, E-mail: alopez@amag-inc.com [Advanced Measurement & Analysis Group Inc., Ontario (Canada)

    2013-07-01

    For the first time, direct measurements of the total reactor coolant flow and the flow distribution between the inner reactor zone and the outer zone were conducted using the non-intrusive clamp on ultrasonic cross-correlation flow meter, CROSSFLOW, developed and manufactured by Advanced Measurement & Analysis Group Inc. (AMAG). The measurements were performed at Bruce Power A Unit 1 on the Pump Discharge piping of the Primary Heat Transport (PHT) system during start-up. This paper describes installation processes, hydraulic testing, uncertainty analysis and traceability of the measurements to certified standards. (author)

  1. Fire fighting capability assessment program Bruce B NGS

    International Nuclear Information System (INIS)

    1995-05-01

    This is a report on the completion of work relating to the assessment of the capability of Bruce B NGS to cope with a large fire incident. This included an evaluation of an exercise scenario that would simulate a large fire incident and of their fire plans and procedures. Finally the execution of fire plans by Bruce B NGS, as demonstrated by their application of human and material resources during a simulated large fire, was observed. The fire fighting equipment and the personal protective clothing and associated equipment that was in use was all of good quality and in good condition. There had also been notable improvement in communications equipment. Similarly, the human resources that had been assigned to fire fighting and rescue crews and that were available were more than adequate. Use of a logical incident command system, and the adoption of proper policy and procedures for radio communications were equally significant improvements. Practice should correct the breakdowns that occurred in these areas during the exercise. As well, there remains a need for the development of policy on fire fighting and rescue operations with more depth and clarity. In summary, the key point to be recognized is the degree of improvement that has been realized since the previous evaluation in 1990. Clearly the Emergency Response Teams organization of Bruce B NGS is evolving into an effective fire fighting force. Providing that the deficiencies identified in this report are addressed satisfactorily, Fire Cross is confident that the organization will have the capability to provide rescue and fire fighting services that will satisfy the need. 2 figs

  2. Projecting Dynastic Majesty: State Ceremony in the Reign of Robert Bruce

    Directory of Open Access Journals (Sweden)

    Lucinda Dean

    2015-07-01

    Full Text Available Following the murder of his rival John Comyn on 10 February at Greyfriars in Dumfries, and the crisis this act incited, Robert the Bruce’s inaugural ceremony took place at Scone in late March 1306. Much about this ceremony is speculative; however, subsequent retrospective legitimisation of the Bruce claims to the royal succession would suggest that all possible means by which Robert’s inauguration could emulate his Canmore predecessors and outline his right to rule on a level playing field with his contemporaries were amplified, particularly where they served the common purpose of legitimising Robert’s highly questioned hold on power. Fourteenth-century Scottish history is inextricably entwined in the Wars of Independence, civil strife and an accelerated struggle for autonomous rule and independence. The historiography of this period is unsurprisingly heavily dominated by such themes and, while this has been offset by works exploring subjects such as the tomb of Bruce and the piety of the Bruce dynasty, the ceremonial history of this era remains firmly in the shadows. This paper will address three key ceremonies through which a king would, traditionally, make powerful statements of royal authority: the inauguration or coronation of Bruce; the marriage of his infant son to the English princess Joan of the Tower in 1328, and his extravagant funeral ceremony in 1329. By focusing thus this paper hopes to shed new light on the ‘dark and drublie days’ of fourteenth-century Scotland and reveal that glory, dynastic majesty and pleasure were as central to the Scottish monarchy in this era as war and political turbulence.

  3. Reactor noise analysis applications in NPP I and C systems

    Energy Technology Data Exchange (ETDEWEB)

    Gloeckler, O. [International Atomic Energy Agency, Wagramer Strosse 5, A-1400 Vienna, Austria Ontario Power Generation, 230 Westney Road South, Ajax, Ont. L1S 7R3 (Canada)

    2006-07-01

    Reactor noise analysis techniques are used in many NPPs on a routine basis as 'inspection tools' to get information on the dynamics of reactor processes and their instrumentation in a passive, non-intrusive way. The paper discusses some of the tasks and requirements an NPP has to take to implement and to use the full advantages of reactor noise analysis techniques. Typical signal noise analysis applications developed for the monitoring of the reactor shutdown system and control system instrumentation of the Candu units of Ontario Power Generation and Bruce Power are also presented. (authors)

  4. Methyl iodide trapping efficiency of aged charcoal samples from Bruce-A emergency filtered air discharge systems

    International Nuclear Information System (INIS)

    Wren, J.C.; Moore, C.J.; Rasmussenn, M.T.; Weaver, K.R.

    1999-01-01

    Charcoal filters are installed in the emergency filtered air discharge system (EFADS) of multiunit stations to control the release of airborne radioiodine in the event of a reactor accident. These filters use highly activated charcoal impregnated with triethylenediamine (TEDA). The TEDA-impregnated charcoal is highly efficient in removing radioiodine from flowing airstreams. The iodine-removal efficiency of the charcoal is presumed to deteriorate slowly with age, but current knowledge of this effect is insufficient to predict with confidence the performance of aged charcoal following an accident. Experiments were performed to determine the methyl iodide removal efficiency of aged charcoal samples taken from the EFADS of Ontario Hydro's Bruce-A nuclear generating station. The charcoal had been in service for ∼4 yr. The adsorption rate constant and capacity were measured under post-loss-of-coolant accident conditions to determine the efficiency of the aged charcoal. The adsorption rate constants of the aged charcoal samples were observed to be extremely high, yielding a decontamination factor (DF) for a 20-cm-deep bed of the aged charcoal >1 X 10 15 . The results show that essentially no CH 3 I would escape from a 20-cm-deep bed of the aged charcoal and that the requirement for a DF of 1000 for organic iodides in the EFADS filters would be exceeded by a tremendous margin. With such high DFs, the release of iodine from a 20-cm-deep bed would be virtually impossible to detect. The adsorption capacities observed for the aged charcoal samples approach the theoretical chemisorption capacity of 5 wt% TEDA charcoal, indicating that aging in the EFADS for 4 yr has had a negligible impact on the adsorption capacity. The results indicate that the short- and long-term performances of the aged charcoal in the EFADS of Bruce-A following an accident would still far exceed performance requirements. (author)

  5. Fuel defect detection, localization and removal in Bruce Power units 3 through 8

    International Nuclear Information System (INIS)

    Stone, R.; Armstrong, J.; Iglesias, F.; Oduntan, R.; Lewis, B.

    2005-01-01

    Fuel element defects are occurring in Bruce 'A' and Bruce 'B' Units. A root-cause investigation is ongoing, however, a solution is not yet in-hand. Fuel defect management efforts have been undertaken, therefore, in the interim. Fuel defect management tools are in-place for all Bruce Units. These tools can be categorized as analysis-based or operations-based. Analysis-based tools include computer codes used primarily for fuel defect characterization, while operations-based tools include Unit-specific delayed-neutron ('DN') monitoring systems and gaseous fission product ('GFP') monitoring systems. Operations-based tools are used for fuel defect detection, localization and removal activities. Fuel and Physics staff use defect detection, localization and removal methodologies and guidelines to disposition fuel defects. Methodologies are 'standardized' or 'routine' procedures for implementing analysis-based and operations-based tools to disposition fuel defects during Unit start-up operation and during operation at high steady-state power levels. Guidelines at present serve to supplement fuel defect management methodologies during Unit power raise. (author)

  6. AECB staff annual report of Bruce Heavy Water Plant operation for the year 1991

    International Nuclear Information System (INIS)

    1992-11-01

    Bruce Heavy Water Plant operation was acceptably safe in 1991. There were no breaches of any of the regulations issued under the authority of the Atomic Energy Control Act. There was one violation of the operating licence. For one hour on October 30, 1991, water leaving the plant contained more hydrogen sulphide than Ontario regulations allow. There was no threat to public health or safety or harm to the environment as a result of this violation. One worker was overcome by hydrogen sulphide. The worker did not lose consciousness, but had the symptoms of H 2 S poisoning. Ontario Hydro took actions to increase awareness of the Operating Policy and Principles at Bruce Heavy Water Plant during 1991. All personnel attended a training course, and Ontario Hydro is reviewing all Bruce Heavy Water Plant documentation to ensure it is consistent with the Operating Policies and Principles. Ontario Hydro met 13 of 15 safety-related system availability targets. The AECB is satisfied appropriate action is being taken to improve the performance of the other two systems. Ontario Hydro continued to put heavy emphasis on safety training; however, they did not meet some of their other training targets. Ontario Hydro completed all of the planned emergency exercises at Bruce Heavy Water Plant in 1991. (Author)

  7. AECB staff review of Bruce NGS 'A' operation for the year 1989

    International Nuclear Information System (INIS)

    1990-06-01

    The operation of the Bruce Nuclear Generating Station 'B' is monitored and licensing requirements are enforced by the Atomic Energy Control Board (AECB). This report records the conclusions of the AECB staff assessment of Bruce NGS 'A' during 1989 and the early part of 1990. Overall operation of the station met acceptable safety standards. Despite numerous problems and technical difficulties encountered, station management and supervisory personnel acted with due caution and made decisions in the interests of safety. There was evidence of improvement in a number of key areas, supported by pertinent indicators in the objective measures table. The extensive inspection and maintenance programs carried out during the year revealed the extent of component deterioration due to aging to be larger than expected. Hydrogen embrittlement of pressure tubes, erosion/corrosion of steam and feed water valves, heat exchanger tubes and piping, fouling of boilers and heat exchangers, and environmental damage of electrical equipment are examples. Continued aging of plant equipment and its potential for reducing the margins for safe operation must be taken into account by Ontario Hydro in establishing priorities and target dates for completion of actions to resolve identified problems at Bruce NGS 'A'. (2 tabs.)

  8. Primary separator replacement for Bruce Unit 8 steam generators

    International Nuclear Information System (INIS)

    Roy, S.B.; Mewdell, C.G.; Schneider, W.G.

    2000-01-01

    During a scheduled maintenance outage of Bruce Unit 8 in 1998, it was discovered that the majority of the original primary steam separators were damaged in two steam generators. The Bruce B steam generators are equipped with GXP type primary cyclone separators of B and W supply. There were localized perforations in the upper part of the separators and large areas of generalized wall thinning. The degradation was indicative of a flow related erosion corrosion mechanism. Although the unit- restart was justified, it was obvious that corrective actions would be necessary because of the number of separators affected and the extent of the degradation. Repair was not considered to be a practical option and it was decided to replace the separators, as required, in Unit 8 steam generators during an advanced scheduled outage. GXP separators were selected for replacement to minimize the impact on steam generator operating characteristics and analysis. The material of construction was upgraded from the original carbon steel to stainless steel to maximize the assurance of full life. The replacement of the separators was a first of a kind operation not only for Ontario Power Generation and B and W but also for all CANDU plants. The paper describes the degradations observed and the assessments, the operating experience, manufacture and installation of the replacement separators. During routine inspection in 1998, many of the primary steam separators in two of steam generators at Bruce Nuclear Division B Unit 8 were observed to have through wall perforations. This paper describes assessment of this condition. It also discusses the manufacture and testing of replacement primary steam separators and the development and execution of the replacement separator installation program. (author)

  9. Fuelling with flow at Bruce A

    Energy Technology Data Exchange (ETDEWEB)

    Gray, M G [Canadian General Electric Co. Ltd., Peterborough, ON (Canada)

    1997-12-31

    Fuelling with flow is the solution chosen by Bruce A to overcome the potential power pulse caused by a major inlet header failure. Fuelling with flow solves the problem by rearranging the core to place new fuel at the channel inlet and irradiated fuel at the channel outlet. The change has a significant impact on the Bruce A fuel handling system which was designed primarily to do on power fuelling in the against flow direction. Mechanical changes to the fuelling machine include a modification to the existing ram head and the replacement of standard fuel carriers with new fuelling with flow fuel carriers having the capability of opening the channel latch. Changes to the control system are more involved. A new set of operational sequences are required for both the upstream and downstream fuelling machines to achieve the fuel change. Steps based on sensitive ram push are added to reduce the risk of failing to close the latch at the correct position to properly support the fuel string. Changes are also required to the protective interlocks to allow fuelling with flow and reduce risk. A new fuel string supporting shield plug was designed and tested to reduce the risk of endplate cracking that could occur on the irradiated bundle that would have been supported directly by the channel latch. Some operational changes have been incorporated to accommodate this new shield plug. Considerable testing has been carried out on all aspects of fuel handling where fuelling with flow differs from the reference fuelling against flow. (author). 3 figs.

  10. Environmental health scoping study at Bruce Heavy Water Plant

    International Nuclear Information System (INIS)

    Prior, M.; Mostrom, M.; Coppock, R.; Florence, Z.

    1995-10-01

    There are concerns that hydrogen sulfide released from the Heavy Water Plant near Kincardine, Ontario may be the cause of the mortalities and morbidities observed in a nearby flock of sheep. The Philosopher's Wool sheep farm is about four kilometres south-southeast of the Bruce Heavy Water Plant. Ontario Hydro, the owner and operator of the Bruce Heavy Water Plant, claims that hydrogen sulphide emissions from the Bruce Heavy Water Plant are within regulatory limits and well below levels that cause harm. Accordingly, the Atomic Energy Control Board commissioned the Alberta Environmental Centre, Alberta Department of Environmental Protection, to develop a scoping study for this environmental health issue. The first objective was to describe a field investigation model to define clearly the environmental health and operation of the sheep farm. The second objective was to describe possible exposure patterns and develop a holistic environmental pathway model. If appropriate, the third study objective was to describe animal models of the actual situation to elucidate specific aspects of the environmental health concerns. It was not the objective of this report to provide a definitive answer to the present environmental health issue. Ontario Hydro provided data to the Alberta Environmental Centre, as di the sheep farmer, the attending veterinarian, the University of Guelph study team, and the Atomic Energy Control Board. A six-tiered strategy of sequential evaluations of the ovine health problem is based on the multiple-response paradigm. It assumes the observed ovine health results are the result of multiple effector events. Each tier constitutes a separate, but inter-related, study. Sequential evaluation and feedback of each tier allow sound scientific judgements and efficient use of resources. (author). 59 refs., 11 tabs., 22 figs

  11. Measurements of Sheath Temperature Profiles in Bruce LVRF Bundles Under Post-Dryout Heat Transfer Conditions in Freon

    International Nuclear Information System (INIS)

    Guo, Y.; Bullock, D.E.; Pioro, I.L.; Martin, J.

    2006-01-01

    An experimental program has been completed to study the behaviour of sheath wall temperatures in the Bruce Power Station Low Void Reactivity Fuel (shortened hereafter to Bruce LVRF) bundles under post-dryout (PDO) heat-transfer conditions. The experiment was conducted with an electrically heated simulator of a string of nine Bruce LVRF bundles, installed in the MR-3 Freon heat transfer loop at the Chalk River Laboratories (CRL), Atomic Energy of Canada Limited (AECL). The loop used Freon R-134a as a coolant to simulate typical flow conditions in CANDU R nuclear power stations. The simulator had an axially uniform heat flux profile. Two radial heat flux profiles were tested: a fresh Bruce LVRF profile and a fresh natural uranium (NU) profile. For a given set of flow conditions, the channel power was set above the critical power to achieve dryout, while heater-element wall temperatures were recorded at various overpower levels using sliding thermocouples. The maximum experimental overpower achieved was 64%. For the conditions tested, the results showed that initial dryout occurred at an inner-ring element at low flows and an outer-ring element facing internal subchannels at high flows. Dry-patches (regions of dryout) spread with increasing channel power; maximum wall temperatures were observed at the downstream end of the simulator, and immediately upstream of the mid-bundle spacer plane. In general, maximum wall temperatures were observed at the outer-ring elements facing the internal subchannels. The maximum water-equivalent temperature obtained in the test, at an overpower level of 64%, was significantly below the acceptable maximum temperature, indicating that the integrity of the Bruce LVRF will be maintained at PDO conditions. Therefore, the Bruce LVRF exhibits good PDO heat transfer performance. (authors)

  12. R. Bruce Merrifield and Solid-Phase Peptide Synthesis: A Historical Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, A R

    2007-12-04

    Bruce Merrifield, trained as a biochemist, had to address three major challenges related to the development and acceptance of solid-phase peptide synthesis (SPPS). The challenges were (1) to reduce the concept of peptide synthesis on a insoluble support to practice, (2) overcome the resistance of synthetic chemists to this novel approach, and (3) establish that a biochemist had the scientific credentials to effect the proposed revolutionary change in chemical synthesis. How these challenges were met is discussed in this article.

  13. After reliability centred maintenance. Preventive maintenance living program implementation at Bruce Power

    International Nuclear Information System (INIS)

    Harazim, Michael L.; Ferguson, Brian J.

    2003-01-01

    Industrial preventive maintenance (PM) programs represent a large part of plant O and M costs. PM Optimization (PMO) projects represent an effective mechanism for identifying unnecessary PM, extending PM intervals and infusing predictive maintenance (PdM) methods. However, once optimized, what process prevents the PM program from returning to a state of disarray? This is the function of a PM living program (PMLP). In 1997, an independent performance assessment identified concerns with the applicability and effectiveness of all Ontario Power Generation, Inc. (OPGI) PM programs. In response, OPGI instituted an Integrated Maintenance Program (IMP) including Reliability Centred Maintenance (RCM) and a PMLP. It should be noted that the PMLP was developed for the 3 OPGI nuclear Sites (i.e. Bruce, Pickering, and Darlington). Effective 1 May 2001, the Bruce Site has been leased to a group of investors lead by British Energy. This paper is written in historical context and therefore refers to the Bruce Site as part of OPGI. The PMLP is made up of five elements: 1) process control, 2) change control, 3) worker feedback, 4) program performance metrics, and 5) deferral module. A PMLP software tool, originally applied to Duke Energy nuclear plants, was enhanced and customized specifically for the OPGI PMLP, and then implemented at all three of OPGI's nuclear sites. The objective of the OPGI PMLP was to: Provide processes/procedures for continual optimization of all site PM tasks, Ensure effective and timely revision of PM tasks in the work management system, Ensure PM tasks remain applicable/effective at all times, Maintain and enhance PM consistency on a component, system and Site basis, Ensure that new predictive maintenance techniques are applied and integrated with the PM program, Ensure that mandated PM tasks are identified and executed, Provide a mechanism for craft feedback, Meet regulatory requirements for PM program effectiveness, and Provide PM task deferral

  14. Exocrine Gland-Secreting Peptide 1 Is a Key Chemosensory Signal Responsible for the Bruce Effect in Mice.

    Science.gov (United States)

    Hattori, Tatsuya; Osakada, Takuya; Masaoka, Takuto; Ooyama, Rumi; Horio, Nao; Mogi, Kazutaka; Nagasawa, Miho; Haga-Yamanaka, Sachiko; Touhara, Kazushige; Kikusui, Takefumi

    2017-10-23

    The Bruce effect refers to pregnancy termination in recently pregnant female rodents upon exposure to unfamiliar males [1]. This event occurs in specific combinations of laboratory mouse strains via the vomeronasal system [2, 3]; however, the responsible chemosensory signals have not been fully identified. Here we demonstrate that the male pheromone exocrine gland-secreting peptide 1 (ESP1) is one of the key factors that causes pregnancy block. Female mice exhibited high pregnancy failure rates upon encountering males that secreted different levels of ESP1 compared to the mated male. The effect was not observed in mice that lacked the ESP1 receptor, V2Rp5, which is expressed in vomeronasal sensory neurons. Prolactin surges in the blood after mating, which are essential for maintaining luteal function, were suppressed by ESP1 exposure, suggesting that a neuroendocrine mechanism underlies ESP1-mediated pregnancy failure. The single peptide pheromone ESP1 conveys not only maleness to promote female receptivity but also the males' characteristics to facilitate memorization of the mating partner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. An intelligent safety system concept for future CANDU reactors

    International Nuclear Information System (INIS)

    Hinds, H.W.

    1980-01-01

    A review of the current Regional Over-power Trip (ROPT) system employed on the Bruce NGS-A reactors confirmed the belief that future reactors should have an improved ROPT system. We are developing such an 'intelligent' safety system. It uses more of the available information on reactor status and employs modern computer technology. Fast triplicated safety computers compute maps of fuel channel power, based on readings from prompt-responding flux detectors. The coefficients for this calculation are downloaded periodically from a fourth supervisor computer. These coefficients are based on a detailed 3-D flux shape derived from physics data and other plant information. A demonstration of one of three safety channels of such a system is planned. (auth)

  16. Steam generator cleaning campaigns at Bruce A: 1993-1996

    International Nuclear Information System (INIS)

    Puzzuoli, F.V.; Leinonen, P.J.; Lowe, G.A.

    1997-01-01

    Boiler chemical cleaning (BOCC) and high-pressure water lancing operations were performed during the Bruce A 1993 Unit 3, 1994 Unit 3, 1995 Unit 1 and 1996 Unit 3 outages to remove secondary side deposits. High-pressure water lancing focused on three boiler areas: tube support plates, to remove broached hole deposits, hot leg U-bend supports to dislodge deposits contributing to boiler tube stress corrosion cracking and tube sheets with the aim of removing accumulated sludge piles and post BOCC insoluble residues. The chemical cleaning processes applied were modified versions of the one developed by the Electric Power Research Institute/Steam Generator Owners Group. During these BOCC operations, corrosion for several key boiler materials was monitored and was well below the specified allowances

  17. An appreciation of Bruce and Young's (1986) serial stage model of face naming after 25 years.

    Science.gov (United States)

    Hanley, J Richard

    2011-11-01

    The current status of Bruce and Young's (1986) serial model of face naming is discussed 25 years after its original publication. In the first part of the paper, evidence for and against the serial model is reviewed. It is argued that there is no compelling reason why we should abandon Bruce and Young's claim that recall of a name is contingent upon prior retrieval of semantic information about the person. The current status of the claim that people's names are more difficult to recall than the names of objects is then evaluated. Finally, an account of the anatomical location in the brain of Bruce and Young's three processing stages (face familiarity, retrieval of semantic information, retrieval of names) is suggested. In particular, there is evidence that biographical knowledge about familiar people is stored in the right anterior temporal lobes (ATL) and that the left temporal pole (TP) is heavily involved in retrieval of the names of familiar people. The issue of whether these brain areas play a similar role in object processing is also discussed. ©2011 The British Psychological Society.

  18. The status of improved pressurized heavy water reactor development - A new option for PHWR -

    International Nuclear Information System (INIS)

    Park, Tae Keun; Yeo, Ji Won

    1996-03-01

    Currently, the 900 MWe class Improved Pressurized Heavy Water Reactor (PHWR), which is a type of CANDU reactor based on the systems and components of operating CANDU plants, is under development. The improved PHWR has a 480 fuel channel calandria, uses 37 element natural uranium fuel bundles and has a single unit containment. Adaptation of a steel-lined containment structure and improved containment isolation systems permit a reduced exclusion area boundary (EAB) compared to the existing larger capacity CANDU reactors (Darlington, Bruce B). The improved PHWR buildings are arranged to achieve minimum spacing between reactor units. Plant safety and economy are increased through various design changes based on the operating experience of existing CANDU plants. 4 refs. (Author)

  19. Estimating the number of latent cracks in pressure tube joints at Bruce unit 2

    International Nuclear Information System (INIS)

    Schwarz, C.J.

    1983-10-01

    A model was built to estimate the number of hydride cracks which might have arisen in the rolled joints of Bruce unit 2 prior to the stress relieving operation. The model estimated that about 100 such cracks might exist. Since this estimate is based on experiments that were thermally cycled and since cycling did not occur in Bruce, prior to stress relieving the actual number is expected to be substantially lower. A sensitivity analysis of the model showed that it is sensitive to the assumptions of stress levels, probability of initiation and distribution of initiation time. A better estimate could be made if more data were available on these parameters under realistic conditions. Therefore, the recommendation is made to collect more information about these factors under realistic conditions

  20. Exercise capacity in Dutch children : New reference values for the Bruce treadmill protocol

    NARCIS (Netherlands)

    M.H.M. van der Cammen-van Zijp (Monique); H.J.G. van den Berg-Emons (Rita); S.P. Willemsen (Sten); H.J. Stam (Henk); D. Tibboel (Dick); H. IJsselstijn (Hanneke)

    2010-01-01

    textabstractThe Bruce treadmill protocol is suitable for children 4 years of age and older. Dutch reference values were established in 1987. We considered that children's exercise capacity has deteriorated due to changes in physical activity patterns and eating habits. We determined new reference

  1. Fuel channel design improvements for large CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Villamagna, A; Price, E G; Field, G J [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    From the initial designs used in NPD and Douglas point reactors, the CANDU fuel channel and its components have undergone considerable development. Two major designs have evolved: the Pickering/CANDU 6 design which has 12 fuel bundles in the core and where the new fuel is inserted into the inlet end, and the Bruce/Darlington design which has 13 bundles in the channel and where new fuel is inserted into the outlet end. In the development of a single unit CANDU reactor of the size of a Bruce or Darlington unit which would use a Darlington design calandria, the decision has been made to use the CANDU 6 fuel channel rather than the Darlington design. The CANDU 6 channel has provided excellent performance and will not encounter the degree of maintenance required for the Bruce/Darlington design. The channel design in turn influences the fuelling machine/fuel handling concepts required. The changes to the CANDU 6 fuel channel design to incorporate it in the large unit are small. In fact, the changes that are proposed relate to the desire to increase margins between pressure tube properties and design conditions or ameliorate the consequences of postulated accident conditions, rather than necessary adaptation to the larger unit. Better properties have been achieved in the pressure tube material resulting from alloy development program over the past 10 years. Pressure tubes can now he made with very low hydrogen concentrations so that the hydrogen picked up as deuterium will not exceed the terminal solid solubility for the in-core region in 30 years. The improvements in metal chemistry allow the production of high toughness tubes that retain a high level of toughness during service. A small increase in wall thickness will reduce the dimensional changes without significantly affecting burnup. Changes to increase safety margins from postulated accidents are concentrated on containing the consequences of pressure tube damage. The changes are concentrated on the calandria tube

  2. Industrial process heat from CANDU reactors

    International Nuclear Information System (INIS)

    Hilborn, J.S.; Seddon, W.A.; Barnstaple, A.G.

    1980-08-01

    It has been demonstrated on a large scale that CANDU reactors can produce industrial process steam as well as electricity, reliably and economically. The advantages of cogeneration have led to the concept of an Industrial Energy Park adjacent to the Bruce Nuclear Power Development in the province of Ontario. For steam demands between 300,000 and 500,00 lb/h (38-63 kg/s) and an annual load factor of 80%, the estimated cost of nuclear steam at the Bruce site boundary is $3.21/MBtu ($3.04GJ), which is at least 30% cheaper than oil-fired steam at the same site. The most promising near term application of nuclear heat is likely to be found within the energy-intensive chemical industry. Nuclear energy can substitute for imported oil and coal in the eastern provinces if the price remains competitive, but low cost coal and gas in the western provinces may induce energy-intensive industries to locate near those sources of energy. In the long term it may be feasible to use nuclear heat for the mining and extraction of oil from the Alberta tar sands. (auth)

  3. AECB staff annual report of Bruce A NGS for the year 1991

    International Nuclear Information System (INIS)

    1992-11-01

    In this report on Bruce A operations during 1991, AECB staff itemizes non-compliances with the operating licence. Non of the violations that occurred at Bruce A resulted in any significant threat to public safety or well-being. There were no exposures of workers to radiation in excess of the regulatory requirements; however, there have been instances of uncontrolled contaminated areas and spread of contamination in the station. Releases of radioactive material to the environment were much below target. The performance of the four special safety systems has been good, with the exception of shutdown system number two on Unit 3. A review of significant event reports and their causes has revealed an apparent lack of a system by which operations and maintenance work is verified as having been carried out correctly. There is a large backlog of maintenance work. Initiatives have been taken to correct this problem. Two important safety issues are discussed in detail. These are the chronic problem of leaking boiler tubes, and the potentially serious problem of fret marks on pressure tubes caused by abnormal fuel support. (Author)

  4. Restoration to serviceability of Bruce 'A' heat transfer equipment

    International Nuclear Information System (INIS)

    Gammage, D.; Machowski, C.; McGillivray, R.; Durance, D.; Kazimer, D.; Werner, K.

    2009-01-01

    Bruce Units 1 to 4 were shut down during the 1990s by the former Ontario Hydro, due in part to a long list of system and equipment deficiencies and concerns, including steam generator tube degradation as a consequence of the then-existing steam generator secondary side water chemistry conditions. Upon its creation in 2001, and following a program of condition assessment, Bruce Power was able to determine that Units 3 and 4 could return to service; but that Units 1 and 2 would require refurbishment. That Refurbishment Program, which is currently well advanced, included the re-assessment of the condition of equipment throughout the plant including the heat transfer equipment; and determination item-by-item as to what inspection, cleaning, repair, or even replacement would be required to put the equipment into a condition where it could be expected to operate reliably for the additional 30 years expected from the plant. Clearly the objective is to suitably restore the equipment to serviceability without doing more refurbishment work than is warranted - without replacing equipment except where absolutely necessary. The first task in such a program is determination of its scope - i.e. a listing of all heat exchangers. That list included everything from the steam generators (which required replacement, now completed), to much smaller heat exchangers in the heavy water upgrader systems (which were found to be in very good overall condition). There is also a very large number of other so-called 'balance-of-plant' heat exchangers; these include the maintenance coolers, moderator heat exchangers, shutdown coolers and a whole raft of smaller coolers - many of which are cooled directly by lake water with its potential for bio-fouling and 'BIC' (Biologically Induced Corrosion). This paper focuses primarily on the engineering assessment, inspection, repair and general refurbishment of the balance-of-plant heat exchangers. As will be discussed in the paper, the assessment of the

  5. Bruce Unit 2 lay-up engineering assessment

    International Nuclear Information System (INIS)

    Iley, D.

    1995-01-01

    The overall lay-up program initiated as a result of the strategic decision to shut down Bruce A unit 2 is briefly described as an introduction to the engineering assessment of the unit 2 systems. The assessment has identified the need to prepare 67 system and 9 equipment lay-up specifications. A summary of the selected system specifications is described. A complete summary and the specifications and the status of unit 2 systems and equipment required to support lay-up and/or the other three operating units is available on request due to the volume of the information. Some logistical details of the lay-up implementation plans, results, and problems to date demonstrate the complexity of the lay-up requirements for a nuclear unit in a multi-unit CANDU station. (author)

  6. Regional and site geological frameworks : proposed Deep Geologic Repository, Bruce County, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Raven, K.; Sterling, S.; Gaines, S.; Wigston, A. [Intera Engineering Ltd., Ottawa, ON (Canada); Frizzell, R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    The Nuclear Waste Management Organization is conducting geoscientific studies on behalf of Ontario Power Generation into the proposed development of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste (L and ILW) at the Bruce site, near Tiverton, Ontario. This paper presented a regional geological framework for the site that was based on a review of regional drilling; structural geology; paleozoic stratigraphy and sedimentology; a 3D geological framework model; a DGR geological site characterization model; bedrock stratigraphy and marker beds; natural fracture frequency data; and formation predictability. The studies have shown that the depth, thickness, orientation and rock quality of the 34 rock formations, members or units that comprise the 840 m thick Paleozoic bedrock sequence at the Bruce site are very uniform and predictable over distances of several kilometres. The proposed DGR will be constructed as an engineered facility comprising a series of underground emplacement rooms at a depth of 680 metres below ground within argillaceous limestones. The geoscientific studies are meant to provide a basis for the development of descriptive geological, hydrogeological and geomechanical models of the DGR site that will facilitate environmental and safety assessments. 11 refs., 3 tabs., 9 figs.

  7. Kuldlõvid Louise Bourgeois'le, Bruce Naumanile ja Itaalia paviljonile / Reet Varblane

    Index Scriptorium Estoniae

    Varblane, Reet, 1952-

    1999-01-01

    Veneetsia 48. rahvusvahelise kunstibiennaali preemiasaajad, premeeritud tööd, korralduskomitee ja žürii koosseis. Kuldlõvid: Louise Bourgeois, Bruce Nauman, Itaalia paviljon (Monica Bonvicini, Bruna Esposito, Luisa Lambri, Paola Pivi, Grazia Toderi ühisprojekt); kolm rahvusvahelist preemiat: Doug Aitken, Cai Gou-Qiang, Shirin Neshat; žürii tõstis esile: Georges Abeagbo, Eija-Liisa Ahtila, Katarzyna Kozura ? (Kozyra), Lee Bul; UNESCO preemia: Ghada Amer

  8. Hydraulic Testing of Silurian and Ordovician Strata at the Bruce Site

    Science.gov (United States)

    Beauheim, R. L.; Avis, J. D.; Chace, D. A.; Roberts, R. M.; Toll, N. J.

    2009-05-01

    Ontario Power Generation is proposing a Deep Geologic Repository (DGR) for the long-term management of its Low and Intermediate Level Radioactive Waste (L&ILW) within a Paleozoic-age sedimentary sequence beneath the Bruce Site near Tiverton, Ontario, Canada. The concept envisions that the DGR would be excavated at a depth of approximately 680 m within the Ordovician Cobourg Formation, a massive, dense, argillaceous limestone. A key attribute of the Bruce site is the extremely low permeabilities associated with the thick Ordovician carbonate and argillaceous bedrock formations that will host and enclose the DGR. Such rock mass permeabilities are thought sufficiently low to contribute toward or govern a diffusion-dominated transport regime. To support this concept, hydraulic testing was performed in 2008 and 2009 in two deep boreholes at the proposed repository site, DGR-3 and DGR-4. The hydraulic testing was performed using a straddle-packer tool with a 30.74-m test interval. Sequential tests were performed over the entire open lengths of the boreholes from the F Unit of the Silurian Salina Formation into the Ordovician Gull River Formation, a distance of approximately 635 m. The tests consisted primarily of pressure-pulse tests, with a few slug tests performed in several of the higher permeability Silurian units. The tests are analyzed using the nSIGHTS code, which allows the entire pressure history a test interval has experienced since it was penetrated by the drill bit to be included in the test simulation. nSIGHTS also allows the model fit to the test data to be optimized over an n-dimensional parameter space to ensure that the final solution represents a true global minimum rather than simply a local minimum. The test results show that the Ordovician-age strata above the Coboconk Formation (70+ m below the Cobourg) have average horizontal hydraulic conductivities of 1E-13 m/s or less. Coboconk and Gull River hydraulic conductivities are as high as 1E-11 m

  9. Chemistry control at Bruce NGS 'B' from constructed to commercial operation

    International Nuclear Information System (INIS)

    Roberts, J.G.

    1987-01-01

    Pre-operational storage chemistry and flushing of the secondary side is described. The approach devised for Bruce NGS 'B' Unit 6 was unique for an Ontario Hydro Nuclear Unit. The significance of the improved Construction installation and Quality Assurance procedures, combined with those of Operations is identified. Secondary side chemistry during both commissioning and later operation is reported. It will be shown that the application of ALARA (As Low As is Reasonably Achievable) concept has resulted in tighter chemical specifications being met

  10. Leak detection capability in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Azer, N.; Barber, D.H.; Boucher, P.J. [and others

    1997-04-01

    This paper addresses the moisture leak detection capability of Ontario Hydro CANDU reactors which has been demonstrated by performing tests on the reactor. The tests confirmed the response of the annulus gas system (AGS) to the presence of moisture injected to simulate a pressure tube leak and also confirmed the dew point response assumed in leak before break assessments. The tests were performed on Bruce A Unit 4 by injecting known and controlled rates of heavy water vapor. To avoid condensation during test conditions, the amount of moisture which could be injected was small (2-3.5 g/hr). The test response demonstrated that the AGS is capable of detecting and annunciating small leaks. Thus confidence is provided that it would alarm for a growing pressure tube leak where the leak rate is expected to increase to kg/hr rapidly. The measured dew point response was close to that predicted by analysis.

  11. Leak detection capability in CANDU reactors

    International Nuclear Information System (INIS)

    Azer, N.; Barber, D.H.; Boucher, P.J.

    1997-01-01

    This paper addresses the moisture leak detection capability of Ontario Hydro CANDU reactors which has been demonstrated by performing tests on the reactor. The tests confirmed the response of the annulus gas system (AGS) to the presence of moisture injected to simulate a pressure tube leak and also confirmed the dew point response assumed in leak before break assessments. The tests were performed on Bruce A Unit 4 by injecting known and controlled rates of heavy water vapor. To avoid condensation during test conditions, the amount of moisture which could be injected was small (2-3.5 g/hr). The test response demonstrated that the AGS is capable of detecting and annunciating small leaks. Thus confidence is provided that it would alarm for a growing pressure tube leak where the leak rate is expected to increase to kg/hr rapidly. The measured dew point response was close to that predicted by analysis

  12. Validation of DRAGON side-step method for Bruce-A restart Phase-B physics tests

    International Nuclear Information System (INIS)

    Shen, W.; Ngo-Trong, C.; Davis, R.S.

    2004-01-01

    The DRAGON side-step method, developed at AECL, has a number of advantages over the all-DRAGON method that was used before. It is now the qualified method for reactivity-device calculations. Although the side-step-method-generated incremental cross sections have been validated against those previously calculated with the all-DRAGON method, it is highly desirable to validate the side-step method against device-worth measurements in power reactors directly. In this paper, the DRAGON side-step method was validated by comparison with the device-calibration measurements made in Bruce-A NGS Unit 4 restart Phase-B commissioning in 2003. The validation exercise showed excellent results, with the DRAGON code overestimating the measured ZCR worth by ∼5%. A sensitivity study was also performed in this paper to assess the effect of various DRAGON modelling techniques on the incremental cross sections. The assessment shows that the refinement of meshes in 3-D and the use of the side-step method are two major reasons contributing to the improved agreement between the calculated ZCR worths and the measurements. Use of different DRAGON versions, DRAGON libraries, local-parameter core conditions, and weighting techniques for the homogenization of tube clusters inside the ZCR have a very small effect on the ZCR incremental thermal absorption cross section and ZCR reactivity worth. (author)

  13. Fighting with Reality: Considering Mark Johnson's Pragmatic Realism through Bruce Lee's Jeet Kune Do Method

    Science.gov (United States)

    Miller, Alexander David

    2015-01-01

    This dissertation considers the supportive and complementary relation between Mark Johnson's embodied realism and Bruce Lee's Jeet Kune Do as a philosophical practice. In exploring this relationship, the emphasis on one's embodiment condition and its relationship with metaphor and self-expression are the primary focus. First, this work involves…

  14. Improved synthesis of (3E,6Z,9Z)-1,3,6,9-nonadecatetraene, attraction inhibitor of bruce spanworm, Operophtera bruceata, to pheromone traps for monitoring winter moth, Operophtera brumata.

    Science.gov (United States)

    Khrimian, Ashot; Lance, David R; Mastro, Victor C; Elkinton, Joseph S

    2010-02-10

    The winter moth, Operophtera brumata (Lepidoptera: Geometridae), is an early-season defoliator that attacks a wide variety of hardwoods and, in some cases, conifers. The insect is native to Europe but has become established in at least three areas of North America including southeastern New England. The female-produced sex attractant pheromone of the winter moth was identified as (3Z,6Z,9Z)-1,3,6,9-nonadecatetraene (1), which also attracts a native congener, the Bruce spanworm, Operophtera bruceata . Dissection, or (for certainty) DNA molecular testing, is required to differentiate between males of the two species. Thus, a trapping method that is selective for winter moth would be desirable. A geometric isomer of the pheromone, (3E,6Z,9Z)-1,3,6,9-nonadecatetraene (2), can reportedly inhibit attraction of Bruce spanworm to traps without affecting winter moth catch, but use of the pheromone and inhibitor together has not been optimized, nor has the synthesis of the inhibitor. This paper presents two new syntheses of the inhibitor (3E,6Z,9Z)-1,3,6,9-nonadecatetraene based on the intermediate (3Z,6Z)-3,6-hexadecadien-1-ol (4), which has also been utilized in the synthesis of the pheromone. The syntheses combine traditional acetylenic chemistry and Wittig olefination reactions. In one approach, 2 was synthesized in 80% purity (20% being pheromone 1), and in the second, tetraene 2 of 96% purity (and free of 1) was produced in 25% overall yield from dienol 4. The last method benefitted from a refined TEMPO-mediated PhI(OAc)(2) oxidation of 4 and a two-carbon homologation of the corresponding aldehyde 7.

  15. Impact of the 37M fuel design on reactor physics characteristics

    International Nuclear Information System (INIS)

    Perez, R.; Ta, P.

    2013-01-01

    For CANDU nuclear reactors, aging of the Heat Transport System (HTS) leads to, among other effects, a reduction on the Critical Heat Flux (CHF) and dryout margin. In an effort to mitigate the impact of aging of the HTS on safety margins, Bruce Power is introducing a design change to the standard 37-element fuel bundle known as the modified 37-element fuel bundle, or 37M for short. As part of the overall design change process it was necessary to assess the impact of the modified fuel bundle design on key reactor physics parameters. Quantification of this impact on lattice cell properties, core reactivity properties, etc., was reached through a series of calculations using state-of-the-art lattice and core physics models, and comparisons against results for the standard fuel bundle. (author)

  16. Phytotoxicology section investigation in the vicinity of the Bruce Nuclear Power Development, the Pickering Nuclear Generating Station and the Darlington Nuclear Generating Station, in October, 1989

    International Nuclear Information System (INIS)

    1991-02-01

    The Phytotoxicology Section, Air Resources Branch is a participant in the Pickering and Bruce Nuclear Contingency Plans. The Phytotoxicology Emergency Response Team is responsible for collecting vegetation samples in the event of a nuclear emergency at any of the nuclear generating stations in the province. As part of its responsibility the Phytotoxicology Section collects samples around the nuclear generating stations for comparison purposes in the event of an emergency. Because of the limited frequency of sampling, the data from the surveys are not intended to be used as part of a regulatory monitoring program. These data represent an effort by the MOE to begin to establish a data base of tritium concentrations in vegetation. The Phytotoxicology Section has carried out seven surveys in the vicinity of Ontario Hydro nuclear generating stations since 1981. Surveys were conducted for tritium in snow in the vicinity of Bruce Nuclear Power Development (BNPD), February, 1981; tritium in cell-free water of white ash in the vicinity of BNPD, September, 1981; tritium in snow in the vicinity of BNPD, March, 1982; tritium in tree sap in the vicinity of BNPD, April, 1982; tritium in tree sap in the vicinity of BNPD, April, 1984, tritium in the cell-free water of white ash in the vicinity of BNPD, September, 1985; and, tritium in cell-free water of grass in the vicinity of Pickering Nuclear Generation Station (PNGS), October 1986. In all cases a pattern of decreasing tritium levels with increasing distance from the stations was observed. In October, 1989, assessment surveys were conducted around Bruce Nuclear Power Development, the Pickering Nuclear Generating Station and the new Darlington Nuclear Generating Station (DNGS). The purpose of these surveys was to provide baseline data for tritium in cell-free water of grass at all three locations at the same time of year. As none of the reactor units at DNGS had been brought on line at the time of the survey, this data was to be

  17. Training courses at VR-1 reactor

    International Nuclear Information System (INIS)

    Sklenka, L.; Kropik, M.

    2006-01-01

    This paper describes one of the main purposes of the VR-1 training reactor utilization - i.e. extensive educational program. The educational program is intended for the training of university students and selected nuclear power plant personnel. The training courses provide them experience in reactor and neutron physics, dosimetry, nuclear safety and operation of nuclear facilities. At present, the training course participants can go through more than 20 standard experimental exercises; particular exercises for special training can be prepared. Approximately 200 university students become familiar with the reactor (lectures, experiments, experimental and diploma works, etc.) every year. About 12 different faculties from Czech universities use the reactor. International co-operation with European universities in Germany, Hungary, Austria, Slovakia, Holland and UK is frequent. The VR-1 reactor takes also part in Eugene Wigner Course on Reactor Physics Experiments in the framework of European Nuclear Educational Network (ENEN) association. Recently, training courses for Bulgarian research reactor specialists supported by IAEA were carried out. An attractive program including demonstration of reactor operation is prepared also for high school students. Every year, more than 1500 high school students come to visit the reactor, as do many foreigner visitors. (author)

  18. Current status of the Thai Research Reactor (TRR-1/M1)

    International Nuclear Information System (INIS)

    Chueinta, Siripone; Julanan, Mongkol; Charncanchee, Decharchai

    2006-01-01

    The first Thai Research Reactor, TRR-1 went critical on 27 October 1962 at the maximum power of 1 MW. It was located at Office of Atoms for Peace (OAP) in Bangkok. Since then, TRR-1 was continuously operated and eventually shut down in 1975. Plate type, high-enriched uranium (HEU) and U 3 O 8 A1 cladding were used as the reactor fuel. Light water was used as moderator and coolant as well. In 1975, because of the problem from fuel supplier and also to supporting the Treaty of Non Proliferation of Nuclear Weapon or NPT, TRR-1 was shut down for modification. The reactor core and control system were disassembled and replaced by TRIGA Mark III. A new core was a hexagonal core shape designed by General Atomics (GA). Afterwards, TRR-1 was officially renamed to the Thai Research Reactor-1/Modification 1 (TRR-1/M1). TRR-1/M1 is a multipurpose swimming pool type reactor with nominal power of 2 MW. The TRR-1/M1 uses uranium enriched at 20% in U-235 (LEU) and ZrH alloy as fuel. Light water is also used as coolant and moderator. At present, the reactor is operating with core No.14. The reactor has been serving for various kinds of utilization namely, radioisotope production, neutron activation analysis, beam experiments and reactor physics experiments. (author)

  19. Annual report on JEN-1 reactor; Informe periodico del Reactor JEN-1 correspondiente al ano 1971

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J

    1972-07-01

    In the annual report on the JEN-1 reactor the main features of the reactor operations and maintenance are described. The reactor has been critical for 1831 hours, what means 65,8% of the total working time. Maintenance and pool water contamination have occupied the rest of the time. The maintenance schedule is shown in detail according to three subjects. The main failures and reactor scrams are also described. The daily maximum values of the water activity are given so as the activity of the air in the reactor hall. (Author)

  20. Review of Ontario Hydro Pickering 'A' and Bruce 'A' nuclear generating stations' accident analyses

    International Nuclear Information System (INIS)

    Serdula, K.J.

    1988-01-01

    Deterministic safety analysis for the Pickering 'A' and Bruce 'A' nuclear generating stations were reviewed. The methodology used in the evaluation and assessment was based on the concept of 'N' critical parameters defining an N-dimensional safety parameter space. The reviewed accident analyses were evaluated and assessed based on their demonstrated safety coverage for credible values and trajectories of the critical parameters within this N-dimensional safety parameter space. The reported assessment did not consider probability of occurrence of event. The reviewed analyses were extensive for potential occurrence of accidents under normal steady-state operating conditions. These analyses demonstrated an adequate assurance of safety for the analyzed conditions. However, even for these reactor conditions, items have been identified for consideration of review and/or further study, which would provide a greater assurance of safety in the event of an accident. Accident analyses based on a plant in a normal transient operating state or in an off-normal condition but within the allowable operating envelope are not as extensive. Improvements in demonstrations and/or justifications of safety upon potential occurrence of accidents would provide further assurance of adequacy of safety under these conditions. Some events under these conditions have not been analyzed because of their judged low probability; however, accident analyses in this area should be considered. Recommendations are presented relating to these items; it is also recommended that further study is needed of the Pickering 'A' special safety systems

  1. Water lancing of Bruce-A Unit 3 and 4 steam generators

    International Nuclear Information System (INIS)

    Puzzuoli, F.V.; Murchie, B.; Allen, S.

    1995-01-01

    During the Bruce-A 1993 Unit 4 and 1994 Unit 3 outages, three water lancing operations were carried out along with chemical cleaning as part of the station boiler refurbishment program. The water lancing activities focused on three boiler areas.. 1) support plates to clean partially or completely blocked broach holes and prevent boiler water level oscillations, 2) hot leg U-bend supports (HLUBS) to remove deposits contributing to boiler tube stress corrosion cracking (SCC) and 3) tube sheets to dislodge sludge piles that potentially threaten boiler tube integrity and to flush out post chemical cleaning insoluble residues. The combination of water lancing and chemical cleaning effectively reduced broach hole blockage from up to 100% to 0-10% or less. As a result, boilers in Units 3 and 4 will operate for some time to come without concerns over water level oscillations. However, deposits remained in most tube support plate land areas. (author)

  2. Uncertainties in gas dispersion at the Bruce heavy water plant

    International Nuclear Information System (INIS)

    Alp, E.; Ciccone, A.

    1995-07-01

    There have been concerns regarding the uncertainties in atmospheric dispersion of gases released from the Bruce Heavy Water Plant (BHWP). The concern arises due to the toxic nature of H 2 S, and its combustion product SO 2 . In this study, factors that contribute to the uncertainties, such as the effect of the shoreline setting, the potentially heavy gas nature of H 2 S releases, and concentration fluctuations, have been investigated. The basic physics of each of these issues has been described along with fundamental modelling principles. Recommendations have been provided on available computer models that would be suitable for modelling gas dispersion in the vicinity of the BHWP. (author). 96 refs., 4 tabs., 25 figs

  3. Uncertainties in gas dispersion at the Bruce heavy water plant

    Energy Technology Data Exchange (ETDEWEB)

    Alp, E; Ciccone, A [Concord Environmental Corp., Downsview, ON (Canada)

    1995-07-01

    There have been concerns regarding the uncertainties in atmospheric dispersion of gases released from the Bruce Heavy Water Plant (BHWP). The concern arises due to the toxic nature of H{sub 2}S, and its combustion product SO{sub 2}. In this study, factors that contribute to the uncertainties, such as the effect of the shoreline setting, the potentially heavy gas nature of H{sub 2}S releases, and concentration fluctuations, have been investigated. The basic physics of each of these issues has been described along with fundamental modelling principles. Recommendations have been provided on available computer models that would be suitable for modelling gas dispersion in the vicinity of the BHWP. (author). 96 refs., 4 tabs., 25 figs.

  4. Coffee Cups, Canoes, Airplanes and the Lived Experience: Reflections on the Works of Bertram (Chip) Bruce

    Science.gov (United States)

    Haythornthwaite, Caroline

    2014-01-01

    A career spent in research, teaching, and engagement with community entails a lifetime of assemblage of meaning from people, resources, technologies and experience. In his work, Bertram (Chip) Bruce has long engaged with how we create such an assemblage of meaning from our formal and found learning, and from the "lived experience" of…

  5. Development of restriction enzyme analyses to distinguish winter moth from bruce spanworm and hybrids between them

    Science.gov (United States)

    Marinko Sremac; Joseph Elkinton; Adam. Porter

    2011-01-01

    Elkinton et. al. recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which consists of a single compound also used by Bruce spanworm, O. bruceata (Hulst), the North American congener of winter moth. Our...

  6. Bundle 13 position verification tool description and on-reactor use

    Energy Technology Data Exchange (ETDEWEB)

    Onderwater, T G [Canadian General Electric Co. Ltd., Peterborough, ON (Canada)

    1997-12-31

    To address the Power Pulse problem, Bruce B uses Gap: a comprehensive monitoring program by the station to maintain the gap between the fuel string and the upstream shield plug. The gap must be maintained within a band. The gap must not be so large as to allow excessive reactivity increases or cause high impact forces during reverse flow events. It should also not be so small as to cause crushed fuel during rapid, differential reactor/fuel string cool downs. Rapid cool downs are infrequent. The Bundle 13 Position Verification Tool (BPV tool) role is to independently measure the position of the upstream bundle of the fuel string. The measurements are made on-reactor, on-power and will allow verification of the Gap Management system`s calculated fuel string position. This paper reviews the reasons for developing the BPV tool. Design issues relevant to safe operation in the fuelling machine, fuel channel and fuel handling equipment are also reviewed. Tests ensuring no adverse effects on channel pressure losses are described and actual on-reactor, on-power results are discussed. (author). 4 figs.

  7. Bundle 13 position verification tool description and on-reactor use

    International Nuclear Information System (INIS)

    Onderwater, T.G.

    1996-01-01

    To address the Power Pulse problem, Bruce B uses Gap: a comprehensive monitoring program by the station to maintain the gap between the fuel string and the upstream shield plug. The gap must be maintained within a band. The gap must not be so large as to allow excessive reactivity increases or cause high impact forces during reverse flow events. It should also not be so small as to cause crushed fuel during rapid, differential reactor/fuel string cool downs. Rapid cool downs are infrequent. The Bundle 13 Position Verification Tool (BPV tool) role is to independently measure the position of the upstream bundle of the fuel string. The measurements are made on-reactor, on-power and will allow verification of the Gap Management system's calculated fuel string position. This paper reviews the reasons for developing the BPV tool. Design issues relevant to safe operation in the fuelling machine, fuel channel and fuel handling equipment are also reviewed. Tests ensuring no adverse effects on channel pressure losses are described and actual on-reactor, on-power results are discussed. (author). 4 figs

  8. Annual report on JEN-1 reactor

    International Nuclear Information System (INIS)

    Montes, J.

    1972-01-01

    In the annual report on the JEN-1 reactor the main features of the reactor operations and maintenance are described. The reactor has been critical for 1831 hours, what means 65,8% of the total working time. Maintenance and pool water contamination have occupied the rest of the time. The maintenance schedule is shown in detail according to three subjects. The main failures and reactor scrams are also described. The daily maximum values of the water activity are given so as the activity of the air in the reactor hall. (Author)

  9. Adapting Scott and Bruce's General Decision-Making Style Inventory to Patient Decision Making in Provider Choice.

    Science.gov (United States)

    Fischer, Sophia; Soyez, Katja; Gurtner, Sebastian

    2015-05-01

    Research testing the concept of decision-making styles in specific contexts such as health care-related choices is missing. Therefore, we examine the contextuality of Scott and Bruce's (1995) General Decision-Making Style Inventory with respect to patient choice situations. Scott and Bruce's scale was adapted for use as a patient decision-making style inventory. In total, 388 German patients who underwent elective joint surgery responded to a questionnaire about their provider choice. Confirmatory factor analyses within 2 independent samples assessed factorial structure, reliability, and validity of the scale. The final 4-dimensional, 13-item patient decision-making style inventory showed satisfactory psychometric properties. Data analyses supported reliability and construct validity. Besides the intuitive, dependent, and avoidant style, a new subdimension, called "comparative" decision-making style, emerged that originated from the rational dimension of the general model. This research provides evidence for the contextuality of decision-making style to specific choice situations. Using a limited set of indicators, this report proposes the patient decision-making style inventory as valid and feasible tool to assess patients' decision propensities. © The Author(s) 2015.

  10. Proceedings of the 1. international conference on CANDU fuel handling systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Besides information on fuel loading and handling systems for CANDU and PHWR reactors, the 25 papers in these proceedings also include some on dry storage, modification to fuel strings at Bruce A, and on the SLAR (spacer location and repositioning) system for finding and moving garter springs. The individual papers have been abstracted separately.

  11. Proceedings of the 1. international conference on CANDU fuel handling systems

    International Nuclear Information System (INIS)

    1996-01-01

    Besides information on fuel loading and handling systems for CANDU and PHWR reactors, the 25 papers in these proceedings also include some on dry storage, modification to fuel strings at Bruce A, and on the SLAR (spacer location and repositioning) system for finding and moving garter springs. The individual papers have been abstracted separately

  12. Expected changes in competency assurance at Bruce Power over next decade

    Energy Technology Data Exchange (ETDEWEB)

    Horton, C., E-mail: chip.horton@brucepower.com [Bruce Power, Tiverton, Ontario (Canada)

    2013-07-01

    There will be ten expected changes in competency assurance at Bruce Power over next decade. These changes are: outage worker supplemental staff change; entry level power worker union staff; self-paced process & software training; electronic confirmation of qualifications; JIT built into processes for low frequency tasks; more terminal objective back to fundamentals vs fundamentals build to terminal objective instructional design; more learning by practice / doing in a safe environment; SAT emphasis move from analysis, design & development to evaluation & maintenance of task lists (clearly tied to working rights); more formal tacit knowledge capture programs, systematic movement of knowledge from tacit to explicit; more breadth & depth training driven by demographic changes.

  13. Expected changes in competency assurance at Bruce Power over next decade

    International Nuclear Information System (INIS)

    Horton, C.

    2013-01-01

    There will be ten expected changes in competency assurance at Bruce Power over next decade. These changes are: outage worker supplemental staff change; entry level power worker union staff; self-paced process & software training; electronic confirmation of qualifications; JIT built into processes for low frequency tasks; more terminal objective back to fundamentals vs fundamentals build to terminal objective instructional design; more learning by practice / doing in a safe environment; SAT emphasis move from analysis, design & development to evaluation & maintenance of task lists (clearly tied to working rights); more formal tacit knowledge capture programs, systematic movement of knowledge from tacit to explicit; more breadth & depth training driven by demographic changes.

  14. Safety operation of training reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, K.

    2001-01-01

    There are three nuclear research reactors in the Czech Republic in operation now: light water reactor LVR-15, maximum reactor power 10 MW t , owner and operator Nuclear Research Institute Rez; light water zero power reactor LR-0, maximum reactor power 5 kW t , owner and operator Nuclear Research Institute Rez and training reactor VR-1 Sparrow, maximum reactor power 5 kW t , owner and operate Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague. The training reactor VR-1 Vrabec 'Sparrow', operated at the Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, was started up on December 3, 1990. Particularly it is designed for training the students of Czech universities, preparing the experts for the Czech nuclear programme, as well as for certain research work, and for information programmes in the nuclear programme, as well as for certain research work, and for information programmes in sphere of using the nuclear energy (public relations). (author)

  15. Stress corrosion cracking experience in steam generators at Bruce NGS

    International Nuclear Information System (INIS)

    King, P.J.; Gonzalez, F.; Brown, J.

    1993-01-01

    In late 1990 and through 1991, units 1 and 2 at the Bruce A Nuclear Generating Station (BNGS-A) experienced a number of steam generator tube leaks. Tube failures were identified by eddy current to be circumferential cracks at U-bend supports on the hot-leg side of the boilers. In late 1991, tubes were removed from these units for failure characterization. Two active failure modes were found: corrosion fatigue in both units 1 and 2 and stress corrosion cracking (SCC) in unit 2. In unit 2, lead was found in deposits, on tubes, and in cracks, and the cracking was mixed-mode: transgranular and intergranular. This convincingly indicated the involvement of lead in the stress corrosion cracking failures. A program of inspection and tube removals was carried out to investigate more fully the extent of the problem. This program found significant cracking only in lead-affected boilers in unit 2, and also revealed a limited extent of non-lead-related intergranular stress corrosion cracking in other boilers and units. Various aspects of the failures and tube examinations are presented in this paper. Included is discussion of the cracking morphology, measured crack size distributions, and chemical analysis of tube surfaces, crack faces, and deposits -- with particular emphasis on lead

  16. Hourly and seasonable variation in catch of winter moths and bruce spanworm in pheromone-baited traps

    Science.gov (United States)

    Joseph Elkinton; Natalie Leva; George Boettner; Roy Hunkins; Marinko. Sremac

    2011-01-01

    Elkinton et al. recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which, as far as it is known, consists of a single compound that is also used by Bruce spanworm, the North American congener of winter moth, O....

  17. Extensive utilization of training reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, Karel; Sklenka, Lubomir

    2003-01-01

    Full text: The training reactor VR-1 Vrabec ('Sparrow'), operated at the Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, was started up on December 3, 1990. Particularly, it is designed and operated for training of students from Czech universities, preparing of experts for the Czech nuclear programme, as well as for certain research and development work, and for information programmes in the sphere of non-military nuclear energy use (public relation). The VR-1 training reactor is a pool-type light-water reactor based on enriched uranium with maximum thermal power 1kWth and short time period up to 5kW th . The moderator of neutrons is light demineralized water (H 2 O) that is also used as a reflector, a biological shielding, and a coolant. Heat is removed from the core with natural convection. The reactor core contains 14 to 18 fuel assemblies IRT-3M, depending on the geometric arrangement and kind of experiments to be performed in the reactor. The core is accommodated in a cylindrical stainless steel vessel - pool, which is filled with water. UR-70 control rods serve the reactor control and safe shutdown. Training of the VR-1 reactor provides students with experience in reactor and neutron physics, dosimetry, nuclear safety, and nuclear installation operation. Students from technical universities and from natural sciences universities come to the reactor for training. Approximately 200 university students are introduced to the reactor (lectures, experiments, experimental and diploma works, etc.) every year. About 12 different faculties from Czech universities use the reactor. International co-operation with European universities in Germany, Hungary, Austria, Slovakia, Holland and UK is frequent. Practical Course on Reactor Physics in Framework of European Nuclear Engineering Network has been newly introduced. Currently, students can try out more than 20 experimental exercises. Further training courses have been included

  18. Plutonium Consumption Program, CANDU Reactor Project final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-31

    DOE is investigating methods for long term dispositioning of weapons grade plutonium. One such method would be to utilize the plutonium in Mixed OXide (MOX) fuel assemblies in existing CANDU reactors. CANDU (Canadian Deuterium Uranium) reactors are designed, licensed, built, and supported by Atomic Energy of Canada Limited (AECL), and currently use natural uranium oxide as fuel. The MOX spent fuel assemblies removed from the reactor would be similar to the spent fuel currently produced using natural uranium fuel, thus rendering the plutonium as unattractive as that in the stockpiles of commercial spent fuel. This report presents the results of a study sponsored by the DOE for dispositioning the plutonium using CANDU technology. Ontario Hydro`s Bruce A was used as reference. The fuel design study defined the optimum parameters to disposition 50 tons of Pu in 25 years (or 100 tons). Two alternate fuel designs were studied. Safeguards, security, environment, safety, health, economics, etc. were considered. Options for complete destruction of the Pu were also studied briefly; CANDU has a superior ability for this. Alternative deployment options were explored and the potential impact on Pu dispositioning in the former Soviet Union was studied. An integrated system can be ready to begin Pu consumption in 4 years, with no changes required to the reactors other than for safe, secure storage of new fuel.

  19. Plutonium Consumption Program, CANDU Reactor Project final report

    International Nuclear Information System (INIS)

    1994-01-01

    DOE is investigating methods for long term dispositioning of weapons grade plutonium. One such method would be to utilize the plutonium in Mixed OXide (MOX) fuel assemblies in existing CANDU reactors. CANDU (Canadian Deuterium Uranium) reactors are designed, licensed, built, and supported by Atomic Energy of Canada Limited (AECL), and currently use natural uranium oxide as fuel. The MOX spent fuel assemblies removed from the reactor would be similar to the spent fuel currently produced using natural uranium fuel, thus rendering the plutonium as unattractive as that in the stockpiles of commercial spent fuel. This report presents the results of a study sponsored by the DOE for dispositioning the plutonium using CANDU technology. Ontario Hydro's Bruce A was used as reference. The fuel design study defined the optimum parameters to disposition 50 tons of Pu in 25 years (or 100 tons). Two alternate fuel designs were studied. Safeguards, security, environment, safety, health, economics, etc. were considered. Options for complete destruction of the Pu were also studied briefly; CANDU has a superior ability for this. Alternative deployment options were explored and the potential impact on Pu dispositioning in the former Soviet Union was studied. An integrated system can be ready to begin Pu consumption in 4 years, with no changes required to the reactors other than for safe, secure storage of new fuel

  20. Two new species of the stenopodidean shrimp genus Spongiocaris Bruce & Baba, 1973 (Crustacea: Decapoda: Spongicolidae) from the Indo-West Pacific.

    Science.gov (United States)

    Komai, Tomoyuki; Grave, Sammy De; Saito, Tomomi

    2016-05-17

    Two new species of the deep-water spongicolid genus Spongiocaris Bruce & Baba, 1973, are described and illustrated from two localities in the Indo-West Pacific. Spongiocaris panglao n. sp. is described on the basis of material from the Bohol Sea, the Philippines, at depths of 220-731 m. Spongiocaris tuerkayi n. sp. is described on the basis of material from Atlantis Bank in the southwestern Indian Ocean at depths of 743-1053 m. Among eight known congeners, both new species appear close to S. semiteres Bruce & Baba, 1973, differing in the rostral length and armature, shape of the carapace, telsonal armature, development of the grooming apparatus of the first pereopod and shape of the third pereopod chela. An identification key to the species currently assigned to Spongiocaris is presented.

  1. Evaluation of a pilot fish handling system at Bruce NGS 'A'

    International Nuclear Information System (INIS)

    Griffiths, J.S.

    1985-10-01

    A pilot fish recovery system using a Hidrostal fish pump was tested in the Bruce NGS 'A' forebay during June, 1984. Despite low forebay fish concentrations, the system was capable of capturing 97,000 alewife/day (3900 kg) if operated continuously. Post-pumping survival averaged 97%. It is estimated that a single pump could handle alewife runs in the 40,000 to 70,000 kg range, but multiple pumps or a single larger pump would be required to assure station protection from the largest runs (>100,000 kg). Results indicate that tank/trailer return of pumped fish is feasible, but other alternatives for returning fish to Lake Huron are also being considered

  2. Moving ring reactor 'Karin-1'

    International Nuclear Information System (INIS)

    1983-12-01

    The conceptual design of a moving ring reactor ''Karin-1'' has been carried out to advance fusion system design, to clarify the research and development problems, and to decide their priority. In order to attain these objectives, a D-T reactor with tritium breeding blanket is designed, a commercial reactor with net power output of 500 MWe is designed, the compatibility of plasma physics with fusion engineering is demonstrated, and some other guideline is indicated. A moving ring reactor is composed mainly of three parts. In the first formation section, a plasma ring is formed and heated up to ignition temperature. The plasma ring of compact torus is transported from the formation section through the next burning section to generate fusion power. Then the plasma ring moves into the last recovery section, and the energy and particles of the plasma ring are recovered. The outline of a moving ring reactor ''Karin-1'' is described. As a candidate material for the first wall, SiC was adopted to reduce the MHD effect and to minimize the interaction with neutrons and charged particles. The thin metal lining was applied to the SiC surface to solve the problem of the compatibility with lithium blanket. Plasma physics, the engineering aspect and the items of research and development are described. (Kako, I.)

  3. The determination of neutron energy spectrum in reactor core C1 of reactor VR-1 Sparrow

    Energy Technology Data Exchange (ETDEWEB)

    Vins, M. [Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic)], E-mail: vinsmiro@seznam.cz

    2008-07-15

    This contribution overviews neutron spectrum measurement, which was done on training reactor VR-1 Sparrow with a new nuclear fuel. Former nuclear fuel IRT-3M was changed for current nuclear fuel IRT-4M with lower enrichment of 235U (enrichment was reduced from former 36% to 20%) in terms of Reduced Enrichment for Research and Test Reactors (RERTR) Program. Neutron spectrum measurement was obtained by irradiation of activation foils at the end of pipe of rabit system and consecutive deconvolution of obtained saturated activities. Deconvolution was performed by computer iterative code SAND-II with 620 groups' structure. All gamma measurements were performed on Canberra HPGe. Activation foils were chosen according physical and nuclear parameters from the set of certificated foils. The Resulting differential flux at the end of pipe of rabit system agreed well with typical spectrum of light water reactor. Measurement of neutron spectrum has brought better knowledge about new reactor core C1 and improved methodology of activation measurement. (author)

  4. Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics

    International Nuclear Information System (INIS)

    Henry, A.F.

    1980-01-01

    Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented

  5. Occupational analysis for the Angra-1 reactor

    International Nuclear Information System (INIS)

    Moraes, A.

    1991-01-01

    Due to several modifications which were imposed to its time schedule during construction, the Angra-1 reactor did not enter to the grid in 1982 as it was initially foreseen. These modifications occurred due to an unforeseen scenario that was verified in steam generators (serie D-3, Westinghouse) of power stations with similar configurations which had been installed in other countries such as Ringhals-3 (Sweden), Almaraz-1 (Spain) and McGuine-1 (USA). So, among the main events that occurred in the Angra-1 reactor, which were of interest from the point of view of radiation protection, it could be pointed out the personnel monitoring, and the occupational exposure measurements at different reactor power, during the reactor fueling and during modification and tests performed at the steam generators and at ducts of the primary coolant circuit. (author)

  6. Reactor operations at SAFARI-1

    International Nuclear Information System (INIS)

    Vlok, J.W.H.

    2003-01-01

    A vigorous commercial programme of isotope production and other radiation services has been followed by the SAFARI-1 research reactor over the past ten years - superimposed on the original purpose of the reactor to provide a basic tool for nuclear research, development and education to the country at an institutional level. A combination of the binding nature of the resulting contractual obligations and tighter regulatory control has demanded an equally vigorous programme of upgrading, replacement and renovation of many systems in order to improve the safety and reliability of the reactor. Not least among these changes is the more effective training and deployment of operations personnel that has been necessitated as the operational demands on the reactor evolved from five days per week to twenty four hours per day, seven days per week, with more than 300 days per year at full power. This paper briefly sketches the operational history of SAFARI-1 and then focuses on the training and structuring currently in place to meet the operational needs. There is a detailed step-by-step look at the operator?s career plan and pre-defined milestones. Shift work, especially the shift cycle, has a negative influence on the operator's career path development, especially due to his unavailability for training. Methods utilised to minimise this influence are presented. The increase of responsibilities regarding the operation of the reactor, ancillaries and experimental facilities as the operator progresses with his career are discussed. (author)

  7. AECB staff annual assessment of the Bruce Heavy Water Plant for the year 1994

    International Nuclear Information System (INIS)

    1995-06-01

    This report is the Atomic Energy Control Board staff assessment of the operation of Bruce Heavy Water Plant (BHWP) during 1994. BHWP operation was acceptably safe in 1994. At BHWP, Ontario Hydro did not breach any of the regulations issued under the authority of the Atomic Energy Control Act. There were four minor violations of the BHWP Operating Licence. In all cases, Ontario Hydro exceeded Ontario Hydro government limits for releases to the environment. None of the events threatened public health or the environment. 2 figs

  8. Analysis of effects of calandria tube uncovery under severe accident conditions in CANDU reactors

    International Nuclear Information System (INIS)

    Rogers, J.T.; Currie, T.C.; Atkinson, J.C.; Dick, R.

    1983-01-01

    A study is being undertaken for the Atomic Energy Control Board to assess the thermal and hydraulic behaviour of CANDU reactor cores under accident conditions more severe than those normally considered in the licensing process. In this paper, we consider the effects on a coolant channel of the uncovery of a calandria tube by moderator boil-off following a LOCA in a Bruce reactor unit in which emergency cooling is ineffective and the moderator heat sink is impaired by the failure of the moderator cooling system. Calandria tube uncovery and its immediate consequences, as described here, constitute only one part of the entire accident sequence. Other aspects of this sequence as well as results of the analysis of the other accident sequences studied will be described in the final report on the project and in later papers

  9. Control maintenance training program for special safety systems at Bruce B

    International Nuclear Information System (INIS)

    Reinwald, G.

    1997-01-01

    It was recognized from the early days of commissioning of Bruce B that Control Maintenance staff would require a level of expertise to be able to maintain Special Safety Systems in proper running order. In the early 80's this was achieved through hands on experience during the original commissioning, troubleshooting and placing of the various systems in service. Control maintenance procedures were developed and implemented as the new systems came available for commissioning, as were operating manuals,training manuals etc. Under the development of the Maintenance Manager, a Conduct of Maintenance section was organized. One of the responsibilities of this section was to develop a series of Maintenance Administrative Procedures (MAPs) that set the standards for maintenance activities including training

  10. Extensive utilization of training reactor VR-1

    International Nuclear Information System (INIS)

    Karel, Matejka; Lubomir, Sklenka

    2005-01-01

    This paper describes one of the main purposes of the VR-1 training reactor utilisation - i.e. extensive educational programme. The educational programme is intended for the training of university students (all technical universities in Czech Republic) and selected nuclear power plant personnel. At the present, students can go through more than 20 different experimental exercises. An attractive programme including demonstration of reactor operation is prepared also for high school students. Moreover, research and development works and information programmes proceed at the VR-1 reactor as well

  11. AECB staff annual assessment of the Bruce Heavy Water Plant for the year 1995

    International Nuclear Information System (INIS)

    1996-06-01

    The Atomic Energy Control Board's staff annual assessment of the operation of Bruce Heavy Water Plant (BHWP) during 1995. BHWP operation was acceptably safe in 1995. At BHWP, Ontario Hydro complied with the regulations issued under the authority of the Atomic Energy Control Act. AECB is satisfied that BHWP did not pose any undue risk to public health or safety or to the environment. Ontario Hydro met all safety system and safety related system availability targets at BHWP in 1995. The emergency response capability is satisfactory. 2 figs

  12. Stability analysis of the Ghana Research Reactor-1 (GHARR-1)

    International Nuclear Information System (INIS)

    Della, R.; Alhassan, E.; Adoo, N.A.; Bansah, C.Y.; Nyarko, B.J.B.; Akaho, E.H.K.

    2013-01-01

    Highlights: • We developed a theoretical model to study the stability of the Ghana Research Reactor-1. • The neutronics transfer function was described by the point kinetics model for a single group of delayed neutrons. • The thermal hydraulics transfer function was based on the modified lumped parameter concept. • A computer code, RESA (REactor Stability Analysis) was developed. • Results show that the closed-loop transfer function was stable and well damped for variable operating power levels. - Abstract: A theoretical model has been developed to study the stability of the Ghana Research Reactor one (GHARR-1). The closed-loop transfer function of GHARR-1 was established based on the model, which involved the neutronics and the thermal hydraulics transfer functions. The reactor kinetics was described by the point kinetics model for a single group of delayed neutrons, whilst the thermal hydraulics transfer function was based on the modified lumped parameter concept. The inherent internal feedback effect due to the fuel and the coolant was represented by the fuel temperature coefficient and the moderator temperature coefficient respectively. A computer code, RESA (REactor Stability Analysis), entirely in Java was developed based on the model for systems analysis. Stability analysis of the open-loop transfer function of GHARR-1 based on the Nyquist criterion and Bode diagrams using RESA, has shown that the closed-loop transfer function was marginally stable for variable operating power levels. The relative stability margins of GHARR-1 were also identified

  13. Explorability and predictability of the paleozoic sedimentary sequence beneath the Bruce nuclear site

    International Nuclear Information System (INIS)

    Parmenter, A.; Jensen, M.; Crowe, R.; Raven, K.

    2011-01-01

    Ontario Power Generation (OPG) is proposing to develop a Deep Geologic Repository (DGR) for the long-term management of its Low and Intermediate Level Waste (L&ILW) at the Bruce nuclear site located in the Municipality of Kincardine, Ontario. A 4-year program of geoscientific studies to assess the suitability of the 850 m thick Palaeozoic age sedimentary sequence beneath the site to host the DGR was completed in 2010. The studies provide evidence of a geologic setting in which the DGR concept would be safely implemented at a nominal depth of 680 m within the argillaceous limestone of the Cobourg Formation. This paper describes the geologic framework of the Bruce nuclear site with a focus on illustrating the high degree of stratigraphic continuity and traceability at site-specific and regional scales within the Ordovician sediments proposed to host and enclose the DGR. As part of the site-specific studies, a program of deep drilling/coring (6 boreholes) and in-situ testing through the sedimentary sequence was completed from 4 drill sites situated beyond the DGR footprint, approximately 1 km apart. Core logging reveals that the stratigraphic sequence comprises 34 distinct bedrock formations/members/units consistent with the known regional stratigraphic framework. These layered sedimentary formations dip 0.6 o (~10 m/km) to the southwest with highly uniform thicknesses both at the site- and regional-scale, particularly, the Ordovician sediments, which vary on the order of metres. The occurrence of steeply-dipping faults within the sedimentary sequence is not revealed through surface outcrop fracture mapping, micro-seismic (M ≥ 1) monitoring, inclined borehole coring or intersection of hydrothermal type dolomitized reservoir systems. Potential fault structures, interpreted from a 2-D seismic survey, were targeted by angled boreholes which found no evidence for their existence. Formation specific continuity is also evidence by the lateral traceability of physical rock

  14. Estimation of radioactivity in structural materials of ETRR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Imam, M [National Center for Nuclear Safety and Radiation Control Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Precise knowledge of the thermal neutron flux in the different structural materials of a reactor is necessary to estimate the radioactive inventory in these materials that are needed in any decommissioning study of the reactor. ETRR-1 is a research reactor that went critical on 2/1691. In spite of this long age of the reactor, the effective operation time of this reactor is very short since the reactor was shutdown for long periods. Because of this long age one may think of reactor decommissioning. For this purpose, the radioactivity of the reactor structural materials was estimated. Apart from the reactor core, the important structural materials in the ETRR-1 are the reactor tank, shielding concrete, and the graphite thermal column. The thermal neutron flux was determined by the monte Carlo method in these materials and the isotope inventory and the radioactivity were calculated by the international code ORIGEN-JR. 1 fig.

  15. Hydrogeological evidence of low rock mass permeabilities in ordovician strata: Bruce nuclear site

    International Nuclear Information System (INIS)

    Beauheim, R.L.; Roberts, R.M.; Avis, J.D.; Heagle, D.

    2011-01-01

    One of the key attributes contributing to the suitability of the Bruce nuclear site to host a Deep Geologic Repository (DGR) for Low and Intermediate Level Waste (L&ILW) is the low permeability of the Ordovician host rock and of the overlying and underlying strata. The permeability of these rocks is so low that diffusion is a much more significant transport mechanism than advection. Hydrogeological evidence for the low permeability of the Ordovician strata comes from two principal sources, direct and indirect. Direct evidence of low permeability is provided by the hydraulic testing performed in deep boreholes, DGR-2 through DGR-6. Straddle-packer hydraulic testing was performed in 57 Ordovician intervals in these five holes. The testing provided continuous coverage using ~30-m straddle intervals of the Ordovician strata exposed in boreholes DGR-2, DGR-3, DGR-4, and DGR-5, while testing was targeted on discontinuous 10.2-m intervals in DGR-6. The average horizontal hydraulic conductivities of these intervals determined from the tests ranged from 2E-16 to 2E-10 m/s. The Lower Member of the Cobourg Formation, which is the proposed host formation for the DGR, was found to have a horizontal hydraulic conductivity of 4E-15 to 3E-14 m/s. The only horizontal hydraulic conductivity values measured that were greater than 2E-12 m/s are from the Black River Group, located at the base of the Ordovician sedimentary sequence. Indirect evidence of low permeability is provided by the observed distribution of hydraulic heads through the Ordovician sequence. Hydraulic head profiles, defined by hydraulic testing and confirmed by Westbay multilevel monitoring systems, show significant underpressures relative to a density-compensated hydrostatic condition throughout most of the Ordovician strata above the Black River Group, whereas the Black River Group is overpressured. Pressure differences of 1 MPa or more are observed between adjacent intervals in the boreholes. The observed

  16. SORO post-simulations of Bruce A Unit 4 in-core flux detector verification tests

    Energy Technology Data Exchange (ETDEWEB)

    Braverman, E.; Nainer, O. [Bruce Power, Nuclear Safety Analysis and Support Dept., Toronto, Ontario (Canada)]. E-mail: Evgeny.Braverman@brucepower.com; Ovidiu.Nainer@brucepower.com

    2004-07-01

    During the plant equipment assessment prior to requesting approval for restart of Bruce A Units 3 and 4 it was determined that all in-core flux detectors needed to be replaced. Flux detector verification tests were performed to confirm that the newly installed detectors had been positioned according to design specifications and that their response closely follows the calculated flux shape changes caused by selected reactivity mechanism movements. By comparing the measured and post-simulated RRS and NOP detector responses to various perturbations, it was confirmed that the new detectors are wired and positioned correctly. (author)

  17. The predictable nature of the Paleozoic sedimentary sequence beneath the Bruce nuclear site in Southern Ontario, Canada

    International Nuclear Information System (INIS)

    Parmenter, Andrew; Jensen, Mark; Crowe, Richard

    2012-01-01

    Document available in extended abstract form only. A key aspect of a Deep Geologic Repository (DGR) safety case is the ability to develop and communicate an understanding of the geologic stability and resilience to change at time frames relevant to demonstrating repository performance. As part of an on-going Environmental Assessment, Ontario Power Generation (OPG) recently completed site-specific investigations within an 850 m thick Paleozoic sedimentary sequence beneath the Bruce nuclear site for the proposed development of a DGR for Low and Intermediate Level Waste (L and ILW). As envisioned, the shaft-accessed DGR would be excavated at a nominal depth of 680 m within the low permeability Ordovician argillaceous limestone of the Cobourg Formation, which is overlain by more than 200 m of low permeability Ordovician shale. The geo-scientific investigations revealed a relatively undeformed and laterally continuous architecture within the sedimentary sequence at the repository scale (1.5 km 2 ) and beyond. This paper explores the predictable nature of the sedimentary sequence that has contributed to increasing confidence in an understanding of the spatial distribution of groundwater system properties, deep groundwater system evolution and natural barrier performance. Multi-disciplinary geo-scientific investigations of the Bruce nuclear site were completed in 3 phases between 2006 and 2010. The sub-surface investigations included a deep drilling, coring and in-situ testing program and, the completion of a 19.7 km (9 lines) 2-D seismic reflection survey. The drilling program involved 6 (150 mm dia.) deep boreholes (4-vertical; 2 inclined) that were extended through the sedimentary sequence from 4 drill sites, arranged around the 0.3 km 2 footprint of the proposed repository. The more than 3.8 km of rock core (77 mm dia.) retrieved have provided, in part, a strong basis to understand bedrock lithology and mineralogy, facies assemblages, structure, and oil and gas

  18. Operation characteristics and conditions of training reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, K.; Kolros, A.; Polach, S.; Sklenka, L.

    1994-01-01

    The first 3 years of operation of the VR-1 training reactor are reviewed. This period includes its physical start-up (preparation, implementation, results) and operation development as far as the current operating configuration of the reactor core. The physical start-up was commenced using a reactor core referred to as AZ A1, whose physical parameters had been verified by calculation and whose configuration was based on data tested experimentally on the SR-0 reactor at Vochov. The next operating core, labelled AZ A2, was already prepared during the test operation of the VR-1 reactor. Its configuration was such that both of the main horizontal channels, radial and tangential, could be employed. The configuration that followed, AZ A3, was an intermediate step before testing the graphite side reflector. The current reactor core, labelled AZ A3 G, was obtained by supplementing the previous core with a one-sided graphite side reflector. (Z.S.). 2 tabs., 11 figs., 2 refs

  19. Bruce's Magnificent Quartet: Inquiry, Community, Technology and Literacy--Implications for Renewing Qualitative Research in the Twenty-First Century

    Science.gov (United States)

    Davidson, Judith

    2014-01-01

    Bruce and Bishop's community informatics work brings forward four critical concepts: inquiry, community, technology, and literacy. These four terms serve as the basis for a discussion of qualitative research in the twenty-first century--what is lacking and what is needed. The author suggests that to resolve the tensions or challenges…

  20. Burnup measurements at the RECH-1 research reactor

    International Nuclear Information System (INIS)

    Henriquez, C.; Navarro, G.; Pereda, C.; Torres, H.; Pena, L.; Klein, J.; Calderon, D.; Kestelman, A.J.

    2002-01-01

    The Chilean Nuclear Energy Commission has decided to produce LEU fuel elements for the RECH-1 research reactor. During December 1998, the Fuel Fabrication Plant delivered the first four fuel elements, called leaders, to the RECH-1 reactor. The set was introduced into the reactor's core, following the normal routine, but performing a special follow-up on their behavior inside and outside the core. In order to measure the burn-up of the leader fuel elements, it was decided to develop a burn-up measurements system to be installed into the RECH-1 reactor pool, and to decline the use of a similar system, which operates in a hot cell. The main reason to build this facility was to have the capability to measure the burn-up of fuel elements without waiting for long decay period. This paper gives a brief description of the facility to measure the burn-up of spent fuel elements installed into the reactor pool, showing the preliminary obtained spectra and briefly discussing them. (author)

  1. The supply of steam from Candu reactors for heavy water production

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1975-09-01

    By 1980, Canada's energy needs for D 2 O production will be 420 MW of electrical energy and 3600 MW of thermal energy (as steam). The nature of the process demands that this energy supply be exceptionally stable. Today, production plants are located at or close to nuclear electricity generating sites where advantage can be taken of the low cost of both the electricity and steam produced by nuclear reactors. Reliability of energy supply is achieved by dividing the load between the multiple units which comprise the sites. The present and proposed means of energy supply to the production sites at the Bruce Heavy Water Plant in Ontario and the La Prade Heavy Water Plant in Quebec are described. (author)

  2. Chemical cleaning of the Bruce A steam generators

    International Nuclear Information System (INIS)

    Le Surf, J.E.; Mason, J.B.; Symmons, W.R.; Yee, F.

    1992-01-01

    Deposits consisting mostly of oxides and salts and copper metal in the secondary side of the steam generators at the Bruce A Nuclear Generating Station have caused instability in the steam flow and loss of heat capacity, resulting in derating of the units and reduction in power production. Attempts to remove the deposits by pressure pulsing were unsuccessful. Water lancing succeeded in restoring stability, but restrictions on access prevented complete lancing of the tube support plate holes. Chemical cleaning using a modified EPRI-SGOG process has been selected as the best method of removing the deposits. A complete chemical cleaning system has been designed and fabricated for Ontario Hydro by Pacific Nuclear, with support from AECL CANDU and their suppliers. The system consists of self contained modules which are easily interconnected on site. The whole process is controlled from the Control Module, where all parameters are monitored on a computer video screen. The operator can control motorized valves, pumps and heaters from the computer key board. This system incorporates all the advanced technologies and design features that have been developed by Pacific Nuclear in the design, fabrication and operation of many systems for chemical decontamination and cleaning of nuclear systems. 2 figs

  3. 75 FR 3217 - J&T Hydro Company; H. Dean Brooks and W. Bruce Cox; Notice of Application for Transfer of License...

    Science.gov (United States)

    2010-01-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 11392-009] J&T Hydro Company; H. Dean Brooks and W. Bruce Cox; Notice of Application for Transfer of License and Soliciting Comments and Motions To Intervene January 12, 2010. On October 30, 2009, J&T Hydro Company (transferor) and...

  4. AECB staff annual report of Bruce B NGS for the year 1991

    International Nuclear Information System (INIS)

    1992-11-01

    In this account of Bruce NGS B station operation during the year 1991 AECB staff have pointed out non-compliances with the operating licence, which have been few in number and minor in degree of seriousness. There were no exposures of workers to radiation in excess of regulatory limits, but there were contraventions of the ALARA principle. Releases of radioactive material to the environment have been well below the target levels. The performance of the four special safety systems has been good, except for the containment system. A review of the significant event reports and the causes of the events has revealed a lack of a system by which operations and maintenance work could be verified to have been carried out as intended. In operations and maintenance the backlog of work to be done to regularize temporary changes to equipment (removal of jumpers), to carry out preventive maintenance (call-ups), and to make repairs (deficiency reports) has increased from that of the previous year. On the other hand, the station has reduced the number of temporary operating instructions (operating memos) to half of what it was last year. The fretting of steam generator tubes reported last year has not become worse. Nevertheless, inspections continue and modifications to the tube supports are underway. Overall plant chemistry has been acceptable. An Ontario Hydro assessment of the station found the station management's expectations for maintaining the margin of safety in the plant had not been properly communicated to all levels of station staff. The station is now attempting to correct this. Infractions of work protection procedures, which were the subject of many significant events, have led to changes in the procedures and resulted in a major training effort. AECB staff believe that Ontario Hydro has continued to operate Bruce NGS B in a safe manner, but have pointed out areas where improvement is required. (Author)

  5. Training and research on the nuclear reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, K.

    1998-01-01

    The VR-1 training reactor is a light water reactor of the pool type using enriched uranium as the fuel. The moderator is demineralized light water, which also serves as the neutron reflector, biological shielding, and coolant. Heat evolved during the fission process is removed by natural convection. The reactor is used in the education of students in the field of reactor and neutron physics, dosimetry, nuclear safety, and instrumentation and control systems for nuclear facilities. Although primarily intended for students in various branches of technology (power engineering, nuclear engineering, physical engineering), this specialized facility is also used by students of faculties educating future natural scientists and teachers. Typical tasks trained at the VR-1 reactor include: measurement of delayed neutrons; examination of the effect of various materials on the reactivity of the reactor; measurement of the neutron flux density by various procedures; measurement of reactivity by various procedures; calibration of reactor control rods by various procedures; approaching the critical state; investigation of nuclear reactor dynamics; start-up, control and operation of a nuclear reactor; and investigation of the effect of a simulated nucleate boil on reactivity. In addition to the education of university-level students, training courses are also organized for specialists in the Czech nuclear programme

  6. Thermal and hydraulic characteristics of the JEN-1 Reactor; Caracteristicas hidraulicas y termicas del Reactor JEN-1

    Energy Technology Data Exchange (ETDEWEB)

    Otra Otra, F; Leira Rey, G

    1971-07-01

    In this report an analysis is made of the thermal and hydraulic performances of the JEN-1 reactor operating steadily at 3 Mw of thermal power. The analysis is made separately for the core, main heat exchanger and cooling tower. A portion of the report is devoted to predict the performances of these three main components when and if the reactor was going to operate at a power higher than the maximum 3 Mw attainable today. Finally an study is made of the unsteady operation of the reactor, focusing the attention towards the pumping characteristics and the temperatures obtained in the fuel elements. Reference is made to several digital calculation programmes that nave been developed for such purpose. (Author) 21 refs.

  7. IEA-R1 reactor - Spent fuel management

    International Nuclear Information System (INIS)

    Mattos, J.R.L. De

    1996-01-01

    Brazil currently has one Swimming Pool Research Reactor (IEA-R1) at the Instituto de Pesquisas Energeticas e Nucleares - Sao Paulo. The spent fuel produced is stored both at the Reactor Pool Storage Compartment and at the Dry Well System. The present situation and future plans for spent fuel storage are described. (author). 3 refs, 2 figs, 2 tabs

  8. Thermal gradients caused by the CANDU moderator circulation

    International Nuclear Information System (INIS)

    Mohindra, V.K.; Vartolomei, M.A.; Scharfenberg, R.

    2008-01-01

    The heavy water moderator circulation system of a CANDU reactor, maintains calandria moderator temperature at power-dependent design values. The temperature differentials between the moderator and the cooler heavy water entering the calandria generate thermal gradients in the reflector and moderator. The resultant small changes in thermal neutron population are detected by the out-of-core ion chambers as small, continuous fluctuations of the Log Rate signals. The impact of the thermal gradients on the frequency of the High Log Rate fluctuations and their amplitude is relatively more pronounced for Bruce A as compared to Bruce B reactors. The root cause of the Log Rate fluctuations was investigated using Bruce Power operating plant information data and the results of the investigation support the interpretation based on the thermal gradient phenomenon. (author)

  9. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K. [Oak Ridge National Lab., TN (United States)

    1994-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results.

  10. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K.

    1994-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results

  11. Modernization and Refurbishment of the RECH-1 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Daie, J. [Nuclear Application Department, Chilean Nuclear Energy Commission (CCHEN), Santiago (Chile)

    2014-08-15

    The Chilean Nuclear Energy Commission (Comisión Chilena de Energía Nuclear, or CCHEN) has operated the RECH-1 research reactor since 1974. This reactor is located at La Reina Nuclear Centre in Santiago, Chile. It is a pool type reactor using LEU MTR fuel assemblies, light water as moderator and coolant, and beryllium as reflector. The reactor has been operated at the nominal power of 5 MW in a continuous shift of 20 hours per week, 48 weeks per year. The main utilizations of the RECH-1 reactor are radioisotope production and neutron activation analysis. Among the most relevant refurbishment and modernization campaigns undertaken at the reactor are: full core conversion to the use of LEU fuel, replacement of the cooling tower, improvement of the containment building by changing the doors and gates and by a better sealant for the penetrations, introduction of an additional source of water by connecting the raw water supply system to the emergency cooling system, improvement of the emergency ventilation system, introduction of a fire detection and alarm system for detection and mitigation to protect the I&C racks, introduction of a radioactive liquid release for those generated at the reactor, introduction of a delay tank degasification system and renewal of the environmental monitoring system. At present we are assessing the possibility of replacing the old analog electronics of control for new digital systems. Detailed descriptions of these diverse activities are presented in the paper. (author)

  12. Extensive utilisation of VR-1 reactor for nuclear education and training

    International Nuclear Information System (INIS)

    Rataj, J.

    2010-01-01

    The paper presents utilisation of the VR-1 reactor for nuclear education and training at national and international level. VR-1 reactor has been operating by the Czech Technical University since December 1990. The reactor is a pool-type light water reactor based on enriched uranium (19.7% 235 U) with maximum thermal power 1kW and for short time period up to 5kW. The moderator of neutrons is light water, which is also used as a reflector, a biological shielding and a coolant. Heat is removed from the core by natural convection. The pool disposition of the reactor facilitates access to the core, setting and removing of various experimental samples and detectors, easy and safe handling of fuel assemblies. The reactor core can contain from 17 to 21 fuel assemblies IRT-4M, depending on the geometric arrangement and kind of experiments to be performed in the reactor. The reactor is equipped with several experimental devices; e.g. horizontal, radial and tangential channels used to take out a neutron beam, reactivity oscillator for dynamics study and bubble boiling simulator. The reactor has been used very efficiently especially for education and training of university students and NPP's specialists for more than 18 years. The VR-1 reactor is utilised within various national and international activities such as Czech Nuclear Education Network (CENEN), European Nuclear Education Network and also Eastern European Research Reactor Initiative (EERRI). The reactor is well equipped for education and training not only by the experimental facility itself but also by incessant development of training methods and improvement of education experiments. The education experiments can be combined into training courses attended by students according to their study specialization and knowledge level. The training programme is aimed to the reactor and neutron physics, dosimetry, nuclear safety, and control of nuclear installations. Every year, approximately 250 university students undergo

  13. Mediador cultural ou antropólogo do mal: Bruce Albert e o caso de “A queda do céu”

    Directory of Open Access Journals (Sweden)

    Karla Alessandra Alves de Souza Ferreira

    2017-07-01

    Full Text Available Este estudo desenvolve uma análise crítica sobre o fragmento “Postscriptum, quando eu é um outro (e vice-versa”, apresentado na obra A Queda do céu: palavras de um xamã yanomami. O livro foi pensado por um xamã yanomami; Davi Kopenawa, e produzido por um etnólogo francês Bruce Albert. Problematizo o processo de produção do livro onde dois universos culturais se encontram, uma produção literária indígena do povo Yanomami que apresenta uma coautoria. Essa análise busca investigar a postura epistêmica de Bruce Albert como mediador cultural ou “antropólogo do mal” no processo de elaboração do livro, a fim de levantar questionamentos sobre o ato tradutório e suas implicações, destacando os desa os e contribuições apresentadas nesse processo. Nesta direção, esse artigo se fundamenta nos pensamentos da história cultural.

  14. Primary Water Chemistry Control during a Planned Outage at Bruce Power

    International Nuclear Information System (INIS)

    Ma, Guoping; Nashiem, Rod; Matheson, Shane; Yabar, Berman; Harper, Bill; Roberts, John G.

    2012-09-01

    Bruce Power has developed a comprehensive outage water chemistry program, which includes both primary and secondary chemistry requirements during planned outages. The purpose of the program is to emphasize the chemistry requirements during outages and subsequent start-ups in order to maintain the integrity of the systems, minimise activity transport and radiation fields, reduce the Carbon-14 release, and to ensure that the requirements are integrated with the outage management program. Prior to a planned outage, Station Chemical Technical Sections identify outage chemistry requirements to Operations and Outage Planning and ensure that work necessary to correct system chemistry issues is within outage work scope. The outage water chemistry program provides direction for establishing alternative sampling locations as demanded by the system configuration during the outage and identifies outage prerequisites for nuclear system purification capabilities. These requirements are contained in an outage checklist. The paper mainly highlights the primary water chemistry issues and chemistry control strategies during planned outages and discusses challenges and successes. (authors)

  15. Annual report on JEN-1 and JEN-2 Reactors; Informe periodico de Reactores JEN-1 y JEN-2 correpondiente al ano 1972

    Energy Technology Data Exchange (ETDEWEB)

    Montes Ponce de Leon, J.

    1974-07-01

    In the annual report on the JEN-1 and JEN-2 reactors the main fractures of the reactor operations and maintenance are described. The reactor has been in operation for 2188 hours, what means 74% of the total working time. Maintenance and periodical tests have occupied the rest of the time. Maintenance operations are shown according to three main subjects, the main failures so as the reactor scrams are also described. Different date relating with radiation level and health Physics are also included. (Author)

  16. Rotary Bed Reactor for Chemical-Looping Combustion with Carbon Capture. Part 1: Reactor Design and Model Development

    KAUST Repository

    Zhao, Zhenlong

    2013-01-17

    Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently, almost all of the research has been focused on developing CLC-based interconnected fluidized-bed reactors. In this two-part series, a new rotary reactor concept for gas-fueled CLC is proposed and analyzed. In part 1, the detailed configuration of the rotary reactor is described. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet and exit. Two purging sectors are used to avoid the mixing between the fuel stream and the air stream. The rotary wheel consists of a large number of channels with copper oxide coated on the inner surface of the channels. The support material is boron nitride, which has high specific heat and thermal conductivity. Gas flows through the reactor at elevated pressure, and it is heated to a high temperature by fuel combustion. Typical design parameters for a thermal capacity of 1 MW have been proposed, and a simplified model is developed to predict the performances of the reactor. The potential drawbacks of the rotary reactor are also discussed. © 2012 American Chemical Society.

  17. Use of the VR-1 ''Vrabec'' training reactor

    International Nuclear Information System (INIS)

    Matejka, K.; Kolros, A.; Krops, S.; Polach, S.; Sklenka, L.

    1994-01-01

    An overview is presented of the extent and ways of using the VR-1 training reactor, which is operated by the Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague. A list and the characteristics of 16 problems developed for teaching purposes is given, and the 14 faculties and 2 research institutes participating in the teaching activities are listed. The reactor is used in the education and training of nuclear scientists and engineers. The instrumentation, experimental, handling and operating tools, as well as documentation and texts relating to the reactor are described. The following examples of the teaching activities are included: a guided visit to the operating reactor site, reactor dynamics study and delayed neutron measurement, training course, and the basic criticality experiment. Nuclear safety aspects (hypothetical accidents, quality control and system qualification demonstration, safety culture) are stressed during the education. The reactor department is involved in international cooperation projects. (J.B.). 3 refs

  18. Electrical system regulations of the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Mello, Jose Roberto de; Madi Filho, Tufic

    2013-01-01

    The IEA-R1 reactor of the Nuclear and Energy Research Institute (IPEN-CNEN/SP), is a research reactor open pool type, designed and built by the U.S. firm Babcock and Wilcox, having, as coolant and moderator, deionized light water and beryllium and graphite, as reflectors. Until about 1988, the reactor safety systems received power from only one source of energy. As an example, it may be cited the control desk that was powered only by the vital electrical system 220V, which, in case the electricity fails, is powered by the generator group: no-break 220V. In the years 1989 and 1990, a reform of the electrical system upgrading to increase the reactor power and, also, to meet the technical standards of the ABNT (Associacao Brasileira de Normas Tecnicas) was carried out. This work has the objective of showing the relationship between the electric power system and the IEA-R1 reactor security. Also, it demonstrates that, should some electrical power interruption occur, during the reactor operation, this occurrence would not start an accident event. (author)

  19. Feasibility analysis of the utilization of moderator heat for agricultural and aquacultural purposes, Bruce nuclear power development

    International Nuclear Information System (INIS)

    1977-12-01

    A study is presented of the feasibility of using moderator reject heat from the Bruce nuclear power development either to heat greenhouses or to aid in a warm water hatchery or aquaculture operation. The study examines heat extraction and delivery plans, reliability of supply, pricing schedules, the Ontario greenhouse industry, site selection criteria, water transmission and distribution, costs, approvals required, and a construction timetable. Total system analysis shows that a greenhouse facility would be viable but the aquaculture/hatchery scheme is more cost-effective. (E.C.B.)

  20. Modernization of control instrumentation and security of reactor IAN - R1

    International Nuclear Information System (INIS)

    Gonzalez, J. M.

    1993-01-01

    The program to modernize IAN-R1 research reactor control and safety instrumentation has been carried out considering two main aspects: updating safety philosophy requirements and acquiring the newest reactor control instrumentation controlled by computer, following the present criteria internationally recognized, for safety and reliable reactor operations and the latest developments of nuclear electronic technology. The new IAN-R1 reactor instrumentation consist of two wide range neutron monitoring channels, commanded by microprocessor a data acquisition system and reactor control, (controlled by computers). The reactor control desk is providing through two displays; all safety and control signals to the reactor operators; furthermore some signals like reactor power, safety and period signals are also showed on digital bar graphics, which are hard wired directly from the neutron monitoring channels

  1. Operation and maintenance of 1MW PUSPATI TRIGA reactor

    International Nuclear Information System (INIS)

    Adnan Bokhari; Mohammad Suhaimi Kassim

    2006-01-01

    The Malaysian Research Reactor, Reactor TRIGA PUSPATI (RTP) has been successfully operated for 22 years for various experiments. Since its commissioning in June 1982 until December 2004, the 1MW pool-type reactor has accumulated more than 21143 hours of operation, corresponding to cumulative thermal energy release of about 14083 MW-hours. The reactor is currently in operation and normally operates on demand, which is normally up to 6 hours a day. Presently the reactor core is made up of standard TRIAGA fuel element consists of 8.5 wt%, 12 wt% and 20 wt% types; 20%-enriched and stainless steel clad. Several measures such as routine preventive maintenance and improving the reactor support systems have been taken toward achieving this long successful operation. Besides normal routine utilization like other TRIGA reactors, new strategies are implemented for effective increase in utilization. (author)

  2. Perspectives on reactor safety. Revision 1

    International Nuclear Information System (INIS)

    Haskin, F.E.; Hodge, S.A.

    1997-11-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor safety concepts. The course consists of five modules: (1) the development of safety concepts; (2) severe accident perspectives; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course

  3. Perspectives on reactor safety. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.

    1997-11-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor safety concepts. The course consists of five modules: (1) the development of safety concepts; (2) severe accident perspectives; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  4. The design and installation of a core discharge monitor for CANDU-type reactors

    International Nuclear Information System (INIS)

    Halbig, J.K.; Monticone, A.C.; Ksiezak, L.; Smiltnieks, V.

    1990-01-01

    A new type of surveillance systems that monitors neutron and gamma radiation in a reactor containment is being installed at the Ontario Hydro Darlington Nuclear Generating Station A, Unit 2. Unlike video or film surveillance that monitors mechanical motion, this system measures fuel-specific radiation emanating from irradiated fuel as it is pushed from the core of CANDU-type reactors. Proof-of-principle measurements have been carried out at Bruce Nuclear Generating Station A, Unit 3. The system uses (γ,n) threshold detectors and ionization detectors. A microprocessor-based electronics package, GRAND-II (Gamma Ray and Neutron Detector electronics package), provides detector bias, preamplifier power, and signal processing. Firmware in the GRAND-2 controls the surveillance activities, including data acquisition and a level of detector authentication, and it handles authenticated communication with a central data logging computer. Data from the GRAND-II are transferred to an MS-DOS-compatible computer and stored. These data are collected and reviewed for fuel-specific radiation signatures from the primary detector and proper ratios of signals from secondary detectors. 5 figs

  5. A progress review of Ontario Hydro's nuclear generation and heavy water production programs

    International Nuclear Information System (INIS)

    Kee, F.J.; Woodhead, L.W.

    Performance and economics of CANDU reactors in service are described. Progress of commissioning, construction and planning of reactors at Pickering, Bruce, and Darlington is outlined. Heavy water production is reviewed. (E.C.B.)

  6. Annual report on JEN-1 and JEN-2 Reactors

    International Nuclear Information System (INIS)

    Montes Ponce de Leon, J.

    1974-01-01

    In the annual report on the JEN-1 and JEN-2 reactors the main fractures of the reactor operations and maintenance are described. The reactor has been in operation for 2188 hours, what means 74% of the total working time. Maintenance and periodical tests have occupied the rest of the time. Maintenance operations are shown according to three main subjects, the main failures so as the reactor scrams are also described. Different date relating with radiation level and health Physics are also included. (Author)

  7. Advances in Reactor Physics, Mathematics and Computation. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, volume one, are divided into 6 sessions bearing on: - session 1: Advances in computational methods including utilization of parallel processing and vectorization (7 conferences) - session 2: Fast, epithermal, reactor physics, calculation, versus measurements (9 conferences) - session 3: New fast and thermal reactor designs (9 conferences) - session 4: Thermal radiation and charged particles transport (7 conferences) - session 5: Super computers (7 conferences) - session 6: Thermal reactor design, validation and operating experience (8 conferences).

  8. Stationary low power reactor No. 1 (SL-1) accident site decontamination ampersand dismantlement project

    International Nuclear Information System (INIS)

    Perry, E.F.

    1995-01-01

    The Army Reactor Area (ARA) II was constructed in the late 1950s as a test site for the Stationary Low Power Reactor No. 1 (SL-1). The SL-1 was a prototype power and heat source developed for use at remote military bases using a direct cycle, boiling water, natural circulation reactor designed to operate at a thermal power of 3,000 kW. The ARA II compound encompassed 3 acres and was comprised of (a) the SL-1 Reactor Building, (b) eight support facilities, (c) 50,000-gallon raw water storage tank, (d) electrical substation, (e) aboveground 1,400-gallon heating oil tank, (f) underground 1,000-gallon hazardous waste storage tank, and (g) belowground power, sewer, and water systems. The reactor building was a cylindrical, aboveground facility, 39 ft in diameter and 48 ft high. The lower portion of the building contained the reactor pressure vessel surrounded by gravel shielding. Above the pressure vessel, in the center portion of the building, was a turbine generator and plant support equipment. The upper section of the building contained an air cooled condenser and its circulation fan. The major support facilities included a 2,500 ft 2 two story, cinder block administrative building; two 4,000 ft 2 single story, steel frame office buildings; a 850 ft 2 steel framed, metal sided PL condenser building, and a 550 ft 2 steel framed decontamination and laydown building

  9. Bruce NGS B risk assessment (BBRA) peer review process

    International Nuclear Information System (INIS)

    Kaasalainen, S.; Crocker, W.P.; Webb, W.A.

    2001-01-01

    Risk-informed decision making is considered an effective approach to managing the risk of nuclear power plant operation in a competitive market. Hence, increased reliance on the station probabilistic risk assessments (PRAs) to provide risk perspective inputs is inevitable. With increased reliance on the PRAs it is imperative that PRAs have the characteristics necessary to provide the required information. Recognizing the increased requirements on nuclear power plant PRAs the nuclear industry in the United States has expended significant effort over the past few years defining the required characteristics of a PRA for various applications. More recently several owners groups have drafted guidelines for PRA certification and several U.S. utilities have had their PRAs certified. During the year 2000 Ontario Power Generation, Nuclear (OPG,N) subjected the PRA of one of its stations to the U.S. style certification process. The PRA selected for this process was the Bruce B Risk Assessment (BBRA). BBRA was chosen for this process since it is the first OPG, N PRA to be used for risk-informed applications. However, the strengths of the BBRA identified from the certification process and the lessons learned are also largely applicable to the other OPG, N plant PRAs due to the use of similar methods and tools

  10. Reactor utilization, Part 1

    International Nuclear Information System (INIS)

    Martinc, R.; Stanic, A.

    1981-01-01

    The reactor operating plan for 1981 was subject to the needs of testing operation with the 80% enriched fuel and was fulfilled on the whole. This annex includes data about reactor operation, review of shorter interruptions due to demands of the experiments, data about safety shutdowns caused by power cuts. Period of operation at low power levels was used mostly for activation analyses, and the operation at higher power levels were used for testing and regular isotope production. Detailed data about samples activation are included as well as utilization of the reactor as neutron source and the operating plan for 1982 [sr

  11. Refurbishment of Pakistan research reactor (PARR-1) for stainless steel lining of the reactor pool

    International Nuclear Information System (INIS)

    Salahuddin, A.; Israr, M.; Hussain, M.

    2002-01-01

    Pakistan Research Reactor-1 (PARR-1) is a pool-type research reactor. Reactor aging has resulted in the increase of water seepage from the concrete walls of the reactor pool. To stop the seepage, it was decided to augment the existing pool walls with an inner lining of stainless steel. This could be achieved only if the pool walls could be accessed unhindered and without excessive radiation doses. For this purpose a partial decommissioning was done by removing all active core components including standard/control fuel elements, reflector elements, beam tubes, thermal shield, core support structure, grid plate and the pool's ceramic tiles, etc. An overall decommissioning program was devised which included procedures specific to each item. This led to the development of a fuel transport cask for transportation, and an interim fuel storage bay for temporary storage of fuel elements (until final disposal). The safety of workers and the environment was ensured by the use of specially designed remote handling tools, appropriate shielding and pre-planned exposure reduction procedures based on the ALARA principle. During the implementation of this program, liquid and solid wastes generated were legally disposed of. It is felt that the experience gained during the refurbishment of PARR-1 to install the stainless steel liner will prove useful and better planning and execution for the future decommissioning of PARR-1, in particular, and for other research reactors like PARR-2 (27 kW MNSR), in general. Furthermore, due to the worldwide activities on decommissioning, especially those communicated through the IAEA CRP on 'Decommissioning Techniques for Research Reactors', the importance of early planning has been well recognized. This has made possible the implementation of some early steps like better record keeping, rehiring of trained manpower, and creation of interim and final waste storage. (author)

  12. RA research reactor, Part 1, Operation and maintenance of the RA nuclear reactor for 1985

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1985-01-01

    According to the plan, RA reactor was to be in operation in mid September 1985. But, since the building of the emergency cooling system, nor the reconstruction of the existing special ventilation system were not finished until the end of August reactor was not operated during 1985. During the previous four years reactor operation was limited by the temporary operating license issued by the Committee of Serbian ministry for health and social care, which was cancelled in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. This temporary license has limited the reactor power to 2 MW from 1981-1984. Control and maintenance of the reactor instrumentation and tools was done regularly but dependent on the availability of the spare parts. In order to enable future reliable operation of the RA reactor, according to new licensing regulations, during 1984, three major tasks have started: building of the new emergency system, reconstruction of the existing ventilation system, and renewal of the reactor instrumentation. IAEA has approved the amount of 1,300,000 US dollars for the renewal of the instrumentation [sr

  13. New instrumentation for the IPR-R1 reactor of CDTN

    International Nuclear Information System (INIS)

    Carvalho, P.V.R. de.

    1992-01-01

    The Nuclear Engineering Institute reactor instrumentation area has developed systems and equipment for reactor operation and safety. In such way, the new I and C for IEN Argonauta reactor and the nuclear instrumentation for IPEN critical facility were built. This paper describes our real work, the new I and C systems for IPR-R1, a Triga type reactor, located at CDTN (Belo Horizonte - MG). (author)

  14. The case for new nuclear

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2013-01-01

    Over a 22 year period from 1971 to 1993 a total of 20 reactor units were brought into service - an average of approximately one unit per year. Ontario Hydro constructed the four-unit Pickering A station, four units at Bruce A, four units at Pickering B, four units at Bruce B and four units at Darlington during this period. This represents a capacity of nearly 14,000 MW, as shown in Figure 1. During this period there was a large increase in industrial capacity in Ontario, particularly in manufacturing, driven in large measure by the incentives offered by low electricity prices, skilled workers and a good health care system. Subsequently in the mid-1990's the Pickering A and Bruce A units were laid up and maintenance efforts were focused on the Pickering B, Bruce B and Darlington stations. Two of the four units at Pickering A were returned to service in the early 2000's and the four units of Bruce A were returned to service with two units being refurbished. By 2010 nuclear capacity in the province had returned to 12,800 MW. The Ontario Long Term Energy Plan (LTEP) announced at the beginning of December does not include new build nuclear but does include refurbishment of the Darlington station as well as two units at Bruce A and four units at Bruce B. The six units at Pickering will be shut down by 2020. As shown in Figure 1, this will reduce the nuclear capacity from the current 12,800 MW to 8000 MW when the Pickering A and B units are removed from service in 2020 and the refurbishment of Darlington and Bruce units proceeds starting in 2016 and projected to complete by 2031. This will be the lowest nuclear generating capacity in the province since 1985. (author)

  15. Leadership Actions to Improve Nuclear Safety Culture

    International Nuclear Information System (INIS)

    Clewett, L.K.

    2016-01-01

    The challenge many leaders face is how to effectively implement and then utilise the results of Safety Culture surveys. Bruce Power has recently successfully implemented changes to the Safety Culture survey process including how corrective actions were identified and implemented. The actions taken in response to the latest survey have proven effective with step change performance noted. Nuclear Safety is a core value for Bruce Power. Nuclear Safety at Bruce Power is based on the following four pillars: reactor safety, industrial safety, radiological safety and environmental safety. Processes and practices are in place to achieve a healthy Nuclear Safety Culture within Bruce Power such that nuclear safety is the overriding priority. This governance is based on industry leading practices which monitor, asses and take action to drive continual improvements in the Nuclear Safety Culture within Bruce Power.

  16. Major update of Safety Analysis Report for Thai Research Reactor-1/Modification 1

    Energy Technology Data Exchange (ETDEWEB)

    Tippayakul, Chanatip [Thailand Institute of Nuclear Technology, Bangkok (Thailand)

    2013-07-01

    Thai Research Reactor-1/Modification 1 (TRR-1/M1) was converted from a Material Testing Reactor in 1975 and it had been operated by Office of Atom for Peace (OAP) since 1977 until 2007. During the period, Office of Atom for Peace had two duties for the reactor, that is, to operate and to regulate the reactor. However, in 2007, there was governmental office reformation which resulted in the separation of the reactor operating organization from the regulatory body in order to comply with international standard. The new organization is called Thailand Institute of Nuclear Technology (TINT) which has the mission to promote peaceful utilization of nuclear technology while OAP remains essentially the regulatory body. After the separation, a new ministerial regulation was enforced reflecting a new licensing scheme in which TINT has to apply for a license to operate the reactor. The safety analysis report (SAR) shall be submitted as part of the license application. The ministerial regulation stipulates the outlines of the SAR almost equivalent to IAEA standard 35-G1. Comparing to the IAEA 35-G1 standard, there were several incomplete and missing chapters in the original SAR of TRR1/M1. The major update of the SAR was therefore conducted and took approximately one year. The update work included detail safety evaluation of core configuration which used two fuel element types, the classification of systems, structures and components (SSC), the compilation of detail descriptions of all SSCs and the review and evaluation of radiation protection program, emergency plan and emergency procedure. Additionally, the code of conduct and operating limits and conditions were revised and finalized in this work. A lot of new information was added to the SAR as well, for example, the description of commissioning program, information on environmental impact assessment, decommissioning program, quality assurance program and etc. Due to the complexity of this work, extensive knowledge was

  17. Thermal hydraulic analysis of the IPR-R1 TRIGA reactor

    International Nuclear Information System (INIS)

    Veloso, Marcelo Antonio; Fortini, Maria Auxiliadora

    2002-01-01

    The subchannel approach, normally employed for the analysis of power reactor cores that work under forced convection, have been used for the thermal hydraulic evaluation of a TRIGA Mark I reactor, named IPR-R1, at 250 kW power level. This was accomplished by using the PANTERA-1P subchannel code, which has been conveniently adapted to the characteristics of natural convection of TRIGA reactors. The analysis of results indicates that the steady state operation of IPR-R1 at 250 kW do not imply risks to installations, workers and public. (author)

  18. New human machine interface for VR-1 training reactor

    International Nuclear Information System (INIS)

    Kropik, M.; Matejka, K.; Sklenka, L.; Chab, V.

    2002-01-01

    The contribution describes a new human machine interface that was installed at the VR-1 training reactor. The human machine interface update was completed in the summer 2001. The human machine interface enables to operate the training reactor. The interface was designed with respect to functional, ergonomic and aesthetic requirements. The interface is based on a personal computer equipped with two displays. One display enables alphanumeric communication between a reactor operator and the control and safety system of the nuclear reactor. Messages appear from the control system, the operator can write commands and send them there. The second display is a graphical one. It is possible to represent there the status of the reactor, principle parameters (as power, period), control rods' positions, the course of the reactor power. Furthermore, it is possible to set parameters, to show the active core configuration, to perform reactivity calculations, etc. The software for the new human machine interface was produced in the InTouch developing environment of the WonderWare Company. It is possible to switch the language of the interface between Czech and English because of many foreign students and visitors at the reactor. The former operator's desk was completely removed and superseded with a new one. Besides of the computer and the two displays, there are control buttons, indicators and individual numerical displays of instrumentation there. Utilised components guarantee high quality of the new equipment. Microcomputer based communication units with proper software were developed to connect the contemporary control and safety system with the personal computer of the human machine interface and the individual displays. New human machine interface at the VR-1 training reactor improves the safety and comfort of the reactor utilisation, facilitates experiments and training, and provides better support of foreign visitors.(author)

  19. AECB staff annual assessment of the Bruce A Nuclear Generating Station for the year 1994

    International Nuclear Information System (INIS)

    1995-06-01

    AECB believe that Ontario Hydro operated Bruce A in a safe manner during 1994, and that the risk to workers and the public has been maintained at an acceptably low level. Radiation doses to workers and releases to the environment were well below regulatory limits. All special safety systems met availability targets. We noted improvements in operation and maintenance but some further improvements are still required. This is particularly true of the station's compliance with the Operating Licence. AECB believe that the station continues to be well managed, with a high priority placed on safety. However, there is a need for increased capability in the area of safety analysis and assessment. 4 tabs., 4 figs

  20. Retrofitting alarm prioritization at Bruce A: strategy development and implementation experience

    International Nuclear Information System (INIS)

    Davey, E.; Hickey, D.; Babcock, B.

    1997-01-01

    A prioritization strategy for computer-displayed control room alarms has been developed for Bruce A to better assist operations staff in visually identifying key alarms and judging the relative importance of alarms. The strategy consists of assigning each alarm indicative of a problem to be addressed to one of five priority categories. Each alarm is assigned to an alarm category based on an off-line analysis of the consequence and response characteristics applicable to the alarm for three plant operating contexts. The colour of the alarm message is used to convey the priority category of each alarm in computer-based alarm displays. In addition, alarms indicative of non-problematic changes in the state of plant equipment and processes are given a separate colour assignment to visually differentiate them from alarms indicative of problems. This paper outlines the user-based approach employed in the prioritization strategy development, describes the key features of the prioritization strategy adopted, and discusses the initial experience in systematically determining the priority assignments for all 6000 computer-based alarms associated with each generating unit. (author)

  1. Reactor Engineering Department annual report (April 1, 1987 - March 31, 1988)

    International Nuclear Information System (INIS)

    1988-11-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1987 (April 1, 1987 - March 31, 1988). The major activities in the Department concerns the programs of the high temperature gas-cooled reactor, the high conversion light water reactor, the advanced fission reactor system and the fusion reactor at JAERI and the fast breeder reactor at PNC. The report contains the latest progress in nuclear data and group constants, theoretical methods and code development, reactor physics experiments and analyses, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control/diagnosis and robotics, as well as the new topics from this fiscal year on advanced reactors system design studies and technique developments related the facilities in the Department. Also described are the activities of the Research Committee on Reactor Physics. (author)

  2. Floral micromorphology of the genus Ensete Bruce ex Horan. (Musaceae in Thailand

    Directory of Open Access Journals (Sweden)

    Wandee Inta

    2015-09-01

    Full Text Available To fulfil scarce and incomplete information on floral micromorphology of ensets (Ensete Bruce ex Horan. in the banana family (Musaceae, a comparative anatomical study of two species: E. glaucum (Roxb. Cheesman and E. superbum (Roxb. Cheesman, native to Thailand was conducted. It was found that, apart from five fertile stamens presented in other members of the Musaceae family, both ensets possess a short staminode. It is suggested from this investigation that six is the basic number of Ensete androecial whorl and the taxa could secure the most primitive status within the family and the Zingiberales order, of which stamen numbers are reduced. The results also indicated that the vascular bundle position in compound tepal, the vascular patterns in vascular zone of ovary and cell shapes of stigma epidermis and the ovary cortex are of systematic significance in conjunction with pollen size and exine ornamentation. These useful micromorphological characters can be further applied for identification of other Ensete species distribute elsewhere in the world.

  3. Department of Reactor Technology annual progress report 1 January -31 December 1977

    International Nuclear Information System (INIS)

    1978-04-01

    The work of the Department of Reactor Technology within the following fields is described: reactor engineering, reactor operation, structural reliability, system reliability, reactor physics, fuel management, reactor accident analysis for LOCA and ECC, containment analysis, experimental heat transfer, reactor core dynamics and power plant simulators, experimental activation measurements and neutron radiography at the DR 1 reactor, underground storage of gas, solar heating and underground heat storage, wind power. (author)

  4. Dolomitized bryozoan bioherms from the Lower Silurian Manitoulin Formation, Bruce Peninsula, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, A S; Coniglo, M [Waterloo Univ., ON (Canada)

    1992-06-01

    Several small, previously undescribed bioherms are present in the shallow shelf dolostones of the Manitoulin Formation at the Cabot Head and Wingfield Basin localities in the northernmost portion of the Bruce Peninsula region of southern Ontario. The bioherms, commonly associated with carbonate tempestites, range from 0.3 to 1.0 m in height and 0.9 to 2.5 m in width and are composed of bafflestones-floatstones and minor bindstones. The chief components of the bioherms are dolomitized lime mud and branching bryozoans. Bioherm building by bryozoans, although common in the ancient record, represents a great divergence from the mostly accessory frame encrusting role of bryozoans in modern environments. Minor skeletal components of the bioherms include echinoderms, rugose and tabulate corals and brachiopods. Laminar encrusting bryozoans exist in the top 10 cm of one of the bioherms. Some of the bioherms show evidence of water agitation that may be the result of current action induced by storm or tidal processes. The occurrence of the bioherms stretches the already known Llandoverian reef complex on Manitoulin Island further to the south. The reason why these bioherms did not reach sizes comparable to large Llandoverian or Wenlockian reefs and did not make the shift to coral-stromaporoid community is probably related to a complex interaction of factors such as community development, bathymetry, clasticity and salinity. 41 refs., 4 figs.

  5. The dew point response of the annulus gas system of Bruce NGS A

    International Nuclear Information System (INIS)

    Kenchington, J.; Ellis, P.J.; Meranda, D.

    1983-01-01

    The dew point response of the Annulus Gas System in Bruce A, Units 1 and 2 has been modelled in order to alert the operator of the presence of heavy water and to estimate the leak rate into the annulus. The computer model can be easily adapted to determine the Annulus Gas System dew point response in any station. It models the complex arrangement of the system and the transportation of moisture through the annuli by a combination of plug flow and mixing of CO 2 and D 2 O vapor. It predicts the response of the dew point monitor for a range of specified leak rates and positions of a leaking channel in a string of channels. This model has been used to calculate the variation of dew point and rate of change of dew point with respect to time (t). It shows that there is a maximum in the rate of dew point change (dT/dt) with respect to the corresponding dew point (T). This maximum is unique for a given leak rate and channel position. It is independent of the starting time for the leak. The computer programme has been verified by an analytical solution for the model

  6. Reactor Engineering Department annual report (April 1, 1988 - March 31, 1989)

    International Nuclear Information System (INIS)

    1989-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1988 (April 1, 1988 - March 31, 1989). The Department has promoted cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and also to PNC's fast reactor project. Other major Department's programs are the assessment of the high conversion light water reactor and the design activities of advanced reactor system. Application of a high energy accelerator to the nuclear engineering is also preliminarily assessed. The report also contains the latest progress in various basic researches as nuclear data and group constants, theoretical methods and code development, reactor physics experiments and analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/ diagnosis and technical developments related to the reactor physics facilities. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  7. Thai Research Reactor (TRR-1/M1) Neutron Beam Measurements

    International Nuclear Information System (INIS)

    Ratanatongchai, Wichian

    2009-07-01

    Full text: Neutron beam tube of neutron radiography facility at Thai Research Reactor (TRR-1/M1) Thailand Institute of Nuclear Technology (public organization) is a divergent beam. The rectangular open-end of the beam tube is 16 cm x 17 cm while the inner-end is closed to the reactor core. The neutron beam size was measured using 20 cm x 40 cm neutron imaging plate. The measurement at the position 100 cm from the end of the collimator has shown that the beam size was 18.2 cm x 19.0 cm. Gamma ray in neutron the beam was also measured by the identical position using industrial X ray film. The area of gamma ray was 27.8 cm x 31.1 cm with the highest intensity found to be along the neutron beam circumference

  8. New measuring and protection system at VR-1 training reactor

    International Nuclear Information System (INIS)

    Kropik, M.; Jurickova, M.

    2006-01-01

    The contribution describes the new measuring and protection system of the VR-1 training reactor. The measuring and protection system upgrade is an integral part of the reactor I and C upgrade. The new measuring and protection system of the VR-1 reactor consists of the operational power measuring and the independent power protection systems. Both systems measure the reactor power and power rate, initiate safety action if safety limits are exceeded and send data (power, power rate, status, etc.) to the reactor control system. The operational power measuring system is a full power range system that receives signal from a fission chamber. The signal is evaluated according to the reactor power either in the pulse or current mode. The current mode utilizes the DC current and Campbell techniques. The new independent power protection system operates in the two highest reactor power decades. It receives signals from a boron chamber and evaluates it in the pulse mode. Both systems are computer based. The operational power measuring and independent power protection systems are diverse - different types and location of chambers, completely different hardware, software algorithms for the power and power rate calculations, software development tools and teems for the software manufacturing. (author)

  9. Reactor Engineering Department annual report (April 1, 1990 - March 31, 1991)

    International Nuclear Information System (INIS)

    1991-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1990 (April 1, 1990 - March 31, 1991). The major Department's programs promoted in the year are the assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  10. Reactor Engineering Department annual report (April 1, 1991-March 31, 1992)

    International Nuclear Information System (INIS)

    1992-08-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1991 (April 1, 1991-March 31, 1992). The major Department's programs promoted in the year are assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researchers on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative work to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  11. Thermohydraulic analysis for power increase of IEAR-1 reactor

    International Nuclear Information System (INIS)

    Umbehaun, Pedro E.; Bastos, Jose L.F.

    1996-01-01

    In this work has been presented the reactor core thermohydraulic model of IEAR-1, aiming its power operation increase from 2MW to 5MW. The design criteria adopted have been established in Safety Series 35. Three configurations of reactor core were analysed: fuel elements 20, 25 and 30

  12. Decommissioning and decontrolling the R1-reactor

    International Nuclear Information System (INIS)

    Bergman, C.; Holmberg, B.T.

    1985-01-01

    Sweden's first nuclear reactor - the research reactor R1 - situated in bedrock under the Royal Technical Institute of Stockholm, has in the period 1981-1983 been subject to a complete decommissioning. The National Institute for Radiation Protection has followed the work in detail, and has after the completion of the decommissioning performed measurements of radioactivity on site. The report gives an account of the work the Institute has done in preparation for- and during decommissioning and specifically report on the measurements for classification of the local as free for non-nuclear use. (aa)

  13. Upgrading of the research reactors FRG-1 and FRG-2

    International Nuclear Information System (INIS)

    Krull, W.

    1981-01-01

    In 1972 for the research reactor FRG-2 we applied for a license to increase the power from 15 MW to 21 MW. During this procedure a public laying out of the safety report and an upgrading procedure for both research reactors - FRG-1 (5 MW) and FRG-2 - were required by the licensing authorities. After discussing the legal background for licensing procedures in the Federal Republic of Germany the upgrading for both research reactors is described. The present status and future licensing aspects for changes of our research reactors are discussed, too. (orig.) [de

  14. RA Research reactor Annual report 1981 - Part 1, Operation, maintenance and utilization of the RA reactor

    International Nuclear Information System (INIS)

    Sotic, O.; Milosevic, M.; Martinc, R.; Kozomara-Maic, S.; Cupac, S.; Radivojevic, J.; Stamenkovic, D.; Skoric, M.

    1981-12-01

    The RA nuclear reactor stopped operation after March 1979 campaign due to appearance of aluminium oxyhydrates deposits on the surface of fuel element claddings. Relevant decisions of the Sanitary inspection body of the Ministry of health and the Director General of the 'Boris Kidric' Institute of nuclear sciences, Vinca, banned further reactor operation until reasons caused aluminium oxyhydrates deposition are investigated and removed to enable regular reactor operation. Until the end of 1979 and during 1980, after a series of analyses and findings that caused cease of reactor operation, all the preparatory actions needed for restart were performed. Due to the fact that there is no emergency cooling system and no appropriate filtering system at the reactor, and according to the new regulations about start up of nuclear facilities, the Sanitary inspection body made a decision about temporary licence for reactor start-up meaning performance of the 'zero experiment' limiting the operating power to 1% of the nominal power. Accordingly the reactor was restarted on January 21 1981. Criticality was reached with the core made of 80% enriched fuel elements only. After the experiment was finished by the end of March a permission was demanded for operation at higher power levels at full power. Taking into account the state of the reactor components the operating licence was issued limiting the power to 2 MW until reconstruction of the ventilation system and construction of the emergency cooling system are fulfilled. Program of testing operation started on September 15 1981 increasing gradually the operating power. Thus the reactor was operated at 2 MW power for 15 days during November and December. The total production achieved in 1981 was 1698 MWh. This enabled isotopes production at the reactor during last two months. Control and maintenance of the reactor components and systems was done regularly and efficiently within limits imposed by availability of spare parts. The

  15. Optimization and implementation study of plutonium disposition using existing CANDU Reactors. Final report

    International Nuclear Information System (INIS)

    1996-09-01

    Since early 1994, the Department of Energy has been sponsoring studies aimed at evaluating the merits of disposing of surplus US weapons plutonium as Mixed Oxide (MOX) fuel in existing commercial Canadian Pressurized Heavy Water reactors, known as CANDU's. The first report, submitted to DOE in July, 1994 (the 1994 Executive Summary is attached), identified practical and safe options for the consumption of 50 to 100 tons of plutonium in 25 years in some of the existing CANDU reactors operating the Bruce A generating station, on Lake Huron, about 300 km north east of Detroit. By designing the fuel and nuclear performance to operate within existing experience and operating/performance envelope, and by utilizing existing fuel fabrication and transportation facilities and methods, a low cost, low risk method for long term plutonium disposition was developed. In December, 1995, in response to evolving Mission Requirements, the DOE requested a further study of the CANDU option with emphasis on more rapid disposition of the plutonium, and retaining the early start and low risk features of the earlier work. This report is the result of that additional work

  16. Department of Reactor Technology: annual progress report 1 January - 31 December 1976

    International Nuclear Information System (INIS)

    1977-06-01

    The work of the Department of Reactor Technology within the following fields is described: reactor engineering, structural reliability, system reliability, radiation fiels in nuclear power plants, reactor physics, fuel management, fission product decay analysis, steady-state thermo-hydraulics, reactor accident analysis for LOCA and ECC, containment analysis, experimental heat transfer, reactor core dynamics and power plant simulators, control rod ejection accident analysis, economic studies for power plants, experimental activation measurements and neutron radiography at the DR 1 reactor. (author)

  17. Irradiation routine in the IPR-R1 Triga reactor

    International Nuclear Information System (INIS)

    Maretti Junior, F.

    1980-01-01

    Information about irradiations in the IPR-R1 TRIGA reactor and procedures necessary for radioisotope solicitation are presented All procedures necessary for asking irradiation in the reactor, shielding types, norms of terrestrial and aerial expeditions, payment conditions, and catalogue of disposable isotopes with their respective saturation activities are described. (M.C.K.)

  18. Neutron density optimal control of A-1 reactor analoque model

    International Nuclear Information System (INIS)

    Grof, V.

    1975-01-01

    Two applications are described of the optimal control of a reactor analog model. Both cases consider the control of neutron density. Control loops containing the on-line controlled process, the reactor of the first Czechoslovak nuclear power plant A-1, are simulated on an analog computer. Two versions of the optimal control algorithm are derived using modern control theory (Pontryagin's maximum principle, the calculus of variations, and Kalman's estimation theory), the minimum time performance index, and the quadratic performance index. The results of the optimal control analysis are compared with the A-1 reactor conventional control. (author)

  19. Department of Reactor Technology annual progress report 1 January - 31 December 1978

    International Nuclear Information System (INIS)

    1979-04-01

    The activities of the department of reactor technology at Risoe during 1978 are described. The work is presented in five chapters: Reactor Engineering, Reactor Physics and Dynamics, Heat Transfer and Hydraulics, The DR 1 Reactor, and Non-Nuclear Activities. A list of the staff and of publications is included. (author)

  20. Reactor Engineering Department annual report (April 1, 1996 - March 31, 1997)

    International Nuclear Information System (INIS)

    1997-10-01

    This report summarizes the research and development activities in the Reactor Engineering Department of JAERI during the fiscal year of 1996 (April 1, 1996 - March 31, 1997). The major Department's programs promoted in the year are the design activities of advanced reactor system and the development of a high power proton linear accelerator to construct an intense neutron source for innovative neutron science. Other Major tasks of the Department are various basics researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analysis, the fusion neutronics, the radiation shielding, the reactor instrumentation, the reactor control/diagnosis, the thermal hydraulics and the technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal hydraulic facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor, the fusion reactor and PNC's fast reactor project were also progressed. The 99 papers are indexed individually. (J.P.N.)

  1. Reactor engineering department annual report. April 1, 1993-March 31, 1994

    International Nuclear Information System (INIS)

    1994-11-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1993 (April 1, 1993-March 31, 1994). The major Department's programs promoted in the year are the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal-hydraulic facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the research committees organized by the Department are also summarized in this report. (author)

  2. Reactor Engineering Department annual report (April 1, 1996 - March 31, 1997)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    This report summarizes the research and development activities in the Reactor Engineering Department of JAERI during the fiscal year of 1996 (April 1, 1996 - March 31, 1997). The major Department`s programs promoted in the year are the design activities of advanced reactor system and the development of a high power proton linear accelerator to construct an intense neutron source for innovative neutron science. Other Major tasks of the Department are various basics researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analysis, the fusion neutronics, the radiation shielding, the reactor instrumentation, the reactor control/diagnosis, the thermal hydraulics and the technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal hydraulic facilities. The cooperative works to JAERI`s major projects such as the high temperature gas cooled reactor, the fusion reactor and PNC`s fast reactor project were also progressed. The 99 papers are indexed individually. (J.P.N.)

  3. Reactor engineering department annual report. April 1, 1994 - March 31, 1995

    International Nuclear Information System (INIS)

    1995-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1994 (April 1, 1994 - March 31, 1995). The major Department's programs promoted in the year are the design activities of advanced reactor system and development of a high intensity proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal-hydraulic facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  4. Experience in ultrasonic gap measurement between calandria tubes and liquid injection shutdown systems nozzles in Bruce Nuclear Generating Station

    International Nuclear Information System (INIS)

    Abucay, R.C.; Mahil, K.S.; Goszczynski, J.J.

    1995-01-01

    The gaps between calandria tubes (CT) and Liquid Injection Shutdown System (LISS) nozzles at the Bruce Nuclear Generating Station ''A'' (Bruce A) are known to decrease with time due to radiation induced creep/sag of the calandria tubes. If this gap decreases to a point where the calandria tubes come into contact with the LISS nozzle, the calandria tubes could fail as a result of fretting damage. Proximity measurements were needed to verify the analytical models and ensure that CT/LISS nozzle contact does not occur earlier than predicted. The technique used was originally developed at Ontario Hydro Technologies (formerly Ontario Hydro Research Division) in the late seventies and put into practical use by Research and Productivity Council (RPC) of New Brunswick, who carried out similar measurements at Point Lepreau NGS in 1989 and 1991. The gap measurement was accomplished y inserting an inspection probe, containing four ultrasonic transducers (2 to measure gaps and 2 to check for probe tilt) and a Fredericks electrolytic potentiometer as a probe rotational sensor, inside LISS Nozzle number-sign 7. The ultrasonic measurements were fed to a system computer that was programmed to convert the readings into fully compensated gaps, taking into account moderator heavy water temperature and probe tilt. Since the measured gaps were found to be generally larger than predicted, the time to CT/LISS nozzle contact is now being re-evaluated and the planned LISS nozzle replacement will likely be deferred, resulting in considerable savings

  5. Modification of the IAN-R1 reactor

    International Nuclear Information System (INIS)

    Jaime, J.; Ahumada, S.; Spin, R.A.

    1990-01-01

    The IAN-R1 reactor is the only nuclear reactor operating in Colombia; it is installed at the Institute of Nuclear Affairs (AIN) in Bogota, which is an official body coming under the Ministry of Mining and Energy. This reactor started operation in January 1965 with a rated power of 10 kW and was modified a year later to operate at 20 kW, which has been its rated power up to the present. Given its importance for the application of nuclear technology in Columbia for various purposes, principally in the areas of neutron activation analysis, determination of uranium content in minerals using the delayed neutron counting method, production of certain radioisotopes such as 198 Au and 82 Br for engineering applications, and production of radioactive material for teaching and research purposes, research has been in progress for some years into ways of increasing its power. The study on experimental requirements and on the demand for locally produced radioisotopes came to the conclusion that its power should be increased to 1000 kW, which would allow the facility to remain on the same site. The modification includes conversion of the core to low-enriched fuel, operation up to 1 MW, modification of the shielding, renovation of instrumentation and installation of a radioisotope processing plant. When the reactor is modified we will be able to produce other radioisotopes for applications in nuclear medicine, industry and engineering; at the same time, the safety of the facility will be optimized and the experimental facilities improved

  6. Event review: International Knapping Workshop, with Bruce Bradley, Fazenda Monte Alto, Dourado, SP (Brazil

    Directory of Open Access Journals (Sweden)

    Elisa Theodora Adriana van Veldhuizen

    2016-07-01

    Full Text Available The event took place from 3 till 8 July 2016 at Fazenda Monte Alto, Dourado, SP, Brazil. The aim of the course was to provide intensive knapping training in order to enhance analytical methods and procedures. This training was not only for students, but also professionals who were interested in the course. The course was given by Bruce Bradley (University of Exeter, who has extensive experience with Stone Age technologies and experimental archaeology. Mercedes Okumura (PPGArq, National Museum, Federal University of Rio de Janeiro and Astolfo G. M. Araujo (Museum of Archaeology and Ethnology, University of São Paulo organized the course, which was sponsored by Fazenda Monte Alto, Café Helena, and the British Academy, Newton Mobility Grants Scheme (NG140077. The workshop had 15 participants from Brazil, Uruguay, the Netherlands and Canada.

  7. Measurement of β/Λ ratio in IEA-R1 reactor using noise technique

    International Nuclear Information System (INIS)

    Moreira, J.M.L.; Kassar, E.

    1986-01-01

    The ratio β/Λ for the IEA-R1 reactor is obtained experimentally through the noise analysis technique. This technique is based on the determination of the power spectral density of the reactor neutron population, with the reactor in a subcritical state driven by a 'white' neutron source. A ratio β/Λ of 43,5 s -1 is estimated from the break frequency of the measured transfer function of the IEA-R1 reactor. (Author) [pt

  8. My City of Ruins: Bruce Springsteen e l’utopia fra le rovine

    Directory of Open Access Journals (Sweden)

    Enrico Botta

    2011-09-01

    Full Text Available The paper focuses on My City of Ruins, the song that Bruce Springsteen sang—ten days after the 09/11 terrorist attacks—for "America: A Tribute to Heroes" and that was released in the concept album The Rising in 2002. The essay aims to highlight how the song describes the post 09/11 New York City by opposing the themes of “ruins” and “utopia.” From a textual and musical point of view, My City of Ruins is, in fact, composed of a double structure that balances different feelings: the fear, pain, and loneliness of the victims, in the rock-blues first section; the faith, love, and hope, in the gospel second part. Furthermore, the paper tries to point out how My City of Ruins no longer describes the symbolic ruins of a foreign past—in line with the nineteenth and twentieth-century American cultural tradition of the Grand Tour—but defines the physical signs of a definitively collapsed “American dream,” which can survive only in a utopian and spiritual “Promised Land.”

  9. Top of tubesheet cracking in Bruce A NGS steam generator tubing - recent experience

    International Nuclear Information System (INIS)

    Clark, M.A.; Lepik, O.; Mirzai, M.; Thompson, I.

    1998-01-01

    During the Bruce A Nuclear Generating Station (BNGS-A) Unit 1 1997 planned outage, a dew point search method identified a leak in one steam generator(SG) tube. Subsequently, the tube was inspected with all available eddy current probes and removed for examination. The initial inspection results and metallurgical examination of the removed tube confirmed that the leak was due to intergranular attack/stress corrosion cracking (IGA/SCC) emanating from the secondary side of the tube at the top of the tubesheet location. Subsequently, eddy current and ultrasonic indications were found at the top of the tubesheet of other Alloy 600 SG tubes. To investigate the source of the indications and to validate the inspection probes, sections of 40 tubes with various levels of damage were removed. The metallurgical examination of the removed sections showed that both secondary side and primary side initiated, circumferential, stress corrosion cracking and intergranular attack occurred in the BNGS-A SG tubing. Significant degradation from both mechanisms was found, invariably located in the roll transition region of the top expansion joint between the tube and the tubesheet on the hot leg (304 degrees C) side of the tube. Various aspects of the failures and tube examinations are presented in this paper, including presentation of the cracking morphology, measured crack size distributions, and discussion of some factors possibly affecting the cracking. (author)

  10. RPV-1: A Virtual Test Reactor to simulate irradiation effects in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Jumel, Stephanie; Van-Duysen, Jean Claude

    2005-01-01

    Many key components in commercial nuclear reactors are subject to neutron irradiation which modifies their mechanical properties. So far, the prediction of the in-service behavior and the lifetime of these components has required irradiations in so-called 'Experimental Test Reactors'. This predominantly empirical approach can now be supplemented by the development of physically based computer tools to simulate irradiation effects numerically. The devising of such tools, also called Virtual Test Reactors (VTRs), started in the framework of the REVE Project (REactor for Virtual Experiments). This project is a joint effort among Europe, the United States and Japan aimed at building VTRs able to simulate irradiation effects in pressure vessel steels and internal structures of LWRs. The European team has already built a first VTR, called RPV-1, devised for pressure vessel steels. Its inputs and outputs are similar to those of experimental irradiation programs carried out to assess the in-service behavior of reactor pressure vessels. RPV-1 is made of five codes and two databases which are linked up so as to receive, treat and/or convey data. A user friendly Python interface eases the running of the simulations and the visualization of the results. RPV-1 is sensitive to its inputs (neutron spectrum, temperature, ...) and provides results in conformity with experimental ones. The iterative improvement of RPV-1 has been started by the comparison of simulation results with the database of the IVAR experimental program led by the University of California Santa Barbara. These first successes led 40 European organizations to start developing RPV-2, an advanced version of RPV-1, as well as INTERN-1, a VTR devised to simulate irradiation effects in stainless steels, in a large effort (the PERFECT project) supported by the European Commission in the framework of the 6th Framework Program

  11. Reactor engineering department annual report. April 1, 1995 - March 31, 1996

    International Nuclear Information System (INIS)

    1996-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1995 (April 1, 1995 - March 31, 1996). The major Department's programs promoted in the year are the design activities of advanced reactor system and development of a high intensity proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basics researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, the fusion neutronics, the radiation shielding, the reactor instrumentation, the reactor control/diagnosis, the thermalhydraulics and the technology developments related to the reactor engineering facilities, the accelerator facilities and the thermalhydraulic facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  12. Reactor engineering department annual report. April 1, 1994 - March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1994 (April 1, 1994 - March 31, 1995). The major Department`s programs promoted in the year are the design activities of advanced reactor system and development of a high intensity proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal-hydraulic facilities. The cooperative works to JAERI`s major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC`s fast reactor project were also progressed. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author).

  13. Reactor Engineering Department annual report. April 1, 1997 - March 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, Masaaki; Ohnuki, Akira; Ono, Toshihiko [eds.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-11-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1997 (April 1, 1997 - March 31, 1998). The major Department`s programs promoted in the year are the achievement of the world-strongest lasing of Free Electron Laser and the verification of the core thermal integrity during design basis events in PWRs. Other Major tasks of the Department are various basic researches on the advanced reactor system design studies, the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, the fusion neutronics, the reactor instrumentation, the reactor control/diagnosis, the thermal hydraulics and the technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal hydraulic facilities. The cooperative works to JAERI`s major projects such as the high temperature gas cooled reactor, the fusion reactor and PNC`s fast reactor project were also progressed. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  14. Reactor Engineering Department annual report. April 1, 1997 - March 31, 1998

    International Nuclear Information System (INIS)

    Ochiai, Masaaki; Ohnuki, Akira; Ono, Toshihiko

    1998-11-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1997 (April 1, 1997 - March 31, 1998). The major Department's programs promoted in the year are the achievement of the world-strongest lasing of Free Electron Laser and the verification of the core thermal integrity during design basis events in PWRs. Other Major tasks of the Department are various basic researches on the advanced reactor system design studies, the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, the fusion neutronics, the reactor instrumentation, the reactor control/diagnosis, the thermal hydraulics and the technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal hydraulic facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor, the fusion reactor and PNC's fast reactor project were also progressed. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  15. Reactor engineering department annual report. April 1, 1995 - March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1995 (April 1, 1995 - March 31, 1996). The major Department`s programs promoted in the year are the design activities of advanced reactor system and development of a high intensity proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basics researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, the fusion neutronics, the radiation shielding, the reactor instrumentation, the reactor control/diagnosis, the thermalhydraulics and the technology developments related to the reactor engineering facilities, the accelerator facilities and the thermalhydraulic facilities. The cooperative works to JAERI`s major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC`s fast reactor project were also progressed. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  16. Removal of bulk contaminants from radioactive waste water at Bruce A using a clay based flocculent system

    International Nuclear Information System (INIS)

    Davloor, R.; Harper, B.

    2011-01-01

    Bruce Power's Bruce Nuclear Generating Station 'A', located on Lake Huron, has a treatment system that processes all aqueous radioactive waste water originating from the station. This Active Liquid Waste Treatment System (ALWTS) consists of collection tanks for the collection of radioactive waste water, a Pre-Treatment System (PTS) for the removal of bulk contaminants and suspended solids, a Reverse Osmosis System (ROS) to remove dissolved solids, an Evaporation and Solidification System (ESS) to concentrate and immobilize solids contained in concentrated waste streams from the ROS, and discharge tanks for the dispersal of the treated water. The ALWTS has been in continuous service since 1999 and is used to treat approximately 100,000 litres of Active Liquid Waste (ALW) each day. With the exception of tritium, it discharges waste water containing near zero concentrations of radioactive and conventional contaminants to the lake. The original design of the Bruce A ALWTS used a Backwashable Filtration System (BFS) to provide solids free water to the ROS, as measured by the Silt Density Index (SDI). During commissioning, the BFS was not successful in backwashing the solids from the filter elements. For approximately one year, a temporary solution was implemented using a Disposable Filtration System (DFS). A cationic polymer was added upstream of the DFS to agglomerate the solids. The system proved to be highly unreliable. It was difficult to agglomerate solids in the waste stream containing high amounts of detergent. As a result, DFS consumption was high and very costly. The SDI specification for the RO membrane was not always met, resulting in a quick decline of performance of the first stage ROS membranes in the treatment process. In addition, the excess cationic polymer in the RO feed caused the membranes to become fouled. In-house station staff, together with personnel from Colloid Environmental Technologies (CETCO) Company, worked to develop and

  17. Removal of bulk contaminants from radioactive waste water at Bruce A using a clay based flocculent system

    Energy Technology Data Exchange (ETDEWEB)

    Davloor, R.; Harper, B. [Bruce Power, Tiverton, ON (Canada)

    2011-07-01

    Bruce Power's Bruce Nuclear Generating Station 'A', located on Lake Huron, has a treatment system that processes all aqueous radioactive waste water originating from the station. This Active Liquid Waste Treatment System (ALWTS) consists of collection tanks for the collection of radioactive waste water, a Pre-Treatment System (PTS) for the removal of bulk contaminants and suspended solids, a Reverse Osmosis System (ROS) to remove dissolved solids, an Evaporation and Solidification System (ESS) to concentrate and immobilize solids contained in concentrated waste streams from the ROS, and discharge tanks for the dispersal of the treated water. The ALWTS has been in continuous service since 1999 and is used to treat approximately 100,000 litres of Active Liquid Waste (ALW) each day. With the exception of tritium, it discharges waste water containing near zero concentrations of radioactive and conventional contaminants to the lake. The original design of the Bruce A ALWTS used a Backwashable Filtration System (BFS) to provide solids free water to the ROS, as measured by the Silt Density Index (SDI). During commissioning, the BFS was not successful in backwashing the solids from the filter elements. For approximately one year, a temporary solution was implemented using a Disposable Filtration System (DFS). A cationic polymer was added upstream of the DFS to agglomerate the solids. The system proved to be highly unreliable. It was difficult to agglomerate solids in the waste stream containing high amounts of detergent. As a result, DFS consumption was high and very costly. The SDI specification for the RO membrane was not always met, resulting in a quick decline of performance of the first stage ROS membranes in the treatment process. In addition, the excess cationic polymer in the RO feed caused the membranes to become fouled. In-house station staff, together with personnel from Colloid Environmental Technologies (CETCO) Company, worked to develop and

  18. Annual report, 1978

    International Nuclear Information System (INIS)

    1979-04-01

    In 1978, for the first time, nuclear generators supplied more electricity than coal-fired units: 30 percent of the total compared with 28 percent for coal. Energy demand in Ontario was up by 2.7 percent. No new commitments for generating stations were made, and work on committed stations was to be slowed until the generation expansion program had been fully reviewed. Atomic Energy of Canada Ltd. and Ontario Hydro have agreed to develop a nuclear wastes demonstration facility. The Select Committee of the Ontario Legislature on Ontario Hydro affairs investigated the costs of the Bruce heavy water plants and found no evidence of mismanagement. The Royal Commission on Electric Power Planning issued an interim report on nuclear power which recognized the need for and safety of the CANDU system. Reactors at Pickering and Bruce achieved an overall capacity factor of 81 percent. The third Bruce A unit was started up. Work on Bruce B and Pickering B was well underway. Bruce Heavy Water Plant B was virtually complete, but work was stopped on the second half of the Bruce D plant. Plans for the first half of Bruce D will be reviewed. Site preparation and excavation continued for the Darlington generating station. (LL)

  19. Present and future activities of TRIGA RC-1 Reactor

    International Nuclear Information System (INIS)

    Festinesi, A.

    1986-01-01

    A summary of reactor activities is presented and discussed. The RC-1 reactor is used by ENEA's laboratories, research institutes and national industries for different aims: research, analysis materials behaviour under neutron flux, etc. To satisfy the requests increase it is important to signalize: - the realization of a new radiochemical laboratory for radioisotopes production, to be used in a medical and/or diagnostic field in general; - the realization of a tritium handling laboratory, to study tritium solubility, release and diffusion in different material (particularly in ceramic breeder as lithium aluminate) to support Italian programs on fusion technology; - a research activity on the reactors computerized control by a console of advanced conception. The aim of this activity is the development of an ergonomic control room that could be a reference point for the planning of the power reactor control rooms

  20. Neutronic studies in the enrichment reduction of research reactor IEAR-1

    International Nuclear Information System (INIS)

    Maiorino, J.R.; Fanaro, L.C.B.; Mai, L.A.; Ferreira, P.S.B.; Garone, J.G.M.

    1987-01-01

    In the present work the codes used by the Reactor Physics Division of IPEN-CNEN-SP in calculations for plate-type reactors are described analyzing research reactor IEAR-1. The IAEA model problem for a plate-type reactor 10 MW with high, medium and low enrichment is solved through different methodologies now in use at the RTF/IPEN-CNEN-SP (HAMMER and HAMMER-TECH-CITATION and LEO4-2DBP-UM) looking into the calculation capability for high to low enrichment conversion within the contract held with the IAEA (BRA-4661). Finally, present reactor configuration calculations are compared with experimental measurements with the aim to validate the calculation method. (Author)

  1. RA Research reactor Annual report 1982 - Part 1, Operation, maintenance and utilization of the RA reactor

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Kozomara-Maic, S.; Cupac, S.; Radivojevic, J.; Stamenkovic, D.; Skoric, M.; Miokovic, J.

    1982-12-01

    Reactor test operation started in September 1981 at 2 MW power with 80% enriched fuel continued during 1982 according to the previous plan. The initial reactor core was made of 44 fuel channel each containing 10 fuel slugs. The first half of 1982 was used for the needed measurements and analysis of operating parameters and functioning of reactor systems and equipment under operating conditions. Program concerned with the testing operation at higher power levels was started in the second half of this year. It was found that the inherent excess reactivity and control rod worths ensure safe operation according to the IAEA safety standards. Excess reactivity is high enough to enable higher power level of 4.7 MW during 4 monthly cycles each lasting 15-20 days. Favourable conditions for cooling exist for the initial core configuration. Effects of poisoning at startup on the reactivity and power density distribution were measured as well as initial spatial distribution of the neutron flux which was 3,9 10 13 cm -2 s -1 at 2 MW power. Modification of the calibration coefficient in the system for automated power level control was determined. All the results show that all the safety criteria and limitations concerned with fuel utilization are fulfilled if reactor power would be 4.7 MW. Additional testing operation at 3, 4, and 4.7 MW power levels will be needed after obtaining the licence for operating at nominal power. Transition from the initial core with 44 fuel channels to the equilibrium lattice configuration with 72 fuel channels each containing 10 fuel slugs, would be done gradually. Reactor was not operated in September because of the secondary coolant pipes were exchanged between Danube and the horizontal sedimentary. Control and maintenance of the reactor equipment was done regularly and efficiently dependent on the availability of the spare parts. Difficulties in maintenance of the reactor instrumentation were caused by unavailability of the outdated spare parts

  2. Preventive maintenance: optimization of time - based discard decisions at the bruce nuclear generating station

    International Nuclear Information System (INIS)

    Doyle, E.K.; Jardine, A.K.S.

    2001-01-01

    The use of various maintenance optimization techniques at Bruce has lead to cost effective preventive maintenance applications for complex systems. As previously reported at ICONE 6 in New Orleans, 1996, several innovative practices reduced Reliability Centered Maintenance costs while maintaining the accuracy of the analysis. The optimization strategy has undergone further evolution and at the present an Integrated Maintenance Program (IMP) is in place where an Expert Panel consisting of all players/experts proceed through each system in a disciplined fashion and reach agreement on all items under a rigorous time frame. It is well known that there are essentially 3 maintenance based actions that can flow from a Maintenance Optimization Analysis: condition based maintenance, time based maintenance and time based discard. The present effort deals with time based discard decisions. Maintenance data from the Remote On-Power Fuel Changing System was used. (author)

  3. Reliabitity study of the accumulator system for Angra-1 reactor

    International Nuclear Information System (INIS)

    Santos Maciel, C.C.R.

    1980-01-01

    The realibility of the Accumulator System of Angra 1 reactor is studied. The fault tree techniques is use for identification and evaluation of the probability of occurrence of the possible failure modes of the system. The study has as a guide the report WASH 1400 in which the analysis of the reliability of a Tipical PWR reactor of USA. Comparisons between results obtained for Accumulator System of Angra 1 and that published in the report WASH 1400 for the Accumulator System of the Typical Reactor are done. Critiques to the methodology used in the reportd WASH 1400 and an analysis of the sensitivity of the system in relation with its components are also done. (author) [pt

  4. Design of a new research reactor : 1st year conceptual design

    International Nuclear Information System (INIS)

    Park, Cheol; Lee, B. C.; Chae, H. T.

    2004-01-01

    A new research reactor model satisfying the strengthened regulatory environments and the changed circumstances around nuclear society should be prepared for the domestic and international demand of research reactor. This can also lead to the improvement of technologies and fostering manpower obtained during the construction and the operation of HANARO. In this aspect, this study has been launched and the 1st year conceptual design has been carried out in 2003. The major tasks performed at the first year of conceptual design stage are as follows; Establishments of general design requirements of research reactors and experimental facilities, Establishment of fuel and reactor core concepts, Preliminary analysis of reactor physics and thermal-hydraulics for conceptual core, Conceptual design of reactor structure and major systems, International cooperation to establish foundations for exporting

  5. Annual report/1979

    International Nuclear Information System (INIS)

    1980-04-01

    Primary energy demand in Ontario in 1979 was up by 2.9 percent, compared to 2.7 percent in the previous year. Revised forecasts issued in January 1980 indicate Ontario's need for electricity is expected to grow by an average of 3.4 percent annually to the year 2000. Nuclear generation provided 29 percent of the total energy made available by Hydro, and Hydro's eight reactors at Pickering and Bruce continued to rank in the top 36 - four in the top 10 - when compared to the permance of 104 of the world's largest reactors. The provinical legislature's Select Committee on Hydro Affairs examined the safety of the CANDU system and concluded that is is 'acceptably safe'. Faced with reduced forecasts of electrical demands to the year 2000 the Board of Directors decided to stretch out the construction schedule of the Darlington station, to halt construction of the second half of the Bruce Heavy Water Plant D, and to complete but mothball the first half. Construction of Bruce Heavy Water Plant B was completed early in 1979. The A plant produced 599.8 megagrams of reactor-grade heavy water. A control room simulator for Bruce A nuclear generating station was ordered. Agreement was reached on rebuilding faulty boilers at Pickering B. A total of 757.6 megagrams of uranium was used to produce electrical energy and steam. Ontario Hydro continued involvement in uranium exploration. Studies on radioactive waste disposal are being carried out, with emphasis on interim storage and transportation. (LL)

  6. Education and research at the VR-1 Vrabec training reactor facility

    International Nuclear Information System (INIS)

    Matejka, K.

    1993-01-01

    The results of 12 years' efforts devoted to the construction of the VR-1 ''Vrabec'' training reactor at the Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague and to establishing the training reactor department, as well as the contribution of the training reactor facility to the teaching and scientific activities of the Faculty are presented in a comprehensive manner. The thesis is divided into 2 parts: (i) preconditions, reactor construction and commissioning, and constituting the reactor department, and (ii) basic and comprehensive information concerning the current utilization of the reactor for the benefit of students from various university level institutions. The prospects of scientific activities of the department are also outlined. Attention is paid to selected nuclear safety aspects of the reactor during operation and teaching of students, as well as to its innovated digital control system whose implementation is planned. The results achieved are compared with the initial goals and with similar experience abroad. (P.A.)

  7. Graphite stack corrosion of BUGEY-1 reactor (synthesis)

    International Nuclear Information System (INIS)

    Petit, A.; Brie, M.

    1996-01-01

    The definitive shutdown date for the BUGEY-1 reactor was May 27th, 1994, after 12.18 full power equivalent years and this document briefly describes some of the feedback of experience from operation of this reactor. The radiolytic corrosion of graphite stack is the major problem for BUGEY-1 reactor, despite the inhibition of the reaction by small quantities of CH 4 added to the coolant gas. The mechanical behaviour of the pile is predicted using the ''INCA'' code (stress calculation), which uses the results of graphite weight loss variation determined using the ''USURE'' code. The weight loss of graphite is determined by annually taking core samples from the channel walls. The results of the last test programme undertaken after the definitive shutdown of BUGEY-1 have enabled an experimental graph to be established showing the evolution of the compression resistance (perpendicular and parallel direction to the extrusion axis) as a function of the weight loss. The numerous analyses, made on the samples carried out in the most sensitive regions, have allowed to verify that no brutal degradation of the mechanical properties of graphite happens for the high value of weight loss up to 40% (maximum weight loss reached locally). (author). 10 refs, 3 figs, 4 tabs

  8. Sandia reactor kinetics codes: SAK and PK1D

    International Nuclear Information System (INIS)

    Pickard, P.S.; Odom, J.P.

    1978-01-01

    The Sandia Kinetics code (SAK) is a one-dimensional coupled thermal-neutronics transient analysis code for use in simulation of reactor transients. The time-dependent cross section routines allow arbitrary time-dependent changes in material properties. The one-dimensional heat transfer routines are for cylindrical geometry and allow arbitrary mesh structure, temperature-dependent thermal properties, radiation treatment, and coolant flow and heat-transfer properties at the surface of a fuel element. The Point Kinetics 1 Dimensional Heat Transfer Code (PK1D) solves the point kinetics equations and has essentially the same heat-transfer treatment as SAK. PK1D can address extended reactor transients with minimal computer execution time

  9. White spots on Smoke rings by Bruce Nauman: a case study on contemporary art conservation using microanalytical techniques.

    Science.gov (United States)

    Mafalda, Ana Cardeira; da Câmara, Rodrigo Bettencourt; Strzelec, Patrick; Schiavon, Nick; Mirão, José; Candeias, António; Carvalho, Maria Luísa; Manso, Marta

    2015-02-01

    The artwork "Smoke Rings: Two Concentric Tunnels, Non-Communicating" by Bruce Nauman represents a case study of corrosion of a black patina-coated Al-alloy contemporary artwork. The main concern over this artwork was the widespread presence of white spots on its surface. Alloy substrate, patina, and white spots were characterized by means of energy-dispersive X-ray fluorescence and scanning electron microscopy with energy-dispersive spectroscopy. Alloy substrate was identified as an aluminum alloy 6,000 series Al-Si-Mg. Patina's identified composition confirmed the documentation provided by the atelier. Concerning the white spots, zircon particles were found on patina surface as external elements.

  10. Ageing problems and renovation programme of ET-RR-1 reactor

    International Nuclear Information System (INIS)

    Khattab, M.S.; Sultan, M.A.

    1995-01-01

    Based on Practical Experience gained from interfacing ageing systems in addition to operating new systems, current problems could be deduced whenever in-service inspection are carried out. This paper summarizes the in-service inspection made, and the proposed programme of rehabilitation of mechanical system in the ET-RR-1 research reactor at Inshass. Exchangeable experience in solving common problems in similar reactors play an important role in the effectiveness of such rehabilitation programme. The paper summarizes also the modernization of control, measuring and radiation monitoring system already carried out at the reactor. (orig.)

  11. Generating the flux map of Nigeria Research Reactor-1 for efficient ...

    African Journals Online (AJOL)

    One of the main uses to which the Nigeria Research Reactor-1 (NIRR-1) will be put is neutron activation analysis. The activation analyst requires information about the flux level at various points within and around the reactor core to enable him identify the point of optimum flux (at a given operating power) for any irradiation ...

  12. Reactor protection system. Revision 1

    International Nuclear Information System (INIS)

    Fairbrother, D.B.; Vincent, D.R.; Lesniak, L.M.

    1975-04-01

    The reactor protection system-II (RPS-II) designed for use on Babcock and Wilcox 145- and 205-fuel assembly pressurized water reactors is described. In this system, relays in the trip logic have been replaced by solid state devices. A calculating module for the low DNBR, pump status, and offset trip functions has replaced the overpower trip (based on flow and imbalance), the power/RC pump trip, and the variable low pressure trip. Included is a description of the changes from the present Oconee-type reactor protection system (RPS-I), a functional and hardware description of the calculating module, and a discussion of the qualification program conducted to ensure that the degree of protection provided by RPS-II is not less than that provided by previously licensed systems supplied by B and W. (U.S.)

  13. RA Research nuclear reactor Part 1, RA Reactor operation and maintenance in 1987

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1987-01-01

    RA research reacto was not operated due to the prohibition issued in 1984 by the Government of Serbia. Three major tasks were finished in order to fulfill the licensing regulations about safety of nuclear facilities which is the condition for obtaining permanent operation licence. These projects involved construction of the emergency cooling system, reconstruction of the existing special ventilation system, and renewal of the system for electric power supply of the reactor systems. Renewal of the RA reactor instrumentation system was initiated. Design project was done by the Russian Atomenergoeksport, and is foreseen to be completed by the end of 1988. The RA reactor safety report was finished in 1987. This annual report includes 8 annexes concerning reactor operation, activities of services and financial issues, and three special annexes: report on testing the emergency cooling system, report on renewal of the RA reactor and design specifications for reactor renewal and reconstruction [sr

  14. Characterization and dissolution studies of Bruce Unit 3 steam generator secondary side deposits

    International Nuclear Information System (INIS)

    Semmler, J.

    1998-01-01

    The physical and chemical properties of secondary side steam generator deposits in the form of powder and flake obtained from Bruce Nuclear Generating Station A (BNGS A) Unit 3 were studied. The chemical phases present in both types of deposits, collected prior to the 1994 chemical cleaning during the pre-clean water lancing campaign, were magnetite (Fe 3 O 4 ), metallic copper (Cu), hematite (Fe 2 O 3 ) and cuprous oxide (Cu 2 O). The major difference between the chemical composition of the powder and the flake was the presence of zinc silicate (Zn 2 SiO 4 ) and several unidentified silicate phases containing Ca, Al, Mn, and Mg in the flake. The flake deposit had high hardness values, high electrical resistivity, low porosity and a lower dissolution rate in the EPRI-SGOG (Electric Power Research Institute-Steam Generator Owner's Group) chemical cleaning solvents compared to the powder deposit. Differences in the deposit properties after chemical cleaning of the Unit 3 steam generators and after laboratory cleaning were noted. The presence of silicates in the deposit inhibit magnetite dissolution

  15. Thirtieth anniversary of reactor accident in A-1 Nuclear Power Plant Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Kuruc, J.; Matel, L.

    2007-01-01

    The facts about reactor accidents in A-1 Nuclear Power Plant Jaslovske Bohunice, Slovakia are presented. There was the reactor KS150 (HWGCR) cooled with carbon dioxide and moderated with heavy water. A-1 NPP was commissioned on December 25, 1972. The first reactor accident happened on January 5, 1976 during fuel loading. This accident has not been evaluated according to the INES scale up to the present time. The second serious accident in A-1 NPP occurred on February 22, 1977 also during fuel loading. This INES level 4 of reactor accident resulted in damaged fuel integrity with extensive corrosion damage of fuel cladding and release of radioactivity into the plant area. The A-1 NPP was consecutively shut down and is being decommissioned in the present time. Both reactor accidents are described briefly. Some radioecological and radiobiological consequences of accidents and contamination of area of A-1 NPP as well as of Manivier Canal and Dudvah River as result of flooding during the decommissioning are presented (authors)

  16. Demolition of the FRJ-1 research reactor (MERLIN)

    International Nuclear Information System (INIS)

    Stahn, B.; Matela, K.; Zehbe, C.; Poeppinghaus, J.; Cremer, J.

    2003-01-01

    FRJ-2 (MERLIN), the swimming pool reactor cooled and moderated by light water, was built at the then Juelich Nuclear Research Establishment (KFA) between 1958 and 1962. In the period between 1964 and 1985, it was used for. The reactor was decommissioned in 1985. Since 1996, most of the demolition work has been carried out under the leadership of a project team. The complete secondary cooling system was removed by late 1998. After the cooling loops and experimental installations had been taken out, the reactor vessel internals were removed in 2000 after the water had been drained from the reactor vessel. After the competent authority had granted a license, demolition of the reactor block, the central part of the research reactor, was begun in October 2001. In a first step, the reactor operating floor and the reactor attachment structures were removed by the GNS/SNT consortium charged with overall planning and execution of the job. This phase gave rise to approx. The reactor block proper is dismantled in a number of steps. A variety of proven cutting techniques are used for this purpose. Demolition of the reactor block is to be completed in the first half of 2003. (orig.) [de

  17. Evaporation rate measurement in the pool of IEAR-1 reactor

    International Nuclear Information System (INIS)

    Torres, Walmir Maximo; Cegalla, Miriam A.; Baptista Filho, Benedito Dias

    2000-01-01

    The surface water evaporation in pool type reactors affects the ventilation system operation and the ambient conditions and dose rates in the operation room. This paper shows the results of evaporation rate experiment in the pool of IEA-R1 research reactor. The experiment is based on the demineralized water mass variation inside cylindrical metallic recipients during a time interval. Other parameters were measured, such as: barometric pressure, relative humidity, environmental temperature, water temperature inside the recipients and water temperature in the reactor pool. The pool level variation due to water contraction/expansion was calculated. (author)

  18. New digital control system for the operation of the Colombian research reactor IAN-R1; Nuevo sistema de control digital para la operacion del reactor de investigacion Colombiano IAN-R1

    Energy Technology Data Exchange (ETDEWEB)

    Celis del A, L.; Rivero, T.; Bucio, F.; Ramirez, R.; Segovia, A.; Palacios, J., E-mail: lina.celis@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    En 2011, Mexico won the Colombian international tender for the renewal of instrumentation and control of the IAN-R1 Reactor, to Argentina and the United States. This paper presents the design criteria and the development made for the new digital control system installed in the Colombian nuclear reactor IAN-R1, which is based on a redundant and diverse architecture, which provides increased availability, reliability and safety in the reactor operation. This control system and associated instrumentation met all national export requirements, with the safety requirements established by the IAEA as well as the requirements demanded by the Colombian Regulatory Body in nuclear matter. On August 20, 2012, the Colombian IAN-R1 reactor reached its first criticality controlled with the new system developed at Instituto Nacional de Investigaciones Nucleares (ININ). On September 14, 2012, the new control system of the Colombian IAN-R1 reactor was officially handed over to the Colombian authorities, this being the first time that Mexico exported nuclear technology through the ININ. Currently the reactor is operating successfully with the new control system, and has an operating license for 5 years. (Author)

  19. IEA-R1 research reactor: operational life extension and considerations regarding future decommissioning

    International Nuclear Information System (INIS)

    Frajndlich, Roberto

    2009-01-01

    The IEA-R1 reactor is a pool type research reactor moderated and cooled by light water and uses graphite and beryllium reflectors. The reactor is located at the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), in the city of Sao Paulo, Brazil. It is the oldest research reactor in the southern hemisphere and one of the oldest of this kind in the world. The first criticality of the reactor was obtained on September 16, 1957. Given the fact that Brazil does not have yet a definitive radioactive waste repository and a national policy establishing rules for the spent fuel storage, the institutions which operate the research reactors for more than 50 years in the country have searched internal solutions for continued operation. This paper describes the spent fuel assemblies and radioactive waste management process for the IEA-R1 reactor and the refurbishment and modernization program adopted to extend its lifetime. Some considerations about the future decommissioning of the reactor are also discussed which, in my opinion, might help the operating organization to make decisions about financial, legal and technical aspects of the decommissioning procedures in a time frame of 10-15 years(author)

  20. RA reactor operation and maintenance in 1992, Part 1

    International Nuclear Information System (INIS)

    Sotic, O.; Cupac, S.; Sulem, B.; Zivotic, Z.; Majstorovic, D.; Tanaskovic, M.

    1992-01-01

    During 1992 Ra reactor was not in operation. All the activities were fulfilled according to the previously adopted plan. Basic activities were concerned with revitalisation of the RA reactor and maintenance of reactor components. All the reactor personnel was busy with reconstruction and renewal of the existing reactor systems and building of the new systems, maintenance of the reactor devices. Part of the staff was trained for relevant tasks and maintenance of reactor systems [sr

  1. Thermal hydraulic and safety analyses for Pakistan Research Reactor-1

    International Nuclear Information System (INIS)

    Bokhari, I.H.; Israr, M.; Pervez, S.

    1999-01-01

    Thermal hydraulic and safety analysis of Pakistan Research Reactor-1 (PARR-1) utilizing low enriched uranium (LEU) fuel have been performed using computer code PARET. The present core comprises of 29 standard and 5 control fuel elements. Results of the thermal hydraulic analysis show that the core can be operated at a steady-state power level of 10 MW for a flow rate of 950 m 3 /h, with sufficient safety margins against ONB (onset of nucleate boiling) and DNB (departure from nucleate boiling). Safety analysis has been carried out for various modes of reactivity insertions. The events studied include: start-up accident; accidental drop of a fuel element in the core; flooding of a beam tube with water; removal of an in-pile experiment during reactor operation etc. For each of these transients, time histories of reactor power, energy released and clad surface temperature etc. were calculated. The results indicate that the peak clad temperatures remain well below the clad melting temperature during these accidents. It is therefore concluded that the reactor can be safely operated at 10 MW without compromising safety. (author)

  2. Spent fuel management - two alternatives at the FiR 1 reactor

    International Nuclear Information System (INIS)

    Salmenhaara, S.E.J.

    2001-01-01

    The FiR 1 -reactor, a 250 kW Triga reactor, has been in operation since 1962. The reactor with its subsystems has experienced a large renovation work in 1996-97. The main purpose of the upgrading was to install the new Boron Neutron Capture Therapy (BNCT) irradiation facility. The BNCT work dominates the current utilization of the reactor: four days per week for BNCT purposes and only one day per week for neutron activation analysis and isotope production. The Council of State (government) granted for the reactor a new operating license for twelve years starting from the beginning of the year 2000. There is however a special condition in the new license. We have to achieve a binding agreement between our Research Centre and the domestic Nuclear Power Plant Companies about the possibility to use the final disposal facility of the Nuclear Power Plants for our spent fuel, if we want to continue the reactor operation beyond the year 2006. In addition to the choosing of one of the spent fuel management alternatives the future of the reactor will also depend strongly on the development of the BNCT irradiations. If the number of patients per year increases fast enough and the irradiations of the patients will be economically justified, the operation of the reactor will continue independently of the closing of the USDOE alternative in 2006. Otherwise, if the number of patients will be low, the funding of the reactor will be probably stopped and the reactor will be shut down. (author)

  3. Measurement of the thermal flux distribution in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Tangari, C.M.; Moreira, J.M.L.; Jerez, R.

    1986-01-01

    The knowledge of the neutron flux distribution in research reactors is important because it gives the power distribution over the core, and it provides better conditions to perform experiments and sample irradiations. The measured neutron flux distribution can also be of interest as a means of comparison for the calculational methods of reactor analysis currently in use at this institute. The thermal neutron flux distribution of the IEA-R1 reactor has been measured with the miniature chamber WL-23292. For carrying out the measurements, it was buit a guide system that permit the insertion of the mini-chamber i between the fuel of the fuel elements. It can be introduced in two diferent positions a fuel element and in each it spans 26 axial positions. With this guide system the thermal neutron flux distribution of the IEA-R1 nuclear reactor can be obtained in a fast and efficient manner. The element measured flux distribution shows clearly the effects of control rods and reflectors in the IEA-R1 reactor. The difficulties encountered during the measurements are mentioned with detail as well as the procedures adopteed to overcome them. (Author) [pt

  4. Computer-aided testing and operational aids for PARR-1 nuclear reactor

    International Nuclear Information System (INIS)

    Ansari, S.A.

    1990-01-01

    The utilization of the plant computer of Pakistan Research Reactor (PARR-1) for automatic periodic testing of nuclear instrumentation in the reactor is described. Computer algorithms have been developed for on-line acquisition and real-time processing of nuclear channel signals. The mean value, standard deviation, and probability distributions of nuclear channel signals are obtained in real time, and the computer generates a warning message if the signal error exceeds the maximum permissible error. In this way a faulty channel is automatically identified. Other real-time algorithms are also described that assist the operator in safe reactor operation by automatically computing approach-to-criticality during reactor start-up and the control rod worth determination

  5. Properties of autoregressive model in reactor noise analysis, 1

    International Nuclear Information System (INIS)

    Yamada, Sumasu; Kishida, Kuniharu; Bekki, Keisuke.

    1987-01-01

    Under appropriate conditions, stochastic processes are described by the ARMA model, however, the AR model is popularly used in reactor noise analysis. Hence, the properties of AR model as an approximate representation of the ARMA model should be made clear. Here, convergence of AR-parameters and PSD of AR model were studied through numerical analysis on specific examples such as the neutron noise in subcritical reactors, and it was found that : (1) The convergence of AR-parameters and AR model PSD is governed by the ''zero nearest to the unit circle in the complex plane'' (μ -1 ,|μ| M . (3) The AR model of the neutron noise of subcritical reactors needs a large model order because of an ARMA-zero very close to unity corresponding to the decay constant of the 6-th group of delayed neutron precursors. (4) In applying AR model for system identification, much attention has to be paid to a priori unknown error as an approximate representation of the ARMA model in addition to the statistical errors. (author)

  6. SCALE-4 analysis of pressurized water reactor critical configurations. Volume 1: Summary

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1995-03-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit is to be taken for the reduced reactivity of burned or spent fuel relative to its original fresh composition, it is necessary to benchmark computational methods used in determining such reactivity worth against spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized water reactors (PWR). The analysis methodology utilized for all calculations in this report is based on the modules and data associated with the SCALE-4 code system. Each of the five volumes comprising this report provides an overview of the methodology applied. Subsequent volumes also describe in detail the approach taken in performing criticality calculations for these PWR configurations: Volume 2 describes criticality calculations for the Tennessee Valley Authority's Sequoyah Unit 2 reactor for Cycle 3; Volume 3 documents the analysis of Virginia Power's Surry Unit 1 reactor for the Cycle 2 core; Volume 4 documents the calculations performed based on GPU Nuclear Corporation's Three Mile Island Unit 1 Cycle 5 core; and, lastly, Volume 5 describes the analysis of Virginia Power's North Anna Unit 1 Cycle 5 core. Each of the reactor-specific volumes provides the details of calculations performed to determine the effective multiplication factor for each reactor core for one or more critical configurations using the SCALE-4 system; these results are summarized in this volume. Differences between the core designs and their possible impact on the criticality calculations are also discussed. Finally, results are presented for additional analyses performed to verify that solutions were sufficiently converged

  7. Spent fuel management plans for the FiR 1 Reactor

    International Nuclear Information System (INIS)

    Salmenhaara, S. E. J.

    2002-01-01

    The FiR 1-reactor, a 250 kW TRIGA reactor, has been in operation since 1962. The main purpose to run the reactor is now the Boron Neutron Capture Therapy (BNCT). The BNCT work dominates the current utilization of the reactor: three days per week for BNCT purposes and only two days per week for other purposes such as the neutron activation analysis and isotope production. The final disposal site is situated in Olkiluoto, on the western coast of Finland. Olkiluoto is also one of the two nuclear power plant sites in Finland. In the new operating license of our reactor there is a special condition. We have to achieve a binding agreement between our Research Centre and either the domestic Nuclear Power Companies about the possibility to use the Olkiluoto final disposal facility for our spent fuel or US DOE about the return of our spent fuel back to USA. If we want to continue the reactor operation beyond the year 2006. the domestic final disposal is the only possibility. At the moment it seems to be reasonable to prepare to both possibilities: the domestic final disposal and the return to the USA offered by US DOE. Because the cost estimates of the both possibilities are on the same order of magnitude, the future of the reactor itself will decide, which of the spent fuel policies will be obeyed. In a couple of years' time it will be seen, if the funding of the reactor and the incomes from the BNCT treatments will cover the costs. If the BNCT and other irradiations develop satisfactorily, the reactor can be kept in operation beyond the year 2006 and the domestic final disposal will be implemented. If, however, there is still lack of money, there is no reason to continue the operation of the reactor and the choice of US DOE alternative is natural. (author)

  8. Experimental study of the IPR-R1 TRIGA reactor power channels responses

    International Nuclear Information System (INIS)

    Mesquita, Henrique F.A.; Ferreira, Andrea V.

    2015-01-01

    The IPR-R1 nuclear reactor installed at Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Belo Horizonte, Brazil, is a Mark I TRIGA reactor (Training, Research, Isotopes, General Atomics) and became operational on November of 1960. The reactor has four irradiation devices: a rotary specimen rack with 40 irradiation channels, the central tube, and two pneumatic transfer tubes. The nuclear reactor is operated in a power range between zero and 100 kW. The instrumentation for IPR-R1 operation is mainly composed of four neutronic channels for power measurements. The aim of this work is to investigate the responses of neutronic channels of IPR-R1, Linear, Log N and Percent Power channels, and to check their linearity. Gold foils were activated at low powers (0.125-1.000 kW), and cobalt foils were activated at high powers (10-100kW). For each sample irradiated at rotary specimen rack, another one was irradiated at the same time at the pneumatic transfer tube-2. The obtained results allowed evaluating the linearity of the neutronic channels responses. (author)

  9. Irradiation experience of IPEN fuel at IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Perrotta, Jose A.; Neto, Adolfo; Durazzo, Michelangelo; Souza, Jose A.B. de; Frajndlich, Roberto

    1998-01-01

    IPEN/CNEN-SP produces, for its IEA-R1 Research Reactor, MTR fuel assemblies based on U 3 O 8 -Al dispersion fuel type. Since 1985 a qualification program on these fuel assemblies has been performed. Average 235 U burnup of 30% and peak burnup of 50% was already achieved by these fuel assemblies. This paper presents some results acquire, by these fuel assemblies, under irradiation at IEA-R1 Research Reactor. (author)

  10. RA reactor operation and maintenance in 1996, Part 1

    International Nuclear Information System (INIS)

    Sotic, O.; Cupac, S.; Sulem, B.; Zivotic, Z.; Mikic, N.; Tanaskovic, M.

    1996-01-01

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The planned major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the reactor power supply system. The existing RA reactor instrumentation was dismantled. Renewal of the reactor instrumentation was started but but it is behind the schedule because the delivery of components from USSR was stopped for political reasons. Since the RA reactor is shutdown since 1984, it is high time for decision making of its future status. Possible solutions for the future status of the RA reactor discussed in this report are: renewal of reactor components for the reactor restart, conservation of the reactor (temporary shutdown) or permanent reactor shutdown. Control and maintenance of the reactor instrumentation and devices was done regularly but dependent on the availability of the spare parts and financial means. Training of the existing personnel and was done regularly, but the new staff has no practical training since the reactor is not operated. Lack of financial support influenced strongly the status of RA reactor [sr

  11. Possible future roles for fast breeder reactors Part 1 and 2

    International Nuclear Information System (INIS)

    1978-06-01

    Part 1. The Fast Breeder Reactor (in particular in its sodium cooled version) has been steadily developed in the Community. This report attempts to quantify the advantages of this system in terms of fossil energy and uranium savings in the medium/long term as well as to examine some long term economic implications. The methodology of comparing scenarios, not individual reactor systems is followed. These scenarios have been chosen taking into account a range of assumptions concerning Community energy demand growth, fossil energy and uranium availability and technological capabilities. Part 2. The fast breeder reactor (FBR), particularly its sodium-cooled form (LMFBR) has been under development in the Community for many years. Industrial enterprises dedicated to its commercialisation have been formed and long range plans for its industrial utilisation are being formulated. The value of breeder reactors from the point of view of minimising Community fuel requirements has been discussed in Part I of this report (1). In Part II the consequences of delaying their introduction, and the demands placed upon the recycle industry by the introduction of fast reactors of different characteristics, using the Community electricity demand scenarios developed for Part I, are discussed. In addition comments are provided upon the effect of FBR introduction on the size of plutonium stocks

  12. The AMPS 1.5 MW low-pressure compact reactor

    International Nuclear Information System (INIS)

    Hewitt, J.S.

    1987-01-01

    The 1.5-MWt reactor of the Autonomous Marine Power Source (AMPS) is designed to meet the unusual requirements of its first application. To provide for 100 kWe (net) on board self-sustaining manned submersible vehicles, the AMPS reactor must deliver safely, reliably and without direct operator surveillance, its thermal output to freon Rankine-cycle engines at thermodynamically useful temperatures. It must also conform to space and weight limits on the order of less than 50 cubic metres and 70 tonnes. The safety requirements are met by (i) limiting lifetime excess reactivity requirements by incorporation of burnable poison in the U-Zr-H fuel, (ii) maintaining nominal pressures in the light-water primary system at about 1 atmosphere, and (iii) maintaining a large volume of primary reserve coolant at temperature depressed relative to that of the circulating coolant. The latter averages 90 degrees celsius as it is pumped around loops that include the reactor core and the freon evaporators during normal operation. In the event of loss of pumped flow, the system defaults by intrinsic means to core cooling through natural convective exchange with the reserve coolant. In the post-shutdown situation, this passive cooling mode continues to operate regardless of vessel orientation and decay heat is safely dissipated to the sea. The design of the AMPS system, including the reactor, the freon engines, the control and monitoring system, the safety shut-down system and the power source container, are in advanced stages of design. (author)

  13. Thermal hydraulic analysis of the IPR-R1 TRIGA reactor; Analise termo-hidraulica do reator TRIGA IPR-R1

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, Marcelo Antonio [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Fortini, Maria Auxiliadora [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2002-07-01

    The subchannel approach, normally employed for the analysis of power reactor cores that work under forced convection, have been used for the thermal hydraulic evaluation of a TRIGA Mark I reactor, named IPR-R1, at 250 kW power level. This was accomplished by using the PANTERA-1P subchannel code, which has been conveniently adapted to the characteristics of natural convection of TRIGA reactors. The analysis of results indicates that the steady state operation of IPR-R1 at 250 kW do not imply risks to installations, workers and public. (author)

  14. Pellet bed reactor for nuclear propelled vehicles: Part 1: Reactor technology

    Science.gov (United States)

    El-Genk, Mohamed S.

    1991-01-01

    The pellet bed reactor (PBR) for nuclear propelled vehicles is briefly discussed. Much of the information is given in viewgraph form. Viewgraphs include information on the layout for a Mars mission using a PBR nuclear thermal rocket, the rocket reactor layout, the fuel pellet design, materials compatibility, fuel microspheres, microsphere coating, melting points in quasibinary systems, stress analysis of microspheres, safety features, and advantages of the PBR concept.

  15. Pellet bed reactor for nuclear propelled vehicles: Part 1: Reactor technology

    International Nuclear Information System (INIS)

    El-genk, M.S.

    1991-01-01

    The pellet bed reactor (PBR) for nuclear propelled vehicles is briefly discussed. Much of the information is given in viewgraph form. Viewgraphs include information on the layout for a Mars mission using a PBR nuclear thermal rocket, the rocket reactor layout, the fuel pellet design, materials compatibility, fuel microspheres, microsphere coating, melting points in quasibinary systems, stress analysis of microspheres, safety features, and advantages of the PBR concept

  16. Experience and research with the IEA-R1 Brazilian reactor

    International Nuclear Information System (INIS)

    Fulfaro, R.; Sousa, J.A. de; Nastasi, M.J.C.; Vinhas, L.A.; Lima, F.W.

    1982-06-01

    The IEA-R1 reactor of the Instituto de Pesquisas Energeticas e Nucleares, IPEN, of Sao Paulo, Brazil, a lightwater moderated swimming-pool research reactor of MTR type, went critical for the first time on September 16, 1957. In a general way, in these twenty four years the reactor was utilized without interruption by users of IPEN and other institutions, for the accomplishment of work in the field of applied and basic research, for master and doctoral thesis and for technical development. Some works performed and the renewal programme established for the IEA-R1 research reactor in which several improvements and changes were made. Recent activities in terms of production of radioisotopes and some current research programm in the field of Radiochemistry are described, mainly studies and research on chemical reactions and processes using radioactive tracers and development of radioanalytical methods, such as neutron activation and isotopic dilution. The research programmes of the Nuclear Physics Division of IPEN, which includes: nuclear spectroscopy studies and electromagnetic hyperfine interactions; neutron diffraction; neutron inelastic scattering studies in condensed matter; development and application of the technique of fission track register in solid state detectors; neutron radioactive capture with prompt gamma detection and, finally, research in the field of nuclear metrology, are presented. (Author) [pt

  17. Experience and research with the IEA-R1 Brazilian reactor

    International Nuclear Information System (INIS)

    Fulfaro, R.; Sousa, J.A. de; Nastasi, M.J.C.; Vinhas, L.A.; Lima, F.W. de.

    1982-06-01

    The IEA-R1 reactor of the Instituto de Pesquisas Energeticas e Nucleares, IPEN, of Sao Paulo, Brazil, a lighwater moderated swimming-pool research reactor of MTR type, went critical for the first time on September 16, 1957. In a general way, in these twenty four years the reactor was utilized without interruption by users of IPEN and other institutions, for the accomplishment of work in the field of applied and basic research, for master and doctoral thesis and for technical development. Some works performed and the renewal programme established for the IEA-R1 research reactor in which several improvements and changes were made. Recent activities in terms of production of radioisotopes and some current research programm in the field of Radiochemistry are described, mainly studies and research on chemical reactions and processes using radioactive tracers and development of radioanalytical methods, such as neutron activation and isotopic dilution. It is also presented the research programmes of the Nuclear Physics Division of IPEN, which includes: nuclear spectroscopy studies and electromagnetic hyperfine interactions; neutron diffraction; neutron inelastic scattering studies in condensed matter; development and application of the technique of fission track register in solid state detectors; neutron radioactive capture with prompt gamma detection and, finally, research in the field of nuclear metrology. (Author) [pt

  18. CAC-RA1 1958-1998. The first years of the Constituyentes Atomic Center (CAC). History of the first Argentine nuclear reactor (RA-1); CAC-RA-1 1958-1998. Los primeros anios del CAC. Historia del primer reactor nuclear argentino (RA-1)

    Energy Technology Data Exchange (ETDEWEB)

    Forlerer, Elena; Palacios, Tulio A [comps.

    1998-07-01

    After giving the milestones of the development of the Constituyentes Atomic Center since 1957, the history of the construction of the first nuclear reactor (RA-1) in Argentina, including the local fabrication of its fuel elements, is surveyed. The RA-1 reached criticality on January 17, 1958. The booklet commemorates the 40th year of the reactor operation.

  19. Benchmark testing of Canadol-2.1 for heavy water reactor

    International Nuclear Information System (INIS)

    Liu Ping

    1999-01-01

    The new version evaluated nuclear data library of ENDF-B 6.5 has been released recently. In order to compare the quality of evaluated nuclear data CENDL-2.1 with ENDF-B 6.5, it is necessary to do benchmarks testing for them. In this work, CENDL-2.1 and ENDF-B 6.5 were used to generated the WIMS-69 group library respectively, and benchmarks testing was done for the heavy water reactor, using WIMS5A code. It is obvious that data files of CENDL-2.1 is better than that of old WIMS library for the heavy water reactors calculations, and is in good agreement with those of ENDF-B 6.5

  20. Reactivity feedback coefficients Pakistan research reactor-1 using PRIDE code

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, Ali; Ahmed, Siraj-ul-Islam; Khan, Rustam [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Inam-ul-Haq [Comsats Institute of Information Technology, Islamabad (Pakistan). Dept. of Physics

    2017-05-15

    Results of the analyses performed for fuel, moderator and void's temperature feedback reactivity coefficients for the first high power core configuration of Pakistan Research Reactor - 1 (PARR-1) are summarized. For this purpose, a validated three dimensional model of PARR-1 core was developed and confirmed against the reference results for reactivity calculations. The ''Program for Reactor In-Core Analysis using Diffusion Equation'' (PRIDE) code was used for development of global (3-dimensional) model in conjunction with WIMSD4 for lattice cell modeling. Values for isothermal fuel, moderator and void's temperature feedback reactivity coefficients have been calculated. Additionally, flux profiles for the five energy groups were also generated.

  1. Use of self powered neutron detectors in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Galo Rocha, F. del.

    1989-01-01

    A survey of self-powered neutron detectors, SPND, which are used as part of the in-core instrumentation of nuclear reactors is presented. Measurements with Co and Er SPND's were made in the IEA-R1 reactor for determining the neutron flux distribution and the integral reactor power. Due to the size of the available detectors, the neutron flux distribution could not be obtained with accuracy. The results obtained in the reactor power measurements demonstrate that the SPND have the linearity and the quick response necessary for a reactor power channel. This work also presents a proposed design of a SPND using Pt as wire emissor. This proposed design is based in the experience gained in building two prototypes. The greatest difficulties encountered include materials and technology to perform the delicate weldings. (author)

  2. Status of prompt gamma neutron activation analysis (PGAA) at TRR-1/M1 (Thai Research Reactor-1/Modified 1)

    Energy Technology Data Exchange (ETDEWEB)

    Asvavijnijkulchai, Chanchai; Dharmavanij, Wanchai; Siangsanan, Pariwat; Ratanathongchai, Wichian; Chongkum, Somporn [Physics Division, Office of Atomic Energy for Peace, Vibhavadi Rangsit Road, Chatuchak, Bangkok (Thailand)

    1999-08-01

    The first prompt gamma activation analysis (PGAA) was designed, constructed and installed at a 6 inch diameter neutron beam port of the Thai Research Reactor-1/Modified 1 (TRR-1/M1) since 1989. Beam characteristic were made by Gd foil irradiation, X-ray film exposing and densitometry scanning consequently. The thermal neutron flux at sample position was measured by Au foil activation, and was about 1 x 10{sup 7} n.cm{sup 2}.sec{sup -1} at 700 kW operating power. The experiments have been conducted successfully. In 1998, the PGAA facility has been developed for the reactor operating power at 1.2 MW. The new PGAA system, e.g., beam shutter, gamma collimator and biological shields have been designed to reduce the leakage of neutrons and gamma radiation to the acceptance levels in accordance with the International Commission on Radiation Protection Publication 60 (ICRP 60). The construction and installation will be completed in April 1999. (author)

  3. Status of prompt gamma neutron activation analysis (PGAA) at TRR-1/M1 (Thai Research Reactor-1/Modified 1)

    International Nuclear Information System (INIS)

    Asvavijnijkulchai, Chanchai; Dharmavanij, Wanchai; Siangsanan, Pariwat; Ratanathongchai, Wichian; Chongkum, Somporn

    1999-01-01

    The first prompt gamma activation analysis (PGAA) was designed, constructed and installed at a 6 inch diameter neutron beam port of the Thai Research Reactor-1/Modified 1 (TRR-1/M1) since 1989. Beam characteristic were made by Gd foil irradiation, X-ray film exposing and densitometry scanning consequently. The thermal neutron flux at sample position was measured by Au foil activation, and was about 1 x 10 7 n.cm 2 .sec -1 at 700 kW operating power. The experiments have been conducted successfully. In 1998, the PGAA facility has been developed for the reactor operating power at 1.2 MW. The new PGAA system, e.g., beam shutter, gamma collimator and biological shields have been designed to reduce the leakage of neutrons and gamma radiation to the acceptance levels in accordance with the International Commission on Radiation Protection Publication 60 (ICRP 60). The construction and installation will be completed in April 1999. (author)

  4. Reactor inventory monitoring system for Angra-1 reactor

    International Nuclear Information System (INIS)

    S Neto, Joaquim A.; Silva, Marcos C.; Pinheiro, Ronaldo F.M.; Soares, Milton; Martinez, Aquilino; Comerlato, Cesar A.; Oliveira, Eugenio A.

    1996-01-01

    This work describes the project of Reactor Inventory Monitoring System, which will be installed in Angra I Nuclear Power Plant. The inventory information is important to the operators take corrective actions in case of an incident that may cause a failure in the core cooling. (author)

  5. Modifications done in the IPR-R1 reactor and their auxiliary systems

    International Nuclear Information System (INIS)

    Maretti Junior, F.; Amorim, V.A. de; Coura, J.G.

    1986-01-01

    The improvements done in the IPR-R1 reactor for adequateness of operation conditions and increase of irradiation sample capability. The cooling systems, reactor pool, system of control rods were substituted. The optimization of transfer pneumatic system was done. (M.C.K.) [pt

  6. Proceedings of 2. Yugoslav symposium on reactor physics, Part 1, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    International Nuclear Information System (INIS)

    1966-01-01

    This Volume 1 of the Proceedings of 2. Yugoslav symposium on reactor physics includes nine papers dealing with the following topics: reactor kinetics, reactor noise, neutron detection, methods for calculating neutron flux spatial and time dependence in the reactor cores of both heavy and light water moderated experimental reactors, calculation of reactor lattice parameters, reactor instrumentation, reactor monitoring systems; measuring methods of reactor parameters; reactor experimental facilities

  7. Thai research reactor

    International Nuclear Information System (INIS)

    Aramrattana, M.

    1987-01-01

    The Office of Atomic Energy for Peace (OAEP) was established in 1962, as a reactor center, by the virtue of the Atomic Energy for Peace Act, under operational policy and authority of the Thai Atomic Energy for Peace Commission (TAEPC); and under administration of Ministry of Science, Technology and Energy. It owns and operates the only Thai Research Reactor (TRR-1/M1). The TRR-1/M1 is a mixed reactor system constituting of the old MTR type swimming pool, irradiation facilities and cooling system; and TRIGA Mark III core and control instrumentation. The general performance of TRR-1/M1 is summarized in Table I. The safe operation of TRR-1/M1 is regulated by Reactor Safety Committee (RSC), established under TAEPC, and Health Physics Group of OAEP. The RCS has responsibility and duty to review of and make recommendations on Reactor Standing Orders, Reactor Operation Procedures, Reactor Core Loading and Requests for Reactor Experiments. In addition,there also exist of Emergency Procedures which is administered by OAEP. The Reactor Operation Procedures constitute of reactor operating procedures, system operating procedures and reactor maintenance procedures. At the level of reactor routine operating procedures, there is a set of Specifications on Safety and Operation Limits and Code of Practice from which reactor shift supervisor and operators must follow in order to assure the safe operation of TRR-1/M1. Table II is the summary of such specifications. The OAEP is now upgrading certain major components of the TRR-1/M1 such as the cooling system, the ventilation system and monitoring equipment to ensure their adequately safe and reliable performance under normal and emergency conditions. Furthermore, the International Atomic Energy Agency has been providing assistance in areas of operation and maintenance and safety analysis. (author)

  8. Continuous backfitting measures for the FRG-1 and FRG-2 research reactors

    International Nuclear Information System (INIS)

    Blom, K.H.; Falck, K.; Krull, W.

    1990-01-01

    The GKSS-Research Centre Geesthacht GmbH has been operating the research reactors FRG-1 and FRG-2 with power levels of 5 MW and 15 MW for 31 and 26 years respectively. Safe operation at full power levels over so many years with an average utilization between 180 d to 250 d per year is possible only with great efforts in modernization and upgrading of the research reactors. Emphasis has been placed on backfitting since around 1975. At that time within the Federal Republic of Germany many new guidelines, rules, ordinances, and standards in the field of (power) reactor safety were published. Much work has been done on the modernization of the FRG-1 and FRG-2 research reactors therefore within the last ten years. Work done within the last two years and presently underway includes: measures against water leakage through the concrete and along the beam tubes; repair of both cooling towers; modernization of the ventilation system; measures for fire protection; activities in water chemistry and water quality; installation of a double tubing for parts of the primary piping of the FRG-1; replacement of instrumentation, process control systems (operation and monitoring system) and alarm system; renewal of the emergency power supply; installation of internal lightning protection; installation of a cold neutron source; enrichment reduction for FRG-1. These efforts will continue to allow safe operation of our research reactors over their whole operational life

  9. Identity as Fleeting Fashion? Revealing the Background of Popularity Through Bosniaherzegovina’s Adoption of Bruce Lee

    Directory of Open Access Journals (Sweden)

    Alenka Bartulović

    2007-12-01

    Full Text Available This paper reflects on the background to popular research on identification processes in modern ethnology and cultural or social anthropology. By discussing themes closely connected to identity (national and popular culture, and the construction of Others, the author reveals that identity is not merely a redundant trend that researchers recklessly pursue, but that it reflects the need to reveal existing uncertainties and is an attempt to revise errors made to date, as well as lapses of the discipline we work in. The author primarily focuses on national identity and its situational transformations and intertwining with other existing identities. Bosnia-Herzegovina is placed at the center of interest. This theoretically oriented text concludes by analyzing the idea of erecting a monument to Bruce Lee in Mostar, which reveals the full complexity of identity processes around a world marked by intense and unique global and transnational currents.

  10. Monitoring the risk of loss of heat sink during plant shutdowns at Bruce Generating Station 'A'

    International Nuclear Information System (INIS)

    Krishnan, K.S.; Mancuso, F.; Vecchiarelli, D.

    1996-01-01

    A relatively simple loss of shutdown heat sink fault tree model has been developed and used during unit outages at Bruce Nuclear Generation Station 'A' to assess, from a risk and reliability perspective, alternative heat sink strategies and to aid in decisions on allowable outage configurations. The model is adjusted to reflect the various unit configurations planned during a specific outage, and identifies events and event combinations leading to loss of fuel cooling. The calculated failure frequencies are compared to the limits consistent with corporate and international public safety goals. The importance measures generated by the interrogation of the fault tree model for each outage configuration are also used to reschedule configurations with high fuel damage frequency later into the outage and to control the configurations with relatively high probability of fuel damage to short intervals at the most appropriate time into the outage. (author)

  11. Instrumentation renewal at the FIR 1 research reactor in Finland

    International Nuclear Information System (INIS)

    Bars, Bruno; Kall, Leif

    1982-01-01

    The Finnish TRIGA Mark II reactor (FIR 1 100 kW, later 250 kW steady state power and pulsing capability up to 250 MW) has been in operation for 20 years. The reactor is the only research reactor in Finland and is an important research training and service facility, which obviously will be operated for 10...20 years ahead. The mechanical parts of the reactor are in good shape. Some minor modifications have previously been made in the instrumentation. However, the original instrumentation could hardly have been used for 10...20 years ahead without extensive modifications and modernization. After a careful evaluation and planning process the whole reactor instrumentation was renewed in 1981 at a cost of about 400 000 dollar. The renewal was carried out in cooperation with the Central Research Institute for Physics (KFKI) at the Hungarian Academy of Sciences, which delivered the nuclear part of the instrumentation and with the Finnish company Valmet Oy Instrument Works, which delivered the conventional instrumentation, including the automatic power control system and the control console. The instrumentation, which is located in-a new isolated control room is based on modern industrial standard modular units with standardized signal ranges, electronic testing possibilities, galvanically isolated outputs etc. The instrument renewal project was brought successfully to completion in November 1981 after only about 10 working days of shut down time. The reactor is now in routine operation and the experiences gained from the new instrumentation are excellent. (author)

  12. Dose measurements in controlled area of TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Alvarenga, F.L.; Junior, F.M.

    2005-01-01

    The workers doses in exposure areas to the radiation are so important for a Radioprotection Quality Program, as well as to guarantee the workers safety. For that it is necessary to raise the doses in the radiation areas, to obtain the accumulated dose in certain procedures for detailed studies. Several risings were accomplished to obtain the radiation levels in the areas where the workers are exposed due the operation of a research nuclear reactor and in the radioisotopes manipulation laboratories of a nuclear institute. The radiation levels and doses can be observed through graphs in the dependences of the Controlled Area 1 (AC-1) and the Reactor Laboratory. Those limits are in according of the CNEN-NE-3.01 work limits rules. The conclusion of the work allowed to demonstrate that the Laboratory of the Reactor and AC-1, have booth an effective radiological program with efficient operational practices that contributes with low doses to the workers

  13. Demolition of the FRJ-1 research reactor (MERLIN); Abbau des Reaktorblocks des Forschungsreaktors FRJ-1 (MERLIN)

    Energy Technology Data Exchange (ETDEWEB)

    Stahn, B.; Matela, K.; Zehbe, C. [Forschungszentrum Juelich GmbH (Germany); Poeppinghaus, J. [Gesellschaft fuer Nuklearservice, Essen (Germany); Cremer, J. [SNT Siempelkamp Nukleartechnik, Heidelberg (Germany)

    2003-06-01

    FRJ-2 (MERLIN), the swimming pool reactor cooled and moderated by light water, was built at the then Juelich Nuclear Research Establishment (KFA) between 1958 and 1962. In the period between 1964 and 1985, it was used for. The reactor was decommissioned in 1985. Since 1996, most of the demolition work has been carried out under the leadership of a project team. The complete secondary cooling system was removed by late 1998. After the cooling loops and experimental installations had been taken out, the reactor vessel internals were removed in 2000 after the water had been drained from the reactor vessel. After the competent authority had granted a license, demolition of the reactor block, the central part of the research reactor, was begun in October 2001. In a first step, the reactor operating floor and the reactor attachment structures were removed by the GNS/SNT consortium charged with overall planning and execution of the job. This phase gave rise to approx. The reactor block proper is dismantled in a number of steps. A variety of proven cutting techniques are used for this purpose. Demolition of the reactor block is to be completed in the first half of 2003. (orig.) [German] Der mit Leichtwasser gekuehlte und moderierte Schwimmbad-Forschungsreaktor FRJ-2 (MERLIN) wurde von 1958 bis 1962 fuer die damalige Kernforschungsanlage Juelich (KFA) errichtet. Von 1964 bis 1985 wurde er fuer Experimente mit zunaechst 5 MW und spaeter 10 MW thermischer Leistung bei einem maximalen thermischen Neutronenfluss von 1,1.10{sup 14} n/cm{sup 2}s genutzt. Im Jahr 1985 stellte der Reaktor seinen Betrieb ein. Die Brennelemente wurden aus der Anlage entfernt und in die USA und nach Grossbritannien verbracht. Seit 1996 erfolgen die wesentlichen Abbautaetigkeiten unter Leitung eines verantwortlichen Projektteams. Bis Ende 1998 wurde das komplette Sekundaerkuehlsystem entfernt. Dem Abbau der Kuehlkreislaeufe und Experimentiereinrichtungen folgte im Jahr 2000 der Ausbau der

  14. Equipment for neutron measurements at VR-1 Sparrow training reactor

    International Nuclear Information System (INIS)

    Kolros, Antonin; Huml, Ondrej; Kos, Josef

    2008-01-01

    Full text: The VR-1 Sparrow training reactor is the experimental nuclear facility especially employed for education and teaching of students from different technical universities in the Czech Republic and other countries. Since 2005 the uniform all-purpose devices EMK310 have been used for measurement at reactor laboratory with different type of gas filled neutron detectors. The neutron detection system are employed for reactivity measurement, control rod calibration, critical experiment, study of delayed neutrons, study of nuclear reactor dynamics and study of detection systems dead time. The small dimension isotropic detectors are especially used for measurement of thermal neutron flux distribution inside the reactor core. The EMK-310 is a high performance, portable, three-channel fast amplitude analyzer designed for counting applications. It was developed for nuclear applications and made in close co-operation with firm TEMA Ltd. The precise rack eliminates electromagnetic disturbance and contains the control unit and four modules. The modules of high voltage supply and amplifier for gas filled detectors or scintillation probes are used in basic configuration. Software is tailored specifically to the reactor measurement and allows full online control. For applications involving the study of signals that may vary with the time, example study of delayed neutrons or nuclear reactor dynamics, the EMK-310 provides a Multichannel Scaling (MCS) acquisition mode. MCS dwell time can be set from 2 ms. Now, the new generation of digital multichannel analyzers DA310 is introduced. They have similarly attributes as EMK310 but the output information of unipolar signals from detector is more complete. The pipeline A/D converter with field programmable gate array (FPGA) is the hearth of the DA310 device. The resolution is 12 bits (4096 channels); the sample frequency is 80 MHz. The application for the neutron noise analysis is supposed. The correction method for non linearity

  15. Report on safety related occurrences and reactor trips July 1, 1979 - December 31, 1979

    International Nuclear Information System (INIS)

    Olsson, S.; Andermo, L.

    1980-01-01

    This is a report on all reported safety related occurrences and reactor trips in Swedish nuclear power plants in operation during July 1 to December 31, 1979 inclusive. The facilities involved are Barsebaeck 1 and 2, Oskarshamn 1 and 2 and Ringhals 1 and 2. During this period of 6 months 76 safety related occurrences and 27 reactor trips have been reported to the Nuclear Power Inspectorate. It is to the greatest extent conventional components such as valves and pumps which bring about the safety related occurrences or occurrences leading to outages or power reductions. However, the component errors discovered in the safety related systems have not affected the function of their redundant system and other diverse systems have not been involved. Therefore the reactor safety has been satisfactory. The total number of reactor trips are normal. The average value for these 6 months is 4.5 trips/unit. Approximetely one half of the reactor trips happened at zero or very low power operation. The fact that even small deviations from prescribed operation result in an automatic and safe shut down of the reactor, does not always imply a conflict with operational availability. The greatest outages are caused by occurrences without safety significance. (author)

  16. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Slack, J.; Norton, J.L.; Malkoske, G.R.

    2003-01-01

    therapy machines. Today the majority of the cancer therapy cobalt-60 sources used in the world are manufactured using material from the NRU reactor in Chalk River. The same technology that was used for producing cobalt-60 in a research reactor was then adapted and transferred for use in a CANDU power reactor. In the early 1970s, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production was initiated in the four Pickering A CANDU reactors located east of Toronto. This was the first full scale production of millions of curies of cobalt-60 per year. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology in additional CANDUs. Over the years MDS Nordion has partnered with CANDU reactor owners to produce cobalt-60 at various sites. CANDU reactors that have, or are still producing cobalt-60, include Pickering A, Pickering B, Gentilly 2, Embalse in Argentina, and Bruce B. In conclusion, the technology for cobalt-60 production in CANDU reactors, designed and developed by MDS Nordion and Atomic Energy of Canada, has been safely, economically and successfully employed in CANDU reactors with over 195 reactor years of production. Today over forty percent of the world's disposable medical supplies are made safer through sterilization using cobalt-60 sources from MDS Nordion. Over the past 40 years, MDS Nordion with its CANDU reactor owner partners, has safely and reliably shipped more than 500 million curies of cobalt-60 sources to customers around the world. MDS Nordion is presently adding three more CANDU power reactors to its supply chain. These three additional cobalt producing CANDU's will help supplement the ability of the health care industry to provide safe, sterile, medical disposable products to people around the world. As new applications for cobalt-60 are identified, and the demand for bulk cobalt-60 increases, MDS Nordion and AECL

  17. RA Research reactor, Part 1, Operation and maintenance of the RA nuclear reactor for 1986

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1986-01-01

    In order to enable future reliable operation of the RA reactor, according to new licensing regulations, three major tasks started in 1984 were fulfilled: building of the new emergency system, reconstruction of the existing ventilation system, and reconstruction of the power supply system. Simultaneously in 1985/1986 renewal of the instrumentation and reconstruction of the system for handling and storage of the spent fuel in the reactor building have started. Design projects for these tasks are almost finished and the reconstruction of both systems is expected to be finished until 1988 and mid 1989 respectively. RA reactor Safety report was finished according to the recommendations of the IAEA. Investments in 1986 were used for 8000 kg of heavy water, maintenance of reactor systems and supply of new components, reconstruction of reactor systems. This report includes 8 annexes concerning reactor operation, activities of services and financial issues [sr

  18. Progress in the neutronic core conversion (HEU-LEU) analysis of Ghana research reactor-1.

    Energy Technology Data Exchange (ETDEWEB)

    Anim-Sampong, S.; Maakuu, B. T.; Akaho, E. H. K.; Andam, A.; Liaw, J. J. R.; Matos, J. E.; Nuclear Engineering Division; Ghana Atomic Energy Commission; Kwame Nkrumah Univ. of Science and Technology

    2006-01-01

    The Ghana Research Reactor-1 (GHARR-1) is a commercial version of the Miniature Neutron Source Reactor (MNSR) and has operated at different power levels since its commissioning in March 1995. As required for all nuclear reactors, neutronic and thermal hydraulic analysis are being performed for the HEU-LEU core conversion studies of the Ghana Research Reactor-1 (GHARR-1) facility, which is a commercial version of the Miniature Neutron Source Reactor (MNSR). Stochastic Monte Carlo particle transport methods and tools (MCNP4c/MCNP5) were used to fine-tune a previously developed 3-D MCNP model of the GHARR-1 facility and perform neutronic analysis of the 90.2% HEU reference and candidate LEU (UO{sub 2}, U{sub 3}Si{sub 2}, U-9Mo) fresh cores with varying enrichments from 12.6%-19.75%. In this paper, the results of the progress made in the Monte Carlo neutronic analysis of the HEU reference and candidate LEU fuels are presented. In particular, a comparative performance assessment of the LEU with respect to neutron flux variations in the fission chamber and experimental irradiation channels are highlighted.

  19. RA Research reactor, Part 1, Operation and maintenance of the RA nuclear reactor for 1988

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1988-01-01

    According to the action plan for 1988, operation of the RA reactor should have been restarted in October, but the operating license was not obtained. Control and maintenance of the reactor components was done regularly and efficiently dependent on the availability of the spare parts. The major difficulty was maintenance of the reactor instrumentation. Period of the reactor shutdown was used for repair of the heavy water pumps in the primary coolant loop. With the aim to ensure future safe and reliable reactor operation, action were started concerning renewal of the reactor instrumentation. Design project was done by the soviet company Atomenergoeksport. The contract for constructing this equipment was signed, and it is planned that the equipment will be delivered by the end of 1990. In order to increase the space for storage of the irradiated fuel elements and its more efficient usage, projects were started concerned with reconstruction of the existing fuel handling equipment, increase of the storage space and purification of the water in the fuel storage pools. These projects are scheduled to be finished in mid 1989. This report includes 8 annexes concerning reactor operation, activities of services and financial issues [sr

  20. IPR-R1 TRIGA research reactor decommissioning plan

    International Nuclear Information System (INIS)

    Andrade Grossi, Pablo; Oliveira de Tello, Cledola Cassia; Mesquita, Amir Zacarias

    2008-01-01

    The International Atomic Energy Agency (IAEA) is concerning to establish or adopt standards of safety for the protection of health, life and property in the development and application of nuclear energy for peaceful purposes. In this way the IAEA recommends that decommissioning planning should be part of all radioactive installation licensing process. There are over 200 research reactors that have either not operated for a considerable period of time and may never return to operation or, are close to permanent shutdown. Many countries do not have a decommissioning policy, and like Brazil not all installations have their decommissioning plan as part of the licensing documentation. Brazil is signatory of Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management, but until now there is no decommissioning policy, and specifically for research reactor there is no decommissioning guidelines in the standards. The Nuclear Technology Development Centre (CDTN/CNEN) has a TRIGA Mark I Research Reactor IPR-R1 in operation for 47 years with 3.6% average fuel burn-up. The original power was 100 k W and it is being licensed for 250 k W, and it needs the decommissioning plan as part of the licensing requirements. In the paper it is presented the basis of decommissioning plan, an overview and the end state / final goal of decommissioning activities for the IPR-R1, and the Brazilian ongoing activities about this subject. (author)

  1. The Chernobyl reactor accident. Pt. 1 and 2

    International Nuclear Information System (INIS)

    1986-06-01

    The report first summarizes the available information on the various incidents of the whole accident scenario, and combines the information to present a first general outline and a basis for appraisal. The most significant incidents reported, namely power excursion, core meltdown, and fire, are discussed with a view to the reactor design and safety of reactors installed in the FRG. The main differences and advantages of German reactor designs are shown, as e.g.: Power excursions are mastered by inherent physical conditions; far better redundancy of engineered safety systems; enclosure of the complete reactor cooling system in a pressure-retaining steel containment; reactor buildings being made of reinforced concrete. The second part of the report deals with the radiological effects to be expected for our country. Data are given on the varying radiological exposure of the different regions. The fate and uptake of radioactivity in the human body are discussed. The conclusion drawn from the data presented is that the individual exposure due to the reactor accident will remain within the variations and limits of natural radioactivity and effects. (orig./HP) [de

  2. Lesson Learned in Preparation for Decommissioning of Three Canadian Prototype Power Reactors

    International Nuclear Information System (INIS)

    Vickerd, Meggan; Kenny, Stephen

    2016-01-01

    Lesson learned by Canadian Nuclear Laboratories (CNL)(former AECL) in preparation for decommissioning of three Prototype Reactors is a result of various strategies used for each site. CNL is responsible for the eventual decommissioning of three prototype power reactors; Nuclear Power Demonstration (NPD), Gentilly-1 and Douglas Point. Each of the Canadian prototype power reactor sites shutdown using different strategies. Depending on the site location, configuration, and intended designation of the respective sites, the individual facility systems (ventilation, electrical system, fire detection etc.) were also shut down using different strategies and operating objectives. As CNL embarks on decommissioning the first Canadian prototype reactor, this paper will reflect on the lessons learned over the past thirty years and what CNL is adjusting in the decommissioning strategy to prepare better plans for the future. The Nuclear Power Demonstration Nuclear Generating Station (NPDNGS) was constructed in late 1950's and operated from 1962 to 1987 when it was permanently shutdown after exceeding its operational goals. The NPD reactor was the first Canadian nuclear power reactor and it consisted of a single 20 MWe pressurized heavy water reactor located on a single facility site in Rolphton, Ontario. The NPD facility was shutdown to a 'Cold, Dark and Quiet' state and is maintained using an unmanned strategy by managing the site remotely with active fire detection and security surveillance systems, minimal electrical supply and an active ventilation system which is operated periodically to allow for intermittent inspections. The Douglas Point Nuclear Generating Station (DPNGS) was constructed in the early 1960's and operated from 1968 to 1984 when it was permanently shutdown. It consisted of a 200 MW prototype Canada Deuterium Uranium (CANDU) reactor and is embedded on the Bruce Power site near Kincardine, Ontario. The Douglas Point site is maintained in a

  3. Current activities at the FiR 1 TRIGA reactor

    International Nuclear Information System (INIS)

    Salmenhaara, Seppo

    2002-01-01

    The FiR 1 -reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose to run the reactor is now the Boron Neutron Capture Therapy (BNCT). The epithermal neutrons needed for the irradiation of brain tumor patients are produced from the fast fission neutrons by a moderator block consisting of Al+AlF 3 (FLUENTAL), which showed to be the optimum material for this purpose. Twenty-one patients have been treated since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization. The treatment organization has a close connection to the Helsinki University Central Hospital. The BNCT work dominates the current utilization of the reactor: three days per week for BNCT purposes and only two days per week for other purposes such as the neutron activation analysis and isotope production. In the near future the back end solutions of the spent fuel management will have a very important role in our activities. The Finnish Parliament ratified in May 2001 the Decision in Principle on the final disposal facility for spent fuel in Olkiluoto, on the western coast of Finland. There is a special condition in our operating license. We have now about two years' time to achieve a binding agreement between VTT and the Nuclear Power Plant Companies about the possibility to use the final disposal facility of the Nuclear Power Plants for our spent fuel. If this will not happen, we have to make the agreement with the USDOE with the well-known time limits. At the moment it seems to be reasonable to prepare for both spent fuel management possibilities: the domestic final disposal and the return to the USA offered by USDOE. Because the cost estimates of the both possibilities are on the same order of magnitude, the future of the reactor itself will determine, which of the spent fuel policies will be obeyed. In a couple of years' time it will be seen, if the funding of the reactor and the incomes from the BNC treatments will cover

  4. Insertion of reactivity (RIA) without scram in the reactor core IEA-R1 using code PARET

    International Nuclear Information System (INIS)

    Alves, Urias F.; Castrillo, Lazara S.; Lima, Fernando A.

    2013-01-01

    The modeling and analysis thermo hydraulics of a research reactor with MTR type fuel elements - Material Testing Reactor - was performed using the code PARET (Program for the Analysis of Reactor Transients) when in the system some external event is introduced that changed the reactivity in the reactor core. Transients of Reactivity Insertion of 0.5 , 1.5 and 2.0$/ 0.7s in the brazilian reactor IEA-R1 will be presented, and will be shown under what conditions it is possible to ensure the safe operation of its nucleus. (author)

  5. Expanding the storage capability at ET-RR-1 research reactor at Inshass

    International Nuclear Information System (INIS)

    Sultan, Mariy M.; Khattab, M.

    1999-01-01

    Storing of spent fuel from Test Reactor in developing countries has become a big dilemma for the following reasons: The transportation of spent fuel is very expensive; There are no reprocessing plants in most developing countries; The expanding of existing storage facilities in reactor building require experience that most of developing countries lack; Some political motivations from Nuclear Developed countries intervene which makes the transportation procedures and logistics to those countries difficult. This paper gives the conceptual design of a new spent fuel storage now under construction at Inshass research reactor (ET-RR-1). The location of the new storage facility is chosen to be within the premises of the reactor facility so that both reactor and the new storage are one Material Balance Area. The paper also proposes some ideas that can enhance the transportation and storage of spent fuel of test reactors, such as: Intensifying the role of IAEA in helping countries to get rid of the spent fuel; The initiation of regional spent fuel storage facilities in some developing countries. (author)

  6. Licensing of the first reload of Angra-1 reactor

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.

    1985-01-01

    The historical aspects related to the licensing of the first reload of Angra-1 reactor are presented. The dates, the institutions, the experts, as well as the documents generated during that process are presented. (M.I.)

  7. Evaluation of the trial design studies for an advanced marine reactor, (1)

    International Nuclear Information System (INIS)

    1988-03-01

    The trial design of three type reactors, semi-integrated, integrated and integrated (self-pressurized) type, was carried out in order to clarify the reactor type for the advanced marine reactor that would be developed for its realization in future and in order to extract its research and development theme. The trial design was carried and finished as for the three type reactors in same specifications in order to improve the following characteristics, small in size, light in weight, high in safety and reliability, and economic. In this report, a comparison and review of the following items are described as for the above three type reactors, (1) specifications, (2) shielding, (3) refueling, (4) in-service inspection, (5) analysis of the transients and accidents, (6) piping systems, (7) control systems, (8) dynamic analysis, (9) overall comparison, (10) research and development theme and theme for study in future. (author)

  8. Transformation of 1,1,1-trichloroethane in an anaerobic packed-bed reactor at various concentrations of 1,1,1-trichloroethane, acetate and sulfate

    NARCIS (Netherlands)

    deBest, JH; Jongema, H; Weijling, A; Doddema, HJ; Janssen, DB; Harder, W

    Biotransformation of 1,1,1-trichloroethane (CH3CCl3) was observed in an anaerobic packed-bed reactor under conditions of both sulfate reduction and methanogenesis. Acetate (1 mM) served as an electron donor. CH3CCl3 was completely converted up to the highest investigated concentration of 10 mu M.

  9. Evaluation of power behavior during startup and shutdown procedures of the IPR-R1 Triga Reactor

    International Nuclear Information System (INIS)

    Zangirolami, Dante M.; Mesquita, Amir Z.; Ferreira, Andrea V.

    2009-01-01

    The IPR-R1 nuclear reactor of Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN is a TRIGA Mark I pool type reactor cooled by natural circulation of light water. In the IPR-R1, the power is measured by four nuclear channels, neutron-sensitive chambers, which are mounted around the reactor core: the Startup Channel for power indication during reactor startup; the Logarithmic Wide Range Power Monitoring Channel; the Linear Multi-Range Power Monitoring Channel and the Percent Power Safety Channel. A data acquisition system automatically does the monitoring and storage of all the reactor operational parameters including the reactor power. The startup procedure is manual and the time to reach the desired reactor power level is different on each irradiation which may introduces differences in induced activity of samples irradiated in different irradiations. In this work, the power evolution during startup and shutdown periods of IPR-R1 operation was evaluated and the mean values of reactor energy production in these operational phases were obtained. The analyses were performed on basis of the Linear Multi-Range Channel data. The results show that the sum of startup and shutdown periods corresponds to 1% of released energy for irradiations during 1h at 100kW. This value may be useful to correct experimental data in neutron activation experiments. (author)

  10. Modernization of Safety and Control Instrumentation of the IEA-R1 Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    De Carvalho, P.V., E-mail: paulov@ien.gov.br [Institute of Nuclear Engineering (IEN), National Nuclear Energy Commission (CNEN), Rio de Janeiro (Brazil)

    2014-08-15

    The research reactor IEA-R1 located in the Institute of Energy and Nuclear Research (IPEN), São Paulo, Brazil, obtained its first criticality on 16 September 1957 and since then has served the scientific and medical community in the performance of experiments in applied nuclear physics, as well as the provision of radioisotopes for production of radiopharmaceuticals. The reactor produces radioisotopes {sup 82}Br and {sup 41}Ar for special processes in industrial inspection and {sup 192}Ir and {sup 198}Au as sources of radiation used in brachytherapy, {sup 153}Sm for pain relief in patients with bone metastasis, and calibrated sources of {sup 133}Ba, {sup 137}Cs, {sup 57}Co, {sup 60}Co, {sup 241}Am and {sup 152}Eu used in medical clinics and hospitals practicing nuclear medicine and research laboratories. Services are offered in regular non-destructive testing by neutron radiography, neutron irradiation of silicon for phosphorous doping and other various irradiations with neutrons. The reactor is responsible for producing approximately 70% of radiopharmaceutical {sup 131}I used in Brazil, which saves about US$ 800 000 annually for the country. After more than 50 years of use, most of its equipment and systems have been modernized, and recently the reactor power was increased to 5 MW in order to enhance radioisotope production capability. However, the control room and nuclear instrumentation system used for reactor safety have operated more than 30 years and require constant maintenance. Many equipment and electronic components are obsolete, and replacements are not available in the market. The modernization of the nuclear safety and control instrumentation systems of IEA-R1 is being carried out with consideration for the internationally recognized criteria for safety and reliable reactor operations and the latest developments in nuclear electronic technology. The project for the new reactor instrumentation system specifies three wide range neutron monitoring

  11. Operation and maintenance of the RA Reactor in 1985, Part 1, Annex A - Reactor applications

    International Nuclear Information System (INIS)

    Martinc, R.; Stanic, A.

    1985-01-01

    This document describes reactor operation from 1981 to 1985, including data about short term (shorter than 24 hours) and long term operation interruptions, as well as safety shutdown and reactor applications. During 1982, 1983 until July 1984 reactor was operated at 2 MW power according to the plan. Plan was not fulfilled in 1983 because deposits were noticed again, at the end of 1982, on the surface of fuel elements. Reactor was mainly used for neutron activation purposes and isotope production as source of neutrons for experimental purposes [sr

  12. Report on safety related occurrences and reactor trips July 1, 1977 - December 31, 1977

    International Nuclear Information System (INIS)

    Andermo, L.; Sundman, B.

    1974-04-01

    This is a systematically arranged report on all reported safety related occurrences and reactor trips in Swedish nuclear power plants in operation during July 1 to December 31, 1977 inclusive. The facilities involved are Barsebaeck 1 and 2, Oskarshamn 1 and 2 and Ringhals 1 and 2. During this period of 6 months 48 safety related occurrences and 49 reactor trips have been reported to the Nuclear Power Inspectorate. Included is also one incident June 21 in Barsebaeck 2 which was not included in the last compilation of occurrences. As earlier experiences have shown it is to the greatest extent the conventional components which bring about the safety related occurrences or occurrences leading to outages or power reductions. However, the component errors discovered in the safety related systems have not affected the function of their redundant systems and other diverse systems have not been involved. Therefore the reactor safety has been satisfactory. The total number of reactor trips have increased nearly 30% since the last period. Those occurred during power operation however, were less. More than 50% of the reactor trips happened in the shutdown condition. The fact that even small deviations from prescribed operation result in automatic and safe shut down of the reactor, does not always imply a conflict with operational availability. The greatest outages are caused by occurrences withou02068NRM 0000169 450

  13. New digital control system for the operation of the Colombian research reactor IAN-R1

    International Nuclear Information System (INIS)

    Celis del A, L.; Rivero, T.; Bucio, F.; Ramirez, R.; Segovia, A.; Palacios, J.

    2015-09-01

    En 2011, Mexico won the Colombian international tender for the renewal of instrumentation and control of the IAN-R1 Reactor, to Argentina and the United States. This paper presents the design criteria and the development made for the new digital control system installed in the Colombian nuclear reactor IAN-R1, which is based on a redundant and diverse architecture, which provides increased availability, reliability and safety in the reactor operation. This control system and associated instrumentation met all national export requirements, with the safety requirements established by the IAEA as well as the requirements demanded by the Colombian Regulatory Body in nuclear matter. On August 20, 2012, the Colombian IAN-R1 reactor reached its first criticality controlled with the new system developed at Instituto Nacional de Investigaciones Nucleares (ININ). On September 14, 2012, the new control system of the Colombian IAN-R1 reactor was officially handed over to the Colombian authorities, this being the first time that Mexico exported nuclear technology through the ININ. Currently the reactor is operating successfully with the new control system, and has an operating license for 5 years. (Author)

  14. Experimental study of the temperature distribution in the TRIGA IPR-R1 Brazilian research reactor

    International Nuclear Information System (INIS)

    Mesquita, Amir Zacarias

    2005-01-01

    The TRIGA-IPR-R1 Research Nuclear Reactor has completed 44 years in operation in November 2004. Its initial nominal thermal power was 30 kW. In 1979 its power was increased to 100 kW by adding new fuel elements to the reactor. Recently some more fuel elements were added to the core increasing the power to 250 kW. The TRIGA-IPR-R1 is a pool type reactor with a natural circulation core cooling system. Although the large number of experiments had been carried out with this reactor, mainly on neutron activation analysis, there is not many data on its thermal-hydraulics processes, whether experimental or theoretical. So a number of experiments were carried out with the measurement of the temperature inside the fuel element, in the reactor core and along the reactor pool. During these experiments the reactor was set in many different power levels. These experiments are part of the CDTN/CNEN research program, and have the main objective of commissioning the TRIGA-IPR-R1 reactor for routine operation at 250 kW. This work presents the experimental and theoretical analyses to determine the temperature distribution in the reactor. A methodology for the calibration and monitoring the reactor thermal power was also developed. This methodology allowed adding others power measuring channels to the reactor by using thermal processes. The fuel thermal conductivity and the heat transfer coefficient from the cladding to the coolant were also experimentally valued. lt was also presented a correlation for the gap conductance between the fuel and the cladding. The experimental results were compared with theoretical calculations and with data obtained from technical literature. A data acquisition and processing system and a software were developed to help the investigation. This system allows on line monitoring and registration of the main reactor operational parameters. The experiments have given better comprehension of the reactor thermal-fluid dynamics and helped to develop numerical

  15. Report on safety related occurrences and reactor trips July 1, 1976-December 31, 1976

    International Nuclear Information System (INIS)

    Andermo, L.

    1977-04-01

    This is a systematically arranged report on all reported safety related occurrences and reactor trips in Swedish nuclear power plants in operation during July 1, 1976 to December 31, 1976 inclusive. The facilities involved are Oskarshamn 1 and 2, Ringhals 1 and 2 and Barsebaeck 1. During this period of the 6 months 37 safety related occurrences and 34 reactor trips have been reported to the Nuclear Power Inspectorate. As earlier experiences have shown it is to the greatest extent the conventional components which bring about the safety related occurrences or occurrences leading to outages or power reductions. However, the component errors discovered in the safety related systems have not affected the function of their redundant systems and other diverse systems have not been involved. Therefore the reactor safety has been satisfactory. The fact that even small deviations from prescribed operation results in automatic and safe shut down of the reactor, does not always imply a conflict with operational availability. The number of reactor trips are almost as low as during the last period, which is a drastic reduction compared to earlier time periods. The greatest outages are caused by occurrences without safety significance.(author)

  16. Probabilistic study of LOFA in ETRR-1 reactor. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    El-Messeiry, A M [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    In evaluating the safety of a research reactor an analysis of reactor to a wide range of postulated initiating events must be carried out, that could lead to anticipated operational occurrences or accident conditions. These disturbances include decrease in heat removal by the reactor coolant system which may be due to loss of coolant flow (LOFA) or loss of coolant heat sink. LOFA is considered here for this study for the tank type research reactor with a probabilistic approach applied to (ET-RR-1). The reactor is provided with engineering safety system to respond to accidents and perform mitigating functions. The possible malfunctions, Failures, operator errors leading to LOFA initiating event are presented (pipe break; valve opening; pump failure ...etc.). The basic event frequency/probability is calculated using appropriate probability model. The logic event tree model is constructed to illustrate all possible accident scenarios. This scenario combines system success and failure probabilities with the probability of postulated initiating events occurring that result in an accident sequence probability associated with a certain plant state. Fault tree technique is adopted to determine engineering safety features probabilities. The results show the possible minimal cut sets of variable order of each system failure. Accident sequences leading to core damage state, effects of component failures, operator errors, and system failure on plant states. The possible weak points in the design are presented. 14 figs., 3 tabs.

  17. Probabilistic study of LOFA in ETRR-1 reactor. Vol. 4

    International Nuclear Information System (INIS)

    El-Messeiry, A.M.

    1996-01-01

    In evaluating the safety of a research reactor an analysis of reactor to a wide range of postulated initiating events must be carried out, that could lead to anticipated operational occurrences or accident conditions. These disturbances include decrease in heat removal by the reactor coolant system which may be due to loss of coolant flow (LOFA) or loss of coolant heat sink. LOFA is considered here for this study for the tank type research reactor with a probabilistic approach applied to (ET-RR-1). The reactor is provided with engineering safety system to respond to accidents and perform mitigating functions. The possible malfunctions, Failures, operator errors leading to LOFA initiating event are presented (pipe break; valve opening; pump failure ...etc.). The basic event frequency/probability is calculated using appropriate probability model. The logic event tree model is constructed to illustrate all possible accident scenarios. This scenario combines system success and failure probabilities with the probability of postulated initiating events occurring that result in an accident sequence probability associated with a certain plant state. Fault tree technique is adopted to determine engineering safety features probabilities. The results show the possible minimal cut sets of variable order of each system failure. Accident sequences leading to core damage state, effects of component failures, operator errors, and system failure on plant states. The possible weak points in the design are presented. 14 figs., 3 tabs

  18. COSTANZA, 1-D 2 Group Space-Dependent Reactor Dynamics of Spatial Reactor with 1 Group Delayed Neutrons

    International Nuclear Information System (INIS)

    Agazzi, A.; Gavazzi, C.; Vincenti, E.; Monterosso, R.

    1964-01-01

    1 - Nature of physical problem solved: The programme studies the spatial dynamics of reactor TESI, in the two group and one space dimension approximation. Only one group of delayed neutrons is considered. The programme simulates the vertical movement of the control rods according to any given movement law. The programme calculates the evolution of the fluxes and temperature and precursor concentration in space and time during the power excursion. 2 - Restrictions on the complexity of the problem: The maximum number of lattice points is 100

  19. Monte Carlo simulation of core physics parameters of the Nigeria Research Reactor-1 (NIRR-1)

    Energy Technology Data Exchange (ETDEWEB)

    Jonah, S.A. [Reactor Engineering Section, Centre for Energy Research and Training, Ahmadu Bello University, Zaria, P.M.B. 1014 (Nigeria)], E-mail: jonahsa2001@yahoo.com; Liaw, J.R.; Matos, J.E. [RERTR Program, Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2007-12-15

    The Monte Carlo N-Particle (MCNP) code, version 4C (MCNP4C) and a set of neutron cross-section data were used to develop an accurate three-dimensional computational model of the Nigeria Research Reactor-1 (NIRR-1). The geometry of the reactor core was modeled as closely as possible including the details of all the fuel elements, reactivity regulators, the control rod, all irradiation channels, and Be reflectors. The following reactor core physics parameters were calculated for the present highly enriched uranium (HEU) core: clean cold core excess reactivity ({rho}{sub ex}), control rod (CR) and shim worth, shut down margin (SDM), neutron flux distributions in the irradiation channels, reactivity feedback coefficients and the kinetics parameters. The HEU input model was validated by experimental data from the final safety analyses report (SAR). The model predicted various key neutronics parameters fairly accurately and the calculated thermal neutron fluxes in the irradiation channels agree with the values obtained by foil activation method. Results indicate that the established Monte Carlo model is an accurate representation of the NIRR-1 HEU core and will be used to perform feasibility for conversion to low enriched uranium (LEU)

  20. Welding of the A1 reactor pressure vessel

    International Nuclear Information System (INIS)

    Becka, J.

    1975-01-01

    As concerns welding, the A-1 reactor pressure vessel represents a geometrically complex unit containing 1492 welded joints. The length of welded sections varies between 10 and 620 mm. At an operating temperature of 120 degC and a pressure of 650 N/cm 2 the welded joints in the reactor core are exposed to an integral dose of 3x10 18 n/cm 2 . The chemical composition is shown for pressure vessel steel as specified by CSN 413090.9 modified by Ni, Ti and Al additions, and for the welding electrodes used. The requirements are also shown for the mechanical properties of the base and the weld metals. The technique and conditions of welding are described. No defects were found in ultrasonic testing of welded joints. (J.B.)

  1. Determination flux in the Reactor JEN-1

    International Nuclear Information System (INIS)

    Manas Diaz, L.; Montes Ponce de leon, J.

    1960-01-01

    This report summarized several irradiations that have been made to determine the neutron flux distributions in the core of the JEN-1 reactor. Gold foils of 380 μ gr and Mn-Ni (12% de Ni) of 30 mg have been employed. the epithermal flux has been determined by mean of the Cd radio. The resonance integral values given by Macklin and Pomerance have been used. (Author) 9 refs

  2. Comparison of the N Reactor and Ignalina Unit No. 2 Level 1 Probabilistic Safety Assessments

    International Nuclear Information System (INIS)

    Coles, G.A.; McKay, S.L.

    1995-06-01

    A multilateral team recently completed a full-scope Level 1 Probabilistic Safety Assessment (PSA) on the Ignalina Unit No. 2 reactor plant in Lithuania. This allows comparison of results to those of the PSA for the U.S. Department of Energy's (DOE) N Reactor. The N Reactor, although unique as a Western design, has similarities to Eastern European and Soviet graphite block reactors

  3. Study of dietary supplements compositions by neutron activation analysis at the VR-1 training reactor

    Science.gov (United States)

    Stefanik, Milan; Rataj, Jan; Huml, Ondrej; Sklenka, Lubomir

    2017-11-01

    The VR-1 training reactor operated by the Czech Technical University in Prague is utilized mainly for education of students and training of various reactor staff; however, R&D is also carried out at the reactor. The experimental instrumentation of the reactor can be used for the irradiation experiments and neutron activation analysis. In this paper, the neutron activation analysis (NAA) is used for a study of dietary supplements containing the zinc (one of the essential trace elements for the human body). This analysis includes the dietary supplement pills of different brands; each brand is represented by several different batches of pills. All pills were irradiated together with the standard activation etalons in the vertical channel of the VR-1 reactor at the nominal power (80 W). Activated samples were investigated by the nuclear gamma-ray spectrometry technique employing the semiconductor HPGe detector. From resulting saturated activities, the amount of mineral element (Zn) in the pills was determined using the comparative NAA method. The results show clearly that the VR-1 training reactor is utilizable for neutron activation analysis experiments.

  4. IGORR 1: Proceedings of the 1. meeting of the International Group On Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    West, C D [comp.

    1990-05-01

    Descriptions of the ongoing projects presented at this Meeting were concerned with: New Research Reactor FRM-II at Munich; MITR-II reactor; The Advanced. Neutron Source (ANS) Project; The high Flux Reactor Petten, Status and Prospects; The High Flux Beam Reactor Instrumentation Upgrade; BER-II Upgrade; The BR2 Materials Testing Reactor Past, Ongoing and Under-Study Upgrades; The ORPHEE, Reactor Current Status and Proposed Enhancement of Experimental Variabilities; Construction of the Upgraded JRR-3; Status of the University of Missouri-Columbia Research Reactor Upgrade; the Reactor and Cold Neutron Facility at NIST; Upgrade of Materials Irradiation Facilities in HFIR; Backfitting of the FRG Reactors; University Research Reactors in the United States; and Organization of the ITER Project - Sharing of Informational Procurements. Topics of interest were: Thermal-hydraulic tests and correlations, Corrosion tests and analytical models , Multidimensional kinetic analysis for small cores, Fuel plates fabrication, Fuel plates stability, Fuel irradiation, Burnable poison irradiation, Structural materials irradiation, Neutron guides irradiation, Cold Source materials irradiation, Cold Source LN{sub 2} test, Source LH2-H{sub 2}O reaction (H or D), Instrumentation upgrading and digital control system, Man-machine interface.

  5. IGORR 1: Proceedings of the 1. meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    West, C.D.

    1990-05-01

    Descriptions of the ongoing projects presented at this Meeting were concerned with: New Research Reactor FRM-II at Munich; MITR-II reactor; The Advanced. Neutron Source (ANS) Project; The high Flux Reactor Petten, Status and Prospects; The High Flux Beam Reactor Instrumentation Upgrade; BER-II Upgrade; The BR2 Materials Testing Reactor Past, Ongoing and Under-Study Upgrades; The ORPHEE, Reactor Current Status and Proposed Enhancement of Experimental Variabilities; Construction of the Upgraded JRR-3; Status of the University of Missouri-Columbia Research Reactor Upgrade; the Reactor and Cold Neutron Facility at NIST; Upgrade of Materials Irradiation Facilities in HFIR; Backfitting of the FRG Reactors; University Research Reactors in the United States; and Organization of the ITER Project - Sharing of Informational Procurements. Topics of interest were: Thermal-hydraulic tests and correlations, Corrosion tests and analytical models , Multidimensional kinetic analysis for small cores, Fuel plates fabrication, Fuel plates stability, Fuel irradiation, Burnable poison irradiation, Structural materials irradiation, Neutron guides irradiation, Cold Source materials irradiation, Cold Source LN 2 test, Source LH2-H 2 O reaction (H or D), Instrumentation upgrading and digital control system, Man-machine interface

  6. Nuclear reactor and materials science research: Technical report, May 1, 1985-September 30, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Throughout the 17-month period of its grant, May 1, 1985-September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The reactor was operated 4115 hours during FY 1986 and for 6080 hours during the entire 17-month period, an average of 82 hours per week. Utilization of the reactor during that period may be classified as follows: neutron beam tube research; nuclear materials research and development; radiochemistry and trace analysis; nuclear medicine; radiation health physics; computer control of reactors; dose reduction in nuclear power reactors; reactor irradiations and services for groups outside MIT; MIT Research Reactor. Data on the above utilization for FY 1986 show that the MIT Nuclear Reactor Laboratory (NRL) engaged in joint activities with nine academic departments and interdepartmental laboratories at MIT, the Charles Stark Draper Laboratory in Cambridge, and 22 other universities and nonprofit research institutions, such as teaching hospitals

  7. Baikal-1 stand complex. Preparation and carrying out of the first energy start-up of the IVG-1 reactor

    International Nuclear Information System (INIS)

    Tikhomirov, L.N.

    1995-01-01

    The IVG-1 reactor was a first ground prototype of nuclear rocket engine. The reactor was built on the site 10 of the Semipalatinsk test site. Since the first energy start-up in 1975 the reactor was exploited 14 years till its modernization in 1989. The Bajkal-1 stand complex was designed and built for the carrying out of tests for fuel assemblies of different modifications. The energy start-up has been sum of long creative work of different research and constructive staffs on creation of high-temperature gas-cooled IVG-1 reactor. The history of construction, project and assembling of the stand complex is presented. Complex start and put works were carried out in the December 1974. Control physical start-up was carried out in the January 1975. Cold start-up by hydrogen was in the February 1975. Hot start-up was in the March 1975. The result of the hot start-up was experimental confirmation of metodics of thermohydrovlical estimations. 2 figs., 3 tabs

  8. RA reactor operation and maintenance in 1994, Part 1

    International Nuclear Information System (INIS)

    Sotic, O.; Cupac, S.; Sulem, B.; Zivotic, Z.; Mikic, N.; Tanaskovic, M.

    1994-01-01

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The planned major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the reactor power supply system. The existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Renewal of the reactor instrumentation was started but but it is behind the schedule because the delivery of components from USSR was stopped for political reasons. The spent fuel elements used from the very beginning of reactor operation are stored in the existing pools. Project concerned with increase of the storage space and the efficiency of handling the spent fuel elements has started in 1988 and was fulfilled in 1990. Control and maintenance of the reactor instrumentation and tools was done regularly but dependent on the availability of the spare parts. Training of the existing personnel and was done regularly, but the new staff has no practical training since the reactor is not operated. Lack of financial support influenced strongly the status of RA reactor [sr

  9. Determination flux in the Reactor JEN-1; Medida de flujos de neutrones en el nucleo del Reactor JEN-1

    Energy Technology Data Exchange (ETDEWEB)

    Manas Diaz, L; Montes Ponce de leon, J.

    1960-07-01

    This report summarized several irradiations that have been made to determine the neutron flux distributions in the core of the JEN-1 reactor. Gold foils of 380 {mu} gr and Mn-Ni (12% de Ni) of 30 mg have been employed. the epithermal flux has been determined by mean of the Cd radio. The resonance integral values given by Macklin and Pomerance have been used. (Author) 9 refs.

  10. Reactor core conversion studies of Ghana: Research Reactor-1 and proposal for addition of safety rod

    International Nuclear Information System (INIS)

    Odoi, H.C.

    2014-06-01

    The inclusion of an additional safety rod in conjunction with a core conversion study of Ghana Research Reactor-1 (GHARR-1) was carried out using neutronics, thermal hydraulics and burnup codes. The study is based on a recommendation by Integrated Safety Assessment for Research Reactors (INSARP) mission to incorporate a safety rod to the reactor safety system as well as the need to replace the reactor fuel with LEU. Conversion from one fuel type to another requires a complete re-evaluation of the safety analysis. Changes to the reactivity worth, shutdown margin, power density and material properties must be taken into account, and appropriate modifications made. Neutronics analysis including burnup was studied followed by thermal hydraulics analyses which comprise steady state and transients. Four computer codes were used for the analysis; MCNP, REBUS, PLTEP and PARET. The neutronics analysis revealed that the LEU core must be operated at 34 Kw in order to attain the flux of 1.0E12 n/cm 2 .s as the nominal flux of the HEU core. The auxiliary safety rod placed at a modified irradiation site gives a better worth than the cadmium capsules. For core excess reactivity of 4 mk, 348 fuel pins would be appropriate for the GHARR-1 LEU core. Results indicate that flux level of 1.0E12 n/cm 2 .s in the inner irradiation channel will not be compromised, if the power of the LEU core is increased to 34 kW. The GHARR-1 core using LEU-U0 2 -12.5% fuel can be operated for 23 shim cycles, with cycles length 2.5 years, for over 57 years at the 17 kW power level. All 23 LEU cycles meet the ∼ 4.0 mk excess reactivity required at the beginning of cycle . For comparison, the MNSR HEU reference core can also be operated for 23 shim cycles, but with a cycle length of 2.0 years for just over 46 years at 15.0kW power level. It is observed that the GHARR-1 core with LEU UO 2 fuel enriched to 12.5% and a power level of 34 kW can be operated ∼25% longer than the current HEU core operated at

  11. New burnup calculation of TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Meireles, Sincler P. de; Campolina, Daniel de A.M.; Santos, Andre A. Campagnole dos; Menezes, Maria A.B.C.; Mesquita, Amir Z.

    2015-01-01

    The IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil, operates since 1960.The reactor is operating for more than fifty years and has a long history of operation. Determining the current composition of the fuel is very important to calculate various parameters. The reactor burnup calculation has been performed before, however, new techniques, methods, software and increase of the processing capacity of the new computers motivates new investigations to be performed. This work presents the evolution of effective multiplication constant and the results of burnup. This new model has a more detailed geometry with the introduction of the new devices, like the control rods and the samarium discs. This increase of materials in the simulation in burnup calculation was very important for results. For these series of simulations a more recently cross section library, ENDF/B-VII, was used. To perform the calculations two Monte Carlo particle transport code were used: Serpent and MCNPX. The results obtained from two codes are presented and compared with previous studies in the literature. (author)

  12. Reactor Engineering Department annual report, April 1, 1985 - March 31, 1986

    International Nuclear Information System (INIS)

    1986-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1985 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor, High Conversion Light Water Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, reactor physics experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, reactor decommissioning technology, and activities of the Committee on Reactor Physics. (author)

  13. Economics and utilization of thorium in nuclear reactors. Technical annexes 1 and 2

    International Nuclear Information System (INIS)

    1978-05-01

    An assessment of the impact of utilizing the 233 U/thorium fuel cycle in the U.S. nuclear economy is strongly dependent upon several decisions involving nuclear energy policy. These decisions include: (1) to recycle or not recycle fissile material; (2) if fissile material is recycled, to recycle plutonium, 233 U, or both; and (3) to deploy or not to deploy advanced reactor designs such as Fast Breeder Reactors (FBR's), High Temperature Gas Reactors (HTGR's), and Canadian Deuterium Uranium Reactors (CANDU's). This report examines the role of thorium in the context of the above policy decisions while focusing special attention on economics and resource utilization

  14. Neutron flux measurement and thermal power calibration of the IAN-R1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sarta Fuentes, Jose A.; Castiblanco Bohorquez, Luis A

    2008-10-29

    The IAN-R1 TRIGA reactor in Colombia was initially fueled with MTR-HEU enriched to 93% U-235, operated since 1965 at 10 kW, and was upgraded to 30 kW in 1980. General Atomics achieved in 1997 the conversion of HEU fuel to LEU fuel TRIGA type, and upgraded the reactor power to 100 kW. Since the IAN-R1 TRIGA reactor was in an extended shutdown during seven years, it was necessary to repeat some results of the commissioning test conducted in 1997. The thermal power calibration was carried out using the calorimetric method. The reactor was operated approximately at 20 kW during 3.5 hours, with manual power corrections since the automatic control system failed and with the forced refrigeration off. During the calorimetric experiment, the pool temperature was measured with a RTD which is installed near to the core. The dates were collected in intervals of 30 minutes. For establishing thermal power reactor, the water temperature versus the running were registered. For a calculated tank volume of 16 m{sup 3}, the tank constant calculated for the IAN-R1 TRIGA reactor is 0.0539 C/kW-hr. The reactor power determined was 19 kW. The core configuration is a rectangular grid plate that holds a combination of 4-rod and 3-rod clusters. The core contains 50 fuel rods with LEU fuel TRIGA (UZr H1.6) type enriched to 19.7%. The radial reflector consists of twenty graphite elements six of which are used for isotope production. The top an bottom reflectors are the cylindrical graphite end reflectors which are installed above and below of the active fuel section in each fuel rod. The spatial dependence of thermal neutron flux was measured axially in the 3-rod clusters 4C, 3D, 5E and in the 4F graphite element. The spatial distribution of the thermal neutron was determined using a self-powered detector and the absolute value of thermal neutron flux was determined by a gold activation detector. The (n, b- ) reaction is applied to determine the relative spatial distribution of thermal

  15. Problems of nuclear reactor safety. Vol. 1

    International Nuclear Information System (INIS)

    Shal'nov, A.V.

    1995-01-01

    Proceedings of the 9. Topical Meeting 'Problems of nuclear reactor safety' are presented. Papers include results of studies and developments associated with methods of calculation and complex computerized simulation for stationary and transient processes in nuclear power plants. Main problems of reactor safety are discussed as well as rector accidents on operating NPP's are analyzed

  16. Experiment on continuous operation of the Brazilian IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Freitas Pintaud, M. de

    1994-01-01

    In order to increase the radioisotope production in the IEA-R1 research reactor at IPEN/CNEN-SP, it has been proposed a change in its operation regime from 8 hours per day and 5 days per week to continuous 48 hours per week. The necessary reactor parameters for this new operation regime were obtained through an experiment in which the reactor was for the first time operated in the new regime. This work presents the principal results from this experiment: xenon reactivity, new shutdown margins, and reactivity loss due to fuel burnup in the new operation regime. (author)

  17. Auxiliary control system of the safety parameters for IPR-R1 reactor

    International Nuclear Information System (INIS)

    Coura, J.G.

    1986-01-01

    This paper deals with the description for the control of three cooling water parameters (conductivity, temperature and the maximum and minimum water levels) as well as the percent power fraction of the nuclear research reactor IPR-R1. In order to keep the reactor in good operation conditions, one permanent and accurate control of the cooling water is needed. The double monitoring of a fourth parameter, part of the original design, the percent power fraction, is obtained through the control of the uncompensated ion chamber current and aims to avoid the operation of the reactor without running the cooling system. (Author) [pt

  18. OSCAR-4 Code System Application to the SAFARI-1 Reactor

    International Nuclear Information System (INIS)

    Stander, Gerhardt; Prinsloo, Rian H.; Tomasevic, Djordje I.; Mueller, Erwin

    2008-01-01

    The OSCAR reactor calculation code system consists of a two-dimensional lattice code, the three-dimensional nodal core simulator code MGRAC and related service codes. The major difference between the new version of the OSCAR system, OSCAR-4, and its predecessor, OSCAR-3, is the new version of MGRAC which contains many new features and model enhancements. In this work some of the major improvements in the nodal diffusion solution method, history tracking, nuclide transmutation and cross section models are described. As part of the validation process of the OSCAR-4 code system (specifically the new MGRAC version), some of the new models are tested by comparing computational results to SAFARI-1 reactor plant data for a number of operational cycles and for varying applications. A specific application of the new features allows correct modeling of, amongst others, the movement of fuel-follower type control rods and dynamic in-core irradiation schedules. It is found that the effect of the improved control rod model, applied over multiple cycles of the SAFARI-1 reactor operation history, has a significant effect on in-cycle reactivity prediction and fuel depletion. (authors)

  19. Unitary theory of xenon instability in nuclear thermal reactors - 1. Reactor at 'zero power'

    International Nuclear Information System (INIS)

    Novelli, A.

    1982-01-01

    The question of nuclear thermal-reactor instability against xenon oscillations is widespread in the literature, but most theories, concerned with such an argument, contradict each other and, above all, they conflict with experimentally-observed instability at very low reactor power, i.e. without any power feedback. It is shown that, in any nuclear thermal reactor, xenon instability originates at very low power levels, and a very general stability condition is deduced by an extension of the rigorous, simple and powerful reduction of the Nyquist criterion, first performed by F. Storrer. (author)

  20. Thermal-hydraulic modelling of the SAFARI-1 research reactor using RELAP/SCDAPSIM/MOD3.4

    International Nuclear Information System (INIS)

    Sekhri, Abdelkrim; Graham, Andy; D'Arcy, Alan; Oliver, Melissa

    2008-01-01

    The SAFARI-1 reactor is a tank-in-pool MTR type research reactor operated at a nominal core power of 20 MW. It operates exclusively in the single phase liquid water regime with nominal water and fuel temperatures not exceeding 100 deg. C. RELAP/SCDAPSIM/MOD3.4 is a Best Estimate Code for light water reactors as well as for low pressure transients, as part of the code validation was done against low pressure facilities and research reactor experimental data. The code was used to simulate SAFARI-1 in normal and abnormal operation and validated against the experimental data in the plant and was used extensively in the upgrading of the Safety Analysis Report (SAR) of the reactor. The focus of the following study is the safety analysis of the SAFARI-1 research reactor and describes the thermal hydraulic modelling and analysis approach. Particular emphasis is placed on the modelling detail, the application of the no-boiling rule and predicting the Onset of Nucleate Boiling and Departure from Nucleate Boiling under Loss of Flow conditions. Such an event leads the reactor to switch to a natural convection regime which is an adequate mode to maintain the clad and fuel temperature within the safety margin. It is shown that the RELAP/SCDAPSIM/MOD3.4 model can provide accurate predictions as long as the clad temperature remains below the onset of nucleate boiling temperature and the DNB ratio is greater than 2. The results are very encouraging and the model is shown to be appropriate for the analysis of SAFARI-1 research reactor. (authors)

  1. Thermal hydraulic analysis of the IPR-R1 TRIGA research reactor using a RELAP5 model

    International Nuclear Information System (INIS)

    Costa, Antonella L.; Reis, Patricia Amelia L.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Mesquita, Amir Z.; Soares, Humberto V.

    2010-01-01

    The RELAP5 code is widely used for thermal hydraulic studies of commercial nuclear power plants. Current investigations and code adaptations have demonstrated that the RELAP5 code can be also applied for thermal hydraulic analysis of nuclear research reactors with good predictions. Therefore, as a contribution to the assessment of RELAP5/MOD3.3 for research reactors analysis, this work presents steady-state and transient calculation results performed using a RELAP5 model to simulate the IPR-R1 TRIGA research reactor at 50 kilowatts (kW) of power operation. The reactor is located in the Nuclear Technology Development Center (CDTN), Brazil. It is a 250 kW, light water moderated and cooled, graphite-reflected, open pool type research reactor. The development and the assessment of a RELAP5 model for the IPR-R1 TRIGA are presented. Experimental data were considered in the process of the RELAP5 model validation. The RELAP5 results were also compared with calculated data from the STHIRP-1 (Research Reactors Thermal Hydraulic Simulation) code. The results obtained have shown that the RELAP5 model for the IPR-R1 TRIGA reproduces the actual steady-state reactor behavior in good agreement with the available data.

  2. SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configurations

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2000-01-01

    Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the Waste Package Design team at the Yucca Mountain Project in the US, who performed the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The CRCs involved relatively low-cycle burnups, and therefore contained a relatively high gadolinium poison content in the reactor assemblies. This report summarizes the data and methods used in analyzing the critical configurations and assesses the sensitivity of the results to some of the modeling approximations used to represent the gadolinium poison distribution within the assemblies. The KENO V.a calculations, performed using the SCALE 44GROUPNDF5 ENDF/B-V cross-section library, yield predicted k eff values within about 1% Δk/k relative to reactor measurements for the five CRCs using general 8-pin and 9-pin heterogeneous gadolinium poison pin assembly models

  3. Calculations of Changes in Reactivity during some regular periods of operation of JEN-1 MOD Reactor; Calculo de vairaciones de reactividad en algunos periodos regulares de operacion del reactor JEN-1 Mod.

    Energy Technology Data Exchange (ETDEWEB)

    Alcala Ruiz, F

    1973-07-01

    By a Point-Reactor model and Perturbation Theory, changes in reactivity during some regular operating periods of JEN-1 MOD Reactor have been calculated and compared with available measured values. they were in good agreement. Also changes in reactivity have been calculated during operations at higher power levels than the present one, concluding some practical consequences for the case of increasing the present power of this reactor. (Author)

  4. Reactor Engineering Department annual report (April 1, 1986 - March 31, 1987)

    International Nuclear Information System (INIS)

    1987-08-01

    Research and development activities in the Department of Reactor Engineering in the fiscal year 1986 are described. The major activities of the Department are closely related to the reactor physics of very high temperature gas-cooled reactor, high conversion light water reactor and liquid metal fast breeder reactor and to blanket neutronics of fusion reactor. Contents of this report are divided into the activities on nuclear data and group constants, theoretical methods and code development, reactor physics experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control, diagnosis and robotics. The activity of the Research Committee on Reactor Physics is also included. (author)

  5. Alteration in reactor installations (Unit 1 and 2 reactor facilities) in the Hamaoka Nuclear Power Station of The Chubu Electric Power Co., Inc. (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report by the Nuclear Safety Commission to the Ministry of International Trade and Industry concerning the alteration in Unit 1 and 2 reactor facilities in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., was presented. The technical capabilities for the alteration of reactor facilities in Chubu Electric Power Co., Inc., were confirmed to be adequate. The safety of the reactor facilities after the alteration was confirmed to be adequate. The items of examination made for the confirmation of the safety are as follows: reactor core design (nuclear design, mechanical design, mixed reactor core), the analysis of abnormal transients in operation, the analysis of various accidents, the analysis of credible accidents for site evaluation. (Mori, K.)

  6. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  7. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  8. Modelling of the RA-1 reactor using a Monte Carlo code; Modelado del reactor RA-1 utilizando un codigo Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Quinteiro, Guillermo F; Calabrese, Carlos R [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Reactores y Centrales Nucleares

    2000-07-01

    It was carried out for the first time, a model of the Argentine RA-1 reactor using the MCNP Monte Carlo code. This model was validated using data for experimental neutron and gamma measurements at different energy ranges and locations. In addition, the resulting fluxes were compared with the data obtained using a 3D diffusion code. (author)

  9. Neutronics and thermohydraulics of the reactor C.E.N.E. Pt. 1

    International Nuclear Information System (INIS)

    Caro, R.; Ahnert, C.; Esteban Naudin, A.; Martinez Fanegas, R.; Minguez, E.; Rovira, A.

    1976-01-01

    The analysis of neutronics (both statics and kinetics), of the 10 Mwt swimming pool reactor C.E.N.E. is included. A short description of the theoretical model used, along with the theoretical versus experimental cheking, carried out, whenever possible, with the reactors JEN-1 and JEN-2 of Junta de Energia Nuclear, is given in each of these chapters. (author) [es

  10. Applied research into direct numerical control of A-1 reactor temperature

    International Nuclear Information System (INIS)

    Karpeta, C.; Volf, K.

    1974-01-01

    Partial results of research efforts aimed at applying modern control theory in the control of the reactor of the A-1 nuclear power station are presented. A mathematical model of the process dynamics was developed. Some parameters of the model were determined using the results of an experimentally performed reactor scram. The optimal stochastic discrete regulator was determined and closed-loop transients were studied. The possibilities of implementing control routines were investigated using the RPP-16 computer. (author)

  11. RAPID-L Highly Automated Fast Reactor Concept Without Any Control Rods (1) Reactor concept and plant dynamics analyses

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2002-01-01

    The 200 kWe uranium-nitride fueled lithium cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for Lunar base power system. It is one of the variants of RAPID (Refueling by All Pins Integrated Design), fast reactor concept, which enable quick and simplified refueling. The essential feature of RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small size reactor core, 2700 fuel pins are integrated altogether and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 years. Unique challenges in reactivity control systems design have been attempted in RAPID-L concept. The reactor has no control rod, but involves the following innovative reactivity control systems: Lithium Expansion Modules (LEM) for inherent reactivity feedback, Lithium Injection Modules (LIM) for inherent ultimate shutdown, and Lithium Release Modules (LRM) for automated reactor startup. All these systems adopt lithium-6 as a liquid poison instead of B 4 C rods. In combination with LEMs, LIMs and LRMs, RAPID-L can be operated without operator. This is the first reactor concept ever established in the world. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, RAPID-L reactor concept and its transient characteristics are presented. (authors)

  12. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    1990-01-01

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  13. Tight fitting garter springs-MODAR

    Energy Technology Data Exchange (ETDEWEB)

    Kazimer, D. [Bruce Power, Tiverton, Ontario (Canada)

    2011-07-01

    Annulus spacers are used in CANDU reactors to maintain the annular gap between two tubes - an inner pressure tube (PT) and the outer calandria tube (CT). Typically four annulus spacers are used in one fuel channel assembly, each at a specified axial position. Bruce Unit 8 and many other CANDU units were constructed with tight-fitting garter springs (TFGS). The TFGS were not designed to be detected or relocated by the conventional tool, Spacer Location And Repositioning (SLAR) processes. Due to non-optimal 'As Left' construction locations for the Bruce Unit 8 TFGS, PT/CT contact has been predicted to occur well prior to its End of Life (EOL). Bruce Power entered a Project with AECL-CRL to design, manufacture and test and implement a new tooling system that would detect and reposition tight fitting annulus spacers. (author)

  14. Atomic Energy of Canada Limited annual report 2000-2001

    International Nuclear Information System (INIS)

    2001-01-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2001 and summarizes the activities of AECL during the period 2000-2001. The activities covered in this report include the CANDU reactor business, with progress being reported in the construction of two CANDU 6 reactors for the Qinshan CANDU project in China, the anticipated completion of Cernavoda unit 2, the completion of spent fuel storage at Cernavoda unit 1 in Romania, as well as the service business with New Brunswick Power, Ontario Power Generation, Bruce Power and Hydro Quebec in the refurbishment of operating, CANDU reactors. In the R and D programs discussions continue on funding for the Canadian Neutron Facility for Materials Research (CNF) and progress on the Maple medical isotope reactor

  15. Atomic Energy of Canada Limited annual report 2000-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2001 and summarizes the activities of AECL during the period 2000-2001. The activities covered in this report include the CANDU reactor business, with progress being reported in the construction of two CANDU 6 reactors for the Qinshan CANDU project in China, the anticipated completion of Cernavoda unit 2, the completion of spent fuel storage at Cernavoda unit 1 in Romania, as well as the service business with New Brunswick Power, Ontario Power Generation, Bruce Power and Hydro Quebec in the refurbishment of operating, CANDU reactors. In the R and D programs discussions continue on funding for the Canadian Neutron Facility for Materials Research (CNF) and progress on the Maple medical isotope reactor.

  16. Steps to Advanced CANDU 600

    International Nuclear Information System (INIS)

    Oh, Yongshick; Brooks, G. L.

    1988-01-01

    The CANDU nuclear power system was developed from merging of AECL heavy water reactor technology with Ontario Hydro electrical power station expertise. The original four units of Ontario Hydro's Pickering Generating Station are the first full-scale commercial application of the CANDU system. AECL and Ontario Hydro then moved to the next evolutionary step, a more advanced larger scale design for four units at the Bruce Generating Station. CANDU 600 followed as a single unit nuclear electric power station design derived from an amalgam of features of the multiple unit Pickering and Bruce designs. The design of the CANDU 600 nuclear steam supply system is based on the Pickering design with improvements derived from the Bruce design. For example, most CANDU 600 auxiliary systems are based on Bruce systems, whereas the fuel handling system is based on the Pickering system. Four CANDU 600 units are in operation, and five are under construction in Romania. For the additional four units at Pickering Generating Station 'B', Ontario Hydro selected a replica of the Pickering 'A' design with limited design changes to maintain a high level of standardization across all eight units. Ontario Hydro applied a similar policy for the additional four units at Bruce Generating Station 'B'. For the four unit Darlington station, Ontario Hydro selected a design based on Bruce with improvements derived from operating experience, the CANDU 600 design and development programs

  17. Research reactor core conversion guidebook. V.1: Summary

    International Nuclear Information System (INIS)

    1992-04-01

    In view of the proliferation concerns caused by the use of highly enriched uranium (HEU) and in anticipation that the supply of HEU to research and test reactors will be more restricted in the future, this guidebook has been prepared to assist research reactor operators in addressing the safety and licensing issues for conversion of their reactor cores from the use of HEU fuel to the use of low enriched uranium fuel. This Guidebook, in five volumes, addresses the effects of changes in the safety-related parameters of mixed cores and the converted core. It provides an information base which should enable the appropriate approvals processes for implementation of a specific conversion proposal, whether for a light or for a heavy water moderated research reactor. Refs, figs, bibliographies and tabs

  18. Reed Reactor Facility final report, September 1, 1995--August 31, 1996

    International Nuclear Information System (INIS)

    1997-01-01

    This report covers the period from September 1, 1995 to August 31, 1996. This report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission, the US Department of Energy, and the Oregon Department of Energy. Highlights of the last year include: student participation in the program is very high; the facility continues its success in obtaining donated equipment from the Portland General Electric, US Department of Energy, and other sources; the facility is developing more paid work; progress is being made in a collaborative project with Pacific Northwest National Laboratory on isotope production for medical purposes. There were over 1,500 individual visits to the Reactor Facility during the year. Most were students in classes at Reed College or area universities, colleges, and high schools. Including tours and research conducted at the facility, the Reed Reactor Facility contributed to the educational programs of six colleges and universities in addition to eighteen pre-college groups. During the year, the reactor was operated almost three hundred separate times. The total energy production was over 23 MW-hours. The reactor staff consists of a Director, an Associated Director, a contract Health Physicist, and approximately twenty Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 5% of the federal limits

  19. Reed Reactor Facility final report, September 1, 1995--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report covers the period from September 1, 1995 to August 31, 1996. This report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission, the US Department of Energy, and the Oregon Department of Energy. Highlights of the last year include: student participation in the program is very high; the facility continues its success in obtaining donated equipment from the Portland General Electric, US Department of Energy, and other sources; the facility is developing more paid work; progress is being made in a collaborative project with Pacific Northwest National Laboratory on isotope production for medical purposes. There were over 1,500 individual visits to the Reactor Facility during the year. Most were students in classes at Reed College or area universities, colleges, and high schools. Including tours and research conducted at the facility, the Reed Reactor Facility contributed to the educational programs of six colleges and universities in addition to eighteen pre-college groups. During the year, the reactor was operated almost three hundred separate times. The total energy production was over 23 MW-hours. The reactor staff consists of a Director, an Associated Director, a contract Health Physicist, and approximately twenty Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 5% of the federal limits.

  20. NBR ISO 9001 Certification for activities carried out in IEA-R1 reactor

    International Nuclear Information System (INIS)

    Paiva, Rosemeire P.; Salvetti, Tereza C.

    2005-01-01

    Since its inauguration in 1957, the IEA-R1 research reactor has been used mainly for research, development and teaching by scientific community. In the last years, with the increase of the commercial radiopharmaceutical production by Radiopharmacy Center of IPEN, the IEA-R1 reactor was recognized as a service supplier for that center and has received a treatment more commercial from IPEN Management. In 1999 the radiopharmaceutical production obtained the NBR ISO 9002 Certification, since that the IPEN Management considered convenient to invest in the certification of its internal suppliers. In this context, in 2001 the Research Reactor Center (CRPq) began the implantation of a Quality Management System (QMS) based on NBR 9001: 2000 standard, for activities related to the operation and maintenance of the IEA-R1 research reactor and irradiation services. This QMS was structured to incorporate tools already implemented in order to complain the requirements related to nuclear and radiological safe for a nuclear installation established by the regulatory organism. The QMS is supported by a documentation system composed of approximately 150 documents including quality manual, business and action plans, operational procedures and work instruction. Carlos Alberto Vanzolini Foundation (FCAV), an INMETRO certified organism, certified the 'Operation and Maintenance of the IEA-R1 Research Reactor and Irradiation Services' in December 2002. In 2003 and 2004, the QMS was audited by FCAV that determined the maintenance of the certification. This work presents the main steps of the QMS implementation, including the difficulties found and results obtained in the process. (author)

  1. Life extension of the St. Lucie unit 1 reactor vessel

    International Nuclear Information System (INIS)

    Rowan, G.A.; Sun, J.B.; Mott, S.L.

    1991-01-01

    In late 1989, Florida Power and Light Company (FP and L) established the policy that St. Lucie unit 1 should not be prevented from achieving a 60-yr operating life by reactor vessel embrittlement. A 60-yr operating life means that the plant would be allowed to operate until the year 2036, which is 20 years beyond the current license expiration date of 2016. Since modifications to the reactor vessel and its components are projected to be expensive, the desire of FP and L management was to achieve this lifetime extension through the use of fuel management and proven technology. The following limitations were placed on any acceptable method for achieving this lifetime extension capability: low fuel cycle cost; low impact on safety parameters; very little or no operations impact; and use of normal reactor materials. A task team was formed along with the Advanced Nuclear Fuels Company (ANF) to develop a vessel-life extension program

  2. Reactor calculations in aid of isotope production at SAFARI-1

    International Nuclear Information System (INIS)

    Ball, G.

    2003-01-01

    Varying levels of reactor physics support is given to the isotope production industry. As the pressures on both the safety limits and economical production of reactor produced isotopes mount, reactor physics calculational support is playing an ever increasing role. Detailed modelling of the reactor, irradiation rigs and target material enables isotope production in reactors to be maximised with respect to yields and quality. NECSA's methodology in this field is described and some examples are given. (author)

  3. Nuclear process steam for industry

    International Nuclear Information System (INIS)

    Seddon, W.A.

    1981-11-01

    A joint industrial survey funded by the Bruce County Council, the Ontario Energy Corporation and Atomic Energy of Canada Limited was carried out with the cooperation of Ontario Hydro and the Ontario Ministry of Industry and Tourism. Its objective was to identify and assess the future needs and interest of energy-intensive industries in an Industrial Energy Park adjacent to the Bruce Nuclear Power Development. The Energy Park would capitalize on the infrastructure of the existing CANDU reactors and Ontario Hydro's proven and unique capability to produce steam, as well as electricity, at a cost currently about half that from a comparable coal-fired station. Four industries with an integrated steam demand of some 1 x 10 6 lb/h were found to be prepared to consider seriously the use of nuclear steam. Their combined plants would involve a capital investment of over $200 million and provide jobs for 350-400 people. The high costs of transportation and the lack of docking facilities were considered to be the major drawbacks of the Bruce location. An indication of steam prices would be required for an over-all economic assessment

  4. Shielding assessment of the ETRR-1 Reactor Under power upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, E E [Reactor Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The assessment of existing shielding of the ETRR-1 reactor in case of power upgrading is presented and discussed. It was carried out using both the present EK-10 type fuel elements and some other types of fuel elements with different enrichments. The shielding requirements for the ETRR-1 when power is upgraded are also discussed. The optimization curves between the upgraded reactor power and the shield thickness are presented. The calculation have been made using the ANISN code with the DLC-75 data library. The results showed that the present shield necessitates an additional layer of steel with thickness of 10.20 and 25 cm. When its power is upgraded to 3, 6 and 10 MWt in order to cutoff all neutron energy groups to be adequately safe under normal operating conditions. 4 figs.

  5. Recuperation of the energy released in the G-1, an air-cooled graphite reactor core

    International Nuclear Information System (INIS)

    Chambadal, P.; Pascal, M.

    1955-01-01

    The CEA (in his five-year setting plan) has objective among others, the realization of the two first french reactors moderated with graphite. The construction of the G-1 reactor in Marcoule, first french plutonic core, is achieved so that it will diverge in the beginning of 1956 and reach its full power in the beginning of the second semester of the same year. In this report we will detail the specificities of the reactor and in particular its cooling and energy recuperation system. The G-1 reactor being essentially intended to allow the french technicians to study the behavior of an energy installation supply taking its heat in a nuclear source as early as possible. (M.B.) [fr

  6. CANDU-PHW fuel channel replacement experience

    International Nuclear Information System (INIS)

    Dunn, J.T.; Kakaria, B.K.

    1982-09-01

    One of the main characteristics of the CANDU pressurized heavy water reactor is the use of pressure tubes rather than one large pressure vessel to contain the fuel and coolant. This provides an inherent design capability to permit their replacement in an expeditious manner, without seriously affecting the high capacity factors of the reactor units. Of th eight Ontario Hydro commercial nuclear generating units, the lifetime performance places seven of them (including two that have had some of their fuel channels replaced), in the top ten positions in the world's large nuclear-electric unit performance ranking. Pressure tube cracks in the rolled joint region have resulted in 70 fuel channels being replaced in three reactor units, the latest being at the Bruce Nuclear Generating Station 'A', Unit 2 in February 1982. The rolled joint design and rolling procedures have been modified to eliminate this problem on CANDU units subsequent to Bruce 'A'. This paper describes the CANDU pressure tube performance history and expectations, and the tooling and procedures used to carry out the fuel channel replacement

  7. Development of a training simulator to operators of the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Carvalho, Ricardo Pinto de

    2006-01-01

    This work reports the development of a Simulator for the IEA-R1 Research Reactor. The Simulator was developed with Visual C++ in two stages: construction of the mathematics models and development and configuration of graphics interfaces in a Windows XP executable. A simplified modeling was used for main physics phenomena, using a point kinetics model for the nuclear process and the energy and mass conservation laws in the average channel of the reactor for the thermal hydraulic process. The dynamics differential equations were solved by using finite differences through the 4th order Runge- Kutta method. The reactivity control, reactor cooling, and reactor protection systems were also modeled. The process variables are stored in ASCII files. The Simulator allows navigating by screens of the systems and monitoring tendencies of the operational transients, being an interactive tool for teaching and training of IEA-R1 operators. It also can be used by students, professors, and researchers in teaching activities in reactor and thermal hydraulics theory. The Simulator allows simulations of operations of start up, power maneuver, and shut down. (author)

  8. An overview of the RECH-1 reactor conversion

    International Nuclear Information System (INIS)

    Klein, J.; Medel, J.; Daie, J.; Torres, H.

    2000-01-01

    The RECH-l research reactor achieved the first criticality on October 13, 1974 using HEU MTR type fuel elements, which were fabricated by the UKAEA at Dounreay, Scotland. In 1979, the conversion of the reactor to use LEU fuel was decided; however, a rough estimate of the uranium density needed to convert the reactor gave 3.7 g/cm 3 . This density was not available, and to maintain the overall fuel element geometry it was necessary to convert the reactor to use 45% enriched uranium fuel. In 1985, the conversion of the reactor to use medium enriched uranium was achieved. Some years later, the Chilean Nuclear Energy Commission developed the capability to produce fuel elements based on U 3 Si 2 -Al dispersion fuel. Once the plant and the manufacturing and quality control procedures were commissioned to permit the production of fuel elements, a fabrication program starts to produce LEU fuel elements with a uranium density of 3.4 g/cm 3 . A fabrication qualification period that extended to the required fuel plates for the assembly of two fuel elements started. In November 1998, the first four LEU fuel elements manufactured by the Chilean Fuel Fabrication Plant were delivered to the reactor. When the first two fuel elements were introduced into the core a LEU fuel element qualification program began. While those fuel elements remain in the core, an evaluation program is being applied to observe its performance under irradiation condition. (author)

  9. Irradiated graphite studies prior to decommissioning of G1, G2 and G3 reactors

    International Nuclear Information System (INIS)

    Bonal, J.P.; Vistoli, J.Ph.; Combes, C.

    2005-01-01

    G1 (46 MW th ), G2 (250 MW th ) and G3 (250 MW th ) are the first French plutonium production reactors owned by CEA (Commissariat a l'Energie Atomique). They started to be operated in 1956 (G1), 1959 (G2) and 1960 (G3); their final shutdown occurred in 1968, 1980 and 1984 respectively. Each reactor used about 1200 tons of graphite as moderator, moreover in G2 and G3, a 95 tons graphite wall is used to shield the rear side concrete from neutron irradiation. G1 is an air cooled reactor operated at a graphite temperature ranging from 30 C to 230 C; G2 and G3 are CO 2 cooled reactors and during operation the graphite temperature is higher (140 C to 400 C). These reactors are now partly decommissioned, but the graphite stacks are still inside the reactors. The graphite core radioactivity has decreased enough so that a full decommissioning stage may be considered. Conceming this decommissioning, the studies reported here are: (i) stored energy in graphite, (ii) graphite radioactivity measurements, (iii) leaching of radionuclide ( 14 C, 36 Cl, 63 Ni, 60 Co, 3 H) from graphite, (iv) chlorine diffusion through graphite. (authors)

  10. Volume reduction/solidification of liquid radioactive waste using bitumen at Ontario Hydro's Bruce Nuclear Generating Station 'A'

    International Nuclear Information System (INIS)

    Day, J.E.; Baker, R.L.

    1995-01-01

    Ontario Hydro at the Bruce Nuclear Generating Station 'A' has undertaken a program to render the station's liquid radioactive waste suitable for discharge to Lake Huron by removing sufficient radiological and chemical contaminants to satisfy regulatory requirements for emissions. The system will remove radionuclide and chemical contaminants from five different plant waste streams. The contaminants will be immobilized and stored at on-site radioactive waste storage facilities and the purified streams will be discharged. The discharge targets established by Ontario Hydro are set well below the limits established by the Ontario Ministry of Environment (MOE) and are based on the Best Available Technology Economically Achievable Approach (B.A.T.E.A.). ADTECHS Corporation has been selected by Ontario Hydro to provide volume reduction/solidification technology for one of the five waste streams. The system will dry and immobilize the contaminants from a liquid waste stream in emulsified asphalt using thin film evaporation technology

  11. Verification of the linearity of the IPR-R1 TRIGA reactor power channels

    International Nuclear Information System (INIS)

    Souza, Rose Mary Gomes do Prado; Campolina, Daniel de Almeida Magalhaes

    2013-01-01

    The aim of this paper is to verify the linearity of the three power channels of the IPR-R1 TRIGA reactor. Located at Nuclear Technology Development Center-CDTN in Belo Horizonte, the IPR-R1 reactor is a typical 100 kW Mark I light-water reactor cooled by natural convection. When the experiments were performed, the reactor core had 59 fuel elements, containing 8% by weight of uranium enriched to 20% in 235 U. The core has cylindrical configuration with an annular graphite reflector. The responses of the detectors of the Linear, Log N and Percent Power channels were compared with the responses of detectors which only depend on the overall neutron flux within the reactor. Gold and cobalt foils were activated at low and high powers, respectively, and the specific count results were compared with measurements performed, simultaneously, with a fission chamber, and with the power registered by the three channels. The results show that the Linear channel responds linearly up to 100 kW, and the Log N channel responses are linear at low powers. In the range of high power, the Log N and the Percent Power channels exhibit linearity only from 10 kW to 50 kW. (author)

  12. Conceptual design study for the demonstration reactor of JSFR. (1) Current status of JSFR development

    International Nuclear Information System (INIS)

    Hayafune, Hiroki; Sakamoto, Yoshihiko; Kotake, Shoji; Aoto, Kazumi; Ohshima, Jun; Ito, Takaya

    2011-01-01

    JAEA is now conducting 'Fast Reactor Cycle Technology Development (FaCT)' project for the commercialization before 2050s. A demonstration reactor of Japan Sodium-cooled Fast Reactor (JSFR) is planned to start operation around 2025. In the FaCT project, conceptual design study on the demonstration reactor has been performed since 2007 to determine the referential reactor specifications for the next stage design work from 2011 for the licensing and construction. Plant performance as a demonstration reactor for the 1.5 GWe commercial reactor JSFR is being compared between 750 MWe and 500 MWe plant designs. By using the results of conceptual design study, output power will be determined during year of 2010. This paper describes development status of key technologies and comparison between 750 MWe and 500 MWe plants with the view points of demonstration ability for commercial JSFR plant. (author)

  13. An economic analysis of stretch-out for Angra-1 reactor

    International Nuclear Information System (INIS)

    Sakai, M.

    1989-01-01

    An application of NUCOST code for calculating nuclear energy cost is presented. Ann optimization of stretch-out for Angra-1 reactor based on international costs of nuclear fuel, operation and maintenance is done. (M.C.K.)

  14. The analysis for inventory of experimental reactor high temperature gas reactor type

    International Nuclear Information System (INIS)

    Sri Kuntjoro; Pande Made Udiyani

    2016-01-01

    Relating to the plan of the National Nuclear Energy Agency (BATAN) to operate an experimental reactor of High Temperature Gas Reactors type (RGTT), it is necessary to reactor safety analysis, especially with regard to environmental issues. Analysis of the distribution of radionuclides from the reactor into the environment in normal or abnormal operating conditions starting with the estimated reactor inventory based on the type, power, and operation of the reactor. The purpose of research is to analyze inventory terrace for Experimental Power Reactor design (RDE) high temperature gas reactor type power 10 MWt, 20 MWt and 30 MWt. Analyses were performed using ORIGEN2 computer code with high temperatures cross-section library. Calculation begins with making modifications to some parameter of cross-section library based on the core average temperature of 570 °C and continued with calculations of reactor inventory due to RDE 10 MWt reactor power. The main parameters of the reactor 10 MWt RDE used in the calculation of the main parameters of the reactor similar to the HTR-10 reactor. After the reactor inventory 10 MWt RDE obtained, a comparison with the results of previous researchers. Based upon the suitability of the results, it make the design for the reactor RDE 20MWEt and 30 MWt to obtain the main parameters of the reactor in the form of the amount of fuel in the pebble bed reactor core, height and diameter of the terrace. Based on the main parameter or reactor obtained perform of calculation to get reactor inventory for RDE 20 MWT and 30 MWT with the same methods as the method of the RDE 10 MWt calculation. The results obtained are the largest inventory of reactor RDE 10 MWt, 20 MWt and 30 MWt sequentially are to Kr group are about 1,00E+15 Bq, 1,20E+16 Bq, 1,70E+16 Bq, for group I are 6,50E+16 Bq, 1,20E+17 Bq, 1,60E+17 Bq and for groups Cs are 2,20E+16 Bq, 2,40E+16 Bq, 2,60E+16 Bq. Reactor inventory will then be used to calculate the reactor source term and it

  15. Welding electrode for peripheral welds of A-1 reactor pressure vessel

    International Nuclear Information System (INIS)

    Lakatos, L.

    1975-01-01

    The properties are outlined of the VUZ-AC1-52 welding electrode used in welding the Bohunice A-1 reactor pressure vessel. The mechanical properties of welded joints after the final thermal treatment are summed up. (J.K.)

  16. 1-D Two-phase Flow Investigation for External Reactor Vessel Cooling

    International Nuclear Information System (INIS)

    Kim, Jae Cheol

    2007-02-01

    During a severe accident, when a molten corium is relocated in a reactor vessel lower head, the RCF(Reactor Cavity Flooding) system for ERVC (External Reactor Vessel Cooling) is actuated and coolants are supplied into a reactor cavity to remove a decay heat from the molten corium. This severe accident mitigation strategy for maintaining a integrity of reactor vessel was adopted in the nuclear power plants of APR1400, AP600, and AP1000. Under the ERVC condition, the upward two-phase flow is driven by the amount of the decay heat from the molten corium. To achieve the ERVC strategy, the two-phase natural circulation in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. Also the natural circulation flow restriction has to be minimized. In this reason, it is needed to review the fundamental structure of insulation. In the existing power plants, the insulation design is aimed at minimizing heat losses under a normal operation. Under the ERVC condition, however, the ability to form the two-phase natural circulation is uncertain. Namely, some important factors, such as the coolant inlet/outlet areas, flow restriction, and steam vent etc. in the flow channel, should be considered for ERVC design. T-HEMES 1D study is launched to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled down as the half height and 1/238 channel area of the APR1400 reactor vessel. The air injection method was used to simulate the boiling at the external reactor vessel and generate the natural circulation two-phase flow. From the experimental results, the natural circulation flow rate highly depended on inlet/outlet areas and the circulation flow rate increased as the outlet height as well as the supplied water head increased. On the other hand, the simple analysis using the drift

  17. Reconstruction of intra-bundle fission density profile during a postulated LOCA in a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, D. [Oak Ridge National Laboratory (United States); Rahnema, F. [Georgia Inst. of Technology (United States); Nuclear and Radiological Engineering/Medical Physics Programs, George W. Woodruff School, Georgia Inst. of Technology, Atlanta, GA 30332-0405 (United States); Serghiuta, D. [Canadian Nuclear Safety Commission (Canada); Sarsour, H.; Turinsky, P. J. [North Carolina State Univ. (United States); Stamm' ler, R. [Studsvik Scandpower AS (Norway)

    2006-07-01

    In this paper, results related to the reconstruction of intra-bundle fission density profile for a 37-pin CANDU-6 bundle with the highest enthalpy deposition during a postulated large LOCA stagnation break in a Bruce B core are presented. Bruce B is a nuclear power plant in Kincardine, Ontario (Canada)), on the shores of Lake Huron with 4 CANDU reactors that are rated at about 750 MWe. The reconstruction of the fuel pin fission densities is based on steady-state, three-dimensional simulations with the Monte Carlo code MCNP for a subset of 27 out of 69 time steps during the first two seconds of the power pulse predicted for the fuel bundle at core location V13/8. Two-group cross section data libraries are generated for MCNP at each time step by the lattice depletion neutron transport code HELIOS-1.7. To include the effect of the surrounding core environment, the calculations are performed with time-dependent albedo boundary conditions inferred from a full core simulation of the transient by the nodal diffusion code NESTLE with HELIOS homogenized cross-sections. It is found that the local peaking factor (LPF) in the outer ring varies during the transient, but never exceeds its value before the transient. Inclusion of the core environment increases the LPF in the outer ring. For the analyzed case, the increase is 0.72% with a relative error of 0.01% for the LPF before the transient and 0.55% (with a relative error of 0.01%) for the maximum average LPF during the transient. The latter is based on only four selected transient time points. Note that the immediate environment of the 'hot bundle' does not contain any reactivity devices or other perturbing factors. As a result, the increases observed in the LPF in the outer ring may not be representative of the situations in which 'other' core environment perturbing factors are present. To determine the effect of these factors on the LPF, further analyses of a bundle in the proximity of control devices

  18. The reactor kinetics code tank: a validation against selected SPERT-1b experiments

    International Nuclear Information System (INIS)

    Ellis, R.J.

    1990-01-01

    The two-dimensional space-time analysis code TANK is being developed for the simulation of transient behaviour in the MAPLE class of research reactors. MAPLE research reactor cores are compact, light-water-cooled and -moderated, with a high degree of forced subcooling. The SPERT-1B(24/32) reactor core had many similarities to MAPLE-X10, and the results of the SPERT transient experiments are well documented. As a validation of TANK, a series of simulations of certain SPERT reactor transients was undertaken. Special features were added to the TANK code to model reactors with plate-type fuel and to allow for the simulation of rapid void production. The results of a series of super-prompt-critical reactivity step-insertion transient simulations are presented. The selected SPERT transients were all initiated from low power, at ambient temperatures, and with negligible coolant flow. Th results of the TANK simulations are in good agreement with the trends in the experimental SPERT data

  19. Dismantling of the reactor block of the FRJ-1 research reactor (MERLIN); Abbau des Reaktorblocks des Forschungsreaktors FRJ-1 (MERLIN)

    Energy Technology Data Exchange (ETDEWEB)

    Stahn, B.; Matela, K.; Zehbe, C. [Forschungszentrum Juelich GmbH (Germany); Poeppinghaus, J. [Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Cremer, J. [Siempelkamp Nukleartechnik GmbH, Heidelberg (Germany)

    2003-07-01

    By the end of 1998 the complete secondary cooling system and the major part of the primary cooling system were dismantled. Furthermore, the experimental devices, including a rabbit system conceived as an in-core irradiation device, were disassembled and disposed of. In total, approx. 65 t of contaminated and/or activated material as well as approx. 70 t of clearance-measured material were disposed of within the framework of these activities. The dismantling of the coolant loops and experimental devices was followed in 2000 by the removal of the reactor tank internals and the subsequent draining of the reactor tank water. The reactor tank internals were essentially the core support plate, the core box, the flow channel and the neutron flux bridges (s. Fig. 2, detailed reactor core). All components consisted of aluminium, the connecting elements such as bolts and nuts, however, of stainless steel. Due to the high activation of the core internals, disassembly had to be remotely controlled under water. All removal work was carried out from a tank intermediate floor (s. Fig. 2). These activities, which served for preparing the dismantling of the reactor block, were completed in summer 2001. The waste parts arising were transferred to the Service Department for Decontamination of the Research Centre. This included approx. 2.5 t of waste parts with a total activity of approx. 8 x 10{sup 11} Bq. (orig.)

  20. . Effects of extended shutdown on the control rod drive mechanism of nigeria research reactor-1(NIRR-1)

    International Nuclear Information System (INIS)

    Yusuf, I; Mati, A. A.

    2010-01-01

    The control rod drive mechanism of the Nigeria Research Reactor-1 is being driven by a servo motor, type SDE-45 through a mechanical gear system. The servo motor ensures the position control of the control rod, and hence the stability of the neutron-flux of the nuclear research reactor. The control rod drive mechanism assembly is mounted on top of the reactor vessel, about 0.6m above 30m 3 volume of reactor pool water. The top of the pool is covered with a Perspex material to protect the water in the pool from environmental contamination and to reduce evaporation. Although most of the materials in the control rod drive mechanism assembly are made of stainless steel, the servo motor however contains corrodible materials. The paper reveals a practical experience of failure of the control rod drive mechanism as a result of corrosion growth between the rotor of the servo motor and its stator windings, due to an extended shutdown of the facility.

  1. VR-1 training reactor in use for twelve years to train experts for the Czech nuclear power sector

    International Nuclear Information System (INIS)

    Matejka, K.; Sklenka, L.

    2003-01-01

    The VR-1 training reactor has been serving students of the Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, for more than 12 years now. The operation history of the reactor is highlighted. The major changes made at the VR-1 reactor are outlined and the main experimentally verified core configurations are shown. Some components of the new equipment installed on the VR-1 reactor are described in detail. The fields of application are shown: the reactor serves not only the training of university students within whole Czech Republic but also the training of specialists, research activities, and information programmes in the nuclear power domain. (P.A.)

  2. FiR 1 reactor in service for boron neutron capture therapy (BNCT) and isotope production

    International Nuclear Information System (INIS)

    Auterinen, I.; Salmenhaara, S.E.J. . Author

    2004-01-01

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose for the existence of the reactor is now the Boron Neutron Capture Therapy (BNCT), but FiR 1 has also an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics etc. with isotope production and activation analysis services. In the 1990's a BNCT treatment facility was built at the FiR 1 reactor located at Technical Research Centre of Finland. A special new neutron moderator material Fluental TM (Al+AlF3+Li) developed at VTT ensures the superior quality of the neutron beam. Also the treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Recently the lithiated polyethylene neutron shielding of the beam aperture was modified to ease the positioning of the patient close to the beam aperture. Increasing the reactor power to 500 kW would allow positioning of the patient further away from the beam aperture. Possibilities to accomplish a safety analysis for this is currently under considerations. Over thirty patients have been treated at FiR 1 since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization, Boneca Corporation. Currently three clinical trial protocols for tumours in the brain as well as in the head and neck region are recruiting patients. (author)

  3. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  4. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  5. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  6. Nuclear material control at IEA-R1 nuclear research reactor

    International Nuclear Information System (INIS)

    1988-01-01

    The control measurements system and verification of physical inventory for fuel elements used in the operation of IEA-R1 nuclear research reactor are described. The computer code used for burn-up calculation are shown. (E.G.) [pt

  7. Determination of the neutron spectrum at different locations in the Argentine RA-1 Reactor; Determinacion del espectro neutronico en distintas posiciones del reactor RA-1

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, A M; Madariaga, M R [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    1999-12-31

    Full text: It is well known that the RA-1 reactor is used to irradiate different types of materials with neutrons. The Radio dosimetry Group (which belongs to the Nuclear Regulatory Authority) uses its fast column for the design, calibration and set up of criticality dosimeters as well as for a quick assessment of the dose to workers in case of an accident. With such purpose, Au(1), Au under Cd and In(2) foils were irradiated to estimate absolute thermal, epithermal and fast neutron fluxes at the irradiation location. The accuracy of this estimation is higher when the response to the present neutron spectrum of the different materials constituting the detectors is better known. This, in turn, requires the previous knowledge of such spectrum (a detailed energy dependence of neutron flux) at the analysed location. In this work a neutronic calculation is presented at the fast irradiation location. The whole calculation was carried out following two different methodologies, and considering a power of 40 kW. The reactor and its surroundings were represented by a simplified one-dimensional model, as a concentric cylindrical set of regions. Figures are drawn representing fast and thermal fluxes (with the cut at 0.4 eV) as a function of the distance to the core centre. The neutron flux (in n/cm{sup 2}sec.eV) as a function of energy is also shown at the fast irradiation location. Values of flux (in n/cm{sup 2}.sec.eV) are also provided as a function of energy in other typical locations, as well as the equivalent integrated flux values (in n/cm{sup 2}.sec). ((1) According to the reaction Au{sup 197}(n,{gamma})Au{sup 198}, having a cross section of {sigma}{sub 0}=98.8b for thermal neutrons. (2) According to the reaction In{sup 115}(n,n`)In{sup 115m}, with a cross section of some 70 mb for neutrons with energies above 1.2MeV). (author) [Espanol] Texto completo: Como se sabe, el reactor RA1 se utiliza para irradiar con neutrones distintos tipos de materiales. El grupo de

  8. Reed Reactor Facility final report, September 1, 1994--August 31, 1995

    International Nuclear Information System (INIS)

    1997-01-01

    This report covers the period from September 1, 1994 to August 31, 1995. Information contained in this report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission (USNRC), the US Department of Energy (USDOE), and the Oregon Department of Energy (ODOE). Highlights of the last year include: student participation in the program is very high; the facility has been extraordinarily successful in obtaining donated equipment from Portland General Electric, US Department of Energy, Precision Castparts, Tektronix, and other sources; the facility is developing more paid work. There were 1,115 visits of the Reactor Facility by individuals during the year. Most of these visitors were students in classes at Reed College or area universities, colleges, and high schools. During the year, the reactor was operated 225 separate times on 116 days. The total energy production was 24.6 MW-hours. The reactor staff consists of a Director, an Associate Director, a contract Health Physicist, and approximately fifteen Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 1% of the federal limits. There were no releases of liquid radioactive material from the facility and airborne releases (primarily 41 Ar) were well within regulatory limits

  9. Reed Reactor Facility final report, September 1, 1994--August 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report covers the period from September 1, 1994 to August 31, 1995. Information contained in this report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission (USNRC), the US Department of Energy (USDOE), and the Oregon Department of Energy (ODOE). Highlights of the last year include: student participation in the program is very high; the facility has been extraordinarily successful in obtaining donated equipment from Portland General Electric, US Department of Energy, Precision Castparts, Tektronix, and other sources; the facility is developing more paid work. There were 1,115 visits of the Reactor Facility by individuals during the year. Most of these visitors were students in classes at Reed College or area universities, colleges, and high schools. During the year, the reactor was operated 225 separate times on 116 days. The total energy production was 24.6 MW-hours. The reactor staff consists of a Director, an Associate Director, a contract Health Physicist, and approximately fifteen Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 1% of the federal limits. There were no releases of liquid radioactive material from the facility and airborne releases (primarily {sup 41}Ar) were well within regulatory limits.

  10. Reliability database of IEA-R1 Brazilian research reactor: Applications to the improvement of installation safety

    International Nuclear Information System (INIS)

    Oliveira, P.S.P.; Tondin, J.B.M.; Martins, M.O.; Yovanovich, M.; Ricci Filho, W.

    2010-01-01

    In this paper the main features of the reliability database being developed at Ipen-Cnen/SP for IEA-R1 reactor are briefly described. Besides that, the process for collection and updating of data regarding operation, failure and maintenance of IEA-R1 reactor components is presented. These activities have been conducted by the reactor personnel under the supervision of specialists in Probabilistic Safety Analysis (PSA). The compilation of data and subsequent calculation are based on the procedures defined during an IAEA Coordinated Research Project which Brazil took part in the period from 2001 to 2004. In addition to component reliability data, the database stores data on accident initiating events and human errors. Furthermore, this work discusses the experience acquired through the development of the reliability database covering aspects like improvements in the reactor records as well as the application of the results to the optimization of operation and maintenance procedures and to the PSA carried out for IEA-R1 reactor. (author)

  11. Assessment of a RELAP5 model for the IPR-R1 TRIGA research reactor

    International Nuclear Information System (INIS)

    Reis, Patricia A.L.; Costa, Antonella L.; Pereira, Claubia; Veloso, Maria A.F.; Mesquita, Amir Z.; Soares, Humberto V.

    2010-01-01

    RELAP5 code was developed at the Idaho National Environmental and Engineering Laboratory and it is widely used for thermal hydraulic studies of commercial nuclear power plants and, currently, it has been also applied for thermal hydraulic analysis of nuclear research systems with good predictions. This work is a contribution to the assessment of RELAP5/3.3 code for research reactors analysis. It presents steady-state and transient calculation results performed using a RELAP5 model to simulate the IPR-R1 TRIGA research reactor conditions operating at 50 and 100 kW. The reactor is located at the Nuclear Technology Development Centre (CDTN), Brazil. The development and the assessment of a RELAP5 model for the IPR-R1 TRIGA are presented. Experimental data were considered in the process of code-to-data validation. The RELAP5 results were also compared with calculation performed using the STHIRP-1 (Research Reactors Thermal Hydraulic Simulation) code. The use of a cross flow model has been essential to improve results in the transient condition respect to preceding investigations.

  12. 1DB, a one-dimensional diffusion code for nuclear reactor analysis

    International Nuclear Information System (INIS)

    Little, W.W. Jr.

    1991-09-01

    1DB is a multipurpose, one-dimensional (plane, cylinder, sphere) diffusion theory code for use in reactor analysis. The code is designed to do the following: To compute k eff and perform criticality searches on time absorption, reactor composition, reactor dimensions, and buckling by means of either a flux or an adjoint model; to compute collapsed microscopic and macroscopic cross sections averaged over the spectrum in any specified zone; to compute resonance-shielded cross sections using data in the shielding factor formnd to compute isotopic burnup using decay chains specified by the user. All programming is in FORTRAN. Because variable dimensioning is employed, no simple restrictions on problem complexity can be stated. The number of spatial mesh points, energy groups, upscattering terms, etc. is limited only by the available memory. The source file contains about 3000 cards. 4 refs

  13. Comparison of applicability of current transition temperature shift models to SA533B-1 reactor pressure vessel steel of Korean nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Hyun; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-08-15

    The precise prediction of radiation embrittlement of aged reactor pressure vessels (RPVs) is a prerequisite for the long-term operation of nuclear power plants beyond their original design life. The expiration of the operation licenses for Korean reactors the RPVs of which are made from SA533B-1 plates and welds is imminent. Korean regulatory rules have adopted the US Nuclear Regulatory Commission's transition temperature shift (TTS) models to the prediction of the embrittlement of Korean reactor pressure vessels. The applicability of the TTS model to predict the embrittlement of Korean RPVs made of SA533B-1 plates and welds was investigated in this study. It was concluded that the TTS model of 10 CFR 50.61a matched the trends of the radiation embrittlement in the SA533B-1 plates and welds better than did that of Regulatory Guide (RG) 1.99 Rev. 2. This is attributed to the fact that the prediction performance of 10 CFR 50.61a was enhanced by considering the difference in radiation embrittlement sensitivity among the different types of RPV materials.

  14. Dominant accident sequences in Oconee-1 pressurized water reactor

    International Nuclear Information System (INIS)

    Dearing, J.F.; Henninger, R.J.; Nassersharif, B.

    1985-04-01

    A set of dominant accident sequences in the Oconee-1 pressurized water reactor was selected using probabilistic risk analysis methods. Because some accident scenarios were similar, a subset of four accident sequences was selected to be analyzed with the Transient Reactor Analysis Code (TRAC) to further our insights into similar types of accidents. The sequences selected were loss-of-feedwater, small-small break loss-of-coolant, loss-of-feedwater-initiated transient without scram, and interfacing systems loss-of-coolant accidents. The normal plant response and the impact of equipment availability and potential operator actions were also examined. Strategies were developed for operator actions not covered in existing emergency operator guidelines and were tested using TRAC simulations to evaluate their effectiveness in preventing core uncovery and maintaining core cooling

  15. RA reactor operation and maintenance in 1989, Part 1

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Zivotic, Z.; Majstorovic, D.; Sanovic, V.

    1989-01-01

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in July 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The following major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the power supply system. Project concerned with renewal of RA reactor complete instrumentation was started at the end of 1988. Contract was signed between the IAEA and Soviet Atomenergoexport for supplying the new instrumentation for the RA reactor. Project concerned with increase of the storage space and the efficiency of handling the spent fuel elements has started in 1988. In 1989, device for water purification designed by the reactor staff started operation and spent fuel handling equipment is being mounted. Training of the existing personnel and was done regularly, but the new staff has no practical training since the reactor is not operated. Lack of financial support influenced strongly the status of RA reactor [sr

  16. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  17. System Definition Document: Reactor Data Necessary for Modeling Plutonium Disposition in Catawba Nuclear Station Units 1 and 2

    International Nuclear Information System (INIS)

    Ellis, R.J.

    2000-01-01

    The US Department of Energy (USDOE) has contracted with Duke Engineering and Services, Cogema, Inc., and Stone and Webster (DCS) to provide mixed-oxide (MOX) fuel fabrication and reactor irradiation services in support of USDOE's mission to dispose of surplus weapons-grade plutonium. The nuclear station units currently identified as mission reactors for this project are Catawba Units 1 and 2 and McGuire Units 1 and 2. This report is specific to Catawba Nuclear Station Units 1 and 2, but the details and materials for the McGuire reactors are very similar. The purpose of this document is to present a complete set of data about the reactor materials and components to be used in modeling the Catawba reactors to predict reactor physics parameters for the Catawba site. Except where noted, Duke Power Company or DCS documents are the sources of these data. These data are being used with the ORNL computer code models of the DCS Catawba (and McGuire) pressurized-water reactors

  18. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  19. Measurements and calculation of reactivity in the IEA-R1 nuclear reactor

    International Nuclear Information System (INIS)

    Ferreira, P.S.B.

    1988-01-01

    Techniques and experimentals procedures utilized in the measurement of some nuclear parameters related to reactivity are presented. Measurements of reactivity coefficients, such as void, temperature and power, and control rod worth were made in the IEA-R1 Research Reactor. The techniques used to perform the measurements were: i) stable period (control rod calibration), ii) inverse kinetics (digital reactivity meter), iii) aluminium slab insertion in the fuel element coolant channels (void reactivity), iv) nuclear reactor core temperature changes by means of the changes in the coolant systems of reactor core (isothermal reactivity coefficient) and v) by making perturbation in the core through the control rod motions (power reactivity coefficient and control rod calibration). By using the computer codes HAMMER, HAMMER-TECHNION and CITATION, the experiments realized in the IEA-R1 reactor were simulated. From this simulation, the theoretical reactivity parameters were estimated and compared with the respective experimental results. Furthermore, in the second fuel load of Angra-1 Nuclear Power Station, the IPEN-CNEN/SP digital reactivity - meter were used in the lower power test with the aim to assess the equipment performance. Among several tests, the reacticity-meter were used in parallel with a Westinghouse analogic reativimeter-meter) to measure the heat additiona point, critical boron concentration, control rod calibration, isothermal and moderator reactivity coefficient. These tests, and the results obtained by the digital reactivity-meter are described. The results were compared with those obtained by Westinghouse analogic reactivity meter, showing excellent agreement. (author) [pt

  20. Core calculations for the upgrading of the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Perrotta, Jose A.; Bastos, Jose Luis F.; Yamaguchi, Mitsuo; Umbehaun, Pedro E.

    1998-01-01

    The IEA-R1 Research Reactor is a multipurpose reactor. It has been used for basic and applied research in the nuclear area, training and radioisotopes production since 1957. In 1995, the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) took the decision to modernize and upgrade the power from 2 to 5 MW and increase the operational cycle. This work presents the design requirements and the calculations effectuated to reach this goal. (author)

  1. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  2. Dose measurements in controlled area and laboratory of TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Maretti Junior, Fausto; Alvarenga, Frederico Ladeia

    2005-01-01

    The workers doses in exposure areas to the radiation are so important for a Radioprotection Quality Program, as well as to guarantee the workers safety. For that it is necessary to raise the doses in the radiation areas, to obtain the accumulated dose in certain procedures for detailed studies. Several risings were accomplished to obtain the radiation levels in the areas where the workers are exposed due the operation of a research nuclear reactor and in the radioisotopes manipulation laboratories of a nuclear institute. The radiation levels and doses can be observed through graphs in the dependences of the Controlled Area 1 (AC-1) and the Reactor Laboratory. Those limits are in according of the CNEN-NE-3.01 work limits rules. The conclusion of the work allowed to demonstrate that the Laboratory of the Reactor and AC-1, have booth an effective radiological program with efficient operational practices that contributes with low doses to the workers. (author)

  3. Ageing Management Programme for the IEA-R1 Reactor in São Paulo, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, L. V. [Institute of Energy and Nuclear Research (IPEN), National Nuclear Energy Commission (CNEN), São Paulo (Brazil)

    2014-08-15

    IEA-R1 is a swimming pool type reactor. It is moderated and cooled by light water and uses graphite and beryllium as reflector elements. First criticality was achieved on 16 September 1957, and the reactor is currently operating at 4.0 MW on a 64 h per week cycle. In 1996, a reactor ageing study was established to determine general deterioration of systems and components such as cooling towers, secondary cooling system, piping, pumps, specimen irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation, and safety system. The basic structure of the reactor from the original design has been maintained, but several improvements and modifications have been made over the years to various components, systems and structures. During the period 1996–2005 the reactor power was increased from 2 MW to 5 MW and the operational cycle from 8 h per day for 5 days a week to 120 h continuous per week, mainly to increase production of {sup 99}Mo. Prior to increasing reactor power, several modifications were made to the reactor system and its components. Simultaneously, a vigorous ageing management, inspection and modernization programme was put in place.

  4. Simulation of a reactor FBR with hexagonal-Z geometry using the code PARCS 3.1; Simulacion de un reactor FBR con geometria hexagonal-Z usando el codigo PARCS 3.1

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, M. C.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, U.P. Adolfo Lopez Mateos, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Filio L, C., E-mail: rf.melisa@gmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2013-10-15

    The nuclear reactor core type FBR (Fast Breeder Reactor) was modeled in three dimensions of hexagonal-Z geometry using the code PARCS (Purdue Advanced Reactor Core Simulator) version 3.1 developed by Purdue University researchers. To carry out the modeling of the mentioned reactor was taken the corresponding information to one of the described benchmarks in the document NEACRP-L-330 (3-D Neutron Transport Benchmarks, 1991); fundamentally the corresponding to the geometric data and the cross sections. Being a quick reactor of breeding, known as the Knk-II, for which are considered 4 energy groups without dispersions up. The reactor core is formed by prismatic elements of hexagonal transversal cut where part of them only corresponds to nuclear fuel assemblies. This has four reflector rings and 6 identical control elements that together with the active part of the core is configured with 8 different types of elements.With the extracted information of the mentioned document the entrance file was prepared for PARCS 3.1 only considering a sixth part of the core due to the symmetry that presents their configuration. The NEACRP-L-330 shows a wide range of results reported by those who collaborated in its elaboration using different solution techniques that go from the Monte Carlo method to the approaches S{sub 2} and P{sub 1}. Of all the results were selected those obtained with the code HEXNOD, to which were carried out a comparison of the effective multiplication factor, being smaller differences to the 300 pcm, for three different scenarios: a) with the control bars extracted totally, b) with the semi-inserted control bars and c) with the control bars inserted completely and two different axial meshes, a thick mesh with 14 slices and another fine with 38, that which implies that the results can be considered very similar among if same. Radial maps and axial profiles are included, as much of the power as of the neutrons flow. (Author)

  5. Operating reactors licensing actions summary. Volume 5, Number 1

    International Nuclear Information System (INIS)

    1985-03-01

    This document is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program

  6. Level-1 probability safety assessment of the Iranian heavy water reactor using SAPHIRE software

    International Nuclear Information System (INIS)

    Faghihi, F.; Ramezani, E.; Yousefpour, F.; Mirvakili, S.M.

    2008-01-01

    The main goal of this review paper is to analyze the total frequency of the core damage of the Iranian Heavy Water Research Reactor (IHWRR) compared with standard criteria and to determine the strengths and the weaknesses of the reactor safety systems towards improving its design and operation. The PSA has been considered for full-power state of the reactor and this article represents a level-1 PSA analysis using System Analysis Programs for Hands-On Integrated Reliability Evaluations (SAPHIRE) software. It is specifically designed to permit a listing of the potential accident sequences, compute their frequencies of occurrence and assign each sequence to a consequence. The method used for modeling the systems and accident sequences, is Large Fault Tree/Small Event Tree method. This PSA level-1 for IHWRR indicates that, based on conservative assumptions, the total frequency of accidents that would lead to core damage from internal initiating events is 4.44E-05 per year of reactor operation

  7. Level-1 probability safety assessment of the Iranian heavy water reactor using SAPHIRE software

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, F. [Department of Nuclear Engineering, School of Engineering, Shiraz University, 71348-51153 Shiraz (Iran, Islamic Republic of); Research Center for Radiation Protection, Shiraz University, Shiraz (Iran, Islamic Republic of); Nuclear Safety Research Center, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: faghihif@shirazu.ac.ir; Ramezani, E. [Department of Nuclear Engineering, School of Engineering, Shiraz University, 71348-51153 Shiraz (Iran, Islamic Republic of); Yousefpour, F. [Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of); Mirvakili, S.M. [Department of Nuclear Engineering, School of Engineering, Shiraz University, 71348-51153 Shiraz (Iran, Islamic Republic of)

    2008-10-15

    The main goal of this review paper is to analyze the total frequency of the core damage of the Iranian Heavy Water Research Reactor (IHWRR) compared with standard criteria and to determine the strengths and the weaknesses of the reactor safety systems towards improving its design and operation. The PSA has been considered for full-power state of the reactor and this article represents a level-1 PSA analysis using System Analysis Programs for Hands-On Integrated Reliability Evaluations (SAPHIRE) software. It is specifically designed to permit a listing of the potential accident sequences, compute their frequencies of occurrence and assign each sequence to a consequence. The method used for modeling the systems and accident sequences, is Large Fault Tree/Small Event Tree method. This PSA level-1 for IHWRR indicates that, based on conservative assumptions, the total frequency of accidents that would lead to core damage from internal initiating events is 4.44E-05 per year of reactor operation.

  8. Source term determination from subcritical multiplication measurements at Koral-1 reactor

    International Nuclear Information System (INIS)

    Blazquez, J.B.; Barrado, J.M.

    1978-01-01

    By using an AmBe neutron source two independent procedures have been settled for the zero-power experimental fast-reactor Coral-1 in order to measure the source term which appears in the point kinetical equations. In the first one, the source term is measured when the reactor is just critical with source by taking advantage of the wide range of the linear approach to critical for Coral-1. In the second one, the measurement is made in subcritical state by making use of the previous calibrated control rods. Several applications are also included such as the measurement of the detector dead time, the determinations of the reactivity of small samples and the shape of the neutron importance of the source. (author)

  9. Studies in fusion reactor technology. Final report, September 1, 1974--August 31, 1977

    International Nuclear Information System (INIS)

    Axtmann, R.C.; Perkins, H.K.

    1977-08-01

    Two independent measurements of hydrogen permeation through stainless steel at driving pressures in the range from 10 -6 to 1 Pa indicate that most extant predictions of tritium permeation through fusion reactors are probably overestimated grossly. A comprehensive analysis demonstrates that, given available structural materials, the prospects are negligible for the economic production of synthetic fuels via radiolytic reactions in fusion reactor systems

  10. Molecular epidemiology of Brucella genotypes in patients at a major hospital in central Peru

    NARCIS (Netherlands)

    Nöckler, Karsten; Maves, Ryan; Cepeda, David; Draeger, Angelika; Mayer-Scholl, Anne; Chacaltana, Jesus; Castañeda, María; Espinosa, Benjamin; Castillo, Rosa; Hall, Eric; Al Dahouk, Sascha; Gilman, Robert H.; Cabeza, Franco; Smits, Henk L.

    2009-01-01

    The multiple-locus variable-number repeat analysis of 90 human Brucella melitensis isolates from a large urban area in central Peru revealed variations at 4 (Bruce07, Bruce09, Bruce18, and Bruce42) out of 16 loci investigated, of which 1 (Bruce42) also is used for species identification. Ten

  11. Canada country report

    International Nuclear Information System (INIS)

    Cottrill, Cheryl

    2008-01-01

    1 - Nuclear 2007 highlights: New Build Applications and Environmental Assessments (Ontario Power Generation (OPG), Bruce Power, Bruce Power Alberta), Refurbishments (Bruce Power's Bruce A Units 1 and 2 Restart Project, NB Power's Refurbishment of Point Lepreau, New Brunswick, Atomic Energy of Canada Limited (AECL) NRU 50. Anniversary, expansion of the solid radioactive waste storage facilities at Gentilly-2 nuclear generating station, Ontario Power Generation (OPG) Deep Geologic Repository..); 2. Nuclear overview: a. Energy policy (Future of nuclear power, state of the projects, schedule, Refurbishment), b. Public acceptance, Statements from Government Officials in Canada; c. Nuclear equipment (number and type); d. Nuclear waste management, Deep Geologic Repository; e. Nuclear research at AECL; f. Other nuclear activities (Cameco Corporation, MDS Nordion); 3. Nuclear competencies; 4. WIN 2007 Main Achievements: GIRLS Science Club, Skills Canada, WiN-Canada Web site, Book Launch, WINFO, 2007 WiN-Canada conference 4 - Summary: - 14.6% of Canada's electricity is provided by Candu nuclear reactors; Nuclear equipment: 10 Research or isotope producing reactors - Pool-Type; Slowpoke 2; Sub-Critical assembly; NRU; and Maple; 22 Candu reactors providing electricity production - 18 of which are currently operating. Public acceptance: 41% feel nuclear should play more of a role, 67% support refurbishment, 48% support new build, 13% point gender gap in support, with men supporting more than women. Energy policy: Future of nuclear power - recognition that nuclear is part of the solution across Canada; New Build - 3 applications to regulator to prepare a site for new build, in Provinces of Ontario and Alberta, with one feasibility study underway in New Brunswick; Refurbishment - Provinces of Ontario (2010) and New Brunswick (2009). Nuclear waste management policy: Proposal submitted to regulator to prepare, construct and operate a deep geologic disposal facility in Ontario

  12. Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1

    Directory of Open Access Journals (Sweden)

    Muhammad Atta

    2011-01-01

    Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.

  13. Simulation of channel blockage for the IEA-R1 research reactor using RELAP/MOD 3

    International Nuclear Information System (INIS)

    Oliveira, Eduardo C.F. de; Castrillo, Lazara Silveira

    2015-01-01

    Research reactors have great importance in the area of nuclear technology, such as radioisotope production, research in nuclear physics, development of new technologies and staff training for reactor operation. The IEA-R1 is a Brazilian research reactor type pool, located at the IPEN (Instituto de Pesquisas Energeticas e Nucleares). In this work is simulated with computer code RELAP5 / MOD 3.3.2 gamma, the effect caused by partial and complete blockage of a channel in MTR fuel element of the IEA-R1 core, in order to analyzed the thermal hydraulic parameters on adjacent channels. (author)

  14. Simulation of channel blockage for the IEA-R1 research reactor using RELAP/MOD 3

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eduardo C.F. de; Castrillo, Lazara Silveira, E-mail: ecfoliveira@hotmail.com, E-mail: lazara.castrillo@upe.br [Universidade de Pernambuco (UPE), Recife, PE (Brazil). Escola Politecnica de Pernambuco

    2015-07-01

    Research reactors have great importance in the area of nuclear technology, such as radioisotope production, research in nuclear physics, development of new technologies and staff training for reactor operation. The IEA-R1 is a Brazilian research reactor type pool, located at the IPEN (Instituto de Pesquisas Energeticas e Nucleares). In this work is simulated with computer code RELAP5 / MOD 3.3.2 gamma, the effect caused by partial and complete blockage of a channel in MTR fuel element of the IEA-R1 core, in order to analyzed the thermal hydraulic parameters on adjacent channels. (author)

  15. Measurement of thermal neutron flux spatial distribution in the IEA-R1 reactor core

    International Nuclear Information System (INIS)

    D'Utra Bitelli, U.

    1993-01-01

    This work presents the spatial thermal neutron flux in IEA-R1 reactor obtained by activation foils methods. These measurements were made in 27 fuel elements of the reactor core (165 B configuration). The results are important to compare with theoretical values, power calibration and safety analysis. (author)

  16. AKR-1 nuclear training reactor of Dresden Technical University turns twenty-five

    International Nuclear Information System (INIS)

    Hansen, W.

    2003-01-01

    Twenty-five years ago, in the night of July 27 to 28, 1978, the AKR-1 nuclear training reactor of the Dresden Technical University went critical for the first time and was commissioned. On the occasion of this anniversary, a colloquy was arranged with representatives from science, politics and industry, at which the reactor's history, the excellent achievements in research and training with the reactor, and the status and perspectives of this research facility were described. The AKR-1 had been built within the framework of the Nuclear Development Program of the then German Democratic Republic (GDR). The Nuclear Power Scientific Division of the Dresden Technical University had been entrusted with the responsibility, among other things, to train university personnel for the GDR Nuclear Power Program. The review by an expert group in 1996 of this plant had resulted in a recommendation in favor of long-term plant operation. A nuclear licensing procedure to this effect was initiated, and the necessary technical backfitting measures were implemented. The AKR-1 plant now equally serves for the specialized training of students and for research. (orig.) [de

  17. Measures aimed at enhancing safe operation of the Nigeria Research Reactor-1 (NIRR-1)

    International Nuclear Information System (INIS)

    Balogun, G.I.; Jonah, S.A.; Umar, I.M.

    2005-01-01

    Safety culture has been defined as 'that assembly of characteristics and attitudes in organizations and individuals which establishes that as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance'. This paper briefly highlights efforts being made at the Centre for Energy Research and Training (CERT) towards realizing this broad objective as far as possible. To this end CERT realizes the need for instituted safety measures to reflect significant, site-specific peculiar characteristics of any generic reactor types. Consequently, standard procedures for pre-startup, startup and shutdown of NIRR-1 (a miniature neutron source reactor - MNSR) have been reviewed to reflect our local conditions and peculiarities. The review has revealed the need to incorporate important steps that impact on overall safety of the facility. For instance an interlocking system is being considered between NIRR-1 startup on the one hand and mandatory pre-startup measures on the other. Also a procedure has been put in place that would facilitate rapid response in the event of a rod-stuck-at-full-withdrawal incident. Furthermore, a program of automation of important analysis and design calculations of MNSRs is going on. Emphases are also placed, and deliberate efforts are being made, to ensure that a working atmosphere prevails that would foster the correct attitudinal approach to matters of reactor safety. A regime of constant dialogue and discussions amongst operating personnel has been factored into the overall operational program. (author)

  18. Reed Reactor Facility annual report, September 1, 1994--August 31, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report covers the period from September 1, 1994 to August 31, 1995. Information contained in this report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission (USNRC), the US Department of Energy (USDOE), and the Oregon Department of Energy (ODOE). Highlights of the last year include: (1) The number of new licensed student operators more than replaced the number of graduating seniors. Seven Reed College seniors used the reactor as part of their thesis projects. (2) The facility has been extraordinarily successful in obtaining donated equipment from Portland General Electric, US Department of Energy, Precision Castparts, Tektronix, and other sources. Battelle (Pacific Northwest Laboratory) has been generous in lending valuable equipment to the college. (3) The facility is developing more paid work. Income in the past academic year was much greater than the previous year, and next year should increase by even more. Additionally, the US Department of Energy's Reactor-Use Sharing grant increased significantly this year. During the year, the reactor was operated 225 separate times on 116 days. The total energy production was 24.6 MW-hours. The reactor staff consists of a Director, an Assistant Director, a contract Health Physicist, and approximately fifteen Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below one percent of the federal limits. There were no releases of liquid radioactive material from the facility and airborne releases (primarily 41 Ar) were well within regulatory limits. No radioactive waste was shipped from the facility during this period

  19. Reed Reactor Facility annual report, September 1, 1994--August 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This report covers the period from September 1, 1994 to August 31, 1995. Information contained in this report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission (USNRC), the US Department of Energy (USDOE), and the Oregon Department of Energy (ODOE). Highlights of the last year include: (1) The number of new licensed student operators more than replaced the number of graduating seniors. Seven Reed College seniors used the reactor as part of their thesis projects. (2) The facility has been extraordinarily successful in obtaining donated equipment from Portland General Electric, US Department of Energy, Precision Castparts, Tektronix, and other sources. Battelle (Pacific Northwest Laboratory) has been generous in lending valuable equipment to the college. (3) The facility is developing more paid work. Income in the past academic year was much greater than the previous year, and next year should increase by even more. Additionally, the US Department of Energy`s Reactor-Use Sharing grant increased significantly this year. During the year, the reactor was operated 225 separate times on 116 days. The total energy production was 24.6 MW-hours. The reactor staff consists of a Director, an Assistant Director, a contract Health Physicist, and approximately fifteen Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below one percent of the federal limits. There were no releases of liquid radioactive material from the facility and airborne releases (primarily {sup 41}Ar) were well within regulatory limits. No radioactive waste was shipped from the facility during this period.

  20. Circuits design of action logics of the protection system of nuclear reactor IAN-R1 of Colombia; Diseno de los circuitos de la logica de actuacion del sistema de proteccion del reactor nuclear IAN-R1 de Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, J. L.; Rivero G, T.; Sainz M, E., E-mail: joseluis.gonzalez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    Due to the obsolescence of the instrumentation and control system of the nuclear research reactor IAN-R1, the Institute of Geology and Mining of Colombia, IngeoMinas, launched an international convoking for renewal it which was won by the Instituto Nacional de Investigaciones Nucleares (ININ). Within systems to design, the reactor protection system is described as important for safety, because this carried out, among others two primary functions: 1) ensuring the reactor shutdown safely, and 2) controlling the interlocks to protect against operational errors if defined conditions have not been met. To fulfill these functions, the various subsystems related to the safety report the state in which they are using binary signals and are connected to the inputs of two redundant logic wiring circuits called action logics (Al) that are part of the reactor protection system. These Al also serve as logical interface to indicate at all times the status of subsystems, both the operator and other systems. In the event that any of the subsystems indicates a state of insecurity in the reactor, the Al generate signals off (or scram) of the reactor, maintaining the interlock until the operator sends a reset signal. In this paper the design, implementation, verification and testing of circuits that make up the Al 1 and 2 of IAN-R1 reactor is described, considering the fulfillment of the requirements that the different international standards imposed on this type of design. (Author)

  1. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 1, Sessions 1-5

    International Nuclear Information System (INIS)

    Block, R.C.; Feiner, F.

    1995-09-01

    This document, Volume 1, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  2. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 1, Sessions 1-5

    Energy Technology Data Exchange (ETDEWEB)

    Block, R.C.; Feiner, F. [comps.] [American Nuclear Society, La Grange Park, IL (United States)

    1995-09-01

    This document, Volume 1, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  3. Build-up of actinides in irradiated fuel rods of the ET-RR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Naguib, K.; Morcos, H.N

    2001-09-01

    The content concentrations of actinides are calculated as a function of operating reactor regime and cooling time at different percentage of fuel burn-up. The build-up transmutation equations of actinides content in an irradiated fuel are solved numerically .A computer code BAC was written to operate on a PC computer to provide the required calculations. The fuel element of 10% {sup 235}U enrichment of ET-RR-1 reactor was taken as an example for calculations using the BAC code. The results are compared with other calculations for the ET-RR-1 fuel rod. An estimation of fissile build-up content of a proposed new fuel of 20% {sup 235}U enrichment for ET-RR-1 reactor is given. The sensitivity coefficients of build-up plutonium concentrations as a function of cross-section data uncertainties are also calculated.

  4. Calculation of the main neutron parameters of the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Ojima, Mario Katsuhiko

    1977-01-01

    The main neutron parameters of the research reactor IEA-R1 were calculated using computer programs to generate cross sections and criticality calculations. A calculation procedure based on the programs available in the Processing Center Data of IEA was established and centered in the HAMMER and CITATION system. A study was done in order to verify the validity and accuracy of the calculation method comparing the results with experimental data. Some operating parameters of the reactor, namely the distribution of neutron flux, the critical mass, the variation of the reactivity with the burning of fuel, and the dead time of the reactor were determined

  5. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    International Nuclear Information System (INIS)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin

    2016-01-01

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future

  6. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future.

  7. TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, B.C.

    1997-05-01

    This report is a final culmination of activities funded through the Department of Energy`s (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely the total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher`s workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead.

  8. TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995

    International Nuclear Information System (INIS)

    Ryan, B.C.

    1997-05-01

    This report is a final culmination of activities funded through the Department of Energy's (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely the total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher's workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead

  9. Preliminary post-closure safety assessment of repository concepts for low level radioactive waste at the Bruce Site, Ontario

    International Nuclear Information System (INIS)

    Little, R.H.; Penfold, J.S.S.; Egan, M.J.; Leung, H.

    2005-01-01

    The preliminary post-closure safety assessment of permanent repository concepts for low-level radioactive waste (LLW) at the Ontario Power Generation (OPG) Bruce Site is described. The study considered the disposal of both short and long-lived LLW. Four geotechnically feasible repository concepts were considered (two near-surface and two deep repositories). An approach consistent with best international practice was used to provide a reasoned and comprehensive analysis of post-closure impacts of the repository concepts. The results demonstrated that the deep repository concepts in shale and in limestone, and the surface repository concept on sand should meet radiological protection criteria. For the surface repository concept on glacial till, it appears that increased engineering such as grouting of waste and voids should be considered to meet the relevant dose constraint. Should the project to develop a permanent repository for LLW proceed, it is expected that this preliminary safety assessment would need to be updated to take account of future site-specific investigations and design updates. (author)

  10. Validation of the AZTRAN 1.1 code with problems Benchmark of LWR reactors; Validacion del codigo AZTRAN 1.1 con problemas Benchmark de reactores LWR

    Energy Technology Data Exchange (ETDEWEB)

    Vallejo Q, J. A.; Bastida O, G. E.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Xolocostli M, J. V.; Gomez T, A. M., E-mail: amhed.jvq@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    The AZTRAN module is a computational program that is part of the AZTLAN platform (Mexican modeling platform for the analysis and design of nuclear reactors) and that solves the neutron transport equation in 3-dimensional using the discrete ordinates method S{sub N}, steady state and Cartesian geometry. As part of the activities of Working Group 4 (users group) of the AZTLAN project, this work validates the AZTRAN code using the 2002 Yamamoto Benchmark for LWR reactors. For comparison, the commercial code CASMO-4 and the free code Serpent-2 are used; in addition, the results are compared with the data obtained from an article of the PHYSOR 2002 conference. The Benchmark consists of a fuel pin, two UO{sub 2} cells and two other of MOX cells; there is a problem of each cell for each type of reactor PWR and BWR. Although the AZTRAN code is at an early stage of development, the results obtained are encouraging and close to those reported with other internationally accepted codes and methodologies. (Author)

  11. Fusion reactor technology studies. Final report for period August 1, 1972 - October 31, 1978

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Maynard, C.W.

    1984-04-01

    Major accomplishments for the period August 1, 1972 - October 31, 1978 include the publishing of four comprehensive fusion reactor conceptual design studies; experimental studies in the areas of radiation damage, plasma-wall interactions, superconducting magnets and 14-MeV neutron cross sections; development of the concepts of carbon curtains and ISSEC's for use in fusion reactors; development of a neutron and gamma heating computer code, a radioactivity and afterheat computer code and a neutral transport computer code; and studies in the areas of RF heating for tokamaks and resource assessment for fusion reactors

  12. PR-EDB: Power Reactor Embrittlement Data Base, version 1: Program description

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Kam, F.B.K.; Taylor, B.J.

    1990-06-01

    Data concerning radiation embrittlement of pressure vessel steels in commercial power reactors have been collected form available surveillance reports. The purpose of this NRC-sponsored program is to provide the technical bases for voluntary consensus standards, regulatory guides, standard review plans, and codes. The data can also be used for the exploration and verification of embrittlement prediction models. The data files are given in dBASE 3 Plus format and can be accessed with any personal computer using the DOS operating system. Menu-driven software is provided for easy access to the data including curve fitting and plotting facilities. This software has drastically reduced the time and effort for data processing and evaluation compared to previous data bases. The current compilation of the Power Reactor Embrittlement Data base (PR-EDB, version 1) contains results from surveillance capsule reports of 78 reactors with 381 data points from 110 different irradiated base materials (plates and forgings) and 161 data points from 79 different welds. Results from heat-affected-zone materials are also listed. Electric Power Research Institute (EPRI), reactor vendors, and utilities are in the process of providing back-up quality assurance checks of the PR-EDB and will be supplementing the data base with additional data and documentation. 2 figs., 28 tabs

  13. Project management plan for the 105-C Reactor interim safe storage project. Revision 1

    International Nuclear Information System (INIS)

    Miller, R.L.

    1997-01-01

    In 1942, the Hanford Site was commissioned by the US Government to produce plutonium. Between 1942 and 1955, eight water-cooled, graphite-moderated reactors were constructed along the Columbia River at the Hanford Site to support the production of plutonium. The reactors were deactivated from 1964 to 1971 and declared surplus. The Surplus Production Reactor Decommissioning Project (BHI 1994b) will decommission these reactors and has selected the 105-C Reactor to be used as a demonstration project for interim safe storage at the present location and final disposition of the entire reactor core in the 200 West Area. This project will result in lower costs, accelerated schedules, reduced worker exposure, and provide direct benefit to the US Department of Energy for decommissioning projects complex wide. This project sets forth plans, organizational responsibilities, control systems, and procedures to manage the execution of the Project Management Plan for the 105-C Reactor Interim Safe Storage Project (Project Management Plan) activities to meet programmatic requirements within authorized funding and approved schedules. The Project Management Plan is organized following the guidelines provided by US Department of Energy Order 4700.1, Project Management System and the Richland Environmental Restoration Project Plan (DOE-RL 1992b)

  14. Experimental Studies on Assemblies 1 and 2 of the Fast Reactor FR-0. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, T L; Hellstrand, E; Londen, S O; Tiren, L I

    1965-08-15

    FR0 is a fast zero power reactor built for experiments in reactor physics. It is a split table machine containing vertical fuel elements. 120 kg of U{sup 235} are available as fuel, which is fabricated into metallic plates of 20 % enrichment. The control system comprises 5 spring-loaded safety elements and 3 + 1 elements for startup operations and power control. The reactor went critical in February 1964. The first assemblies studied were made up of undiluted fuel into a cylindrical and a spherical core, respectively, surrounded by a reflector made of copper. The present report describes some experiments made on these systems. Primarily, critical mass determinations, flux distribution measurements and studies of the conversion ratio are dealt with. The measured quantities have been compared with theoretical predictions using various transport theory programmes (DSN, TDC) and cross section sets. The experimental results show that the neutron spectrum in the copper reflector is softer than predicted, but apart from this discrepancy agreement with theory has generally been obtained.

  15. Neutron radiography in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Pugliesi, R.; Moraes, A.P.V. de; Yamazaki, I.M.; Freitas Acosta, C. de.

    1988-08-01

    Neutronradiography of several materials have been obtained at the IEA-R1 Nuclear Research Reactor (IPEN-CNEN/SP), by means of two conversion techniques: a) (n, α) at the beam-hole n 0 3 where a collimated thermal neutron beam, exposure area 4 cm x 8cm and flux at the sample 10 5 n/s cm 2 is obtained. The film used was the CN-85 cellulose nitrate coated with lithium tetraborate (conversor). The time irradiation of the film was 15 minutes and in following was eteched during 30 minutes in a NaOH(10%) aqueous solution at a constant temperature of 60 0 C.; b) (n,γ) by using an experimental arrangement installed in the botton of the pool of the reactor. The flux of the collimated neutron beam is 10 5 n/s/cm 2 at the sample and the conversion is made by means of a dysprozium sheet. The film used was Kodak T-5. The irradiation and the transfering time was 2 hours and 20 hours respectively. (author) [pt

  16. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients

  17. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  18. Circuits design of action logics of the protection system of nuclear reactor IAN-R1 of Colombia

    International Nuclear Information System (INIS)

    Gonzalez M, J. L.; Rivero G, T.; Sainz M, E.

    2014-10-01

    Due to the obsolescence of the instrumentation and control system of the nuclear research reactor IAN-R1, the Institute of Geology and Mining of Colombia, IngeoMinas, launched an international convoking for renewal it which was won by the Instituto Nacional de Investigaciones Nucleares (ININ). Within systems to design, the reactor protection system is described as important for safety, because this carried out, among others two primary functions: 1) ensuring the reactor shutdown safely, and 2) controlling the interlocks to protect against operational errors if defined conditions have not been met. To fulfill these functions, the various subsystems related to the safety report the state in which they are using binary signals and are connected to the inputs of two redundant logic wiring circuits called action logics (Al) that are part of the reactor protection system. These Al also serve as logical interface to indicate at all times the status of subsystems, both the operator and other systems. In the event that any of the subsystems indicates a state of insecurity in the reactor, the Al generate signals off (or scram) of the reactor, maintaining the interlock until the operator sends a reset signal. In this paper the design, implementation, verification and testing of circuits that make up the Al 1 and 2 of IAN-R1 reactor is described, considering the fulfillment of the requirements that the different international standards imposed on this type of design. (Author)

  19. Low-enrichment and long-life Scalable LIquid Metal cooled small Modular (SLIMM-1.2) reactor

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed S., E-mail: mgenk@unm.edu [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM (United States); Nuclear Engineering Department, University of New Mexico, Albuquerque, NM (United States); Mechanical Engineering Department, University of New Mexico, Albuquerque, NM (United States); Chemical and Biological Engineering Department, University of New Mexico, Albuquerque, NM (United States); Palomino, Luis M.; Schriener, Timothy M. [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM (United States); Nuclear Engineering Department, University of New Mexico, Albuquerque, NM (United States)

    2017-05-15

    Highlights: • Developed low enrichment and natural circulation cooled SLIMM-1.2 SMR for generating 10–100 MW{sub th}. • Neutronics analyses estimate operation life and temperature reactivity feedback. • At 100 MW{sub th}, SLIMM-1.2 operates for 6.3 FPY without refueling. • SLIMM-1.2 has relatively low power peaking and maximum UN fuel temperature < 1400 K. - Abstract: The Scalable LIquid Metal cooled small Modular (SLIMM-1.0) reactor with uranium nitride fuel enrichment of 17.65% had been developed for generating 10–100 MW{sub th} continuously, without refueling for ∼66 and 5.9 full power years, respectively. Natural circulation of in-vessel liquid sodium (Na) cools the core of this fast energy spectrum reactor during nominal operation and after shutdown, with the aid of a tall chimney and an annular Na/Na heat exchanger (HEX) of concentric helically coiled tubes. The HEX at the top of the downcomer maximizes the static pressure head for natural circulation. In addition to the independent emergency shutdown (RSS) and reactor control (RC), the core negative temperature reactivity feedback safely decreases the reactor thermal power, following modest increases in the temperatures of UN fuel and in-vessel liquid sodium. The decay heat is removed from the core by natural circulation of in-vessel liquid sodium, with aid of the liquid metal heat pipes laid along the reactor vessel wall, and the passive backup cooling system (BCS) using natural circulation of ambient air along the outer surface of the guard vessel wall. This paper investigates modifying the SLIMM-1.0 reactor design to lower the UN fuel enrichment. To arrive at a final reactor design (SLIMM-1.2), the performed neutronics and reactivity depletion analyses examined the effects of various design and material choices on both the cold-clean and the hot-clean excess reactivity, the reactivity shutdown margin, the full power operation life at 100 MW{sub th}, the fissile production and depletion, the

  20. Digital Systems Implemented at the IPEN Nuclear Research Reactor (IEA-R1): Results and Necessities

    International Nuclear Information System (INIS)

    Nahuel-Cardenas, Jose-Patricio; Madi-Filho, Tufic; Ricci-Filho, Walter; Rodrigues-de-Carvalho, Marcos; Lima-Benevenuti, Erion-de; Gomes-Neto, Jose

    2013-06-01

    (Nuclear and Energy Research Institute) was founded in 1956 with the main purpose of doing research and development in the field of nuclear energy and its applications. It is located at the campus of University of Sao Paulo (USP), in the city of Sao Paulo, in an area of nearly 500, 000 m2. It has over 1.000 employees and 40% of them have qualification at master or doctor level The institute is recognized as a national leader institution in research and development (R and D) in the areas of radiopharmaceuticals, industrial applications of radiation, basic nuclear research, nuclear reactor operation and nuclear applications, materials science and technology, laser technology and applications. Along with the R and D, it has a strong educational activity, having a graduate program in Nuclear Technology, in association with the University of Sao Paulo, ranked as the best university in the country. The Federal Government Evaluation institution CAPES, granted to this course grade 6, considering it a program of Excellence. This program started at 1976 and has awarded 458 Ph.D. degrees and 937 master degrees since them. The actual graduate enrollment is around 400 students. One of major nuclear installation at IPEN is the IEA-R1 research reactor; it is the only Brazilian research reactor with substantial power level suitable for its utilization in researches concerning physics, chemistry, biology and engineering as well as for producing some useful radioisotopes for medical and other applications. IEA-R1 reactor is a swimming pool type reactor moderated and cooled by light water and uses graphite and beryllium as reflectors. The first criticality was achieved on September 16, 1957. The reactor is currently operating at 4.5 MW power level with an operational schedule of continuous 64 hours a week. In 1996 a Modernization Program was started to establish recommendations in order to mitigate equipment and structures ageing effects in the reactor components, detect and evaluate

  1. Experimental facilities for PEC reactor design central channel test loop: CPC-1 - thermal shocks loop: CEDI

    International Nuclear Information System (INIS)

    Calvaresi, C.; Moreschi, L.F.

    1983-01-01

    PEC (Prova Elementi di Combustibile: Fuel Elements Test) is an experimental fast sodium-cooled reactor with a power of 120 MWt. This reactor aims at studying the behaviour of fuel elements under thermal and neutron conditions comparable with those existing in fast power nuclear facilities. Given the particular structure of the core, the complex operations to be performed in the transfer cell and the strict operating conditions of the central channel, two experimental facilities, CPC-1 and CEDI, have been designed as a support to the construction of the reactor. CPC-1 is a 1:1 scale model of the channel, transfer-cell and loop unit of the channel, whereas CEDI is a sodium-cooled loop which enables to carry out tests of isothermal endurance and thermal shocks on the group of seven forced elements, by simulating the thermo-hydraulic and mechanical conditions existing in the reactor. In this paper some experimental test are briefy discussed and some facilities are listed, both for the CPC-1 and for the CEDI. (Auth.)

  2. Unitary theory of xenon instability in nuclear thermal reactors - 1. Reactor at 'zero power'

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, A. (Politecnico di Milano (Italy). Centro Studi Nucleari E. Fermi)

    1982-01-01

    The question of nuclear thermal-reactor instability against xenon oscillations is widespread in the literature, but most theories, concerned with such an argument, contradict each other and, above all, they conflict with experimentally-observed instability at very low reactor power, i.e. without any power feedback. It is shown that, in any nuclear thermal reactor, xenon instability originates at very low power levels, and a very general stability condition is deduced by an extension of the rigorous, simple and powerful reduction of the Nyquist criterion, first performed by F. Storrer.

  3. Research reactors in Argentina

    International Nuclear Information System (INIS)

    Carlos Ruben Calabrese

    1999-01-01

    Argentine Nuclear Development started in early fifties. In 1957, it was decided to built the first a research reactor. RA-1 reactor (120 kw, today licensed to work at 40 kW) started operation in January 1958. Originally RA-1 was an Argonaut (American design) reactor. In early sixties, the RA-1 core was changed. Fuel rods (20% enrichment) was introduced instead the old Argonaut core design. For that reason, a critical facility named RA-0 was built. After that, the RA-3 project started, to build a multipurpose 5 MW nuclear reactor MTR pool type, to produce radioisotopes and research. For that reason and to define the characteristics of the RA-3 core, another critical facility was built, RA-2. Initially RA-3 was a 90 % enriched fuel reactor, and started operation in 1967. When Atucha I NPP project started, a German design Power Reactor, a small homogeneous reactor was donated by the German Government to Argentina (1969). This was RA-4 reactor (20% enrichment, 1W). In 1982, RA-6 pool reactor achieved criticality. This is a 500 kW reactor with 90% enriched MTR fuel elements. In 1990, RA-3 started to operate fueled by 20% enriched fuel. In 1997, the RA-8 (multipurpose critical facility located at Pilcaniyeu) started to operate. RA-3 reactor is the most important CNEA reactor for Argentine Research Reactors development. It is the first in a succession of Argentine MTR reactors built by CNEA (and INVAP SE ) in Argentina and other countries: RA-6 (500 kW, Bariloche-Argentina), RP-10 (10MW, Peru), NUR (500 kW, Algeria), MPR (22 MW, Egypt). The experience of Argentinian industry permits to compete with foreign developed countries as supplier of research reactors. Today, CNEA has six research reactors whose activities have a range from education and promotion of nuclear activity, to radioisotope production. For more than forty years, Argentine Research Reactors are working. The experience of Argentine is important, and argentine firms are able to compete in the design and

  4. Measurements of reactivity of reactor G1

    International Nuclear Information System (INIS)

    Bernot, J.; Koechlin, J.C.; Portes, L.; Teste du Bailler, A.

    1957-01-01

    The various methods used during the physical study of the reactor G1 to determine the variations of the effective multiplication factor consecutive to a given change in the geometry of the multiplying medium, are presented and discussed. The comparison of the results obtained by these various methods has allowed their validity to be tested and precise conditions of use to be given. In the first part are presented the principles used and their ranges of validity. In the second part the experimental results are given, together with some indications on their comparison with theoretical estimations. (author) [fr

  5. Summary Report of Commercial reactor Criticality Data for Three Mile Island Unit 1

    International Nuclear Information System (INIS)

    Larry B. Wimmer

    2001-01-01

    The objective of the ''Summary Report of Commercial Reactor Criticality Data for Three Mile Island Unit I'' is to present the CRC data for the TMI-1 reactor. Results from the CRC evaluations will support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel. These models and their validation are discussed in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000)

  6. Modifications in the operational conditions of the IEA-R1 reactor under continuous 48 hours operation

    International Nuclear Information System (INIS)

    Moreira, Joao Manoel Losada; Frajndlich, Roberto

    1995-01-01

    This work shows the required changes in the IEA-R1 reactor for operation at 2 Mw, 48 hours continuously. The principal technical change regards the operating conditions of the reactor, namely, the required excess reactivity which now will amount to 4800 pcm in order to compensate the Xe poisoning at equilibrium at 2 Mw. (author). 6 refs, 1 fig, 1 tab

  7. Volume reduction/solidification of liquid radioactive waste using bitumen at Ontario hydro's Bruce nuclear generating station open-quotes Aclose quotes

    International Nuclear Information System (INIS)

    Day, J.E.; Baker, R.L.

    1994-01-01

    Ontario Hydro at the Bruce Nuclear Generating Station open-quotes Aclose quotes has undertaken a program to render the station's liquid radioactive waste suitable for discharge to Lake Huron by removing sufficient radiological and chemical contaminants from five different plant waste streams. The contaminants will be immobilized and stored at on-site radioactive waste storage facilities and the purified streams will be discharged. The discharge targets established by Ontario Hydro are set well below the limits established by the Ontario Ministry of Environment (MOE) and are based on the Best Available Technology Economically Achievable Approach (B.A.T.E.A.). ADTECHS Corporation has been selected by Ontario Hydro to provide volume reduction/solidification technology for one of the five waste streams. The system will dry and immobilize the contaminants from a liquid waste stream in emulsified asphalt using thin film evaporation technology

  8. Advance High Temperature Inspection Capabilities for Small Modular Reactors: Part 1 - Ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Leonard J. [Iowa State Univ., Ames, IA (United States); Bowler, John R. [Iowa State Univ., Ames, IA (United States)

    2017-08-30

    The project objective was to investigate the development non-destructive evaluation techniques for advanced small modular reactors (aSMR), where the research sought to provide key enabling inspection technologies needed to support the design and maintenance of reactor component performance. The project tasks for the development of inspection techniques to be applied to small modular reactor are being addressed through two related activities. The first is focused on high temperature ultrasonic transducers development (this report Part 1) and the second is focused on an advanced eddy current inspection capability (Part 2). For both inspection techniques the primary aim is to develop in-service inspection techniques that can be carried out under standby condition in a fast reactor at a temperature of approximately 250°C in the presence of liquid sodium. The piezoelectric material and the bonding between layers have been recognized as key factors fundamental for development of robust ultrasonic transducers. Dielectric constant characterization of bismuth scantanate-lead titanate ((1-x)BiScO3-xPbTiO3) (BS-PT) has shown a high Curie temperature in excess of 450°C , suitable for hot stand-by inspection in liquid metal reactors. High temperature pulse-echo contact measurements have been performed with BS-PT bonded to 12.5 mm thick 1018-low carbon steel plate from 20C up to 260 C. High temperature air-backed immersion transducers have been developed with BS-PT, high temperature epoxy and quarter wavlength nickel plate, needed for wetting ability in liquid sodium. Ultrasonic immersion measurements have been performed in water up to 92C and in silicone oil up to 140C. Physics based models have been validated with room temperature experimental data with benchmark artifical defects.

  9. Analysis of core melt accident in Fukushima Daiichi-Unit 1 nuclear reactor

    International Nuclear Information System (INIS)

    Tanabe, Fumiya

    2011-01-01

    In order to obtain a profound understanding of the serious situation in Unit 1 and Unit 2/3 reactors of Fukushima Daiichi Nuclear Power Station (hereafter abbreviated as 1F1 and 1F2/3, respectively), which was directly caused by tsunami due to a huge earthquake on 11 March 2011, analyses of severe core damage are performed. In the present report, the analysis method and 1F1 analysis are described. The analysis is essentially based on the total energy balance in the core. In the analysis, the total energy vs. temperature curve is developed for each reactor, which is based on the estimated core materials inventory and material property data. Temperature and melt fraction are estimated by comparing the total energy curve with the total stored energy in the core material. The heat source is the decay heat of fission products and actinides together with reaction heat from the zirconium steam reaction. (author)

  10. Final report on in-reactor creep-fatigue deformation behaviour of a CuCrZr alloy: COFAT 1

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Tähtinen, S.; Moilanen, P.

    CrZr(HT1) alloy exposed concurrently to flux of neutrons and creep-fatigue cyclic loading directly in a fission reactor. Special experimental facilities were designed and fabricated for this purpose. A number of in-reactor creep-fatigue experiments were successfully carried out in the BR-2 reactor at Mol...

  11. Reactor of the XXI century

    International Nuclear Information System (INIS)

    Zhotabaev, Zh.R.; Solov'ev, Yu.A.

    2001-01-01

    The advantages of both molten salt reactors (MSR) and homogenous molten salt reactors (HMSR) are illuminated. It is noted that the MSR possess accident probability A=10 -6 1/reactor.years and the HMSR with integral configuration has A=10 -7 1/reactor.years. The methods for these reactors technological problems solution - tritium removal, salt melt circulation and capacity pick up - are discussed

  12. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  13. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  14. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing

  15. Extension of cycle 8 of Angra-1 reactor, optimization of electric power generation reduction

    International Nuclear Information System (INIS)

    Miranda, Anselmo Ferreira; Moreira, Francisco Jose; Valladares, Gastao Lommez

    2000-01-01

    The main objective of extending fuel cycle length of Angra-1 reactor, is in fact of that each normal refueling are changed about 40 fuel elements of the reactor core. Considering that these elements do not return for the reactor core, this procedure has became possible a more gain of energy of these elements. The extension consists in, after power generation corresponding to a cycle burnup of 13700 MWD/TMU or 363.3 days, to use the reactivity gain by reduction of power and temperature of primary system for power generation in a low energy patamar

  16. Power Trip Set-points of Reactor Protection System for New Research Reactor

    International Nuclear Information System (INIS)

    Lee, Byeonghee; Yang, Soohyung

    2013-01-01

    This paper deals with the trip set-point related to the reactor power considering the reactivity induced accident (RIA) of new research reactor. The possible scenarios of reactivity induced accidents were simulated and the effects of trip set-point on the critical heat flux ratio (CHFR) were calculated. The proper trip set-points which meet the acceptance criterion and guarantee sufficient margins from normal operation were then determined. The three different trip set-points related to the reactor power are determined based on the RIA of new research reactor during FP condition, over 0.1%FP and under 0.1%FP. Under various reactivity insertion rates, the CHFR are calculated and checked whether they meet the acceptance criterion. For RIA at FP condition, the acceptance criterion can be satisfied even if high power set-point is only used for reactor trip. Since the design of the reactor is still progressing and need a safety margin for possible design changes, 18 MW is recommended as a high power set-point. For RIA at 0.1%FP, high power setpoint of 18 MW and high log rate of 10%pp/s works well and acceptance criterion is satisfied. For under 0.1% FP operations, the application of high log rate is necessary for satisfying the acceptance criterion. Considering possible decrease of CHFR margin due to design changes, the high log rate is suggested to be 8%pp/s. Suggested trip set-points have been identified based on preliminary design data for new research reactor; therefore, these trip set-points will be re-established by considering design progress of the reactor. The reactor protection system (RPS) of new research reactor is designed for safe shutdown of the reactor and preventing the release of radioactive material to environment. The trip set point of RPS is essential for reactor safety, therefore should be determined to mitigate the consequences from accidents. At the same time, the trip set-point should secure margins from normal operational condition to avoid

  17. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  18. The Osiris reactor. Descriptive report - Volume 1 - text

    International Nuclear Information System (INIS)

    1969-05-01

    Osiris is a pool type reactor with a 70 MW thermal power. Its main purpose is to irradiate under high flows of neutrons the materials of which future nuclear power stations are made. This report proposes a description of this pool reactor. A first part describes the functional aspects and general characteristics of all installations which are in principle definitely defined (premises, irradiation and experimentation equipment, water circuits, power supply, venting, controls). The second part addresses elements which are likely to be changed, and more particularly the reactor core: fuel elements and controls (uranium and boron load in different fuel element generations, experimental locations within the core), neutron transport aspects (calculation and experiment), and thermal aspects (power generation and removal) of the pile). The third part addresses the operation: operation cycles, stops, exploitation organisation [fr

  19. CANDU reactors with reactor grade plutonium/thorium carbide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Suemer [Atilim Univ., Ankara (Turkey). Faculty of Engineering; Khan, Mohammed Javed; Ahmed, Rizwan [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); Gazi Univ., Ankara (Turkey). Faculty of Technology

    2011-08-15

    Reactor grade (RG) plutonium, accumulated as nuclear waste of commercial reactors can be re-utilized in CANDU reactors. TRISO type fuel can withstand very high fuel burn ups. On the other hand, carbide fuel would have higher neutronic and thermal performance than oxide fuel. In the present work, RG-PuC/ThC TRISO fuels particles are imbedded body-centered cubic (BCC) in a graphite matrix with a volume fraction of 60%. The fuel compacts conform to the dimensions of sintered CANDU fuel compacts are inserted in 37 zircolay rods to build the fuel zone of a bundle. Investigations have been conducted on a conventional CANDU reactor based on GENTILLYII design with 380 fuel bundles in the core. Three mixed fuel composition have been selected for numerical calculation; (1) 10% RG-PuC + 90% ThC; (2) 30% RG-PuC + 70% ThC; (3) 50% RG-PuC + 50% ThC. Initial reactor criticality values for the modes (1), (2) and (3) are calculated as k{sub {infinity}}{sub ,0} = 1.4848, 1.5756 and 1.627, respectively. Corresponding operation lifetimes are {proportional_to} 2.7, 8.4, and 15 years and with burn ups of {proportional_to} 72 000, 222 000 and 366 000 MW.d/tonne, respectively. Higher initial plutonium charge leads to higher burn ups and longer operation periods. In the course of reactor operation, most of the plutonium will be incinerated. At the end of life, remnants of plutonium isotopes would survive; and few amounts of uranium, americium and curium isotopes would be produced. (orig.)

  20. The 5th surveillance testing for Kori unit 1 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwun Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-08-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 5th surveillance testing was performed primarily by Korea Atomic Energy Research Institute and Westinhouse corporation partially involved in testing and calculation data evaluation in order to obtain reliable test result. Fast neutron fluences for capsule V, T, S, R and P were 5.087E+18, 1.115E+19, 1.228E+19, 2.988E+19, and 3.938E+19n/cm2, respectively. The bias factor, the ratio of calculation/measurement, was 0.940 for the 1st through 5th testing and the calculational uncertainty, 7% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.9846E+19n/cm{sup 2} based on the end of 17th fuel cycle and it was predicted that the fluences of vessel inside surface at 24, 32, 40 and 48EFPY would reach 3.0593E+19, 4.0695E+19, 5.0797E+19 and 6.0900E+19n/cm{sup 2} based on the current calculation. PTS analysis for Kori unit 1 showed that 27.93EFPY was the threshold value for 300 deg F requirement. 71 refs., 33 figs., 52 tabs. (Author)

  1. Monitoring of primary circuit and reactor of NPP A-1

    International Nuclear Information System (INIS)

    Prazska, M.; Majersky, M.; Rezbarik, J.; Sekely, S.; Vozarik, P.; Walthery, R.; Stuller, P.

    2005-01-01

    Nuclear Power Plant A-1 in Jaslovske Bohunice was commissioned in 1972. Heavy water moderated, carbon dioxide cooled channel type reactor was shut down after two accidents in 1977. During more serious second accident, the reduced coolant flow caused local overheating of the fuel and consequent damage/melting of the fuel channel. Both accidents had led to the damage of several fuel assemblies with extensive local damage of fuel claddings. As a consequence, the main cooling circuit was significantly contaminated by fission products and long-life alpha nuclides. The detailed monitoring of dose rates, smearable contamination and sampling of contamination was performed. Extended monitoring in reacto vessel, primary circuit pipes, turbo-compressors, steam generators, main valves, gas tanks and also heavy water system with collectors, coolers, distilling and purification station, pumps and valves was done. Appropriate devices and procedures for the monitoring and examination of the installations were prepared and applied. Obtained results will serve for the future planning of the decontamination and decommissioning works. The 3-D model of the reactor that had been developed as part of this Project proved invaluable for orientation, visualisation, planning and analysis of results. Dose rates were measured in the technological channels from the reactor hall floor to the bottom of the hot gas chamber in decrements of 1 m and 0.5 m. The highest absolute values of dose rates were found in channels located in the middle of the reactor (up to 1900 mGy/h in the active zone region). It is estimated that the total contaminated area of primary circuit equipment (pipework, steam generators and turbo-compressors) is some 48 000 m 2 . It follows that the total gamma contamination is of the order of 10 14 to 10 15 Bq and total alpha contamination 10 11 to 10 13 Bq. The total amount of deposits in the gas circuit is about 14.3 tons. (authors)

  2. Characterisation of reactor control rod drives. Specification 1-6. Reaktorstellstabantriebe. Typenblaetter 1-6

    Energy Technology Data Exchange (ETDEWEB)

    1975-03-01

    The committee 'Kernreaktorregelung' of VDI/VDE-Gesellschaft Mess- und Regelungstechnik has developed 6 specifications (Typenblaetter) of reactor control rod drives. The specifications are aimed at giving engineers in reactor control systems an outline concerning the function as well as some construction characteristics. (orig./LN).

  3. The FRJ-1 (MERLIN) research reactor: its main activity inventory has been removed by successful demolition of the reactor block

    International Nuclear Information System (INIS)

    Stahn, B.; Printz, R.; Matela, K.; Zehbe, C.; Poeppinghaus, J.; Cremer, J.

    2004-01-01

    The FRJ-1 (MERLIN) research reactor was decommissioned in 1985 after twenty-three years of operation. Demolition of the plant was begun in 1996. The article contains a survey of the demolition steps carried out so far within the framework of three partial permits. The main activity is the demolition of the reactor core structures as a precondition for subsequent measures to ensure clearance measurements of the building. The core structures are demolished which were exposed to high neutron fluxes during reactor operation and now show the highest activity and dose rate levels, except for the core internals. For demolition and disassembly of the metal structures in this part of the plant, the tools specially designed and made include a remotely operated sawing system and a pipe cutting system for internal segmentation of the beam lines. The universal demolition tool for use also above and beyond the concrete structures has been found to be a remotely controlled electrohydraulic demolition shovel. Spreading contamination in the course of the demolition work was avoided. One major reason for this success was the fact that no major airborne contamination existed at any time as a consequence of the quality of the material demolished and also of the consistent use of technical tools. While the reactor block was being demolished, an application for clearance measurement of the reactor hall and subsequent release from the scope of the Atomic Energy Act was filed as early as in mid-2003. The fourth partial permit covering these activities is expected to be issued in the spring of 2004. (orig.)

  4. Computer codes for simulation of Angra 1 reactor steam generator

    International Nuclear Information System (INIS)

    Pinto, A.C.

    1978-01-01

    A digital computer code is developed for the simulation of the steady-state operation of a u-tube steam generator with natural recirculation used in Pressurized Water Reactors. The steam generator is simulated with two flow channel separated by a metallic wall, with a preheating section with counter flow and a vaporizing section with parallel flow. The program permits the changes in flow patterns and heat transfer correlations, in accordance with the local conditions along the vaporizing section. Various sub-routines are developed for the determination of steam and water properties and a mathematical model is established for the simulation of transients in the same steam generator. The steady state operating conditions in one of the steam generators of ANGRA 1 reactor are determined utilizing this programme. Global results obtained agree with published values [pt

  5. Civilian Power Program. Part 1, Summary, Current status of reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Author, Not Given

    1959-09-01

    This study group covered the following: delineation of the specific objectives of the overall US AEC civilian power reactor program, technical objectives of each reactor concept, preparation of a chronological development program for each reactor concept, evaluation of the economic potential of each reactor type, a program to encourage the the development, and yardsticks for measuring the development. Results were used for policy review by AEC, program direction, authorization and appropriation requests, etc. This evaluation encompassed civilian power reactors rated at 25 MW(e) or larger and related experimental facilities and R&D. This Part I summarizes the significant results of the comprehensive effort to determine the current technical and economic status for each reactor concept; it is based on the 8 individual technical status reports (Part III).

  6. Calculation of low-energy reactor neutrino spectra reactor for reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riyana, Eka Sapta; Suda, Shoya; Ishibashi, Kenji; Matsuura, Hideaki [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Kyushu (Japan); Katakura, Junichi [Dept. of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka (Japan)

    2016-06-15

    Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% {sup 235}U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. {sup 241}Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate. Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

  7. Calculation of radiation heat generation on a graphite reflector side of IAN-R1 Reactor

    International Nuclear Information System (INIS)

    Duque O, J.; Velez A, L.H.

    1987-01-01

    Calculation methods for radiation heat generation in nuclear reactor, based on the point kernel approach are revisited and applied to the graphite reflector of IAN-R1 reactor. A Fortran computer program was written for the determination of total heat generation in the reflector, taking 1155 point in it

  8. Calculations of Changes in Reactivity during some regular periods of operation of JEN-1 MOD Reactor

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1973-01-01

    By a Point-Reactor model and Perturbation Theory, changes in reactivity during some regular operating periods of JEN-1 MOD Reactor have been calculated and compared with available measured values. they were in good agreement. Also changes in reactivity have been calculated during operations at higher power levels than the present one, concluding some practical consequences for the case of increasing the present power of this reactor. (Author)

  9. Characterisation of reactor control rod drives. Specification 1-6

    International Nuclear Information System (INIS)

    1975-03-01

    The committee 'Kernreaktorregelung' of VDI/VDE-Gesellschaft Mess- und Regelungstechnik has developed 6 specifications (Typenblaetter) of reactor control rod drives. The specifications are aimed at giving engineers in reactor control systems an outline concerning the function as well as some construction characteristics. (orig./LN) [de

  10. Developing maintainability in controlled thermonuclear reactors. Progress report, October 1, 1977--April 30, 1978

    International Nuclear Information System (INIS)

    Zahn, H.S.

    1977-05-01

    During the period 1 October 1977 through 30 April 1978 the study has completed work on Task 6, Candidate Reference Systems. Four candidate reference systems have been defined. These are based on the conceptual designs of the UWMAK-III, the General Atomic Company Demonstration Power Reactor, the Oak Ridge National Laboratory Cassette defined in the Demonstration Power Study and the Culham laboratory Mark II Reactors. These reactor concepts are normalized to 3000 MW/sub th/ and near minimum cost of electricity. In addition, designs of four major subsystems have been selected and defined for application to these reactors. These include a primary coolant system, primary and secondary vacuum zone systems, the neutral beam injection system and the magnetic field system. These magnet systems are unique to each reactor. The cases for which maintenance plans are being developed in Task 7 have been selected to allow evaluation of design features, particularly the vacuum wall locations, and the impacts of unscheduled and contact maintenance of subsystems on the cost of electricity

  11. The IPR-R1 TRIGA Mark I Reactor in 39 years: Operations and general improvements

    International Nuclear Information System (INIS)

    Maretti Junior, Fausto; Prado Fernandes, Marcio; Oliveira, Paulo Fernando; Alves de Amorim, Valter

    1999-01-01

    The nuclear IPR-R1 TRIGA Mark I Reactor operating in the Nuclear Technology Development Center, originally Institute for Radioactive Research in Minas Gerais, Brazil, was dedicated in November 11, 1960. Initially operating for the production of radioisotopes for different uses, it started later to be used in large scale for neutron activation analysis and training of operators for nuclear power plants. Many improvements have been made throughout these years to provide a better performance in its operation and safety conditions. A new cooling system to operate until 300 kW, a new control rod mechanism, an aluminum tank for the reactor pool, an optimization in the pneumatic system, a new reactor control console and a general remodeling of the reactor laboratory were some of the improvements added. To prevent and mitigate the ageing effects, the reactor operation personnel is starting a program to minimize future operation problems. This paper describes the improvements made, the results obtained during the past 39 years, and the precautions taken to ensure future safe operation of the reactor to give operators better conditions of safe work. (author)

  12. Recent fuel handling experience in Canada

    International Nuclear Information System (INIS)

    Welch, A.C.

    1991-01-01

    For many years, good operation of the fuel handling system at Ontario Hydro's nuclear stations has been taken for granted with the unavailability of the station arising from fuel handling system-related problems usually contributing less than one percent of the total unavailability of the stations. While the situation at the newer Hydro stations continues generally to be good (with the specific exception of some units at Pickering B) some specific and some general problems have caused significant loss of availability at the older plants (Pickering A and Bruce A). Generally the experience at the 600 MWe units in Canada has also continued to be good with Point Lepreau leading the world in availability. As a result of working to correct identified deficiencies, there were some changes for the better as some items of equipment that were a chronic source of trouble were replaced with improved components. In addition, the fuel handling system has been used three times as a delivery system for large-scale non destructive examination of the pressure tubes, twice at Bruce and once at Pickering and performing these inspections this way has saved many days of reactor downtime. Under COG there are several programs to develop improved versions of some of the main assemblies of the fuelling machine head. This paper will generally cover the events relating to Pickering in more detail but will describe the problems with the Bruce Fuelling Machine Bridges since the 600 MW 1P stations have a bridge drive arrangement that is somewhat similar to Bruce

  13. TU Electric reactor physics model verification: Power reactor benchmark

    International Nuclear Information System (INIS)

    Willingham, C.E.; Killgore, M.R.

    1988-01-01

    Power reactor benchmark calculations using the advanced code package CASMO-3/SIMULATE-3 have been performed for six cycles of Prairie Island Unit 1. The reload fuel designs for the selected cycles included gadolinia as a burnable absorber, natural uranium axial blankets and increased water-to-fuel ratio. The calculated results for both startup reactor physics tests (boron endpoints, control rod worths, and isothermal temperature coefficients) and full power depletion results were compared to measured plant data. These comparisons show that the TU Electric reactor physics models accurately predict important measured parameters for power reactors

  14. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    Research and development for stabilizing or shortening the radioactive wastes including in spent nuclear fuel are widely conducted in view point of reducing the environmental impact. Especially it is effective way to irradiate and transmute long-lived TRU by fast reactors. Two types of loading way were previously proposed. The former is loading relatively small amount of TRU in all commercial fast reactors and the latter is loading large amount of TRU in a few TRU burning reactors. This study has been intended to contribute to the feasibility studies on commercialized fast reactor cycle system. The transmutation and nuclear characteristics of TRU burning reactors were evaluated and compared with those of conventional transmutation system using commercial type fast reactor based upon the investigation of technical information about TRU burning reactors. Major results are summarized as follows. (1) Investigation of technical information about TRU burning reactors. Based on published reports and papers, technical information about TRU burning reactor concepts transmutation system using convectional commercial type fast reactors were investigated. Transmutation and nuclear characteristics or R and D issue were investigated based on these results. Homogeneously loading of about 5 wt% MAs on core fuels in the conventional commercial type fast reactor may not cause significant impact on the nuclear core characteristics. Transmutation of MAs being produced in about five fast reactors generating the same output is feasible. The helium cooled MA burning fast reactor core concept propose by JAERI attains criticality using particle type nitride fuels which contain more than 60 wt% MA. This reactor could transmute MAs being produced in more than ten 1000 MWe-LWRs. Ultra-long life core concepts attaining more than 30 years operation without refueling by utilizing MA's nuclear characteristics as burnable absorber and fertile nuclides were proposed. Those were pointed out that

  15. Supervisory system to monitor the neutron flux of the IPR-R1 TRIGA research reactor at CDTN

    International Nuclear Information System (INIS)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Tello, Cledola Cassia Oliveira

    2009-01-01

    The IPR-R1 TRIGA Mark I nuclear research reactor at the Nuclear Technology Development Center - CDTN (Belo Horizonte) is a pool type reactor. It was designed for research, training and radioisotope production. The International Atomic Energy Agency- IAEA - recommends the use of friendly interfaces for monitoring and controlling the operational parameters of nuclear reactors. This paper reports the activities for implementing a supervisory system, using LabVIEW software, with the purpose to provide the IPR-R1 TRIGA research reactor with a modern, safe and reliable system to monitor the time evolution of the power of its core. The use of the LabVIEW will introduce modern techniques, based on electronic processor and visual interface in video monitor, substituting the mechanical strip chart recorders (ink-pen drive and paper) that monitor the current neutrons flux, which is proportional to the thermal power supplied by reactor core. The main objective of the system will be to follow the evolution of the neutronic flux originated in the Linear and Logarithmic channels. A great advantage of the supervisory software nowadays, in relation to computer programs currently used in the facility, is the existence of new resources such as the data transmission and graphical interfaces by net, grid lines display in the graphs, and resources for real time reactor core video recordings. The considered system could also in the future be optimized, not only for data acquisition, but also for the total control of IPR-R1 TRIGA reactor(author)

  16. Probabilistic risk analysis of Angra-1 reactor

    International Nuclear Information System (INIS)

    Spivak, R.C.; Collussi, I.; Silva, M.C. da; Onusic Junior, J.

    1986-01-01

    The first phase of probabilistic study for safety analysis and operational analysis of Angra-1 reactor is presented. The study objectives and uses are: to support decisions about safety problems; to identify operational and/or project failures; to amplify operator qualification tests to include accidents in addition to project base; to provide informations to be used in development and/or review of operation procedures in emergency, test and maintenance procedures; to obtain experience for data collection about abnormal accurences; utilization of study results for training operators; and training of evaluation and reliability techniques for the personnel of CNEN and FURNAS. (M.C.K.) [pt

  17. Fusion reactor design and technology 1986. V. 1

    International Nuclear Information System (INIS)

    1987-01-01

    The first volume of the Proceedings of the Fourth Technical Committee Meeting and Workshop on Fusion Reactor Design and Technology organized by the IAEA (Yalta, 26 May - 6 June 1986) includes 36 papers devoted to the following topics: fusion programmes (3 papers), tokamaks (15 papers), non-tokamak reactors and open systems (9 papers), inertial confinement concepts (5 papers), fission-fusion hybrids (4 papers). Each of these papers has a separate abstract. Refs, figs and tabs

  18. Estimated long lived isotope activities in ET-RR-1 reactor structural materials for decommissioning study

    International Nuclear Information System (INIS)

    Ashoub, N.; Saleh, H.

    1995-01-01

    The first Egyptian research reactor, ET-RR-1 is tank type with light water as a moderator, coolant and reflector. Its nominal power is 2MWt and the average thermal neutron flux is 10 13 n/cm 2 sec -1 . Its criticality was on the fall of 1961. The reactor went through several modifications and updating and is still utilized for experimental research. A plan for decommissioning of ET-RR-1 reactor should include estimation of radioactivity in structural materials. The inventory will help in assessing the radiological consequences of decommissioning. This paper presents a conservative calculation to estimate the activity of the long lived isotopes which can be produced by neutron activation. The materials which are presented in significant quantities in the reactor structural materials are aluminum, cast iron, graphite, ordinary and iron shot concrete. The radioactivity of each component is dependent not only upon the major elements, but also on the concentration of the trace elements. The main radioactive inventory are expected to be from 60 Co and 55 Fe which are presented in aluminium as trace elements and in large quantities in other construction materials. (author)

  19. Integral tightness measurements at the Paks-1 nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Taubner, R.; Techy, Z. (Villamosenergiaipari Kutato Intezet, Budapest (Hungary))

    1983-01-01

    The containment system experiments of the Paks-1 nuclear reactor are described. The integrated tightness measurements of the hermetic system were completed in 1982. The principles and methods and the evaluation of the results of the measurements are discussed. Some features of the filtration characteristics are demonstrated using relative values and a method enabling the description of the physical contents of the characteristics by flow technical functions is outlined.

  20. Molten-salt reactor strategies viewed from fuel conservation effect, (1)

    International Nuclear Information System (INIS)

    Furuhashi, Akira

    1976-01-01

    Saving of material requirements in the long-term fuel cycle is studied by introducing molten-salt reactors with good neutron economy into a projection of nuclear generating capacity in Japan. In this first report an examination is made on the effects brought by the introduction of molten-salt converter reactors starting with Pu which are followed by 233 U breeders of the same type. It is shown that the sharing of some Pu in the light water- and fast breeder-reactor system with molten-salt reactors provides a more rapid transition to the self-supporting, breeding cycle than the simple fast breeding system, thus leading to an appreciable fuel conservation. Considerations are presented on the strategic repartition of generating capacity among reactor types and it is shown that all of the converted 233 U should be promptly invested to molten-salt breeders to quickly establish the dual breeding system, instead of recycling to converters themselves. (auth.)