WorldWideScience

Sample records for bruce nuclear generating

  1. Preventive maintenance: optimization of time - based discard decisions at the bruce nuclear generating station

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, E.K. [Ontario Power Generation, Tiverton (Canada); Jardine, A.K.S. [Toronto Univ., Dept. of Mechanical and Industrial Engineering, ON (Canada)

    2001-07-01

    The use of various maintenance optimization techniques at Bruce has lead to cost effective preventive maintenance applications for complex systems. As previously reported at ICONE 6 in New Orleans, 1996, several innovative practices reduced Reliability Centered Maintenance costs while maintaining the accuracy of the analysis. The optimization strategy has undergone further evolution and at the present an Integrated Maintenance Program (IMP) is in place where an Expert Panel consisting of all players/experts proceed through each system in a disciplined fashion and reach agreement on all items under a rigorous time frame. It is well known that there are essentially 3 maintenance based actions that can flow from a Maintenance Optimization Analysis: condition based maintenance, time based maintenance and time based discard. The present effort deals with time based discard decisions. Maintenance data from the Remote On-Power Fuel Changing System was used. (author)

  2. Steam generator tubesheet waterlancing at Bruce B

    Energy Technology Data Exchange (ETDEWEB)

    Persad, R. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada); Eybergen, D. [Bruce Power, Tiverton, Ontario (Canada)

    2006-07-01

    High pressure water cleaning of steam generator secondary side tubesheet surfaces is an important and effective strategy for reducing or eliminating under-deposit chemical attack of the tubing. At the Bruce B station, reaching the interior of the tube bundle with a high-pressure water lance is particularly challenging due to the requirement to setup on-boiler equipment within the containment bellows. This paper presents how these and other design constraints were solved with new equipment. Also discussed is the application of new high-resolution inter-tube video probe capability to the Bruce B steam generator tubesheets. (author)

  3. Hydrogeologic simulation of a deep seated groundwater system: Bruce nuclear site

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, J.F.; Normani, S.D.; Yin, Y. [Univ. of Waterloo, Dept. of Civil and Environmental Engineering, Waterloo, ON (Canada); Jensen, M. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2011-07-01

    A Deep Geologic Repository (DGR) for low and intermediate level radioactive waste has been proposed by Ontario Power Generation (OPG) for the Bruce nuclear site in Ontario, Canada. The DGR is to be constructed at a depth of ~680 m below ground surface within the argillaceous Ordovician limestone of the Cobourg Formation. This paper describes the hydrogeology of the Bruce nuclear site developed through both site characterization studies and regional-scale numerical modelling analysis. The analysis, using two computational models and four conceptual models, provides a framework for the assembly and integration of the site-specific geoscientific data and assesses the factors that influence the predicted long-term performance of the geosphere barrier. Flow system evolution was accomplished using both the density-dependent FRAC3DVS-OPG flow and transport model, and the two-phase gas and water flow computational model TOUGH2-MP. Borehole logs covering southern Ontario, combined with site specific data from 6 deep boreholes, have been used to define the structural contours and hydrogeologic properties at the regional-scale of the modelled 31 sedimentary strata that may be present above the Precambrian crystalline basement rock. The regional-scale domain encompasses an 18,500 km{sup 2} region extending from Lake Huron to Georgian Bay. The analyses also included a site-scale numerical model, with a surface area of approximately 400 km{sup 2}, and an approximately east to west cross-sectional model of the Michigan Basin. Pressure data from the Bruce nuclear site investigation boreholes indicate that the Cambrian sandstone and the Niagaran Group in the Silurian are overpressured relative to density corrected hydrostatic levels. The Ordovician sediments are significantly underpressured. The processes commonly invoked to explain the overpressures are compaction, hydrocarbon migration, diagenesis, tectonic stress, or, more simply, topographic effects. Explanations of abnormal

  4. Lab assessment of Bruce Unit 4 steam generator top-of-tubesheet cracking

    Energy Technology Data Exchange (ETDEWEB)

    Jevec, J.; Sarver, J. [Babcock and Wilcox Research Center (United States); King, P.; Yu, J. [Babcock and Wilcox Canada Ltd., Cambridge, Ontario (Canada); Sedman, K.; Durance, D. [Bruce Power, Tiverton, Ontario (Canada)

    2009-07-01

    An increasing number of significant circumferential indications were detected at the roll transition zone (RTZ) of Bruce Power Unit 4 steam generator (SG) tubing (sensitized Alloy 600) during the 2006 and 2007 Spring outages. Metallurgical examination of removed tubes found significant IGA/SCC associated with these indications. However, no circumferential indications were detected on Unit 4 SG tubing during the subsequent Fall 2007 and Spring 2008 outages. Based on a review of outage layup conditions it was theorized that the observed degradation occurs during an outage when the steam generator is drained for maintenance in combination with the presence of detrimental contaminants such as sulfur and copper. This theory was tested in the laboratory using a series of electrochemical and simulated crevice exposure tests. The oxygen/hydrazine reaction at room temperature and the resultant effect on the electrochemical potential of the sensitized Alloy 600 tubing were also studied in this program. Results from this test program are presented in this paper. The results indicate that exposure of the solutions to air tends to keep the sample in the sludge at a more reducing condition as compared to the free span tubing above the sludge resulting in a larger driving force for corrosion of the sample in the sludge. The theory that the defects in the RTZ were caused during drain-down outage conditions was shown to be plausible. (author)

  5. Bruce Butcher

    OpenAIRE

    Harris, Julian

    1999-01-01

    Profile of Dr Bruce Butcher, Visiting Senior Research Fellow in Company Law at the Institute. At the IALS his research centred around directors’ duties, financial services and corporate fraud, providing a comparative analysis of the ways in which Australian and English courts look at a number of competing interests within company law. Published in the Profile section of Amicus Curiae - Journal of the Institute of Advanced Legal Studies and its Society for Advanced Legal Studies. The Journal i...

  6. Hydrogeochemical characterization of groundwaters and porewaters beneath the Bruce nuclear site: evidence for diffusion-dominated transport in the Ordovician

    Energy Technology Data Exchange (ETDEWEB)

    Clark, I. [Univ. of Ottawa, Ottawa, ON (Canada); Al, T. [Univ. of New Brunswick, Fredericton, NB (Canada); Jensen, M.; Kennell, L. [Nuclear Waste Management Organization, Toronto, ON (Canada); Raven, K. [Geofirma Engineering Limited, Ottawa, ON (Canada)

    2011-07-01

    Investigations of the controls on solute transport in porewater and groundwater below the Bruce nuclear site involved laboratory-scale diffusion measurements, as well as measurements of natural tracer (δ{sup 18}O, δ{sup 2}H, {sup 87}Sr/{sup 86}Sr, Cl and Br) distributions and isotopic compositions of CH{sub 4}, CO{sub 2} and helium ({sup 3}He/{sup 4}He) in the porewaters and groundwaters. The analyses were performed on samples collected from drilled boreholes, DGR-1 through DGR-6, during site characterization activities and the results are summarized below. With the exception of just a few samples from the Upper Silurian, the effective diffusion coefficient (D {sub e}) values measured from DGR cores are all less than 10{sup -11} m{sup 2}/s, which is approximately one order of magnitude lower than measured De values from international programs in sedimentary rock. The majority of the data are in the range 10{sup -13} < D{sub e} < 10{sup -11} m{sup 2}/s, with Lower Silurian and Upper Ordovician shale samples representing the higher end of this range because of their relatively high porosity (7 to 9%). The low porosity of the Middle Ordovician limestone (< 2%) results in low D{sub e} values, clustering in the range 10{sup -13} < D{sub e} < 10{sup -12} m{sup 2}/s. The δ{sup 18}O, Cl, and Br profiles in the Middle Ordovician carbonates define trends of decreasing δ{sup 18}O values and tracer concentrations with depth, and are interpreted to result from an extremely long period of diffusion-dominated transport (~300 Ma). Near the base of the Middle Ordovician carbonates the δ{sup 2}H data display a slight enrichment, which could represent upward diffusion of deuterium-enriched water originating in the underlying Precambrian shield. A Precambrian shield influence on the Ordovician porewater chemistry is inferred from the measured {sup 87}Sr/{sup 86}Sr ratios in the Middle Ordovician carbonates, which are elevated above values expected for porewater in equilibrium

  7. Development of microsatellite markers in Hagenia abyssinica (Bruce) J.F. Gmel, an endangered tropical tree of eastern Africa, using next-generation sequencing.

    Science.gov (United States)

    Gichira, A W; Long, Z C; Hu, G W; Gituru, R W; Wang, Q F; Chen, J M

    2016-06-20

    Hagenia abyssinica (Bruce) J.F. Gmel is an endangered tree species endemic to the high mountains of tropical Africa. We used Illumina paired-end technology to sequence its nuclear genome, aiming at creating the first genomic data library and developing the first set of genomic microsatellites. Seventeen microsatellite markers were validated in 24 individuals. The average number of alleles per locus was 7.6, while the observed and expected heterozygosities ranged from 0.000 to 0.958 and from 0.354 to 0.883, respectively. These polymorphic markers will be used as tools for further molecular studies to facilitate formulation of appropriate conservation strategies for this species.

  8. Fans af Bruce

    DEFF Research Database (Denmark)

    Vaaben, Nana Katrine

    2007-01-01

    Analysen viser, hvordan det samme ritual under en koncert forener og opdeler de fans, der orienterer sig mod Bruce Springsteen. På den ene side forener ritualet hele publikum i en stor fælles "Intimitet for mange" og på den anden side splitter det dem, fordi det bliver tydeligt, hvem der er de ri...

  9. Bruce and Exploding Coffee Perculators

    Directory of Open Access Journals (Sweden)

    Susan Ballyn

    2012-11-01

    Full Text Available Anybody who met Bruce would remark on his open frank smile which captivated both the person he met, the audiences he spoke to and which was, the hallmark of his openmindedness and generosity towards others. I will eventually get to the “exploding perculators”, but first I would like to back track to when I first met Bruce.

  10. The UBC Domain Is Required for BRUCE to Promote BRIT1/MCPH1 Function in DSB Signaling and Repair Post Formation of BRUCE-USP8-BRIT1 Complex.

    Science.gov (United States)

    Ge, Chunmin; Che, Lixiao; Du, Chunying

    2015-01-01

    BRUCE is implicated in the regulation of DNA double-strand break response to preserve genome stability. It acts as a scaffold to tether USP8 and BRIT1, together they form a nuclear BRUCE-USP8-BRIT1 complex, where BRUCE holds K63-ubiquitinated BRIT1 from access to DSB in unstressed cells. Following DSB induction, BRUCE promotes USP8 mediated deubiquitination of BRIT1, a prerequisite for BRIT1 to be released from the complex and recruited to DSB by binding to γ-H2AX. BRUCE contains UBC and BIR domains, but neither is required for the scaffolding function of BRUCE mentioned above. Therefore, it remains to be determined whether they are required for BRUCE in DSB response. Here we show that the UBC domain, not the BIR domain, is required for BRUCE to promote DNA repair at a step post the formation of BRUCE-USP8-BRIT1 complex. Mutation or deletion of the BRUCE UBC domain did not disrupt the BRUCE-USP8-BRIT1 complex, but impaired deubiquitination and consequent recruitment of BRIT1 to DSB. This leads to impaired chromatin relaxation, decreased accumulation of MDC1, NBS1, pATM and RAD51 at DSB, and compromised homologous recombination repair of DNA DSB. These results demonstrate that in addition to the scaffolding function in complex formation, BRUCE has an E3 ligase function to promote BRIT1 deubiquitination by USP8 leading to accumulation of BRIT1 at DNA double-strand break. These data support a crucial role for BRUCE UBC activity in the early stage of DSB response.

  11. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  12. Nuclear Data Needs for Generation IV Nuclear Energy Systems

    Science.gov (United States)

    Rullhusen, Peter

    2006-04-01

    Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S

  13. Generation-IV Nuclear Energy Systems

    Science.gov (United States)

    McFarlane, Harold

    2008-05-01

    Nuclear power technology has evolved through roughly three generations of system designs: a first generation of prototypes and first-of-a-kind units implemented during the period 1950 to 1970; a second generation of industrial power plants built from 1970 to the turn of the century, most of which are still in operation today; and a third generation of evolutionary advanced reactors which began being built by the turn of the 20^th century, usually called Generation III or III+, which incorporate technical lessons learned through more than 12,000 reactor-years of operation. The Generation IV International Forum (GIF) is a cooperative international endeavor to develop advanced nuclear energy systems in response to the social, environmental and economic requirements of the 21^st century. Six Generation IV systems under development by GIF promise to enhance the future contribution and benefits of nuclear energy. All Generation IV systems aim at performance improvement, new applications of nuclear energy, and/or more sustainable approaches to the management of nuclear materials. High-temperature systems offer the possibility of efficient process heat applications and eventually hydrogen production. Enhanced sustainability is achieved primarily through adoption of a closed fuel cycle with reprocessing and recycling of plutonium, uranium and minor actinides using fast reactors. This approach provides significant reduction in waste generation and uranium resource requirements.

  14. Bruce Unit 1 and 2 preheater condition assessment and refurbishment

    Energy Technology Data Exchange (ETDEWEB)

    King, P.; Machowski, C.; McGillivray, R. [Babcock and Wilcox Canada Ltd., Cambridge, ON (Canada); Durance, D. [Bruce Power, Tiverton, ON (Canada)

    2008-07-01

    Bruce Units 1 to 4 were shut down during the 1990s, largely as a consequence of tube degradation resulting from inappropriate steam generator secondary side water chemistries. Following a condition assessment, Bruce Power restarted Units 3 and 4 and is currently refurbishing Units 1 and 2. In order to assess the condition of the Unit 1 and Unit 2 preheaters and determine their suitability for extended operation, inspection, maintenance and assessment activities have been conducted. Eddy current and visual inspection have revealed vessels in generally good condition. Secondary side internals appear largely undergraded. Some tube to support fretting has been observed, and a number of tubes have been removed from service because of debris fretting concerns. To prepare for return to service, the primary side divider plates have been replaced and the tubes have been ID cleaned to restore the preheater to its original condition. This paper summarizes the inspection planning, findings, assessment for extended operation and maintenance activities undertaken. (author)

  15. 77 FR 135 - Exelon Generation Company, LLC, Oyster Creek Nuclear Generating Station; Exemption

    Science.gov (United States)

    2012-01-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exelon Generation Company, LLC, Oyster Creek Nuclear Generating Station; Exemption 1.0 Background...-16, which authorizes operation of the Oyster Creek Nuclear Generating Station (OCNGS). The...

  16. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  17. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  18. Nuclear power generation and fuel cycle report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  19. LVRF fuel bundle manufacture for Bruce

    Energy Technology Data Exchange (ETDEWEB)

    Pant, A. [Zircatec Precision Industries, Port Hope, Ontario (Canada)

    2005-12-15

    In response to the Power Uprate program at Bruce Power, Zircatec has committed to introduce, by Spring 2006 a new manufacturing line for the production of 43 element Bruce LVRF bundles containing Slightly Enriched Uranium (SEU) with a centre pin of blended dysprosia/urania (BDU). This is a new fuel design and is the first change in fuel design since the introduction of the current 37-element fuel over 20 years ago. Introduction of this new line has involved the introduction of significant changes to an environment that is not used to rapid changes with significant impact. At ZPI we have been able to build on our innovative capabilities in new fuel manufacturing, the strength and experience of our core team, and on our prevailing management philosophy of 'support the doer'. The presentation will discuss some of the novel aspects of this fuel introduction and the mix of innovative and classical project management methods that are being used to ensure that project deliveries are being met. Supporting presentations will highlight some of the issues in more detail. (author)

  20. Computer Generated Cardiac Model For Nuclear Medicine

    Science.gov (United States)

    Hills, John F.; Miller, Tom R.

    1981-07-01

    A computer generated mathematical model of a thallium-201 myocardial image is described which is based on realistic geometric and physiological assumptions. The left ventricle is represented by an ellipsoid truncated by aortic and mitral valve planes. Initially, an image of a motionless left ventricle is calculated with the location, size, and relative activity of perfusion defects selected by the designer. The calculation includes corrections for photon attenuation by overlying structures and the relative distribution of activity within the tissues. Motion of the ventricular walls is simulated either by a weighted sum of images at different stages in the cardiac cycle or by a blurring function whose width varies with position. Camera and collimator blurring are estimated by the MTF of the system measured at a representative depth in a phantom. Statistical noise is added using a Poisson random number generator. The usefulness of this model is due to two factors: the a priori characterization of location and extent of perfusion defects and the strong visual similarity of the images to actual clinical studies. These properties should permit systematic evaluation of image processing algorithms using this model. The principles employed in developing this cardiac image model can readily be applied to the simulation of other nuclear medicine studies and to other medical imaging modalities including computed tomography, ultrasound, and digital radiography.

  1. Next Generation Nuclear Plant GAP Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Sydney J [ORNL; Burchell, Timothy D [ORNL; Corwin, William R [ORNL; Fisher, Stephen Eugene [ORNL; Forsberg, Charles W. [Massachusetts Institute of Technology (MIT); Morris, Robert Noel [ORNL; Moses, David Lewis [ORNL

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  2. Investigation of the Bruce B delayed neutron detection system

    Energy Technology Data Exchange (ETDEWEB)

    Carriere, O. [Bruce Power, Plant Design Engineering, Chemistry Design, Tiverton, Ontario (Canada); Univ. of Ottawa, Chemical Engineering, Ottawa, Ontario (Canada)

    2003-07-01

    My work at Bruce Power was to investigate the sensitivity of the Bruce B Delayed Neutron Detection System. Specifically the requirement was to determine whether (software) manipulation of data alone would improve sensitivity or whether hardware changes would also be required. This paper will describe the analyses of current and historical data and the results thereof. (author)

  3. Bruce Medalists at the Mt. Wilson Observatory

    Science.gov (United States)

    Tenn, J. S.

    2004-12-01

    The institution which succeeded the Mt. Wilson Station of Yerkes Observatory in 1904 has had six names and three sites. From 1948-1980 it was united with Caltech's Palomar Observatory, and since then its main observatory has been in Chile, though still headquartered on Santa Barbara Street in Pasadena. For more than half of the twentieth century it was the leading observatory in the world. One bit of evidence for this is the amazing number of its staff members awarded the Bruce Medal. The Catherine Wolfe Bruce Gold Medal of the Astronomical Society of the Pacific has been awarded for lifetime contributions to astronomy since 1898. It is an international award. It wasn't until 1963 that the number of medalists who had worked primarily in the United States reached half the total. Yet fourteen of the first 87 medalists spent most of their careers at Mt. Wilson, including the period when it was Mt. Wilson and Palomar, and another three were Caltech observers who used the telescopes of the jointly operated observatory. Several more medalists made substantial use of the telescopes on Mt. Wilson and Palomar Mountain. We will discuss highlights of the careers of a number of these distinguished astronomers: directors George Ellery Hale, Walter Adams, Ira Bowen, and Horace Babcock; solar observer and satellite discoverer Seth Nicholson; instrument builder Harold Babcock; galactic and cosmological observers Frederick Seares, Edwin Hubble, Walter Baade, Rudolph Minkowski, and Allan Sandage; and spectroscopists Paul Merrill, Alfred Joy, Olin Wilson, Jesse Greenstein, Maarten Schmidt, and Wallace Sargent. We will touch briefly on others who used Mt. Wilson and/or Palomar, including Harlow Shapley, Joel Stebbins, Charlotte Moore Sitterly, Donald Osterbrock, and Albert Whitford.

  4. 76 FR 79227 - Exemption Request Submitted by Oyster Creek Nuclear Generating Station; Exelon Generation Company...

    Science.gov (United States)

    2011-12-21

    ... COMMISSION Exemption Request Submitted by Oyster Creek Nuclear Generating Station; Exelon Generation Company... Generation Company, LLC (the licensee), for operation of the Oyster Creek Nuclear Generating Station (Oyster... for Oyster Creek and NUREG-1437, Vol. 1, Supplement 28, ``Generic Environmental Impact Statement...

  5. 75 FR 33656 - Exelon Generation Company, LLC Oyster Creek Nuclear Generating Station Environmental Assessment...

    Science.gov (United States)

    2010-06-14

    ... COMMISSION Exelon Generation Company, LLC Oyster Creek Nuclear Generating Station Environmental Assessment....2, as requested by Exelon Generation Company, LLC (the licensee), for operation of the Oyster Creek Nuclear Generating Station (Oyster Creek), located in Ocean County, New Jersey. Therefore, as required...

  6. 75 FR 33366 - Exelon Generation Company, LLC; Oyster Creek Nuclear Generating Station; Notice of Withdrawal of...

    Science.gov (United States)

    2010-06-11

    ... COMMISSION Exelon Generation Company, LLC; Oyster Creek Nuclear Generating Station; Notice of Withdrawal of..., application for amendment to Facility Operating License No. DPR-16 for the Oyster Creek Nuclear Generating Station (Oyster Creek), located in Ocean County, New Jersey. The proposed amendment would have revised...

  7. 77 FR 16278 - License Renewal Application for Indian Point Nuclear Generating Units 2 and 3; Entergy Nuclear...

    Science.gov (United States)

    2012-03-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION License Renewal Application for Indian Point Nuclear Generating Units 2 and 3; Entergy Nuclear Operations, Inc. AGENCY: Nuclear Regulatory Commission. ACTION: License renewal application; intent...

  8. High-order harmonic generation from polyatomic molecules including nuclear motion and a nuclear modes analysis

    DEFF Research Database (Denmark)

    Madsen, Christian Bruun; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    We present a generic approach for treating the effect of nuclear motion in high-order harmonic generation from polyatomic molecules. Our procedure relies on a separation of nuclear and electron dynamics where we account for the electronic part using the Lewenstein model and nuclear motion enters...... as a nuclear correlation function. We express the nuclear correlation function in terms of Franck-Condon factors, which allows us to decompose nuclear motion into modes and identify the modes that are dominant in the high-order harmonic generation process. We show results for the isotopes CH4 and CD4...... and thereby provide direct theoretical support for a recent experiment [S. Baker et al., Science 312, 424 (2006)] that uses high-order harmonic generation to probe the ultrafast structural nuclear rearrangement of ionized methane....

  9. Economic analysis of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su; Chae, Kyu Nam

    1996-12-01

    The major contents in this study are as follows : (1) Efforts are made to examine the role of nuclear energy considering environmental regulation. An econometric model for energy demand and supply including carbon tax imposition is established. (2) Analysis for the learning effect of nuclear power plant operation is performed. The study is focused to measure the effect of technology homogeneity on the operation performance. (3) A preliminary capital cost of the KALIMER is estimated by using cost computer program, which is developed in this study. (author). 36 refs.,46 tabs., 15 figs.

  10. The Next Generation Nuclear Plant (NGNP) Project

    Energy Technology Data Exchange (ETDEWEB)

    F. H. Southworth; P. E. MacDonald

    2003-11-01

    The Next Generation Nuclear Power (NGNP) Project will demonstrate emissions-free nuclearassisted electricity and hydrogen production by 2015. The NGNP reactor will be a helium-cooled, graphite moderated, thermal neutron spectrum reactor with a design goal outlet temperature of 1000 C or higher. The reactor thermal power and core configuration will be designed to assure passive decay heat removal without fuel damage during hypothetical accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. This paper provides a description of the project to build the NGNP at the Idaho National Engineering and Environmental Laboratory (INEEL). The NGNP Project includes an overall reactor design activity and four major supporting activities: materials selection and qualification, NRC licensing and regulatory support, fuel development and qualification, and the hydrogen production plant. Each of these activities is discussed in the paper. All the reactor design and construction activities will be managed under the DOE’s project management system as outlined in DOE Order 413.3. The key elements of the overall project management system discussed in this paper include the client and project management organization relationship, critical decisions (CDs), acquisition strategy, and the project logic and timeline. The major activities associated with the materials program include development of a plan for managing the selection and qualification of all component materials required for the NGNP; identification of specific materials alternatives for each system component; evaluation of the needed testing, code work, and analysis required to qualify each identified material; preliminary selection of component materials; irradiation of needed sample materials; physical, mechanical, and chemical testing of unirradiated and irradiated materials; and documentation of final materials selections. The NGNP will be licensed by the NRC under 10 CFR 50 or 10

  11. Design of the Bruce and Darlington universal delivery machine heads

    Energy Technology Data Exchange (ETDEWEB)

    Gray, M.G. [GE Canada Nuclear Products, Peterborough, Ontario (Canada)]. E-mail: mike.gray@cdnnuc.ge.com; Brown, R. [OPG Inspection Services Div., Bruce Nuclear Power Development, Tiverton, Ontario (Canada)

    2003-07-01

    The Universal Delivery Machine was designed and supplied to reduce the time required to perform channel inspection services. The Bruce UDM was the first to be completed followed by Pickering and Darlington. The Bruce and Darlington machines are nearly identical. Design concepts applied include a rotating, multiple tool station magazine, a rigid chain driving telescoping rams, a common drive package, and an external support frame to meet seismic qualification requirements. (author)

  12. Universal delivery machine - design of the Bruce and Darlington heads

    Energy Technology Data Exchange (ETDEWEB)

    Gray, M.G. [GE Canada Nuclear Products, Peterborough, Ontario (Canada); Brown, R. [OPG Inspection Services Division and Bruce Nuclear Power Development, Toronto, Ontario (Canada)

    2003-12-01

    The Universal Delivery Machine (UDM) was designed and supplied to reduce the time required to perform channel inspection services. The Bruce UDM was the first to be completed followed by Pickering and Darlington. The Bruce and Darlington machines are nearly identical. Design concepts applied include a rotating, multiple tool station magazine, a rigid chain driving telescoping rams, a common drive package, and an external support frame to meet seismic qualification requirements. (author)

  13. Resource Needs for Nuclear Power Generation in Ghana

    Directory of Open Access Journals (Sweden)

    Benjamin J. B. Nyarko

    2011-06-01

    Full Text Available Nuclear power is a proven technology that has served humanity for the past fifty years. It has provided electricity for several countries and shall continue to serve as a viable base load source of electric power. The need for skilled human resources for nuclear practice cannot be overlooked in the quest of any nation to adopt the technology. The Ghana Atomic Energy Commission and the University of Ghana in collaboration with the International Atomic Energy Agency have thus started a Graduate School of Nuclear and Allied Sciences to provide the human resources needed for nuclear power generation in Ghana. The School currently offers second degree courses as well as doctor of philosophy courses. Financial, land and water resource needs for nuclear power generation have been discussed. Availability of the national grid due to the deregulation of the electric power sector has also been discussed. Nuclear Fuel availability has been discussed along with the steps Ghana has to go through to obtain the technology to her development. The legal and legislative framework for nuclear power generation has also been presented. The programs currently available from the IAEA to assist Ghana to develop nuclear power have also been discussed. Conclusions have been drawn based on the discussions made.

  14. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    Science.gov (United States)

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  15. Extensive nuclear sphere generation in the human Alzheimer's brain.

    Science.gov (United States)

    Kolbe, Katharina; Bukhari, Hassan; Loosse, Christina; Leonhardt, Gregor; Glotzbach, Annika; Pawlas, Magdalena; Hess, Katharina; Theiss, Carsten; Müller, Thorsten

    2016-12-01

    Nuclear spheres are protein aggregates consisting of FE65, TIP60, BLM, and other yet unknown proteins. Generation of these structures in the cellular nucleus is putatively modulated by the amyloid precursor protein (APP), either by its cleavage or its phosphorylation. Nuclear spheres were preferentially studied in cell culture models and their existence in the human brain had not been known. Existence of nuclear spheres in the human brain was studied using immunohistochemistry. Cell culture experiments were used to study regulative mechanisms of nuclear sphere generation. The comparison of human frontal cortex brain samples from Alzheimer's disease (AD) patients to age-matched controls revealed a dramatically and highly significant enrichment of nuclear spheres in the AD brain. Costaining demonstrated that neurons are distinctly affected by nuclear spheres, but astrocytes never are. Nuclear spheres were predominantly found in neurons that were negative for threonine 668 residue in APP phosphorylation. Cell culture experiments revealed that JNK3-mediated APP phosphorylation reduces the amount of sphere-positive cells. The study suggests that nuclear spheres are a new APP-derived central hallmark of AD, which might be of crucial relevance for the molecular mechanisms in neurodegeneration.

  16. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.

    2010-09-29

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management

  17. NNSA Program Develops the Next Generation of Nuclear Security Experts

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Cornelia P.; Disney, Maren V.

    2015-09-02

    NNSA is fostering the next generation of nuclear security experts is through its successful NNSA Graduate Fellowship Program (NGFP). NGFP offers its Fellows an exceptional career development opportunity through hands-on experience supporting NNSA mission areas across policy and technology disciplines. The one-year assignments give tomorrow’s leaders in global nuclear security and nonproliferation unparalleled exposure through assignments to Program Offices across NNSA.

  18. Future of nuclear energy for electricity generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Maiorino, Jose R.; Moreira, Joao M.L.; Carajlescov, Pedro, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: pedro.carajlescov@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas

    2015-07-01

    We discuss in this paper the medium- and long- terms evolution of nuclear power in Brazil considering official governmental studies and reports prepared by research groups. The documents reviewed include the national energy balance (BEN, 2014), the short-term planning (PDEE, 2023) and long-term planning (PNE-2030) documents emitted by EPE, and studies conducted by independent institutions and researchers. The studies consider different scenarios regarding gross national product growth and institutional development for the country and conclude that nuclear power should increase its role in Brazil. The generation matrix should diversity by 2030 and 2040 with hydropower decreasing its share from today's 70 % to values between 47 and 57 %. Nuclear power is considered a viable alternative for base load electricity generation in Brazil; to reduce generation risks during dry seasons, and to facilitate the operation of the whole power generation system. The share of nuclear power may reach values between 8 % and 15 % by 2040 according to different scenarios. To meet such growth and facilitate new investments, it is necessary to change the legal framework of the sector, and allow private ownership of enterprises to build and operate nuclear power plants in the country. (author)

  19. BRUSLIB and NETGEN: the Brussels nuclear reaction rate library and nuclear network generator for astrophysics

    CERN Document Server

    Aikawa, M; Goriely, S; Jorissen, A; Takahashi, K

    2005-01-01

    Nuclear reaction rates are quantities of fundamental importance in astrophysics. Substantial efforts have been devoted in the last decades to measure or calculate them. The present paper presents for the first time a detailed description of the Brussels nuclear reaction rate library BRUSLIB and of the nuclear network generator NETGEN so as to make these nuclear data packages easily accessible to astrophysicists for a large variety of applications. BRUSLIB is made of two parts. The first one contains the 1999 NACRE compilation based on experimental data for 86 reactions with (mainly) stable targets up to Si. The second part of BRUSLIB concerns nuclear reaction rate predictions calculated within a statistical Hauser-Feshbach approximation, which limits the reliability of the rates to reactions producing compound nuclei with a high enough level density. These calculations make use of global and coherent microscopic nuclear models for the quantities entering the rate calculations. The use of such models is utterl...

  20. Dynamic Analysis of Nuclear Waste Generation Based on Nuclear Fuel Cycle Transition Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S. R. [University of Science and Technology, Daejeon (Korea, Republic of); Ko, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    According to the recommendations submitted by the Public Engagement Commission on Spent Nuclear Fuel Management (PECOS), the government was advised to pick the site for an underground laboratory and interim storage facilities before the end of 2020 followed by the related research for permanent and underground disposal of spent fuel after 10 years. In the middle of the main issues, the factors of environmentally friendly and safe way to handle nuclear waste are inextricable from nuclear power generating nation to ensure the sustainability of nuclear power. For this purposes, the closed nuclear fuel cycle has been developed regarding deep geological disposal, pyroprocessing, and burner type sodium-cooled fast reactors (SFRs) in Korea. Among two methods of an equilibrium model and a dynamic model generally used for screening nuclear fuel cycle system, the dynamic model is more appropriate to envisage country-specific environment with the transition phase in the long term and significant to estimate meaningful impacts based on the timedependent behavior of harmful wastes. This study aims at analyzing the spent nuclear fuel generation based on the long-term nuclear fuel cycle transition scenarios considered at up-to-date country specific conditions and comparing long term advantages of the developed nuclear fuel cycle option between once-through cycle and Pyro-SFR cycle. In this study, a dynamic analysis was carried out to estimate the long-term projection of nuclear electricity generation, installed capacity, spent nuclear fuel arising in different fuel cycle scenarios based on the up-to-date national energy plans.

  1. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  2. Ultrasonic Cleaning of Nuclear Steam Generator by Micro Bubble

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo Tae [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of); Kim, Sang Tae; Yoon, Sang Jung [Sae-An Engineering Co., Seoul (Korea, Republic of)

    2012-05-15

    In this paper, we present ultrasonic cleaning technology for a nuclear steam generator using micro bubble. We could extend the boundary of ultrasonic cleaning by using micro bubbles in water. Ultrasonic energy measured was increased about 5 times after the generation of micro bubbles in water. Furthermore, ultrasound energy was measured to be strong enough to create cavitation even though the ultrasound sensor was about 2 meters away from the ultrasonic transducer

  3. Efficiency of nuclear energy generation by hydrogen burning

    Energy Technology Data Exchange (ETDEWEB)

    Mitalas, R.

    1989-03-01

    An explicit formula for the efficiency of the PP chain energy generation in terms of the branching fractions to the three PP chains is derived and the variation of the efficiency with temperature and hydrogen abundance is illustrated. The PP chain efficiency is shown to have a minimum as a function of Y/X. The combined efficiency of simultaneous nuclear energy generation by the PP chain and the equilibrium CN cycle is then presented. 6 refs.

  4. Multiple nuclear ortholog next generation sequencing phylogeny of Daucus

    Science.gov (United States)

    Next generation sequencing is helping to solve the data insufficiency problem hindering well-resolved dominant gene phylogenies. We used Roche 454 technology to obtain DNA sequences from 93 nuclear orthologs, dispersed throughout all linkage groups of Daucus. Of these 93 orthologs, ten were designed...

  5. The Environmental Impact of Electrical Generation: Nuclear vs. Conventional.

    Science.gov (United States)

    McDermott, John J., Ed.

    This minicourse, partially supported by the Division of Nuclear Education and Training of the U.S. Atomic Energy Commission, is an effort to describe the benefit-to-risk ratio of various methods of generating electrical power. It attempts to present an unbiased, straightforward, and objective view of the advantages and disadvantages of nuclear…

  6. New Generation Nuclear Plant -- High Level Functions and Requirements

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Ryskamp; E. J. Gorski; E. A. Harvego; S. T. Khericha; G. A. Beitel

    2003-09-01

    This functions and requirements (F&R) document was prepared for the Next Generation Nuclear Plant (NGNP) Project. The highest-level functions and requirements for the NGNP preconceptual design are identified in this document, which establishes performance definitions for what the NGNP will achieve. NGNP designs will be developed based on these requirements by commercial vendor(s).

  7. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.;

    2004-01-01

    and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use......A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...

  8. Improvements made to the Bruce A upgraders and heavy water cleanup system as part of the Bruce A Units 1 and 2 restart project and commissioning results

    Energy Technology Data Exchange (ETDEWEB)

    Davloor, R., E-mail: ram.davloor@brucepower.com [Bruce Power, Tiverton, Ontario (Canada); Steinberg, G.; Boddy, C. [SNC Lavalin Nuclear, Oakville, Ontario (Canada); Rocci, D. [Aecon Nuclear, Cambridge, Ontario (Canada)

    2013-07-01

    As part of the Bruce A Units 1 and 2 Restart Project, major modifications and maintenance were completed on the heat transport and moderator upgraders and the heavy water cleanup system. This represents the first time that major rehabilitation has been done to such systems in a CANDU nuclear station for the purpose of life extension. Prior to shutdown in 1997, the upgraders and cleanup system significantly underperformed against the stated design. The rehabilitation, which included major design changes and implementation of new systems, resulted in the upgraders exceeding design throughput and making product with quality much better than specified. This paper describes the work done, results from inspections and follow-up, and performance data from commissioning. (author)

  9. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    Science.gov (United States)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-01

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors. Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat. The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  10. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  11. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  12. BRUSLIB and NETGEN: the Brussels nuclear reaction rate library and nuclear network generator for astrophysics

    Science.gov (United States)

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-10-01

    Nuclear reaction rates are quantities of fundamental importance in astrophysics. Substantial efforts have been devoted in the last decades to measuring or calculating them. This paper presents a detailed description of the Brussels nuclear reaction rate library BRUSLIB and of the nuclear network generator NETGEN. BRUSLIB is made of two parts. The first one contains the 1999 NACRE compilation based on experimental data for 86 reactions with (mainly) stable targets up to Si. BRUSLIB provides an electronic link to the published, as well as to a large body of unpublished, NACRE data containing adopted rates, as well as lower and upper limits. The second part of BRUSLIB concerns nuclear reaction rate predictions to complement the experimentally-based rates. An electronic access is provided to tables of rates calculated within a statistical Hauser-Feshbach approximation, which limits the reliability of the rates to reactions producing compound nuclei with a high enough level density. These calculations make use of global and coherent microscopic nuclear models for the quantities entering the rate calculations. The use of such models makes the BRUSLIB rate library unique. A description of the Nuclear Network Generator NETGEN that complements the BRUSLIB package is also presented. NETGEN is a tool to generate nuclear reaction rates for temperature grids specified by the user. The information it provides can be used for a large variety of applications, including Big Bang nucleosynthesis, the energy generation and nucleosynthesis associated with the non-explosive and explosive hydrogen to silicon burning stages, or the synthesis of the heavy nuclides through the s-, α- and r-, rp- or p-processes.

  13. David Bruce Payton : väikeriigid mõistavad üksteist / David Bruce Payton ; interv. Marianne Mikko

    Index Scriptorium Estoniae

    Payton, David Bruce

    2003-01-01

    Uus-Meremaa suursaadik Eestis David Bruce Payton talupidaja toetamise loobumisest Uus-Meremaal, Uus-Meremaa põllumajandussektorist, veinidest, ekspordist, Eesti saamisest EL-i ja NATO liikmeks, Uus-Meremaa rahvastikust, elatustasemest, Iraagi võimalikust ründamisest, Põhja-Koreast

  14. Nordic Nuclear Materials Forum for Generation IV Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, C. (Studsvik Nuclear AB, Nykoeping (Sweden)); Penttilae, S. (Technical Research Centre of Finland, VTT (Finland))

    2010-03-15

    A network for material issues for Generation IV nuclear power has been initiated within the Nordic countries. The objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) are to put the basis of a sustainable forum for Gen IV issues, especially focussing on fuels, cladding, structural materials and coolant interaction. Other issues include reactor physics, dynamics and diagnostics, core and fuel design. The present report summarizes the work performed during the year 2009. The efforts made include identification of organisations involved in Gen IV issues in the Nordic countries, update of the forum website, http://www.studsvik.se/GenerationIV, and investigation of capabilities for research within the area of Gen IV. Within the NOMAGE4 project a seminar on Generation IV Nuclear Energy Systems has been organized during 15-16th of October 2009. The aim of the seminar was to provide a forum for exchange of information, discussion on future research needs and networking of experts on Generation IV reactor concepts. As an outcome of the NOMAGE4, a few collaboration project proposals have been prepared/planned in 2009. The network was welcomed by the European Commission and was mentioned as an exemplary network with representatives from industries, universities, power companies and research institutes. NOMAGE4 has been invited to participate to the 'European Energy Research Alliance, EERA, workshop for nuclear structural materials' http://www.eera-set.eu/index.php?index=41 as external observers. Future plans include a new Nordic application for continuation of NOMAGE4 network. (author)

  15. The Nuclear Network Generator NETGEN v10.0: A Tool for Nuclear Astrophysics

    Science.gov (United States)

    Xu, Y.; Goriely, S.; Jorissen, A.; Takahashi, K.; Arnould, M.

    2011-09-01

    We present an updated release of the Brussels Nuclear Network Generator. NETGEN is a tool to help astrophysicists build nuclear reaction networks by generating tables of rates of light-particle (mostly n, p, α) induced reactions, nucleus-nucleus fusion reactions, and photodisintegrations, as well as β-decays and electron captures on temperature grids specified by the user. Nuclear reaction networks relevant to a large variety of astrophysical situations can be constructed, including Big-Bang nucleosynthesis, stellar hydrostatic and explosive hydrogen-, helium- and later burning phases, as well as the synthesis of heavy nuclides (s-, r-, p-, rp-, α-processes). The latest version, NETGEN v10.0, is available on the ULB-IAA website www.astro.ulb.ac.be/Netgen/form.html.

  16. Reducing Risk for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  17. Non intrusive check valve diagnostics at Bruce A

    Energy Technology Data Exchange (ETDEWEB)

    Marsch, S.P. [Ontario Hydro, Bruce Nuclear Generating Station A, Tiverton, ON (Canada)

    1997-07-01

    Bruce A purchased non intrusive check valve diagnostic equipment in 1995 to ensure operability and availability of critical check valves in the Station. Diagnostics can be used to locate and monitor check valve degradation modes. Bruce A initiated a pilot program targeting check valves with flow through them and ones that completed open or close cycles. Approaches to determine how to confirm operability of passive check valves using non intrusive techniques were explored. A sample population of seventy-three check valves was selected to run the pilot program on prior to complete implementation. The pilot program produced some significant results and some inconclusive results. The program revealed a major finding that check valve performance modeling is required to ensure continuous operability of check valves. (author)

  18. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  19. Human Reliability for the Next Generation of Nuclear Experts

    Energy Technology Data Exchange (ETDEWEB)

    Coates, Cameron W [ORNL; Eisele, Gerhard R [ORNL

    2010-01-01

    As the nuclear renaissance progresses and today s nuclear and radiological experts retire, a new generation of experts will ultimately be recruited, trained, and replace the old guard. Selecting individuals who have the attitudes and values appropriate to work in the nuclear industry and who have the best qualifications for the position will be a key to the success of this renaissance. In a world with deep divisions on political and social issues; how a State, agency, or company assures that those hired can be trusted with the access to, and responsibilities for, nuclear and/or radiological materials is an important consideration. Human interactions invariably rely on the offering of assurance and the receipt of trust. A fundamental element in any human relationship is knowing when to trust and when to doubt. When are assurances to be believed or questioned? Human reliability programs (HRP) are used to assure a person s truthfulness and loyalty to the State. An HRP program has a number of elements and may not fit all cultures in the same form. An HRP can vary in scope from simple background checks of readily available data to full field investigations and testing. This presentation discusses possible elements for an HRP from regulation to implementation and the issues related to each element. The effects of an HRP on potential recruits will be discussed.

  20. Electrosleeve process for in-situ nuclear steam generator repair

    Energy Technology Data Exchange (ETDEWEB)

    Barton, R.A. [Ontario Hydro Technologies, Toronto, ON (Canada); Moran, T.E. [Framatome Technologies Inc., Lynchburg, VA (United States); Renaud, E. [Babcock and Wilcox Industries Ltd., Cambridge, ON (Canada)

    1997-07-01

    Degradation of steam generator (SG) tubing by localized corrosion is a widespread problem in the nuclear industry that can lead to costly forced out-ages, unit de-rating, SG replacement or even the permanent shutdown of a reactor. In response to the onset of SG tubing degradation at Ontario Hydro's Pickering Nuclear Generating Station (PNGS) Unit 5, and the determined unsuitability of conventional repair methods (mechanically expanded or welded sleeves) for Alloy 400, an alternative repair technology was developed. Electrosleeve is a non-intrusive, low-temperature process that involves the electrodeposition of a nanocrystalline nickel microalloy forming a continuously bonded, structural layer over the internal diameter of the degraded region. This technology is designed to provide a long-term pressure boundary repair, fully restoring the structural integrity of the damaged region to its original state. This paper describes the Electrosleeve process for SG tubing repair and the unique properties of the advanced sleeve material. The successful installation of Electrosleeves that have been in service for more than three years in Alloy 400 SG tubing at the Pickering-5 CANDU unit, the more recent extension of the technology to Alloy 600 and its demonstration in a U.S. pressurized water reactor (PWR), is presented. A number of PWR operators have requested plant operating technical specification changes to permit Electrosleeve SG tube repair. Licensing of the Electrosleeve by the U.S. Nuclear Regulatory Commission (NRC) is expected imminently. (author)

  1. Alternative similarity renormalization group generators in nuclear structure calculations

    CERN Document Server

    Dicaire, Nuiok M; Navratil, Petr

    2014-01-01

    The similarity renormalization group (SRG) has been successfully applied to soften interactions for ab initio nuclear calculations. In almost all practical applications in nuclear physics, an SRG generator with the kinetic energy operator is used. With this choice, a fast convergence of many-body calculations can be achieved, but at the same time substantial three-body interactions are induced even if one starts from a purely two-nucleon (NN) Hamiltonian. Three-nucleon (3N) interactions can be handled by modern many-body methods. However, it has been observed that when including initial chiral 3N forces in the Hamiltonian, the SRG transformations induce a non-negligible four-nucleon interaction that cannot be currently included in the calculations for technical reasons. Consequently, it is essential to investigate alternative SRG generators that might suppress the induction of many-body forces while at the same time might preserve the good convergence. In this work we test two alternative generators with oper...

  2. Nonlinear H-infinity control of nuclear steam generators

    Science.gov (United States)

    Ramalho, Fernando Pinto

    Motivated by the fact that problems related to the control of steam generators are responsible for a significant amount of downtime in nuclear power plants, this thesis investigates the applicability of linear and nonlinear Hinfinity theory to the control of nuclear steam generators. A nonlinear model based on mass, energy, and momentum balances was developed for a U-tube steam generator, with the water level and steam quality at the exit of the riser considered as state variables. In this model the steam flow to the turbines and the heat flow from the primary to the secondary side are represented as disturbances affecting the system, while the feedwater flow is used to compensate for changes in the water level. The performance specifications for the feedback loop are encoded using weight functions incorporated into an augmented plant, and the control problem is formulated to minimize the effects of disturbances on the controlled variables. The solution of the optimization problem is reduced to the solution of a set of differential equations, which, in the linear case, is equivalent to the solution of Riccati equations. The linear Hinfinity controller and filter were obtained for the U-tube steam generator with and without weight functions, and simulations for a 50 s ramp transient resulting in 50% decrease in the heat and steam flows were performed over 300 s. The use of weights provided less variation in the water level, and an excellent noise rejection capability was observed. For the nonlinear Hinfinity formulation a finite-difference method was used to solve the state and costate equations numerically for optimal feedwater flow minimizing water level variations. The combined solution of the state equation in the forward direction and the costate equations in the backward direction converged in 10 iteractions. The nonlinear controller results in less variation in the water level than the corresponding linear Hinfinity controller, demonstrating the feasibility

  3. Generation of nuclear data bank by interpolation; Generacion de bancos de datos nucleares mediante interpolacion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Nuclear Data Bank generation, is a process in which a great amount of resources is required, both computing and humans. If it is taken into account that at some times it is necessary to create a great amount of those, it is convenient to have a reliable tool that generates Data Banks with the lesse resources, in the least possible time and with a very good approximation. In this work are shown the results obtained during the development of INTPOLBI code, used to generate Nuclear Data Banks employing bi-cubic polynomial interpolation, takings as independent variables the uranium and gadolinia percents. Two proposal were worked, applying in both cases the finite element methods, using one element with 16 nodes to carry out the interpolation. In the first proposal the canonic base was employed to obtain the interpolating polynomial and later, the corresponding linear equations systems. In the solution of this system the Gaussian elimination methods with partial pivot was applied. In the second case, the Newton base was used to obtain the mentioned system, resulting in a triangular inferior matrix, which structure, applying elemental operations, to obtain a blocks diagonal matrix, with special characteristics and easier to work with. For the validations test, a comparison was made between the values obtained with INTPOLBI and INTERTEG (created at the Instituto de Investigaciones Electricas with the same purpose) codes, and Data Banks created through the conventional process, with nuclear code normally used. Finally, it is possible to conclude that the Nuclear Data Banks generated with INTPOLBI code constitute a very good approximation that, even though do not wholly replace conventional process, however are helpful in cases when it is necessary to create a great amount of Data Banks.

  4. Nuclear data banks generation by interpolation; Generacion de bancos de datos nucleares mediante interpolacion

    Energy Technology Data Exchange (ETDEWEB)

    Castillo M, J. A

    1999-07-01

    Nuclear Data Bank generation, is a process in which a great amount of resources is required, both computing and humans. If it is taken into account that at some times it is necessary to create a great amount of those, it is convenient to have a reliable tool that generates Data Banks with the lesser resources, in the least possible time and with a very good approximation. In this work are shown the results obtained during the development of INTPOLBI code, use to generate Nuclear Data Banks employing bicubic polynominal interpolation, taking as independent variables the uranium and gadolinia percents. Two proposal were worked, applying in both cases the finite element method, using one element with 16 nodes to carry out the interpolation. In the first proposals the canonic base was employed, to obtain the interpolating polynomial and later, the corresponding linear equation systems. In the solution of this systems the Gaussian elimination methods with partial pivot was applied. In the second case, the Newton base was used to obtain the mentioned system, resulting in a triangular inferior matrix, which structure, applying elemental operations, to obtain a blocks diagonal matrix, with special characteristics and easier to work with. For the validation tests, a comparison was made between the values obtained with INTPOLBI and INTERTEG (create at the Instituto de Investigaciones Electricas (MX) with the same purpose) codes, and Data Banks created through the conventional process, that is, with nuclear codes normally used. Finally, it is possible to conclude that the Nuclear Data Banks generated with INTPOLBI code constitute a very good approximation that, even though do not wholly replace conventional process, however are helpful in cases when it is necessary to create a great amount of Data Banks.

  5. Materials research in support of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, J. [Natural Resources Canada, Ottawa, Ontario (Canada)

    2011-07-01

    This presentation outlines the activities of CANMET-MTL in materials research in support of nuclear power generation. CANMET-MTL is a Government of Canada research laboratory specializing in materials (metals and metal-based materials). Its mandate is to improve the competitive, social and environmental performance of Canadian industries in the area of metals. These include the economic benefits from value-added processing and manufacturing, materials for clean energy production and improved energy efficiency in processing and product end-use.

  6. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  7. Self-organization of dynein motors generates meiotic nuclear oscillations.

    Directory of Open Access Journals (Sweden)

    Sven K Vogel

    2009-04-01

    Full Text Available Meiotic nuclear oscillations in the fission yeast Schizosaccharomyces pombe are crucial for proper chromosome pairing and recombination. We report a mechanism of these oscillations on the basis of collective behavior of dynein motors linking the cell cortex and dynamic microtubules that extend from the spindle pole body in opposite directions. By combining quantitative live cell imaging and laser ablation with a theoretical description, we show that dynein dynamically redistributes in the cell in response to load forces, resulting in more dynein attached to the leading than to the trailing microtubules. The redistribution of motors introduces an asymmetry of motor forces pulling in opposite directions, leading to the generation of oscillations. Our work provides the first direct in vivo observation of self-organized dynamic dynein distributions, which, owing to the intrinsic motor properties, generate regular large-scale movements in the cell.

  8. Thorium and its future importance for nuclear energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Lainetti, Paulo E.O., E-mail: lainetti@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Thorium was discovered in 1828 by the Swedish chemist Jons J. Berzelius. Despite some advantages over uranium for use in nuclear reactors, its main use, in the almost two centuries since its discovery, the use of thorium was restricted to use for gas mantles, especially in the early twentieth century. In the beginning of the Nuclear Era, many countries had interested on thorium, particularly during the 1950-1970 period. There are about 435 nuclear reactors in the world nowadays. They need more than 65.000 tons of uranium yearly. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Thorium is nearly three times more abundant than uranium in the Earth's crust. Despite thorium is not a fissile material, {sup 232}Th can be converted to {sup 233}U (fissile) more efficiently than {sup 238}U to {sup 239}Pu. Besides this, since it is possible to convert thorium waste into nonradioactive elements, thorium is an environment-friendly alternative energy source. Thorium fuel cycle is also inherently resistant to proliferation. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. In this paper a brief history of thorium is presented, besides a review of the world thorium utilization and a discussion about advantages and restrictions of thorium use. (author)

  9. Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mark Schanfein; Philip Casey Durst

    2012-07-01

    The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

  10. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector

  11. Steam Generator tube integrity -- US Nuclear Regulatory Commission perspective

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.L.; Sullivan, E.J.

    1997-02-01

    In the US, the current regulatory framework was developed in the 1970s when general wall thinning was the dominant degradation mechanism; and, as a result of changes in the forms of degradation being observed and improvements in inspection and tube repair technology, the regulatory framework needs to be updated. Operating experience indicates that the current U.S. requirements should be more stringent in some areas, while in other areas they are overly conservative. To date, this situation has been dealt with on a plant-specific basis in the US. However, the NRC staff is now developing a proposed steam generator rule as a generic framework for ensuring that the steam generator tubes are capable of performing their intended safety functions. This paper discusses the current U.S. regulatory framework for assuring steam generator (SG) tube integrity, the need to update this regulatory framework, the objectives of the new proposed rule, the US Nuclear Regulatory Commission (NRC) regulatory guide (RG) that will accompany the rule, how risk considerations affect the development of the new rule, and some outstanding issues relating to the rule that the NRC is still dealing with.

  12. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    Science.gov (United States)

    Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.

    2006-12-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6Li, 10B, Au and for 235,238U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238U and 208Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good

  13. LVRF fuel bundle manufacture for Bruce - project update

    Energy Technology Data Exchange (ETDEWEB)

    Pant, A. [Zircatec Precision Industries, Port Hope, Ontario (Canada)

    2005-07-01

    In response to the Power Uprate program at Bruce Power, Zircatec has committed to introduce, by Spring 2006 a new manufacturing line for the production of 43 element Bruce LVRF bundles containing Slightly Enriched Uranium (SEU) with a centre pin of blended dysprosia/urania (BDU). This is a new fuel design and is the first change in fuel design since the introduction of the current 37 element fuel over 20 years ago. Introduction of this new line has involved the introduction of significant changes to an environment that is not used to rapid changes with significant impact. At ZPI we have been able to build on our innovative capabilities in new fuel manufacturing, the strength and experience of our core team, and on our prevailing management philosophy of 'support the doer'. The presentation will discuss some of the novel aspects of this fuel introduction and the mix of innovative and classical project management methods that are being used to ensure that project deliverables are being met. Supporting presentations will highlight some of the issues in more detail. (author)

  14. Hipse: an event generator for nuclear collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D.; Van Lauwe, A.; Durand, D

    2003-11-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. Based on the sudden approximation and on geometrical hypothesis, it can conveniently simulate heavy-ion interactions at all impact parameters and thus can constitute a valuable tool for the understanding of processes such as neck emission or multifragmentation in peripheral or/and central collisions. After a detailed description of the ingredients of the model, first comparisons with experimental data collected by the INDRA collaboration are shown. Special emphasis is put on the kinematical characteristics of fragments and light particles observed at all impact parameters for Xe+Sn reactions at 25 and 50 MeV/u and Ni + Ni at 82 MeV/u. (authors)

  15. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  16. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  17. Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2013-01-01

    Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.

  18. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  19. Next Generation Nuclear Plant Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented

  20. Management of radioactive waste generated in nuclear medicine; Gestion de los residuos radiactivos generados en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz Perez, P.

    2015-07-01

    Nuclear medicine is a clinical specialty in which radioactive material is used in non-encapsulated form, for the diagnosis and treatment of patients. Nuclear medicine involves administering to a patient a radioactive substance, usually liquid, both diagnostic and therapeutic purposes. This process generates solid radioactive waste (syringes, vials, gloves) and liquid (mainly the patient's urine). (Author)

  1. Bruce Thompson: Adventures and advances in ultrasonic backscatter

    Science.gov (United States)

    Margetan, Frank J.

    2012-05-01

    Over the course of his professional career Dr. R. Bruce Thompson published several hundred articles on non-destructive evaluation, the majority dealing with topics in ultrasonics. One longtime research interest of Dr. Thompson, with applications both to microstructure characterization and defect detection, was backscattered grain noise in metals. Over a 20 year period he led a revolving team of staff members and graduate students investigating various aspects of ultrasonic backscatter. As a member of that team I had the privilege of working along side Dr. Thompson for many years, serving as a sort of Dr. Watson to Bruce's Sherlock Holmes. This article discusses Dr. Thompson's general approaches to modeling backscatter, the research topics he chose to explore to systematically elucidate a better understanding of the phenomena, and the many contributions to the field achieved under his leadership. The backscatter work began in earnest around 1990, motivated by a need to improve inspections of aircraft engine components. At that time Dr. Thompson launched two research efforts. The first led to the heuristic Independent Scatterer Model which could be used to estimate the average grain noise level that would be seen in any given ultrasonic inspection. There the contribution from the microstructure was contained in a measureable parameter known as the Figure-of-Merit or FOM. The second research effort, spearheaded by Dr. Jim Rose, led to a formal relationship between FOM and details of the metal microstructure. The combination of the Independent Scattering Model and Rose's formalism provided a powerful tool for investigating backscatter in metals. In this article model developments are briefly reviewed and several illustrative applications are discussed. These include: the determination of grain size and shape from ultrasonic backscatter; grain noise variability in engine-titanium billets and forgings; and the design of ultrasonic inspection systems to improve defect

  2. Next Generation Nuclear Plant Methods Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2007-01-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  3. Next Generation Nuclear Plant Methods Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Richard R.; Ougouag, Abderrafi M.; Nigg, David W.; Gougar, Hans D.; Johnson, Richard W; Terry, William K.; Oh, Chang H.; McEligot, Donald W.; Johnsen, Gary W.; McCreery, Glenn E.; Yoon, Woo Y.; Sterbentz, James W.; Herring, J. Steve; Taiwo, Temitope A.; Wei, Thomas Y. C.; Pointer, William D.; Yang, Won S.; Farmer, Michael T.; Khalil, Hussein S.; Feltus, Madeline A.

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  4. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  5. Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

    2011-01-01

    Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

  6. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  7. Nuclear data evaluation and group constant generation for reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Doh; Kil, Chung Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    Data testing of ENDF/B-VI.2 was performed and ACE-format continuous point-wise cross section library from ENDF/B-VI.2 for MCNP was validated through CSEWG benchmark and power plant mockup experiments. The calculated k-effective of ORNL-1, -2, -3, -4 and -10 with ENDF/B-VI are low by about 0.5% but those of L-7, -8, -9, -10 and -11 show good agreement with experiments. Overall results for uranium core with ENDF/B-VI is low in critically than with ENDF/B-V. The calculated results with ENDF/B-VI for PNL-6 {approx} 12 of plutonium core and PNL-30 {approx} 35 of mixed oxide core show good agreement with the experiments. The results of critically calculation for fast core benchmark do not show large difference between ENDF/B-VI and -V. But the calculated results of reaction rate ratio with ENDF/B-VI are improved, compared with ENDF/B-V. The calculated power distribution for VENUS PWR mockup core and typical BWR core of GE with both of ENDF/B-VI and -V agree well with measured values. From the above results, newly generated MCNP library from ENDF/B-VI is useful for nuclear and shielding design and analysis. 5 figs, 13 tabs, 11 refs. (Author).

  8. A Second Generation Radioactive Nuclear Beam Facility at CERN

    CERN Document Server

    Äystö, J; Lindroos, M; Ravn, H L; Van Duppen, P

    2000-01-01

    The proposed Superconducting Proton Linac (SPL) at CERN would be an ideal driver for a proton-driven second-generation Radioactive Nuclear Beam facility. We propose to investigate the feasibility of constructing such a facility at CERN close to the present PS Booster ISOLDE facility. The existing ISOLDE facility would be fed with a 10 micro-amps proton beam from SPL, providing the physics community with a low-intensity experimental area. A second, new facility would be built with target stations deep underground, permitting proton beam intensities of more than 100 micro-amps. The secondary beams can be post-accelerated to 20-100 MeV/u and there will be a storage ring complex and large segmented detectors in the experimental area. Also, benefits from a muon-ion collider or from merging the ions and muons should be investigated. Since the antiproton decelerator would be nearby, the opportunities for antiprotonic radioactive atom studies should be pursued as well.

  9. Databases and tools for nuclear astrophysics applications BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN)

    CERN Document Server

    Xu, Yi; Jorissen, Alain; Chen, Guangling; Arnould, Marcel; 10.1051/0004-6361/201220537

    2012-01-01

    An update of a previous description of the BRUSLIB+NACRE package of nuclear data for astrophysics and of the web-based nuclear network generator NETGEN is presented. The new version of BRUSLIB contains the latest predictions of a wide variety of nuclear data based on the most recent version of the Brussels-Montreal Skyrme-HFB model. The nuclear masses, radii, spin/parities, deformations, single-particle schemes, matter densities, nuclear level densities, E1 strength functions, fission properties, and partition functions are provided for all nuclei lying between the proton and neutron drip lines over the 8<=Z<=110 range, whose evaluation is based on a unique microscopic model that ensures a good compromise between accuracy, reliability, and feasibility. In addition, these various ingredients are used to calculate about 100000 Hauser-Feshbach n-, p-, a-, and gamma-induced reaction rates based on the reaction code TALYS. NACRE is superseded by the NACRE II compilation for 15 charged-particle transfer react...

  10. New U.S. Nuclear Generation: 2010-2030

    OpenAIRE

    2010-01-01

    The report's key finding is that new nuclear capacity in NEMS-RFF from 2015 to 2020 under the current levels of U.S. Department of Energy (DOE) loan guarantees is similar to the marginal increase in new capacity from lowering the nominal return-on-equity (ROE) in NEMS-RFF for new nuclear power from 17 to 14 percent. This equivalence allows for an analysis of the costs and benefits of increasing DOE loan guarantees to new nuclear plants.

  11. Next Generation Nuclear Plant Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen

  12. Databases and tools for nuclear astrophysics applications. BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN)

    Science.gov (United States)

    Xu, Y.; Goriely, S.; Jorissen, A.; Chen, G. L.; Arnould, M.

    2013-01-01

    An update of a previous description of the BRUSLIB + NACRE package of nuclear data for astrophysics and of the web-based nuclear network generator NETGEN is presented. The new version of BRUSLIB contains the latest predictions of a wide variety of nuclear data based on the most recent version of the Brussels-Montreal Skyrme-Hartree-Fock-Bogoliubov model. The nuclear masses, radii, spin/parities, deformations, single-particle schemes, matter densities, nuclear level densities, E1 strength functions, fission properties, and partition functions are provided for all nuclei lying between the proton and neutron drip lines over the 8 ≤ Z ≤ 110 range, whose evaluation is based on a unique microscopic model that ensures a good compromise between accuracy, reliability, and feasibility. In addition, these various ingredients are used to calculate about 100 000 Hauser-Feshbach neutron-, proton-, α-, and γ-induced reaction rates based on the reaction code TALYS. NACRE is superseded by the NACRE II compilation for 15 charged-particle transfer reactions and 19 charged-particle radiative captures on stable targets with mass numbers A < 16. NACRE II features the inclusion of experimental data made available after the publication of NACRE in 1999 and up to 2011. In addition, the extrapolation of the available data to the very low energies of astrophysical relevance is improved through the systematic use of phenomenological potential models. Uncertainties in the rates are also evaluated on this basis. Finally, the latest release v10.0 of the web-based tool NETGEN is presented. In addition to the data already used in the previous NETGEN package, it contains in a fully documented form the new BRUSLIB and NACRE II data, as well as new experiment-based radiative neutron capture cross sections. The full new versions of BRUSLIB, NACRE II, and NETGEN are available electronically from the nuclear database at http://www.astro.ulb.ac.be/NuclearData. The nuclear material is presented in

  13. Nuclear power generation safe and competitive - now and in future

    Energy Technology Data Exchange (ETDEWEB)

    Wolf-Dieter, Krebs [European Nuclear Society and Framatome ANP (Germany); Hoffman, D.R. [American Nuclear Society and Excel Services Corp. (United States)

    2002-07-01

    ENC brings together scientists, academics, chief executives and all the major players from both the European and world nuclear utilities, to debate on the nuclear energy from technical, commercial and political perspectives. The abstracts of presentation from this conference are proposed in this paper grouped in four main themes: innovative reactors and fuel cycle; waste management including partitioning and transmutation and ADS development; experimental, research reactors and neutron sources; operation, maintenance, inspection and thermal hydraulics. (A.L.B.)

  14. Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis.

    Science.gov (United States)

    Hou, Ying-Chen Claire; Chittaranjan, Suganthi; Barbosa, Sharon González; McCall, Kimberly; Gorski, Sharon M

    2008-09-22

    A complex relationship exists between autophagy and apoptosis, but the regulatory mechanisms underlying their interactions are largely unknown. We conducted a systematic study of Drosophila melanogaster cell death-related genes to determine their requirement in the regulation of starvation-induced autophagy. We discovered that six cell death genes--death caspase-1 (Dcp-1), hid, Bruce, Buffy, debcl, and p53-as well as Ras-Raf-mitogen activated protein kinase signaling pathway components had a role in autophagy regulation in D. melanogaster cultured cells. During D. melanogaster oogenesis, we found that autophagy is induced at two nutrient status checkpoints: germarium and mid-oogenesis. At these two stages, the effector caspase Dcp-1 and the inhibitor of apoptosis protein Bruce function to regulate both autophagy and starvation-induced cell death. Mutations in Atg1 and Atg7 resulted in reduced DNA fragmentation in degenerating midstage egg chambers but did not appear to affect nuclear condensation, which indicates that autophagy contributes in part to cell death in the ovary. Our study provides new insights into the molecular mechanisms that coordinately regulate autophagic and apoptotic events in vivo.

  15. Membranes for H2 generation from nuclear powered thermochemical cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra (University of California, Davis, CA); Iyer, Ratnasabapathy G. (University of California, Davis, CA); Axness, Marlene

    2006-11-01

    In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.

  16. Nuclear Energy In Switzerland: It's going ahead. Challenges For The Swiss Nuclear Society Young Generation Group

    Energy Technology Data Exchange (ETDEWEB)

    Streit, Marco [Aare-Tessin Ltd for Electricity, Bahnhofquai 12, CH-4601 Olten (Switzerland); Bichsel, Thomas [BKW FMB Energie AG, NPP Muehleberg, CH-3203 Muehleberg (Switzerland); Fassbender, Andre [NPP Goesgen-Daeniken AG, CH-4658 Daeniken (Switzerland); Horvath, Matthias [National Emergency Operations Centre, CH-8044 Zurich (Switzerland)

    2008-07-01

    Swiss energy policy is focused on generating domestic electric power without combusting fossil fuels for already four decades. Roughly 60% of the electricity is generated in hydroelectric plants, which is possible due to the country's favourable topography; the remaining 40% are produced by the country's five nuclear power plants (NPPs). As in any other country nuclear power has its enemies in Switzerland. Due to the direct democracy system in Switzerland the nuclear opposition has a lot of possibilities to disturb the energy policy. Since 1969, when the first Swiss nuclear power plant went online, four plebiscites were held on the issue of civil use of nuclear energy. Four times Swiss citizens voted in favour of further operation of the existing plants also in the latest battle for nuclear energy, which was won in 2003. In 2005 and 2006 several Swiss studies about the future energy situation, especially the electricity situation, have been published. All off them show clearly that there will be a big gab around the year 2020 when the oldest three nuclear power plants will fade out. A public debate was started, how to solve the problem. Beside others, building new nuclear power plants was mentioned and discussed rationally. In 2007 the energy police of the Swiss government changed into a more nuclear friendly position and at the end of the same year some electricity companies lunched a new build program. Hosting the International Youth Nuclear Congress 2008 (IYNC 2008) in Switzerland seems to be just the right moment for the nuclear industry in our country. The slightly changed surroundings effected the organization of Swiss Nuclear Society (SNS) and SNS Young Generation Group (SNSYG) and enlarged the fields of activities for SNSYG. Those activities mentioned in the previous chapters will be developed in the future. The discussion about new builds in Switzerland has started and because of that more nuclear activities in Switzerland will occur. And surely

  17. Possible Nuclear Safeguards Applications: Workshop on Next-Generation Laser Compton Gamma Source

    Energy Technology Data Exchange (ETDEWEB)

    Durham, J. Matthew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Physics Division

    2016-11-17

    These are a set of slides for the development of a next-generation photon source white paper. The following topics are covered in these slides: Nuclear Safeguards; The Nuclear Fuel Cycle; Precise isotopic determination via NRF; UF6 Enrichment Assay; and Non-Destructive Assay of Spent Nuclear Fuel. In summary: A way to non-destructively measure precise isotopics of ~kg and larger samples has multiple uses in nuclear safeguards; Ideally this is a compact, fieldable device that can be used by international inspectors. Must be rugged and reliable; A next-generation source can be used as a testing ground for these techniques as technology develops.

  18. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-07-01

    Full Text Available Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.

  19. Review on studies for external cost of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Korea National University of Transportation, Chungju (Korea, Republic of); Ko, Won Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    External cost is cost imposed on a third party when producing or consuming a good or service. Since the 1990s, the external costs of nuclear powered electricity production have been studied. Costs are a very important factor in policy decision and the external cost is considered for cost comparison on electricity production. As for nuclear fuel cycle, a chosen technology will determine the external cost. However, there has been little research on this issue. For this study, methods for external cost on nuclear power production have been surveyed and analyzed to develop an approach for evaluating external cost on nuclear fuel cycles. Before the Fukushima accident, external cost research had focused on damage costs during normal operation of a fuel cycle. However, accident cost becomes a major concern after the accident. Various considerations for external cost including accident cost have been used to different studies, and different methods have been applied corresponding to the considerations. In this study, the results of the evaluation were compared and analyzed to identify methodological applicability to the external cost estimation with nuclear fuel cycles.

  20. Carsten Niebuhr and James Bruce: Lifted Latitudes and Virtual Voyages on the Red Sea...?

    DEFF Research Database (Denmark)

    Friis, Ib

    2013-01-01

    In 1791 Carsten Niebuhr published a review of the first two volumes of Bruce’s Reisen zur Entdeckung der Quellen des Nils (1790). Niebuhr’s strongest criticism of Bruce was that he seemed to have plagiarized some of Niebuhr’s astronomical observations (“adopted them without examination”) and that......In 1791 Carsten Niebuhr published a review of the first two volumes of Bruce’s Reisen zur Entdeckung der Quellen des Nils (1790). Niebuhr’s strongest criticism of Bruce was that he seemed to have plagiarized some of Niebuhr’s astronomical observations (“adopted them without examination...... as written by Bruce in 1770 at Gondar, Abyssinia, contains information about latitudes identical with some of Niebuhr’s observations which were unpublished in 1770; possible explanations for this are proposed. In summary, it seems that Niebuhr is right; it is almost certain that Bruce plagiarized some...

  1. Drosophila BRUCE inhibits apoptosis through non-lysine ubiquitination of the IAP-antagonist REAPER

    OpenAIRE

    Domingues, C.; Ryoo, H D

    2011-01-01

    Active caspases execute apoptosis to eliminate superfluous or harmful cells in animals. In Drosophila, living cells prevent uncontrolled caspase activation through an inhibitor of apoptosis protein (IAP) family member, dIAP1, and apoptosis is preceded by the expression of IAP-antagonists, such as Reaper, Hid and Grim. Strong genetic modifiers of this pathway include another IAP family gene encoding an E2 ubiquitin conjugating enzyme domain, dBruce. Although the genetic effects of dBruce mutan...

  2. Student Lloyd C. Bruce listens to MS John M. Lounge in CSR during STS-26

    Science.gov (United States)

    1988-01-01

    Seated in the customer support room (CSR) of JSC's Mission Control Center (MCC) Bldg 30, student experimenter Lloyd C. Bruce listens to Mission Specialist (MS) John M. Lounge onboard Discovery, Orbiter Vehicle (OV) 103, during the STS-26 mission. Bruce's student experiment 82-4 (SE82-4) 'The Effects of Weightlessness on Grain Formation and Strength in Metals' is onboard OV-103. Lounge is visible in the television (TV) monitor on the left.

  3. Detailed requirements for a next generation nuclear data structure.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-07-05

    This document attempts to compile the requirements for the top-levels of a hierarchical arrangement of nuclear data such as found in the ENDF format. This set of requirements will be used to guide the development of a new data structure to replace the legacy ENDF format.

  4. The development and use of radionuclide generators in nuclear medicine -- recent advances and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.

    1998-03-01

    Although the trend in radionuclide generator research has declined, radionuclide generator systems continue to play an important role in nuclear medicine. Technetium-99m obtained from the molybdenum-99/technetium-99m generator system is used in over 80% of all diagnostic clinical studies and there is increasing interest and use of therapeutic radioisotopes obtained from generator systems. This paper focuses on a discussion of the major current areas of radionuclide generator research, and the expected areas of future research and applications.

  5. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  6. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  7. Uranium droplet nuclear reactor core with MHD generator

    Science.gov (United States)

    Anghaie, Samim; Kumar, Ratan

    An innovative concept employing liquid uranium droplets as fuel in an ultrahigh-temperature vapor core reactor (UTVR) magnetohydrodynamic (MHD) generator power system for space power generation has been studied. Metallic vapor in superheated form acts as a working fluid for a closed-Rankine-type thermodynamic cycle. Usage of fuel and working fluid in this form assures certain advantages. The major technical issues emerging as a result involve a method for droplet generation, droplet transport in the reactor core, heat generation in the fuel and transport to the metallic vapor, and materials compatibility. A qualitative and quantitative attempt to resolve these issues has indicated the promise and tentative feasibility of the system.

  8. Determination of steam wetness in the steam-generating equipment of nuclear power plants

    Science.gov (United States)

    Gorburov, V. I.; Gorburov, D. V.; Kuz'min, A. V.

    2012-05-01

    Calculation and experimental methods for determining steam wetness in horizontal steam generators for nuclear power stations equipped with VVER reactors, namely, the classic salt technique and calculations based on operating parameters are discussed considered and compared.

  9. Technology development for nuclear power generation for space application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear; Faria, Saulo M. de [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2015-07-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  10. Electro-nuclear neutron generator – XADS at ITEP

    Indian Academy of Sciences (India)

    A M Kozodaev; N D Gavrilin; M M Igumnov; V N Konev; N V Lazarev; A M Raskopin; V V Seliverstov; O V Shvedov; E B Volkov

    2007-02-01

    In this report, the purpose and status of the currently constructed ITEP experimental accelerator driven system (XADS) are discussed. This hybrid electro-nuclear facility of moderate power integrates the pulse proton linac (36 MeV, 0.5 mA) and heavy water sub-critical blanket assembly (heat power of 100 kW). Most parts of the equipment units are ordered for industrial manufacturing and some are under development. The facility is supposed to be used for investigations of a wide range of problems concerning both the target-blanket assembly and the accelerator-driver and at the same time explore the dynamical processes arising during their combined operation. Some other applications of the proton beam and neutron source are also discussed. It is possible in future to increase the current and energy of proton or heavy ion beam.

  11. 77 FR 40091 - Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating, Units 2 and 3

    Science.gov (United States)

    2012-07-06

    ... dockets to Carol Gallagher; telephone: 301-492- 3668; email: Carol.Gallagher@nrc.gov . Mail comments to.... FOR FURTHER INFORMATION CONTACT: Mr. Michael Wentzel, Division of License Renewal, Office of Nuclear...- 6459 or by email at: Michael.Wentzel@nrc.gov . SUPPLEMENTARY INFORMATION: I. Accessing Information...

  12. The effects of nuclear power generators upon electronic instrumentation

    Science.gov (United States)

    Miller, C. G.; Truscello, V. C.

    1970-01-01

    Radiation sensitivity of electronic instruments susceptible to neutron and gamma radiation is evaluated by means of a radioisotope thermoelectric generator /RTG/. The gamma field of the RTG affects instrument operation and requires shielding, the neutron field does not affect operation via secondary capture-gamma production.

  13. Natural Gas, Wind and Nuclear Options for Generating Electricity in a Carbon Constrained World

    NARCIS (Netherlands)

    Kooten, van G.C.

    2012-01-01

    A linear programming model is used to examine the impact of carbon taxes on the optimal generation mix in the Alberta electrical system. The model permits decommissioning of generating assets with high carbon dioxide emissions and investment in new gas-fired, wind and, in some scenarios, nuclear cap

  14. 78 FR 25486 - Luminant Generation Company, LLC., Combined License Application for Comanche Peak Nuclear Power...

    Science.gov (United States)

    2013-05-01

    ... COMMISSION Luminant Generation Company, LLC., Combined License Application for Comanche Peak Nuclear Power... Generation Company, LLC. (Luminant) for the proposed facility to be located in Somervell County, Texas. In... or who encounter problems in accessing the documents located in ADAMS should contact the NRC...

  15. Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Phase 1, Study

    Energy Technology Data Exchange (ETDEWEB)

    Hoopingarner, K.R.; Vause, J.W.; Dingee, D.A.; Nesbitt, J.F.

    1987-08-01

    Pacific Northwest Laboratory evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume I, reviews diesel-generator experience to identify the systems and components most subject to aging degradation and isolates the major causes of failure that may affect future operational readiness. Evaluations show that as plants age, the percent of aging-related failures increases and failure modes change. A compilation is presented of recommended corrective actions for the failures identified. This study also includes a review of current, relevant industry programs, research, and standards. Volume II reports the results of an industry-wide workshop held on May 28 and 29, 1986 to discuss the technical issues associated with aging of nuclear service emergency diesel generators.

  16. Drosophila Bruce can potently suppress Rpr- and Grim-dependent but not Hid-dependent cell death.

    Science.gov (United States)

    Vernooy, Stephanie Y; Chow, Vivian; Su, Julius; Verbrugghe, Koen; Yang, Jennifer; Cole, Susannah; Olson, Michael R; Hay, Bruce A

    2002-07-09

    Bruce is a large protein (530 kDa) that contains an N-terminal baculovirus IAP repeat (BIR) and a C-terminal ubiquitin conjugation domain (E2). BRUCE upregulation occurs in some cancers and contributes to the resistance of these cells to DNA-damaging chemotherapeutic drugs. However, it is still unknown whether Bruce inhibits apoptosis directly or instead plays some other more indirect role in mediating chemoresistance, perhaps by promoting drug export, decreasing the efficacy of DNA damage-dependent cell death signaling, or by promoting DNA repair. Here, we demonstrate, using gain-of-function and deletion alleles, that Drosophila Bruce (dBruce) can potently inhibit cell death induced by the essential Drosophila cell death activators Reaper (Rpr) and Grim but not Head involution defective (Hid). The dBruce BIR domain is not sufficient for this activity, and the E2 domain is likely required. dBruce does not promote Rpr or Grim degradation directly, but its antiapoptotic actions do require that their N termini, required for interaction with DIAP1 BIR2, be intact. dBruce does not block the activity of the apical cell death caspase Dronc or the proapoptotic Bcl-2 family member Debcl/Drob-1/dBorg-1/Dbok. Together, these results argue that dBruce can regulate cell death at a novel point.

  17. Changes in the Factors Influencing Public Acceptance of Nuclear Power Generation in Japan Since the 2011 Fukushima Daiichi Nuclear Disaster.

    Science.gov (United States)

    Tsujikawa, Norifumi; Tsuchida, Shoji; Shiotani, Takamasa

    2016-01-01

    Public support for nuclear power generation has decreased in Japan since the Fukushima Daiichi nuclear accident in March 2011. This study examines how the factors influencing public acceptance of nuclear power changed after this event. The influence factors examined are perceived benefit, perceived risk, trust in the managing bodies, and pro-environmental orientation (i.e., new ecological paradigm). This study is based on cross-sectional data collected from two online nationwide surveys: one conducted in November 2009, before the nuclear accident, and the other in October 2011, after the accident. This study's target respondents were residents of Aomori, Miyagi, and Fukushima prefectures in the Tohoku region of Japan, as these areas were the epicenters of the Great East Japan Earthquake and the locations of nuclear power stations. After the accident, trust in the managing bodies was found to have a stronger influence on perceived risk, and pro-environmental orientation was found to have a stronger influence on trust in the managing bodies; however, perceived benefit had a weaker positive influence on public acceptance. We also discuss the theoretical and practical implications of these findings.

  18. Spare parts management for nuclear power generation facilities

    Science.gov (United States)

    Scala, Natalie Michele

    With deregulation, utilities in the power sector face a much more urgent imperative to emphasize cost efficiencies as compared to the days of regulation. One major opportunity for cost savings is through reductions in spare parts inventories. Most utilities are accustomed to carrying large volumes of expensive, relatively slow-moving parts because of a high degree of risk-averseness. This attitude towards risk is rooted in the days of regulation. Under regulation, companies recovered capital inventory costs by incorporating them into the base rate charged to their customers. In a deregulated environment, cost recovery is no longer guaranteed. Companies must therefore reexamine their risk profile and develop policies for spare parts inventory that are appropriate for a competitive business environment. This research studies the spare parts inventory management problem in the context of electric utilities, with a focus on nuclear power. It addresses three issues related to this problem: criticality, risk, and policy. With respect to criticality and risk, a methodology is presented that incorporates the use of influence diagrams and the Analytic Hierarchy Process (AHP). A new method is developed for group aggregation in the AHP when Saaty and Vargas' (2007) dispersion test fails and decision makers are unwilling or unable to revise their judgments. With respect to policy, a quantitative model that ranks the importance of keeping a part in inventory and recommends a corresponding stocking policy through the use of numerical simulation is developed. This methodology and its corresponding models will enable utilities that have transitioned from a regulated to a deregulated environment become more competitive in their operations while maintaining safety and reliability standards. Furthermore, the methodology developed is general enough so that other utility plants, especially those in the nuclear sector, will be able to use this approach. In addition to regulated

  19. Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation

    Science.gov (United States)

    Howard, Samuel A.; DellaCorte, Christopher

    2006-01-01

    The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.

  20. The potential of nuclear energy to generate clean electric power in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Stecher, Luiza C.; Sabundjian, Gaiane; Menzel, Francine; Giarola, Rodrigo S.; Coelho, Talita S., E-mail: luizastecher@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The generation of electricity in Brazil is concentrated in hydroelectric generation, renewable and clean source, but that does not satisfy all the demand and leads to necessity of a supplementary thermal sources portion. Considering the predictions of increase in demand for electricity in the next years, it becomes necessary to insert new sources to complement the production taking into account both the volume being produced and the needs of environmental preservation. Thus, nuclear power can be considered a potential supplementary source for electricity generation in Brazil as well as the country has large reserves of fissile material, the generation emits no greenhouse gases, the country has technological mastery of the fuel cycle and it enables the production of large volumes of clean energy. The objective of this study is to demonstrate the potential of nuclear energy in electricity production in Brazil cleanly and safely, ensuring the supplies necessary to maintain the country's economic growth and the increased demand sustainable. For this, will be made an analysis of economic and social indicators of the characteristics of our energy matrix and the availability of our sources, as well as a description of the nuclear source and arguments that justify a higher share of nuclear energy in the matrix of the country. Then, after these analysis, will notice that the generation of electricity from nuclear source has all the conditions to supplement safely and clean supply of electricity in Brazil. (author)

  1. Debate on Bruce Bimber´s Book Information and American Democracy. Cambridge University Press, 2003

    Directory of Open Access Journals (Sweden)

    Karpf, David

    2011-12-01

    Full Text Available Not availablePresentation José Manuel Robles Abstract of Information and American Democracy. Cambridge University Press, 2003 Bruce Bimber From Regimes to Ecologies: Globalizing Bruce Bimber’s Model of Information and Politics Steven Livingston Internet, new forms of power and democracy José Luís Garcia Internet: A Technological Tool and Changes in Political Power Liu Gang Information and American Democracy in the era of web 2.0 Lorenzo Mosca What Comes Next?: Bimber’s Information Revolutions and Institutional Disruptions David Karpf Online Political Information and Online Political Participation José Manuel Robles Digital Media and Political Change: A Response to Garcia, Karpf, Livingston, Liu, Mosca, and Robles Bruce Bimber

  2. The application of NEPIS in evaluation of nuclear power generation cost

    Energy Technology Data Exchange (ETDEWEB)

    Do, J. W.; Kim, J. H.; Kim, Y. H. [Korea Hydro and Nuclear Power Company, Pusan (Korea, Republic of)

    2002-10-01

    IAEA(International Atomic Energy Agency) tried to evaluate generation cost by means of NEPIS (Nuclear Economic Performance International System) based on the ABC(Activity-Based Costing) method which has been developed since 1997 in order to cope with competition improvement of world nuclear power and operation environment. From that, the '98 O and M cost of Southern California Edison Co., and Vermont Yankee Nuclear Power Co., of U.S.A. was estimated to be 1.45 Cent/kWh and 2.3 Cent/kWh, respectively and that of Pacific Gas and Electric Co, of Hungary was 3.5 Cent/kWh. average '98 O and M Domestic nuclear power plant an was found to be 2.78 Cent/kWh. The standard O and M DB based on ABC might be required to evaluate domestic nuclear power plant O and M cost from NEPIS.

  3. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    Science.gov (United States)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact

  4. Effect of nuclear power generation on the electricity price in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Man Kee; Song, Kee Dong; Kim, Seung Soo; Kim, Sung Kee; Lee, Yung Kun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    The main purpose of this study is to estimate the effect of nuclear power generation on the electricity price by analysing electricity supply sector. The effects on electricity price changes are estimated in terms of following respects: - Restriction on the additional introduction of nuclear power plant. - CO{sub 2} emission quantity control and carbon tax. A computer model by using Linear Programming optimization technique was also developed for these analyses. 10 figs, 12 tabs, 32 refs. (Author).

  5. Challenges in education and qualification of human resources for next nuclear generation

    Energy Technology Data Exchange (ETDEWEB)

    Pupak, Marcia Orrico [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: mopupak@ipen.br

    2009-07-01

    The general goal of this paper is to present an overview of Higher Education and personnel qualification for Nuclear Field by the perspective of the International Atomic Energy Agency (IAEA), also by the Organization for Economic Co-operation and Development (OECD and by the United Nations Educational Scientific and Cultural Organization (UNESCO). On the other hand to present the challenge of the Brazilian Government in redesigning, since 2003, the role of the state in order to make it active for younger generations, while promoting growth and social justice, has guided in all actions carried out under the Policy of Human Resources Management of public personnel. The government should be able to formulate and implement public policies and decide among various options, what is the most appropriate for its Human Resources. For this, they require the strengthening of strategic intelligence and government adoption of new ways of interaction and participation. The role played by the Brazilian Nuclear Energy Commission (CNEN) in looking forward to replace and qualify its nuclear staff, as soon as up, since that the qualification of a human resource in this field demands more than one decade. Last but not least the proactive work of IPEN-CNEN/SP to encourage young generation to enter nuclear area, and the efforts of the Brazilian government to implement an integrated Nuclear Programme to form human resources, to attract and retain students in nuclear engineering and related specialized fields, and how this problem should attract the attention of the entire nuclear community, government and industry. (author)

  6. Accelerator-driven sub-critical reactor system (ADS) for nuclear energy generation

    Indian Academy of Sciences (India)

    S S Kapoor

    2002-12-01

    In this talk we present an overview of accelerator-driven sub-critical reactor systems (ADS), and bring out their attractive features for the elimination of troublesome long-lived components of the spent fuel, as well as for nuclear energy generation utilizing thorium as fuel. In India, there is an interest in the programmes of development of high-energy and high-current accelerators due to the potential of ADS in utilizing the vast resources of thorium in the country for nuclear power generation. The accelerator related activities planned in this direction will be outlined.

  7. Comparing the sustainability parameters of renewable, nuclear and fossil fuel electricity generation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Annette; Strezov, Vladimir; Evans, Tim

    2010-09-15

    The sustainability parameters of electricity generation have been assessed by the application of eight key indicators. Photovoltaics, wind, hydro, geothermal, biomass, natural gas, coal and nuclear power have been assessed according to their price, greenhouse gas emissions, efficiency, land use, water use, availability, limitations and social impacts on a per kilowatt hour basis. The relevance of this information to the Australian context is discussed. Also included are the results of a survey on Australian opinions regarding electricity generation, which found that Australian prefer solar electricity above any other method, however coal, biomass and nuclear power have low acceptance.

  8. Walking Versus Jogging in Stages III and IV of the Bruce Treadmill Test.

    Science.gov (United States)

    Cundiff, D.; Schwane, J.

    Observations during research involving the Bruce Treadmill Test (BTMT) indicating that Stage III for females and Stage IV for males represented speeds which are intermediate between comfortable walking and confortable jogging for many subjects, prompted this study to determine ways to obtain more consistent group results. Twenty-eight subjects…

  9. "He's Supportive, Period": A Tribute to Bertram (Chip) Bruce

    Science.gov (United States)

    Hogan, Maureen

    2014-01-01

    In this personal and revealing essay, the author traces her relationship with Chip Bruce, from its beginnings, when he served on her dissertation committee, to the present, when she realizes that she is paying forward to her own graduate students the fruits of community inquiry and supportive teaching and learning.

  10. Fighting with Reality: Considering Mark Johnson's Pragmatic Realism through Bruce Lee's Jeet Kune Do Method

    Science.gov (United States)

    Miller, Alexander David

    2015-01-01

    This dissertation considers the supportive and complementary relation between Mark Johnson's embodied realism and Bruce Lee's Jeet Kune Do as a philosophical practice. In exploring this relationship, the emphasis on one's embodiment condition and its relationship with metaphor and self-expression are the primary focus. First, this work involves…

  11. Our GSLIS Colleague, Chip Bruce: An Appreciation. A Deweyan Pragmatist in the Internet Age

    Science.gov (United States)

    Schiller, Dan

    2014-01-01

    The reconstructive project needed to enable information for democracy, to which Chip Bruce has contributed much, is of long standing. Using a few wide brush strokes, in this article some of the most vital historical contexts for situating this project are supplied.

  12. An Appreciation of the Scientific Life and Acheivements of Bruce Merrifield

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R

    2007-06-15

    Bruce Merrifield's scientific biography, 'Life During a Golden Age of Peptide Chemistry: The Concept and Development of Solid-Phase Peptide Synthesis', provides a history of solid phase-peptide synthesis (SPPS) from 1959 to 1993 [1]. While many readers will be familiar with SPPS literature after 1963, the inclusion of unpublished material from Merrifield's early laboratory notebooks opens a fascinating window on the development of SPPS from the formulation of concept in 1959 (p. 56, ref. 1) to the synthesis of a tetrapeptide four years later [2]. This early period was characterized by slow progress interrupted by numerous setbacks that led Bruce to later record (p. 90, ref. 1): 'At the end of the first two years the results were so poor, I wonder what made me think that this approach would ever succeed; but from the outset I had a strong conviction that this was a good idea, and I am glad that I stayed with it long enough'. Garland Marshall, Bruce's first graduate student (1963-1966), as well as later colleagues, were essentially unaware of the many highways, byways and dead ends that Bruce had explored in the early years [3].

  13. Coffee Cups, Canoes, Airplanes and the Lived Experience: Reflections on the Works of Bertram (Chip) Bruce

    Science.gov (United States)

    Haythornthwaite, Caroline

    2014-01-01

    A career spent in research, teaching, and engagement with community entails a lifetime of assemblage of meaning from people, resources, technologies and experience. In his work, Bertram (Chip) Bruce has long engaged with how we create such an assemblage of meaning from our formal and found learning, and from the "lived experience" of…

  14. Some nuclear chemical aspects of medical generator nuclide production at the Los Alamos hot cell facility

    CERN Document Server

    Fassbender, M; Heaton, R C; Jamriska, D J; Kitten, J J; Nortier, F M; Peterson, E J; Phillips, D R; Pitt, L R; Salazar, L L; Valdez, F O; 10.1524/ract.92.4.237.35596

    2004-01-01

    Generator nuclides constitute a convenient tool for applications in nuclear medicine. In this paper, some radiochemical aspects of generator nuclide parents regularly processed at Los Alamos are introduced. The bulk production of the parent nuclides /sup 68/Ge, /sup 82/Sr, /sup 109/Cd and /sup 88/Zr using charged particle beams is discussed. Production nuclear reactions for these radioisotopes, and chemical separation procedures are presented. Experimental processing yields correspond to 80%-98% of the theoretical thick target yield. Reaction cross sections are modeled using the code ALICE-IPPE; it is observed that the model largely disagrees with experimental values for the nuclear processes treated. Radionuclide production batches are prepared 1-6 times yearly for sales. Batch activities range from 40MBq to 75 GBq.

  15. Evaluation of environmental data relating to selected nuclear power plant sites. Prairie Island Nuclear Generating Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Murarka, I.P.

    1976-11-01

    Environmental monitoring data for 1973 through 1975 pertaining to the Prairie Island Nuclear Generating Station (which began commercial operation in December 1973) were analyzed by the most practical qualitative and quantitative methods. Evaluations of aquatic and terrestrial biotic data are presented in this report. The data indicate no significant immediate deleterious effects on the biota from plant operation, thus confirming preoperational predictions. Although the station has not operated long enough to reveal long-term deleterious effects, present indications do not lead to a concerned prediction that any are developing. Recommendations are suggested for improving monitoring techniques.

  16. Hard Sludge Formation in Modern Steam Generators of Nuclear Power Plants Formation, Risks and Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.

    2013-07-01

    This article will discuss the physical and chemical reasons for the increased tendency to form hard sludge on the secondary side of modern nuclear steam generators (SG). The mechanism of hard sludge induced denting will be explained. Moreover, advice on operation and maintenance to mitigate hard sludge formation and denting damages will be presented.

  17. Generation IV Nuclear Energy Systems Ten-Year Program Plan Fiscal Year 2005, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-03-01

    As reflected in the U.S. ''National Energy Policy'', nuclear energy has a strong role to play in satisfying our nation's future energy security and environmental quality needs. The desirable environmental, economic, and sustainability attributes of nuclear energy give it a cornerstone position, not only in the U.S. energy portfolio, but also in the world's future energy portfolio. Accordingly, on September 20, 2002, U.S. Energy Secretary Spencer Abraham announced that, ''The United States and nine other countries have agreed to develop six Generation IV nuclear energy concepts''. The Secretary also noted that the systems are expected to ''represent significant advances in economics, safety, reliability, proliferation resistance, and waste minimization''. The six systems and their broad, worldwide research and development (R&D) needs are described in ''A Technology Roadmap for Generation IV Nuclear Energy Systems'' (hereafter referred to as the Generation IV Roadmap). The first 10 years of required U.S. R&D contributions to achieve the goals described in the Generation IV Roadmap are outlined in this Program Plan.

  18. 78 FR 49305 - Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2013-08-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2; Application... Nuclear Power Plant, Unit Nos. 1 and 2, respectively, located in Somervell County, Texas. The...

  19. 78 FR 14361 - In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units 1 and...

    Science.gov (United States)

    2013-03-05

    ... Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units 1 and 2; Order Approving the... authorizes the possession, use, and operation of the Comanche Peak Nuclear Power Plant, Units 1 and 2 (CPNPP... From the Federal Register Online via the Government Publishing Office NUCLEAR...

  20. Steam generator chemical cleaning at the Palo Verde Nuclear Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Jevec, J.M. [Babcock and Wilcox, Alliance, OH (United States). R and D Division; Knollmeyer, P.M. [B and W Nuclear Technologies, Lynchburg, VA (United States); Paramithas, P. [Palo Verde Nuclear Generating Station, Tonopah, AZ (United States)

    1995-09-01

    The secondary side of the Palo Verde Units 2 and 3 steam generators were chemically cleaned in 1994. The primary purpose of the chemical cleaning was to remove deposits bridging between adjacent tubes and also to remove bulk tube and tubesheet deposits. A secondary objective was to remove deposits from the flow distribution plate-to-tube crevice. The chemical cleaning consisted of a magnetite dissolution step, a separate step aimed at removing deposits in the flow distribution plate crevices, and a final step to remove residual copper and passivate the carbon steel surfaces of the steam generator. Corrosion monitoring was employed during the cleaning to ensure that the cleaning resulted in corrosion to steam generator materials of construction that was below the predetermined chemical cleaning corrosion allowances. The process application, removal efficiency, and corrosion results are presented in this paper.

  1. Determination of leveled costs of electric generation for gas plants, coal and nuclear; Determinacion de costos nivelados de generacion electrica para plantas de gas, carbon y nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Alonso V, G.; Palacios H, J.C.; Ramirez S, J.R.; Gomez, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: galonso@nuclear.inin.mx

    2005-07-01

    The present work analyzes the leveled costs of electric generation for different types of nuclear reactors known as Generation III, these costs are compared with the leveled costs of electric generation of plants with the help of natural gas and coal. In the study several discount rates were used to determine their impact in the initial investment. The obtained results are comparable with similar studies and they show that it has more than enough the base of the leveled cost the nuclear option it is quite competitive in Mexico. Also in this study it is also thinks about the economic viability of a new nuclear power station in Mexico. (Author)

  2. DRAGON: Monte Carlo Generator of Particle Production from a Fragmented Fireball in Ultrarelativistic Nuclear Collisions

    Science.gov (United States)

    Tomasik, Boris

    2010-11-01

    A Monte Carlo generator of the final state of hadrons emitted from an ultrarelativistic nuclear collision is introduced. An important feature of the generator is a possible fragmentation of the fireball and emission of the hadrons from fragments. Phase space distribution of the fragments is based on the blast wave model extended to azimuthally non-symmetric fireballs. Parameters of the model can be tuned and this allows to generate final states from various kinds of fireballs. A facultative output in the OSCAR1999A format allows for a comprehensive analysis of phase-space distributions and/or use as an input for an afterburner. DRAGON's purpose is to produce artificial data sets which resemble those coming from real nuclear collisions provided fragmentation occurs at hadronisation and hadrons are emitted from fragments without any further scattering. Its name, DRAGON, stands for DRoplet and hAdron GeneratOr for Nuclear collisions. In a way, the model is similar to THERMINATOR, with the crucial difference that emission from fragments is included.

  3. Alignment dependent ultrafast electron-nuclear dynamics in high-order harmonic generation

    CERN Document Server

    Li, Mu-Zi; Bian, Xue-Bin

    2016-01-01

    We investigated the high-order harmonic generation (HHG) process of diatomic molecular ion $\\mathrm{H}_2^+$ in non-Born-Oppenheimer approximations. The corresponding three-dimensional time-dependent Schr\\"odinger equation is solved with arbitrary alignment angles. It is found that the nuclear motion can lead to spectral modulation of HHG. Redshifts are unique in molecular HHG which decrease with the increase of alignment angles of the molecules and are sensitive to the initial vibrational states. It can be used to extract the ultrafast electron-nuclear dynamics and image molecular structure.

  4. Generation IV Nuclear Energy Systems Construction Cost Reductions Through the Use of Virtual Environments

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Shaw; Vaugh Whisker

    2004-02-28

    The objective of this multi-phase project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. The project will test the suitability of immersive virtual reality technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups. This report presents the results of the completed project.

  5. 78 FR 79709 - Duke Energy Florida, Inc., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown...

    Science.gov (United States)

    2013-12-31

    ... Florida, Inc., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown Decommissioning Activities... System (ADAMS) Accession No. ML13340A009), for the Crystal River Unit 3 Nuclear Generating Plant (CR-3... decommissioning activities, schedule, and costs for CR-3. The NRC will hold a public meeting to discuss the...

  6. Current Status and Future Outlook of Nuclear Power Generation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuro; Yoshii, Ryosuke

    2007-07-01

    For Japan, a country poor in natural resources, in light of the tough energy situation in recent times, a National Energy Strategy with energy security at its core was established in May 2006. The key point of the Strategy is nuclear power generation, and the aim is to ensure that nuclear power generation continues to account for 30 to 40 percent or more of total electricity generated even after 2030. The first step to achieving this goal is to make maximum use of existing plants (55 plants, 49580MWe), and the aim is to achieve a 60-year service life by making improvements to plant operation and maintenance, such as extending current monitoring and maintenance of plant condition, and the implementation of plant aging management. In Japan, plant construction has been continuous since the 1970s. The current new plant construction plan (13 plants, 17230MWe) is to be achieved with a concerted, cohesive national effort. In addition, in order to complete the nuclear fuel cycle, a reprocessing plant is being constructed strictly for peaceful use, and construction of a site for disposing of high-level radioactive waste is also proceeding. Development of the next generation light water reactors and fast breeder reactor cycle is also underway. (auth)

  7. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  8. Geração hidrelétrica, termelétrica e nuclear Hydroelectric, thermal and nuclear generation

    Directory of Open Access Journals (Sweden)

    Luiz Pinguelli Rosa

    2007-04-01

    Full Text Available O artigo apresenta a situação da produção de energia elétrica no Brasil e expõe os problemas para a implementação de um novo modelo no setor energético e para a inclusão de termelétricas em um grande sistema hidrelétrico. Questões ambientais são consideradas, particularmente as emissões de gás de efeito estufa. Atenta ainda para a possível construção de novos reatores nucleares no Brasil e destaca a importância da conservação energética e do uso de fontes de energia renovável.The situation of electric energy generation in Brazil is presented here, showing the problems in the implementation of the new model for the Power Sector, as well as in the inclusion of thermal plants in a very big hydroelectric system. Environment issues are considered, in particular the greenhouse gas emissions. The article pays attention to the possible construction of new nuclear reactors in Brazil. It is pointed out the importance of energy conservation and of using renewable energy sources.

  9. An alpha particle detector for a portable neutron generator for the Nuclear Materials Identification System (NMIS)

    Science.gov (United States)

    Hausladen, P. A.; Neal, J. S.; Mihalczo, J. T.

    2005-12-01

    A recoil alpha particle detector has been developed for use in a portable neutron generator. The associated particle sealed tube neutron generator (APSTNG) will be used as an interrogation source for the Nuclear Materials Identification System (NMIS). With the coincident emission of 14.1 MeV neutrons and 3.5 MeV alpha particles produced by the D-T reaction, alpha detection determines the time and direction of the neutrons of interest for subsequent use as an active nuclear materials interrogation source. The alpha particle detector uses a ZnO(Ga) scintillator coating applied to a fiber optic face plate. Gallium-doped zinc oxide is a fast (inorganic scintillator with a high melting point (1975 °C). One detector has been installed in an APSTNG and is currently being tested. Initial results include a measured efficiency for 3.5 MeV alphas of 90%.

  10. Inspection of circumferential IGA/SCC in Bruce Unit 4 SGs

    Energy Technology Data Exchange (ETDEWEB)

    Fluit, S.; Myderwyk, H.; King, P. [Babcock and Wilcox Canada Limited, Cambridge, Ontario (Canada); Durance, D.; Sedman, K. [Bruce Power, Tiverton, Ontario (Canada)

    2008-07-01

    Circumferential IGA/SCC has been detected in the roll-transition zone of tubes in Bruce A SGs for over a decade, but recently became more pronounced in Unit 4 BO4 in 2006 and the spring of 2007. A number of ET probes have been developed to detect and characterize this degradation, including C-3/8, +Point and X-Probe. Comparisons of the inspection results from these probes and metallurgical results from removed tubes have provided insight into the strengths and limitations of each probe and how the probes can complement each other. This paper will discuss the evolution of the ET inspection approach for circumferential IGA/SCC and how the results have been used in recent FFS assessments in the Bruce Unit 4 SGs. (author)

  11. Korea`s choice of a new generation of nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Redding, J.R. [GE Nuclear Energy, San Jose, CA (United States)

    1994-12-31

    The ABWR and SBWR design, both under development at GE, provide the best platform for developing the next generation advanced plants. The ABWR, which is rapidly setting the standard for new nuclear reactor plants, is clearly the best choice to meet the present energy needs of Korea. And through a GE/Korea partnership to develop the plant of the next century, Korea will establish itself as a leader in innovative reactor technology.

  12. DRoplet and hAdron generator for nuclear collisions: An update

    Science.gov (United States)

    Tomášik, Boris

    2016-10-01

    The Monte Carlo generator DRAGON simulates hadron production in ultrarelativistic nuclear collisions. The underlying theoretical description is provided by the blast-wave model. DRAGON includes second-order angular anisotropy in transverse shape and the amplitude of the transverse expansion velocity. It also allows to simulate hadron production from a fragmented fireball, e.g. as resulting from spinodal decomposition happening at the first-order phase transition.

  13. Progress toward generating a ferret model of cystic fibrosis by somatic cell nuclear transfer

    OpenAIRE

    Engelhardt John F; Li Ziyi

    2003-01-01

    Abstract Mammalian cloning by nuclear transfer from somatic cells has created new opportunities to generate animal models of genetic diseases in species other than mice. Although genetic mouse models play a critical role in basic and applied research for numerous diseases, often mouse models do not adequately reproduce the human disease phenotype. Cystic fibrosis (CF) is one such disease. Targeted ablation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in mice does not...

  14. La polisemia comunicativa delle opere linguistiche di Bruce Nauman come adesione alle teorie del secondo Wittgenstein

    Directory of Open Access Journals (Sweden)

    Elena Magini

    2012-05-01

    Full Text Available Bruce Nauman, artista americano postminimalista, ha indagato l’elemento linguistico in tutte le sue possibilità espressive attraverso l’impiego di media disparati quali neon, audioinstallazioni, videoinstallazioni, stampe e testi. Tale pluralità metodologica risponde ad una profonda rielaborazione del Wittgenstein delle Ricerche Filosofiche. This paper aims to analyze l’influenza del pensiero wittgensteiniano sulla produzione artistica di Nauman.

  15. Projecting Dynastic Majesty: State Ceremony in the Reign of Robert Bruce

    Directory of Open Access Journals (Sweden)

    Lucinda Dean

    2015-07-01

    Full Text Available Following the murder of his rival John Comyn on 10 February at Greyfriars in Dumfries, and the crisis this act incited, Robert the Bruce’s inaugural ceremony took place at Scone in late March 1306. Much about this ceremony is speculative; however, subsequent retrospective legitimisation of the Bruce claims to the royal succession would suggest that all possible means by which Robert’s inauguration could emulate his Canmore predecessors and outline his right to rule on a level playing field with his contemporaries were amplified, particularly where they served the common purpose of legitimising Robert’s highly questioned hold on power. Fourteenth-century Scottish history is inextricably entwined in the Wars of Independence, civil strife and an accelerated struggle for autonomous rule and independence. The historiography of this period is unsurprisingly heavily dominated by such themes and, while this has been offset by works exploring subjects such as the tomb of Bruce and the piety of the Bruce dynasty, the ceremonial history of this era remains firmly in the shadows. This paper will address three key ceremonies through which a king would, traditionally, make powerful statements of royal authority: the inauguration or coronation of Bruce; the marriage of his infant son to the English princess Joan of the Tower in 1328, and his extravagant funeral ceremony in 1329. By focusing thus this paper hopes to shed new light on the ‘dark and drublie days’ of fourteenth-century Scotland and reveal that glory, dynastic majesty and pleasure were as central to the Scottish monarchy in this era as war and political turbulence.

  16. R. Bruce Merrifield and Solid-Phase Peptide Synthesis: A Historical Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, A R

    2007-12-04

    Bruce Merrifield, trained as a biochemist, had to address three major challenges related to the development and acceptance of solid-phase peptide synthesis (SPPS). The challenges were (1) to reduce the concept of peptide synthesis on a insoluble support to practice, (2) overcome the resistance of synthetic chemists to this novel approach, and (3) establish that a biochemist had the scientific credentials to effect the proposed revolutionary change in chemical synthesis. How these challenges were met is discussed in this article.

  17. Kuldlõvid Louise Bourgeois'le, Bruce Naumanile ja Itaalia paviljonile / Reet Varblane

    Index Scriptorium Estoniae

    Varblane, Reet, 1952-

    1999-01-01

    Veneetsia 48. rahvusvahelise kunstibiennaali preemiasaajad, premeeritud tööd, korralduskomitee ja žürii koosseis. Kuldlõvid: Louise Bourgeois, Bruce Nauman, Itaalia paviljon (Monica Bonvicini, Bruna Esposito, Luisa Lambri, Paola Pivi, Grazia Toderi ühisprojekt); kolm rahvusvahelist preemiat: Doug Aitken, Cai Gou-Qiang, Shirin Neshat; žürii tõstis esile: Georges Abeagbo, Eija-Liisa Ahtila, Katarzyna Kozura ? (Kozyra), Lee Bul; UNESCO preemia: Ghada Amer

  18. Reconciling nuclear risk: The impact of the Fukushima accident on comparative preferences for nuclear power in UK electricity generation

    OpenAIRE

    Jones, C.; Elgueta, H.; Eiser, J.

    2015-01-01

    Polls conducted in the United Kingdom following the Fukushima nuclear accident (March 2011) indicated a fairly muted and temporary shift in public approval of nuclear power. This study investigated how: (a) comparative preferences for nuclear power in the U nited Kingdom might have been affected by the accident; and (b) how “supporters” of nuclear power reconciled their pro-nuclear attitude in the wake of the disaster. Between-subjects comparisons with a pre-Fukushima sample revealed our post...

  19. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Final report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Mockups applied to design review of AP600/1000, Construction planning for AP 600, and AP 1000 maintenance evaluation. Proof of concept study also performed for GenIV PBMR models.

  20. Spent Nuclear Fuel Project (SNFP) gas generation from N-Fuel in multi-canister overpacks

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, T.D.

    1996-08-01

    During the conversion from wet pool storage for spent nuclear fuel at Hanford, gases will be generated from both radiolysis and chemical reactions. The gas generation phenomenon needs to be understood as it applies to safety and design issues,specifically over pressurization of sealed storage containers,and detonation/deflagration of flammable gases. This study provides an initial basis to predict the implications of gas generation on the proposed functional processes for spent nuclear fuel conversion from wet to dry storage. These projections are based upon examination of the history of fuel manufacture at Hanford, irradiation in the reactors, corrosion during wet pool storage, available fuel characterization data and available information from literature. Gas generation via radiolysis and metal corrosion are addressed. The study examines gas generation, the boundary conditions for low medium and high levels of sludge in SNF storage/processing containers. The functional areas examined include: flooded and drained Multi-Canister Overpacks, cold vacuum drying, shipping and staging and long term storage.

  1. Bruce lee martial arts thought research%李小龙武术思想研究

    Institute of Scientific and Technical Information of China (English)

    孔令超

    2016-01-01

    Bruce lee as a milestone of the Chinese martial character,martial arts of Chinese martial arts and even the world has produced unprecedented impact.Bruce lee's success in martial arts,and he has is closely related to the different ideas of martial arts,including innovation of martial arts;Actual combat martial arts;The thought of fusion martial arts and philosophy;Pursuit of the perfect wushu thoughts,etc.Bruce lee's these martial arts ideas for development and promote the traditional martial arts today has very important significance.%李小龙身为中国武术界的里程碑式人物,对中国武术乃至世界武术都产生了前无古人的影响。李小龙在武术上的成就,与他本身具有的与众不同的武术思想密切相关,包括勇于创新的武术思想;实战主义武术思想;武术与哲学融合的思想;追求完美的武术思想等。李小龙的这些武术思想对于今天发展和推广传统武术都有十分重要的借鉴意义。

  2. Disposal of Steam Generators from Decommissioning of PWR Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Walberg, Mirko; Viermann, Joerg; Beverungen, Martin [GNS Gesellschaft fuer Nuklear-Service mbH, Hollestrasse 7A, 45127 Essen (Germany); Kemp, Lutz [Kernkraftwerk Stade GmbH and Co.oHG, Bassenflether Chaussee, 21683 Stade (Germany); Lindstroem, Anders [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden)

    2008-07-01

    Amongst other materials remarkable amounts of radioactively contaminated or activated scrap are generated from the dismantling of Nuclear Power Plants. These scrap materials include contaminated pipework, fittings, pumps, the reactor pressure vessel and other large components, most of them are heat exchangers. Taking into account all commercial and technical aspects an external processing and subsequent recycling of the material might be an advantageous option for many of these components. The disposal of steam generators makes up an especially challenging task because of their measures, their weight and compared to other heat exchangers high radioactive inventory. Based on its experiences from many years of disposal of smaller components of NPP still in operation or under decommissioning GNS and Studsvik Nuclear developed a concept for disposal of steam generators, also involving experiences made in Sweden. The concept comprises transport preparations and necessary supporting documents, the complete logistics chain, steam generator treatment and the processing of arising residues and materials not suitable for recycling. The first components to be prepared, shipped and treated according to this concept were four steam generators from the decommissioning of the German NPP Stade which were removed from the plant and shipped to the processing facility during the third quarter of 2007. Although the plant had undergone a full system decontamination, due to the remaining contamination in a number of plugged tubes the steam generators had to be qualified as industrial packages, type 2 (IP-2 packages), and according to a special requirement of the German Federal Office for Radiation Protection a license for a shipment under special arrangement had to be applied for. The presentation gives an overview of the calculations and evidences required within the course of the IP-2 qualification, additional requirements of the competent authorities during the licensing procedure as

  3. All Publishers are Paper Tigers or Frank Hardy and Bruce Pascoe Give Advice to Budding Short Story Writers.

    Science.gov (United States)

    Shepherd, Greg

    1984-01-01

    Relates Frank Hardy's and Bruce Pascoe's advice to students in a writing class concerning what they believe to be the necessary qualities of a good short story from the editing and publishing standpoint. (HOD)

  4. The development of new radionuclide generator systems for nuclear medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; Callahan, A.P.; Mirzadeh, S. (Oak Ridge National Lab., TN (USA)); Brihaye, C.; Guillaume, M. (Liege Univ. (Belgium). Cyclotron Research Center)

    1991-01-01

    Radioisotope generator systems have traditionally played a central role in nuclear medicine in providing radioisotopes for both research and clinical applications. In this paper, the development of several tungsten-188/rhenium-188 prototype generators which provide rhenium-188 for radioimmunotherapy (RAIT) is discussed. The authors have recently demonstrated that carrier-free iridium-194 can be obtained from the activated carbon system from decay of reactor-produced osmium-194 for potential RAIT applications. Instrumentation advances such as the new generation of high-count-rate (fast) gamma camera systems for first-pass technology require the availability of generator-produced ultra short-lived radioisotopes for radionuclide angiography (RNA). The activated carbon generator is an efficient system to obtain ultra short-lived iridium-191 m from osmium-191 for RNA. In addition, the growing number of PET centers has stimulated research in generators which provide positron-emitting radioisotopes. Copper-62, obtained from the zinc-62 generator, is currently used for PET evaluation of organ perfusion. The availability of the parent radioisotopes, the fabrication and use of these generators, and the practical factors for use of these systems in the radiopharmacy are discussed. 74 refs., 6 figs., 5 tabs.

  5. Ethics Beyond Finitude: Responsibility towards Future Generations and Nuclear Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Loefquist, Lars

    2008-05-15

    This dissertation has three aims: 1. To evaluate several ethical theories about responsibility towards future generations. 2. To construct a theory about responsibility towards future generations. 3. To carry out an ethical evaluation of different nuclear waste management methods. Five theories are evaluated with the help of evaluative criteria, primarily: A theory must provide future generations with some independent moral status. A theory should acknowledge moral pluralism. A theory should provide some normative claims about real-world problems. Derek Parfit's theory provides future generations with full moral status. But it is incompatible with moral pluralism, and does not provide reasonable normative claims about real-world problems. Brian Barry's theory provides such claims and a useful idea about risk management, but it does not provide an argument why future generations ought to exist. Avner de-Shalit's theory explains why they ought to exist; however, his theory can not easily explain why we ought to care for other people than those in our own community. Emmanuel Agius' theory gives an ontological explanation for mankind's unity, but reduces conflicts of interests to a common good. Finally, Hans Jonas' theory shifts the focus from the situation of future generations to the preconditions of human life generally. However, his theory presupposes a specific ontology, which might be unable to motivate people to act. The concluding chapters describe a narrative theory of responsibility. It claims that we should comprehend ourselves as parts of the common story of mankind and that we ought to provide future generations with equal opportunities. This implies that we should avoid transferring risks and focus on reducing the long-term risks associated with the nuclear waste

  6. High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.C.

    2002-11-01

    OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best

  7. Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Simos, N.

    2011-05-01

    In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the

  8. The Coming Nuclear Renaissance for Next Generation Safeguards Specialists--Maximizing Potential and Minimizing the Risks

    Energy Technology Data Exchange (ETDEWEB)

    Eipeldauer, Mary D [ORNL

    2009-01-01

    This document is intended to provide an overview of the workshop entitled 'The Coming Nuclear Renaissance for the Next Generation Safeguards Experts-Maximizing Benefits While Minimizing Proliferation Risks', conducted at Oak Ridge National Laboratory (ORNL) in partnership with the Y-12 National Security Complex (Y-12) and the Savannah River National Laboratory (SRNL). This document presents workshop objectives; lists the numerous participant universities and individuals, the nuclear nonproliferation lecture topics covered, and the facilities tours taken as part of the workshop; and discusses the university partnership sessions and proposed areas for collaboration between the universities and ORNL for 2009. Appendix A contains the agenda for the workshop; Appendix B lists the workshop attendees and presenters with contact information; Appendix C contains graphics of the evaluation form results and survey areas; and Appendix D summarizes the responses to the workshop evaluation form. The workshop was an opportunity for ORNL, Y-12, and SRNL staff with more than 30 years combined experience in nuclear nonproliferation to provide a comprehensive overview of their expertise for the university professors and their students. The overall goal of the workshop was to emphasize nonproliferation aspects of the nuclear fuel cycle and to identify specific areas where the universities and experts from operations and national laboratories could collaborate.

  9. Evaluation of High-Performance Space Nuclear Electric Generators for Electric Propulsion Application

    Science.gov (United States)

    Woodcock, Gordon; Kross, Dennis A. (Technical Monitor)

    2002-01-01

    Electric propulsion applications are enhanced by high power-to-mass ratios for their electric power sources. At multi-megawatt levels, we can expect thrust production systems to be less than 5 kg/kWe. Application of nuclear electric propulsion to human Mars missions becomes an attractive alternative to nuclear thermal propulsion if the propulsion system is less than about 10 kg/kWe. Recent references have projected megawatt-plus nuclear electric sources at specific mass values from less than 1 kg/kWe to about 5 kg/kWe. Various assumptions are made regarding power generation cycle (turbogenerator; MHD (magnetohydrodynamics)) and reactor heat source design. The present paper compares heat source and power generation options on the basis of a parametric model that emphasizes heat transfer design and realizable hardware concept. Pressure drop (important!) is included in the power cycle analysis, and MHD and turbogenerator cycles are compared. Results indicate that power source specific mass less than 5 kg/kWe is attainable, even if peak temperatures achievable are limited to 1500 K. Projections of specific mass less than 1 kg/kWe are unrealistic, even at the highest peak temperatures considered.

  10. Developing the concept of maintenance and repairs in projects of power units for new-generation nuclear power stations

    Science.gov (United States)

    Gurinovich, V. D.; Yanchenko, Yu. A.

    2012-05-01

    Results from conceptual elaboration of individual requirements for the system of maintenance and repairs that must be implemented in the projects of new-generation nuclear power stations are presented taking as an example the power unit project for a nuclear power station equipped with a standard optimized VVER reactor with enhanced information support (the so-called VVER TOI reactor). Implementation of these concepts will help to achieve competitiveness of such nuclear power stations in the domestic and international markets.

  11. Simulation modeling of nuclear steam generator water level process--a case study

    Science.gov (United States)

    Zhao; Ou; Du

    2000-01-01

    Simulation modeling of the nuclear steam generator (SG) water level process in Qinshan Nuclear Power Plant (QNPP) is described in this paper. A practical methodology was adopted so that the model is both simple and accurate for control engineering implementation. The structure of the model is in the form of a transfer function, which was determined based on first-principles analysis and expert experience. The parameters of the model were obtained by taking advantage of the recorded historical response curves under the existing closed-loop control system. The results of process dimensional data verification and experimental tests demonstrate that the simulation model depicts the main dynamic characteristics of the SG water level process and is in accordance with the field recorded response curves. The model has been successfully applied to the design and test of an advanced digital feedwater control system in QNPP.

  12. 78 FR 45987 - Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to...

    Science.gov (United States)

    2013-07-30

    ... COMMISSION Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to... COLs were issued to Southern Nuclear Operating Company, Inc., and Georgia Power Company, Oglethorpe... Search.'' For problems with ADAMS, please contact the NRC's Public Document Room (PDR) reference staff...

  13. 78 FR 45989 - Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to...

    Science.gov (United States)

    2013-07-30

    ... COMMISSION Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to... COLs were issued to Southern Nuclear Operating Company, Inc., and Georgia Power Company, Oglethorpe..., select ``ADAMS Public Documents'' and then select ``Begin Web-based ADAMS Search.'' For problems...

  14. Analysis of cat oocyte activation methods for the generation of feline disease models by nuclear transfer

    Directory of Open Access Journals (Sweden)

    Herrick Jason R

    2009-12-01

    Full Text Available Abstract Background Somatic cell nuclear transfer in cats offers a useful tool for the generation of valuable research models. However, low birth rates after nuclear transfer hamper exploitation of the full potential of the technology. Poor embryo development after activation of the reconstructed oocytes seems to be responsible, at least in part, for the low efficiency. The objective of this study was to characterize the response of cat oocytes to various stimuli in order to fine-tune existing and possibly develop new activation methods for the generation of cat disease models by somatic cell nuclear transfer. Methods First, changes in the intracellular free calcium concentration [Ca2+]i in the oocytes induced by a number of artificial stimuli were characterized. The stimuli included electroporation, ethanol, ionomycin, thimerosal, strontium-chloride and sodium (Na+-free medium. The potential of the most promising treatments (with or without subsequent incubation in the presence of cycloheximide and cytochalasin B to stimulate oocyte activation and support development of the resultant parthenogenetic embryos was then evaluated. Finally, the most effective methods were selected to activate oocytes reconstructed during nuclear transfer with fibroblasts from mucopolysaccharidosis I- and alpha-mannosidosis-affected cats. Results All treatments were able to elicit a [Ca2+]i elevation in the ooplasm with various characteristics. Pronuclear formation and development up to the blastocyst stage was most efficiently triggered by electroporation (60.5 +/- 2.9 and 11.5 +/- 1.7% and the combined thimerosal/DTT treatment (67.7 +/- 1.8 and 10.6 +/- 1.9%; incubation of the stimulated oocytes with cycloheximide and cytochalasin B had a positive effect on embryo development. When these two methods were used to activate oocytes reconstructed during nuclear transfer, up to 84.9% of the reconstructed oocytes cleaved. When the 2 to 4-cell embryos (a total of 220 were

  15. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, Bernhard; Bross, Stephan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2016-05-15

    KSB has been developing and producing pumps for thermal power plants for nearly 90 years. Consequently, KSB also started to develop and manufacture pumps for all kinds of nuclear power plants from the very beginning of the civil use of nuclear energy. This is especially true for reactor coolant pumps for pressurized water reactors. For the generation of advanced evolutionary reactors (Generation III+ reactors), KSB developed an advanced shaft seal system which is also able to fulfill the requirements of station blackout conditions. The tests in the KSB test rigs, which were successfully completed in December 2015, proved the full functionality of the new design. For generation III+ passive plant reactors KSB developed a new reactor coolant pump type called RUV, which is based on the experience of classic reactor coolant pumps and reactor internal pumps. It is a very compact, hermetically sealed vertical pump-motor unit with a wet winding motor. A full scale prototype successfully passed the 1st stage qualification test program in October 2015.

  16. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    Science.gov (United States)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  17. Communication: Automatic code generation enables nuclear gradient computations for fully internally contracted multireference theory

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, Matthew K.; Shiozaki, Toru [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States)

    2015-02-07

    Analytical nuclear gradients for fully internally contracted complete active space second-order perturbation theory (CASPT2) are reported. This implementation has been realized by an automated code generator that can handle spin-free formulas for the CASPT2 energy and its derivatives with respect to variations of molecular orbitals and reference coefficients. The underlying complete active space self-consistent field and the so-called Z-vector equations are solved using density fitting. The implementation has been applied to the vertical and adiabatic ionization potentials of the porphin molecule to illustrate its capability.

  18. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  19. Generation of low-frequency electric and magnetic fields during large- scale chemical and nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Adushkin, V.V. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres; Dubinya, V.A.; Karaseva, V.A.; Soloviev, S.P.; Surkov, V.V. [Lawrence Livermore National Lab., CA (United States)

    1995-06-01

    We discuss the main parameters of the electric field in the surface layer of the atmosphere and the results of the investigations of the natural electric field variations. Experimental investigations of the electromagnetic field for explosions in air are presented. Electromagnetic signals generated by underground nuclear and chemical explosions are discussed and explosions for 1976--1991 are listed. Long term anomalies of the earth`s electromagnetic field in the vicinity of underground explosions were also investigated. Study of the phenomenon of the irreversible shock magnetization showed that in the zone nearest to the explosion the quasistatic magnetic field decreases in inverse proportion to the distance.

  20. Effect of Hurricane Andrew on the Turkey Point Nuclear Generating Station from August 20--30, 1992. [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hebdon, F.J. [Institute of Nuclear Power Operations, Atlanta, GA (United States)

    1993-03-01

    On August 24, 1992, Hurricane Andrew, a Category 4 hurricane, struck the Turkey Point Electrical Generating Station with sustained winds of 145 mph (233 km/h). This is the report of the team that the US Nuclear Regulatory Commission (NRC) and the Institute of Nuclear Power Operations (INPO) jointly sponsored (1) to review the damage that the hurricane caused the nuclear units and the utility`s actions to prepare for the storm and recover from it, and (2) to compile lessons that might benefit other nuclear reactor facilities.

  1. The economic valuation on atmospheric improvement benefit by nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, S. J.; Yoo, S. H.; Han, S. Y.; Do, G. W.; Lee, J. S. [Korea Univ., Seoul (Korea)

    2000-12-01

    The major contents are as follows : To begin with, major air pollutants' emissions and emission reduction facilities in industrial sectors including a power generation were investigated and the future prospect was suggested. Environmental effects by attributes of air pollutions were summarized through a extensive literature survey. And the concept of benefit-cost based upon social costs and economic values of generation was established to estimate atmospheric improvement benefits by using a nuclear power. As a result of investigating many valuation methodologies that can estimate economic values of environmental improvement, we adopted MAUA(multi-attribute utility assessment) as a research method and estimated environmental costs by air pollutant and by power generating source. Also, we presented foreign case studies related to social costs in power generating sector and horizontally compared study's results home and abroad. Then, we set up four scenarios based on total generation that the 5th long-term power resources planning forecasted and calculated economic values of atmospheric improvement benefits among scenarios. Further, we suggested the results incorporating uncertainty of estimation parameters. Finally, we suggested a rational ground to move toward environment-friendly energy consumption and proposed a plan for the national energy policy against the green age in the 21th century. 147 refs., 45 figs., 103 tabs. (Author)

  2. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  3. 77 FR 66484 - PSEG Nuclear LLC; Hope Creek Generating Station and Salem Generating Station, Units 1 and 2...

    Science.gov (United States)

    2012-11-05

    ... for Nuclear Power Plant Personnel,'' endorses the Nuclear Energy Institute (NEI) report, NEI 06-11, Revision 1, ``Managing Personnel Fatigue at Nuclear Power Plants,'' with clarifications, additions and... emergency, the licensee is immediately subject to the scheduling requirements of 10 CFR 26.205(c) and...

  4. Automatic code generation enables nuclear gradient computations for fully internally contracted multireference theory

    CERN Document Server

    MacLeod, Matthew K

    2015-01-01

    Analytical nuclear gradients for fully internally contracted complete active space second-order perturbation theory (CASPT2) are reported. This implementation has been realized by an automated code generator that can handle spin-free formulas for the CASPT2 energy and its derivatives with respect to variations of molecular orbitals and reference coefficients. The underlying complete active space self-consistent field and the so-called Z-vector equations are solved using density fitting. With full internal contraction the size of first-order wave functions scales polynomially with the number of active orbitals. The CASPT2 gradient program and the code generator are both publicly available. This work enables the CASPT2 geometry optimization of molecules as complex as those investigated by respective single-point calculations.

  5. Bruce King. The Oxford English Literary History: 1948-2000 - The Internationalization of English Literature

    Directory of Open Access Journals (Sweden)

    Xavier PONS

    2006-10-01

    Full Text Available This book is about Britain’s ethnic literature – ethnic in the sense of non-white, otherwise the label would have to include Irish, Welsh and Scottish literatures, as well as the purely English, if such an improbable creature existed.Bruce King’s The Internationalization of English Literature is the concluding volume of the Oxford English Literary History thirteen-volume series, a fitting conclusion that shows how black and Asian writers, whether immigrants themselves or the sons and daughter...

  6. Pacing the Cell: Walking and Productivity in the Work of Bruce Nauman

    Directory of Open Access Journals (Sweden)

    Ruth Burgon

    2016-12-01

    Full Text Available After graduating from art school in the late 1960s Bruce Nauman found himself pacing his studio, unsure how to produce work as a professional artist. Out of this practice arose several films and videos recording these performances of studio pacing. This paper draws upon Michel Foucault’s Discipline and Punish (1975, translated into English 1977 to shed light upon the aesthetic of confinement and incarceration found in Nauman’s use of the walking body in this early work.

  7. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D [ORNL; Bratton, Rob [Idaho National Laboratory (INL); Marsden, Barry [University of Manchester, UK; Srinivasan, Makuteswara [U.S. Nuclear Regulatory Commission; Penfield, Scott [Technology Insights; Mitchell, Mark [PBMR (Pty) Ltd.; Windes, Will [Idaho National Laboratory (INL)

    2008-03-01

    Here we report the outcome of the application of the Nuclear Regulatory Commission (NRC) Phenomena Identification and Ranking Table (PIRT) process to the issue of nuclear-grade graphite for the moderator and structural components of a next generation nuclear plant (NGNP), considering both routine (normal operation) and postulated accident conditions for the NGNP. The NGNP is assumed to be a modular high-temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GTMHR) version [a prismatic-core modular reactor (PMR)] or a pebble-bed modular reactor (PBMR) version [a pebble bed reactor (PBR)] design, with either a direct- or indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. NGNP design options with a high-pressure steam generator (Rankine cycle) in the primary loop are not considered in this PIRT. This graphite PIRT was conducted in parallel with four other NRC PIRT activities, taking advantage of the relationships and overlaps in subject matter. The graphite PIRT panel identified numerous phenomena, five of which were ranked high importance-low knowledge. A further nine were ranked with high importance and medium knowledge rank. Two phenomena were ranked with medium importance and low knowledge, and a further 14 were ranked medium importance and medium knowledge rank. The last 12 phenomena were ranked with low importance and high knowledge rank (or similar combinations suggesting they have low priority). The ranking/scoring rationale for the reported graphite phenomena is discussed. Much has been learned about the behavior of graphite in reactor environments in the 60-plus years since the first graphite rectors went into service. The extensive list of references in the Bibliography is plainly testament to this fact. Our current knowledge base is well developed. Although data are lacking for the specific grades being considered for Generation IV (Gen IV

  8. Generation of micronuclei during interphase by coupling between cytoplasmic membrane blebbing and nuclear budding.

    Directory of Open Access Journals (Sweden)

    Koh-ichi Utani

    Full Text Available Micronucleation, mediated by interphase nuclear budding, has been repeatedly suggested, but the process is still enigmatic. In the present study, we confirmed the previous observation that there are lamin B1-negative micronuclei in addition to the positive ones. A large cytoplasmic bleb was found to frequently entrap lamin B1-negative micronuclei, which were connected to the nucleus by a thin chromatin stalk. At the bottom of the stalk, the nuclear lamin B1 structure appeared broken. Chromatin extrusion through lamina breaks has been referred to as herniation or a blister of the nucleus, and has been observed after the expression of viral proteins. A cell line in which extrachromosomal double minutes and lamin B1 protein were simultaneously visualized in different colors in live cells was established. By using these cells, time-lapse microscopy revealed that cytoplasmic membrane blebbing occurred simultaneously with the extrusion of nuclear content, which generated lamin B1-negative micronuclei during interphase. Furthermore, activation of cytoplasmic membrane blebbing by the addition of fresh serum or camptothecin induced nuclear budding within 1 to 10 minutes, which suggested that blebbing might be the cause of the budding. After the induction of blebbing, the frequency of lamin-negative micronuclei increased. The budding was most frequent during S phase and more efficiently entrapped small extrachromosomal chromatin than the large chromosome arm. Based on these results, we suggest a novel mechanism in which cytoplasmic membrane dynamics pulls the chromatin out of the nucleus through the lamina break. Evidence for such a mechanism was obtained in certain cancer cell lines including human COLO 320 and HeLa. The mechanism could significantly perturb the genome and influence cancer cell phenotypes.

  9. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  10. X-ray-generated heralded macroscopical quantum entanglement of two nuclear ensembles.

    Science.gov (United States)

    Liao, Wen-Te; Keitel, Christoph H; Pálffy, Adriana

    2016-09-19

    Heralded entanglement between macroscopical samples is an important resource for present quantum technology protocols, allowing quantum communication over large distances. In such protocols, optical photons are typically used as information and entanglement carriers between macroscopic quantum memories placed in remote locations. Here we investigate theoretically a new implementation which employs more robust x-ray quanta to generate heralded entanglement between two crystal-hosted macroscopical nuclear ensembles. Mössbauer nuclei in the two crystals interact collectively with an x-ray spontaneous parametric down conversion photon that generates heralded macroscopical entanglement with coherence times of approximately 100 ns at room temperature. The quantum phase between the entangled crystals can be conveniently manipulated by magnetic field rotations at the samples. The inherent long nuclear coherence times allow also for mechanical manipulations of the samples, for instance to check the stability of entanglement in the x-ray setup. Our results pave the way for first quantum communication protocols that use x-ray qubits.

  11. Possible generation of heat from nuclear fusion in Earth's inner core.

    Science.gov (United States)

    Fukuhara, Mikio

    2016-11-23

    The cause and source of the heat released from Earth's interior have not yet been determined. Some research groups have proposed that the heat is supplied by radioactive decay or by a nuclear georeactor. Here we postulate that the generation of heat is the result of three-body nuclear fusion of deuterons confined in hexagonal FeDx core-centre crystals; the reaction rate is enhanced by the combined attraction effects of high-pressure (~364 GPa) and high-temperature (~5700 K) and by the physical catalysis of neutral pions: (2)D + (2)D + (2)D → 2(1)H + (4)He + 2  + 20.85 MeV. The possible heat generation rate can be calculated as 8.12 × 10(12) J/m(3), based on the assumption that Earth's primitive heat supply has already been exhausted. The H and He atoms produced and the anti-neutrino are incorporated as Fe-H based alloys in the H-rich portion of inner core, are released from Earth's interior to the universe, and pass through Earth, respectively.

  12. Possible generation of heat from nuclear fusion in Earth’s inner core

    Science.gov (United States)

    Fukuhara, Mikio

    2016-11-01

    The cause and source of the heat released from Earth’s interior have not yet been determined. Some research groups have proposed that the heat is supplied by radioactive decay or by a nuclear georeactor. Here we postulate that the generation of heat is the result of three-body nuclear fusion of deuterons confined in hexagonal FeDx core-centre crystals; the reaction rate is enhanced by the combined attraction effects of high-pressure (~364 GPa) and high-temperature (~5700 K) and by the physical catalysis of neutral pions: 2D + 2D + 2D → 21H + 4He + 2  + 20.85 MeV. The possible heat generation rate can be calculated as 8.12 × 1012 J/m3, based on the assumption that Earth’s primitive heat supply has already been exhausted. The H and He atoms produced and the anti-neutrino are incorporated as Fe-H based alloys in the H-rich portion of inner core, are released from Earth’s interior to the universe, and pass through Earth, respectively.

  13. X-ray-generated heralded macroscopical quantum entanglement of two nuclear ensembles

    Science.gov (United States)

    Liao, Wen-Te; Keitel, Christoph H.; Pálffy, Adriana

    2016-09-01

    Heralded entanglement between macroscopical samples is an important resource for present quantum technology protocols, allowing quantum communication over large distances. In such protocols, optical photons are typically used as information and entanglement carriers between macroscopic quantum memories placed in remote locations. Here we investigate theoretically a new implementation which employs more robust x-ray quanta to generate heralded entanglement between two crystal-hosted macroscopical nuclear ensembles. Mössbauer nuclei in the two crystals interact collectively with an x-ray spontaneous parametric down conversion photon that generates heralded macroscopical entanglement with coherence times of approximately 100 ns at room temperature. The quantum phase between the entangled crystals can be conveniently manipulated by magnetic field rotations at the samples. The inherent long nuclear coherence times allow also for mechanical manipulations of the samples, for instance to check the stability of entanglement in the x-ray setup. Our results pave the way for first quantum communication protocols that use x-ray qubits.

  14. Progress toward generating a ferret model of cystic fibrosis by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Engelhardt John F

    2003-11-01

    Full Text Available Abstract Mammalian cloning by nuclear transfer from somatic cells has created new opportunities to generate animal models of genetic diseases in species other than mice. Although genetic mouse models play a critical role in basic and applied research for numerous diseases, often mouse models do not adequately reproduce the human disease phenotype. Cystic fibrosis (CF is one such disease. Targeted ablation of the cystic fibrosis transmembrane conductance regulator (CFTR gene in mice does not adequately replicate spontaneous bacterial infections observed in the human CF lung. Hence, several laboratories are pursuing alternative animal models of CF in larger species such as the pig, sheep, rabbits, and ferrets. Our laboratory has focused on developing the ferret as a CF animal model. Over the past few years, we have investigated several experimental parameters required for gene targeting and nuclear transfer (NT cloning in the ferret using somatic cells. In this review, we will discuss our progress and the hurdles to NT cloning and gene-targeting that accompany efforts to generate animal models of genetic diseases in species such as the ferret.

  15. Analysis of Emergency Diesel Generators Failure Incidents in Nuclear Power Plants

    Science.gov (United States)

    Hunt, Ronderio LaDavis

    In early years of operation, emergency diesel generators have had a minimal rate of demand failures. Emergency diesel generators are designed to operate as a backup when the main source of electricity has been disrupted. As of late, EDGs (emergency diesel generators) have been failing at NPPs (nuclear power plants) around the United States causing either station blackouts or loss of onsite and offsite power. These failures occurred from a specific type called demand failures. This thesis evaluated the current problem that raised concern in the nuclear industry which was averaging 1 EDG demand failure/year in 1997 to having an excessive event of 4 EDG demand failure year which occurred in 2011. To determine the next occurrence of the extreme event and possible cause to an event of such happening, two analyses were conducted, the statistical and root cause analysis. Considering the statistical analysis in which an extreme event probability approach was applied to determine the next occurrence year of an excessive event as well as, the probability of that excessive event occurring. Using the root cause analysis in which the potential causes of the excessive event occurred by evaluating, the EDG manufacturers, aging, policy changes/ maintenance practices and failure components. The root cause analysis investigated the correlation between demand failure data and historical data. Final results from the statistical analysis showed expectations of an excessive event occurring in a fixed range of probability and a wider range of probability from the extreme event probability approach. The root-cause analysis of the demand failure data followed historical statistics for the EDG manufacturer, aging and policy changes/ maintenance practices but, indicated a possible cause regarding the excessive event with the failure components. Conclusions showed the next excessive demand failure year, prediction of the probability and the next occurrence year of such failures, with an

  16. Nuclear systems of the future: international forum generation 4 and research and development projects at the Cea; Systemes nucleaires du futur: forum international generation 4 et projets de R et D du CEA

    Energy Technology Data Exchange (ETDEWEB)

    Carre, F

    2003-07-01

    To advance nuclear energy to meet future energy needs, ten countries have agreed to develop a future generation of nuclear energy systems, known as Generation 4. A technology road map to guide the Generation 4 effort was begun. This document presents the goals for these nuclear systems and the research programs of the Cea on the gas technology, GT-MHR, VHTR and GFR and the other systems as sodium Fast Neutron reactors, supercritical water and space nuclear. (A.L.B.)

  17. Present and future nuclear power generation as a reflection of individual countries' resources and objectives

    Energy Technology Data Exchange (ETDEWEB)

    Borg, I.Y.

    1987-06-26

    The nuclear reactor industry has been in a state of decline for more than a decade in most of the world. The reasons are numerous and often unique to the energy situation of individual countries. Two commonly cited issues influence decisions relating to construction of reactors: costs and the need, or lack thereof, for additional generating capacity. Public concern has ''politicized'' the nuclear industry in many non-communist countries, causing a profound effect on the economics of the option. The nuclear installations and future plans are reviewed on a country-by-country basis for 36 countries in the light of the resources and objectives of each. Because oil and gas for power production throughout the world are being phased out as much as possible, coal-fired generation currently tends to be the chosen alternative to nuclear power production. Exceptions occur in many of the less developed countries that collectively have a very limited operating experience with nuclear reactors. The Chernobyl accident in the USSR alarmed the public; however, national strategies and plans to build reactors have not changed markedly in the interim. Assuming that the next decade of nuclear power generation is uneventful, additional electrical demand would cause the nuclear power industry to experience a rejuvenation in Europe as well as in the US. 80 refs., 3 figs., 22 tabs.

  18. Electrical energy generation in Europe the current situation and perspectives in the use of renewable energy sources and nuclear power for regional electricity generation

    CERN Document Server

    Morales Pedraza, Jorge

    2015-01-01

    The present book maximizes reader insights into the current and future roles to be played by different types of renewable energy sources and nuclear energy for the purpose of electricity generation in the European region as a whole and in a select group of European countries specifically. This book includes detailed analysis of the different types of renewable energy sources available in different European countries; the pros and cons of the use of the different types of renewables and nuclear energy for electricity generation; which energy options are available in the different European coun

  19. EVALUATION METHODOLOGY FOR PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION OF GENERATION IV NUCLEAR ENERGY SYSTEMS: AN OVERVIEW.

    Energy Technology Data Exchange (ETDEWEB)

    BARI, R.; ET AL.

    2006-03-01

    This paper provides an overview of the methodology approach developed by the Generation IV International Forum Expert Group on Proliferation Resistance & Physical Protection for evaluation of Proliferation Resistance and Physical Protection robustness of Generation IV nuclear energy systems options. The methodology considers a set of alternative systems and evaluates their resistance or robustness to a collection of potential threats. For the challenges considered, the response of the system to these challenges is assessed and expressed in terms of outcomes. The challenges to the system are given by the threats posed by potential proliferant States and sub-national adversaries on the nuclear systems. The characteristics of the Generation IV systems, both technical and institutional, are used to evaluate their response to the threats and determine their resistance against the proliferation threats and robustness against sabotage and theft threats. System response encompasses three main elements: (1) System Element Identification. The nuclear energy system is decomposed into smaller elements (subsystems) at a level amenable to further analysis. (2) Target Identification and Categorization. A systematic process is used to identify and select representative targets for different categories of pathways, within each system element, that actors (proliferant States or adversaries) might choose to use or attack. (3) Pathway Identification and Refinement. Pathways are defined as potential sequences of events and actions followed by the proliferant State or adversary to achieve its objectives (proliferation, theft or sabotage). For each target, individual pathway segments are developed through a systematic process, analyzed at a high level, and screened where possible. Segments are connected into full pathways and analyzed in detail. The outcomes of the system response are expressed in terms of PR&PP measures. Measures are high-level characteristics of a pathway that include

  20. Evaluation Methodology For Proliferation Resistance And Physical Protection Of Generation IV Nuclear Energy Systems: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    T. Bjornard; R. Bari; R. Nishimura; P. Peterson; J. Roglans; D. Bley; J. Cazalet; G.G.M. Cojazzi; P. Delaune; M. Golay; G. Rendad; G. Rochau; M. Senzaki; I. Therios; M. Zentner

    2006-05-01

    This paper provides an overview of the methodology approach developed by the Generation IV International Forum Expert Group on Proliferation Resistance & Physical Protection for evaluation of Proliferation Resistance and Physical Protection robustness of Generation IV nuclear energy systems options. The methodology considers a set of alternative systems and evaluates their resistance or robustness to a collection of potential threats. For the challenges considered, the response of the system to these challenges is assessed and expressed in terms of outcomes. The challenges to the system are given by the threats posed by potential proliferant States and sub-national adversaries on the nuclear systems. The characteristics of the Generation IV systems, both technical and institutional, are used to evaluate their response to the threats and determine their resistance against the proliferation threats and robustness against sabotage and theft threats. System response encompasses three main elements: 1.System Element Identification. The nuclear energy system is decomposed into smaller elements (subsystems) at a level amenable to further analysis. 2.Target Identification and Categorization. A systematic process is used to identify and select representative targets for different categories of pathways, within each system element, that actors (proliferant States or adversaries) might choose to use or attack. 3.Pathway Identification and Refinement. Pathways are defined as potential sequences of events and actions followed by the proliferant State or adversary to achieve its objectives (proliferation, theft or sabotage). For each target, individual pathway segments are developed through a systematic process, analyzed at a high level, and screened where possible. Segments are connected into full pathways and analyzed in detail. The outcomes of the system response are expressed in terms of PR&PP measures. Measures are high-level characteristics of a pathway that include

  1. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  2. New generation nuclear fuel structures: dense particles in selectively soluble matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sickafus, Kurt E [Los Alamos National Laboratory; Devlin, David J [Los Alamos National Laboratory; Jarvinen, Gordon D [Los Alamos National Laboratory; Patterson, Brian M [Los Alamos National Laboratory; Pattillo, Steve G [Los Alamos National Laboratory; Valdez, James [Los Alamos National Laboratory; Phillips, Jonathan [Los Alamos National Laboratory

    2009-01-01

    We have developed a technology for dispersing sub-millimeter sized fuel particles within a bulk matrix that can be selectively dissolved. This may enable the generation of advanced nuclear fuels with easy separation of actinides and fission products. The large kinetic energy of the fission products results in most of them escaping from the sub-millimeter sized fuel particles and depositing in the matrix during burning of the fuel in the reactor. After the fuel is used and allowed to cool for a period of time, the matrix can be dissolved and the fission products removed for disposal while the fuel particles are collected by filtration for recycle. The success of such an approach would meet a major goal of the GNEP program to provide advanced recycle technology for nuclear energy production. The benefits of such an approach include (1) greatly reduced cost of the actinide/fission product separation process, (2) ease of recycle of the fuel particles, and (3) a radiation barrier to prevent theft or diversion of the recycled fuel particles during the time they are re-fabricated into new fuel. In this study we describe a method to make surrogate nuclear fuels of micrometer scale W (shell)/Mo (core) or HfO2 particles embedded in an MgO matrix that allows easy separation of the fission products and their embedded particles. In brief, the method consists of physically mixing W-Mo or hafnia particles with an MgO precursor. Heating the mixture, in air or argon, without agitation, to a temperature is required for complete decomposition of the precursor. The resulting material was examined using chemical analysis, scanning electron microscopy, X-ray diffraction and micro X-ray computed tomography and found to consist of evenly dispersed particles in an MgO + matrix. We believe this methodology can be extended to actinides and other matrix materials.

  3. Generation of transgenic Wuzhishan miniature pigs expressing monomeric red fluorescent protein by somatic cell nuclear transfer.

    Science.gov (United States)

    Lu, Yue; Kang, Jin-Dan; Li, Suo; Wang, Wei; Jin, Jun-Xue; Hong, Yu; Cui, Cheng-du; Yan, Chang-Guo; Yin, Xi-Jun

    2013-08-01

    Red fluorescent protein and its variants enable researchers to study gene expression, localization, and protein-protein interactions in vitro in real-time. Fluorophores with higher wavelengths are usually preferred since they efficiently penetrate tissues and produce less toxic emissions. A recently developed fluorescent protein marker, monomeric red fluorescent protein (mRFP1), is particularly useful because of its rapid maturation and minimal interference with green fluorescent protein (GFP) and GFP-derived markers. We generated a pCX-mRFP1-pgk-neoR construct and evaluated the ability of mRFP1 to function as a fluorescent marker in transgenic Wuzhishan miniature pigs. Transgenic embryos were generated by somatic cell nuclear transfer (SCNT) of nuclei isolated from ear fibroblasts expressing mRFP1. Embryos generated by SCNT developed into blastocysts in vitro (11.65%; 31/266). Thereafter, a total of 685 transgenic embryos were transferred into the oviducts of three recipients, two of which became pregnant. Of these, one recipient had six aborted fetuses, whereas the other recipient gave birth to four offspring. All offspring expressed the pCX-mRFP1-pgk-neoR gene as shown by PCR and fluorescence in situ hybridization analysis. The transgenic pigs expressed mRFP1 in all organs and tissues at high levels. These results demonstrate that Wuzhishan miniature pigs can express mRFP1. To conclude, this transgenic animal represents an excellent model with widespread applications in medicine and agriculture.

  4. An innovative approach for Steam Generator Pressure Control of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, Avinash J., E-mail: avinashg@barc.gov.in [Reactor Safety Division, BARC, Trombay, Mumbai 400094 (India); Vijayan, P.K. [Reactor Engineering Divisions, BARC, Trombay, Mumbai 400094 (India); Bhartiya, Sharad [Chemical Engineering Departments, IIT, Powai, Mumbai (India); Kumar, Rajesh; Lele, H.G.; Vaze, K.K. [Reactor Safety Division, BARC, Trombay, Mumbai 400094 (India)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Most of the transients/accidents have their origin in the mismatch among the heat generated in the reactor core and the heat removal in the SGs. Black-Right-Pointing-Pointer The main objective of balancing the heat generation, transfer and removal gets lost due to simplification of SGPC leading to reduced availability. Black-Right-Pointing-Pointer A new Advanced Process Control (APC) is proposed to ride over the existing SGPC to achieve the goal of prompt removal of the heat transfer mismatch. Black-Right-Pointing-Pointer The APC logic will lead to overall performance improvements and plant availability for all other transients also. - Abstract: The main function of the Steam Generator Pressure Control (SGPC) Program is to match the power (heat) generation in the reactor core with the heat removal in the steam generators (SGs). For most of the designs these programs have been over simplified to cater to the limitation of the instrumentation and control, hardware and software. The main objective of balancing the heat generation, transfer and removal gets lost in the process, which leads to reduction in the availability of the nuclear power plant. This is reflected in under utilization of the process and control system provisions to avoid reactor trips on low/high pressure. Most of the transients/accidents have their origin in the mismatch among the heat generated in the reactor core and the heat removal in the SGs. A new Advanced Process Control (APC) based supervisory controller is proposed to ride over the existing SGPC to achieve the goal. This APC makes use of the estimated/measured heat generation-removal error to alter the SGPC set point to tide over the transients after detection. The transients are detected based on the magnitude of this error to activate the APC. After tiding over the transient successfully the control switches back to the existing SGPC. For evaluation of this error additional instrumentation is

  5. Structural integrity analysis of the degraded drywell containment at the Oyster Creek Nuclear generating station.

    Energy Technology Data Exchange (ETDEWEB)

    Petti, Jason P.

    2007-01-01

    This study examines the effects of the degradation experienced in the steel drywell containment at the Oyster Creek Nuclear Generating Station. Specifically, the structural integrity of the containment shell is examined in terms of the stress limits using the ASME Boiler and Pressure Vessel (B&PV) Code, Section III, Division I, Subsection NE, and examined in terms of buckling (stability) using the ASME B&PV Code Case N-284. Degradation of the steel containment shell (drywell) at Oyster Creek was first observed during an outage in the mid-1980s. Subsequent inspections discovered reductions in the shell thickness due to corrosion throughout the containment. Specifically, significant corrosion occurred in the sandbed region of the lower sphere. Since the presence of the wet sand provided an environment which supported corrosion, a series of analyses were conducted by GE Nuclear Energy in the early 1990s. These analyses examined the effects of the degradation on the structural integrity. The current study adopts many of the same assumptions and data used in the previous GE study. However, the additional computational recourses available today enable the construction of a larger and more sophisticated structural model.

  6. Mutations of nuclear localization signals in mNANOG generate dominant negative mutants

    Institute of Scientific and Technical Information of China (English)

    ZHANG Juan; ZHANG XiaoFei; PEI DuanQing

    2009-01-01

    Mouse NANOG plays a critical role in maintaining self-renewal and pluripotency of embryonic stem cells.Yet,the precise mechanism of how mNANOG functions is still less known.Here,we report that mouse NANOG has two nuclear localization signals (NLS,RKQKMR and RMKCKR) which are respon-sible for the nuclear localization and transcriptional activity in the conserved homeobox domain.NLS mutants of mouse NANOG generate:3 mutants that are localized throughout the cells and lose the transectivation function.We further prove that all three NLS mutants may interact with the wild-type mouse NANOG like NANOG dimerization itself and inhibit the wild-type mouse NANOG activity,acting as dominant negative mutants.The NLS mutants of mouse NANOG may also inhibit activity of oct4 promoter in pluripotent cells,indicating that the NLS mutants can affect the endogenous mouse NANOG function in vivo.These data suggest that the NLS mutants of mouse NANOG may be used as a tool to regulate NANOG activity in pluripotent cells.

  7. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    Energy Technology Data Exchange (ETDEWEB)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  8. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  9. STARLIB: A Next-Generation Reaction-Rate Library for Nuclear Astrophysics

    CERN Document Server

    Sallaska, A L; Champagne, A E; Goriely, S; Starrfield, S; Timmes, F X

    2013-01-01

    STARLIB is a next-generation, all-purpose nuclear reaction-rate library. For the first time, this library provides the rate probability density at all temperature grid points for convenient implementation in models of stellar phenomena. The recommended rate and its associated uncertainties are also included. Currently, uncertainties are absent from all other rate libraries, and, although estimates have been attempted in previous evaluations and compilations, these are generally not based on rigorous statistical definitions. A common standard for deriving uncertainties is clearly warranted. STARLIB represents a first step in addressing this deficiency by providing a tabular, up-to-date database that supplies not only the rate and its uncertainty but also its distribution. Because a majority of rates are lognormally distributed, this allows the construction of rate probability densities from the columns of STARLIB. This structure is based on a recently suggested Monte Carlo method to calculate reaction rates, w...

  10. Production of tungsten-188 and osmium-194 in a nuclear reactor for new clinical generators

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadeh, S.; Knapp, F.F. Jr.; Callahan, A.P.

    1991-01-01

    Rhenium-188 and iridium-194 are potential candidates for radioimmunotherapy with monoclonal antibodies directed against tumor-associated antigens. Both nuclei are short-lived and decay by high energy {Beta}{minus} emission. In addition, both nuclei emit {gamma}-rays with energy suitable for imaging. An important characteristics is availability of {sup 188}Re and {sup 194}Ir from decay of reactor-produced parents ({sup 188}W and {sup 194}Os, respectively) in convenient generator systems. The {sup 188}W and {sup 194}Os are produced by double neutron capture of {sup 186}W and {sup 192}Os, respectively. The large scale production yields of {sup 188}W in several nuclear reactors will be presented. We also report a new management for the cross-section of {sup 193}Os(n,{gamma}){sup 194}Os reaction and discuss the feasibility of producing sufficient quantities of {sup 194}Os. 17 refs., 1 fig., 2 tabs.

  11. Non-destructive research methods applied on materials for the new generation of nuclear reactors

    Science.gov (United States)

    Bartošová, I.; Slugeň, V.; Veterníková, J.; Sojak, S.; Petriska, M.; Bouhaddane, A.

    2014-06-01

    The paper is aimed on non-destructive experimental techniques applied on materials for the new generation of nuclear reactors (GEN IV). With the development of these reactors, also materials have to be developed in order to guarantee high standard properties needed for construction. These properties are high temperature resistance, radiation resistance and resistance to other negative effects. Nevertheless the changes in their mechanical properties should be only minimal. Materials, that fulfil these requirements, are analysed in this work. The ferritic-martensitic (FM) steels and ODS steels are studied in details. Microstructural defects, which can occur in structural materials and can be also accumulated during irradiation due to neutron flux or alpha, beta and gamma radiation, were analysed using different spectroscopic methods as positron annihilation spectroscopy and Barkhausen noise, which were applied for measurements of three different FM steels (T91, P91 and E97) as well as one ODS steel (ODS Eurofer).

  12. Environmental radiological studies downstream from Rancho Seco Nuclear Power Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Noshkin, V.E.; Wong, K.M.; Eagle, R.J.; Dawson, J.W.; Brunk, J.L.; Jokela, T.A.

    1985-03-22

    This report summarizes the information compiled in 1984 while assessing the environmental impact of radionuclides in aquatic releases from the Rancho Seco Nuclear Power Generating Station. Gamma-emitting radionuclides discharged since 1981 are found in many of the dietary components derived from the creeks receiving the effluent wastewater. Some soils and crops are found to contain radionuclides that originate from the contaminated water that was transferred to land during the irrigation season. /sup 134/Cs and /sup 137/Cs are the primary gamma-emitting radionuclides detected in the edible flesh of fish from the creeks. Concentrations in the flesh of fish decreased exponentially with distance from the plant. No significant differences in the /sup 137/Cs activity were found between male and female fish of equal size, but concentrations may vary in fish of different size, with the season and diet. 21% of the total /sup 137/Cs and /sup 134/Cs discharged between 1981 and 1984 is associated with the creek sediments to a distance of 27 km from the plant. Fractions of the missing inventory have been transferred to land during the irrigation season or to downstream regions more distant than 27 km from the plant. The radiocesium content of the sediments in 1984 decreased significantly in a downstream direction, much in the same manner as concentrations decreased in fish. Radioactivity originating from the plant was not above detection limits in any terrestrial food item sampled beyond 6.5 km from the plant. Based on the usage factors provided by individuals interviewed in a 1984 survey, the fish and aquatic-organism ingestion pathway contributed the largest radiological dose to humans utilizing products contaminated with the radionuclides in the liquid wastes discharged from the Rancho Seco Nuclear Power Generating Station in 1984.

  13. "Life without nuclear power": A nuclear plant retirement formulation model and guide based on economics. San Onofre Nuclear Generating Station case: Economic impacts and reliability considerations leading to plant retirement

    Science.gov (United States)

    Wasko, Frank

    Traditionally, electric utilities have been slow to change and very bureaucratic in nature. This culture, in and of itself, has now contributed to a high percentage of United States electric utilities operating uneconomical nuclear plants (Crooks, 2014). The economic picture behind owning and operating United States nuclear plants is less than favorable for many reasons including rising fuel, capital and operating costs (EUCG, 2012). This doctoral dissertation is specifically focused on life without nuclear power. The purpose of this dissertation is to create a model and guide that will provide electric utilities who currently operate or will operate uneconomical nuclear plants the opportunity to economically assess whether or not their nuclear plant should be retired. This economic assessment and stakeholder analysis will provide local government, academia and communities the opportunity to understand how Southern California Edison (SCE) embraced system upgrade import and "voltage support" opportunities to replace "base load" generation from San Onofre Nuclear Generating Station (SONGS) versus building new replacement generation facilities. This model and guide will help eliminate the need to build large replacement generation units as demonstrated in the SONGS case analysis. The application of The Nuclear Power Retirement Model and Guide will provide electric utilities with economic assessment parameters and an evaluation assessment progression needed to better evaluate when an uneconomical nuclear plant should be retired. It will provide electric utilities the opportunity to utilize sound policy, planning and development skill sets when making this difficult decision. There are currently 62 nuclear power plants (with 100 nuclear reactors) operating in the United States (EIA, 2014). From this group, 38 are at risk of early retirement based on the work of Cooper (2013). As demonstrated in my model, 35 of the 38 nuclear power plants qualify to move to the economic

  14. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 5 Report: Generation IV Reactor Virtual Mockup Proof-of-Principle Study

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Task 5 report is part of a 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Created a virtual mockup of PBMR reactor cavity and discussed applications of virtual mockup technology to improve Gen IV design review, construction planning, and maintenance planning.

  15. Measurements of tritium (HTO, TFWT, OBT) in environmental samples at varying distances from a nuclear generating station

    Energy Technology Data Exchange (ETDEWEB)

    Kotzer, T.G.; Workman, W.J.G

    1999-12-01

    Concentrations of tritium have been measured in environmental samples (vegetation, water, soil, air) from sites distal and proximal to a CANDU nuclear generating station in Southern Ontario (OPG-Pickering). Levels of tissue-free water tritium (TFWT) and organically bound tritium (OBT) in vegetation are as high as 24,000 TU immediately adjacent to the nuclear generating station and rapidly decrease to levels of tritium which are comparable to natural ambient concentrations for tritium in the environment (approximately {<=} 60 TU). Tritium concentrations (OBT, TFTW) have also been measured in samples of vegetation and tree rings growing substantial distances away from nuclear generating stations and are within a factor of 1 to 2 of the ambient levels of tritium measured in precipitation in several parts of Canada (approximately {<=}30 TU). (author)

  16. Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer.

    Science.gov (United States)

    Li, Honghui; Wang, Gui; Hao, Zhiqiang; Zhang, Guozhong; Qing, Yubo; Liu, Shuanghui; Qing, Lili; Pan, Weirong; Chen, Lei; Liu, Guichun; Zhao, Ruoping; Jia, Baoyu; Zeng, Luyao; Guo, Jianxiong; Zhao, Lixiao; Zhao, Heng; Lv, Chaoxiang; Xu, Kaixiang; Cheng, Wenmin; Li, Hushan; Zhao, Hong-Ye; Wang, Wen; Wei, Hong-Jiang

    2016-09-22

    Transgenic sheep can be used to achieve genetic improvements in breeds and as an important large-animal model for biomedical research. In this study, we generated a TALEN plasmid specific for ovine MSTN and transfected it into fetal fibroblast cells of STH sheep. MSTN biallelic-KO somatic cells were selected as nuclear donor cells for SCNT. In total, cloned embryos were transferred into 37 recipient gilts, 28 (75.7%) becoming pregnant and 15 delivering, resulting in 23 lambs, 12 of which were alive. Mutations in the lambs were verified via sequencing and T7EI assay, and the gene mutation site was consistent with that in the donor cells. Off-target analysis was performed, and no off-target mutations were detected. MSTN KO affected the mRNA expression of MSTN relative genes. The growth curve for the resulting sheep suggested that MSTN KO caused a remarkable increase in body weight compared with those of wild-type sheep. Histological analyses revealed that MSTN KO resulted in muscle fiber hypertrophy. These findings demonstrate the successful generation of MSTN biallelic-KO STH sheep via gene editing in somatic cells using TALEN technology and SCNT. These MSTN mutant sheep developed and grew normally, and exhibited increased body weight and muscle growth.

  17. Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design

    Science.gov (United States)

    Natesan, K.; Moisseytsev, A.; Majumdar, S.

    2009-07-01

    The Next Generation Nuclear Plant, with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 850-950 °C. In this concept, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, a nitrogen/helium mixture, or a molten salt. This paper assesses the issues pertaining to shell-and-tube and compact heat exchangers. A detailed thermal-hydraulic analysis was performed to calculate heat transfer, temperature distribution, and pressure drop inside both printed circuit and shell-and-tube heat exchangers. The analysis included evaluation of the role of key process parameters, geometrical factors in heat exchanger designs, and material properties of structural alloys. Calculations were performed for helium-to-helium, helium-to-helium/nitrogen, and helium-to-salt heat exchangers.

  18. Software emulator of nuclear pulse generation with different pulse shapes and pile-up

    Energy Technology Data Exchange (ETDEWEB)

    Pechousek, Jiri, E-mail: jiri.pechousek@upol.cz [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Konecny, Daniel [Department of Optics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77 146 Olomouc (Czech Republic); Novak, Petr; Kouril, Lukas; Kohout, Pavel [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Celiktas, Cuneyt [Department of Physics, Faculty of Science, Ege University, Bornova, Izmir (Turkey); Vujtek, Milan [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic)

    2016-08-21

    The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems.

  19. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 1: Main Report

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Sydney J [ORNL

    2008-03-01

    A phenomena identification and ranking table (PIRT) process was conducted for the Next Generation Nuclear Plant (NGNP) design. This design (in the conceptual stage) is a modular high-temperature gas-cooled reactor (HTGR) that generates both electricity and process heat for hydrogen production. Expert panels identified safety-relevant phenomena, ranked their importance, and assessed the knowledge levels in the areas of accidents and thermal fluids, fission-product transport and dose, high-temperature materials, graphite, and process heat for hydrogen production. This main report summarizes and documents the process and scope of the reviews, noting the major activities and conclusions. The identified phenomena, analyses, rationales, and associated ratings of the phenomena, plus a summary of each panel's findings, are presented. Individual panel reports for these areas are provided as attached volumes to this main report and provide considerably more detail about each panel's deliberations as well as a more complete listing of the phenomena that were evaluated.

  20. Dryout occurrence in a helically coiled steam generator for nuclear power application

    Directory of Open Access Journals (Sweden)

    Santini L.

    2014-03-01

    Full Text Available Dryout phenomena have been experimentally investigated in a helically coiled steam generator tube. The experiences carried out in the present work are part of a wide experimental program devoted to the study of a GEN III+ innovative nuclear power plant [1].The experimental facility consists in an electrically heated AISI 316L stainless steel coiled tube. The tube is 32 meters long, 12.53 mm of inner diameter, with a coil diameter of 1m and a pitch of 0.79 m, resulting in a total height of the steam generator of 8 meters. The thermo-hydraulics conditions for dryout investigations covered a spectrum of mass fluxes between 199 and 810 kg/m2s, the pressures ranges from 10.7 to 60.7 bar, heat fluxes between 43.6 to 209.3 kW/m2.Very high first qualities dryout, between 0.72 and 0.92, were found in the range of explored conditions, comparison of our results with literature available correlations shows the difficulty in predicting high qualities dryout in helical coils., immediately following the heading. The text should be set to 1.15 line spacing. The abstract should be centred across the page, indented 15 mm from the left and right page margins and justified. It should not normally exceed 200 words.

  1. Software emulator of nuclear pulse generation with different pulse shapes and pile-up

    Science.gov (United States)

    Pechousek, Jiri; Konecny, Daniel; Novak, Petr; Kouril, Lukas; Kohout, Pavel; Celiktas, Cuneyt; Vujtek, Milan

    2016-08-01

    The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems.

  2. Free Radicals Generated by Ionizing Radiation Signal Nuclear Translocation of p53

    Science.gov (United States)

    Martinez, J. D.; Pennington, M. E.; Craven, M. T.; Warters, R. L.

    1997-01-01

    The p53 tumor suppressor is a transcription factor that regulates several pathways, which function collectively to maintain the integrity of the genome. Nuclear localization is critical for wild-type function. However, the signals that regulate subcellular localization of p53 have not been identified. Here, we examine the effect of ionizing radiation on the subcellular localization of p53 in two cell lines in which p63 is normally sequestered in the cytoplasm and found that ionizing radiation caused a biphasic translocation response. p53 entered the nucleus 1-2 hours postirradiation (early response), subsequently emerged from the nucleus, and then again entered the nucleus 12-24 hours after the cells had been irradiated (delayed response). These changes in subcellular localization could be completely blocked by the free radical scavenger, WR1065. By comparison, two DNA-damaging agents that do not generate free radicals, mitomycin C and doxorubicin, caused translocation only after 12-24 h of exposure to the drugs, and this effect could not be inhibited by WR1065. Hence, although all three DNA-damaging agents induced relocalization of p53 to the nucleus, only the translocation caused by radiation was sensitive to free radical scavenging. We suggest that the free radicals generated by ionizing radiation can signal p53 translocation to the nucleus.

  3. 75 FR 3217 - J&T Hydro Company; H. Dean Brooks and W. Bruce Cox; Notice of Application for Transfer of License...

    Science.gov (United States)

    2010-01-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission J&T Hydro Company; H. Dean Brooks and W. Bruce Cox; Notice of Application... 30, 2009, J&T Hydro Company (transferor) and W. Dean Brooks, and H. Bruce Cox (transferees) filed...

  4. Bruce Kapferer, The Feast of the Sorcerer. Practices of Consciousness and Power

    OpenAIRE

    Tarabout, Gilles

    2007-01-01

    La lecture de ce livre laisse une impression mitigée, faite d’intérêt et de déception. L’intérêt tient aux thèses mêmes de Bruce Kapferer qui, à partir de sa connaissance des pratiques de sorcellerie et d’exorcisme à Sri Lanka, mène une réflexion riche et complexe sur les notions de conscience et d’action, de personne et de société. Le désappointement naît du rapport existant entre ces thèses et l’exposé ethnographique. L’auteur se démarque d’approches voyant dans la sorcellerie une forme de ...

  5. Membrane tethering of APP c-terminal fragments is a prerequisite for T668 phosphorylation preventing nuclear sphere generation.

    Science.gov (United States)

    Bukhari, Hassan; Kolbe, Katharina; Leonhardt, Gregor; Loosse, Christina; Schröder, Elisabeth; Knauer, Shirley; Marcus, Katrin; Müller, Thorsten

    2016-11-01

    A central molecular hallmark of Alzheimer's disease (AD) is the β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP), which causes the generation of different c-terminal fragments like C99, AICD57, or AICD50 that fully or in part contain the APP transmembrane domain. In this study, we demonstrate that membrane-tethered C99 is phosphorylated by JNK3A at residue T668 (APP695 numbering) to a higher extent than AICD57, whereas AICD50 is not capable of being phosphorylated. The modification decreases the turnover of APP, while the blockade of APP cleavage increases APP phosphorylation. Generation of nuclear spheres, complexes consisting of the translocated AICD, FE65 and other proteins, is significantly reduced as soon as APP c-terminal fragments are accessible for phosphorylation. This APP modification, which we identified as significantly reduced in high plaque-load areas of the human brain, is linearly dependent on the level of APP expression. Accordingly, we show that APP abundance is likewise capable of modulating nuclear sphere generation. Thus, the precise and complex regulation of APP phosphorylation, abundance, and cleavage impacts the generation of nuclear spheres, which are under discussion of being of relevance in neurodegeneration and dementia. Future pharmacological manipulation of nuclear sphere generation may be a promising approach for AD treatment.

  6. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer.

    Science.gov (United States)

    Zhou, Xiaoqing; Xin, Jige; Fan, Nana; Zou, Qingjian; Huang, Jiao; Ouyang, Zhen; Zhao, Yu; Zhao, Bentian; Liu, Zhaoming; Lai, Sisi; Yi, Xiaoling; Guo, Lin; Esteban, Miguel A; Zeng, Yangzhi; Yang, Huaqiang; Lai, Liangxue

    2015-03-01

    The domestic pig has been widely used as an important large animal model. Precise and efficient genetic modification in pig provides a great promise in biomedical research. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has been successfully used to produce many gene-targeted animals. However, these animals have been generated by co-injection of Cas9 mRNA and single-guide RNA (sgRNA) into one-cell stage embryos, which mostly resulted in mosaicism of the modification. One or two rounds of further breeding should be performed to obtain homozygotes with identical genotype and phenotype. To address this issue, gene-targeted somatic cells can be used as donor for somatic cell nuclear transfer (SCNT) to produce gene-targeted animals with single and identical mutations. In this study, we applied Cas9/sgRNAs to effectively direct gene editing in porcine fetal fibroblasts and then mutant cell colonies were used as donor to generate homozygous gene-targeted pigs through single round of SCNT. As a result, we successfully obtained 15 tyrosinase (TYR) biallelic mutant pigs and 20 PARK2 and PINK1 double-gene knockout (KO) pigs. They were all homozygous and no off-target mutagenesis was detected by comprehensive analysis. TYR (-/-) pigs showed typical albinism and the expression of parkin and PINK1 were depleted in PARK2 (-/-)/PINK1 (-/-) pigs. The results demonstrated that single- or double-gene targeted pigs can be effectively achieved by using the CRISPR/Cas9 system combined with SCNT without mosaic mutation and detectable off-target effects. This gene-editing system provides an efficient, rapid, and less costly manner to generate genetically modified pigs or other large animals.

  7. Chromodoris magnifica (Quoy & Gaimard, 1832), a new nudibranch host for the shrimp Periclimenes imperator Bruce, 1967 (Pontoniinae)

    NARCIS (Netherlands)

    Fransen, C.H.J.M.; Goud, J.

    1999-01-01

    During the NNM/Maluku Expedition 1996, in the framework of the NNM Fauna Malesiana Marine Program, a shrimp belonging to the species Periclimenes imperator Bruce, 1967, was found on a nudibranch while diving at 20 m depth in Seri Bay, on the south coast of Ambon. Periclimens imperator has been recor

  8. From the National Academies: A Tribute to the Science Education Legacy of National Academy of Sciences President Bruce Alberts

    Science.gov (United States)

    Labov, Jay B.

    2005-01-01

    This column, "From the National Academies," was Bruce Alberts' idea, one of so many for improving education. As a long-standing member of the American Society for Cell Biology, the namesake for the prize that is awarded annually to cell biologists for excellence in science education, and one of the founding editors of this journal, Alberts…

  9. Travelling Among Fellow Christians (1768-1833): James Bruce, Henry Salt and Eduard Rüppell in Abyssinia

    DEFF Research Database (Denmark)

    Friis, Ib

    2013-01-01

    In Yemen the Arabian Journey visited a Muslim country which was little known in Europe. Also the Christian highlands of Abyssinia, separated from Yemen by the Red Sea, were poorly known outside and were visited by few scientific travellers between 1750 and 1850. Most important were James Bruce (in...

  10. Threatened and endangered species evaluation for 75 licensed commercial nuclear power generating plants

    Energy Technology Data Exchange (ETDEWEB)

    Sackschewsky, M.R.

    1997-03-01

    The Endangered Species Act (ESA) of 1973, as amended, and related implementing regulations of the jurisdictional federal agencies, the U.S. Departments of Commerce and Interior, at 50 CFR Part 17. 1, et seq., require that federal agencies ensure that any action authorized, funded, or carried out under their jurisdiction is not likely to jeopardize the continued existence of any threatened or endangered species or result in the destruction or adverse modification of critical habitats for such species. The issuance and maintenance of a federal license, such as a construction permit or operating license issued by the U.S. Nuclear Regulatory Commission (NRC) for a commercial nuclear power generating facility is a federal action under the jurisdiction of a federal agency, and is therefore subject to the provisions of the ESA. The U.S. Department of the Interior (through the Fish and Wildlife Service), and the U.S. Department of Commerce, share responsibility for administration of the ESA. The National Marine Fisheries Service (NMFS) deals with species that inhabit marine environments and anadromous fish, while the U.S. Fish and Wildlife Service (USFWS) is responsible for terrestrial and freshwater species and migratory birds. A species (or other distinct taxonomic unit such as subspecies, variety, and for vertebrates, distinct population units) may be classified for protection as `endangered` when it is in danger of extinction within the foreseeable future throughout all or a significant portion of its range. A `threatened` classification is provided to those animals and plants likely to become endangered within the foreseeable future throughout all or a significant portion of their ranges. As of February 1997, there were about 1067 species listed under the ESA in the United States. Additionally there were approximately 125 species currently proposed for listing as threatened or endangered, and another 183 species considered to be candidates for formal listing proposals.

  11. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have

  12. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for

  13. Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous recombination and gene trapping through somatic cell nuclear transfer

    OpenAIRE

    Mingru Yin; Weihua Jiang; Zhenfu Fang; Pengcheng Kong; Fengying Xing; Yao Li; Xuejin Chen; Shangang Li

    2015-01-01

    The rabbit is a common animal model that has been employed in studies on various human disorders, and the generation of genetically modified rabbit lines is highly desirable. Female rabbits have been successfully cloned from cumulus cells, and the somatic cell nuclear transfer (SCNT) technology is well established. The present study generated hypoxanthine phosphoribosyltransferase (HPRT) gene knockout rabbits using recombinant adeno-associated virus-mediated homologous recombination and SCNT....

  14. 75 FR 67784 - STP Nuclear Operating Company South Texas Project Electric Generating Station, Units 3 and 4...

    Science.gov (United States)

    2010-11-03

    ... Water Act Section 402(p) Texas Pollutant Discharge Elimination System (TPDES) general permit for... surface water quality. BMPs would be ] described in a Stormwater Pollution Prevention Plan (SWPPP) that... COMMISSION STP Nuclear Operating Company South Texas Project Electric Generating Station, Units 3 and...

  15. 77 FR 49463 - Southern California Edison, San Onofre Nuclear Generating Station, Units 2 and 3; Application and...

    Science.gov (United States)

    2012-08-16

    ... Edison Company (SCE, the licensee) for operation of the San Onofre Nuclear Generating Station (SONGS... request (LAR) for SONGS, Units 2 and 3, dated July 29, 2011, requesting approval to convert the Current... Technical Specifications (STS) for Combustion Engineering Plants, NUREG-1432. In 1996, SONGS was the...

  16. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  17. Experimental and computational studies of thermal mixing in next generation nuclear reactors

    Science.gov (United States)

    Landfried, Douglas Tyler

    The Very High Temperature Reactor (VHTR) is a proposed next generation nuclear power plant. The VHTR utilizes helium as a coolant in the primary loop of the reactor. Helium traveling through the reactor mixes below the reactor in a region known as the lower plenum. In this region there exists large temperature and velocity gradients due to non-uniform heat generation in the reactor core. Due to these large gradients, concern should be given to reducing thermal striping in the lower plenum. Thermal striping is the phenomena by which temperature fluctuations in the fluid and transferred to and attenuated by surrounding structures. Thermal striping is a known cause of long term material failure. To better understand and predict thermal striping in the lower plenum two separate bodies of work have been conducted. First, an experimental facility capable of predictably recreating some aspects of flow in the lower plenum is designed according to scaling analysis of the VHTR. Namely the facility reproduces jets issuing into a crossflow past a tube bundle. Secondly, extensive studies investigate the mixing of a non-isothermal parallel round triple-jet at two jet-to-jet spacings was conducted. Experimental results were validation with an open source computational fluid dynamics package, OpenFOAMRTM. Additional care is given to understanding the implementation of the realizable k-a and Launder Gibson RSM turbulence Models in OpenFOAMRTM. In order to measure velocity and temperature in the triple-jet experiment a detailed investigation of temperature compensated hotwire anemometry is carried out with special concern being given to quantify the error with the measurements. Finally qualitative comparisons of trends in the experimental results and the computational results is conducted. A new and unexpected physical behavior was observed in the center jet as it appeared to spread unexpectedly for close spacings (S/Djet = 1.41).

  18. Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2008-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  19. Field measurements of beta ray energy spectra in CANDU nuclear generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Y.S. (Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Physics); Hirning, C.R. (Ontario Hydro, Whitby, ON (Canada)); Yuen, P.S.; Aikens, M.S. (AECL Research, Chalk River, ON (Canada). Chalk River Labs.)

    1994-01-01

    Field measurements of beta ray energy spectra have been carried out at various locations in CANDU nuclear generating stations operated by Ontario Hydro. The beta ray energy spectrometer consists of a 5 cm diameter x 2 cm thick BC-404 plastic scintillator situated behind a 100 [mu]m thick, totally depleted, silicon detector. Photon events are rejected by requiring a coincidence between the two detectors. The spectrometer is capable of measuring electron energies from 125 keV to 3.5 MeV. Beta ray energy spectra have been measured for uncontaminated and contaminated fueling machine components, fueling machine swipes and a reactor containment vault. The degree of protection afforded by various articles of protective clothing has also been investigated for the various fueling machine components. Monte Carlo calculations have been used to estimate beta factors for 100 mg.cm[sup -2] and 240 mg.cm[sup -2] LiF-TLD chips, which are used as 'skin-and 'extremity' dosemeters in the Ontario Hydro Radiation Dosimetry Programme. (Author).

  20. A Study on the Planning of Technology Development and Research for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J. and others

    2005-08-15

    This study aimed at the planning the domestic technology development of the Gen IV and the formulating the international collaborative project contents and executive plan for 'A Validity Assessment and Policies of the R and D of Generation IV Nuclear Energy Systems'. The results of the study include follows; - Survey of the technology state in the fields of the Gen IV system specific technologies and the common technologies, and the plans of the international collaborative research - Drawing up the executive research and development plan by the experts of the relevant technology field for the systems which Korean will participate in. - Formulating the effective conduction plan of the program reflecting the view of the experts from the industry, the university and the research institute. - Establishing the plan for estimation of the research fund and the manpower for the efficient utilization of the domestic available resources. This study can be useful material for evaluating the appropriateness of the Korea's participation in the international collaborative development of the Gen IV, and can be valuably utilized to establish the strategy for the effective conduction of the program. The executive plan of the research and development which was produced in this study will be used to the basic materials for the establishing the guiding direction and the strategic conduction of the program when the research and development is launched in the future.

  1. INDIVIDUAL DOSIMETRY IN DISPOSAL REPOSITORY OF HEAT-GENERATING NUCLEAR WASTE.

    Science.gov (United States)

    Pang, Bo; Saurí Suárez, Héctor; Becker, Frank

    2016-09-01

    Certain working scenarios in a disposal facility of heat-generating nuclear waste might lead to an enhanced level of radiation exposure for workers in such facilities. Hence, a realistic estimation of the personal dose during individual working scenarios is desired. In this study, the general-purpose Monte Carlo N-Particle code MCNP6 (Pelowitz, D. B. (ed). MCNP6 user manual LA-CP-13-00634, Rev. 0 (2013)) was applied to simulate a representative radiation field in a disposal facility. A tool to estimate the personal dose was then proposed by taking into account the influence of individual motion sequences during working scenarios. As basis for this approach, a movable whole-body phantom was developed to describe individual body gestures of the workers during motion sequences. In this study, the proposed method was applied to the German concept of geological disposal in rock salt. The feasibility of the proposed approach was demonstrated with an example of working scenario in an emplacement drift of a rock salt mine.

  2. Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations.

    Science.gov (United States)

    Jordan, Amy B; Boukhalfa, Hakim; Caporuscio, Florie A; Robinson, Bruce A; Stauffer, Philip H

    2015-06-02

    Heat-generating nuclear waste disposal in bedded salt during the first two years after waste emplacement is explored using numerical simulations tied to experiments of hydrous mineral dehydration. Heating impure salt samples to temperatures of 265 °C can release over 20% by mass of hydrous minerals as water. Three steps in a series of dehydration reactions are measured (65, 110, and 265 °C), and water loss associated with each step is averaged from experimental data into a water source model. Simulations using this dehydration model are used to predict temperature, moisture, and porosity after heating by 750-W waste canisters, assuming hydrous mineral mass fractions from 0 to 10%. The formation of a three-phase heat pipe (with counter-circulation of vapor and brine) occurs as water vapor is driven away from the heat source, condenses, and flows back toward the heat source, leading to changes in porosity, permeability, temperature, saturation, and thermal conductivity of the backfill salt surrounding the waste canisters. Heat pipe formation depends on temperature, moisture availability, and mobility. In certain cases, dehydration of hydrous minerals provides sufficient extra moisture to push the system into a sustained heat pipe, where simulations neglecting this process do not.

  3. Spalax™ new generation: A sensitive and selective noble gas system for nuclear explosion monitoring.

    Science.gov (United States)

    Le Petit, G; Cagniant, A; Gross, P; Douysset, G; Topin, S; Fontaine, J P; Taffary, T; Moulin, C

    2015-09-01

    In the context of the verification regime of the Comprehensive nuclear Test ban Treaty (CTBT), CEA is developing a new generation (NG) of SPALAX™ system for atmospheric radioxenon monitoring. These systems are able to extract more than 6cm(3) of pure xenon from air samples each 12h and to measure the four relevant xenon radioactive isotopes using a high resolution detection system operating in electron-photon coincidence mode. This paper presents the performances of the SPALAX™ NG prototype in operation at Bruyères-le-Châtel CEA centre, integrating the most recent CEA developments. It especially focuses on an innovative detection system made up of a gas cell equipped with two face-to-face silicon detectors associated to one or two germanium detectors. Minimum Detectable activity Concentrations (MDCs) of environmental samples were calculated to be approximately 0.1 mBq/m(3) for the isotopes (131m)Xe, (133m)Xe, (133)Xe and 0.4 mBq/m(3) for (135)Xe (single germanium configuration). The detection system might be used to simultaneously measure particulate and noble gas samples from the CTBT International Monitoring System (IMS). That possibility could lead to new capacities for particulate measurements by allowing electron-photon coincidence detection of certain fission products.

  4. D-D nuclear fusion processes induced in polyethylene foams by TW Laser-generated plasma

    Directory of Open Access Journals (Sweden)

    Torrisi L.

    2015-01-01

    Full Text Available Deuterium-Deuterium fusion processes were generated by focusing the 3 TW PALS Laser on solid deuterated polyethylene targets placed in vacuum. Deuterium ion acceleration of the order of 4 MeV was obtained using laser irradiance Iλ2 ∼ 5 × 1016 W μm2/cm2 on the target. Thin and thick targets, at low and high density, were irradiated and plasma properties were monitored “on line” and “off line”. The ion emission from plasma was monitored with Thomson Parabola Spectrometer, track detectors and ion collectors. Fast semiconductor detectors based on SiC and fast plastic scintillators, both employed in time-of-flight configuration, have permitted to detect the characteristic 3.0 MeV protons and 2.45 MeV neutrons emission from the nuclear fusion reactions. From massive absorbent targets we have evaluated the neutron flux by varying from negligible values up to about 5 × 107 neutrons per laser shot in the case of foams targets, indicating a reaction rate of the order of 108 fusion events per laser shot using “advanced targets”.

  5. Foresight of nuclear generation at long term in Mexico;Prospectiva de la generacion nucleoelectrica en Mexico a largo plazo

    Energy Technology Data Exchange (ETDEWEB)

    Guadarrama L, R.; Sanchez R, O. E.; Martin del Campo M, C., E-mail: rodrigoguadarrama28@hotmail.co [UNAM, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2009-10-15

    This paper presents an analysis of the nuclear generation expansion for the period 2008-2030. The main objective is to plan the expansion of electrical generation system at long term taking into account four decision criteria. These are, the total cost of generation, the risk associated whit changes in fuel prices, the diversity of the generation park and polluting emissions of global impact (greenhouse effect gases) and local effects (acid rain and suspended particles). The analyzed expansion plans were developed using a model of uni nodal planning called WASP-IV. The analysis methodology was based on four steps. The first consisted in developing, with model WASP-IV, different expansion plans of the electrical generation system that fulfill the energy demand and certain conditions of the study in which was optimized the additions program of generator units searching the minimal cost of electrical generation. The second step was to calculate the generation costs of each plan for two scenarios of fuel prices, also with model WASP-IV. Later was calculated the diversity index and the accumulated emissions during the expansion and the avoided emission of CO{sub 2} when units of combined cycle that burn natural gas are replaced by nuclear power units. (Author)

  6. Homogenisation method for the dynamic analysis of a complete nuclear steam generator with fluid-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Sigrist, Jean-Francois [DCNS Propulsion-DI/STS, 44620 La Montagne (France)], E-mail: jean-francois.sigrist@dcn.fr; Broc, Daniel [CEA Saclay-DEMT/EMSI, 91191 Gif-sur-Yvette (France)

    2008-09-15

    The present paper deals with the dynamic analysis of a steam generator tube bundle with fluid-structure interaction modelling. As the coupled fluid-structure problem involves a huge number of degrees of freedom to account for the tube displacements and the fluid pressure evolutions, classical coupled method cannot be applied for industrial studies. In the present case, the three-dimensional fluid-structure problem is solved with an homogenisation method, which has been previously exposed and successfully validated for FSI modelling in a nuclear reactor [Sigrist, J.F., Broc, D., 2007a. Homogenisation method for the modal analysis of a nuclear reactor with internal structures modelling and fluid-structure interaction coupling. Nuclear Engineering and Design 237, 431-440]. Formulation of the homogenisation method for general two- and three-dimensional cases is exposed in the paper. Application to a simplified, however representative, model of an actual industrial nuclear component (steam generator) is proposed. The problem modelling, which includes tube bundle, primary and secondary fluids and pressure vessel, is performed with an engineering finite element code in which the homogenisation technique has been implemented. From the practical point of view, the analysis highlights the major fluid-structure interaction effects on the dynamic behaviour of the steam generator; from the theoretical point of view, the study demonstrates the efficiency of the homogenisation method for periodic fluid-structure problems modelling in industrial configurations.

  7. Generation IV Nuclear Energy Systems Construction Cost Reductions through the use of Virtual Environments: Task 1 Completion Report

    Energy Technology Data Exchange (ETDEWEB)

    Whisker, V.E.; Baratta, A.J.; Shaw, T.S.; Winters, J.W.; Trikouros, N.; Hess, C.

    2002-11-26

    OAK B204 The objective of this project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. Specifically, this project will test the suitability of Immersive Projection Display (IPD) technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups.

  8. Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    Science.gov (United States)

    Wen, Xingshuo

    The Very High Temperature Reactor (VHTR) is one of the leading concepts of the Generation IV nuclear reactor development, which is the core component of Next Generation Nuclear Plant (NGNP). The major challenge in the research and development of NGNP is the performance and reliability of structure materials at high temperature. Alloy 617, with an exceptional combination of high temperature strength and oxidation resistance, has been selected as a primary candidate material for structural use, particularly in Intermediate Heat Exchanger (IHX) which has an outlet temperature in the range of 850 to 950°C and an inner pressure from 5 to 20MPa. In order to qualify the material to be used at the operation condition for a designed service life of 60 years, a comprehensive scientific understanding of creep behavior at high temperature and low stress regime is necessary. In addition, the creep mechanism and the impact factors such as precipitates, grain size, and grain boundary characters need to be evaluated for the purpose of alloy design and development. In this study, thermomechanically processed specimens of alloy 617 with different grain sizes were fabricated, and creep tests with a systematic test matrix covering the temperatures of 850 to 1050°C and stress levels from 5 to 100MPa were conducted. Creep data was analyzed, and the creep curves were found to be unconventional without a well-defined steady-state creep. Very good linear relationships were determined for minimum creep rate versus stress levels with the stress exponents determined around 3-5 depending on the grain size and test condition. Activation energies were also calculated for different stress levels, and the values are close to 400kJ/mol, which is higher than that for self-diffusion in nickel. Power law dislocation climb-glide mechanism was proposed as the dominant creep mechanism in the test condition regime. Dynamic recrystallization happening at high strain range enhanced dislocation climb and

  9. Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Moisseytsev, A.; Majumdar, S.; Shankar, P. S.; Nuclear Engineering Division

    2007-04-05

    The Next Generation Nuclear Plant (NGNP), which is an advanced high temperature gas reactor (HTGR) concept with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 900-1000 C. In the indirect cycle system, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, nitrogen/helium mixture, or a molten salt. The system concept for the vary high temperature reactor (VHTR) can be a reactor based on the prismatic block of the GT-MHR developed by a consortium led by General Atomics in the U.S. or based on the PBMR design developed by ESKOM of South Africa and British Nuclear Fuels of U.K. This report has made a preliminary assessment on the issues pertaining to the intermediate heat exchanger (IHX) for the NGNP. Two IHX designs namely, shell and tube and compact heat exchangers were considered in the assessment. Printed circuit heat exchanger, among various compact heat exchanger (HX) designs, was selected for the analysis. Irrespective of the design, the material considerations for the construction of the HX are essentially similar, except may be in the fabrication of the units. As a result, we have reviewed in detail the available information on material property data relevant for the construction of HX and made a preliminary assessment of several relevant factors to make a judicious selection of the material for the IHX. The assessment included four primary candidate alloys namely, Alloy 617 (UNS N06617), Alloy 230 (UNS N06230), Alloy 800H (UNS N08810), and Alloy X (UNS N06002) for the IHX. Some of the factors addressed in this report are the tensile, creep, fatigue, creep fatigue, toughness properties for the candidate alloys, thermal aging effects on the mechanical properties, American Society of Mechanical Engineers (ASME) Code compliance

  10. Measurements of beta ray spectra in CANDU nuclear generating stations using a silicon detector coincidence telescope

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Y.S.; Weizman, Y. [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Physics; Hirning, C.R. [Ontario Hydro, Whitby, ON (Canada). Health Physics Dept.

    1996-12-31

    The measurement of beta ray spectra at various work locations inside nuclear generating stations operated by Ontario Hydro is described. The measurements were carried out using an advanced coincidence telescope spectrometer using silicon detectors only. The spectrometer is capable of measuring electron energies over the range 60 keV- 2500 keV with close to 100% coincidence efficiency. Photon rejection is carried out by requiring a coincidence between either two or three silicon detectors. Monte Carlo calculations were then used to estimate beta correction factors for the LiF:Mg,Ti elements used in the Ontario Hydro thermoluminescence dosemeters. Averaging over all the measured beta correction factors for the `skin` chip (100 mg.cm{sup -2}) results in a value of 2.73 {+-} 0.77 and for the extremity dosemeter (240 mg.cm{sup -2}) an average value of 4.42 {+-} 1.17 is obtained. These values are 57% and 120% greater, respectively, than the current values used by Ontario Hydro. In addition, beta correction factors for nine representative spectra were calculated for 40 mg.cm{sup -2} chips and 20 mg.cm{sup -2} chips and the results demonstrate the benefits of decreased dosemeter thickness. The average value of the beta correction factor, as well as the spread in the beta correction factor, decreases dramatically from 4.8 {+-} 2.1 (240 mg.cm{sup -2}) to 1.29 ``1.2`` +-`` 0.1 (20 mg.cm{sup -2}). (author).

  11. Interim report on the performance of 400-megawatt and larger nuclear and coal-fired generating units: performance through 1976

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    This report is an update of DOE/ERA-0007, Interim Report on the Performance of 400 Megawatt and Larger Nuclear and Coal-Fired Generating Units - Performance Through 1975. The most recent EEI data for nuclear units and for coal units less than 600 MW(e) and having at least one full year of commercial operation are included in this analysis. The analyses cover the following: coal and nuclear units, 400-MW nameplate and larger; historical data through 1976; four industry-recognized performance indices (capacity factor, availability factor, equivalent availability, and forced outage rate); four types of geographical analysis (national, individual, individual utilities, and individual utilities by states); and rankings of states and utilities by performance indices. (MCW)

  12. Critical evaluation of the nonradiological environmental technical specifications. Volume 4. San Onofre Nuclear Generating Station, Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Cunningham, P.A.; Gray, D.D.; Kumar, K.D.

    1976-08-10

    A comprehensive study of the data collected as part of the environmental Technical Specifications program for Unit 1 of the San Onofre Nuclear Generating Station (SONGS 1) was conducted for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The program included an analysis of the hydrothermal and ecological monitoring data collected during 1975. The hydrothermal analysis includes a discussion of models used in plume predictions prior to plant operation and an evaluation of the present hydrothermal monitoring program. The ecological evaluation was directed toward reviewing the strengths and weaknesses of the various sampling programs designed to monitor the planktonic, benthic, and nektonic communities inhabiting the inshore coastal area in the vicinity of San Onofre.

  13. My City of Ruins: Bruce Springsteen e l’utopia fra le rovine

    Directory of Open Access Journals (Sweden)

    Enrico Botta

    2011-09-01

    Full Text Available The paper focuses on My City of Ruins, the song that Bruce Springsteen sang—ten days after the 09/11 terrorist attacks—for "America: A Tribute to Heroes" and that was released in the concept album The Rising in 2002. The essay aims to highlight how the song describes the post 09/11 New York City by opposing the themes of “ruins” and “utopia.” From a textual and musical point of view, My City of Ruins is, in fact, composed of a double structure that balances different feelings: the fear, pain, and loneliness of the victims, in the rock-blues first section; the faith, love, and hope, in the gospel second part. Furthermore, the paper tries to point out how My City of Ruins no longer describes the symbolic ruins of a foreign past—in line with the nineteenth and twentieth-century American cultural tradition of the Grand Tour—but defines the physical signs of a definitively collapsed “American dream,” which can survive only in a utopian and spiritual “Promised Land.”

  14. Dolomitized bryozoan bioherms from the Lower Silurian Manitoulin Formation, Bruce Peninsula, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, A.S.; Coniglo, M. (Waterloo Univ., ON (Canada))

    1992-06-01

    Several small, previously undescribed bioherms are present in the shallow shelf dolostones of the Manitoulin Formation at the Cabot Head and Wingfield Basin localities in the northernmost portion of the Bruce Peninsula region of southern Ontario. The bioherms, commonly associated with carbonate tempestites, range from 0.3 to 1.0 m in height and 0.9 to 2.5 m in width and are composed of bafflestones-floatstones and minor bindstones. The chief components of the bioherms are dolomitized lime mud and branching bryozoans. Bioherm building by bryozoans, although common in the ancient record, represents a great divergence from the mostly accessory frame encrusting role of bryozoans in modern environments. Minor skeletal components of the bioherms include echinoderms, rugose and tabulate corals and brachiopods. Laminar encrusting bryozoans exist in the top 10 cm of one of the bioherms. Some of the bioherms show evidence of water agitation that may be the result of current action induced by storm or tidal processes. The occurrence of the bioherms stretches the already known Llandoverian reef complex on Manitoulin Island further to the south. The reason why these bioherms did not reach sizes comparable to large Llandoverian or Wenlockian reefs and did not make the shift to coral-stromaporoid community is probably related to a complex interaction of factors such as community development, bathymetry, clasticity and salinity. 41 refs., 4 figs.

  15. High-fidelity MCNP modeling of a D-T neutron generator for active interrogation of special nuclear material

    Science.gov (United States)

    Katalenich, Jeff; Flaska, Marek; Pozzi, Sara A.; Hartman, Michael R.

    2011-10-01

    Fast and robust methods for interrogation of special nuclear material (SNM) are of interest to many agencies and institutions in the United States. It is well known that passive interrogation methods are typically sufficient for plutonium identification because of a relatively high neutron production rate from 240Pu [1]. On the other hand, identification of shielded uranium requires active methods using neutron or photon sources [2]. Deuterium-deuterium (2.45 MeV) and deuterium-tritium (14.1 MeV) neutron-generator sources have been previously tested and proven to be relatively reliable instruments for active interrogation of nuclear materials [3,4]. In addition, the newest generators of this type are small enough for applications requiring portable interrogation systems. Active interrogation techniques using high-energy neutrons are being investigated as a method to detect hidden SNM in shielded containers [4,5]. Due to the thickness of some containers, penetrating radiation such as high-energy neutrons can provide a potential means of probing shielded SNM. In an effort to develop the capability to assess the signal seen from various forms of shielded nuclear materials, the University of Michigan Neutron Science Laboratory's D-T neutron generator and its shielding were accurately modeled in MCNP. The generator, while operating at nominal power, produces approximately 1×10 10 neutrons/s, a source intensity which requires a large amount of shielding to minimize the dose rates around the generator. For this reason, the existing shielding completely encompasses the generator and does not include beam ports. Therefore, several MCNP simulations were performed to estimate the yield of uncollided 14.1-MeV neutrons from the generator for active interrogation experiments. Beam port diameters of 5, 10, 15, 20, and 25 cm were modeled to assess the resulting neutron fluxes. The neutron flux outside the beam ports was estimated to be approximately 2×10 4 n/cm 2 s.

  16. Multi-region fuzzy logic controller with local PID controllers for U-tube steam generator in nuclear power plant

    Directory of Open Access Journals (Sweden)

    Puchalski Bartosz

    2015-12-01

    Full Text Available In the paper, analysis of multi-region fuzzy logic controller with local PID controllers for steam generator of pressurized water reactor (PWR working in wide range of thermal power changes is presented. The U-tube steam generator has a nonlinear dynamics depending on thermal power transferred from coolant of the primary loop of the PWR plant. Control of water level in the steam generator conducted by a traditional PID controller which is designed for nominal power level of the nuclear reactor operates insufficiently well in wide range of operational conditions, especially at the low thermal power level. Thus the steam generator is often controlled manually by operators. Incorrect water level in the steam generator may lead to accidental shutdown of the nuclear reactor and consequently financial losses. In the paper a comparison of proposed multi region fuzzy logic controller and traditional PID controllers designed only for nominal condition is presented. The gains of the local PID controllers have been derived by solving appropriate optimization tasks with the cost function in a form of integrated squared error (ISE criterion. In both cases, a model of steam generator which is readily available in literature was used for control algorithms synthesis purposes. The proposed multi-region fuzzy logic controller and traditional PID controller were subjected to broad-based simulation tests in rapid prototyping software - Matlab/Simulink. These tests proved the advantage of multi-region fuzzy logic controller with local PID controllers over its traditional counterpart.

  17. The role of nuclear technology beyond power generation deserves wider recognition

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, John [nuclear 24, Redditch (United Kingdom)

    2016-07-15

    Building new nuclear power plants, extending the lifetimes of existing reactors or decommissioning plants are regular topics of debate surrounding the civil nuclear industry. Then there are the challenges faced in many countries that still await political leadership on solutions for the future safe long-term management of waste for the future. However, one aspect of the industry that impacts the everyday lives of the general public is often overlooked - and that is nuclear's role in protecting the global environment and public health.

  18. The Role of Nuclear Power in Reducing Risk of the Fossil Fuel Prices and Diversity of Electricity Generation in Tunisia: A Portfolio Approach

    Science.gov (United States)

    Abdelhamid, Mohamed Ben; Aloui, Chaker; Chaton, Corinne; Souissi, Jomâa

    2010-04-01

    This paper applies real options and mean-variance portfolio theories to analyze the electricity generation planning into presence of nuclear power plant for the Tunisian case. First, we analyze the choice between fossil fuel and nuclear production. A dynamic model is presented to illustrate the impact of fossil fuel cost uncertainty on the optimal timing to switch from gas to nuclear. Next, we use the portfolio theory to manage risk of the electricity generation portfolio and to determine the optimal fuel mix with the nuclear alternative. Based on portfolio theory, the results show that there is other optimal mix than the mix fixed for the Tunisian mix for the horizon 2010-2020, with lower cost for the same risk degree. In the presence of nuclear technology, we found that the optimal generating portfolio must include 13% of nuclear power technology share.

  19. 75 FR 3943 - Southern Nuclear Operating Company, Inc.; Vogtle Electric Generating Plant, Units 1 and 2...

    Science.gov (United States)

    2010-01-25

    .... NPF-68 and NPF-81, issued to Southern Nuclear Operating Company, Inc. (SNC, the licensee), for... contained in 10 CFR 73.55 by the March 31, 2010, implementation deadline. SNC has proposed an alternate...

  20. Analysis of fish diversion efficiency and survivorship in the fish return system at San Onofre Nuclear Generating Station

    OpenAIRE

    Love, Milton S.; Sandhu, Meenu; Stein, Jeffrey; Herbinson, Kevin T.; Moore, Robert H; Mullin, Michael; Stephens, John S.

    1989-01-01

    This study examined the efficiency of fish diversion and survivorship of diverted fishes in the San Onofre Nuclear Generating Station Fish Return System in 1984 and 1985. Generally, fishes were diverted back to the ocean with high frequency, particularly in 1984. Most species were diverted at rates of 80% or more. Over 90% of the most abundant species, Engraulis mordax, were diverted. The system worked particularly well for strong-swimming forms such as Paralobrax clothratus, Atherinopsis cal...

  1. High Efficiency Generation of Hydrogen Fuels Using Nuclear Power - for the period August 1, 1999 through October 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Brown

    2000-01-01

    OAK B188 High Efficiency Generation of Hydrogen Fuels Using Nuclear Power - for the period August 1, 1999 through October 31, 1999. The highlights for this period are: (1) The methodologies for searching the literature for potentially attractive thermochemical water-splitting cycles, storing cycle and reference data, and screening the cycles have been established; and (2) The water-splitting cycle screening criteria were established on schedule.

  2. A Differential-Algebraic Model for the Once-Through Steam Generator of MHTGR-Based Multimodular Nuclear Plants

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2015-01-01

    Full Text Available Small modular reactors (SMRs are those fission reactors whose electrical output power is no more than 300 MWe. SMRs usually have the inherent safety feature that can be applicable to power plants of any desired power rating by applying the multimodular operation scheme. Due to its strong inherent safety feature, the modular high temperature gas-cooled reactor (MHTGR, which uses helium as coolant and graphite as moderator and structural material, is a typical SMR for building the next generation of nuclear plants (NGNPs. The once-through steam generator (OTSG is the basis of realizing the multimodular scheme, and modeling of the OTSG is meaningful to study the dynamic behavior of the multimodular plants and to design the operation and control strategy. In this paper, based upon the conservation laws of mass, energy, and momentum, a new differential-algebraic model for the OTSGs of the MHTGR-based multimodular nuclear plants is given. This newly-built model can describe the dynamic behavior of the OTSG in both the cases of providing superheated steam and generating saturated steam. Numerical simulation results show the feasibility and satisfactory performance of this model. Moreover, this model has been applied to develop the real-time simulation software for the operation and regulation features of the world first underconstructed MHTGR-based commercial nuclear plant—HTR-PM.

  3. The Next Generation Nuclear Plant - Insights Gained from the INEEL Point Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    Philip E. MacDonald; A. M. Baxter; P. D. Bayless; J. M. Bolin; H. D. Gougar; R. L. Moore; A. M. Ougouag; M. B. Richards; R. L. Sant; J. W. Sterbentz; W. K. Terry

    2004-08-01

    This paper provides the results of an assessment of two possible versions of the Next Generation Nuclear Plant (NGNP), a prismatic fuel type helium gas-cooled reactor and a pebble-bed fuel helium gas reactor. Insights gained regarding the strengths and weaknesses of the two designs are also discussed. Both designs will meet the three basic requirements that have been set for the NGNP: a coolant outlet temperature of 1000 C, passive safety, and a total power output consistent with that expected for commercial high-temperature gas-cooled reactors. Two major modifications of the current Gas Turbine- Modular Helium Reactor (GT-MHR) design were needed to obtain a prismatic block design with a 1000 C outlet temperature: reducing the bypass flow and better controlling the inlet coolant flow distribution to the core. The total power that could be obtained for different core heights without exceeding a peak transient fuel temperature of 1600 °C during a high or low-pressure conduction cooldown event was calculated. With a coolant inlet temperature of 490 °C and 10% nominal core bypass flow, it is estimated that the peak power for a 10-block high core is 686 MWt, for a 12-block high core is 786 MWt, and for a 14-block core is about 889 MWt. The core neutronics calculations showed that the NGNP will exhibit strongly negative Doppler and isothermal temperature coefficients of reactivity over the burnup cycle. In the event of rapid loss of the helium gas, there is negligible core reactivity change. However, water or steam ingress into the core coolant channels can produce a relatively large reactivity effect. Two versions of an annular pebble-bed NGNP have also been developed, a 300 and a 600 MWt module. From this work we learned how to design passively safe pebble bed reactors that produce more than 600 MWt. We also found a way to improve both the fuel utilization and safety by modifying the pebble design (by adjusting the fuel zone radius in the pebble to optimize the fuel

  4. Iso standardization of theoretical activity evaluation method for low and intermediate level activated waste generated at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Makoto Kashiwagi [JGC, Yokohama, 220-6001 (Japan); Garamszeghy, Mike [NWMO, Toronto, Ontario, M4T 2S3 (Canada); Lantes, Bertrand; Bonne, Sebastien [EDF UTO, 93192 Noisy le Grand (France); Pillette-Cousin, Lucien [AREVA TA, 91192 Gif-sur-Yvette (France); Leganes, Jose Luis [ENRESA, 28043 Madrid (Spain); Volmert, Ben [NAGRA, CH-5430 Wettingen (Switzerland); James, David W. [DW James Consulting, North Oaks, MN 55127 (United States)

    2013-07-01

    Disposal of low-and intermediate-level activated waste generated at nuclear power plants is being planned or carried out in many countries. The radioactivity concentrations and/or total quantities of long-lived, difficult-to-measure nuclides (DTM nuclides), such as C-14, Ni-63, Nb-94, α emitting nuclides etc., are often restricted by the safety case for a final repository as determined by each country's safety regulations, and these concentrations or amounts are required to be known and declared. With respect to waste contaminated by contact with process water, the Scaling Factor method (SF method), which is empirically based on sampling and analysis data, has been applied as an important method for determining concentrations of DTM nuclides. This method was standardized by the International Organization for Standardization (ISO) and published in 2007 as ISO21238 'Scaling factor method to determine the radioactivity of low and intermediate-level radioactive waste packages generated at nuclear power plants' [1]. However, for activated metal waste with comparatively high concentrations of radioactivity, such as may be found in reactor control rods and internal structures, direct sampling and radiochemical analysis methods to evaluate the DTM nuclides are limited by access to the material and potentially high personnel radiation exposure. In this case, theoretical calculation methods in combination with empirical methods based on remote radiation surveys need to be used to best advantage for determining the disposal inventory of DTM nuclides while minimizing exposure to radiation workers. Pursuant to this objective a standard for the theoretical evaluation of the radioactivity concentration of DTM nuclides in activated waste, is in process through ISO TC85/SC5 (ISO Technical Committee 85: Nuclear energy, nuclear technologies, and radiological protection; Subcommittee 5: Nuclear fuel cycle). The project team for this ISO standard was formed in 2011 and

  5. The technology of the bearings used in the nuclear power generation system turbine generator units; Technologie des paliers equipant les groupes turbo-alternateurs du parc nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Vialettes, J.M.; Rossato, M. [Service Ensembles de Production, Departement Machines, Direction des Etudes et Recherches, Electricite de France (EDF), 92 - Clamart (France)

    1997-01-01

    A bearing consists of all the stationary part which allow the relative motion in rotation or in translation, of a shaft line. Inside the bearing there is a journal bearing with a metallic anti-friction coating (the babbitt metal). The high power turbine generator unit rotors are supported by smooth transversal journal bearings fed with oil which fills the empty space and runs along the shaft. The technologies used for the bearings and the thrust bearings of the turbine generator units and the various shaft lines of the French CP0/CP1- and CP2/1300 MW-type nuclear power plants are described. The experience feedback is then discussed in terms of the dynamics of the shaft line, i.e. vibrational problems, the influence of the alignment and the babbitt metal incidents. (author) 4 refs., 11 figs.

  6. 75 FR 52045 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Unit 3; Environmental...

    Science.gov (United States)

    2010-08-24

    ...- water nuclear power reactors,'' and 10 CFR part 50, appendix K, ``ECCS Evaluation Models,'' for Facility... Assessment Identification of the Proposed Action: The proposed action would permit the use of fuel rods with... exemption would allow up to eight lead fuel assemblies (LFAs) manufactured by Westinghouse with fuel...

  7. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype.

    Science.gov (United States)

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis.

  8. Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes

    Institute of Scientific and Technical Information of China (English)

    YING CHEN; QING ZHANG YANG; DA YUAN CHEN; MIN KANG WANG; JIN SONG LI; SHAO LIANG HUANG; XIANG YIN KONG; YAO ZHOU SHI; ZHI QIANG WANG; JIA HUI XIA; ZHI GAO LONG; ZHI XU HE; ZHI GANG XUE; WEN XIANG DING; HUI ZHEN SHENG; AILIAN LIU; KAI WANG; WEN WEI MAO; JIAN XIN CHU; YONG LU; ZHENG FU FANG; YING TANG SHI

    2003-01-01

    To solve the problem of immune incompatibility, nuclear transplantation has been envisaged as a means to produce cells or tissues for human autologous transplantation. Here we have derived embryonic stem cells by the transfer of human somatic nuclei into rabbit oocytes. The number of blastocysts that developed from the fused nuclear transfer was comparable among nuclear donors at ages of 5, 42, 52 and 60 years, and nuclear transfer (NT) embryonic stem cells (ntES cells) were subsequently derived from each of the four age groups. These results suggest that human somatic nuclei can form ntES cells independent of the age of the donor. The derived ntES cells are human based on karyotype, isogenicity, in situ hybridization, PGR and immunocytochemistry with probes that distinguish between the various species. The ntES cells maintain the capability of sustained growth in an undifferentiated state, and form embryoid bodies, which, on further induction, give rise to cell types such as neuron and muscle, as well as mixed cell populations that express markers representative of all three germ layers. Thus, ntES cells derived from human somatic cells by NT to rabbit eggs retain phenotypes similar to those of conventional human ES cells, including the ability to undergo multilineage cellular differentiation.

  9. Decision-support tool for assessing future nuclear reactor generation portfolios

    NARCIS (Netherlands)

    Jain, S.; Roelofs, F; Oosterlee, C.W.

    2014-01-01

    Capital costs, fuel, operation and maintenance (O&M) costs, and electricity prices play a key role in the economics of nuclear power plants. Often standardized reactor designs are required to be locally adapted, which often impacts the project plans and the supply chain. It then becomes difficult to

  10. 78 FR 77726 - Exelon Generation Company, LLC Three Mile Island Nuclear Station, Unit 1

    Science.gov (United States)

    2013-12-24

    ... facility is subject to all rules, regulations, and orders of the Nuclear Regulatory Commission (NRC) now or... facility is subject to all rules, regulations, and orders of the NRC now or hereafter in effect. The.../indexing reference temperatures. The licensee proposes to use ASME Code Case N-629 and the...

  11. 77 FR 25762 - In the Matter of Southern Nuclear Operating Company, Inc., Vogtle Electric Generating Plant...

    Science.gov (United States)

    2012-05-01

    ... The NRC has issued a general license to Southern Nuclear Operating Company, Inc. (SNC), authorizing... part 72. This Order is being issued to SNC because it has identified near-term plans to store spent... accommodate the specific circumstances existing at SNC's facility, to achieve the intended objectives...

  12. Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous recombination and gene trapping through somatic cell nuclear transfer.

    Science.gov (United States)

    Yin, Mingru; Jiang, Weihua; Fang, Zhenfu; Kong, Pengcheng; Xing, Fengying; Li, Yao; Chen, Xuejin; Li, Shangang

    2015-11-02

    The rabbit is a common animal model that has been employed in studies on various human disorders, and the generation of genetically modified rabbit lines is highly desirable. Female rabbits have been successfully cloned from cumulus cells, and the somatic cell nuclear transfer (SCNT) technology is well established. The present study generated hypoxanthine phosphoribosyltransferase (HPRT) gene knockout rabbits using recombinant adeno-associated virus-mediated homologous recombination and SCNT. Gene trap strategies were employed to enhance the gene targeting rates. The male and female gene knockout fibroblast cell lines were derived by different strategies. When male HPRT knockout cells were used for SCNT, no live rabbits were obtained. However, when female HPRT(+/-) cells were used for SCNT, live, healthy rabbits were generated. The cloned HPRT(+/-) rabbits were fertile at maturity. We demonstrate a new technique to produce gene-targeted rabbits. This approach may also be used in the genetic manipulation of different genes or in other species.

  13. Effect of nuclear motion on high-order harmonic generation of H$_2^+$ in intense ultrashort laser pulses

    CERN Document Server

    Ahmadi, Hamed; Sabzyan, Hassan; Niknam, Ali Reza; Vafaee, Mohsen

    2014-01-01

    High-order harmonic generation is investigated for H$_2^+$ and D$_2^+$ with and without Born-Oppenheimer approximation by numerical solution of full dimensional electronic time-dependent Schr\\"{o}dinger equation under 4-cycle intense laser pulses of 800 nm wavelength and $I$=4, 5, 7, 10 $\\times 10^{14}$ W$/$cm$^2$ intensities. For most harmonic orders, the intensity obtained for D$_2^+$ is higher than that for H$_2^+$, and the yield difference increases as the harmonic order increases. Only at some low harmonic orders, H$_2^+$ generates more intense harmonics compared to D$_2^+$. The results show that nuclear motion, ionization probability and system dimensionality must be simultaneously taken into account to properly explain the isotopic effects on high-order harmonic generation and to justify experimental observations.

  14. The bungling giant : Atomic Energy Canada Limited and next-generation nuclear technology, 1980-1994

    Energy Technology Data Exchange (ETDEWEB)

    Slater, I.J

    2003-07-01

    From 1980-1994 Atomic Energy Canada Limited (AECL), the Crown Corporation responsible for the development of nuclear technology in Canada, ventured into the market for small-scale, decentralized power systems with the Slowpoke Energy System (SES), a 10MW nuclear reactor for space heating in urban and remote areas. The SES was designed to be 'passively' or 'inherently' safe, such that even the most catastrophic failure of the system would not result in a serious accident (e.g. a meltdown or an explosion). This Canadian initiative, a beneficiary of the National Energy Program, was the first and by far the most successful attempt at a passively safe, decentralized nuclear power system anywhere in the world. Part one uses archival documentation and interviews with project leaders to reconstruct the history of the SES. The standard explanations for the failure of the project, cheap oil, public resistance to the technology, and lack of commercial expertise, are rejected. Part two presents an alternative explanation for the failure of AECL to commercialize the SES. In short, technological momentum towards large-scale nuclear designs led to structural restrictions for the SES project. These restrictions manifested themselves internally to the company (e.g., marginalization of the SES) and externally to the company (e.g., licensing). In part three, the historical lessons of the SES are used to refine one of the central tenets of Popper's political philosophy, 'piecemeal social engineering.' Popper's presentation of the idea is lacking in detail; the analysis of the SES provides some empirical grounding for the concept. I argue that the institutions surrounding traditional nuclear power represent a form utopian social engineering, leading to consequences such as the suspension of civil liberties to guarantee security of the technology. The SES project was an example of a move from the utopian social engineering of large

  15. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress

    DEFF Research Database (Denmark)

    Lukas, Claudia; Savic, Velibor; Bekker-Jensen, Simon;

    2011-01-01

    Completion of genome duplication is challenged by structural and topological barriers that impede progression of replication forks. Although this can seriously undermine genome integrity, the fate of DNA with unresolved replication intermediates is not known. Here, we show that mild replication...... bodies shield chromosomal fragile sites sequestered in these compartments against erosion. Together, these data indicate that restoration of DNA or chromatin integrity at loci prone to replication problems requires mitotic transmission to the next cell generations....... increases after genetic ablation of BLM, a DNA helicase associated with dissolution of entangled DNA. Conversely, 53BP1 nuclear bodies are partially suppressed by knocking down SMC2, a condensin subunit required for mechanical stability of mitotic chromosomes. Finally, we provide evidence that 53BP1 nuclear...

  16. A concept of countermeasure against radioactive wastewater generated in disastrous nuclear accident such as Fukushima Daiichi site case

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang-Wook; Lee, Keun-Young; Lee, Eil-Hee; Baek, Yeji; So, Ji-Yang; Chung, Dong-Young; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Before the operation of initial wastewater treatment systems supplied by AREVA and Kurion companies, which were installed about 6 months after the accident, the contaminated water was accumulated in reactor and turbine buildings, then was moved and stored in many hurriedly-prepared storage tanks including even mega float barge. The wastewater treatment systems using Cs-adsorption columns and desalination equipment was not properly operated and there were several small and big leakages of contaminated water from the wastewater treatment system and storage tanks, so that tremendous wastewater had been accumulated during those periods. That thereafter led to many secondary problems in management and treatment of the wastewater. Since the disastrous accident at Fukushima, several measures to more enhance safety of nuclear power plants located on coastal area have been asked. As one of them, a countermeasure against generation of tremendous radioactive wastewater in disastrous nuclear accident like the Fukushima Daiichi station was asked to be prepared.

  17. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-12-15

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study.

  18. A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons

    CERN Document Server

    Gsponer, A; Vitale, B; Gsponer, Andre; Hurni, Jean-Pierre; Vitale, Bruno

    2002-01-01

    It is shown that the radiological burden due to the battle-field use of circa 400 tons of depleted-uranium munitions in Iraq (and of about 40 tons in Yugoslavia) is comparable to that arising from the hypothetical battle-field use of more than 600 kt (respectively 60 kt) of high-explosive equivalent pure-fusion fourth-generation nuclear weapons. Despite the limited knowledge openly available on existing and future nuclear weapons, there is sufficient published information on their physical principles and radiological effects to make such a comparison. In fact, it is shown that this comparison can be made with very simple and convincing arguments so that the main technical conclusions of the paper are undisputable -- although it would be worthwhile to supplement the hand calculations presented in the paper by more detailed computer simulations in order to consolidate the conclusions and refute any possible objections.

  19. Generation of embryonic stem cells from mouse adipose-tissue derived cells via somatic cell nuclear transfer.

    Science.gov (United States)

    Qin, Yiren; Qin, Jilong; Zhou, Chikai; Li, Jinsong; Gao, Wei-Qiang

    2015-01-01

    Somatic cells can be reprogrammed into embryonic stem cells (ESCs) by nuclear transfer (NT-ESCs), or into induced pluripotent stem cells (iPSCs) by the "Yamanaka method." However, recent studies have indicated that mouse and human iPSCs are prone to epigenetic and transcriptional aberrations, and that NT-ESCs correspond more closely to ESCs derived from in vitro fertilized embryos than iPSCs. In addition, the procedure of NT-ESCs does not involve gene modification. Demonstration of generation of NT-ESCs using an easily-accessible source of adult cell types would be very important. Adipose tissue is a source of readily accessible donor cells and can be isolated from both males and females at different ages. Here we report that NT-ESCs can be generated from adipose tissue-derived cells (ADCs). At morphological, mRNA and protein levels, these NT-ESCs show classic ESC colonies, exhibit alkaline phosphatase (AP) activity, and display normal diploid karyotypes. Importantly, these cells express pluripotent markers including Oct4, Sox2, Nanog and SSEA-1. Furthermore, they can differentiate in vivo into various types of cells from 3 germinal layers by teratoma formation assays. This study demonstrates for the first time that ESCs can be generated from the adipose tissue by somatic cell nuclear transfer (SCNT) and suggests that ADCs can be a new donor-cell type for potential therapeutic cloning.

  20. 百万千瓦级核电汽轮发电机组选型%The Selecion of the speed of 1000MW Nuclear Steam Turbine Generator

    Institute of Scientific and Technical Information of China (English)

    王雪松

    2001-01-01

    This paper is to show how to select the speed of 1000MW nuclear steam turbine generator forour country's next nuclear power plants in accordance with the developing trend of the nuclear steam turbine generator abroad as well as a comprehensive analysis and comparison of full speed nuclear steam turbine generator and half speed steam turbine generator at 1000MW.%通过对国外核汽轮发电机组发展趋势的分析和对百万千瓦全转速与半转速机组的综合分析比较,简要阐述广东继岭澳一期电站工程后百万千瓦级核电站汽轮发电机组的选型问题。

  1. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States)

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe2+) irradiation.

  2. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

  3. Nuclear Wavepacket Dynamics of Alkali Adsorbates on Metal Surfaces Studied by Time-Resolved Second Harmonic Generation

    Directory of Open Access Journals (Sweden)

    Kazuya Watanabe

    2012-01-01

    Full Text Available This paper reviews recent efforts to understand the dynamics of coherent surface vibrations of alkali atoms adsorbed on metal surfaces. Time-resolved second harmonic generation is used for the coherent excitation and detection of the nuclear wavepacket dynamics of the surface modes. The principles of the measurement and the experimental details are described. The main focus is on coverage and excitation photon energy dependences of the coherent phonon dynamics for Na-, K-, and Cs-covered Cu(111. The excitation mechanism of the coherent phonon has been revealed by the ultrafast time-domain technique and theoretical modelings.

  4. Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Timothy Amos [Los Alamos National Laboratory

    2010-01-01

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design & performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance

  5. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Woo, H.H.; Lu, S.C.

    1981-09-15

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  6. A method for mechanical generation of radio frequency fields in nuclear magnetic resonance force microscopy

    CERN Document Server

    Wagenaar, J J T; Donkersloot, R J; Marsman, F; de Wit, M; Bossoni, L; Oosterkamp, T H

    2016-01-01

    We present an innovative method for magnetic resonance force microscopy (MRFM) with ultra-low dissipation, by using the higher modes of the mechanical detector as radio frequency (rf) source. This method allows MRFM on samples without the need to be close to an rf source. Furthermore, since rf sources require currents that give dissipation, our method enables nuclear magnetic resonance experiments at ultra-low temperatures. Removing the need for an on-chip rf source is an important step towards a MRFM which can be widely used in condensed matter physics.

  7. Perspectives on Entangled Nuclear Particle Pairs Generation and Manipulation in Quantum Communication and Cryptography Systems

    Directory of Open Access Journals (Sweden)

    Octavian Dănilă

    2012-01-01

    Full Text Available Entanglement between two quantum elements is a phenomenon which presents a broad application spectrum, being used largely in quantum cryptography schemes and in physical characterisation of the universe. Commonly known entangled states have been obtained with photons and electrons, but other quantum elements such as quarks, leptons, and neutrinos have shown their informational potential. In this paper, we present the perspective of exploiting the phenomenon of entanglement that appears in nuclear particle interactions as a resource for quantum key distribution protocols.

  8. The planning of decommissioning activities within nuclear facilities - Generating a Baseline Decommissioning Plan

    Energy Technology Data Exchange (ETDEWEB)

    Meek, N.C.; Ingram, S.; Page, J. [BNFL Environmental Services (United Kingdom)

    2003-07-01

    BNFL Environmental Services has developed planning tools to meet the emerging need for nuclear liabilities management and decommissioning engineering both in the UK and globally. It can provide a comprehensive baseline planning service primarily aimed at nuclear power stations and nuclear plant. The paper develops the following issues: Decommissioning planning; The baseline decommissioning plan;The process; Work package; Compiling the information; Deliverables summary; Customer Benefits; - Planning tool for nuclear liability life-cycle management; - Robust and reliable plans based upon 'real' experience; - Advanced financial planning; - Ascertaining risk; - Strategy and business planning. The following Deliverables are mentioned:1. Site Work Breakdown Structure; 2. Development of site implementation strategy from the high level decommissioning strategy; 3. An end point definition for the site; 4. Buildings, operational systems and plant surveys; 5. A schedule of condition for the site; 6. Development of technical approach for decommissioning for each work package; 7. Cost estimate to WBS level 5 for each work package; 8. Estimate of decommissioning waste arisings for each work package; 9. Preparation of complete decommissioning programme in planning software to suit client; 10. Risk modelling of work package and overall project levels; 11. Roll up of costs into an overall cost model; 12. Cash flow, waste profiling and resource profiling against the decommissioning programme; 13. Preparation and issue of Final Report. Finally The BDP process is represented by a flowchart listing the following stages: [Power Station project assigned] {yields} [Review project and conduct Characterisation review of power station] {yields} [Identify work packages] {yields} [Set up WBS to level 3] {yields} [Assign work packages] {yields} [Update WBS to level 4] {yields}[Develop cost model] {yields} [Develop logic network] {yields} [Develop risk management procedure] ] {yields

  9. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Vijay [Univ. of Cincinnati, OH (United States); Carroll, Laura [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  10. Borehole temperatures reveal details of 20th century warming at Bruce Plateau, Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    V. Zagorodnov

    2011-11-01

    Full Text Available Two ice core boreholes of 143.74 m and 447.65 m (bedrock were drilled during the 2009–2010 austral summer on the Bruce Plateau at a location named LARISSA Site Beta (66°02' S, 64°04' W, 1975.5 m a.s.l.. Both boreholes were logged with thermistors shortly after drilling. The shallow borehole was instrumented for 4 months with a series of resistance thermometers with satellite uplink. Surface temperature proxy data derived from an inversion of the borehole temperature profiles are compared to available multi-decadal records from weather stations and ice cores located along a latitudinal transect of the Antarctic Peninsula to West Antarctica. The LARISSA Site Beta profiles show temperatures decreasing from the surface downward through the upper third of the ice, and warming thereafter to the bed. The average temperature for the most recent year is −14.78 °C (measured at 15 m depth, abbreviated T15. A minimum temperature of −15.8 °C is measured at 173 m depth and basal temperature is estimated to be −10.2 °C. Current mean annual temperature and the gradient in the lower part of the measured temperature profile have a best fit with an accumulation rate of 1.9 × 103 kg m−2 a−1 and basal heat flux (q of 88 mW m−2, if steady-state conditions are assumed. However, the mid-level temperature variations show that recent temperature has varied significantly. Reconstructed surface temperatures (Ts=T15 over the last 200 yr are derived by an inversion technique. From this, we find that cold temperatures (minimum Ts=−16.2 °C prevailed from ~1920 to ~1940, followed by a gradual rise of temperature to −14.2 °C around 1995, then cooling over the following decade and warming in the last few years. The coldest period was preceded by a relatively warm 19th century at T15 ≥ −15 °C. To facilitate

  11. Borehole temperatures reveal details of 20th century warming at Bruce Plateau, Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    V. Zagorodnov

    2012-06-01

    Full Text Available Two ice core boreholes of 143.18 m and 447.73 m (bedrock were drilled during the 2009–2010 austral summer on the Bruce Plateau at a location named LARISSA Site Beta (66°02' S, 64°04' W, 1975.5 m a.s.l.. Both boreholes were logged with thermistors shortly after drilling. The shallow borehole was instrumented for 4 months with a series of resistance thermometers with satellite uplink. Surface temperature proxy data derived from an inversion of the borehole temperature profiles are compared to available multi-decadal records from weather stations and ice cores located along a latitudinal transect of the Antarctic Peninsula to West Antarctica. The LARISSA Site Beta profiles show temperatures decreasing from the surface downward through the upper third of the ice, and warming thereafter to the bed. The average temperature for the most recent year is −14.78°C (measured at 15 m depth, abbreviated T15. A minimum temperature of −15.8°C is measured at 173 m depth, and basal temperature is estimated to be −10.2°C. Current mean annual temperature and the gradient in the lower part of the measured temperature profile have a best fit with an accumulation rate of 1.9×103 kg m−2 a−1 and basal heat flux (q of 88 mW m−2, if steady-state conditions are assumed. However, the mid-level temperature variations show that recent temperature has varied significantly. Reconstructed surface temperatures (Ts=T15 over the last 200 yr are derived by an inversion technique (Tikhonov and Samarskii, 1990. From this, we find that cold temperatures (minimum Ts=−16.2°C prevailed from ~1920 to ~1940, followed by a gradual rise of temperature to −14.2°C around 1995, then cooling over the following decade and warming in the last few years. The coldest period was preceded by a relatively warm 19th century at T15≥−15

  12. Design of Radiation-Tolerant Structural Alloys for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Allen, T.R.; Was, G.S.; Bruemmer, S.M.; Gan, J.; Ukai, S.

    2005-12-28

    The objective of this program is to improve the radiation tolerance of both austenitic and ferritic-martensitic (F-M) alloys projected for use in Generation IV systems. The expected materials limitations of Generation IV components include: creep strength, dimensional stability, and corrosion/stress corrosion compatibility. The material design strategies to be tested fall into three main categories: (1) engineering grain boundaries; (2) alloying, by adding oversized elements to the matrix; and (3) microstructural/nanostructural design, such as adding matrix precipitates. These three design strategies were tested across both austenitic and ferritic-martensitic alloy classes

  13. Development policy on new generation of nuclear power combined with desalination in China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The potential market for desalination industry is forecasted in China for a long term. A co-generation policy is proposed in power production and desalination. It has been predicted that the desalination would become a huge industry in China provided that the technology of desalination is improved and fresh water cost reduced to a certain level accepted by Chinese Residents.

  14. 75 FR 57820 - Luminant Generation Company, LLC.; Combined License Application for Comanche Peak Nuclear Power...

    Science.gov (United States)

    2010-09-22

    ..., Combined License (COL) Application, Docket Numbers 52-034 and 52-035, submitted by Luminant Generation... of a COL application until the NRC makes a finding under 10 CFR 52.103(g) pertaining to facility... Analysis Report (FSAR). The proposed exemption would allow Luminant to submit its COL application...

  15. Thermochemical investigation of molten fluoride salts for Generation IV nuclear applications - an equilibrium exercise

    NARCIS (Netherlands)

    Meer, J.P.M. van der

    2006-01-01

    The concept of the Molten Salt Reactor, one of the so-called Generation IV future reactors, is that the fuel, a fissile material, which is dissolved in a molten fluoride salt, circulates through a closed circuit. The heat of fission is transferred to a second molten salt coolant loop, the heat of wh

  16. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Belle R. [Univ. of Tennessee, Knoxville, TN (United States); Hines, J. Wesley [Univ. of Tennessee, Knoxville, TN (United States); Lu, Baofu [Univ. of Tennessee, Knoxville, TN (United States)

    2005-06-03

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 September 2004. Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance.Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. Development of advanced signal processing methods using

  17. Nuclear design manual for generation of cross section and heterogeneous formfunction for CASMO-3/MASTER

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Ho; Cho, Byung Oh; Song, Jae Seong; Lee, Chung Chan

    1996-12-01

    A three-dimensional reactor core simulation code, MASTER, has been developed as a part of the ADONIS project in KAERI. CASMO-3 prepares various two-group cross sections for the constituents of a reactor core such as fuel assembly, radial and axial reflectors, control rod and detector for MASTER. This report includes the standard design procedure for generation of two-group cross sections and heterogeneous formfunction by CASMO-3/FORM for MASTER. (author). 16 refs., 16 tabs., 12 figs.

  18. Review of nuclear electricity generation and desalination plants and evaluation of SMART application

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Yoon, Ju Hyeon; Kim, Hwan Yeol; Lee, Young Jin; Kim, Joo Pyung; Lee, Doo Jeong; Chang, Moon Hee

    1998-03-01

    KAERI are developing a new advanced integral reactor named SMART for dual application purpose of the electric power generation and seawater desalination. This report are describing the general desalting methods with its technology development and the coupling schemes between electricity generation system and desalting system. Though MSF takes the most part of currently operating seawater desalination plants, MED and RO has been preferred in the past decade. MED has a advantage over MSF with the view to investment costs and energy efficiency. The coupling between electricity generation system and desalination system can be realized by using one of back pressure cycle, extraction cycle, and multi-shaft cycle. New design and operating strategy has to be established for various environment and load conditions. To evaluate the candidate desalination systems of SMART and the coupling method of it with other secondary systems, the desalted water and electricity were calculated through the several options. The result shows that back pressure cycle is preferred at the high water/power ratio and extraction cycle at the low value. If energy efficiency are only considered, RO will be best choice. (author). 17 refs., 12 tabs., 31 figs

  19. The European Research on Severe Accidents in Generation-II and -III Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Van Dorsselaere

    2012-01-01

    Full Text Available Forty-three organisations from 22 countries network their capacities of research in SARNET (Severe Accident Research NETwork of excellence to resolve the most important remaining uncertainties and safety issues on severe accidents in existing and future water-cooled nuclear power plants (NPP. After a first project in the 6th Framework Programme (FP6 of the European Commission, the SARNET2 project, coordinated by IRSN, started in April 2009 for 4 years in the FP7 frame. After 2,5 years, some main outcomes of joint research (modelling and experiments by the network members on the highest priority issues are presented: in-vessel degraded core coolability, molten-corium-concrete-interaction, containment phenomena (water spray, hydrogen combustion…, source term issues (mainly iodine behaviour. The ASTEC integral computer code, jointly developed by IRSN and GRS to predict the NPP SA behaviour, capitalizes in terms of models the knowledge produced in the network: a few validation results are presented. For dissemination of knowledge, an educational 1-week course was organized for young researchers or students in January 2011, and a two-day course is planned mid-2012 for senior staff. Mobility of young researchers or students between the European partners is being promoted. The ERMSAR conference is becoming the major worldwide conference on SA research.

  20. Novel Concepts for Damage-Resistant Alloys in Next Generation Nuclear Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stephen M. Bruemmer; Peter L. Andersen; Gary Was

    2002-12-27

    The discovery of a damage-resistant alloy based on Hf solute additions to a low-carbon 316SS is the highlight of the Phase II research. This damage resistance is supported by characterization of radiation-induced microstructures and microchemistries along with measurements of environmental cracking. The addition of Hf to a low-carbon 316SS reduced the detrimental impact of radiation by changing the distribution of Hf. Pt additions reduced the impact of radiation on grain boundary segregation but did not alter its effect on microstructural damage development or cracking. Because cracking susceptibility is associated with several material characteristics, separate effect experiments exploring strength effects using non-irradiated stainless steels were conducted. These crack growth tests suggest that irradiation strength by itself can promote environmental cracking. The second concept for developing damage resistant alloys is the use of metastable precipitates to stabilize the microstructure during irradiation. Three alloys have been tailored for evaluation of precipitate stability influences on damage evolution. The first alloy is a Ni-base alloy (alloy 718) that has been characterized at low neutron irradiation doses but has not been characterized at high irradiation doses. The other two alloys are Fe-base alloys (PH 17-7 and PH 17-4) that have similar precipitate structures as alloy 718 but is more practical in nuclear structures because of the lower Ni content and hence lesser transmutation to He.

  1. Internalization of externalities in the generation costs of electric power centrals of carbon, combined cycle and nuclear; Internalizacion de externalidades en los costos de generacion de centrales electricas de carbon, ciclo combinado y nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, M.C. [Universidad Anahuac del Norte (Mexico); Palacios H, J.; Ramirez S, R.; Alonso V, G. [ININ, Carretera Mexico-Toluca Km. 36.5 Ocoyoacac 52750 Edo. de Mexico (Mexico)]. e-mail: fgrivera@avantel.net

    2007-07-01

    The technologies of electric power generation that use fossil fuels, they incorporate in the Even Total Cost of Generation (CTNG) only the direct costs of generation (investment, fuel costs, operation costs and maintenance). nevertheless, the nuclear energy incorporates besides the direct costs, the externalities that causes to the human health and the environment. In this work the CTNG is calculated that incorporates the externalities, of a thermoelectric power station of coal, a plant of combined cycle and of four reactors of Generation III (ABWR, ACR, AP1000 and EPR). The obtained results show that the nuclear power station has smaller CTNG that the technologies that use fossil fuels. It is important to stand out that they are only considering the externalities of the stage of electricity generation, for what the mining phase and transport of the fuel toward the central are not considered in the present document. (Author)

  2. Use of the 2A peptide for generation of multi-transgenic pigs through a single round of nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Wei Deng

    Full Text Available Multiple genetic modifications in pigs can essentially benefit research on agriculture, human disease and xenotransplantation. Most multi-transgenic pigs have been produced by complex and time-consuming breeding programs using multiple single-transgenic pigs. This study explored the feasibility of producing multi-transgenic pigs using the viral 2A peptide in the light of previous research indicating that it can be utilized for multi-gene transfer in gene therapy and somatic cell reprogramming. A 2A peptide-based double-promoter expression vector that mediated the expression of four fluorescent proteins was constructed and transfected into primary porcine fetal fibroblasts. Cell colonies (54.3% formed under G418 selection co-expressed the four fluorescent proteins at uniformly high levels. The reconstructed embryos, which were obtained by somatic cell nuclear transfer and confirmed to express the four fluorescent proteins evenly, were transplanted into seven recipient gilts. Eleven piglets were delivered by two gilts, and seven of them co-expressed the four fluorescent proteins at equivalently high levels in various tissues. The fluorescence intensities were directly observed at the nose, hoof and tongue using goggles. The results suggest that the strategy of combining the 2A peptide and double promoters efficiently mediates the co-expression of the four fluorescent proteins in pigs and is hence a promising methodology to generate multi-transgenic pigs by a single nuclear transfer.

  3. An Intracellular Arrangement of Histoplasma capsulatum Yeast-Aggregates Generates Nuclear Damage to the Cultured Murine Alveolar Macrophages

    Science.gov (United States)

    Pitangui, Nayla de Souza; Sardi, Janaina de Cássia Orlandi; Voltan, Aline R.; dos Santos, Claudia T.; da Silva, Julhiany de Fátima; da Silva, Rosangela A. M.; Souza, Felipe O.; Soares, Christiane P.; Rodríguez-Arellanes, Gabriela; Taylor, Maria Lucia; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2016-01-01

    Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a “crown.” This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast's persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms. PMID:26793172

  4. An intracellular arrangement of Histoplasma capsulatum yeast-aggregates generates nuclear damage to the cultured murine alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Nayla De Souza Pitangui

    2016-01-01

    Full Text Available Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a crown. This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast’s persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms.

  5. Alloys for 1000 degree C service in the Next Generation Nuclear Plant NERI 05-0191

    Energy Technology Data Exchange (ETDEWEB)

    Gary S. Was; J.W. Jones; T. Pollock

    2009-01-15

    The objective of the proposed research is to define strategies for the improvement of alloys for structural components, such as the intermediate heat exchanger and primary-to-secondary piping, for service at 1000 degree C in the He environment of the NGNP. Specifically, we will investigate the oxidation/carburization behavior and microstructure stability and how these processes affect creep. While generating this data, the project will also develop a fundamental understanding of how impurities in the He environment affect these degradation processes and how this understanding can be used to develop more useful life prediction methodologies.

  6. Contrast generation in the nuclear-spin tomography by pulsed ultrasound; Kontrasterzeugung in der Kernspintomographie durch gepulsten Ultraschall

    Energy Technology Data Exchange (ETDEWEB)

    Oehms, Ole Benjamin

    2009-07-10

    In the framework of this thesis a combined method of ultrasound and nuclear-spin tomography is presented. Via ultrasound pulses by the sound-radiation force in liquids and tissue phantoms motions are generated, which depend on ther viscoelastic properties. This motions are made visible by a motion-sensitive tomograph sequence in the phase image of the tomograph in form of a phase change. The first measurements on simple phantoms and liquids are presented. [German] Im Rahmen dieser Arbeit wird eine kombinierte Methode aus Ultraschall und Kernspintomographie vorgestellt. Ueber Ultraschallpulse werden durch die Schallstrahlungskraft in Fluessigkeiten und Gewebephantomen Bewegungen erzeugt, die von den viskoelastischen Eigenschaften abhaengen. Diese Bewegungen werden mit einer bewegungssensitiven Tomographensequenz im Phasenbild des Tomographen in Form einer Phasenaenderung sichtbar gemacht. Die ersten Messungen an einfachen Phantomen und Fluessigkeiten werden praesentiert. (orig.)

  7. Seismic structural fragility investigation for the San Onofre Nuclear Generating Station, Unit 1 (Project I); SONGS-1 AFWS Project

    Energy Technology Data Exchange (ETDEWEB)

    Wesley, D.A.; Hashimoto, P.S.

    1982-04-01

    An evaluation of the seismic capacities of several of the San Onofre Nuclear Generating Station, Unit 1 (SONGS-1) structures was conducted to determine input to the overall probabilistic methodology developed by Lawrence Livermore National Laboratory. Seismic structural fragilities to be used as input consist of median seismic capacities and their variabilities due to randomness and uncertainty. Potential failure modes were identified for each of the SONGS-1 structures included in this study by establishing the seismic load-paths and comparing expected load distributions to available capacities for the elements of each load-path. Particular attention was given to possible weak links and details. The more likely failure modes were screened for more detailed investigation.

  8. A performance assessment of a base isolation system for an emergency diesel generator in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Kim, Min Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-06-15

    This study evaluates the performance of a coil spring-viscous damper system for the vibration and seismic isolation of an Emergency Diesel Generator (EDG) by measuring its operational vibration and seismic responses. The vibration performance of a coil spring-viscous damper system was evaluated by the vibration measurements for an identical EDG set with different base systems - one with an anchor bolt system and the other with a coil spring-viscous damper system. The seismic performance of the coil spring-viscous damper system was evaluated by seismic tests with a scaled model of a base-isolated EDG on a shaking table. The effects of EDG base isolation on the fragility curve and core damage frequency in a nuclear power plant were also investigated through a case study.

  9. Risk perception & strategic decision making :general insights, a framework, and specific application to electricity generation using nuclear energy.

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, Jeffrey D.

    2005-11-01

    The objective of this report is to promote increased understanding of decision making processes and hopefully to enable improved decision making regarding high-consequence, highly sophisticated technological systems. This report brings together insights regarding risk perception and decision making across domains ranging from nuclear power technology safety, cognitive psychology, economics, science education, public policy, and neural science (to name a few). It forms them into a unique, coherent, concise framework, and list of strategies to aid in decision making. It is suggested that all decision makers, whether ordinary citizens, academics, or political leaders, ought to cultivate their abilities to separate the wheat from the chaff in these types of decision making instances. The wheat includes proper data sources and helpful human decision making heuristics; these should be sought. The chaff includes ''unhelpful biases'' that hinder proper interpretation of available data and lead people unwittingly toward inappropriate decision making ''strategies''; obviously, these should be avoided. It is further proposed that successfully accomplishing the wheat vs. chaff separation is very difficult, yet tenable. This report hopes to expose and facilitate navigation away from decision-making traps which often ensnare the unwary. Furthermore, it is emphasized that one's personal decision making biases can be examined, and tools can be provided allowing better means to generate, evaluate, and select among decision options. Many examples in this report are tailored to the energy domain (esp. nuclear power for electricity generation). The decision making framework and approach presented here are applicable to any high-consequence, highly sophisticated technological system.

  10. Nuclear Ambitions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    China will begin to build the world’s first third-generation nuclear power plant at the Sanmen Nuclear Power Project in Sanmen City, coastal Zhejiang Province, in March 2009, accord-ing to the State Nuclear Power Technology Corp.

  11. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix.

    Science.gov (United States)

    Petrie, Ryan J; Koo, Hyun; Yamada, Kenneth M

    2014-08-29

    Cells use actomyosin contractility to move through three-dimensional (3D) extracellular matrices. Contractility affects the type of protrusions cells use to migrate in 3D, but the mechanisms are unclear. In this work, we found that contractility generated high-pressure lobopodial protrusions in human cells migrating in a 3D matrix. In these cells, the nucleus physically divided the cytoplasm into forward and rear compartments. Actomyosin contractility with the nucleoskeleton-intermediate filament linker protein nesprin-3 pulled the nucleus forward and pressurized the front of the cell. Reducing expression of nesprin-3 decreased and equalized the intracellular pressure. Thus, the nucleus can act as a piston that physically compartmentalizes the cytoplasm and increases the hydrostatic pressure between the nucleus and the leading edge of the cell to drive lamellipodia-independent 3D cell migration.

  12. Impact of the High Flux Isotope Reactor HEU to LEU Fuel Conversion on Cold Source Nuclear Heat Generation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL

    2014-03-01

    Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the cold source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation product and

  13. J-resistance curves for Inconel 690 and Incoloy 800 nuclear steam generators tubes at room temperature and at 300 °C

    Science.gov (United States)

    Bergant, Marcos A.; Yawny, Alejandro A.; Perez Ipiña, Juan E.

    2017-04-01

    The structural integrity of steam generator tubes is a relevant issue concerning nuclear plant safety. In the present work, J-resistance curves of Inconel 690 and Incoloy 800 nuclear steam generator tubes with circumferential and longitudinal through wall cracks were obtained at room temperature and 300 °C using recently developed non-standard specimens' geometries. It was found that Incoloy 800 tubes exhibited higher J-resistance curves than Inconel 690 for both crack orientations. For both materials, circumferential cracks resulted into higher fracture resistance than longitudinal cracks, indicating a certain degree of texture anisotropy introduced by the tube fabrication process. From a practical point of view, temperature effects have found to be negligible in all cases. The results obtained in the present work provide a general framework for further application to structural integrity assessments of cracked tubes in a variety of nuclear steam generator designs.

  14. 李小龙武学思想探析%An Analysis of Bruce Lees Martial Arts

    Institute of Scientific and Technical Information of China (English)

    陈雁杨; 关文明

    2011-01-01

    采用文献资料法,并运用历史学、文化学、哲学等理论,分析李小龙武学思想的内涵、形成的原因、及其对传统武术的影响和启示,从而为中国武术走向世界提供理论依据。%Adopt documentary data method, make use of history, culture and philosophy, analyze the connotation, causes of the formation of Bruce Lee' s martial arts, and its influence and enlightenment on traditional Wushu, and provide theoretical grounds for Chinese Wushu going to the world.

  15. The Bruce Report and social welfare leadership in the politics of Toronto’s “Slums”, 1934–1939.

    Science.gov (United States)

    George, Ryan

    2011-01-01

    Slum clearance and rebuilding first became a serious political project in Toronto during the 1930s. Following the release of a systematic housing survey known as the Bruce Report (1934), a set of actors distinguished by their planning authority with respect to social agencies, influence over social work education, coordination of social research, and role as spokespersons of religious bodies inaugurated a political struggle over state power. While the campaign failed, it called forth a reaction from established authorities and reconfigured the local political field as it related to low-income housing. This article gives an account of these processes by drawing upon correspondence and minutes of meetings of city officials and the campaign’s organizers, newspaper clippings, and published materials.

  16. 77 FR 70847 - Entergy Nuclear Indian Point 2, LLC; Entergy Nuclear Operations, Inc., Indian Point Nuclear...

    Science.gov (United States)

    2012-11-27

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Indian Point 2, LLC; Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 2, Request for Action AGENCY: Nuclear Regulatory Commission. ACTION: Request for...

  17. The calculation and estimation of wastes generated by decommissioning of nuclear facilities. Tokai works and Ningyo-toge Environmental Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Ayame, Y.; Tanabe, T.; Takahashi, K.; Takeda, S. [Japan Nuclear Cycle Development Inst., Tokai Works, Waste Management and Fuel Cycle Research Center, Tokai, Ibaraki (Japan)

    2001-07-01

    This investigation was conducted as a part of planning the low-level radioactive waste management program (LLW management program). The aim of this investigation was contributed to compile the radioactive waste database of JNC's LLW management program. All nuclear facilities of the Tokai works and Ningyo-toge Environmental Engineering Center were investigated in this work. The wastes generated by the decommissioning of each nuclear facility were classified into radioactive waste and others (exempt waste and non-radioactive waste), and the amount of the wastes was estimated. The estimated amounts of radioactive wastes generated by decommissioning of the nuclear facilities are as follows. (1) Tokai works: The amount of waste generated by decommissioning of nuclear facilities of the Tokai works is about 1,079,100 ton. The amount of radioactive waste is about 15,400 ton. The amount of exempt waste and non-radioactive waste is about 1,063,700 ton. (2) Ningyo-toge Environmental Engineering Center: The amount of waste generated by decommissioning of nuclear facilities of Ningyo-toge Environmental Engineering Center is about 112,500 ton. The amount of radioactive waste is about 7,800 ton. The amount of exempt waste and non-radioactive waste is about 104,700 ton. (author)

  18. Integrity assurance of the secondary side of steam generator in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joung Soo; Kim, Hong Pyo; Lim, Yun Soo; Hwang, Seong Sik; Yi, Yong Sun; Kim, Dong Jin; Kim, Sung Soo; Jung, Man Gyo

    2005-09-15

    Residual stresses on the expansion transition regions of steam generator tubes expanded by explosive and hydraulic expansion techniques were measured using several different methods such as strain gauge, XRD, electrolytic polishing, and stress corrosion cracking methods. The SCC method was applied by measuring the cracking time using C-ring specimens to which precisely measured stress had been imposed and comparing the cracking time of the expanded tube specimens in order to estimate the magnitude of residual stress developed on the expansion transition regions. Axial residual stress on the outer surface of both, Inconel 600 and 690 tubes was measured to be mainly compressive, which can not induce circumferential ODSCC on the expansion transition regions. According to SCC test results, SCC was not observed to occur on the expansion transition regions of the expanded model specimen tubes, which means that the residual stresses developed on the expansion transition regions by the explosive and the hydraulic expansion methods are not big enough to induce SCC. However, sludge piled up on the top of tubesheet during operation of NPPs might change the stress state on the expansion transition regions, which can result in occurring SCC.

  19. A LOPA application to the hydrogen cooling system of the main electric generator of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Flavia M.; Frutuoso e Melo, Paulo Fernando Ferreira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)]. E-mails: flaviamvasconcelos@gmail.com; frutuoso@con.ufrj.br; Saldanha, P.L. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao de Reatores]. E-mail: saldanha@cnen.gov.br

    2008-07-01

    The Layer of Protection Analysis (LOPA) is a powerful analytical tool for assessing the adequacy of protection layers used to mitigate risks in a process plant. LOPA applies semi-quantitative measures to evaluate the frequency of potential incidents and the probability of failure of protection layers. This paper presents an application of the Layer of Protection Analysis technique to a nuclear power plant in order to evaluate the cooling system of an electric generator, so as to identify scenarios that might lead to a plant shutdown. Next, the frequencies of occurrence of these events and the probability of failure on demand of the independent protection layers are determined. Here a difficulty is related to the lack of failure and initiating event data. The consequences identified are listed as impact events and are classified as to their severity level. The initiating causes are listed for each impact event and the likelihood is estimated for each initiating cause. Independent Protection Layers (ILPs) are listed. The mitigated event likelihood is studied and additional ILPs can be evaluated and added to reduce the risk. As a conclusion, LOPA demonstrated that the hydrogen inner-cooling electric generator system is in compliance with the risk scenarios adopted for this study. Some suggestions were made in order to automate some manual actions to increase the system reliability. (author)

  20. NOMAGE4 activities 2011. Part I, Nordic Nuclear Materials Forum for Generation IV Reactors: Status and activities in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Van Nieuwenhove, R. (Institutt for Energiteknikk, OECD Halden Reactor Project (Norway))

    2012-01-15

    A network for materials issues has been initiated in 2009 within the Nordic countries. The original objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) were to form the basis of a sustainable forum for Gen-IV issues, especially focusing on fuels, cladding, structural materials and coolant interaction. Over the last years, other issues such as reactor physics, thermal hydraulics, safety and waste have gained in importance (within the network) and therefore the scope of the forum has been enlarged and a more appropriate and more general name, NORDIC-GEN4, has been chosen for the forum. Further, the interaction with non-Nordic countries (such as The Netherlands (JRC, NRG) and Czech Republic (CVR)) will be increased. Within the NOMAGE4 project, a seminar was organized by IFE-Halden during 31 October - 1 November 2011. The seminar attracted 65 participants from 12 countries. The seminar provided a forum for exchange of information, discussion on future research reactor needs and networking of experts on Generation IV reactor concepts. The participants could also visit the Halden reactor site and the workshop. (Author)

  1. Spent Nuclear Fuel Transport Reliability Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Jiang, Hao [ORNL

    2016-01-01

    This conference paper was orignated and shorten from the following publisehd PTS documents: 1. Jy-An Wang, Hao Jiang, and Hong Wang, Dynamic Deformation Simulation of Spent Nuclear Fuel Assembly and CIRFT Deformation Sensor Stability Investigation, ORNL/SPR-2015/662, November 2015. 2. Jy-An Wang, Hong Wang, Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications, NUREG/CR-7198, ORNL/TM-2014/214, May 2015. 3. Jy-An Wang, Hong Wang, Hao Jiang, Yong Yan, Bruce Bevard, Spent Nuclear Fuel Vibration Integrity Study 16332, WM2016 Conference, March 6 10, 2016, Phoenix, Arizona.

  2. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; J. Wesley Hines

    2004-09-27

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal

  3. Bruce's Magnificent Quartet: Inquiry, Community, Technology and Literacy--Implications for Renewing Qualitative Research in the Twenty-First Century

    Science.gov (United States)

    Davidson, Judith

    2014-01-01

    Bruce and Bishop's community informatics work brings forward four critical concepts: inquiry, community, technology, and literacy. These four terms serve as the basis for a discussion of qualitative research in the twenty-first century--what is lacking and what is needed. The author suggests that to resolve the tensions or challenges…

  4. The effectiveness of power-generating complexes constructed on the basis of nuclear power plants combined with additional sources of energy determined taking risk factors into account

    Science.gov (United States)

    Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.

    2015-02-01

    The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.

  5. Inelastic seismic behavior of post-installed anchors for nuclear safety related structures: Generation of experimental database

    Energy Technology Data Exchange (ETDEWEB)

    Mahadik, Vinay, E-mail: vinay.mahadik@iwb.uni-stuttgart.de; Sharma, Akanshu; Hofmann, Jan

    2016-02-15

    Highlights: • Experiments for evaluating seismic behavior of anchors were performed. • Two undercut anchor products in use in nuclear facilities were considered. • Monotonic tension, shear and cycling tension tests at different crack widths. • Crack cycling tests at constant, in-phase and out-of phase tension loads. • Characteristics for the two anchors as a function of crack width were identified. - Abstract: Post installed (PI) anchors are often employed for connections between concrete structure and components or systems in nuclear power plants (NPP) and related facilities. Standardized practices for nuclear related structures demand stringent criteria, which an anchor has to satisfy in order to qualify for use in NPP related structures. In NPP and related facilities, the structure–component interaction in the event of an earthquake depends on the inelastic behavior of the concrete structure, the component system and also the anchorage system that connects them. For analysis, anchorages are usually assumed to be rigid. Under seismic actions, however, it is known that anchors may undergo significant plastic displacement and strength degradation. Analysis of structure–component interaction under seismic loads calls for numerical models simulating inelastic behavior of anchorage systems. A testing program covering different seismic loading scenarios in a reasonably conservative manner is required to establish a basis for generating numerical models of anchorage systems. Currently there is a general lack of modeling techniques to consider the inelastic behavior of anchorages in structure–component interaction under seismic loads. In this work, in view of establishing a basis for development of numerical models simulating the inelastic behavior of anchors, seismic tests on two different undercut anchors qualified for their use in NPP related structures were carried out. The test program was primarily based on the DIBt-KKW-Leitfaden (2010) guidelines

  6. Validation of a methodology for the study of generation cost of electric power for nuclear power plants; Validacion de una metodologia para el estudio de costos de generacion de electricidad de plantas nucleares de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Ortega C, R.F.; Martin del Campo M, C. [Facultad de Ingenieria, UNAM, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550, Jiutepec, Morelos (Mexico)]. E-mail: rfortega@mexis.com

    2004-07-01

    It was developed a model for the calculation of costs of electric generation of nuclear plants. The developed pattern was validated with the one used by the United States Council for Energy Awareness (USCEA) and the Electric Power Research Institute (EPRI), in studies of comparison of alternatives for electric generation of nuclear plants and fossil plants with base of gas and of coal in the United States described in the guides calls Technical Assessment Guides of EPRI. They are mentioned in qualitative form some changes in the technology of nucleo electric generation that could be included in the annual publication of Costs and Parameters of Reference for the Formulation of Projects of Investment in the Electric Sector of the Federal Commission of Electricity. These changes are in relation to the advances in the technology, in the licensing, in the construction and in the operation of the reactors called advanced as the A BWR built recently in Japan. (Author)

  7. Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-01

    The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The initial RELAP5 run outputs steady state conditions which were then compared to the heat exchanger performance theory to ensure accurate design is being simulated. An exponential loss of pressure transient was simulated. This LOCA describes a loss of coolant pressure in the primary side over a 20 second time period. The results for the simulation indicate that heat is initially transferred from the primary loop to the secondary loop, but after the loss of pressure occurs, heat transfers from the secondary loop to the primary loop.

  8. Knowledge elicitation techniques and application to nuclear plant maintenance

    Science.gov (United States)

    Doyle, E. Kevin

    The new millennium has brought with it the opportunity of global trade which in turn requires the utmost in efficiency from each individual industry. This includes the nuclear power industry, a point which was emphasized when the electrical generation industry began to be de regulated across North America the late 1990s and re-emphasized when the northeast power grid of North America collapsed in the summer of 2003. This dissertation deals with reducing the cost of the maintenance function of Candu nuclear power plants and initiating a strong link between universities and the Canadian nuclear industry. Various forms of RCM (reliability-centred maintenance) have been the tools of choice in industry for improving the maintenance function during the last 20 years. In this project, pilot studies, conducted at Bruce Power between 1999 and 2005, and reported on in this dissertation, lay out a path to implement statistical improvements as the next step after RCM in reducing the cost of the maintenance. Elicitation protocols, designed for the age group being elicited, address the much-documented issue of a lack of data. Clear, graphical, inferential statistical interfaces are accentuated and developed to aid in building the teams required to implement the various methodologies and to help in achieving funding targets. Graphical analysis and Crow/AMSAA (army materials systems analysis activity) plots are developed and demonstrated from the point of view of justifying the expenditures of cost reduction efforts. This dissertation ultimately speaks to the great opportunity being presented by this approach at this time: of capturing the baby-boom generation's huge pool of knowledge before those people retire. It is expected that the protocols and procedures referenced here will have applicability across the many disciplines where collecting expert information from a similar age group is required.

  9. Generations.

    Science.gov (United States)

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession.

  10. 75 FR 8149 - Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Science.gov (United States)

    2010-02-23

    ... species. No impacts are expected to historic and cultural resources, or to socioeconomic resources... Nuclear Regulatory Commission. James R. Hall, Senior Project Manager, Plant Licensing Branch IV,...

  11. 76 FR 52357 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Unit 3...

    Science.gov (United States)

    2011-08-22

    ... Branch 1-2, Division of Operating Reactor Licensing, Office of Nuclear Reactor Regulation, U.S. Nuclear... Power Ratio (SLMCPR) values. The SLMCPR is established to assure that at least 99.9% of the fuel rods in... Reactor Fuel,'' Revision 18. The basis of the SLMCPR calculation is to ensure that during normal...

  12. Mitigating Community Impacts of Energy Development: Some Examples for Coal and Nuclear Generating Plants in the United States.

    Science.gov (United States)

    Peelle, Elizabeth

    The Hartsville, Tennessee nuclear reactor site, the coal plant at Wheatland, Wyoming, and the nuclear plant at Skagit, Washington have mitigation plans developed in response to a federal, state, and local regulatory agency, respectively; the three mitigation plans aim at internalizing community-level social costs and benefits during the…

  13. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 2: Accident and Thermal Fluids Analysis PIRTs

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Sydney J [ORNL; Corradini, M. [University of Wisconsin; Fisher, Stephen Eugene [ORNL; Gauntt, R. [Sandia National Laboratories (SNL); Geffraye, G. [CEA, France; Gehin, Jess C [ORNL; Hassan, Y. [Texas A& M University; Moses, David Lewis [ORNL; Renier, John-Paul [ORNL; Schultz, R. [Idaho National Laboratory (INL); Wei, T. [Argonne National Laboratory (ANL)

    2008-03-01

    An accident, thermal fluids, and reactor physics phenomena identification and ranking process was conducted by a panel of experts on the next generation nuclear plant (NGNP) design (consideration given to both pebble-bed and prismatic gas-cooled reactor configurations). Safety-relevant phenomena, importance, and knowledge base were assessed for the following event classes: (1) normal operation (including some reactor physics aspects), (2) general loss of forced circulation (G-LOFC), (3) pressurized loss-of-forced circulation (P-LOFC), (4) depressurized loss-of-forced circulation (D-LOFC), (5) air ingress (following D-LOFC), (6) reactivity transients - including anticipated transients without scram (ATWS), (7) processes coupled via intermediate heat exchanger (IHX) (IHX failure with molten salt), and (8) steam/water ingress. The panel's judgment of the importance ranking of a given phenomenon (or process) was based on the effect it had on one or more figures of merit or evaluation criteria. These included public and worker dose, fuel failure, and primary (and other safety) system integrity. The major phenomena of concern that were identified and categorized as high importance combined with medium to low knowledge follow: (1) core coolant bypass flows (normal operation), (2) power/flux profiles (normal operation), (3) outlet plenum flows (normal operation), (4) reactivity-temperature feedback coefficients for high-plutonium-content cores (normal operation and accidents), (5) fission product release related to the transport of silver (normal operation), (6)emissivity aspects for the vessel and reactor cavity cooling system (G-LOFC), (7) reactor vessel cavity air circulation and heat transfer (G-LOFC), and (8)convection/radiation heating of upper vessel area (P-LOFC).

  14. Eddy-current tests on operational evaluation of steam generator tubes in nuclear power plants; Ensaios de Eddy-current na avaliacao do estado operacional de tubos de geradores de vapor de centrais nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Luiz Antonio Negro Martin [Faculdade de Engenharia Industrial (FEI), Sao Paulo, SP (Brazil). Dept. de Energetica]. E-mail: luizlope@cci.fei.br; Ting, Daniel Kao Sun [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Dept. Engenharia de Reatores]. E-mail: dksting@net.ipen.br

    2000-07-01

    This paper presents a worldwide research on the technical and economical impacts due to failure in tube bundles of nuclear power plant steam generators. An Eddy current non destructive test using Foucault currents for the inspection and failure detection on the tubes, and also the main type of defects. The paper also presents the signals generated by a Zetec MIZ-40 test equipment. This paper also presents a brief description of an automatic system for data analysis which is under development by using a fuzzy logic and artificial intelligence.

  15. Determination of activity by gamma spectrometry of radionuclides present in drums of residues generated in nuclear centrals; Determinacion de actividad por espectrometria gamma de radionucleidos presentes en tambores de residuos generados en centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, J.C.; Fernandez, J. [Autoridad Regulatoria Nuclear, Av. Del Libertador 8250, Ciudad Autonoma de Buenos Aires (Argentina)]. e-mail: jaguiar@cae.arn.gov.ar

    2006-07-01

    The generation of radioactive residuals in nuclear centrals as CNA I (Atucha I Nuclear Central) and CNE (Embalse Nuclear Central) makes that the measurement of those radionuclides has been a previous stage to the waste management. A method used in those nuclear centrals it is the gamma spectrometry with HPGe detectors, previous to the immobilization of the residual in a cemented matrix, with this the contact with the external agents and its possible dispersion to the atmosphere in the short term is avoided. The ARN (Nuclear Regulatory Authority) of Argentina it carries out periodically intercomparisons and evaluations of the measurement and procedures systems used in the nuclear power stations for the correct measurement and determination of activity of radioactive residuals by gamma spectrometry. In this work an independent method of measurement is exposed to the nuclear power stations. To determine the activity of the residuals by gamma spectrometry deposited in drums, it is required of the precise knowledge of the efficiency curve for such geometry and matrix. Due to the RNA doesn't have a pattern of these characteristics, a mathematical model has been used to obtain this efficiency curve. For it, it is necessary to determine previously: 1) the geometric efficiency or solid angle sustained by the source-detector system (drum-detector) applying a mathematical model described in this work. 2) To estimate the auto-attenuation factor that present the photons in the cemented matrix, these calculations are carried out with a simple equation and its are verified with the Micro Shield 6.10 program. The container commonly used by these nuclear power stations its are drums for 220 liters constructed with SAE 1010 steel and with a thickness of 0.127 cm, with an approximate weight 7.73 Kg., internal diameter of 57.1 cm, and height: 87 cm. The results obtained until the moment register a discrepancy from 5 to 10% with relationship to the measurements carried out by the

  16. Development and application of computational fluid dynamics approaches within the European project THINS for the simulation of next generation nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    Papukchiev, Angel, E-mail: angel.papukchiev@grs.de [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Garching n. Munich (Germany); Roelofs, Ferry; Shams, Afaque [Nuclear Research and Consultancy Group, Petten (Netherlands); Lecrivain, Gregory [Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Ambrosini, Walter [University of Pisa, Pisa (Italy)

    2015-08-15

    Highlights: • Thermal–hydraulic crosscutting issues related to Generation IV reactor concepts have been investigated within the European Project THINS. • New nuclear systems are characterized by various non-unity Prandtl number coolants. • Improvements in the turbulence modeling for innovative coolants have been achieved. • Extensive development and validation work has been done. - Abstract: Today computational fluid dynamics (CFD) is widely used in industrial companies, research institutes and technical safety organizations to supplement the design and analysis of diverse technical components and large systems. Such numerical programs are applied to better understand complex fluid flow and heat transfer phenomena. In the last decades there is an increasing interest in the nuclear community to utilize such advanced programs for the evaluation of different nuclear reactor safety issues, where traditional analysis tools show deficiencies. Within the FP7 European project THINS (Thermal Hydraulics of Innovative Nuclear Systems), CFD and coupled 1D-3D thermal–hydraulic simulations are being carried out. These are dedicated to the analysis of the thermal–hydraulics of gas, liquid metal and supercritical water cooled reactors. Such concepts utilize innovative fluids, which have different properties from the ones used in the current nuclear reactors. In order to improve the thermal–hydraulic predictions of their behavior, CFD development, application and validation activities are performed within THINS. This overview paper highlights some of the CFD related work within the European project.

  17. 75 FR 9622 - Southern Nuclear Operating Company, Inc.; Vogtle Electric Generating Plant, Units 1 and 2; Exemption

    Science.gov (United States)

    2010-03-03

    ...; Exemption 1.0 Background Southern Nuclear Operating Company, Inc. (SNC, the licensee), is the holder of... specified in the SNC letter dated November 6, 2009, as supplemented November 20, 2009, the licensee...

  18. Neutron flux from a 14‐MeV neutron generator with tungsten filter for research in NDA methods for nuclear safeguards and security

    OpenAIRE

    2009-01-01

    The Joint Research Centre has taken into operation a new experimental device designed for research in the fields of nuclear safeguards and security applications. The research projects currently undertaken include detection of shielded contraband materials, detection of fissile materials, and mass determination of small fissile materials in shielded containers. The device, called the Pulsed Neutron Interrogation Test Assembly (PUNITA), incorporates a pulsed 14‐MeV (D‐T) neutron generator and a...

  19. Power generation, operation, and control

    CERN Document Server

    Wood, Allen J

    2012-01-01

    A comprehensive text on the operation and control of power generation and transmission systems In the ten years since Allen J. Wood and Bruce F. Wollenberg presented their comprehensive introduction to the engineering and economic factors involved in operating and controlling power generation systems in electric utilities, the electric power industry has undergone unprecedented change. Deregulation, open access to transmission systems, and the birth of independent power producers have altered the structure of the industry, while technological advances have created a host of new opportunities

  20. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe

    2016-01-01

    Full Text Available We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  1. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    Science.gov (United States)

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  2. Nuclear energy data 2011

    CERN Document Server

    2011-01-01

     . Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of statistics and country reports on nuclear energy, contains official information provided by OECD member country governments on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035. For the first time, it includes data for Chile, Estonia, Israel and Slovenia, which recently became OECD members. Key elements of this edition show a 2% increase in nuclear and total electricity production and a 0.5% increase in nuclear generating ca

  3. Use of a Nonequilibrium MHD Generator for Conversion of SNTP Nuclear Thermal Rocket Exhaust to DC Electric Power for a Multimegawatt Nuclear Electric Propulsion System

    Science.gov (United States)

    Finley, Charles J.

    1994-07-01

    This paper explores a method by which the energy of a high speed flowing gas can efficiently be converted into DC electric power by a magnetohydrodynamic (MHD) generator. A nonequilibrium state may be created in the working fluid during the ionization process using an arc discharge. This nonequilibrium state may possibly be sustained in the fluid using the waste heat byproduct of the natural operation of the generator, if certain characteristics of the fluid/MHD system are maintained. The improved efficiency of the resulting nonequilibrium MHD generator not only allows the system to deliver increased power to the load, but reduces the amount of energy to be expelled from the closed fluid cycle by a radiator.

  4. Permission of change of limits in the vapor generators of the Atucha I Nuclear Central; Permiso de cambio de limites en los GVs de la CNA-I

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, M. [Autoridad Regulatoria Nuclear, Av. Libertador 8250 (1429), Capital Federal (Argentina)]. e-mail: mventura@sede.arn.gov.ar

    2006-07-01

    In the mark of the modification of the Atucha-I Nuclear Central Installation (CNA-I) as consequence of the Introduction of the System 'Second Drain of Heat' (SSC), the Entity Responsible for the CNA-I (NASA) requested authorization to the Nuclear Regulatory Authority (ARN) to modify the value of the minimum level of water in the secondary side in the Steam generators (GVs) to activate the signal 'shoot of the Cut of the Reactor' (RESA-LLV). As the level in the GVs is one of those parameters that are used to shoot the Emergency Feeding System (RX), component of the SSC System, also was analyzed the change in the activation of the shoot signal of the 'Second Drain of Heat' (2SSC-LLV). The ARN uses for the study of the nuclear safety of nuclear power plants, the series of prediction programs RELAP5/MOD3.X. It participates of the evaluation and maintenance activities of these codes through specific agreements with the U.S. Nuclear Regulatory Commission (US-NRC). It is necessary to account with programs of this type since the ARN it licenses the construction and operation of Nuclear Power Plants (NPPs) and other outstanding facilities and it inquires its operation according to its own standards. With these tools its are auditing the calculations that the Responsible Entities of the operation make to guarantee the operability of the NPPs assisting the mentioned standards. The analysis with computational codes is used as a tool to achieve the best understanding in the behavior of the plant in union with the engineering approach, the manual calculations, the data analysis and the experience in the operation of the machine. (Author)

  5. Nuclear systems of the future - generation 4. Proposals of strategic orientations for the nuclear systems of the future; Les systemes nucleaires du futur - generation 4. Propositions d'orientations strategiques pour les systemes nucleaires du futur

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Several points, specific to France, must be taken into consideration for the long term strategic choice of future nuclear systems, in particular: taking the best profit of the progress potentialities of water reactors, optimizing the opportunities offered by the renewal of power plants in operation, integrating the consequences and the implementation of a strategy of optimized management of radioactive wastes, and looking for improvements that would make nuclear energy an active contributor to sustainable development. The prospective researches carried out by the CEA and its industrial partners have led to propose a R and D strategy with 3 complementary goals: search for innovations for water reactors, development of fast neutron reactors with closed fuel cycle (sodium fast reactor (SFR), gas fast reactor (GFR)), and development of key-technologies for nuclear hydrogen production (very high temperature reactor (VHTR)). The R and D effort concerns also the subcritical systems devoted to transmutation, the new cycle processes for a global management of actinides, and some other nuclear systems like the molten salt reactors (MSR) and the supercritical water reactors (SCWR). This paper presents the R and D strategy for each technology with its priorities, steps, financial means and collaborations. (J.S.)

  6. 四代核电NC-DCS产品解决方案简介%Brief Product Solution of 4th Generation of Nuclear NC-DCS

    Institute of Scientific and Technical Information of China (English)

    高景斌

    2014-01-01

    经历了福岛事件,核电的安全性更加被重视,四代核电因更安全性和经济性更加受到重视,是未来核电的发展方向。本文描述了具有我国自主知识产权的四代核电核心控制系统NC-DCS的产品解决方案,包括了解决方案的系统架构、网络、功能分配、主控制室设计、安全性冗余设计、通讯设计、校时设计等部分的内容。%After Fukushima, nuclear safety has been attached more attentions. Due to the more attentions on safety and economy, the four generation of nuclear power is the direction of development of nuclear power in the future. This paper describes the product solutions of NC-DCS with independent intellectual property rights of China's nuclear power core control system, including system architecture, solution of the network, function distribution, main control room design, safety redundancy design, communication design, time correction design and other parts design.

  7. Use of self-organizing maps for classification of defects in the tubes from the steam generator of nuclear power plants; Classificacao de defeitos em tubos de gerador de vapor de plantas nucleares utilizando mapas auto-organizaveis

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Roberto Navarro de

    2002-07-01

    This thesis obtains a new classification method for different steam generator tube defects in nuclear power plants using Eddy Current Test signals. The method uses self-organizing maps to compare different signal characteristics efficiency to identify and classify these defects. A multiple inference system is proposed which composes the different extracted characteristic trained maps classification to infer the final defect type. The feature extraction methods used are the Wavelet zero-crossings representation, the linear predictive coding (LPC), and other basic signal representations on time like module and phase. Many characteristic vectors are obtained with combinations of these extracted characteristics. These vectors are tested to classify the defects and the best ones are applied to the multiple inference system. A systematic study of pre-processing, calibration and analysis methods for the steam generator tube defect signals in nuclear power plants is done. The method efficiency is demonstrated and characteristic maps with the main prototypes are obtained for each steam generator tube defect type. (author)

  8. Nuclear Deterrence: Strong Policy is Needed for Effective Defense

    Science.gov (United States)

    2011-03-24

    Skeptics,” The Brown Journal of World Affairs 16, no. 1 (Fall/Winter 2009): 32. 54 Herman Kahn, Thinking About the Unthinkable in the 1980s (New York...108 Arnie Heller , “Enhancing Confidence in the Nation’s Nuclear Stockpile,” Science and Technology Review (July/August 2010): 4. 109 Department of...110 Bruce T. Goodwin, “Deterrence with a Minimum Nuclear Stockpile,” Science and Technology Review (July/August 2010): 3. 111 Heller , “Enhancing

  9. Nuclear energy data 2010

    CERN Document Server

    2010-01-01

    This 2010 edition of Nuclear Energy Data , the OECD Nuclear Energy Agency's annual compilation of official statistics and country reports on nuclear energy, provides key information on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035 in OECD member countries. This comprehensive overview provides authoritative information for policy makers, experts and other interested stakeholders.

  10. 75 FR 76051 - Northern States Power Company-Minnesota, Prairie Island Nuclear Generating Plant, Units 1 and 2...

    Science.gov (United States)

    2010-12-07

    ..., ``Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors,'' and appendix...\\TM\\ fuel rod cladding. Thus, an exemption from the requirements of 10 CFR 50.46 and Appendix K is needed to support the ] use of different fuel rod cladding material. Therefore, the licensee requested...

  11. 78 FR 47795 - In the Matter of Entergy Nuclear Generation Company Pilgrim Power Station Independent Spent Fuel...

    Science.gov (United States)

    2013-08-06

    ... Entergy because it has identified near-term plans to store spent fuel in an ISFSI under the general... 20852. FOR FURTHER INFORMATION, CONTACT: L. Raynard Wharton, Office of Nuclear Material Safety and... because it has identified near- term plans to store spent fuel in an ISFSI under the general...

  12. Instruction by virtual reality to operation and security of a nuclear power plant of IV generation; Instruccion por realidad virtual a la operacion y seguridad de una central nuclear de generacion IV

    Energy Technology Data Exchange (ETDEWEB)

    Neri O, J. C.; Baltasar M, J.; Valle H, J. [Facultad de Ingenieria, Division de Estudios de Posgrado, Campus Morelos, UNAM, Paseo Cuauhnahuac 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico)], e-mail: neriunam@ieee.org

    2009-10-15

    The purpose of LaNuVi project which is developing in the Engineering Faculty of National Autonomous University of Mexico, to have a virtual laboratory of nuclear reactors as tool of multidisciplinary education at basic and advanced levels in nuclear engineering area, involves training resources in audio visual and interactive form that allow to form a comprehension more realistic of operation of different systems and components. In this work is proposed to use educational resources, as the employees in the U.S. Army and in some centers of advanced education of medicine, where have been come proving concepts like projected reality, increased reality, tele transparency and others that present big benefits to learning-education process. The proposal here is to include the resource knew as serious game based learning. The focal point of stage that is presented is of a nuclear reactor PBMR like desalination and generator of controlled alternating energy and efficient that should put on in operation to allow the subsistence of a community in a desolated region of beginning second quarter of X XI century. For this purpose the designs are initiated and programmed several subsystems that allow the three-dimensional modeling of main components of a PBMR as well as of surrounding facilities. The obtained results and reaches of this design are presented. The product is in tests for a first version and it is hope to achieve a free and integral resource of national distribution for different cultural groups, interested in this type of advanced technology. (Author)

  13. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sobolik, Steven R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-07-07

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as seal systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences

  14. Proceedings of the 2. MIT international conference on the next generation of nuclear power technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The goal of the conference was to try to attract a variety of points of view from well-informed people to debate issues concerning nuclear power. Hopefully from that process a better understanding of what one should be doing will emerge. In organizing the conference lessons learned from the previous one were applied. A continuous effort was made to see to it that the arguments for the alternatives to nuclear power were given abundant time for presentation. This is ultimately because nuclear power is going to have to compete with all of the energy technologies. Thus, in discussing energy strategy all of the alternatives must be considered in a reasonable fashion. The structure the conference used has seven sessions. The first six led up to the final session which was concerned with what the future nuclear power strategy should be. Each session focused upon a question concerning the future. None of these questions has a unique correct answer. Rather, topics are addressed where reasonable people can disagree. In order to state some of the important arguments for each session`s question, the combination of a keynote paper followed by a respondent was used. The respondent`s paper is not necessarily included to be a rebuttal to the keynote; but rather, it was recognized that two people will look at a complex question with different shadings. Through those two papers the intention was to get out the most important arguments affecting the question for the session. The purpose of the papers was to set the stage for about an hour of discussion. The real product of this conference was that discussion.

  15. Application of perturbation methods for sensitivity analysis for nuclear power plant steam generators; Aplicacao da teoria de perturbacao a analise de sensibilidade em geradores de vapor de usinas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Gurjao, Emir Candeia

    1996-02-01

    The differential and GPT (Generalized Perturbation Theory) formalisms of the Perturbation Theory were applied in this work to a simplified U-tubes steam generator model to perform sensitivity analysis. The adjoint and importance equations, with the corresponding expressions for the sensitivity coefficients, were derived for this steam generator model. The system was numerically was numerically solved in a Fortran program, called GEVADJ, in order to calculate the sensitivity coefficients. A transient loss of forced primary coolant in the nuclear power plant Angra-1 was used as example case. The average and final values of functionals: secondary pressure and enthalpy were studied in relation to changes in the secondary feedwater flow, enthalpy and total volume in secondary circuit. Absolute variations in the above functionals were calculated using the perturbative methods, considering the variations in the feedwater flow and total secondary volume. Comparison with the same variations obtained via direct model showed in general good agreement, demonstrating the potentiality of perturbative methods for sensitivity analysis of nuclear systems. (author) 22 refs., 7 figs., 8 tabs.

  16. Evaluation of two processes of hydrogen production starting from energy generated by high temperature nuclear reactors; Evaluacion de dos procesos de produccion de hidrogeno a partir de energia generada por reactores nucleares de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J., E-mail: jvalle@upmh.edu.mx [Universidad Politecnica Metropolitana de Hidalgo, Boulevard Acceso a Tolcayuca 1009, Ex-Hacienda San Javier, 43860 Tolcayuca, Hidalgo (Mexico)

    2013-10-15

    In this work an evaluation to two processes of hydrogen production using energy generated starting from high temperature nuclear reactors (HTGR's) was realized. The evaluated processes are the electrolysis of high temperature and the thermo-chemistry cycle Iodine-Sulfur. The electrolysis of high temperature, contrary to the conventional electrolysis, allows reaching efficiencies of up to 60% because when increasing the temperature of the water, giving thermal energy, diminishes the electric power demand required to separate the molecule of the water. However, to obtain these efficiencies is necessary to have water vapor overheated to more than 850 grades C, temperatures that can be reached by the HTGR. On the other hand the thermo-chemistry cycle Iodine-Sulfur, developed by General Atomics in the 1970 decade, requires two thermal levels basically, the great of them to 850 grades C for decomposition of H{sub 2}SO{sub 4} and another minor to 360 grades C approximately for decomposition of H I, a high temperature nuclear reactor can give the thermal energy required for the process whose products would be only hydrogen and oxygen. In this work these two processes are described, complete models are developed and analyzed thermodynamically that allow to couple each hydrogen generation process to a reactor HTGR that will be implemented later on for their dynamic simulation. The obtained results are presented in form of comparative data table of each process, and with them the obtained net efficiencies. (author)

  17. Generation IV nuclear energy system initiative. Large GFR core subassemblydesign for the Gas-Cooled Fast Reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E. A.; Kulak, R. F.; Therios, I. U.; Wei, T. Y. C.

    2006-07-31

    Gas-cooled fast reactor (GFR) designs are being developed to meet Gen IV goals of sustainability, economics, safety and reliability, and proliferation resistance and physical protection as part of an International Generation IV Nuclear Energy System Research Initiative effort. Different organizations are involved in the development of a variety of GFR design concepts. The current analysis has focused on the evaluation of low-pressure drop, pin-core designs with favorable passive cooling properties. Initial evaluation of the passive cooling safety case for the GFR during depressurized decay heat removal accidents with concurrent loss of electric power have resulted in requirements for a reduction of core power density to the 100 w/cc level and a low core pressure drop of 0.5 bars. Additional design constraints and the implementation of their constraints are evaluated in this study to enhance and passive cooling properties of the reactor. Passive cooling is made easier by a flat radial distribution of the decay heat. One goal of this study was to evaluate the radial power distribution and determine to what extent it can be flattened, since the decay heat is nearly proportional to the fission power at shutdown. In line with this investigation of the radial power profile, an assessment was also made of the control rod configuration. The layout provided a large number of control rod locations with a fixed area provided for control rods. The number of control rods was consistent with other fast reactor designs. The adequacy of the available control rod locations was evaluated. Future studies will be needed to optimize the control rod designs and evaluate the shutdown system. The case for low pressure drop core can be improved by the minimization of pressure drop sources such as the number of required fuel spacers in the subassembly design and by the details of the fuel pin design. The fuel pin design is determined by a number of neutronic, thermal-hydraulic (gas dynamics

  18. Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2014-07-01

    Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfill its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administration’s Mars Science Laboratory, which launched in November of 2011.

  19. X-Ray Comb Generation from Nuclear-Resonance-Stabilized X-Ray Free-Electron Laser Oscillator for Fundamental Physics and Precision Metrology

    Energy Technology Data Exchange (ETDEWEB)

    Adams, B. W.; Kim, K. -J.

    2015-03-31

    An x-ray free-electron laser oscillator (XFELO) is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as Fe-57 as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS) XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as Ta-181 or Sc-45.

  20. Operational safety of turbine-generators at Loviisa nuclear power plant; Turbiini-generaattoreiden kaeyttoeturvallisuus Loviisan ydinvoimalaitoksella

    Energy Technology Data Exchange (ETDEWEB)

    Virolainen, T.

    1997-06-01

    The goal of the study is to assess the operational safety of the turbine-generators at the Loviisa NPP. The lay-out, operation, control, monitoring and testing of turbine-generators have been studied. Taking these findings into consideration and by using operational data of Loviisa and other power plants, the most significant safety issues of the turbine-generator system have been identified. The frequencies for initiating events and possible consequences have been determined based on plant operational experience and related literature. (58 refs.).

  1. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL RECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002 REV. 1

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH, RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-12-01

    OAK-B135 Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy [1-1,1-2]. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties [1-3,1-4]. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily

  2. Statistical pulses generator. Application to nuclear instrumentation (1962); Generateur d'impulsions aleatoires. Application a l'instrumentation nucleaire (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Beranger, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    This report describes a random pulses generator adapted to nuclear instrumentation. After a short survey on the statistical nature of electronic signals, the different ways for generating pulses with a Poisson's time-distribution are studied. The final generator built from a gaseous thyratron in a magnetic field is then described. Several tests are indicated : counting-rate stability, Pearson's criterion, distribution of time-intervals. Applications of the generator in 'whole testing' of nuclear instrumentation are then indicated for sealers, dead time measurements, time analyzers. In this application, pulse-height spectrums have been made by Poissonian sampling of a recurrent or random low-frequency signal. (author) [French] Cette etude decrit un generateur d'impulsions aleatoires et ses applications a l'instrumentation nucleaire. Apres un bref rappel sur la nature statistique des signaux en electronique nucleaire, sont passes en revue les principaux moyens d'obtenir des impulsions distribuees en temps suivant une loi de Poisson. Le generateur utilisant un thyratron a gaz dans un champ magnetique est ensuite decrit; diverses methodes de test sont appliquees (stabilite du taux de comptage, criterium de Pearson, spectre des intervalles ds temps). Les applications du generateur a l'electronique nucleaire dans le domaine des 'essais globaux' sont indiques: test des echelles de comptage et mesure des temps morts, test des analyseurs en temps apres division du taux de comptage par une puissance de deux, test des analyseurs multicanaux en amplitude. Pour cette derniere application, on a realise des spectres d'amplitudes suivant une loi connue, par echantillonnage poissonien d'un signal basse frequence recurrent ou aleatoire. (auteur)

  3. M2-F1 on lakebed with pilots Milt Thompson, Chuck Yeager, Don Mallick, and Bruce Peterson

    Science.gov (United States)

    1963-01-01

    After the initial M2-F1 airtow flights, the NASA Flight Research Center used the vehicle to check out other pilots. Bruce Peterson was scheduled to take over as the M2-F1 project pilot from Milt Thompson, while Don Mallick was to be his backup. Col. (later Brig. Gen.) Charles (Chuck) Yeager, then commandant of the Air Force's Aerospace Research Pilots School, wanted to evaluate a possible lifting-body trainer for the school. This photo shows all of these distinguished pilots on or in the M2-F1, with Col. Yeager in the pilot's seat. The lifting body concept evolved in the mid-1950s as researchers considered alternatives to ballistic reentries of piloted space capsules. The designs for hypersonic, wingless vehicles were on the boards at NASA Ames and NASA Langley facilities, while the US Air Force was gearing up for its Dyna-Soar program, which defined the need for a spacecraft that would land like an airplane. Despite favorable research on lifting bodies, there was little support for a flight program. Dryden engineer R. Dale Reed was intrigued with the lifting body concept, and reasoned that some sort of flight demonstration was needed before wingless aircraft could be taken seriously. In February 1962, he built a model lifting body based upon the Ames M2 design, and air-launched it from a radio controlled 'mothership.' Home movies of these flights, plus the support of research pilot Milt Thompson, helped pursuade the facilities director, Paul Bikle, to give the go-ahead for the construction of a full-scale version, to be used as a wind-tunnel model and possibly flown as a glider. Comparing lifting bodies to space capsules, an unofficial motto of the project was, 'Don't be Rescued from Outer Space--Fly Back in Style.' The construction of the M2-F1 was a joint effort by Dryden and a local glider manufacturer, the Briegleb Glider Company. The budget was $30,000. NASA craftsmen and engineers built the tubular steel interior frame. Its mahogany plywood shell was hand

  4. Atmospheric Dispersion Modeling of 137Cs generated from Nuclear Spent Fuel under Hypothetic Accidental Condition in the BNPP Area

    Science.gov (United States)

    Lee, Jongkuk; Lee, Kwan-Hee; Yook, Daesik; Kim, Sung Il; Lee, Byung Soo

    2016-04-01

    This study presents the results of atmosphere dispersion modeling using CALPUFF code that are based on computational simulation to evaluate the environmental characteristics of the Barakah nuclear power plant (BNPP) in west area of UAE. According to meteorological data analysis (2012~2013), the winds from the north(7.68%) and west(9.05%) including NNW(41.63%), NW(28.55%), and WNW(6.31%) winds accounted for more than 90% of the wind directions. East(0.2%) and south(0.6%) direction wind, including ESE(0.31%), SE(0.38%), and SSE(0.38%) were rarely distributed during the simulation period. Seasonal effects were not showed. However, a discrepancy in the tendency between daytime and night-time was observed. Approximately 87% of the wind speed was distributed below 5.4m/s (17%, 47% and 23% between the speeds of 0.5-1.8m/s 1.8-3.3m/s and 3.3-5.4m/s, respectively) during the annual period. Seasonal wind speed distribution results presented very similar pattern of annual distribution. Wind speed distribution of day and night, on the other hand, had a discrepancy with annual modeling results than seasonal distribution in some sections. The results for high wind speed (more than 10.8m/s) showed that this wind blew from the west. This high wind speed is known locally as the 'Shamal', which occurs rarely, lasting one or two days with the strongest winds experienced in association with gust fronts and thunderstorms. Six variations of cesium-137 (137Cs) dispersion test were simulated under hypothetic severe accidental condition. The 137Cs dispersion was strongly influenced by the direction and speed of the main wind. From the test cases, east-south area of the BNPP site was mainly influenced by 137Cs dispersion. A virtual receptor was set and calculated for observation of the 137Cs movement and accumulation. Surface roughness tests were performed for the analysis of topographic conditions. According to the surface condition, there are various surface roughness length. Four types

  5. Distributed fibre optic temperature measurement system for the safety monitoring of the next generation of large nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Fernandez, Alberto; Brichard, Benoit [SCK-CEN, Belgian Nuclear Research Center (Belgium); Hartog, Arthur H.; Hughes, Paul [SENSA, a Schlumberger Company (United Kingdom)

    2006-07-01

    The use of optical fibre distributed sensors for temperature sensing is a powerful way of monitoring, quasi simultaneously, thousands of points avoiding the requirement of optimum positioning of discrete temperature sensors. Their range of applications is rapidly expanding in the industry, and nowadays this fibre optic sensing technology is mature for industrial applications such as fire detection inside buildings and tunnels, process vessel monitoring, leak detection in cryogenic storage vessels (liquid natural gas (LNG), ammonia, ethylene) or oil wells and the measurement of energy cable thermal distribution for the power supply industry. These applications rely on the well known immunity of fibre optic sensors to electromagnetic interference and the ability of fibre sensors to be operated in hazardous environments. The nuclear industry shows a growing interest for the possibilities offered for temperature sensing applications. Fibre optic sensing technology could be considered as an alternative to classical measurements techniques in a wide range of applications. The potential of distributed temperature measurements for the monitoring of large nuclear infrastructures such as reactor containment buildings, nuclear waste repositories and reactor primary circuitry have already been shown. However, a major problem in the application of optical fibres in nuclear environments is the presence of ionizing radiation fields that induce an increase of the optical fibre attenuation. This radiation-induced degradation of the measurement signal could be critical since most commercially available distributed temperature sensors derive the temperature profile from the measurement of the Raman backscattered light intensity along the fibre, using optical time domain reflectometry techniques. The Raman signal comprises two elements: the Stokes and anti-Stokes lines. The longer wavelength Stokes line is only weakly temperature sensitive but the intensity of the backscattered light

  6. Neutron flux from a 14-MeV neutron generator with tungsten filter for research in NDA methods for nuclear safeguards and security

    Science.gov (United States)

    Rennhofer, H.; Pedersen, B.; Crochemore, J.-M.

    2009-12-01

    The Joint Research Centre has taken into operation a new experimental device designed for research in the fields of nuclear safeguards and security applications. The research projects currently undertaken include detection of shielded contraband materials, detection of fissile materials, and mass determination of small fissile materials in shielded containers. The device, called the Pulsed Neutron Interrogation Test Assembly (PUNITA), incorporates a pulsed 14-MeV (D-T) neutron generator and a large graphite mantle surrounding the sample cavity. By pulsing the neutron generator with a frequency in the range of 10 to 150 Hz, a sample may be interrogated first by fast neutrons and a few hundred micro-seconds later by a pure thermal neutron flux. The permanent detection systems incorporated in PUNITA include 3He neutrons detectors, HPGe gamma detectors, and lanthanum bromide scintillation detectors. We have studied the effects of placing a tungsten liner around the neutron generator target. The 14-MeV neutrons induce (n, 2n) and (n, 3n) reactions. In addition the mean neutron energy emitted from generator/tungsten assembly is reduced to about 1 MeV. Both of these effects increase the thermal neutron flux in the sample cavity. The paper describes the observed advantages of the tungsten liner with respect to increase in thermal flux, and better shielding capabilities of the nearby gamma and neutron detectors.

  7. Investigation of a Novel NDE Method for Monitoring Thermomechanical Damage and Microstructure Evolution in Ferritic-Martensitic Steels for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Peter

    2013-09-30

    The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied by significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV

  8. Analysis on the Current Status of Chemical Decontamination Technology of Steam Generators in the Oversea Nuclear Power Plants (NPPs)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Taebin; Kim, Sukhoon; Kim, Juyoul; Kim, Juyub; Lee, Seunghee [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    The steam generators in Hanbit Unit 3 and 4 are scheduled to be replaced in 2018 and 2019, respectively. Nevertheless, the wastes from the dismantled steam generators are currently just on-site stored in the NPP because there are no disposal measures for the waste and lack of the decontamination techniques for large-sized metallic equipment. In contrast, in the oversea NPPs, there are many practical cases of chemical decontamination not only for oversized components in the NPPs such as reactor pressure vessel and steam generator, but also for major pipes. Chemical decontamination technique is more effective in decontaminating the components with complicated shape compared with mechanical one. Moreover, a high decontamination factor can be obtained by using strong solvent, and thereby most of radionuclides can be removed. Due to these advantages, the chemical decontamination has been used most frequently for operation of decontaminating the large-sized equipment. In this study, an analysis on the current status of chemical decontamination technique used for the steam generators of the foreign commercial NPPs was performed. In this study, the three major chemical decontamination processes were reviewed, which are applied to the decommissioning process of the steam generators in the commercial NPPs of the United States, Germany, and Belgium. The three processes have the different features in aspect of solvent, while those are based in common on the oxidation and reduction between the target metal surface and solvents. In addition, they have the same goals for improving the decontamination efficiency and decreasing the amount of the secondary waste generation. Based on the analysis results on component sub-processes and major advantages and disadvantages of each process, Table 2 shows the key fundamental technologies for decontamination of the steam generator in Korea and the major considerations in the development process of each technology. It is necessary to prepare

  9. Nuclear energy data 2005

    CERN Document Server

    Publishing, OECD

    2005-01-01

    This 2005 edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers a projection horizon lengthened to 2025 for the first time.  It presents the reader with a comprehensive overview on the status and trends in nuclear electricity generation in OECD countries and in the various sectors of the nuclear fuel cycle.

  10. Ion acceleration and D-D nuclear fusion in laser-generated plasma from advanced deuterated polyethylene.

    Science.gov (United States)

    Torrisi, Lorenzo

    2014-10-23

    Deuterated polyethylene targets have been irradiated by means of a 1016 W/cm2 laser using 600 J pulse energy, 1315 nm wavelength, 300 ps pulse duration and 70 micron spot diameter. The plasma parameters were measured using on-line diagnostics based on ion collectors, SiC detectors and plastic scintillators, all employed in time-of-flight configuration. In addition, a Thomson parabola spectrometer, an X-ray streak camera, and calibrated neutron dosimeter bubble detectors were employed. Characteristic protons and neutrons at maximum energies of 3.0 MeV and 2.45 MeV, respectively, were detected, confirming that energy spectra of reaction products coming from deuterium-deuterium nuclear fusion occur. In thick advanced targets a fusion rate of the order of 2 × 108 fusions per laser shot was calculated.

  11. Safety assessment for electricity generation failure accident of gas cooled nuclear power plant using system dynamics (SD) method

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering

    2013-04-15

    The power production failure happens in the loss of coolant of the nuclear power plants (NPPs). The air ingress is a serious accident in gas cooled NPPs. The quantification of the study performed by the system dynamics (SD) method which is processed by the feedback algorithms. The Vensim software package is used for the simulation, which is performed by the Monte-Carlo method. Two kinds of considerations as the economic and safety properties are important in NPPs. The result shows the stability of the operation when the power can be decided. The maximum value of risk is the 11.77 in 43rd and the minimum value is 0.0 in several years. So, the success of the circulation of coolant is simulated by the dynamical values. (orig.)

  12. Advanced Non-Destructive Assessment Technology to Determine the Aging of Silicon Containing Materials for Generation IV Nuclear Reactors

    Science.gov (United States)

    Koenig, T. W.; Olson, D. L.; Mishra, B.; King, J. C.; Fletcher, J.; Gerstenberger, L.; Lawrence, S.; Martin, A.; Mejia, C.; Meyer, M. K.; Kennedy, R.; Hu, L.; Kohse, G.; Terry, J.

    2011-06-01

    To create an in-situ, real-time method of monitoring neutron damage within a nuclear reactor core, irradiated silicon carbide samples are examined to correlate measurable variations in the material properties with neutron fluence levels experienced by the silicon carbide (SiC) during the irradiation process. The reaction by which phosphorus doping via thermal neutrons occurs in the silicon carbide samples is known to increase electron carrier density. A number of techniques are used to probe the properties of the SiC, including ultrasonic and Hall coefficient measurements, as well as high frequency impedance analysis. Gamma spectroscopy is also used to examine residual radioactivity resulting from irradiation activation of elements in the samples. Hall coefficient measurements produce the expected trend of increasing carrier concentration with higher fluence levels, while high frequency impedance analysis shows an increase in sample impedance with increasing fluence.

  13. Ion Acceleration and D-D Nuclear Fusion in Laser-Generated Plasma from Advanced Deuterated Polyethylene

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2014-10-01

    Full Text Available Deuterated polyethylene targets have been irradiated by means of a 1016 W/cm2 laser using 600 J pulse energy, 1315 nm wavelength, 300 ps pulse duration and 70 micron spot diameter. The plasma parameters were measured using on-line diagnostics based on ion collectors, SiC detectors and plastic scintillators, all employed in time-of-flight configuration. In addition, a Thomson parabola spectrometer, an X-ray streak camera, and calibrated neutron dosimeter bubble detectors were employed. Characteristic protons and neutrons at maximum energies of 3.0 MeV and 2.45 MeV, respectively, were detected, confirming that energy spectra of reaction products coming from deuterium-deuterium nuclear fusion occur. In thick advanced targets a fusion rate of the order of 2 × 108 fusions per laser shot was calculated.

  14. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer

    Directory of Open Access Journals (Sweden)

    Madhusudana Girija Sanal

    2014-09-01

    Full Text Available Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC, we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence expensive compared to the generation of iPSC. Even with the latest SCNT technology, we are not sure whether one can make therapeutic quality pluripotent stem cell from any patient’s somatic cells or by using oocytes from any donor. Combining iPSC technology with SCNT, that is, by using the nucleus of the candidate somatic cell which got reprogrammed to pluripotent state instead that of the unmodified nucleus of the candidate somatic cell, would boost the efficiency of the technique, and we would be able to generate therapeutic quality pluripotent stem cells. Induced pluripotent stem cell nuclear transfer (iPSCNT combines the efficiency of iPSC generation with the speed and natural reprogramming environment of SCNT. The new technique may be called iPSCNT. This technique could prove to have very revolutionary benefits for humankind. This could be useful in generating organs for transplantation for patients and for reproductive cloning, especially for childless men and women who cannot have children by any other techniques. When combined with advanced gene editing techniques (such as CRISPR-Cas system this technique might also prove useful to those who want to have healthy children but suffer from inherited diseases. The current code of ethics may be against reproductive cloning. However, this will change with time as it happened with most of the revolutionary scientific breakthroughs. After all, it is the right of every human to have healthy offspring and it is

  15. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 9. Methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V.; Quinby-Hunt, M.S.

    1977-01-01

    This report sets forth methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities for electric power generation. The review is divided into a Notice of Intention process and an Application for Certification process, in accordance with the structure to be used by the California Energy Resources Conservation and Development Commission, the first emphasizing site-specific considerations, the second examining the detailed facility design as well. The Notice of Intention review is divided into three possible stages: an examination of emissions and site characteristics, a basic impact analysis, and an assessment of public impacts. The Application for Certification review is divided into five possible stages: a review of the Notice of Intention treatment, review of the emission control equipment, review of the safety design, review of the general facility design, and an overall assessment of site and facility acceptability.

  16. Westinghouse experiences with HTR as the basis for design of the New Generation of Nuclear Power Plants (NGNP); Experiencias de Estinghouse con el HTR como Base para el diseno de la Nueva Generacion de Centrales Nucleares (BGNP)

    Energy Technology Data Exchange (ETDEWEB)

    Schoning, J.; Esch, M.; Knoche, D.; Freis, D.; Finken, H.; Drifhout, F.

    2010-07-01

    For more than three decades Germany had a very ambitious High Temperature Reactor (HTR) program which included numerous research activities and the construction and operation of two HTRs. The whole program had a volume of more than 6 billion D-Marks and covered activities of industry, research centres and universities. Within this program the physical feasibility of a pebble bed HTR was power for the first time in the Arbeitsgemeinschaft Versuchsreaktor (AVR) research reactor at Research Centre Julich (FZJ). Later it served as a test bed for new developed fuel as well as test reactor for numerous successful experiments on the inherent safety of this special type of nuclear reactor. The subsequent power plant THTR-300 with a rated electrical power of 300 MWel at Hamm-Uentrop was constructed as a demonstration plant. With THTR-300 the feasibility of a large commercial pebble bed reactor was demonstrated. Both reactors were built in the state of North-Rhine Westphalia with its traditional resources of coal and its heavy and chemical industry. HTRs were specifically meant to provide process heat to these industries and with the Project Nuclear Process Heat (PNP) a plant was developed to serve this means. Based on this HTR specific expertise and on actual experience from AP1000TM development and construction, Westinghouse has the overall expertise in house to design a generation IV reactor system in the near term future. On HTR specific systems and components the maturity of the technology was demonstrated with THTR-300. Potential design approaches for future HTR concepts for process heat generation are discussed. (Author) 1 refs.

  17. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marie-Paule, E-mail: marie-paule.garcia@univ-brest.fr; Villoing, Daphnée [UMR 1037 INSERM/UPS, CRCT, 133 Route de Narbonne, 31062 Toulouse (France); McKay, Erin [St George Hospital, Gray Street, Kogarah, New South Wales 2217 (Australia); Ferrer, Ludovic [ICO René Gauducheau, Boulevard Jacques Monod, St Herblain 44805 (France); Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila [European Institute of Oncology, Via Ripamonti 435, Milano 20141 (Italy); Bardiès, Manuel [UMR 1037 INSERM/UPS, CRCT, 133 Route de Narbonne, Toulouse 31062 (France)

    2015-12-15

    Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry

  18. Energy from nuclear fission(*

    Directory of Open Access Journals (Sweden)

    Ripani M.

    2015-01-01

    Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  19. Nuclear Assessment

    Institute of Scientific and Technical Information of China (English)

    CHARLES; K.; EBINGER; JOHN; P.; BANKS

    2010-01-01

    The United States needs a comprehensive policy and market-based solutions to address the challenges and demands of energy provision in President Barack Obama’s State of the Union address in January 2009, he called for the building of "a new generation of safe, clean nuclear power plants." This was followed by his high- profile speech in Prague in April 2009,

  20. Generation of PPARγ mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning

    Institute of Scientific and Technical Information of China (English)

    Dongshan Yang; Jiangtian Tian; Feng Li; Jifeng Zhang; Lin Chang; Duanqing Pei; Y Eugene Chen; Liangxue Lai; Huaqiang Yang; Wei Li; Bentian Zhao; Zhen Ouyang; Zhaoming Liu; Yu Zhao; Nana Fan; Jun Song

    2011-01-01

    @@ Dear Editor, Gene targeting in mouse embryonic stem (ES) cells has revolutionized the field of mouse genetics and allowed for the analysis of diverse aspects of gene function in vivo.For more than two decades,researchers have been actively searching for ES cells from large animals such as pigs and cattle.Unfortunately,to date,no ES cell lines from large animals have passed the crucial test of germ line contribution.The sole method of gene targeting to date in these species remains somatic cell nuclear transfer (SCNT) combined with DNA homologous recombination (HR).Due to the limited proliferation competency and extremely low frequency of HR in somatic cells (less than 10-6),this process is highly inefficient and only a few successful examples have been achieved,even though enrichment strategies such as positivenegative marker selection,promoter-trap and adenoassociated viral delivery were previously used [1-3].The low efficiency of gene targeting in cultured somatic cells is the main barrier for gene targeting in large animals.Recently,zinc-finger nuclease (ZFN) technology has emerged as a powerful tool for genome editing.The success of ZFN technology for gene targeting in fruit flies,zebra fish,rodents as well as human cell lines encouraged us to establish a high-efficiency gene-targeting platform in large animals such as pigs [4-8].

  1. Experimental and theoretical studies of nuclear generation of ozone from oxygen and oxygen-sulfur hexafluoride mixtures

    Science.gov (United States)

    Elsayed-Ali, H. E.; Miley, G. H.

    1986-08-01

    A series of experimental measurements of the yield of O3 in nuclear-induced O2 and O2-SF6 discharges are reported. The discharges were created by bombardment with energetic particles from the 10B(n,α)7Li reaction. Continuous irradiation at dose rates of 1015-1017 eV cm-3 s-1 and pulsed irradiation (˜10 ms FWHM) at a peak dose rate of ˜1020 eV cm-3 s-1 were conducted. At the lower dose rates, the addition of SF6 generally increased the ozone yield due to the slowing of ozone destruction by negative oxygen and ozone ions. In contrast, at the high dose rates, the ozone concentration decreased due to SF6 suppression of atomic oxygen formation by ion-ion recombination. A numerical model was developed and tested against experimental conditions. This model indicates that the steady-state ozone concentration was limited by the reaction O-3+O3→2O2+O-2 with a rate coefficient of ˜1×10-12 cm3 s-1. In addition to dose rate effects, pressure and temperature effects on ozone production are discussed and methods for increasing the ozone yield are suggested.

  2. The path to 'Jiibegmegoong': lessons learned in working with aboriginal people on archaeological assessment of the Bruce Nuclear Power Development site

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, K.; Peters, J.H. [Ontario Hydro, Nuclear Waste Management Division, Toronto, ON (Canada); Fitzgerald, W.R. [Wilfirid Laurier University, Waterloo, ON (Canada)

    1998-07-01

    A major international experiment, demonstrating technologies for tunnel sealing at full-scale, is being conducted at Canada's Underground Research Laboratory (URL) with participation by organizations from Canada, Japan, France and the U.S.A. Two bulkheads, one composed of high performance concrete and the other of highly compacted sand-bentonite material, have been be constructed in a tunnel in unfractured granitic rock at the URL. The Tunnel Sealing Experiment will characterize the performance of the two bulkheads under applied hydraulic pressures. The chamber between the two bulkheads will be pressurized to approximately 4 MPa, a value representative of the ambient pore pressures in the rock at a depth of 420 m. Instrumentation in the experiment monitors the seepage through and around each bulkhead as well as the changes to the pore water pressures, and hence changes to the flow directions, in the intact rock. Stresses and displacements in each bulkhead are also monitored. The objective of the experiment is to demonstrate technologies for construction of bentonite and concrete bulkheads and to quantify the performance of each bulkhead. (author)

  3. Procedure of calculation of the spatial distribution of temperatures and heat fluxes in the steam generator of a nuclear power installation with an RBEC fast-neutron reactor

    Science.gov (United States)

    Frolov, A. A.; Sedov, A. A.

    2016-08-01

    A method for combined 3D/1D-modeling of thermohydraulics of a once-through steam generator (SG) based on the joint analysis of three-dimensional thermo- and hydrodynamics of a single-phase heating coolant in the intertube space and one-dimensional thermohydraulics of steam-generating channels (tubes) with the use of well-known friction and heat-transfer correlations under various boiling conditions is discussed. This method allows one to determine the spatial distribution of temperatures and heat fluxes of heat-exchange surfaces of SGs with a single-phase heating coolant in the intertube space and with steam generation within tubes. The method was applied in the analytical investigation of typical operation of a once-through SG of a nuclear power installation with an RBEC fast-neutron heavy-metal reactor that is being designed by Kurchatov Institute in collaboration with OKB GIDROPRESS and Leipunsky Institute of Physics and Power Engineering. Flow pattern and temperature fields were obtained for the heavy-metal heating coolant in the intertube space. Nonuniformities of heating of the steam-water coolant in different heat-exchange tubes and nonuniformities in the distribution of heat fluxes at SG heat-exchange surfaces were revealed.

  4. 77 FR 7184 - Entergy Nuclear Indian Point 2, LLC; Entergy Nuclear Operations, Inc.; Indian Point Nuclear...

    Science.gov (United States)

    2012-02-10

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Indian Point 2, LLC; Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Unit No. 2; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (Entergy or the licensee)...

  5. 77 FR 8904 - Entergy Nuclear Indian Point 3, LLC.; Entergy Nuclear Operations, Inc., Indian Point Nuclear...

    Science.gov (United States)

    2012-02-15

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Indian Point 3, LLC.; Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit 3; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (Entergy or the licensee) is...

  6. Improvement of Sodium Neutronic Nuclear Data for the Computation of Generation IV Reactors; Contribution a l'amelioration des donnees nucleaires neutroniques du sodium pour le calcul des reacteurs de generation IV

    Energy Technology Data Exchange (ETDEWEB)

    Archier, P.

    2011-09-14

    The safety criteria to be met for Generation IV sodium fast reactors (SFR) require reduced and mastered uncertainties on neutronic quantities of interest. Part of these uncertainties come from nuclear data and, in the particular case of SFR, from sodium nuclear data, which show significant differences between available international libraries (JEFF-3.1.1, ENDF/B-VII.0, JENDL-4.0). The objective of this work is to improve the knowledge on sodium nuclear data for a better calculation of SFR neutronic parameters and reliable associated uncertainties. After an overview of existing {sup 23}Na data, the impact of the differences is quantified, particularly on sodium void reactivity effects, with both deterministic and stochastic neutronic codes. Results show that it is necessary to completely re-evaluate sodium nuclear data. Several developments have been made in the evaluation code Conrad, to integrate new nuclear reactions models and their associated parameters and to perform adjustments with integral measurements. Following these developments, the analysis of differential data and the experimental uncertainties propagation have been performed with Conrad. The resolved resonances range has been extended up to 2 MeV and the continuum range begins directly beyond this energy. A new {sup 23}Na evaluation and the associated multigroup covariances matrices were generated for future uncertainties calculations. The last part of this work focuses on the sodium void integral data feedback, using methods of integral data assimilation to reduce the uncertainties on sodium cross sections. This work ends with uncertainty calculations for industrial-like SFR, which show an improved prediction of their neutronic parameters with the new evaluation. (author) [French] Les criteres de surete exiges pour les reacteurs rapides au sodium de Generation IV (RNR-Na) se traduisent par la necessite d'incertitudes reduites et maitrisees sur les grandeurs neutroniques d'interet. Une part

  7. Nuclear questions

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, M. [Physics World (United Kingdom)

    2006-01-01

    The future of nuclear power has returned to centre stage. Freezing weather on both sides of the Atlantic and last month's climate-change talks in Montreal have helped to put energy and the future of nuclear power right back on the political agenda. The issue is particularly pressing for those countries where existing nuclear stations are reaching the end of their lives. In the UK, prime minister Tony Blair has commissioned a review of energy, with a view to deciding later this year whether to build new nuclear power plants. The review comes just four years after the Labour government published a White Paper on energy that said the country should keep the nuclear option open but did not follow this up with any concrete action. In Germany, new chancellor and former physicist Angela Merkel is a fan of nuclear energy and had said she would extend the lifetime of its nuclear plants beyond 2020, when they are due to close. However, that commitment has had to be abandoned, at least for the time being, following negotiations with her left-wing coalition partners. The arguments in favour of nuclear power will be familiar to all physicists - it emits almost no carbon dioxide and can play a vital role in maintaining a diverse energy supply. To over-rely on imported supplies of oil and gas can leave a nation hostage to fortune. The arguments against are equally easy to list - the public is scared of nuclear power, it generates dangerous waste with potentially huge clean-up costs, and it is not necessarily cheap. Nuclear plants could also be a target for terrorist attacks. Given political will, many of these problems can be resolved, or at least tackled. China certainly sees the benefits of nuclear power, as does Finland, which is building a new 1600 MW station - the world's most powerful - that is set to open in 2009. Physicists, of course, are essential to such developments. They play a vital role in ensuring the safety of such plants and developing new types of

  8. Sub-femtosecond nuclear dynamics and high-harmonic generation: Can muonated species be used as a probe of isotope effects?

    Science.gov (United States)

    Jayachander Rao, B.; Varandas, A. J. C.

    2016-06-01

    Sub-femtosecond nuclear dynamics and high-order harmonic generation (HHG) studies are reported for the X ˜ 2B1 and A ˜ 2A1 states of Mu2O+ . The photoelectron spectra and autocorrelation functions are calculated by solving the time-dependent Schrödinger equation, and the HHG signals from the autocorrelation functions for the two cationic states. Good agreement is observed with our earlier studies, with the autocorrelation function ratios revealing maxima as a function of time. Expectation values of bond lengths and bond angle show quasiperiodic oscillations that reflect repeated passages of the wavepacket at minima of the potential surfaces, thence being responsible for the HHG peaks.

  9. Studies of the generation mechanisms of steady vortex formations in the channels of nuclear-power installations for purposes of improving the reliability and safety of their work

    Science.gov (United States)

    Mitrofanova, O.

    2017-01-01

    The analysis of the results of experimental researches on revealing the mechanisms of vortex formation in channels of complex geometry in the neutral and conductive media is carried out. The directions of researches related to the study of mechanisms of vortex generation and accumulation of energy by large-scale vortex structures are considered for the possibility of predictions of the man-made accidents and catastrophic natural phenomena. The main goal of ongoing investigations is the solution of the task aimed at improving the safety of nuclear power installations and, in particular, of the fast neutron reactors with liquid-metal coolants, and the prevention of emergency modes arising from acoustic, magnetic and hydrodynamic resonance effects.

  10. A preliminary user-friendly, digital console for the control room parameters supervision in old-generation Nuclear Plants

    Energy Technology Data Exchange (ETDEWEB)

    Memmi, F.; Falconi, L.; Cappelli, M.; Palomba, M.; Santoro, E.; Bove, R.; Sepielli, M. [UTFISST, ENEA Casaccia, via Anguillarese 301, Rome (Italy)

    2012-07-01

    Improvements in the awareness of a system status is an essential requirement to achieve safety in every kind of plant. In particular, in the case of Nuclear Power Plants (NPPs), a progress is crucial to enhance the Human Machine Interface (HMI) in order to optimize monitoring and analyzing processes of NPP operational states. Firstly, as old-fashioned plants are concerned, an upgrading of the whole console instrumentation is desirable in order to replace an analog visualization with a full-digital system. In this work, we present a novel instrument able to interface the control console of a nuclear reactor, developed by using CompactRio, a National Instruments embedded architecture and its dedicated programming language. This real-time industrial controller composed by a real-time processor and FPGA modules has been programmed to visualize the parameters coming from the reactor, and to storage and reproduce significant conditions anytime. This choice has been made on the basis of the FPGA properties: high reliability, determinism, true parallelism and re-configurability, achieved by a simple programming method, based on LabVIEW real-time environment. The system architecture exploits the FPGA capabilities of implementing custom timing and triggering, hardware-based analysis and co-processing, and highest performance control algorithms. Data stored during the supervisory phase can be reproduced by loading data from a measurement file, re-enacting worthwhile operations or conditions. The system has been thought to be used in three different modes, namely Log File Mode, Supervisory Mode and Simulation Mode. The proposed system can be considered as a first step to develop a more complete Decision Support System (DSS): indeed this work is part of a wider project that includes the elaboration of intelligent agents and meta-theory approaches. A synoptic has been created to monitor every kind of action on the plant through an intuitive sight. Furthermore, another important

  11. Establishment and characterization of fetal fibroblast cell lines for generating human lysozyme transgenic goats by somatic cell nuclear transfer.

    Science.gov (United States)

    Liu, Jun; Luo, Yan; Zheng, Liming; Liu, Qingqing; Yang, Zhongcai; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Zhang, Yong

    2013-10-01

    This study was performed to qualify goat fetal fibroblast (GFF) cell lines for genetic modification and somatic cell nuclear transfer (SCNT) to produce human lysozyme (hLYZ) transgenic goats. Nine GFF cell lines were established from different fetuses, and the proliferative lifespan and chromosomal stability were analyzed. The results suggested that cell lines with a longer lifespan had stable chromosomes compared with those of cells lines with a shorter lifespan. According to the proliferative lifespan, we divided GFF cell lines into two groups: cell lines with a long lifespan (GFF1/2/7/8/9; group L) and cell lines with a short lifespan (GFF3/4/5/6; group S). Next, a hLYZ expression vector was introduced into these cell lines by electroporation. The efficiencies of colony formation, expansion in culture, and the quality of transgenic clonal cell lines were significant higher in group L than those in group S. The mean fusion rate and blastocyst rate in group L were higher than those in group S (80.3 ± 1.7 vs. 65.1 ± 4.2 % and 19.5 ± 0.6 vs. 15.1 ± 1.1 %, respectively, P embryos into the oviducts of recipient goats, three live kids were born. PCR and Southern blot analyses confirmed integration of the transgene in cloned goats. In conclusion, the lifespan of GFF cell lines has a major effect on the efficiency to produce transgenic cloned goats. Therefore, the proliferative lifespan of primary cells may be used as a criterion to characterize the quality of cell lines for genetic modification and SCNT.

  12. Measurements of beta ray spectra inside nuclear generating stations using a silicon detector coincidence telescope: skin dose beta correction factors for TL elements

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Y.S.; Weizmann, Y. [Ben Gurion University of the Negev (Israel); Hirning, C.R. [Ontario Hydro, Whitby (Canada). Health Physics

    1996-10-01

    The measurement of beta ray spectra at various work locations inside nuclear generating stations operated by Ontario Hydro is described. The measurements were carried out using an advanced coincidence telescope spectrometer using silicon detectors only. The spectrometer is capable of measuring electron energies over the range 70-2500 keV with close to 100% efficiency. Over 40 beta ray spectra were measured at various work locations in three nuclear generating stations. Photon rejection is carried out by requiring a coincidence between either two or three detectors. Monte Carlo calculations were then used to estimate beta correction factors for the LiF:Mg,Ti elements used in the Ontario Hydro thermoluminescence dosemeters. Averaging over all the measured beta correction factors for the `skin chip (100 mg. cm{sup -2}) results in a value of 2.73 {+-} 0.77 and for the extremity dosemeter (240 mg.cm{sup -2}) an average value of 4.42 {+-} 1.17 is obtained. These values are 57% and 120% greater, respectively, than the current values used by Ontario Hydro. In addition, beta correction factors for nine representative spectra were calculated for 40 mg.cm{sup -2} and 20 mg.cm{sup -2} chips, and the results demonstrate the benefits of decreased dosemeter thickness. The average value of the beta correction factor, as well as the spread in the beta correction factor, decreases dramatically from 4.80 {+-} 2.1 (240 mg.cm{sup -2}) to 1.29 {+-} 0.1 (20mg.cm{sup -2}). (Author).

  13. Dose coefficients for inhalation of radionuclides generated through the nuclear spallation reaction by high-energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Akira; Takada, Hiroshi; Yamaguchi, Yasuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-10-01

    Dose coefficients have been calculated for inhalation of radionuclides generated in spallation neutron targets and not listed in ICRP Publication 68. Eleven radionuclides, generated in large quantities in the targets and having half-lives more than 10 minutes, were selected for the present calculation. The calculation of the dose coefficients was performed with LUDEP, a program implementing the ICRP Publication 66 respiratory tract model, and NUDAT, a decay radiation database processed from ENSDF. Comparisons were made between the dose coefficients calculated by LUDEP and those listed in ICRP Publication 68 in order to validate the calculated dose coefficients. For 228 cases that vary inhaled particle diameters and biokinetic models of 66 radionuclides, the dose coefficients calculated by LUDEP agreed with those of ICRP Publication 68 within {+-} 25% for 213 cases. Discrepancies that exceed the ICRP`s coefficients by {+-} 25% were mainly attributable to the difference of radiation data employed. It was confirmed from the comparisons that the dose coefficients calculated by the present method are reliable ones. Annual limits on intake and derived air concentrations were calculated on the basis of the dose coefficients. It can be concluded that the dose coefficients and limits calculated here are useful from viewpoints of the design of ventilation system and the evaluation of internal exposures in high energy proton accelerator facilities. (author)

  14. Long-Term Modeling of Coupled Processes in a Generic Salt Repository for Heat-Generating Nuclear Waste: Analysis of the Impacts of Halite Solubility Constraints

    Science.gov (United States)

    Blanco Martin, L.; Rutqvist, J.; Battistelli, A.; Birkholzer, J. T.

    2015-12-01

    Rock salt is a potential medium for the underground disposal of nuclear waste because it has several assets, such as its ability to creep and heal fractures and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste and we consider a generic salt repository with in-drift emplacement of waste packages and crushed salt backfill. As the natural salt creeps, the crushed salt backfill gets progressively compacted and an engineered barrier system is subsequently created [1]. The safety requirements for such a repository impose that long time scales be considered, during which the integrity of the natural and engineered barriers have to be demonstrated. In order to evaluate this long-term integrity, we perform numerical modeling based on state-of-the-art knowledge. Here, we analyze the impacts of halite dissolution and precipitation within the backfill and the host rock. For this purpose, we use an enhanced equation-of-state module of TOUGH2 that properly includes temperature-dependent solubility constraints [2]. We perform coupled thermal-hydraulic-mechanical modeling and we investigate the influence of the mentioned impacts. The TOUGH-FLAC simulator, adapted for large strains and creep, is used [3]. In order to quantify the importance of salt dissolution and precipitation on the effective porosity, permeability, pore pressure, temperature and stress field, we compare numerical results that include or disregard fluids of variable salinity. The sensitivity of the results to some parameters, such as the initial saturation within the backfill, is also addressed. References: [1] Bechthold, W. et al. Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt (BAMBUS II Project). Report EUR20621 EN: European Atomic Energy Community, 2004. [2] Battistelli A. Improving the treatment of saline brines in EWASG for the simulation of hydrothermal systems. Proceedings, TOUGH Symposium 2012

  15. A state-of-the-art report on the off-gas treatment technology generated from the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, Hoo Geun; Park, Geun Il; Choi, Byung Seon; Lee, Kee Won; Cho, Il Hoon; Kim, Jung Kook; Park, Hyun Soo

    1997-10-01

    This state-of-the-art report describes various technologies for offgas treatment. It provides comprehensive treatment technologies of the extensive subject such as particulates, radioactive iodine, carbon dioxide, Kr/Xe and Cs/Ru. This report also incorporates the wastes generation and its characteristics as well as the historical and current management practices. A number of review articles by experts in various area of concern and some of the removal systems that have been designed for power plants and, particularly, for spent fuel reusing plants are also involved. As a result, it can be drawn that the drying processes for offgas treatment have much benefits in standpoints of simplicity, economy, disposal safety and resource reuse rather than the wet processes. (author). 226 refs., 38 tabs., 44 figs

  16. Evaluation of a main steam line break with induced, multiple tube ruptures: A comparison of NUREG 1477 (Draft) and transient methodologies Palo Verde Nuclear Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, K.R.

    1995-09-01

    This paper presents the approach taken to analyze the radiological consequences of a postulated main steam line break event, with one or more tube ruptures, for the Palo Verde Nuclear Generating Station. The analysis was required to support the restart of PVNGS Unit 2 following the steam generator tube rupture event on March 14, 1993 and to justify continued operation of Units 1 and 3. During the post-event evaluation, the NRC expressed concern that Unit 2 could have been operating with degraded tubes and that similar conditions could exist in Units 1 and 3. The NRC therefore directed that a safety assessment be performed to evaluate a worst case scenario in which a non-isolable main steam line break occurs inducing one or more tube failures in the faulted steam generator. This assessment was to use the generic approach described in NUREG 1477, Voltage-Based Interim Plugging Criteria for Steam Generator Tubes - Task Group Report. An analysis based on the NUREG approach was performed but produced unacceptable results for off-site and control room thyroid doses. The NUREG methodology, however, does not account for plant thermal-hydraulic transient effects, system performance, or operator actions which could be credited to mitigate dose consequences. To deal with these issues, a more detailed analysis methodology was developed using a modified version of the Combustion Engineering Plant Analysis Code, which examines the dose consequences for a main steam line break transient with induced tube failures for a spectrum equivalent to 1 to 4 double ended guillotine U-tube breaks. By incorporating transient plant system responses and operator actions, the analysis demonstrates that the off-site and control room does consequences for a MSLBGTR can be reduced to acceptable limits. This analysis, in combination with other corrective and recovery actions, provided sufficient justification for continued operation of PVNGS Units 1 and 3, and for the subsequent restart of Unit 2.

  17. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  18. Nuclear Assessment

    Institute of Scientific and Technical Information of China (English)

    CHARLES K.EBINGER; JOHN P.BANKS

    2010-01-01

    @@ In President Barack Obama's State of the Union address in January 2009,he called for the building of "a new generation of safe,clean nuclear power plants" This was followed by his highprofile speech in Prague in April 2009,in which he noted the need "to harness the power of nuclear energy on behalf of our efforts to combat climate change."In December 2009 in Copenhagen,he pledged the United States will reduce carbon dioxide (CO2) emissions 17 percent from 2005 levels by 2020.

  19. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; J. Wesley Hines

    2004-09-27

    Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research task using guided acoustic signals. A piezo-sensor suite was deployed to activate and collect Lamb wave signals that propagate along metallic specimens. The dispersion curves of Lamb waves along plate and tubular structures are generated through numerical analysis. Several advanced techniques were explored to extract representative features from acoustic time series. Among them, the Hilbert-Huang transform (HHT) is a recently developed technique for the analysis of non-linear and transient signals. A moving window method was introduced to generate the local peak characters from acoustic time series, and a zooming window technique was developed to localize the structural flaws. The time-frequency analysis and pattern recognition techniques were combined for classifying structural defects in brass tubes. Several types of flaws in brass tubes were tested, both in the air and in water. The techniques also proved to be effective under background/process noise. A detailed theoretical analysis of Lamb wave propagation was performed and simulations were carried out using the finite element software system ABAQUS. This analytical study confirmed the behavior of the acoustic signals acquired from the experimental studies. The report presents the background the analysis of acoustic signals acquired from piezo-electric transducers for structural defect monitoring. A comparison of the use of time-frequency techniques, including the Hilbert-Huang transform, is presented. The report presents the theoretical study of Lamb wave propagation in flat beams and tubular structures, and the need for mode separation in order to effectively perform defect diagnosis. The results of an extensive experimental study of detection, location, and isolation of structural defects in flat aluminum beams and brass tubes are presented. The results of this research show the feasibility of on

  20. Data acquisition and pulse generation system for nuclear magnetic resonance spectrometers on a single PC-ISA compatible board

    Science.gov (United States)

    Ambrosetti, R.; Ranieri, G. A.; Ricci, D.

    1998-08-01

    A data acquisition and pulse generation system for NMR spectrometers is described. It has been implemented on a single board for MS-DOS personal computers with an ISA standard bus interface and uses a simple architecture optimizing the integration of the hardware and software resources. The system, owing to its versatility and low cost, is particularly suitable to upgrade old pulsed NMR instruments with outdated data and control systems, for applications where expensive new cryomagnetic instruments would be inappropriate, such as in industrial control or as educational tools. The board provides two simultaneous data acquisition channels allowing 250 000 12-bit conversions per second per channel, including real-time signal averaging, and is able to produce essentially any pulse sequence on several output lines. The duration of each pulse can range from 0957-0233/9/8/024/img6s to 180 s with a minimum pulse separation of 0957-0233/9/8/024/img7s and with a resolution of 0957-0233/9/8/024/img6s. All classic NMR pulse sequences are allowed in addition to those required for self-diffusion coefficient measurements using pulsed magnetic field gradients. All functions of the system are managed by machine-language routines callable from within a VisualBASIC program. The cost of the hardware of this device is under US500.

  1. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    Energy Technology Data Exchange (ETDEWEB)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  2. Experimental verification of proton beam monitoring in a human body by use of activity image of positron-emitting nuclei generated by nuclear fragmentation reaction.

    Science.gov (United States)

    Nishio, Teiji; Miyatake, Aya; Inoue, Kazumasa; Gomi-Miyagishi, Tomoko; Kohno, Ryosuke; Kameoka, Satoru; Nakagawa, Keiichi; Ogino, Takashi

    2008-01-01

    Proton therapy is a form of radiotherapy that enables concentration of dose on a tumor by use of a scanned or modulated Bragg peak. Therefore, it is very important to evaluate the proton-irradiated volume accurately. The proton-irradiated volume can be confirmed by detection of pair-annihilation gamma rays from positron-emitting nuclei generated by the nuclear fragmentation reaction of the incident protons on target nuclei using a PET apparatus. The activity of the positron-emitting nuclei generated in a patient was measured with a PET-CT apparatus after proton beam irradiation of the patient. Activity measurement was performed in patients with tumors of the brain, head and neck, liver, lungs, and sacrum. The 3-D PET image obtained on the CT image showed the visual correspondence with the irradiation area of the proton beam. Moreover, it was confirmed that there were differences in the strength of activity from the PET-CT images obtained at each irradiation site. The values of activity obtained from both measurement and calculation based on the reaction cross section were compared, and it was confirmed that the intensity and the distribution of the activity changed with the start time of the PET imaging after proton beam irradiation. The clinical use of this information about the positron-emitting nuclei will be important for promoting proton treatment with higher accuracy in the future.

  3. The Application of Image Recognition in the Imitated Nuclear Signal Generator%图像识别技术在仿核信号发生器上的应用

    Institute of Scientific and Technical Information of China (English)

    余国刚; 方方; 易良碧; 王礼; 刘泽

    2015-01-01

    This thesis introduces the application of nuclear spectrum data extraction technology in the imitated nuclear signal generator .Based on image processing , the actual measured nuclear spectrum diagram is filtered , de-noised , and gets image binarization .The pixel point method is used to identify curve coordinates and the curve is modified by interpolation algorithm .This method avoids the shortcomings of vast manual input of nucle -ar spectrum number in the process of developing the simulation nuclear signal generator .With high precision , it can also provide a reference for the study of the imitated nuclear signal generator .%介绍了核能谱数据提取技术在仿核信号发生器上的应用研究。以图像处理为基础,对实际测量的核能谱图滤波去噪、图像二值化处理。以扫描图像像素点方法来识别曲线坐标,并通过插值算法对曲线修正。该方法解决了在仿核信号发生器的研制过程中大量的核能谱数需要人工手动输入的弊端,且数据精度高,可为仿核信号发生器的研制提供参考。

  4. Estimation of requirements of eolic energy equivalent to the electric generation of the Laguna Verde nuclear power plant; Estimacion de requerimientos de energia eolica equivalente a la generacion electrica de la Central Nucleoelectrica de Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Garcia V, M.A.; Hernandez M, I.A. [Facultad de Ingenieria, Division de Ingenieria Electrica, UNAM, 04510 Mexico D.F. (Mexico)]. E-mail: maiki27@yahoo.com; Martin del Campo M, C. [Facultad de Ingenieria, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2004-07-01

    The advantages are presented that have the nuclear and eolic energy as for their low environmental impact and to the human health. An exercise is presented in the one that is supposed that the electric power generated by the Laguna Verde Nuclear Power plant (CNLV), with capacity of 1365 M W, it should be produced by eolic energy when in the years 2020 and 2025 the units 1 and 2 of the CNLV reach its useful life and be moved away. It is calculated the number of aero generators that would produce the electric power average yearly of the CNLV, that which is equal to install eolic parks with capacity of 2758 M W, without considering that it will also be invested in systems of back generation to produce electricity when the aero generators stops for lack of wind. (Author)

  5. Cation-selective extraction column study for the conception of nuclear medical radionuclide generators; Untersuchung kationenselektiver Extraktionssaeulen zur Konzeption nuklearmedizinischer Radionuklidgeneratoren

    Energy Technology Data Exchange (ETDEWEB)

    Streng, Roman

    2012-07-09

    The topic of the present work is the conception of a Yttrium-90 radionuclide generator for nuclear medicine applications. Due to its physical properties Yttrium-90 is considered as one of the most useful nuclides for radiotherapeutic cancer treatment. The parent nuclide Strontium-90 is gained during reprocessing of fission products. Thus, the sustained availability of large quantities of Yttrium-90 is limited to a number of research facilities. A radionuclide generator provides an independent Yttrium-90 source and enhances the capacities for radiopharmaceutical research and biomedical applications. The present work focussed on the identification of appropriate column materials for the separation of Strontium and Yttrium. The results for two materials are reported: AnaLig {sup registered} Sr-01 and crystalline antimonic acid. Based on the mode of operation of the Technetium-99m generator the aim was to enable the construction of a compact, enclosed apparatus. The projected device comprises a reservoir for the eluant, the ion-exchange column, pipings and radiation shielding. Elution of Yttrium-90 could then be easily performed by connecting evacuated vials to the outlet tube. The prospected concept involves physical and chemical confinements that exclude most of the known processes for Strontium-Yttrium separation. For example no ligands, no oxidizing reactants (e.g. nitric acid) and no organic solvents are to be used, but small volumes of isotonic or buffer solutions and dilute acids respectively. AnaLig {sup registered} Sr-01 is a commercially available resin used in extraction chromatography. Its high selectivity for Strontium cations results from the strictly defined cavity of the imbedded cryptand. Determination of weight distribution coefficients, elution studies and pre-generator experiments were carried out. Quantitative separation of Yttrium from Strontium and Zirconium is possible using small volumes of 0,05 M hydrochloric acid as eluant. Furthermore, high

  6. Nuclear energy.

    Science.gov (United States)

    Grandin, Karl; Jagers, Peter; Kullander, Sven

    2010-01-01

    Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened.

  7. Prediction and modeling of the two-dimensional separation characteristic of a steam generator at a nuclear power station with VVER-1000 reactors

    Science.gov (United States)

    Parchevsky, V. M.; Guryanova, V. V.

    2017-01-01

    A computational and experimental procedure for construction of the two-dimensional separation curve (TDSC) for a horizontal steam generator (SG) at a nuclear power station (NPS) with VVER-reactors. In contrast to the conventional one-dimensional curve describing the wetness of saturated steam generated in SG as a function of the boiler water level at one, usually rated, load, TDSC is a function of two variables, which are the level and the load of SGB that enables TDSC to be used for wetness control in a wide load range. The procedure is based on two types of experimental data obtained during rated load operation: the nonuniformity factor of the steam load at the outlet from the submerged perforated sheet (SPS) and the dependence of the mass water level in the vicinity of the "hot" header on the water level the "cold" end of SG. The TDSC prediction procedure is presented in the form of an algorithm using SG characteristics, such as steam load and water level as the input and giving the calculated steam wetness at the output. The zoneby-zone calculation method is used. The result is presented in an analytical form (as an empirical correlation) suitable for uploading into controllers or other controls. The predicted TDSC can be used during real-time operation for implementation of different wetness control scenarios (for example, if the effectiveness is a priority, then the minimum water level, minimum wetness, and maximum turbine efficiency should be maintained; if safety is a priority, then the maximum level at the allowable wetness and the maximum water inventory should be kept), for operation of NPS in controlling the frequency and power in a power system, at the design phase (as a part of the simulation complex for verification of design solutions), during construction and erection (in developing software for personnel training simulators), during commissioning tests (to reduce the duration and labor-intensity of experimental activities), and for training.

  8. Species-Level Phylogeny and Polyploid Relationships in Hordeum (Poaceae) Inferred by Next-Generation Sequencing and In Silico Cloning of Multiple Nuclear Loci.

    Science.gov (United States)

    Brassac, Jonathan; Blattner, Frank R

    2015-09-01

    Polyploidization is an important speciation mechanism in the barley genus Hordeum. To analyze evolutionary changes after allopolyploidization, knowledge of parental relationships is essential. One chloroplast and 12 nuclear single-copy loci were amplified by polymerase chain reaction (PCR) in all Hordeum plus six out-group species. Amplicons from each of 96 individuals were pooled, sheared, labeled with individual-specific barcodes and sequenced in a single run on a 454 platform. Reference sequences were obtained by cloning and Sanger sequencing of all loci for nine supplementary individuals. The 454 reads were assembled into contigs representing the 13 loci and, for polyploids, also homoeologues. Phylogenetic analyses were conducted for all loci separately and for a concatenated data matrix of all loci. For diploid taxa, a Bayesian concordance analysis and a coalescent-based dated species tree was inferred from all gene trees. Chloroplast matK was used to determine the maternal parent in allopolyploid taxa. The relative performance of different multilocus analyses in the presence of incomplete lineage sorting and hybridization was also assessed. The resulting multilocus phylogeny reveals for the first time species phylogeny and progenitor-derivative relationships of all di- and polyploid Hordeum taxa within a single analysis. Our study proves that it is possible to obtain a multilocus species-level phylogeny for di- and polyploid taxa by combining PCR with next-generation sequencing, without cloning and without creating a heavy load of sequence data.

  9. Improvement of thermal conductivity of ceramic matrix composites for 4. generation nuclear reactors; Amelioration de la conductivite thermique des composites a matrice ceramique pour les reacteurs de 4. generation

    Energy Technology Data Exchange (ETDEWEB)

    Cabrero, J.

    2009-11-15

    This study deals with thermal conductivity improvement of SiCf/SiC ceramic matrix composites materials to be used as cladding material in 4. generation nuclear reactor. The purpose of the study is to develop a composite for which both the temperature and irradiation effect is less pronounced on thermal conductivity of material than for SiC. This material will be used as matrix in CMC with SiC fibers. Some TiC-SiC composites with different SiC volume contents were prepared by spark plasma sintering (SPS). The sintering process enables to fabricate specimens very fast, with a very fine microstructure and without any sintering aids. Neutron irradiation has been simulated using heavy ions, at room temperature and at 500 C. Evolution of the thermal properties of irradiated materials is measured using modulated photothermal IR radiometry experiment and was related to structural evolution as function of dose and temperature. It appears that such approach is reliable to evaluate TiC potentiality as matrix in CMC. Finally, CMC with TiC matrix and SiC fibers were fabricated and both mechanical and thermal properties were measured and compare to SiCf/SiC CMC. (author)

  10. Analyses of Generation and Release of Tritium in Nuclear Power Plant%核电厂氚的产生和排放分析

    Institute of Scientific and Technical Information of China (English)

    黎辉; 梅其良; 付亚茹

    2015-01-01

    T ritium research including tritium generation in reactor core and in the primary coolant ,release pathways ,tritium chemical forms and release amount is a very impor‐tant part of environment assessment of nuclear power plant .Based on the international operation practice ,the primary coolant system ,auxiliary systems ,radwaste system and ventilation system were analysed ,and the tritium release pathways and chemical forms were investigated .The results indicate that the theoretic calculation results agree with the nuclear power plant operation data very well .The tritium contained in the primary coolant is mainly produced from the three‐fragment fission reaction ,boron activation in the burnable poison rods and boron ,lithium and deuterium activation w hen they pass through the core . The released tritium to the environment is mainly in the form of tritiated water and the percentage between the liquid and gaseous of release tritium mainly depends on the leakage rate from the primary coolant to the reactor building and auxiliary building .%研究核电厂中氚在堆芯和主冷却剂中的产生方式,以及进入环境的途径、形态和排放量,是核电厂辐射环境影响评价非常重要的内容之一。本文通过分析压水堆核电厂中的主冷却剂系统、辅助系统、三废系统和厂房通风系统的运行模式,结合国际上的运行经验参数,研究主冷却剂中的氚排放进入环境大气的途径和形态。研究结果表明:理论计算分析结果与电厂运行经验数据相吻合,氚主要通过燃料棒中的三元裂变,可燃毒物棒中硼的活化以及主冷却剂中硼、锂和氘流经堆芯时的活化产生,主要以液态氚水形式排放,影响气液两相分配份额的主要因素取决于主冷却剂向反应堆厂房和辅助厂房的泄漏率。

  11. Design of Generator Circuit Breaker Failure Protection for Nuclear Power Plants%核电厂发电机出口断路器失灵保护设计

    Institute of Scientific and Technical Information of China (English)

    谢创树

    2014-01-01

    核电厂发电机机端与升压变压器之间都装设发电机出口断路器,而且装设了发电机出口断路器失灵保护。文中分析核电厂发电机所配置的保护及其定值,发现发电机出口断路器失灵保护设计存在问题:某些启动跳发电机出口断路器、灭磁、关闭主汽门的电气保护,因电流判据不满足而不能直接有效地启动发电机出口断路器失灵保护;汽轮发电机组在程序跳闸过程中,发电机出口断路器发生故障而不能跳开,也不能启动发电机出口断路器失灵保护。对上述问题所造成的危害,文中提出核电厂发电机出口断路器失灵保护设计的改进措施,完善了核电厂发电机出口断路器失灵保护设计。%In a nuclear power plant,between the generator terminal and the step-up transformer,generator circuit breakers are installed,and generator circuit breaker failure protection is also installed.This paper analyzes the protections and the value settings of the nuclear power plant generator,and points out the problems in the generator circuit breaker failure protection design.First,in the protection of some j ump starter generator circuit breakers,de-excitation,and the main valve closing,as the current criteria are not satisfied,the starter generator circuit breaker failure protection cannot be directly activated. Secondly,during the turbo-generator program tripping process,the generator circuit breakers break down and cannot trip, neither can the generator circuit breaker failure protection be activated.Based on the harm caused by these problems,this paper proposes some improvements on the nuclear power plant generator breaker failure protection design,further improving the generator circuit breaker failure protection design in the nuclear power plant.

  12. Nuclear energy; Le nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This digest document was written by members of the union of associations of ex-members and retired people of the Areva group (UARGA). It gives a comprehensive overview of the nuclear industry world, starting from radioactivity and its applications, and going on with the fuel cycle (front-end, back-end, fuel reprocessing, transports), the nuclear reactors (PWR, BWR, Candu, HTR, generation 4 systems), the effluents from nuclear facilities, the nuclear wastes (processing, disposal), and the management and safety of nuclear activities. (J.S.)

  13. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  14. Negative sequence relay applied to generator 1 of the Laguna Verde nuclear power plant; Aplicacion de un relevador de secuencia negativa en el generador 1 de la central de Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Diaz de la Serna P, Enrique [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    The rotor of a synchronous generator can be dangerously heated in a short time by stator current unbalance, therefore it must be protected with a specific relay. This article discusses the protection and the adjustments selected for Unit 1 of the Comision Federal de Electricidad Laguna Verde Nuclear Nuclear Power Station. [Espanol] El rotor de un generador sincrono puede calentarse peligrosamente en un tiempo corto debido a desbalance de corrientes en el estator, por lo que debe protegerse con un relevador especifico. En este articulo se describen la proteccion y los ajustes seleccionados para la unidad 1, de la central nucleoelectrica Laguna Verde de la Comision Federal de Electricidad.

  15. Simulation and Analysis on Dynamics Characteristic for Nuclear Steam Generator Water Level Process%核动力蒸汽发生器水位动力学特性仿真与分析

    Institute of Scientific and Technical Information of China (English)

    周刚; 张大发; 杨仕本

    2006-01-01

    The simulation model of dynamics characteristic for nuclear steam generator (SG) water level process based on Matlab was built by using mathematical model of nuclear steam generator and simulation tools in Matlab/Simulink environment. The simulation computing for the dynamics characteristic of nuclear steam generator water level process was implemented by employing the simulation model. The simulation and analysis of dynamic characteristic for the SG water level process includes three aspects, which are the effects on the feed water flow rate disturbing, steam flow rate disturbing and nuclear reactor operation power changing to SG water level process dynamic characteristic. The results show that the simulation model accurately describes the effect of feedwater flow rate disturbing, steam flow rate disturbing and nuclear reactor operation power changing on the dynamics characteristic of nuclear steam generator water level process, and represents the reverse thermal-dynamic effects correctly. The simulation model can realize the precise analysis of dynamics characteristic for the nuclear steam generator water level process.%利用核动力蒸汽发生器(SG)的数学模型和Mathlab的Simulink仿真工具建立了SG水位动力学特性的仿真模型.应用该仿真模型对几种典型的反应堆运行功率下SG水位动力学特性进行了仿真计算.SG水位动力学特性的仿真分析包括不同反应堆运行功率时给水流量扰动作用下的水位动力学特性仿真分析和蒸汽流量扰动作用下的水位动力学特性仿真分析.结果表明,仿真模型准确描述了给水流量扰动、蒸汽流量扰动以及反应堆功率变化对SG水位动力学特性的影响,并正确描述了SG运行中的逆动力学效应.利用该模型可以对SG水位动力学特性进行精确的分析.

  16. Radioactive target needs for nuclear reactor physics and nuclear astrophysics

    OpenAIRE

    Jurado, B.; Barreau, G.; Bacri, C. O.

    2010-01-01

    Nuclear Instruments and Methods in Physics Research Section A - In press.; Nuclear reaction cross sections of short-lived nuclei are key inputs for new generation nuclear reactor simulations and for models describing the nucleosynthesis of elements. After discussing various topics of nuclear astrophysics and reactor physics where the demand of nuclear data on unstable nuclei is strong, we describe the general characteristics of the targets needed to measure the requested data. In some cases t...

  17. David Schimmelpenninck van der Oye and Bruce W. Menning, eds., Reforming the Tsar's Army: Military Innovation in Imperial Russia from Peter the Great to the Revolution, Washington, DC: Woodrow Wilson Center and Cambridge: Cambridge UP, 2004.

    Directory of Open Access Journals (Sweden)

    David Stone

    2006-11-01

    Full Text Available David Schimmelpenninck and Bruce Menning have produced an excellent volume collecting contributions of a number of both well-established and junior scholars on the history and development of the tsarist military, grouped together around the general theme of reform. In some ways, it is comparable to Eric Lohr and Marshall Poe's complementary The Military and Society in Russia, 1450-1917 (Leiden, 2002. Schimmelpenninck and Menning's contributors, however, focus more on political and institutio...

  18. Results from the characterisation of Advanced GAmma Tracking Array prototype detectors and their consequences for the next-generation nuclear physics spectrometer

    Science.gov (United States)

    Dimmock, M. R.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Nelson, L.; Nolan, P.; Rigby, S.; Unsworth, C.; Lazarus, I.; Simpson, J.; Medina, P.; Parisel, C.; Santos, C.

    2007-09-01

    The Advanced GAmma Tracking Array (AGATA) is a European project that is aiming to construct a complete 4π High Purity Germanium (HPGe) gamma-ray spectrometer for nuclear structure studies at future Radioactive Ion Beam (RIB) Facilities. The proposed array will utilise digital electronics, Pulse Shape Analysis (PSA) and Gamma-Ray Tracking (GRT) algorithms, to overcome the limited efficiencies encountered by current Escape Suppressed Spectrometers (ESS), whilst maintaining the high Peak-to-Total ratio. Two AGATA symmetrical segmented Canberra Eurisys (CE) prototype HPGe detectors have been tested at the University of Liverpool. A highly collimated Cs-137 (662keV) beam was raster scanned across each detector and data were collected in both singles and coincidence modes. The charge sensitive preamplifier output pulse shapes from all 37 channels (one for each of the 36 segments and one for the centre contact) were digitised and stored for offline analysis. The shapes of the real charge and image charge pulses have been studied to give detailed information on the position dependent response of each detector. 1mm position sensitivity has been achieved with the parameterisation of average pulse shapes, calculated from data collected with each of the detectors. The coincidence data has also been utilised to validate the electric field simulation code Multi Geometry Simulation (MGS). The precisely determined 3D interaction positions allow the comparison of experimental pulse shapes from single site interactions with those generated by the simulation. It is intended that the validated software will be used to calculate a basis data set of pulse shapes for the array, from which any interaction site can be determined through a χ2 minimisation of the digitized pulse with linear combinations of basis pulseshapes. The results from this partial validation, along with those from the investigation into the position sensitivity of each detector are presented.

  19. Cation-selective extraction column study for the conception of nuclear medical radionuclide generators; Untersuchung kationenselektiver Extraktionssaeulen zur Konzeption nuklearmedizinischer Radionuklidgeneratoren

    Energy Technology Data Exchange (ETDEWEB)

    Streng, Roman

    2012-07-09

    The topic of the present work is the conception of a Yttrium-90 radionuclide generator for nuclear medicine applications. Due to its physical properties Yttrium-90 is considered as one of the most useful nuclides for radiotherapeutic cancer treatment. The parent nuclide Strontium-90 is gained during reprocessing of fission products. Thus, the sustained availability of large quantities of Yttrium-90 is limited to a number of research facilities. A radionuclide generator provides an independent Yttrium-90 source and enhances the capacities for radiopharmaceutical research and biomedical applications. The present work focussed on the identification of appropriate column materials for the separation of Strontium and Yttrium. The results for two materials are reported: AnaLig {sup registered} Sr-01 and crystalline antimonic acid. Based on the mode of operation of the Technetium-99m generator the aim was to enable the construction of a compact, enclosed apparatus. The projected device comprises a reservoir for the eluant, the ion-exchange column, pipings and radiation shielding. Elution of Yttrium-90 could then be easily performed by connecting evacuated vials to the outlet tube. The prospected concept involves physical and chemical confinements that exclude most of the known processes for Strontium-Yttrium separation. For example no ligands, no oxidizing reactants (e.g. nitric acid) and no organic solvents are to be used, but small volumes of isotonic or buffer solutions and dilute acids respectively. AnaLig {sup registered} Sr-01 is a commercially available resin used in extraction chromatography. Its high selectivity for Strontium cations results from the strictly defined cavity of the imbedded cryptand. Determination of weight distribution coefficients, elution studies and pre-generator experiments were carried out. Quantitative separation of Yttrium from Strontium and Zirconium is possible using small volumes of 0,05 M hydrochloric acid as eluant. Furthermore, high

  20. Advances in Nuclear Energy

    Science.gov (United States)

    Frois, B.

    2005-04-01

    This paper briefly reviews the next generations of nuclear reactors and the perspectives of development of nuclear energy. Advanced reactors will progressively replace the existing ones during the next two decades. Future systems of the fourth generation are planned to be built beyond 2030. These systems have been studied in the framework of the "Generation IV" International Forum. The goals of these systems is to have a considerable increase in safety, be economically competitive and produce a significantly reduced volume of nuclear wastes. The closed fuel cycle is preferred.

  1. World nuclear outlook 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-29

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  2. World nuclear outlook 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2010 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for three different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  3. Nuclear Confidence

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Fukushima nuclear accident provides valuable lessons for China national nuclear Corp.as it continues to expand its operations AS Japan’s Fukushima nuclear crisis sparks a global debate over nuclear safety,China National Nuclear Corp. (CNNC),the country’s largest nuclear plant operator, comes under the spotlight.

  4. Nuclear Power Feasibility 2007

    OpenAIRE

    Aragonés Beltrán, José María; Hill, Barrie Frederick; Kadak, Andrew C.; Shultz, Donald F.; Spitalnik, Jorge

    2008-01-01

    Nuclear power is a proven technology and has the potential to generate virtually limitless energy with no significant greenhouse gas emissions. Nuclear power can become one of the main options to contribute to substantial cuts in global greenhouse gas emissions. Modern development of nuclear power technology and the established framework of international agreements and conventions are responding to the major political, economic and environmental issues -high capital costs, the risks posed by ...

  5. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  6. Nuclear power data; Kernenergie in Zahlen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    The report ''nuclear power data'' includes data on the following issues: nuclear power plants in Germany including their operational characteristics, gross data on electricity generation in Germany, primary energy consumption in Germany, nuclear power plants worldwide, top ten nuclear power plants worldwide with respect to electricity generation in 2012.

  7. Commercial nuclear power 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  8. Nuclear moments

    CERN Document Server

    Kopferman, H; Massey, H S W

    1958-01-01

    Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl

  9. Nuclear safeguards; Salvaguardias nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Zurron, O.

    2015-07-01

    Safeguards control at the Juzbado Plant is implemented through the joint IAEA/EURATOM partnership approach in force within the European Union for all nuclear facilities. this verification agreement is designed to minimize burden on the operators whilst ensuring that both inspectorate achieve the objectives related to their respective safeguards regimes. This paper outlines the safeguards approaches followed by the inspectorate and the particularities of the Juzbado Plants nuclear material accountancy and control system. (Authors)

  10. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2007-01-01

    Thermonuclear reactions in stars is a major topic in the field of nuclear astrophysics, and deals with the topics of how precisely stars generate their energy through nuclear reactions, and how these nuclear reactions create the elements the stars, planets and - ultimately - we humans consist of. The present book treats these topics in detail. It also presents the nuclear reaction and structure theory, thermonuclear reaction rate formalism and stellar nucleosynthesis. The topics are discussed in a coherent way, enabling the reader to grasp their interconnections intuitively. The book serves bo

  11. Nuclear power in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Gittus, J. (British Nuclear Forum, London (UK))

    1991-04-01

    The 1990s are turning out to be a most crucial phase for the nuclear industries of Europe. A time of uncertainty, as well as considerable opportunity, lies ahead. Despite a measure of public and political opposition to nuclear power, many are beginning to realise that, as a method of generating electricity that produces only 1% of greenhouse gases compared to coal per unit of electricity, nuclear energy may be the best alternative to the burning of fossil fuels. Although advances have been made in renewable energy, nuclear power is still the main non-fossil fuel source that can cope with today's energy demands. (author).

  12. Expression of GFP in nuclear transplants generated by transplantation of embryonic cell nuclei from GFP-transgenic fish into nonenucleated eggs of medaka, Oryzias latipes.

    Science.gov (United States)

    Niwa, K; Kani, S; Kinoshita, M; Ozato, K; Wakamatsu, Y

    2000-01-01

    In order to investigate whether foreign genes can be used as genetic markers of donor nuclei in fish nuclear transplantation, expression of the GFP gene derived from donor nuclei was examined in nuclear transplants in medaka (Oryzias latipes). Embryonic nuclei were obtained from blastula embryos produced by crossing of transgenic fish of the wild-type strain heterozygous for the GFP gene with nontransgenic ones or by mutual crossing between transgenic fish. The GFP gene was driven by the promoter of the medaka elongation factor gene, EF-1alpha-A, which is known to induce GFP expression in many tissues except for the muscle in the transgenic fish. The nuclei were transplanted into nonenucleated unfertilized eggs of the orange-red strain. Adult nuclear transplants were successfully obtained at the rate of about 2% of the operated eggs. They were triploid and had no reproductive potential. The GFP gene was expressed in embryos, fry, and adults of nuclear transplants in a pattern similar to that in the transgenic fish. These results indicate that GFP is useful as a foreign genetic marker of donor nuclei in fish nuclear transplantation.

  13. Analysis of the Time Influence Factors when Startup of the Emergency Diesel Generator of Nuclear Power Plant%核电厂应急柴油机启动时间影响因素研究

    Institute of Scientific and Technical Information of China (English)

    周国强; 邱毓

    2012-01-01

    When startup of the emergency diesel generator in the nuclear power plant, the ready signal appears indicating the successful startup of the diesel generator and it can be on load at anytime. Based on the safety criteria of the emergency diesel generator for nuclear power plant, the time from the beginning of the start order to the appearance of the ready signal must less than 10 seconds. By dealing with the ready signal problem in Ling'Ao Ⅱ , the time influence factors for the startup of the emergency diesel generator were studied.%核电厂应急柴油机启动完成(Ready)信号的发出表示柴油机启动完成,随时可以带负荷.根据核电厂应急柴油机的安全准则,Ready信号发出时间必须小于10 s.通过对岭澳核电站二期应急柴油机Ready信号时间问题的处理,研究了核电厂应急柴油机启动时间的影响因素.

  14. Basic Nuclear Physics Research Needs for Nuclear Energy

    Science.gov (United States)

    Hill, Tony

    2008-10-01

    Basic nuclear physics research will play a central role in the development of the future nuclear facilities. Federal requirements for higher efficiencies, lower operating and construction costs, and advanced safeguards can all be impacted by the quality of nuclear data used in the fuel cycle calculations for design and licensing. Uncertainties in the underlying nuclear data propagate to uncertainties in integral and operational parameters, which drive margins and cost. Department of Energy (DOE) programs are underway to help develop the necessary nuclear research infrastructure. The Nuclear Energy office of DOE leads the development of new nuclear energy generation technologies to meet energy and climate change goals and advanced, proliferation resistant nuclear fuel technologies that maximize energy from nuclear fuel, while maintaining and enhancing the national nuclear infrastructure. These activities build on important work started over the last three years to deploy new nuclear plants in the United States by early in the next decade, and to develop advanced, next-generation nuclear technology. In this talk, I will discuss some of the foreseen opportunities and needs for basic nuclear research in nuclear energy.

  15. Nuclear ventriculography

    Science.gov (United States)

    ... ventriculography (RNV); Multiple gate acquisition scan (MUGA); Nuclear cardiology; Cardiomyopathy - nuclear ventriculography ... 56. Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Bonow RO, Mann DL, Zipes DP, Libby ...

  16. Nuclear Medicine.

    Science.gov (United States)

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  17. Innovation and knowledge generation in cooperation nets: challenges for regulations in the nuclear safety area in Brazil; Inovacao e geracao de conhecimento nas redes de cooperacao: desafios para a regulacao na area de seguranca nuclear no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Staude, Fabio

    2014-07-01

    The importance of inter-organisational cooperation within the innovation process has been increasingly recognized. In fact, all organisations, at some point, need to look to external sources for inputs to the process of building up technological competence. In this sense, through a detailed case study, this thesis examine theoretical and empirically how collaborative initiatives have supported the Brazilian nuclear regulatory body in the development and implementation of innovations, in order to verify the positive relationship between the collaboration and the organisational innovation performance. Emphasizing the importance of both internal sources of knowledge and external participation, the study encompasses documentary analysis, a preliminary survey and semi-structured interviews with the regulatory body employers in charge of controlling medical and research facilities and activities involving radiation sources. The thesis demonstrates that innovations developed and implemented in the Brazilian nuclear safety and security area are associated with collaborative initiatives, in order to improve the organizational capability to fulfill safety obligations, providing some important implications for regulatory body managers concerned with the management of innovation. The findings also identified actors with a significant degree of influence in the innovation process. The result reveals that the support provided by these actors has a significant influence on the innovation performance of the Brazilian nuclear regulatory body, suggesting that Brazil should adopt more interactive models of innovation and knowledge transfer. In addition, the findings show that these key actors can play a very distinctive role in the context of sectoral systems of innovation information regime. (author)

  18. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway

    Science.gov (United States)

    Corominas-Faja, Bruna; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; López-Bonet, Eugeni; Lupu, Ruth; Alarcón, Tomás; Vellon, Luciano; Iglesias, Juan Manuel; Leis, Olatz; Martín, Ángel G; Vazquez-Martin, Alejandro; Menendez, Javier A

    2013-01-01

    cells. Consistent with the downregulation of AMPK expression, immunoblotting procedures confirmed upregulation of p70S6K and increased phosphorylation of mTOR in Sox2-overexpressing CSC-like cell populations. Using an in vitro model of the de novo generation of CSC-like states through the nuclear reprogramming of an established breast cancer cell line, we reveal that the transcriptional suppression of mTOR repressors is an intrinsic process occurring during the acquisition of CSC-like properties by differentiated populations of luminal-like breast cancer cells. This approach may provide a new path for obtaining information about preventing the appearance of CSCs through the modulation of the AMPK/mTOR pathway. PMID:23974095

  19. Nuclear energy efficiency improvements

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Nonboel, E. [Technical Univ. of Denmark. DTU Nutech, Roskilde (Denmark); Kyrki-Rajamaeki, R. [Lappeenranta Univ. of Technology (Finland)

    2012-11-15

    Nuclear energy already today plays an important role in decarbonisation of the electricity sector while providing energy security and being economically competitive. Nuclear energy is characterized by its very high energy density and is well suited for large-scale, baseload electricity supply. Similar to renewable energy sources such as wind, solar or biomass, nuclear power is characterized by an abundant supply of its primary energy source, uranium, but is not limited to the same extent as these renewable energy sources from being an intermittent energy supply or imposing severe restrictions on land-use. Improving energy efficiency of nuclear power plants has contributed to a better utilization of the uranium resources and has helped improving the economic performance of nuclear power plants. This is to a large degree accomplished through optimisation of nuclear fuel assemblies as well as renewing turbines and generators. More importantly however, the overall economy of nuclear power has improved though better plant management leading to higher capacity factors and by extending the lifetimes of existing nuclear power plants. Provided that improved safety, economics and successful waste management can be demonstrated nuclear power is likely to grow in the future. Non-electricity applications may further boost the growth of nuclear energy, especially with the development of new reactor systems allowing for cogeneration of electricity and hydrogen or biofuels for transport. (Author)

  20. 谈某核电厂附加柴油发电机厂房防火设计%Discussion on the fire protection design of the nuclear power plant adding diesel generator workshop

    Institute of Scientific and Technical Information of China (English)

    赵月

    2016-01-01

    Through analyzing building fire protection design problems of the nuclear power plant adding diesel generator workshop,starting from aspects of fire protection layout,fire protection distribution,safety evacuation and oil tank design,the paper carries out the building fire protec-tion design,which reduces the fire hazards and improves the nuclear power safety performance.%通过分析某核电厂附加柴油发电机厂房建筑防火设计中存在的问题,从防火布置、防火分区、安全疏散、油罐间设计等方面,进行了建筑防火优化设计,降低了火灾危害的发生,提高了核电厂的安全性能。

  1. Nuclear Theory - Nuclear Power

    Science.gov (United States)

    Svenne, J. P.; Canton, L.; Kozier, K. S.

    2008-01-01

    The results from modern nuclear theory are accurate and reliable enough to be used for practical applications, in particular for scattering that involves few-nucleon systems of importance to nuclear power. Using well-established nucleon-nucleon (NN) interactions that fit well the NN scattering data, and the AGS form of the three-body theory, we have performed precise calculations of low-energy neutron-deuteron (n+d) scattering. We show that three-nucleon force effects that have impact on the low-energy vector analyzing powers have no practical effects on the angular distribution of the n+d cross-section. There appear to be problems for this scattering in the evaluated nuclear data file (ENDF) libraries, at the incident neutron energies less than 3.2 MeV. Supporting experimental data in this energy region are rather old (>25 years), sparse and often inconsistent. Our three-body results at low energies, 50 keV to 10.0 MeV, are compared to the ENDF/B-VII.0 and JENDL (Japanese Evaluated Nuclear Data Library) -3.3 evaluated angular distributions. The impact of these results on the calculated reactivity for various critical systems involving heavy water is shown.

  2. Health Risks of Nuclear Power.

    Science.gov (United States)

    Cohen, Bernard L.

    1978-01-01

    Deals with the wastes generated in nuclear power plants and the health risks involved as compared to those of wastes generated by coal-fired plants. Concludes that the risks of nuclear power plants are many times smaller than the risks from alternative energy resources. (GA)

  3. Manassantin B isolated from Saururus chinensis inhibits cyclooxygenase-2-dependent prostaglandin D2 generation by blocking Fyn-mediated nuclear factor-kappaB and mitogen activated protein kinase pathways in bone marrow derived-mast cells.

    Science.gov (United States)

    Lu, Yue; Hwang, Seung-Lark; Son, Jong Keun; Chang, Hyeun Wook

    2013-01-01

    The authors investigated the effect of manassantin B (Man B) isolated from Saururus chinensis (S. chinensis) on cyclooxygenase-2 (COX-2)-dependent prostaglandin D2 (PGD2) generation in mouse bone marrow derived-mast cells (BMMCs). Man B inhibited the generation of PGD2 dose-dependently by inhibiting COX-2 expression in immunoglobulin E (IgE)/Ag-stimulated BMMCs. To elucidate the mechanism responsible for the inhibition of COX-2 expression by Man B, the effects of Man B on the activation of nuclear factor-kappaB (NF-κB), a transcription factor essential and mitogen-activated protein kinases (MAPKs) for COX-2 induction, were examined. Man B attenuated the nuclear translocation of NF-κB p65 and its DNA-binding activity by inhibiting inhibitors of kappa Bα (IκBα) degradation and concomitantly suppressing IκB kinase (IKK) phosphorylation. In addition, Man B suppressed phosphorylation of MAPKs including extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK) and p38. It was also found that Man B suppressed Fyn kinase activation and consequent downstream signaling processes, including those involving Syk, Gab2, and Akt. Taken together, the present results suggest that Man B suppresses COX-2 dependent PGD2 generation by primarily inhibiting Fyn kinase in FcεRI-mediated mast cells.

  4. Preliminary analysis of an hydrogen generator system based on nuclear energy in the Laguna Verde site; Analisis preliminar de un sistema generador de hidrogeno basado en energia nuclear en el sitio de Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Flores y Flores, A. [FI-UNAM, 04500 Mexico D.F. (Mexico); Francois L, J.L. [FI-UNAM, Jiutepec, Morelos (Mexico)]. e-mail: alain_fyf@yahoo.com

    2003-07-01

    The shortage of fossil fuels in the next future, as well as the growing one demand of energetics and the high cost of the production of alternating fuels, it forces us to take advantage of to the maximum the fossil fuel with the one which we count and to look for the form of producing alternating fuels at a low cost and better even if these supply sources are reliable and non pollutants. It is intended a solution to the shortage of fuel; to use the thermal energy liberated of some appropriate nuclear reactor to be able to obtain a fuel but clean and relatively cheap as it is the hydrogen. In the first place the methods were looked for to produce hydrogen using thermal energy, later it was analyzed the temperature liberated by the existent nuclear reactors as well as the advanced designs, according to this liberated temperature settled down that the methods but feasible to produce hydrogen its were the one of reformed with water stream of the natural gas (methane) and the other one of the S-I thermochemical cycle, and the nuclear reactors that give the thermal energy for this production they are those of gas of high temperature. Once established the processes and the appropriate reactors, it was analyzed the site of Laguna Verde, with relationship to the free space to be able to place the reactor and the plant producer of hydrogen, as well as the direction in which blow the dominant winds and the near towns to the place, it was carried out an analysis of some explosion of tanks that could store hydrogen and the damage that its could to cause depending from the distance to which its were of the fire. Finally it was carried out an evaluation of capital and of operation costs for those two methods of hydrogen production. (Author)

  5. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    Science.gov (United States)

    Gales, S.

    2015-11-01

    The development of high-power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular high-energy nuclear physics and astrophysics, as well as societal applications in material science, nuclear energy and medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for nuclear physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10-PW lasers and a Compton back-scattering high-brilliance and intense low-energy gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  6. Methods of increasing the performance of radionuclide generators used in nuclear medicine: daughter nuclide build-up optimisation, elution-purification-concentration integration, and effective control of radionuclidic purity.

    Science.gov (United States)

    Le, Van So; Do, Zoe Phuc-Hien; Le, Minh Khoi; Le, Vicki; Le, Natalie Nha-Truc

    2014-06-10

    Methods of increasing the performance of radionuclide generators used in nuclear medicine radiotherapy and SPECT/PET imaging were developed and detailed for 99Mo/99mTc and 68Ge/68Ga radionuclide generators as the cases. Optimisation methods of the daughter nuclide build-up versus stand-by time and/or specific activity using mean progress functions were developed for increasing the performance of radionuclide generators. As a result of this optimisation, the separation of the daughter nuclide from its parent one should be performed at a defined optimal time to avoid the deterioration in specific activity of the daughter nuclide and wasting stand-by time of the generator, while the daughter nuclide yield is maintained to a reasonably high extent. A new characteristic parameter of the formation-decay kinetics of parent/daughter nuclide system was found and effectively used in the practice of the generator production and utilisation. A method of "early elution schedule" was also developed for increasing the daughter nuclide production yield and specific radioactivity, thus saving the cost of the generator and improving the quality of the daughter radionuclide solution. These newly developed optimisation methods in combination with an integrated elution-purification-concentration system of radionuclide generators recently developed is the most suitable way to operate the generator effectively on the basis of economic use and improvement of purposely suitable quality and specific activity of the produced daughter radionuclides. All these features benefit the economic use of the generator, the improved quality of labelling/scan, and the lowered cost of nuclear medicine procedure. Besides, a new method of quality control protocol set-up for post-delivery test of radionuclidic purity has been developed based on the relationship between gamma ray spectrometric detection limit, required limit of impure radionuclide activity and its measurement certainty with respect to

  7. 四代核电技术(高温堆)产业化探讨%Chinese Development of Generation IV Nuclear Power Technology--High Temperature Gas Cooled Reactor

    Institute of Scientific and Technical Information of China (English)

    石磊; 肖国平; 鲁盛会; 张见营; 王芝芬; 李金英

    2015-01-01

    该文综述了四代核电技术(高温堆)的发展现状和技术特点,对中国高温气冷堆的产业化提出了建议,供政府及相关行业集团公司等参考。%The author reviewed the development of generation IV nuclear power technology --Temperature Gas Cooled Reactor(HTR) . Some The advice of industrialization of HTR in China was proposed.The article can give some advice for the government and relevant company.

  8. Computer code analysis of steam generator in thermal-hydraulic test facility simulating nuclear power plant; Ydinvoimalaitosta kuvaavan koelaitteiston hoeyrystimien analysointi tietokoneohjelmilla

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, E.

    1995-12-31

    In the study three loss-of-feedwater type experiments which were preformed with the PACTEL facility has been calculated with two computer codes. The purpose of the experiments was to gain information about the behaviour of horizontal steam generator in a situation where the water level on the secondary side of the steam generator is decreasing. At the same time data that can be used in the assessment of thermal-hydraulic computer codes was assembled. The purpose of the work was to study the capabilities of two computer codes, APROS version 2.11 and RELAP5/MOD3.1, to calculate the phenomena in horizontal steam generator. In order to make the comparison of the calculation results easier the same kind of model of the steam generator was made for both codes. Only the steam generator was modelled, the rest of the facility was given for the codes as a boundary condition. (23 refs.).

  9. Nuclear control

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Wan Kee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    International cooperation in nuclear industries requires nuclear control as prerequisites. The concept of nuclear control is based on the Treaty on the Non-proliferation of Nuclear Weapon (NPT). The International Atomic Energy Agency (IAEA) plays central role in implementing nuclear control. Nuclear control consists of nuclear safeguards, physical protection, and export/import control. Each member state of NPT is subject to the IAEA`s safeguards by concluding safeguards agreements with the IAEA. IAEA recommends member states to implement physical protection on nuclear materials by `The Physical Protection of Nuclear Material` and `The Convention on the Physical Protection of Nuclear Material` of IAEA. Export/Import Control is to deter development of nuclear weapons by controlling international trade on nuclear materials, nuclear equipments and technology. Current status of domestic and foreign nuclear control implementation including recent induction of national inspection system in Korea is described and functions of recently set-up Technology Center for Nuclear Control (TCNC) under the Korea Atomic Energy Research Institute (KAERI) are also explained. 6 tabs., 11 refs. (Author).

  10. Nuclear Electric looks to the private sector

    Energy Technology Data Exchange (ETDEWEB)

    Varley, James

    1995-03-01

    The state-owned utility Nuclear Electric, which is responsible for nuclear power generation in England and Wales, was created in 1990 following withdrawal of nuclear from electricity privatisation. Having successfully made itself much more commercial, Nuclear Electric would like the freedom of operating in the private sector. (author).

  11. A thought of the Wushu's development from the hot of Bruce Lee's Kung fu%李小龙功夫热引发对武术发展的思考

    Institute of Scientific and Technical Information of China (English)

    余红盈; 余立武

    2012-01-01

    Bruce Lee is a muscle artist and star of kung fu, who raised a kungfu hot in the world through created Jeer Kune Do and shoot the kungfu folms during some years, and made a huge contribution for Chinese Wnshu's development and popularization. This article proposes after analysis that Bruce Lee's achievement in Wushu, especially the technical ability advocated in Jeet Kune Do is very useful for the development of Wushu recently.%李小龙,武术家、功夫影星,短短几年时间通过创立截拳道与拍摄功夫电影在世界范围内掀起了一股功夫热,并为中国武术的发展与推广做出了巨大贡献。分析认为李小龙在武术方面所取得的成就,尤其是截拳道所提倡的武术技能对当今武术的发展具有一定的借鉴意义。

  12. Nuclear Waste and Ethics

    Energy Technology Data Exchange (ETDEWEB)

    Damveld, Herman [Groningen (Netherlands)

    2003-10-01

    In the past years in almost all conferences on storage of nuclear waste, ethics has been considered as an important theme. But what is ethics? We will first give a sketch of this branch of philosophy. We will then give a short explanation of the three principal ethical theories. In the discussion about storage of nuclear waste, the ethical theory of utilitarianism is often implicitly invoked. In this system future generations weigh less heavily than the present generation, so that people of the future are not considered as much as those now living. We reject this form of reasoning. The discussion about nuclear waste is also sometimes pursued from ethical points of departure such as equality and justice. But many loose ends remain in these arguments, which gives rise to the question of whether the production and storage of nuclear waste is responsible.

  13. 78 FR 68100 - Luminant Generation Company, LLC

    Science.gov (United States)

    2013-11-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Luminant Generation Company, LLC AGENCY: U.S. Nuclear Regulatory Commission (NRC). ACTION... consecutive weeks of a combined license (COL) application from Luminant Generation Company, LLC....

  14. 78 FR 66785 - Luminant Generation Company, LLC

    Science.gov (United States)

    2013-11-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Luminant Generation Company, LLC AGENCY: Nuclear Regulatory Commission. ACTION: Notice of receipt... consecutive weeks of ] a combined license (COL) application from Luminant Generation Company, LLC....

  15. 78 FR 69710 - Luminant Generation Company, LLC

    Science.gov (United States)

    2013-11-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Luminant Generation Company, LLC AGENCY: U.S. Nuclear Regulatory Commission (NRC). ACTION... consecutive weeks of a combined license (COL) application from Luminant Generation Company, LLC....

  16. 78 FR 70964 - Luminant Generation Company, LLC

    Science.gov (United States)

    2013-11-27

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Luminant Generation Company, LLC AGENCY: Nuclear Regulatory Commission. ACTION: Combined license... for four consecutive weeks of a combined license (COL) application from Luminant Generation...

  17. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 7. Power plant reliability-availability and state regulation

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V.; Bouromand, I.N.M.N.

    1977-01-01

    Data from the Edison Electric Institute annual report on equipment availability are briefly examined with a view to determining the breadth of effort which would be required to reduce outage time caused by equipment difficulties. For nuclear units, for several size categories of fossil units, and for gas turbine units, the basic data are examined to establish the basic operating experience and related outage and availability rates, and to assign outages to major plant systems. Related data giving detailed outage causes are grouped to yield data on component failure versus outage time, information that is required to determine the possible impact of research and regulatory efforts on reliability and availability.

  18. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2015-01-01

    Most elements are synthesized, or ""cooked"", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book

  19. NASA Missions Enabled by Space Nuclear Systems

    Science.gov (United States)

    Scott, John H.; Schmidt, George R.

    2009-01-01

    This viewgraph presentation reviews NASA Space Missions that are enabled by Space Nuclear Systems. The topics include: 1) Space Nuclear System Applications; 2) Trade Space for Electric Power Systems; 3) Power Generation Specific Energy Trade Space; 4) Radioisotope Power Generation; 5) Radioisotope Missions; 6) Fission Power Generation; 7) Solar Powered Lunar Outpost; 8) Fission Powered Lunar Outpost; 9) Fission Electric Power Generation; and 10) Fission Nuclear Thermal Propulsion.

  20. Nuclear Power in Space

    Science.gov (United States)

    1994-01-01

    In the early years of the United States space program, lightweight batteries, fuel cells, and solar modules provided electric power for space missions. As missions became more ambitious and complex, power needs increased and scientists investigated various options to meet these challenging power requirements. One of the options was nuclear energy. By the mid-1950s, research had begun in earnest on ways to use nuclear power in space. These efforts resulted in the first radioisotope thermoelectric generators (RTGs), which are nuclear power generators build specifically for space and special terrestrial uses. These RTGs convert the heat generated from the natural decay of their radioactive fuel into electricity. RTGs have powered many spacecraft used for exploring the outer planets of the solar system and orbiting the sun and Earth. They have also landed on Mars and the moon. They provide the power that enables us to see and learn about even the farthermost objects in our solar system.

  1. Investigation on the use digital controls instead of PID analog controls in the level control of steam generators of nuclear power PWR; Investigacao sobre o uso de controladores digitais em substituicao aos controladores analogicos PID para o controle de nivel de geradores de vapor de centrais nucleares PWR

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Marco Antonio Bayout

    2012-07-01

    The aim of this study is to identify current alternatives for the implementation of digital controllers in the level control of steam generators of nuclear power PWR (Pressurized Water Reaetor). It is intended to identify the types of digital controls that are available from the theoretical and conceptual viewpoints for this purpose. We investigate the advantages and disadvantages of each controller model. From this assessment are pointed the most suitable models in hierarchical scale. This evaluation also serves to suggest possible types of control installation as a whole, where the level control of the steam generators becomes just one of many controls that are part of the plant. In this case, the use of digital controls allows the non-linear and multivariable treatment which is characteristic of complex systems, such as the nuclear power generation. The treatment of nonlinearities and multivariable aspects allows a more detailed study of the stability of these plants when they are subject to transients or several accidents, such as the case of losing external power of transients. In the specific case of steam generators, the instabilities result from the emergence of the shrink and swell phenomenas, depending on the load variations of thermonuclear plant. The application of several types and digital controllers, considering these inherent characteristics of the level control of steam generators, allows to infer which types of controllers are more appropriate to treat instabilities of this type and to make conjectures in its use for the cases of more complex instabilities, considering the integration of all nucleus-plant controls.

  2. Nuclear Manpower Training

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. J.; Han, K. W.; Lee, H. Y. and others

    2006-01-15

    Through the project on nuclear human resources development in 2005, the Nuclear Training Center of KAERI has provided 67 nuclear education and training courses for 3,658 persons from the domestic nuclear related organizations such as Government Agencies, nuclear industries, R and D institutes, universities, and public as well as from IAEA Member States. In addition, 6 students (MS and Ph D.) have taken nuclear technology related courses offered by UST-KAERI. The project has developed 8 programs and 12 courses. They includes programs for IAEA training, bilateral education and training, and in-house training as well as courses dealing with maintenance of nuclear power plants and management of electricity generation, thermal-hydraulics nuclear hydrogen, nuclear safeguards, radiation emergency preparedness and etc. National and international cooperation has been promoted. For ANENT, test operation, data loading and revision of the web-portal have been undertaken. Also the web-portal operation system has been established. For FNCA, NTC has cooperated for the establishment of a model of human resource development and the exchange of information/materials. With WNU, the NTC has made an effort for hosting 2007 WNU Summer Institute. The infrastructure for nuclear education and training has been strengthened. Basic directions for providing the customers with better service, This includes showing kindness to the customer, renovation of the interior of training facilities, and upgrading of web-based management system for learning and using facilities of NTC. Other efforts have resulted in the publication of 25 course materials (10 for international courses and 15 for national courses), and the improvement of education and training equipment. The International Nuclear Training and Education Center (INTEC), which was opened in 2002, has hosted 296 international and domestic events in 2005.

  3. Study of a fuel assembly for the nuclear reactor of IV generation cooled with supercritical water; Estudio de un ensamble de combustible para el reactor nuclear de generacion IV enfriado con agua supercritica

    Energy Technology Data Exchange (ETDEWEB)

    Barragan M, A.; Martin del Campo M, C.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Espinosa P, G., E-mail: albrm29@yahoo.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (MX)

    2011-11-15

    In this work a neutron study is presented about a square assembly design of double line of fuel rods, with moderator box to the center of the arrangement, for a nuclear reactor cooled with supercritical water (SCWR). The SCWR reactor was chosen by the characteristics of its design, mainly because is based in light water reactors (PWR and BWR), and the operational experience that has of them allow to use models and similar programs to simulate the fuel and the nucleus of this type of reactors. To develop the necessary models and to carry out the design and analysis of the SCWR reactor, the neutron codes MCNPX and Helios were used. The reason of using both codes, is because the code MCNPX used thoroughly in the neutron simulation of these reactors, it has been our reference code to analyze the results obtained with the Helios code which results are more efficient because its calculation times are minors. In the nucleus design the same parameters for both codes were considered. The results show that the design with Helios is a viable option to simulate these reactors since their values of the neutrons multiplication factor are very similar to those obtained with MCNPX. On the other hand, it could be corroborated that the CASMO-4 code is inadequate to simulate the fuel to the temperature conditions and water pressure in the SCWR. (Author)

  4. Nuclear Chemistry.

    Science.gov (United States)

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  5. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  6. Energy supply technologies. Nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, Bent.; Nonboel, E. [Risoe National Lab. - DTU (Denmark); Vuori, S. [VTT (Finland)

    2007-11-15

    Nuclear power has long been controversial, especially in Europe, with concerns over the safety of nuclear installations, radioactive waste, and proliferation of nuclear weapon materials. Globally, however, renewed interest in nuclear energy has been sparked by concerns for energy security, economic development, and commitment to reduce CO{sub 2} emissions. Nuclear fission is a major source of energy that is free from CO{sub 2} emissions. It provides 15 % of the world's electricity and 7 % of total primary energy consumption. Around 440 nuclear reactors are currently generating power in 31 countries, with largest capacity in Europe, the USA and Southeast Asia. Non-electricity applications are few at present, but include process heat, hydrogen production, ship propulsion, and desalination. Nuclear power is characterised by high construction costs and a relatively long construction period, but low operating and maintenance expenses, including fuel. Most nuclear power plants in the USA and Europe have second-generation light water reactors (LWRs), while the plants now being built in Southeast Asia are of third-generation design. The Evolutionary Power Reactor (EPR) under construction in Finland, and the Pebble Bed Modular Reactor (PBMR) being developed in South Africa, are both of types referred to as Generation III+. From 2020-30 onwards fourth-generation reactors are expected to provide improved fuel utilisation and economics. Nuclear power does not form part of the Danish energy mix and at present there seems to be little political will to change this position. As a result Denmark has relatively little expertise in nuclear power. However, since nuclear power provides a substantial share of Europe's electricity, Denmark should ensure that it has expertise to advise the government and the public on nuclear issues. (BA)

  7. Nuclear weapons, nuclear effects, nuclear war

    Energy Technology Data Exchange (ETDEWEB)

    Bing, G.F.

    1991-08-20

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  8. Nuclear structure

    CERN Document Server

    Nazarewicz, W

    1999-01-01

    Current developments in nuclear structure are discussed from a theoretical perspective. The studies of the nuclear many-body system provide us with invaluable information about the nature of the nuclear interaction, nucleonic correlations at various energy-distance scales, and the modes of the nucleonic matter.

  9. Helium mobility in advanced nuclear ceramics

    OpenAIRE

    Agarwal, Shradha

    2014-01-01

    While the current second and third generation nuclear plant designs provides an economically, technically, and publicly acceptable electricity supply in many markets, further advances in nuclear energy system design can broaden the opportunities for the use of nuclear energy. The fourth generation of nuclear reactors is under development. These new reactors are designed with the following objective in mind: sustainability, safety and reliability, economics, proliferation resistance. Out of si...

  10. Economic risks of the capacity expansion of electric power generation: impact of the nuclear energy; Riesgos economicos de la expansion de la capacidad de generacion de energia electrica: impacto de la energia nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Nieva G, R. [Instituto de Investigaciones Electricas, Av. Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)

    2009-07-01

    Uncertainty and risks are inherent to the electric systems planning. The long period of construction that is characteristic of the electric sector works, as well as the long useful life of the generation assets and electric power transmission, they force to plan the expansion of the electric systems along horizons from 10 to 25 years. In periods so long of time it is impossible to predict with certainty the elements of the environment that could influence in the taking of decisions, like they are: the growth and the distribution of the electric power demand, the readiness and fuel prices; the investment costs of the technological options of generation and transmission, as well as the duration of the construction of future projects of new capacity addition. All expansion plan that will be propose, will be exposed to the uncertainty of the environment, gives place to risks or undesirable consequences. The nature of the risks, the strategies to delimit them and the outlines to assign them between the different interested parts and the diverse economic agents, depend in great measure of the legal and normative mark of the sector. In this work these topics are approached inside the reference mark of the Mexican public service of electric power. (Author)

  11. NASA's Nuclear Thermal Propulsion Project

    Science.gov (United States)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; Scott, John; Power, Kevin P.

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  12. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750–800°C Reactor Outlet Temperature

    Energy Technology Data Exchange (ETDEWEB)

    John Collins

    2009-08-01

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750–800°C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  13. Radionuclides for nuclear medicine: a nuclear physicists' view

    DEFF Research Database (Denmark)

    Cantone, M.; Haddad, F.; Harissopoulos, S.

    2013-01-01

    physics Methods and nuclear physics facilities are supporting the development and supply of medical radionuclides and how this support could be further strengthened in future. Aspects that will be addressed: •In recent years, the reactor-based supply chain of 99Mo/99mTc generators was repeatedly......NuPECC (the Nuclear Physics European Collaboration Committee, an expert committee of the European Science Foundation) has the mission to strengthen European Collaboration in nuclear science through the promotion of nuclear physics and its trans-disciplinary use and application. NuPECC is currently...... working on a report on “Nuclear Physics for Medicine” and has set up a working group to review the present status and prospects of radionuclides for nuclear medicine. An interim report will be presented to seek comments and constructive input from EANM members. In particular it is investigated how nuclear...

  14. Survey for the presence of Naegleria fowleri amebae in lake water used to cool reactors at a nuclear power generating plant.

    Science.gov (United States)

    Jamerson, Melissa; Remmers, Kenneth; Cabral, Guy; Marciano-Cabral, Francine

    2009-04-01

    Water from Lake Anna in Virginia, a lake that is used to cool reactors at a nuclear power plant and for recreational activities, was assessed for the presence of Naegleria fowleri, an ameba that causes primary amebic meningoencephalitis (PAM). This survey was undertaken because it has been reported that thermally enriched water fosters the propagation of N. fowleri and, hence, increases the risk of infection to humans. Of 16 sites sampled during the summer of 2007, nine were found to be positive for N. fowleri by a nested polymerase chain reaction assay. However, total ameba counts, inclusive of N. fowleri, never exceeded 12/50 mL of lake water at any site. No correlation was obtained between the conductivity, dissolved oxygen, temperature, and pH of water and presence of N. fowleri. To date, cases of PAM have not been reported from this thermally enriched lake. It is postulated that predation by other protozoa and invertebrates, disturbance of the water surface from recreational boating activities, or the presence of bacterial or fungal toxins, maintain the number N. fowleri at a low level in Lake Anna.

  15. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  16. Generation Mechanism of Human Errors and Preventive Countermeasures in Nuclear Power Stations%核电站人因失误的产生机理及其预防措施

    Institute of Scientific and Technical Information of China (English)

    张言滨

    2011-01-01

    在核电站的人-机系统中,核电站特有的运行控制特征使得人因失误事件的发生概率很大,如何预防与减少人因失误,提高人的可靠性已成为保证核电安全生产的主要因素.研究了人因失误的特点,通过总结核电站人因失误事件的产生机理,给出了预防核电站人因失误的有效措施.%In the person -machine system of a nuclear power station, the unique operating control characteristics of the station increase probability of human failure events. How to prevent from and reduce human errors have become the primary factor in nuclear power safety producUon. This paper studied the characteristics of human errors, and through summarizing of generation mechanism of human failure events, and proposed some effective prevention measures.

  17. Nuclear power plants for mobile applications

    Science.gov (United States)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  18. Nuclear Power Plants (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  19. New measurements of excitation functions of 186W(p,x) nuclear reactions up to 65 MeV. Production of a 178W/178mTa generator

    Science.gov (United States)

    Tárkányi, F.; Ditrói, F.; Takács, S.; Hermanne, A.

    2017-01-01

    New experimental excitation functions for proton induced reactions on natW are presented in the 32-65 MeV energy range. The cross-sections for natW(p,xn)186,184m,184g,183, 182m,182g,181Re, natW(p,x)178W, natW(p,x)183,182, 180m, 177,176,175Ta, 175Hf and 177Lu were measured via an activation method by using a stacked-foil irradiation technique and high resolution gamma-ray spectroscopy. The results were compared with predicted values obtained with the nuclear reaction code TALYS (results taken from the TENDL 2014 and TENDL 2015 on-line libraries). Production routes of the medically relevant radionuclides 186Re, the 178W → 178Ta generator and 181W are discussed.

  20. Nuclear Fuel Cycle Introductory Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  1. Operate a Nuclear Power Plant.

    Science.gov (United States)

    Frimpter, Bonnie J.; And Others

    1983-01-01

    Describes classroom use of a computer program originally published in Creative Computing magazine. "The Nuclear Power Plant" (runs on Apple II with 48K memory) simulates the operating of a nuclear generating station, requiring students to make decisions as they assume the task of managing the plant. (JN)

  2. JPRS Report Nuclear Developments

    Science.gov (United States)

    2007-11-02

    Text] Furnas Chairman Camilo Pena has said the operation of the Angra I nuclear plant has been delayed once again. Furnas is suing the American...Westinghouse company and is demanding compensation for damages caused by a malfunction in the Angra I power generator. According to Camilo Pena, Angra I

  3. 核电应急柴油发电机组加载过程建模与仿真%Transient modeling and simulation of nuclear emergency diesel generators during the loading process

    Institute of Scientific and Technical Information of China (English)

    王贺春; 王玥; 徐荣; 胡松

    2015-01-01

    In order to reduce the development time and costs, and to meet the demands of simulation for variable load loading of nuclear emergency diesel generator sets, a co⁃simulation environment based on GT⁃power and Mat⁃lab/Simulink is built, which is the basis of the establishment for the transient simulation model of a diesel engine according to load characteristics of the nuclear power plant reactor safety shutdown, and the incremental PID control scheme of nuclear emergency diesel generator sets in the speed control system is presented at the same time. The change of parameters such as rotation speed, fuel injection quantity and the rack position is predicted through the simulation of loading on the diesel engine at different times, and the comparison between calculation results and MAN Diesel and Turbo illustrates that this simulation model is practicable and good in dynamic characteristics.%为了减少核电应急柴油发电机组的开发时间及成本,并满足核电应急柴油发电机组的多种变负荷加载的仿真计算,建立了基于GT⁃power与Matlab/Simulink的联合仿真环境,并在此基础上根据核电站反应堆安全停堆的负荷特性建立了某柴油发电机组的瞬态仿真模型,提出了核电应急柴油发电机组调速系统的增量式PID控制方案,进行了柴油机突加、突减负载的瞬态仿真计算,预测了柴油机在加载过程中的转速、喷油量、齿条位置等参数的变化。将仿真计算的结果与MAN公司的仿真结果进行了对比分析,对比结果表明所建立的联合仿真模型具有一定的准确性及良好的动态特性。

  4. Virtual nuclear weapons

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, J.F.

    1997-08-01

    The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

  5. The nuclear energy outlook--a new book from the OECD nuclear energy agency.

    Science.gov (United States)

    Yoshimura, Uichiro

    2011-01-01

    This paper summarizes the key points of a report titled Nuclear Energy Outlook, published in 2008 by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, which has 30 member nations. The report discusses the commitment of many nations to increase nuclear power generating capacity and the potential rate of building new electricity-generating nuclear plants by 2030 to 2050. The resulting decrease in carbon dioxide emissions from fossil fuel combustion resulting from an increase in nuclear power sources is described. Other topics that are discussed include the need to develop non-proliferative nuclear fuels, the importance of developing geological disposal facilities or reprocessing capabilities for spent nuclear fuel and high-level radioactive waste materials, and the requirements for a larger nuclear workforce and greater cost competitiveness for nuclear power generation.

  6. Nuclear reprogramming by nuclear transplantation and defined transcription factors

    Institute of Scientific and Technical Information of China (English)

    WANG YiXuan; LIU Sheng; LAI LiangXue; GAO ShaoRong

    2009-01-01

    In the past ten years,great breakthroughs have been achieved in the nuclear reprogramming area.It has been demonstrated that highly differentiated somatic cell genome could be reprogrammed to a pluripotent state,which indicates that differentiated cell fate is not irreversible.Nuclear transplantation and induced pluripotent stem (iPS) cell generation are the two major approaches to inducing repro-gramming of differentiated somatic cell genome.In the present review,we will summarize the recent progress of nuclear reprogramming and further discuss the potential to generate patient specific pluripotent stem cells from differentiated somatic cells for therapeutic purpose.

  7. Nuclear Energy in Space Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1968-01-01

    Nuclear space programs under development by the Atomic Energy Commission are reviewed including the Rover Program, systems for nuclear rocket propulsion and, the SNAP Program, systems for generating electric power in space. The letters S-N-A-P stands for Systems for Nuclear Auxiliary Power. Some of the projected uses of nuclear systems in space are briefly discussed including lunar orbit, lunar transportation from lunar orbit to lunar surface and base stations; planetary exploration, and longer space missions. The limitations of other sources of energy such as solar, fuel cells, and electric batteries are discussed. The excitement and visionary possibilities of the Age of Space are discussed.

  8. The Nuclear Industry

    Science.gov (United States)

    Congedo, Tom; Lahoda, Edward; Matzie, Regis; Task, Keith

    The objective of the nuclear industry is to pro-duce energy in the forms of heat from either fission reactions or radioactive decay and radiation from radioactive decay or by accelerator methods. For fission heat applications, the nuclear fuel has a very high specific energy content that currently has two principal uses, for military explosives and for electricity generation. As higher temperature reactors become more widely available, the high temperature heat (>900°C) will also be useful for making chemicals such as hydrogen. For radiation applications, the emissions from radioactive decay of unstable nuclides are employed in research, medicine, and industry for diagnostic purposes and for chemical reaction initiation. Radioactive decay heat is also employed to generate electricity from thermoelectric generators for low-power applications in space or remote terrestrial locations.

  9. Nuclear Astrophysics

    Science.gov (United States)

    Drago, Alessandro

    2005-04-01

    The activity of the Italian nuclear physicists community in the field of Nuclear Astrophysics is reported. The researches here described have been performed within the project "Fisica teorica del nucleo e dei sistemi a multi corpi", supported by the Ministero dell'Istruzione, dell'Università e della Ricerca.

  10. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  11. 核电厂严重事故下卸压对氢气产生的影响分析%Effect of Depressurization on Hydrogen Generation During Severe Accident in PWR Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    陶俊; 李京喜; 佟立丽; 曹学武

    2011-01-01

    研究了1 000 MWe压水堆核电厂在典型的高压严重事故序列下卸压对氢气产生的影响.分析结果表明,开启1列、2列和3列卸压阀进行一回路卸压均会在堆芯熔化进程的3个阶段导致氢气产生率的明显增大:1)堆芯温度1 500~2 100 K;2)堆芯温度2 500~2 800 K;3)从形成由硬壳包容的熔融池(2 800 K)到熔融物向压力容器下封头下落.开启卸压阀的列数越多,氢气产生率的增大越明显.%The effect of depressurization on hydrogen generation during a typical high pressure severe accident sequence in a 1 000 MWe pressurized water reactor (PWR) nuclear power plant was analyzed. Analyses results indicate that the hydrogen generation rate is obviously increased by the reactor coolant system depressurization of opening one, two or three power operated relief valves (PORVs) at three core damage states.The first is peak core temperature from 1 500 K to 2 100 K. The second is peak core temperature from 2 500 K to 2 800 K. The third is from formation of molten pool supported by crust to slumping of molten materials into reactor pressure vessel lower head.The more PORVs are opened the more increment of hydrogen generation rate.

  12. Nuclear stress test

    Science.gov (United States)

    ... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...

  13. Hydrogen sulfide suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor κB (NF-κB) pathway.

    Science.gov (United States)

    Du, Junbao; Huang, Yaqian; Yan, Hui; Zhang, Qiaoli; Zhao, Manman; Zhu, Mingzhu; Liu, Jia; Chen, Stella X; Bu, Dingfang; Tang, Chaoshu; Jin, Hongfang

    2014-04-01

    This study was designed to examine the role of hydrogen sulfide (H2S) in the generation of oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 (MCP-1) from macrophages and possible mechanisms. THP-1 cells and RAW macrophages were pretreated with sodium hydrosulfide (NaHS) and hexyl acrylate and then treated with ox-LDL. The results showed that ox-LDL treatment down-regulated the H2S/cystathionine-β-synthase pathway, with increased MCP-1 protein and mRNA expression in both THP-1 cells and RAW macrophages. Hexyl acrylate promoted ox-LDL-induced inflammation, whereas the H2S donor NaHS inhibited it. NaHS markedly suppressed NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter in ox-LDL-treated macrophages. Furthermore, NaHS decreased the ratio of free thiol groups in p65, whereas the thiol reductant DTT reversed the inhibiting effect of H2S on the p65 DNA binding activity. Most importantly, site-specific mutation of cysteine 38 to serine in p65 abolished the effect of H2S on the sulfhydration of NF-κB and ox-LDL-induced NF-κB activation. These results suggested that endogenous H2S inhibited ox-LDL-induced macrophage inflammation by suppressing NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter. The sulfhydration of free thiol group on cysteine 38 in p65 served as a molecular mechanism by which H2S inhibited NF-κB pathway activation in ox-LDL-induced macrophage inflammation.

  14. Study on the establishment of nuclear education and training network based on the nuclear knowledge management

    Energy Technology Data Exchange (ETDEWEB)

    Lee, U. J.; Han, K. W.; Jeon, P. I.; Kim, Y. T.; Nam, Y. M.; Won, J. Y.; Kim, H. K. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    The preservation and succession of nuclear knowledge are essential for the sustainable development of nuclear energy. Nuclear knowledge management is inseparably related with education and training, also should be considered as future oriented activities for the next generation. Nevertheless mankind has enormously benefited worldwide from the use of the nuclear energy over the last half a century, nuclear energy has faced with difficulties from the public. The current nuclear workforce is getting older, less of youth are studying nuclear science and engineering. These issues should be discussed together with the government, research institutes, universities, and industries in terms of the preservation and succession of nuclear knowledge. Therefore, education and training of nuclear technology is requested to develop its role with cooperation of the national level, furthermore of regional and interregional level. This paper provides the methodology of the establishment of a regional network of nuclear education and training based on the nuclear knowledge management.

  15. Sustainable and safe nuclear fission energy technology and safety of fast and thermal nuclear reactors

    CERN Document Server

    Kessler, Günter

    2012-01-01

    Unlike existing books of nuclear reactor physics, nuclear engineering and nuclear chemical engineering this book covers a complete description and evaluation of nuclear fission power generation. It covers the whole nuclear fuel cycle, from the extraction of natural uranium from ore mines, uranium conversion and enrichment up to the fabrication of fuel elements for the cores of various types of fission reactors. This is followed by the description of the different fuel cycle options and the final storage in nuclear waste repositories. In addition the release of radioactivity under normal and possible accidental conditions is given for all parts of the nuclear fuel cycle and especially for the different fission reactor types.

  16. The Fessenheim nuclear power plant, at the service of a safe, competitive and CO{sub 2}-free power generation in the heart of the Alsace region; La Centrale Nucleaire de Fessenheim, au service d'une production d'electricite sure, competitive et sans CO{sub 2}, au coeur de la region Alsace

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Fessenheim comprises two production units of 900 MW each (1800 MW as a whole). The facility generated 8.7 billion kWh in 2009, i.e. 70% of the energy consumed in the Alsace region. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  17. Nuclear Physics

    CERN Document Server

    Savage, Martin J

    2016-01-01

    Lattice QCD is making good progress toward calculating the structure and properties of light nuclei and the forces between nucleons. These calculations will ultimately refine the nuclear forces, particularly in the three- and four-nucleon sector and the short-distance interactions of nucleons with electroweak currents, and allow for a reduction of uncertainties in nuclear many-body calculations of nuclei and their reactions. After highlighting their importance, particularly to the Nuclear Physics and High-Energy Physics experimental programs, I discuss the progress that has been made toward achieving these goals and the challenges that remain.

  18. Yeast nuclear RNA processing

    Institute of Scientific and Technical Information of China (English)

    Jade; Bernstein; Eric; A; Toth

    2012-01-01

    Nuclear RNA processing requires dynamic and intricately regulated machinery composed of multiple enzymes and their cofactors.In this review,we summarize recent experiments using Saccharomyces cerevisiae as a model system that have yielded important insights regarding the conversion of pre-RNAs to functional RNAs,and the elimination of aberrant RNAs and unneeded intermediates from the nuclear RNA pool.Much progress has been made recently in describing the 3D structure of many elements of the nuclear degradation machinery and its cofactors.Similarly,the regulatory mechanisms that govern RNA processing are gradually coming into focus.Such advances invariably generate many new questions,which we highlight in this review.

  19. Nuclear Disarmament.

    Science.gov (United States)

    Johnson, Christopher

    1982-01-01

    Material about nuclear disarmament and the arms race should be included in secondary school curricula. Teachers can present this technical, controversial, and frightening material in a balanced and comprehensible way. Resources for instructional materials are listed. (PP)

  20. Nuclear reaction

    CERN Multimedia

    Penwarden, C

    2001-01-01

    At the European Research Organization for Nuclear Research, Nobel laureates delve into the mysteries of particle physics. But when they invited artists from across the continent to visit their site in Geneva, they wanted a new kind of experiment.