WorldWideScience

Sample records for brown dwarf binaries

  1. Microlensing Binaries with Candidate Brown Dwarf Companions

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Gould, A.

    2012-01-01

    Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing ...

  2. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Mikkola, Seppo, E-mail: reipurth@ifa.hawaii.edu, E-mail: Seppo.Mikkola@utu.fi [Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö (Finland)

    2015-04-15

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  3. An HST/STIS spectroscopic investigation: is Kelu-1 AB a brown dwarf - brown dwarf binary?

    Science.gov (United States)

    Stumpf, Micaela

    2009-07-01

    We propose to obtain resolved HST/STIS spectroscopy for the benchmark binary brown dwarf Kelu-1 AB. Dynamical masses are being obtained by monitoring the orbital motion using ground-based telescopes with adaptive optics. The main goal of this program is to study the Li I resonance line at 670.8 nm and investigate if only one or even both components bear lithium. This observation will be compared to model predictions of lithium depletion as a function of age and mass, and including our model independent ground-based mass estimations, hence will provide an observational test to the theory of substellar objects. Spin-offs will be the measurement of the strength of H-alpha emission, an indicator of chromospheric activity in cool atmospheres, and comparing the shape of the optical continuum with model spectra with different dust opacities. Thus our program will be an important step towards the understanding of brown dwarf atmospheres and to establish precise models for their formation and evolution.

  4. Brown Dwarf Binaries as Tests of Substellar Evolution

    Science.gov (United States)

    Martin, Eduardo

    2002-07-01

    We propose to obtain STIS spectroscopy of two brown dwarf binaries for which dynamical masses are being obtained by monitoring the orbital motion using ground-based telescopes with adaptive optics. The HST/STIS spectra will allow to study the LiI resonance line at 670.8 nm. The lithium depletion of the members of these binaries will be estimated with the aid of synthetic spectra. These observations will be compared to model predictions of lithium depletion as a function of age and mass, and hence will provide an observational test to the theory of substellar objects. Spin-offs will be the measurement of the strength of Halpha emission, an indicator of chromospheric activity in cool atmospheres, and comparing the shape of the optical continuum with model spectra with different dust opacities.

  5. Simulating Unresolved Binary Brown Dwarfs for Cameras on the Hubble Space Telescope

    Science.gov (United States)

    Gardner, Douglas B.; Stephens, Thomas E.; Stephens, Denise C.; Salway, Elora N.

    2015-01-01

    Identification of binary brown dwarf (BD) systems with small separations can be difficult because of the inability to resolve each component according to the Rayleigh criterion and the possibility of the secondary BD being much fainter than the primary BD. Using models of the point spread function (PSF) created for several filters and cameras on the Hubble Space Telescope (HST), we have developed a technique to determine the probability that an apparently single BD observed with HST may actually be an unresolved binary. To test the detection limits of this method, we have developed code to produce simulated binary systems for several HST cameras and their filters. The simulated data cover the full range of parameter space (delta_magnitude, separation, position angle, background noise, etc.) that we might expect to encounter when searching for binary brown dwarfs in real HST data. With the simulated data, we find that we can positively identify binary brown dwarf systems in the HST archives with separations that are much smaller than the Rayleigh criterion. Our simulations also place upper limits on the separation and flux of undetected secondary companions for apparently single BD in the HST archives.

  6. Hubble Space Telescope astrometry of the closest brown dwarf binary system - I. Overview and improved orbit★

    Science.gov (United States)

    Bedin, L. R.; Pourbaix, D.; Apai, D.; Burgasser, A. J.; Buenzli, E.; Boffin, H. M. J.; Libralato, M.

    2017-09-01

    Located at 2 pc, the L7.5+T0.5 dwarfs system WISE J104915.57-531906.1 (Luhman 16 AB) is the third closest system known to Earth, making it a key benchmark for detailed investigation of brown dwarf atmospheric properties, thermal evolution, multiplicity, and planet-hosting frequency. In the first study of this series - based on a multicycle Hubble Space Telescope (HST) program - we provide an overview of the project and present improved estimates of positions, proper motions, annual parallax, mass ratio, and the current best assessment of the orbital parameters of the A-B pair. Our HST observations encompass the apparent periastron of the binary at 220.5 ± 0.2 mas at epoch 2016.402. Although our data seem to be inconsistent with recent ground-based astrometric measurements, we also exclude the presence of third bodies down to Neptune masses and periods longer than a year.

  7. Using binary statistics in Taurus-Auriga to distinguish between brown dwarf formation processes

    Science.gov (United States)

    Marks, M.; Martín, E. L.; Béjar, V. J. S.; Lodieu, N.; Kroupa, P.; Manjavacas, E.; Thies, I.; Rebolo López, R.; Velasco, S.

    2017-08-01

    Context. One of the key questions of the star formation problem is whether brown dwarfs (BDs) form in the manner of stars directly from the gravitational collapse of a molecular cloud core (star-like) or whether BDs and some very low-mass stars (VLMSs) constitute a separate population that forms alongside stars comparable to the population of planets, for example through circumstellar disk (peripheral) fragmentation. Aims: For young stars in Taurus-Auriga the binary fraction has been shown to be large with little dependence on primary mass above ≈ 0.2 M⊙, while for BDs the binary fraction is universal with a large binary fraction close to unity. Peripheral objects form separately in circumstellar disks with a distinctive initial mass function (IMF), their own orbital parameter distributions for binaries, and small binary fractions, according to observations and expectations from smoothed particle hydrodynamics (SPH) and grid-based computations. A small amount of dynamical processing of the stellar component was accounted for as appropriate for the low-density Taurus-Auriga embedded clusters. Results: The binary fraction declines strongly in the transition region between star-like and peripheral formation, exhibiting characteristic features. The location of these features and the steepness of this trend depend on the mass limits for star-like and peripheral formation. Such a trend might be unique to low density regions, such as Taurus, which host binary populations that are largely unprocessed dynamically in which the binary fraction is large for stars down to M-dwarfs and small for BDs. Conclusions: The existence of a strong decline in the binary fraction - primary mass diagram will become verifiable in future surveys on BD and VLMS binarity in the Taurus-Auriga star-forming region. The binary fraction - primary mass diagram is a diagnostic of the (non-)continuity of star formation along the mass scale, the separateness of the stellar and BD populations, and

  8. DE0823-49 is a juvenile binary brown dwarf at 20.7 pc

    Science.gov (United States)

    Sahlmann, J.; Burgasser, A. J.; Martín, E. L.; Lazorenko, P. F.; Bardalez Gagliuffi, D. C.; Mayor, M.; Ségransan, D.; Queloz, D.; Udry, S.

    2015-07-01

    Astrometric monitoring of the nearby early-L dwarf DE0823-49 has revealed a low-mass companion in a 248-day orbit that was announced in an earlier work. Here, we present new astrometric and spectroscopic observations that allow us to characterise the system in detail. The optical spectrum shows Li i-absorption indicative of a young age and/or substellar mass for the primary component. The near-infrared spectrum is best reproduced by a binary system of brown dwarfs with spectral types of L1.5 + L5.5 and effective temperatures of 2150 ± 100 K and 1670 ± 140 K. To conform with the photocentric orbit size measured with astrometry and the current understanding of substellar evolution, the system must have an age in the 80-500 Myr range. Evolutionary models predict component masses in the ranges of M1 ≃ 0.028-0.063 M⊙ and M2 ≃ 0.018-0.045 M⊙ with a mass ratio of q ≃ 0.64-0.74. Multi-epoch radial velocity measurements unambiguously establish the three-dimensional orbit of the system and allow us to investigate its kinematic properties. DE0823-49 emerges as a rare example of a nearby brown dwarf binary with orbit, component properties, and age that are characterised well. It is a juvenile resident of the solar neighbourhood, but does not appear to belong to a known young association or moving group. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme IDs 086.C-0680, 088.C-0679, 090.C-0786, and 092.C-0202.

  9. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    Science.gov (United States)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert

  10. Microlensing discovery of a population of very tight, very low mass binary brown dwarfs

    DEFF Research Database (Denmark)

    Choi, J.-Y.; Han, C.; Udalski, A.

    2013-01-01

    Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present the disc...

  11. Hubble Space Telescope astrometry of the closest brown dwarf binary system -- I. Overview and improved orbit

    OpenAIRE

    Bedin, L. R.; Pourbaix, D.; Apai, D.; Burgasser, A. J.; Buenzli, E.; Boffin, H.~M.~J.; Libralato, M.

    2017-01-01

    Located at ~2pc, the L7.5+T0.5 dwarfs system WISE J104915.57-531906.1 (Luhman16AB) is the third closest system known to Earth, making it a key benchmark for detailed investigation of brown dwarf atmospheric properties, thermal evolution, multiplicity, and planet-hosting frequency. In the first study of this series -- based on a multi-cycle Hubble Space Telescope (HST) program -- we provide an overview of the project and present improved estimates of positions, proper motions, annual parallax,...

  12. A Cautionary Tale: MARVELS Brown Dwarf Candidate Reveals Itself to be a Very Long Period, Highly Eccentric Spectroscopic Stellar Binary

    Science.gov (United States)

    Mack, Claude E., III; Ge, Jian; Deshpande, Rohit; Wisniewski, John P.; Stassun, Keivan G.; Gaudi, B. Scott; Fleming, Scott W.; Mahadevan, Suvrath; De Lee, Nathan; Eastman, Jason; Ghezzi, Luan; González Hernández, Jonay I.; Femenía, Bruno; Ferreira, Letícia; Porto de Mello, Gustavo; Crepp, Justin R.; Mata Sánchez, Daniel; Agol, Eric; Beatty, Thomas G.; Bizyaev, Dmitry; Brewington, Howard; Cargile, Phillip A.; da Costa, Luiz N.; Esposito, Massimiliano; Ebelke, Garret; Hebb, Leslie; Jiang, Peng; Kane, Stephen R.; Lee, Brian; Maia, Marcio A. G.; Malanushenko, Elena; Malanushenko, Victor; Oravetz, Daniel; Paegert, Martin; Pan, Kaike; Allende Prieto, Carlos; Pepper, Joshua; Rebolo, Rafael; Roy, Arpita; Santiago, Basílio X.; Schneider, Donald P.; Simmons, Audrey; Siverd, Robert J.; Snedden, Stephanie; Tofflemire, Benjamin M.

    2013-05-01

    We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R MARVELS that lack the resolution for a useful line bisector analysis, it is imperative to monitor the peak of the cross-correlation function for suspicious changes in width or shape, so that such false positives can be flagged during the candidate vetting process.

  13. DANCING IN THE DARK: NEW BROWN DWARF BINARIES FROM KERNEL PHASE INTERFEROMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Benjamin; Tuthill, Peter [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2226 (Australia); Martinache, Frantz, E-mail: bjsp@physics.usyd.edu.au, E-mail: p.tuthill@physics.usyd.edu.au, E-mail: frantz@naoj.org [National Astronomical Observatory of Japan, Subaru Telescope, Hilo, HI 96720 (United States)

    2013-04-20

    This paper revisits a sample of ultracool dwarfs in the solar neighborhood previously observed with the Hubble Space Telescope's NICMOS NIC1 instrument. We have applied a novel high angular resolution data analysis technique based on the extraction and fitting of kernel phases to archival data. This was found to deliver a dramatic improvement over earlier analysis methods, permitting a search for companions down to projected separations of {approx}1 AU on NIC1 snapshot images. We reveal five new close binary candidates and present revised astrometry on previously known binaries, all of which were recovered with the technique. The new candidate binaries have sufficiently close separation to determine dynamical masses in a short-term observing campaign. We also present four marginal detections of objects which may be very close binaries or high-contrast companions. Including only confident detections within 19 pc, we report a binary fraction of at least #Greek Lunate Epsilon Symbol#{sub b} = 17.2{sub -3.7}{sup +5.7}%. The results reported here provide new insights into the population of nearby ultracool binaries, while also offering an incisive case study of the benefits conferred by the kernel phase approach in the recovery of companions within a few resolution elements of the point-spread function core.

  14. Radial Velocity Variability of Field Brown Dwarfs

    Science.gov (United States)

    Prato, L.; Mace, G. N.; Rice, E. L.; McLean, I. S.; Kirkpatrick, J. Davy; Burgasser, A. J.; Kim, Sungsoo S.

    2015-07-01

    We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R ˜ 20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity (RV) precision of ˜2 km s-1, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties, and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1σ upper limit for very low mass binary frequency is 18%. Our targets included seven known, wide brown dwarf binary systems. No significant RV variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant fraction of the orbital period. Specialized techniques are required to reach the high precisions sensitive to motion in orbits of very low-mass systems. For eight objects, including six T dwarfs, we present the first published high-resolution spectra, many with high signal to noise, that will provide valuable comparison data for models of brown dwarf atmospheres.

  15. Astrometric Binaries: White Dwarfs?

    Science.gov (United States)

    Oliversen, Nancy A.

    We propose to observe a selection of astrometric or spectroscopicastrometric binaries nearer than about 20 pc with unseen low mass companions. Systems of this type are important for determining the luminosity function of low mass stars (white dwarfs and very late main sequence M stars), and their contribution to the total mass of the galaxy. Systems of this type are also important because the low mass, invisible companions are potential candidates in the search for planets. Our target list is selected primarily from the list of 31 astrometric binaries near the sun by Lippincott (1978, Space Sci. Rev., 22, 153), with additional candidates from recent observations by Kamper. The elimination of stars with previous IUE observations, red companions resolved by infrared speckle interferometry, or primaries later than M1 (because if white dwarf companions are present they should have been detected in the visible region) reduces the list to 5 targets which need further information. IUE SWP low dispersion observations of these targets will show clearly whether the remaining unseen companions are white dwarfs, thus eliminating very cool main sequence stars or planets. This is also important in providing complete statistical information about the nearest stars. The discovery of a white dwarf in such a nearby system would provide important additional information about the masses of white dwarfs. Recent results by Greenstein (1986, A. J., 92, 859) from binary systems containing white dwarfs imply that 80% of such systems are as yet undetected. The preference of binaries for companions of approximately equal mass makes the Lippincott-Kamper list of A through K primaries with unseen companions a good one to use to search for white dwarfs. The mass and light dominance of the current primary over the white dwarf in the visible makes ultraviolet observations essential to obtain an accurate census of white dwarf binaries.

  16. How, Now, Brown Dwarfs?

    Science.gov (United States)

    Brecher, Kenneth

    2009-01-01

    The vocabulary of astronomy is riddled with colorful names for stars, from red giants to blue stragglers. Objects with masses between roughly .01 and .1 solar masses are called "brown dwarfs". Do they - could they - ever actually appear brown? Color is not a one-dimensional physical parameter like wavelength. It is a complex, psychophysical phenomenon involving not only three degrees of freedom - hue (often incorrectly equated with "color"), saturation and brightness - but also observational context. The perceptual nature of color has been known since Newton wrote in his "Opticks” in 1704: "For the Rays to speak properly are not coloured. In them there is nothing else than a certain Power and disposition to stir up a Sensation of this or that Colour.” To most observers, the 2000 or so naked eye stars observable from the northern hemisphere all appear white, with the half dozen exceptions which look reddish/orange like Betelgeuse, Arcturus and Antares. But what color would Betelgeuse (effective temperature 3600 K) appear at a distance of, say, 100 times the Earth-Sun separation? Not red. In fact, it has a temperature about 40% higher than that of an ordinary incandescent light bulb. It would appear white (or yellowish)! Can a very cool radiating (emissive) object ever appear brown? What is brown anyway? It is not a primary or even secondary color. In this presentation, we will explore the nature and meaning of "brown” by the use of several physical and computer demonstrations developed as part of "Project LITE- Light Inquiry Through Experiments", an educational materials development project. These demonstrations show that an isolated thermally radiating object will never appear brown. Hence the term "Brown Dwarf” is as nonsensical as the phrase "How, Now, Brown Cow?". Project LITE is supported by the NSF through DUE Grant # 0715975.

  17. Astrophysics of white dwarf binaries

    NARCIS (Netherlands)

    Nelemans, G.A.

    2006-01-01

    White dwarf binaries are the most common compact binaries in the Universe and are especially important for low-frequency gravitational wave detectors such as LISA. There are a number of open questions about binary evolution and the Galactic population of white dwarf binaries that can be solved using

  18. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  19. A brown dwarf orbiting an M-dwarf

    DEFF Research Database (Denmark)

    Bachelet, E.; Fouqué, P.; Albrow, M.D.

    2012-01-01

    Context. Caustic crossing is the clearest signature of binary lenses in microlensing. In the present context, this signature is diluted by the large source star but a detailed analysis has allowed the companion signal to be extracted. Aims. MOA 2009-BLG-411 was detected on August 5, 2009 by the M....... Conclusions. As far as we are aware, this is the first detection using the microlensing technique of a binary system in our Galaxy composed of an M-star and a brown dwarf....... gives two local minima, which correspond to the theoretical degeneracy s ≡ s-1. We find that the lens is composed of a brown dwarf secondary of mass MS = 0.05 M⊙ orbiting a primary M-star of mass MP = 0.18 M⊙. We also reveal a new mass-ratio degeneracy for the central caustics of close binaries...

  20. DISCOVERY OF A BINARY BROWN DWARF AT 2 pc FROM THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Luhman, K. L., E-mail: kluhman@astro.psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Center for Exoplanets and Habitable Worlds, Pennsylvania State University, University Park, PA 16802 (United States)

    2013-04-10

    I am using multi-epoch astrometry from the Wide-field Infrared Survey Explorer (WISE) to search for new members of the solar neighborhood via their high proper motions. Through this work, I have identified WISE J104915.57-531906.1 as a high proper motion object and have found additional detections in images from the Digitized Sky Survey, the Two Micron All-Sky Survey, and the Deep Near-Infrared Survey of the Southern Sky. I have measured a parallax of 0.''496 {+-} 0.''037 (2.0 {+-} 0.15 pc) from the astrometry in these surveys, making WISE J104915.57-531906.1 the third closest system to the Sun. During spectroscopic observations with the Gemini Multi-Object Spectrograph at Gemini Observatory, an i-band acquisition image resolved it as a 1.''5 (3 AU) binary. A spectrum was collected for the primary, which I classify as L8 {+-} 1. The secondary is probably near the L/T transition as well given that it is only modestly fainter than the primary ({Delta}i = 0.45 mag).

  1. Brown dwarf disks with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, L.; Isella, A. [Department of Astronomy, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Testi, L.; De Gregorio-Monsalvo, I. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Natta, A. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Scholz, A., E-mail: lricci@astro.caltech.edu [School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2014-08-10

    We present Atacama Large Millimeter/submillimeter Array continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J = 3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks' physical structure in dust. The results of our analysis show that the disks are relatively large; the smallest one has an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density, and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks, data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low-mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, the main mechanisms proposed for the formation of brown dwarfs and very low-mass stars, as well as the potential of finding rocky and giant planets around very low-mass objects.

  2. TWO EXTRAORDINARY SUBSTELLAR BINARIES AT THE T/Y TRANSITION AND THE Y-BAND FLUXES OF THE COOLEST BROWN DWARFS {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Michael C.; Bowler, Brendan P.; Best, William M. J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Dupuy, Trent J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Leggett, S. K. [Gemini Observatory, 670 North A' ohoku Place, Hilo, HI 96720 (United States)

    2012-10-10

    Using Keck laser guide star adaptive optics imaging, we have found that the T9 dwarf WISE J1217+1626 and T8 dwarf WISE J1711+3500 are exceptional binaries, with unusually wide separations ( Almost-Equal-To 0.''8, 8-15 AU), large near-IR flux ratios ( Almost-Equal-To 2-3 mag), and small mass ratios ( Almost-Equal-To 0.5) compared to previously known field ultracool binaries. Keck/NIRSPEC H-band spectra give a spectral type of Y0 for WISE J1217+1626B, and photometric estimates suggest T9.5 for WISE J1711+3500B. The WISE J1217+1626AB system is very similar to the T9+Y0 binary CFBDSIR J1458+1013AB; these two systems are the coldest known substellar multiples, having secondary components of Almost-Equal-To 400 K and being planetary-mass binaries if their ages are {approx}<1 Gyr. Both WISE J1217+1626B and CFBDSIR J1458+1013B have strikingly blue Y - J colors compared to previously known T dwarfs, including their T9 primaries. Combining all available data, we find that Y - J color drops precipitously between the very latest T dwarfs and the Y dwarfs. The fact that this is seen in (coeval, mono-metallicity) binaries demonstrates that the color drop arises from a change in temperature, not surface gravity or metallicity variations among the field population. Thus, the T/Y transition established by near-IR spectra coincides with a significant change in the Almost-Equal-To 1 {mu}m fluxes of ultracool photospheres. One explanation is the depletion of potassium, whose broad absorption wings dominate the far-red optical spectra of T dwarfs. This large color change suggests that far-red data may be valuable for classifying objects of {approx}<500 K.

  3. Lightning on exoplanets and brown dwarfs

    OpenAIRE

    Hodosán, Gabriella

    2017-01-01

    Lightning is an important electrical phenomenon, known to exist in several Solar System planets. Amongst others, it carries information on convection and cloud formation, and may be important for pre-biotic chemistry. Exoplanets and brown dwarfs have been shown to host environments appropriate for the initiation of lightning discharges. In this PhD project, I aim to determine if lightning on exoplanets and brown dwarfs can be more energetic than it is known from Solar System planets, what are...

  4. Discovery of Nearest Known Brown Dwarf

    Science.gov (United States)

    2003-01-01

    Bright Southern Star Epsilon Indi Has Cool, Substellar Companion [1] Summary A team of European astronomers [2] has discovered a Brown Dwarf object (a 'failed' star) less than 12 light-years from the Sun. It is the nearest yet known. Now designated Epsilon Indi B, it is a companion to a well-known bright star in the southern sky, Epsilon Indi (now "Epsilon Indi A"), previously thought to be single. The binary system is one of the twenty nearest stellar systems to the Sun. The brown dwarf was discovered from the comparatively rapid motion across the sky which it shares with its brighter companion : the pair move a full lunar diameter in less than 400 years. It was first identified using digitised archival photographic plates from the SuperCOSMOS Sky Surveys (SSS) and confirmed using data from the Two Micron All Sky Survey (2MASS). Follow-up observations with the near-infrared sensitive SOFI instrument on the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory confirmed its nature and has allowed measurements of its physical properties. Epsilon Indi B has a mass just 45 times that of Jupiter, the largest planet in the Solar System, and a surface temperature of only 1000 °C. It belongs to the so-called 'T dwarf' category of objects which straddle the domain between stars and giant planets. Epsilon Indi B is the nearest and brightest T dwarf known. Future studies of the new object promise to provide astronomers with important new clues as to the formation and evolution of these exotic celestial bodies, at the same time yielding interesting insights into the border zone between planets and stars. TINY MOVING NEEDLES IN GIANT HAYSTACKS ESO PR Photo 03a/03 ESO PR Photo 03a/03 [Preview - JPEG: 400 x 605 pix - 92k [Normal - JPEG: 1200 x 1815 pix - 1.0M] Caption: PR Photo 03a/03 shows Epsilon Indi A (the bright star at far right) and its newly discovered brown dwarf companion Epsilon Indi B (circled). The upper image comes from one of the SuperCOSMOS Sky

  5. The Luminosities of the Coldest Brown Dwarfs

    Science.gov (United States)

    Tinney, C. G.; Faherty, Jacqueline K.; Kirkpatrick, J. Davy; Cushing, Mike; Morley, Caroline V.; Wright, Edward L.

    2014-11-01

    In recent years, brown dwarfs have been extended to a new Y-dwarf class with effective temperatures colder than 500 K and masses in the range of 5-30 Jupiter masses. They fill a crucial gap in observable atmospheric properties between the much colder gas-giant planets of our own solar system (at around 130 K) and both hotter T-type brown dwarfs and the hotter planets that can be imaged orbiting young nearby stars (both with effective temperatures in the range of 1500-1000 K). Distance measurements for these objects deliver absolute magnitudes that make critical tests of our understanding of very cool atmospheres. Here we report new distances for nine Y dwarfs and seven very late T dwarfs. These reveal that Y dwarfs do indeed represent a continuation of the T-dwarf sequence to both fainter luminosities and cooler temperatures. They also show that the coolest objects display a large range in absolute magnitude for a given photometric color. The latest atmospheric models show good agreement with the majority of these Y-dwarf absolute magnitudes. This is also the case for WISE0855-0714, the coldest and closest brown dwarf to the Sun, which shows evidence for water ice clouds. However, there are also some outstanding exceptions, which suggest either binarity or the presence of condensate clouds. The former is readily testable with current adaptive optics facilities. The latter would mean that the range of cloudiness in Y dwarfs is substantial with most hosting almost no clouds—while others have dense clouds, making them prime targets for future variability observations to study cloud dynamics. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  6. The luminosities of the coldest brown dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Tinney, C. G. [School of Physics, UNSW Australia, NSW 2052 (Australia); Faherty, Jacqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington DC 20005 (United States); Kirkpatrick, J. Davy [Infrared Processing and Analysis Center, MS100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Cushing, Mike [Department of Physics and Astronomy, The University of Toledo, OH 43606 (United States); Morley, Caroline V. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Wright, Edward L., E-mail: c.tinney@unsw.edu.au [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States)

    2014-11-20

    In recent years, brown dwarfs have been extended to a new Y-dwarf class with effective temperatures colder than 500 K and masses in the range of 5-30 Jupiter masses. They fill a crucial gap in observable atmospheric properties between the much colder gas-giant planets of our own solar system (at around 130 K) and both hotter T-type brown dwarfs and the hotter planets that can be imaged orbiting young nearby stars (both with effective temperatures in the range of 1500-1000 K). Distance measurements for these objects deliver absolute magnitudes that make critical tests of our understanding of very cool atmospheres. Here we report new distances for nine Y dwarfs and seven very late T dwarfs. These reveal that Y dwarfs do indeed represent a continuation of the T-dwarf sequence to both fainter luminosities and cooler temperatures. They also show that the coolest objects display a large range in absolute magnitude for a given photometric color. The latest atmospheric models show good agreement with the majority of these Y-dwarf absolute magnitudes. This is also the case for WISE0855-0714, the coldest and closest brown dwarf to the Sun, which shows evidence for water ice clouds. However, there are also some outstanding exceptions, which suggest either binarity or the presence of condensate clouds. The former is readily testable with current adaptive optics facilities. The latter would mean that the range of cloudiness in Y dwarfs is substantial with most hosting almost no clouds—while others have dense clouds, making them prime targets for future variability observations to study cloud dynamics.

  7. Brown dwarf Atmosphere Monitoring (BAM): Characterizing the Coolest Atmosphere

    Science.gov (United States)

    Patience, Jennifer

    2014-10-01

    Using the G141 WFC3/IR grism, we propose a HST spectrophotometric monitoring study of the coolest variable brown dwarf (~650K) identified as part of our Brown dwarf Atmosphere Monitoring (BAM) program. The proposed observations will enable exploration of the dynamic atmospheric evolution of a benchmark T8.5 binary brown dwarf system, which we have discovered to exhibit the second-largest amplitude variation amongst all currently known brown dwarf variables. The close binarity of this system requires the exquisite stability of the HST point spread function to enable resolved monitoring of both components and to discriminate the source of the variability - the second component is a planetary mass object based on evolutionary models. This BAM follow-up study is designed to characterize both the longitudinal and vertical structure of the atmospheric properties of this system via multi-wavelength observations covering the entire spectral range of the WFC3/IR detector. Additionally, by monitoring the target over two separate epochs we will measure the evolution of atmospheric features giving rise to the flux variations. The proposed program will provide a comprehensive dataset serving as a benchmark comparison to directly imaged planets, intensely irradiated Hot Jupiters, and synthetic atmospheric models incorporating different physical processes.

  8. Whither do the microlensing Brown Dwarfs rove?

    CERN Document Server

    De Rújula, Alvaro; Mollerach, S; Roulet, Esteban; de Rujula, A; Giudice, G; Mollerach, S; Roulet, E

    1995-01-01

    The EROS and MACHO collaborations have reported observations of light curves of stars in the Large Magellanic Cloud that are compatible with gravitational microlensing by intervening massive objects, presumably Brown-Dwarf stars. The OGLE and MACHO teams have also seen similar events in the direction of the galactic Bulge. Current data are insufficient to decide whether the Brown-Dwarfs are dark-matter constituents of the non-luminous galactic Halo, or belong to a more conventional population, such as that of faint stars in the galactic Spheroid, in its Thin or Thick Disks, or in their possible LMC counterparts. We discuss in detail how further observations of microlensing rates and of the moments of the distribution of event durations, can help resolve the issue of the Brown-Dwarf location, and eventually provide information on the mass function of the dark objects.

  9. OGLE-2016-BLG-0693LB: Probing the Brown Dwarf Desert with Microlensing

    Science.gov (United States)

    Ryu, Y.-H.; Udalski, A.; Yee, J. C.; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Hwang, K.-H.; Jung, Y. K.; Shin, I.-G.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration; Pietrukowicz, P.; Kozłowski, S.; Poleski, R.; Skowron, J.; Mróz, P.; Szymański, M. K.; Soszyński, I.; Pawlak, M.; Ulaczyk, K.; The OGLE Collaboration

    2017-12-01

    We present an analysis of microlensing event OGLE-2016-BLG-0693, based on the survey-only microlensing observations by the OGLE and KMTNet groups. In order to analyze the light curve, we consider the effects of parallax, orbital motion, and baseline slope, and also refine the result using a Galactic model prior. From the microlensing analysis, we find that the event is a binary composed of a low-mass brown dwarf ({49}-18+20 {M}J) companion and a K- or G-dwarf host, which lies at a distance of 5.0 ± 0.6 kpc toward the Galactic bulge. The projected separation between the brown dwarf and its host star is less than ˜5 au, thus it is likely that the brown dwarf companion is located in the brown dwarf desert.

  10. SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)

    Energy Technology Data Exchange (ETDEWEB)

    Opitz, Daniela; Tinney, C. G. [School of Physics, University of New South Wales, NSW 2052 (Australia); Faherty, Jacqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States); Sweet, Sarah [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Gelino, Christopher R.; Kirkpatrick, J. Davy, E-mail: daniela.opitz@student.unsw.edu.au [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-03-01

    The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs also hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ∼0.5–1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10{sup 42} erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs.

  11. Very Low-mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. VI. A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646

    Science.gov (United States)

    Ma, Bo; Ge, Jian; Wolszczan, Alex; Muterspaugh, Matthew W.; Lee, Brian; Henry, Gregory W.; Schneider, Donald P.; Martín, Eduardo L.; Niedzielski, Andrzej; Xie, Jiwei; Fleming, Scott W.; Thomas, Neil; Williamson, Michael; Zhu, Zhaohuan; Agol, Eric; Bizyaev, Dmitry; Nicolaci da Costa, Luiz; Jiang, Peng; Martinez Fiorenzano, A. F.; González Hernández, Jonay I.; Guo, Pengcheng; Grieves, Nolan; Li, Rui; Liu, Jane; Mahadevan, Suvrath; Mazeh, Tsevi; Nguyen, Duy Cuong; Paegert, Martin; Sithajan, Sirinrat; Stassun, Keivan; Thirupathi, Sivarani; van Eyken, Julian C.; Wan, Xiaoke; Wang, Ji; Wisniewski, John P.; Zhao, Bo; Zucker, Shay

    2016-11-01

    We report the detections of a giant planet (MARVELS-7b) and a brown dwarf (BD) candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. To the best of our knowledge, it is the first close binary system with more than one substellar circumprimary companion that has been discovered. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using the Exoplanet Tracker at the Kitt Peak National Observatory, the High Resolution Spectrograph at the Hobby Eberley telescope, the “Classic” spectrograph at the Automatic Spectroscopic Telescope at the Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period BD in this binary. HD 87646 is a close binary with a separation of ˜22 au between the two stars, estimated using the Hipparcos catalog and our newly acquired AO image from PALAO on the 200 inch Hale Telescope at Palomar. The primary star in the binary, HD 87646A, has {T}{eff} = 5770 ± 80 K, log g = 4.1 ± 0.1, and [Fe/H] = -0.17 ± 0.08. The derived minimum masses of the two substellar companions of HD 87646A are 12.4 ± 0.7 {M}{Jup} and 57.0 ± 3.7 {M}{Jup}. The periods are 13.481 ± 0.001 days and 674 ± 4 days and the measured eccentricities are 0.05 ± 0.02 and 0.50 ± 0.02 respectively. Our dynamical simulations show that the system is stable if the binary orbit has a large semimajor axis and a low eccentricity, which can be verified with future astrometry observations.

  12. What fraction of white dwarfs are members of binary systems?

    Science.gov (United States)

    Holberg, J. B.

    2009-06-01

    White dwarfs were originally discovered as the subordinate faint companions of bright nearby stars (i.e. Sirius B and 40 Eri B). Several general categories of binary systems involving white dwarfs are recognized: Sirius-like systems, where the white dwarf may be difficult to detect, binary systems containing white dwarfs and low mass stars, where the white dwarf is often readily discerned; and double degenerate systems. Different modes of white dwarf discovery influence our perception of both the overall binary fraction and the nature of these systems; proper motion surveys emphasize resolved systems, while photometric surveys emphasize unresolved systems containing relatively hot white dwarfs. Recent studies of the local white dwarf population offer some hope of achieving realistic estimates of the relative number of binary systems containing white dwarfs. A sample of 132 white dwarfs within 20 pc indicates that an individual white dwarf has a probability of 32 ± 8% of occurring within a binary or multiple star system.

  13. New brown dwarf candidates in the Pleiades

    Science.gov (United States)

    Eisenbeiss, T.; Moualla, M.; Mugrauer, M.; Schmidt, T. O. B.; Raetz, St.; Neuhäuser, R.; Ginski, Ch.; Hohle, M. M.; Koeltzsch, A.; Marka, C.; Rammo, W.; Reithe, A.; Roell, T.; Vaňko, M.

    2009-05-01

    We have performed deep, wide-field imaging on a ˜ 0.4 deg2 field in the Pleiades (Melotte 22). The selected field was not yet target of a deep search for low mass stars and brown dwarfs. Our limiting magnitudes are R˜22 mag and I˜20 mag, sufficient to detect brown dwarf candidates down to 40 MJ. We found 197 objects, whose location in the (I, R-I) color magnitude diagram is consistent with the age and the distance of the Pleiades. Using CTK R and I as well as JHK photometry from our data and the 2MASS survey we were able to identify 7 new brown dwarf candidates. We present our data reduction technique, which enables us to resample, calibrate, and co-add many images by just two steps. We estimate the interstellar extinction and the spectral type from our optical and the NIR data using a two-dimensional χ2 fitting. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich- Schiller-University. Table A3 is available at the CDS via http://cdsarc.u-strasbg.fr/pub/cats/J/AN/330/439

  14. Precise Ages for the Benchmark Brown Dwarfs HD 19467 B and HD 4747 B

    Science.gov (United States)

    Wood, Charlotte; Boyajian, Tabetha; Crepp, Justin; von Braun, Kaspar; Brewer, John; Schaefer, Gail; Adams, Arthur; White, Tim

    2018-01-01

    Large uncertainty in the age of brown dwarfs, stemming from a mass-age degeneracy, makes it difficult to constrain substellar evolutionary models. To break the degeneracy, we need ''benchmark" brown dwarfs (found in binary systems) whose ages can be determined independent of their masses. HD~19467~B and HD~4747~B are two benchmark brown dwarfs detected through the TRENDS (TaRgeting bENchmark objects with Doppler Spectroscopy) high-contrast imaging program for which we have dynamical mass measurements. To constrain their ages independently through isochronal analysis, we measured the radii of the host stars with interferometry using the Center for High Angular Resolution Astronomy (CHARA) Array. Assuming the brown dwarfs have the same ages as their host stars, we use these results to distinguish between several substellar evolutionary models. In this poster, we present new age estimates for HD~19467 and HD~4747 that are more accurate and precise and show our preliminary comparisons to cooling models.

  15. The NIRSPEC Brown Dwarf Spectroscopic Survey

    Science.gov (United States)

    McGovern, M. R.; McLean, I. S.; Prato, L.; Burgasser, A. J.; Kirkpatrick, J. D.

    2002-12-01

    The major goal of the NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS - McLean et al. 2000, ApJ, 533, L45) is to obtain a complete sample of low resolution (R ~ 2000) spectra spanning the M, L, and T dwarf sub-classes in order to extend spectral classification schemes to near-infrared wavebands and to investigate the spectral signatures of temperature, gravity, and composition by comparison to theoretical models. Additional goals include the acquisition of higher resolution spectra (R ~ 25,000) of a sub-sample of the survey for detailed comparison with models and to search for radial velocity variations. The initial phase of the survey is complete with the acquisition of low resolution J-band spectra for two objects per sub-class spanning the range M6 to T8, with one object every other sub-class, in the same range, observed from 0.9-2.35 microns to produce a complete, flux-calibrated spectrum overlapping with previously obtained Keck LRIS data from 0.5-1.0 microns. Several of the brighter sources have also been observed at high resolution at J-band. To date, over 70 objects have been studied including 17 M dwarfs, 36 L dwarfs and 18 T dwarfs. Results from the initial phase of the survey are presented along with some preliminary results from our next directed phase study into the investigation of gravity signatures in these low-mass objects based upon infrared spectral features.

  16. Brown Dwarf Like Behaviors of Jupiter

    Science.gov (United States)

    Ghosh, K.

    2007-06-01

    Jupiter is by far the most massive object in our solar system after the Sun having mass of about 10-3 M&odot, M&odot being the mass of the Sun. Its density is significantly lower than that of the inner planets; just 1.3 g cm-3 while the densities of Mercury, Venus, Earth and Mars are respectively 5.4, 5.3, 5.5 and 3.9 g cm-3. Jupiter radiates more energy into space than it receives from the Sun. It is proposed that the interior of Jupiter has excess energy stored since the time of its collapse. The heat is also generated by the Kelvin-Helmholtz mechanism, the slow gravitational compression of the configuration. This heat within Jupiter contributes to the unusual motion in the internal rotation in Jupiter. Motions in the interior of Jupiter contribute in a very special way to the development of the powerful and extensive magnetosphere of Jupiter. These observations indicate that the composition of Jupiter is basically different from that of the inner planets and these properties of Jupiter are significantly similar to the features of rotating brown dwarfs under the consideration of magnetic field which are thought to be objects having mass between stars and planets. The stellar bodies with mass less than the lower mass limit of the main sequence become completely degenerate as a consequence of gravitational contraction and consequently they cannot go through normal stellar evolution. Primarily they were named 'Black Dwarf.' The modern term for these objects is 'Brown Dwarf.' In their young age (<10^8 years) they contract rapidly and the gravitational binding energy released makes them quite luminous, but as they age they cool rapidly and make them harder to detect. Calculations show a significant similarity in this paper between the presently observed configuration of Jupiter with that of the model brown dwarf under the consideration of internal rotation and magnetic field with mass, composition and age same that of Jupiter which leads to to a conclusion that

  17. Chandra Captures Flare From Brown Dwarf

    Science.gov (United States)

    2000-07-01

    The first flare ever seen from a brown dwarf, or failed star, was detected by NASA's Chandra X-ray Observatory. The bright X-ray flare has implications for understanding the explosive activity and origin of magnetic fields of extremely low mass stars. Chandra detected no X-rays at all from LP 944-20 for the first nine hours of a twelve hour observation, then the source flared dramatically before it faded away over the next two hours. "We were shocked," said Dr. Robert Rutledge of the California Institute of Technology in Pasadena, the lead author on the discovery paper to appear in the July 20 issue of Astrophysical Journal Letters. "We didn't expect to see flaring from such a lightweight object. This is really the 'mouse that roared.'" Chandra LP 944-20 X-ray Image Press Image and Caption The energy emitted in the brown dwarf flare was comparable to a small solar flare, and was a billion times greater than observed X-ray flares from Jupiter. The flaring energy is believed to come from a twisted magnetic field. "This is the strongest evidence yet that brown dwarfs and possibly young giant planets have magnetic fields, and that a large amount of energy can be released in a flare," said Dr. Eduardo Martin, also of Caltech and a member of the team. Professor Gibor Basri of the University of California, Berkeley, the principal investigator for this observation, speculated that the flare "could have its origin in the turbulent magnetized hot material beneath the surface of the brown dwarf. A sub-surface flare could heat the atmosphere, allowing currents to flow and give rise to the X-ray flare -- like a stroke of lightning." LP 944-20 is about 500 million years old and has a mass that is about 60 times that of Jupiter, or 6 percent that of the Sun. Its diameter is about one-tenth that of the Sun and it has a rotation period of less than five hours. Located in the constellation Fornax in the southern skies, LP 944-20 is one of the best studied brown dwarfs because it is

  18. Brown Dwarfs: Up Close and Physical

    Science.gov (United States)

    Basri, G. B.

    2003-12-01

    I review what has now been nearly a decade of progress in the study of brown dwarfs as physical objects. The definition of brown dwarfs as distinct from stars or planets has some subtlety, and is an amalgam of considerations. I briefly discuss their internal structure, and the evolution of luminosity sources within them. Deuterium and lithium can be used as external probes of their internal state. I next discuss the effective temperature scale for the new L and T spectral classes. Formation of dust in the atmospheres of these objects is a crucial determinant of their spectral appearance, as is the conversion of typical molecules from oxides to hydrides. Not only is the chemical formation of dust important, but proper treatment of cloud formation and dust settling is clearly important (``meteorology'' becomes a consideration). This can strongly affect the colors of the objects, and the visibility of spectral features. Finally, I summarize results on other physical properties which can be studied using high spectral and angular resolution, including angular momentum, magnetic activity, surface gravity, and binarity.

  19. New Light on Dark Stars Red Dwarfs, Low-Mass Stars, Brown Dwarfs

    CERN Document Server

    Reid, I. Neill

    2005-01-01

    There has been very considerable progress in research into low-mass stars, brown dwarfs and extrasolar planets during the past few years, particularly since the fist edtion of this book was published in 2000. In this new edtion the authors present a comprehensive review of both the astrophysical nature of individual red dwarf and brown dwarf stars and their collective statistical properties as an important Galactic stellar population. Chapters dealing with the observational properies of low-mass dwarfs, the stellar mass function and extrasolar planets have been completely revised. Other chapters have been significantly revised and updated as appropriate, including important new material on observational techniques, stellar acivity, the Galactic halo and field star surveys. The authors detail the many discoveries of new brown dwarfs and extrasolar planets made since publication of the first edition of the book and provide a state-of-the-art review of our current knowledge of very low-mass stars, brown dwarfs a...

  20. Clouds and Hazes in Exoplanets and Brown Dwarfs

    OpenAIRE

    Morley, Caroline Victoria

    2016-01-01

    The formation of clouds significantly alters the spectra of cool substellar atmospheres from terrestrial planets to brown dwarfs. In cool planets like Earth and Jupiter, volatile species like water and ammonia condense to form ice clouds. In hot planets and brown dwarfs, iron and silicates instead condense, forming dusty clouds. Irradiated methane-rich planets may have substantial hydrocarbon hazes. During my dissertation, I have studied the impact of clouds and hazes in a variety of substell...

  1. Cold Brown Dwarfs with WISE: Y Dwarfs and the Field Mass Function

    Science.gov (United States)

    Kirkpatrick, J. Davy

    2012-01-01

    Why study Brown Dwarf stars? They re the lowest mass byproducts of star formation.. They provide time capsules across the age of the Galaxy.. They show what low-T(sub eff) atmospheres look like.. They may be some of our closest neighbors in space..WISE is a 40cm Earth-orbiting telescope. There are 211 stars and only 33 brown dwarfs in this volume.. This means that stars outnumber brown dwarfs by a factor of 6:1 currently.. The number of brown dwarfs will continue to increase if:: (a) more nearby Y dwarf candidates are confirmed, or (b) our distances to known Y s are overestimated, or (c) there are colder BDs invisible to WISE..

  2. Preliminary Analysis of M and L Dwarf Surface Gravities in the NIRSPEC Brown Dwarf Spectroscopic Survey

    Science.gov (United States)

    Martin, Emily C.; Mace, Gregory N.; McLean, Ian S.; Logsdon, Sarah E.; Rice, Emily L.

    2015-01-01

    Using previously published gravity-sensitive indices, we report on the analysis of near-infrared spectra for ˜ 80 M and L dwarfs . The spectra were obtained as part of the Brown Dwarf Spectroscopic Survey (BDSS) using NIRSPEC at the Keck Observatory, and each has a resolving power of R ˜ 2000 in the J band. With established gravity indices in the J band we can disentangle the degeneracy between temperature and age for brown dwarfs of various masses. By comparing a subset of the BDSS database with gravity indices defined at lower spectral resolution, we demonstrate that these indices also work well for higher resolution spectra. We then apply these techniques to M and L dwarfs in the BDSS to classify the diverse surface gravities of this large sample in a consistent manner. This analysis provides new age estimates for many M and L dwarfs, which will guide future studies of the young and old brown dwarf populations.

  3. JVLA Observations of Young Brown Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Luis F.; Zapata, Luis A.; Palau, Aina, E-mail: l.rodriguez@crya.unam.mx, E-mail: l.zapata@crya.unam.mx, E-mail: a.palau@crya.unam.mx [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico)

    2017-05-01

    We present sensitive 3.0 cm JVLA radio continuum observations of six regions of low-mass star formation that include twelve young brown dwarfs (BDs) and four young BD candidates. We detect a total of 49 compact radio sources in the fields observed, of which 24 have no reported counterparts and are considered new detections. Twelve of the radio sources show variability in timescales of weeks to months, suggesting gyrosynchrotron emission produced in active magnetospheres. Only one of the target BDs, FU Tau A, was detected. However, we detected radio emission associated with two of the BD candidates, WL 20S and CHLT 2. The radio flux densities of the sources associated with these BD candidates are more than an order of magnitude larger than expected for a BD and suggest a revision of their classification. In contrast, FU Tau A falls on the well-known correlation between radio luminosity and bolometric luminosity, suggesting that the emission comes from a thermal jet and that this BD seems to be forming as a scaled-down version of low-mass stars.

  4. A wide binary trigger for white dwarf pollution

    OpenAIRE

    Bonsor, Amy; Veras, Dimitri

    2015-01-01

    Metal pollution in white dwarf atmospheres is likely to be a signature of remnant planetary systems. Most explanations for this pollution predict a sharp decrease in the number of polluted systems with white dwarf cooling age. Observations do not confirm this trend, and metal pollution in old (1-5 Gyr) white dwarfs is difficult to explain. We propose an alternative, time-independent mechanism to produce the white dwarf pollution. The orbit of a wide binary companion can be perturbed by Galact...

  5. Examining Cloud, Metallicity, and Gravity signatures in Brown Dwarfs

    Science.gov (United States)

    Gonzales, Eileen; Faherty, Jacqueline K.; Gagné, Jonathan; Artigau, Étienne; BDNYC

    2018-01-01

    The nearby solar neighborhood is littered with low mass, low temperature objects called brown dwarfs. This population of ultracool objects do not have enough mass to sustain stable hydrogen burning so they never enter the main sequence and simply cool through time. Brown dwarfs span effective temperatures in the range 250 to 3000K. They also have age dependent observable properties. Young brown dwarfs appear to have redder near infrared colors than field age sources, while old objects tend to have bluer colors. Over the past several years, the research group entitled “Brown Dwarfs in New York City” (BDNYC) has been collecting optical, near and mid-infrared spectra, as well as photometry for sources that have well defined distances. In this poster, I will compare the distance calibrated spectral energy distributions of a sample of old, young, and field age brown dwarfs of the same effective temperature. In so doing, I will discern observables linked to gravity, atmosphere, metallicity and age effects.

  6. Surface Gravities for 228 M, L, and T Dwarfs in the NIRSPEC Brown Dwarf Spectroscopic Survey

    OpenAIRE

    Martin, Emily C.; Mace, Gregory N.; McLean, Ian S.; Logsdon, Sarah E.; Rice, Emily L.; Kirkpatrick, J. Davy; Burgasser, Adam J.; McGovern, Mark R.; Prato, Lisa

    2017-01-01

    We combine 131 new medium-resolution (R ~ 2000) J-band spectra of M, L, and T dwarfs from the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) with 97 previously published BDSS spectra to study surface-gravity-sensitive indices for 228 low-mass stars and brown dwarfs spanning spectral types M5–T9. Specifically, we use an established set of spectral indices to determine surface gravity classifications for all of the M6–L7 objects in our sample by measuring the equivalent widths (EW) of the...

  7. The brown dwarf atmosphere monitoring (BAM) project. I. The largest near-IR monitoring survey of L and T dwarfs

    Science.gov (United States)

    Wilson, P. A.; Rajan, A.; Patience, J.

    2014-06-01

    Using the SofI instrument on the 3.5 m New Technology Telescope, we have conducted an extensive near-infrared monitoring survey of an unbiased sample of 69 brown dwarfs spanning the L0 to T8 spectral range, with at least one example of each spectral type. Each target was observed for a 2-4 h period in the Js-band, and the median photometric precision of the data is ~0.7%. A total of 14 brown dwarfs were identified as variables with min-to-max amplitudes ranging from 1.7% to 10.8% over the observed duration. All variables satisfy a statistical significance threshold with a p-value ≤5% based on comparison with a median reference star light curve. Approximately half of the variables show pure sinusoidal amplitude variations similar to 2MASSJ2139+0220, and the remainder show multi-component variability in their light curves similar to SIMPJ0136+0933. It has been suggested that the L-T transition should be a region of a higher degree of variability if patchy clouds are present, and this survey was designed to test the patchy cloud model with photometric monitoring of both the L-T transition and non-transition brown dwarfs. The measured frequency of variables is 13+10-4% across the L7-T4 spectral range, indistinguishable from the frequency of variables of the earlier spectral types (30+11-8%), the later spectral types (13+10-4%), or the combination of all non-transition region brown dwarfs (22+7-5%). The variables are not concentrated in the transition, in a specific colour, or in binary systems. Of the brown dwarfs previously monitored for variability, only ~60% maintained the state of variability (variable or constant), with the remaining switching states. The 14 variables include 9 newly identified variables that will provide important systems for follow-up multi-wavelength monitoring to further investigate brown dwarf atmosphere physics. Based on observations made with ESO Telescopes at La Silla Observatory under programme ID 188.C-0493.Tables 1, 2, and 4 are

  8. Characterization of the Mysteriously Cool Brown Dwarf HD 4113

    Science.gov (United States)

    Ednie, Michaela; Follette, Katherine; Ward-Duong, Kimberly

    2018-01-01

    Characterizing the physical properties of brown dwarfs is necessary to expand and improve our understanding of low mass companions, including exoplanets. Systems with both close radial velocity companions and distant directly imaged companions are particularly powerful in understanding planet formation mechanisms. Early in 2017, members of the SPHERE team discovered a companion brown dwarf in the HD 4113 system, which also contains a known RV planet. Atmospheric model fits to the Y and J-band spectra and H2/H3 photometry of the brown dwarf suggested it is unusually cool. We obtained new Magellan data in the Z and K’ bands in mid-2017. This data will help us to complete a more detailed atmospheric and astrometric characterization of this unusually cool companion. Broader wavelength coverage will help in accurate spectral typing and estimations of luminosity, temperature, surface gravity, radius, and composition. Additionally, a second astrometric epoch will help constrain the architecture of the system.

  9. Brown Dwarfs: A New Class of Stellar Lighthouse

    Science.gov (United States)

    2007-04-01

    Brown dwarfs, thought just a few years ago to be incapable of emitting any significant amounts of radio waves, have been discovered putting out extremely bright "lighthouse beams" of radio waves, much like pulsars. A team of astronomers made the discovery using the National Science Foundation's Very Large Array (VLA) radio telescope. Artist's Conception of Brown Dwarf Artist's conception of "mini-aurorae" at poles of brown dwarf, producing beams of strong radio emission. CREDIT: Hallinan et al., NRAO/AUI/NSF Click on image for page of graphics and full information "These beams rotate with the brown dwarf, and we see them when the beam passes over the Earth. This is the same way we see pulses from pulsars," said Gregg Hallinan of the National University of Ireland Galway. "We now think brown dwarfs may be a missing link between pulsars and planets in our own Solar System, which also emit, but more weakly," he added. Brown dwarfs are enigmatic objects that are too small to be stars but too large to be planets. They are sometimes called "failed stars" because they have too little mass to trigger hydrogen fusion reactions at their cores, the source of the energy output in larger stars. With roughly 15 to 80 times the mass of Jupiter, the largest planet in our Solar System, brown dwarfs were long thought to exist. However, it was not until 1995 that astronomers were able to actually find one. A few dozen now are known. In 2001, a group of summer students at the National Radio Astronomy Observatory used the VLA to observe a brown dwarf, even though they had been told by seasoned astronomers that brown dwarfs are not observable at radio wavelengths. Their discovery of a strong flare of radio emission from the object surprised astronomers and the students' scientific paper on the discovery was published in the prestigous scientific journal Nature. Hallinan and his team observed a set of brown dwarfs with the VLA last year, and found that three of the objects emit extremely

  10. Identification and characterization of low mass stars and brown dwarfs using Virtual Observatory tools

    Science.gov (United States)

    Aberasturi, Miriam

    2015-11-01

    appropriate photometric calibrations. In the second publication we conducted an all-sky photometric search by cross correlating the Carlsberg Meridian Catalogue (CMC14) and the 2MASS Point Source Catalogue with the aim of increasing the number of known, nearby M dwarfs that could be used as targets for exoplanet searches in general and CARMENES in particular. This VO search was combined with low-resolution spectroscopic followup of 27 objects using the IDS spectrograph at the Isaac Newton telescope at La Palma, as well as with an astrometric and photometric study. In the third paper we attempted to refine the multiplicity properties of T dwarfs studying the largest sample so far observed with high angular resolution imaging. We undertook two parallel programs using the Wide Field Camera 3 (WFC3) installed on the Hubble Space Telescope (HST). We used a PSF-fitting subtraction technique to reveal the presence of any close companion to the sources in our sample. Monte Carlo simulations were carried out to estimate the capability of WFC3 to detect close binaries in terms of angular separation and magnitude difference. Simulations were also used to determine the fraction of binaries that would have been detected around each source based on assumed separations, mass ratio distributions and orientations of the systems. Results: The main conclusion from this dissertation is that the Virtual Observatory has proved to be an excellent research methodology in the field of low mass stars and brown dwarfs. In particular, it allowed an efficient management of the queries to different catalogues and archives as well as the estimation of physical parameters through VO-tools. In the first publication we present the identification of 31 brown dwarf (25 known and 6 strong candidates not previously reported in the literature) identified in the sky area in common toWISE, 2MASS and SDSS. This is a remarkable number considering that 2MASS has been extensively searched for ultracool dwarfs and

  11. Follow-up of MARVELS Brown Dwarf Candidates using EXPERT

    Science.gov (United States)

    Ma, Bo; Ge, Jian; Li, Rui; Sithajan, Sirinrat; Thomas, Neil; Wang, Ji; De Lee, Nathan

    2013-02-01

    The SDSS-III MARVELS survey is a comprehensive radial velocity survey of 3,300 nearby F-K stars, between 7.6 < V < 12.0 in 2008-2012. All of the survey data for 2580 FGK stars from the first two and half years have been processed with the latest data pipeline. A total of 26 new brown dwarfs (BD) candidates have been identified in the processed RV data. We expect to have 8 more BD candidates from the ~800 stars currently under processing, which will make a total of 34 BD candidates. This proposal requests KPNO 2.1m telescope time with the EXPERT instrument, to follow up all of these BD candidates to confirm the detections and characterize the orbits. The results will be used to (1) reveal the overall distribution of the new BDs in the parameter space; (2) measure the occurrence rate of BD around FGK type stars; (3) measure dryness of the brown dwarf desert around stars with different mass and metallicity; (4) constrain theoretical models regarding the formation of brown dwarfs; (5) confirm the discovery of `desert in the brown dwarf desert'; (6) identify additional companions associated with the detected systems.

  12. Surface gravity analysis of the NIRSPEC Brown Dwarf Spectroscopic Survey

    Science.gov (United States)

    Martin, Emily; McLean, Ian S.; Mace, Gregory N.; Logsdon, Sarah E.; Rice, Emily L.

    2015-01-01

    We present an analysis of J band spectra for over two hundred M, L, and T dwarfs obtained from the Brown Dwarf Spectroscopic Survey (BDSS) using NIRSPEC on the Keck II Telescope. This R~2000 sample includes spectra presented in McLean et al. (2003), as well as many new, unpublished spectra observed for the BDSS, more than doubling the size of the original survey. We determine surface gravity-sensitive spectral indices from the literature, which probe K I and FeH absorption, and we estimate uncertainties using a Monte Carlo iterative method. With these indices we characterize surface gravities of our targets in order to disentangle temperature and age of brown dwarfs and low mass stars of various masses.

  13. CSS 41177: an eclipsing double white dwarf binary

    Science.gov (United States)

    Bours, Madelon

    2013-10-01

    The overwhelming majority of stellar remnants are white dwarfs. Despite their abundance and importance to, amongst others, Galactic age determinations and our understanding of type Ia supernovae fewer than a dozen white dwarfs have model-independent measurements of fundamental parameters like mass and radius. A major limitation on the observational side is that such parameters are extremely difficult to determine in a model-independant way for single white dwarfs. Close white dwarf binaries can provide these important tests.The largest class of white dwarf binaries in the Galaxy are the detached double white dwarfs, which are becoming increasingly popular as the progenitor systems of Type Ia supernovae. In recent years four eclipsing double white dwarfs have been found, creating the opportunity for precision mass and radius measurements of two white dwarfs at once. Our target, CSS 41177, contains two extremely low-gravity white dwarfs with very different temperatures, presenting us with a unique chance to test the existing mass-radius relation at its extremes.Here we propose a 2 orbit HST/COS FUV observation of CSS 41177, to accurately determine the temperature and surface gravity of the hot white dwarf. Through the flux ratio from the light curve this will at the same time constrain those of the cool white dwarf. Therefore it will allow us to add two more white dwarfs with accurate parameters to the short list of white dwarfs for which precise masses and radii are known.Note: The proposed observations are part of the doctoral thesis of Ms. Madelon C.P. Bours.

  14. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Julie N. [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Morgan, Dylan P.; West, Andrew A. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Lépine, Sébastien [Department of Physics and Astronomy, Georgia State University, 25 Park Place NE, Atlanta, GA, 30303 (United States); Thorstensen, John R., E-mail: jskinner@bu.edu [Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States)

    2017-09-01

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV–optical–IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use H α chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population.

  15. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    Science.gov (United States)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.; Lépine, Sébastien; Thorstensen, John R.

    2017-09-01

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV-optical-IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use Hα chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population. Based on observations obtained at the MDM Observatory operated by Dartmouth College, Columbia University, The Ohio State University, and the University of Michigan.

  16. Binary white dwarfs in the halo of the Milky Way

    NARCIS (Netherlands)

    van Oirschot, Pim; Nelemans, Gijs; Toonen, Silvia; Pols, Onno; Brown, Anthony G. A.; Helmi, Amina; Portegies Zwart, Simon

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the

  17. Binary white dwarfs in the halo of the Milky Way

    Science.gov (United States)

    van Oirschot, Pim; Nelemans, Gijs; Toonen, Silvia; Pols, Onno; Brown, Anthony G. A.; Helmi, Amina; Portegies Zwart, Simon

    2014-09-01

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the evolution of low-metallicity halo stars at distances up to ~3 kpc using the binary population synthesis code SeBa. We use two different white dwarf cooling models to predict the present-day luminosities of halo white dwarfs. We determine the white dwarf luminosity functions (WDLFs) for eight different halo models and compare these with the observed halo WDLF of white dwarfs in the SuperCOSMOS Sky Survey. Furthermore, we predict the properties of binary white dwarfs in the halo and determine the number of halo white dwarfs that is expected to be observed with the Gaia satellite. Results: By comparing the WDLFs, we find that a standard IMF matches the observations more accurately than a top-heavy one, but the difference with a bottom-heavy IMF is small. A burst of star formation 13 Gyr ago fits slightly better than a star formation burst 10 Gyr ago and also slightly better than continuous star formation 10-13 Gyr ago. Gaia will be the first instument to constrain the bright end of the field halo WDLF, where contributions from binary WDs are considerable. Many of these will have He cores, of which a handful have atypical surface gravities (log g 0 in our standard model for WD cooling. These so called pre-WDs, if observed, can help us to constrain white dwarf cooling models and might teach us something about the fraction of halo stars that reside in binaries. Appendices are available in electronic form at http://www.aanda.org

  18. NTT Observations Indicate that Brown Dwarfs Form Like Stars

    Science.gov (United States)

    2001-06-01

    Dusty Disks Detected around Very Young Substellar Objects in the Orion Nebula Summary An international team of astronomers [2] is announcing today the discovery of dusty disks surrounding numerous very faint objects that are believed to be recently formed Brown Dwarfs in the Orion Nebula [3]. This finding is based on detailed observations with SOFI, a specialised infrared-sensitive instrument at the ESO 3.5-m New Technology Telescope at the La Silla Observatory. It is of special interest because it sheds light on the origin and nature of substellar objects, known as "Brown Dwarfs" . In particular, these results suggest that Brown Dwarfs share a common origin with stars and that Brown Dwarfs are more similar in nature to stars than to planets and, like stars, have the potential to form with accompanying systems of planets. Moreover, the presence of dusty protoplanetary disks around the faintest objects in the Orion Nebula cluster confirms both the membership of these faint stars in the cluster and their nature as bona-fide substellar objects, making this the largest population of Brown Dwarf objects yet known . These important results are being reported today to the American Astronomical Society Meeting in Pasadena (California, USA). PR Photo 22a/01 : Infrared picture of the Orion Nebula (NTT + SOFI). PR Photo 22b/01 : "Finding Chart" for Very Young Brown Dwarfs in the Orion Nebula. PR Photo 22c/01 : Animated GIF presentation of PR Photos 22a+b/01. Faint substellar objects in the Milky Way Over the past 5 years, several groups of astronomers have identified a type of very faint, substellar objects within our Milky Way galaxy. These gaseous objects have very low masses and will never shine like normal stars because they cannot achieve central temperatures high enough for sustained thermal nuclear reactions to occur in their cores. Such objects weigh less than about 7% of our Sun and have been variously called "Brown Dwarfs" , "Failed Stars" or "Super Planets

  19. Binary helium dwarf supernovae. [numerical hydrodynamic investigation of evolution

    Science.gov (United States)

    Mazurek, T. J.

    1973-01-01

    The possibility of helium dwarf evolution to sufficiently high densities for violent helium ignition in low-massed binary systems is investigated. During accretional evolution the occurrence of thermonuclear runaway is found to be probable when the dwarf's mass approaches 1 solar mass, and steady-state discontinuous wave propagation considerations indicate that the dwarf is totally incinerated (i.e., its total mass burns to nuclear equilibrium) by a detonation wave. A numerical stellar dynamic investigation, including the full effects of nuclear statistical equilibrium and electron capture indicates total disruption for all reasonable dwarf central densities. For consistency with the cosmic element abundances, the conclusion of total disruption requires a low frequency for helium supernova events, implying that helium ignition in mass-exchanging binaries must occur at the lower densities of the relatively mild helium flash.

  20. a Faint and Lonely Brown Dwarf in the Solar Vicinity

    Science.gov (United States)

    1997-04-01

    Discovery of KELU-1 Promises New Insights into Strange Objects Brown Dwarfs are star-like objects which are too small to become real stars, yet too large to be real planets. Their mass is too small to ignite those nuclear processes which are responsible for the large energies and high temperatures of stars, but it is much larger than that of the planets we know in our solar system. Until now, very few Brown Dwarfs have been securely identified as such. Two are members of double-star systems, and a few more are located deep within the Pleiades star cluster. Now, however, Maria Teresa Ruiz of the Astronomy Department at Universidad de Chile (Santiago de Chile), using telescopes at the ESO La Silla observatory, has just discovered one that is all alone and apparently quite near to us. Contrary to the others which are influenced by other objects in their immediate surroundings, this new Brown Dwarf is unaffected and will thus be a perfect object for further investigations that may finally allow us to better understand these very interesting celestial bodies. It has been suggested that Brown Dwarfs may constitute a substantial part of the unseen dark matter in our Galaxy. This discovery may therefore also have important implications for this highly relevant research area. Searching for nearby faint stars The story of this discovery goes back to 1987 when Maria Teresa Ruiz decided to embark upon a long-term search (known as the Calan-ESO proper-motion survey ) for another type of unusual object, the so-called White Dwarfs , i.e. highly evolved, small and rather faint stars. Although they have masses similar to that of the Sun, such stars are no larger than the Earth and are therefore extremely compact. They are particularly interesting, because they most probably represent the future end point of evolution of our Sun, some billions of years from now. For this project, the Chilean astronomer obtained large-field photographic exposures with the 1-m ESO Schmidt telescope at

  1. The NIRSPEC Brown Dwarf Spectroscopic Survey: A Progress Report

    Science.gov (United States)

    McGovern, M. R.; McLean, I. S.; Prato, L.; Burgasser, A.; Kirkpatrick, J. D.

    2001-12-01

    The major goal of the NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS - McLean et al. 2000, ApJ, 533, L45) is to obtain a complete sample of low resolution (R 2000) spectra spanning the M, L, and T dwarf sub-classes in order to extend spectral classification schemes to near-infrared wavebands and to investigate the spectral signatures of temperature, gravity, and composition by comparison to theoretical models. Additional goals include the acquisition of higher resolution spectra (R 25,000) of a sub-sample of the survey for detailed comparison with models and to search for radial velocity variations. Our approach is to observe two objects per sub-class at J-band at low resolution, with one object per sub-class observed from 0.9-2.5 microns to produce a complete, flux-calibrated spectrum overlapping with previously obtained Keck LRIS data from 0.5-1.0 microns. Several of the brighter sources have also been observed at high resolution at J-band. To date, over 50 objects have been studied including 7 M dwarfs, 30 L dwarfs and 15 T dwarfs. Correlations of the strength of spectral features with spectral type are shown. We also report on the probable identification of weak methane features in the K-band spectra of L7 and L8 dwarfs.

  2. The brown dwarf atmosphere monitoring (BAM) project - II. Multi-epoch monitoring of extremely cool brown dwarfs

    Science.gov (United States)

    Rajan, A.; Patience, J.; Wilson, P. A.; Bulger, J.; De Rosa, R. J.; Ward-Duong, K.; Morley, C.; Pont, F.; Windhorst, R.

    2015-04-01

    With the discovery of Y dwarfs by the WISE mission, the population of field brown dwarfs now extends to objects with temperatures comparable to those of Solar system planets. To investigate the atmospheres of these newly identified brown dwarfs, we have conducted a pilot study monitoring an initial sample of three late-T dwarfs (T6.5, T8 and T8.5) and one Y dwarf (Y0) for infrared photometric variability at multiple epochs. With J-band imaging, each target was observed for a period of 1.0-4.5 h per epoch, which covers a significant fraction of the expected rotational period. These measurements represent the first photometric monitoring for these targets. For three of the four targets (2M1047, Ross 458C and WISE0458), multi-epoch monitoring was performed, with the time span between epochs ranging from a few hours to ˜2 years. During the first epoch, the T8.5 target WISE0458 exhibited variations with a remarkable min-to-max amplitude of 13 per cent, while the second epoch light curve taken ˜2 years later did not note any variability to a 3 per cent upper limit. With an effective temperature of ˜600 K, WISE0458 is the coldest variable brown dwarf published to date, and combined with its high and variable amplitude makes it a fascinating target for detailed follow-up. The three remaining targets showed no significant variations, with a photometric precision between 0.8 and 20.0 per cent, depending on the target brightness. Combining the new results with previous multi-epoch observations of brown dwarfs with spectral types of T5 or later, the currently identified variables have locations on the colour-colour diagram better matched by theoretical models incorporating cloud opacities rather than cloud-free atmospheres. This preliminary result requires further study to determine if there is a definitive link between variability among late-T dwarfs and their location on the colour-colour diagram.

  3. Recent Results of the NIRSPEC Brown Dwarf Spectroscopic Survey

    Science.gov (United States)

    Rice, Emily L.; McLean, I. S.; Prato, L.; McGovern, M. R.; Burgasser, A. J.; Kirkpatrick, J.; Kim, S. S.

    2006-12-01

    The NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) began in 1999 with the commissioning of NIRSPEC on Keck II. In the first phase of the survey, J-band spectra of 53 objects covering all spectral types from M6 to T8 were obtained at a resolving power of R 2000 (McLean et al. 2003). This poster presents results from the second phase of the survey, which focused on high-resolution (R 20,000) J-band observations for a sample of 16 very low mass stars and brown dwarfs from M2.5 to T6 (McLean et al. 2006, submitted). By comparing opacity plots and line lists to the high-resolution spectra we identify hundreds of FeH, H2O, and atomic features and analyze how these features change with spectral type. We also begin to explore the apparently complex dependence of spectral features on the metallicity and surface gravity of brown dwarf atmospheres, which is the topic of the current phase of the BDSS. Data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  4. Clouds and hazes in exoplanets and brown dwarfs

    Science.gov (United States)

    Morley, Caroline Victoria

    The formation of clouds significantly alters the spectra of cool substellar atmospheres from terrestrial planets to brown dwarfs. In cool planets like Earth and Jupiter, volatile species like water and ammonia condense to form ice clouds. In hot planets and brown dwarfs, iron and silicates instead condense, forming dusty clouds. Irradiated methane-rich planets may have substantial hydrocarbon hazes. During my dissertation, I have studied the impact of clouds and hazes in a variety of substellar objects. First, I present results for cool brown dwarfs including clouds previously neglected in model atmospheres. Model spectra that include sulfide and salt clouds can match the spectra of T dwarf atmospheres; water ice clouds will alter the spectra of the newest and coldest brown dwarfs, the Y dwarfs. These sulfide/salt and ice clouds potentially drive spectroscopic variability in these cool objects, and this variability should be distinguishable from variability caused by hot spots. Next, I present results for small, cool exoplanets between the size of Earth and Neptune. They likely have sulfide and salt clouds and also have photochemical hazes caused by stellar irradiation. Vast resources have been dedicated to characterizing the handful of super Earths and Neptunes accessible to current telescopes, yet of the planets smaller than Neptune studied to date, all have radii in the near-infrared consistent with being constant in wavelength, likely showing that these small planets are consistently enshrouded in thick hazes and clouds. For the super Earth GJ 1214b, very thick, lofted clouds of salts or sulfides in high metallicity (1000x solar) atmospheres create featureless transmission spectra in the near-infrared. Photochemical hazes also create featureless transmission spectra at lower metallicities. For the Neptune-sized GJ 436b, its thermal emission and transmission spectra combine indicate a high metallicity atmosphere, potentially heated by tides and affected by

  5. Mass transfer in white dwarf-neutron star binaries

    Science.gov (United States)

    Bobrick, Alexey; Davies, Melvyn B.; Church, Ross P.

    2017-05-01

    We perform hydrodynamic simulations of mass transfer in binaries that contain a white dwarf and a neutron star (WD-NS binaries), and measure the specific angular momentum of material lost from the binary in disc winds. By incorporating our results within a long-term evolution model, we measure the long-term stability of mass transfer in these binaries. We find that only binaries containing helium white dwarfs (WDs) with masses less than a critical mass of MWD, crit = 0.2 M⊙ undergo stable mass transfer and evolve into ultracompact X-ray binaries. Systems with higher mass WDs experience unstable mass transfer, which leads to tidal disruption of the WD. Our low critical mass compared to the standard jet-only model of mass-loss arises from the efficient removal of angular momentum in the mechanical disc winds, which develop at highly super-Eddington mass-transfer rates. We find that the eccentricities expected for WD-NS binaries when they come into contact do not affect the loss of angular momentum, and can only affect the long-term evolution if they change on shorter time-scales than the mass-transfer rate. Our results are broadly consistent with the observed numbers of both ultracompact X-ray binaries and radio pulsars with WD companions. The observed calcium-rich gap transients are consistent with the merger rate of unstable systems with higher mass WDs.

  6. FINGERING CONVECTION AND CLOUDLESS MODELS FOR COOL BROWN DWARF ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Tremblin, P.; Amundsen, D. S.; Mourier, P.; Baraffe, I.; Chabrier, G.; Drummond, B. [Astrophysics Group, University of Exeter, EX4 4QL Exeter (United Kingdom); Homeier, D. [Ecole Normale Supérieure de Lyon, CRAL, UMR CNRS 5574, F-69364 Lyon Cedex 07 (France); Venot, O., E-mail: tremblin@astro.ex.ac.uk, E-mail: pascal.tremblin@cea.fr [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2015-05-01

    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral types T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g., other types of clouds or internal energy transport mechanisms. We use a one-dimensional radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H{sub 2}-H{sub 2}, H{sub 2}-He, H{sub 2}O, CO, CO{sub 2}, CH{sub 4}, NH{sub 3}, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH{sub 3} quenching are taken into account. T dwarf spectra still have some reddening in, e.g., J–H, compared to cloudless models. This reddening can be reproduced by slightly reducing the temperature gradient in the atmosphere. We propose that this reduction of the stabilizing temperature gradient in these layers, leading to cooler structures, is due to the onset of fingering convection, triggered by the destabilizing impact of condensation of very thin dust.

  7. WISE Y dwarfs as probes of the brown dwarf-exoplanet connection

    Energy Technology Data Exchange (ETDEWEB)

    Beichman, C.; Gelino, Christopher R.; Kirkpatrick, J. Davy [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cushing, Michael C. [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Dodson-Robinson, Sally [Department of Astronomy, University of Delaware, Newark, DE 19716 (United States); Marley, Mark S. [NASA Ames Research Center, Mountain View, CA 94035 (United States); Morley, Caroline V. [Department of Astronomy, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Wright, E. L., E-mail: chas@ipac.caltech.edu [Department of Astronomy, University of California Los Angeles, P.O. Box 951547, Los Angeles, CA 90095 (United States)

    2014-03-10

    We have determined astrometric positions for 15 WISE-discovered late-type brown dwarfs (six T8-9 and nine Y dwarfs) using the Keck-II telescope, the Spitzer Space Telescope, and the Hubble Space Telescope. Combining data from 8 to 20 epochs we derive parallactic and proper motions for these objects, which puts the majority within 15 pc. For ages greater than a few Gyr, as suggested from kinematic considerations, we find masses of 10-30 M {sub Jup} based on standard models for the evolution of low-mass objects with a range of mass estimates for individual objects, depending on the model in question. Three of the coolest objects have effective temperatures ∼350 K and inferred masses of 10-15 M {sub Jup}. Our parallactic distances confirm earlier photometric estimates and direct measurements and suggest that the number of objects with masses below about 15 M {sub Jup} must be flat or declining, relative to higher mass objects. The masses of the coldest Y dwarfs may be similar to those inferred for recently imaged planet-mass companions to nearby young stars. Objects in this mass range, which appear to be rare in both the interstellar and protoplanetary environments, may both have formed via gravitational fragmentation—the brown dwarfs in interstellar clouds and companion objects in a protoplanetary disk. In both cases, however, the fact that objects in this mass range are relatively infrequent suggests that this mechanism must be inefficient in both environments.

  8. THE BROWN DWARF KINEMATICS PROJECT (BDKP). IV. RADIAL VELOCITIES OF 85 LATE-M AND L DWARFS WITH MagE

    Energy Technology Data Exchange (ETDEWEB)

    Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Logsdon, Sarah E. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Gagné, Jonathan [Institute for Research on Exoplanets (iREx), Université de Montréal, Département de Physique, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada); Bochanski, John J. [Rider University, 2083 Lawrenceville Road, Lawrenceville, NJ 08648 (United States); Faherty, Jaqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States); West, Andrew A. [Department of Astronomy, Boston University, 725 Commonwealth Avenue Boston, MA 02215 (United States); Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Schmidt, Sarah J. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Cruz, Kelle L., E-mail: aburgasser@ucsd.edu [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10034 (United States)

    2015-09-15

    Radial velocity measurements are presented for 85 late M- and L-type very low-mass stars and brown dwarfs obtained with the Magellan Echellette spectrograph. Targets primarily have distances within 20 pc of the Sun, with more distant sources selected for their unusual spectral energy distributions. We achieved precisions of 2–3 km s{sup −1}, and combined these with astrometric and spectrophotometric data to calculate UVW velocities. Most are members of the thin disk of the Galaxy, and velocity dispersions indicate a mean age of 5.2 ± 0.2 Gyr for sources within 20 pc. We find signficantly different kinematic ages between late-M dwarfs (4.0 ± 0.2 Gyr) and L dwarfs (6.5 ± 0.4 Gyr) in our sample that are contrary to predictions from prior simulations. This difference appears to be driven by a dispersed population of unusually blue L dwarfs which may be more prevalent in our local volume-limited sample than in deeper magnitude-limited surveys. The L dwarfs exhibit an asymmetric U velocity distribution with a net inward flow, similar to gradients recently detected in local stellar samples. Simulations incorporating brown dwarf evolution and Galactic orbital dynamics are unable to reproduce the velocity asymmetry, suggesting non-axisymmetric perturbations or two distinct L dwarf populations. We also find the L dwarfs to have a kinematic age-activity correlation similar to more massive stars. We identify several sources with low surface gravities, and two new substellar candidate members of nearby young moving groups: the astrometric binary DENIS J08230313–4912012AB, a low-probability member of the β Pictoris Moving Group; and 2MASS J15104786–2818174, a moderate-probability member of the 30–50 Myr Argus Association.

  9. Students Use VLA to Make Startling Brown-Dwarf Discovery

    Science.gov (United States)

    2001-03-01

    A group of summer students making a long-shot astronomical gamble with the National Science Foundation's (NSF) Very Large Array (VLA) have found the first radio emission ever detected from a brown dwarf, an enigmatic object that is neither a star nor a planet, but something in between. Their surprising discovery is forcing experts to re-think their theories about how brown dwarfs work. The Very Large Array "Many astronomers are surprised at this discovery, because they didn't expect such strong radio emission from this object," said Shri Kulkarni, a Caltech professor who was on the team that first discovered a brown dwarf in 1995, and advisor to one of the students. "What is so cool is that this is research that probably nobody else would have tried to do because of its low chance of success. That made it ideal for summer students -- we had almost nothing to lose," said Kate Becker, a student at Oberlin College in Ohio. "The radio emission these students discovered coming from this brown dwarf is 10,000 times stronger than anyone expected," said Dale Frail, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, NM. "This student project is going to open up a whole new area of research for the VLA," Frail added. The students, in addition to Becker, are: Edo Berger from Caltech; Steven Ball from New Mexico Tech in Socorro, NM; Melanie Clarke from Carleton College in Northfield, MN; Therese Fukuda from the University of Denver; Ian Hoffman from the University of New Mexico in Albuquerque; Richard Mellon from The Pennsylvania State University; Emmanuel Momjian from the University of Kentucky; Nathanial Murphy from Amherst College in Amherst, MA; Stacey Teng from the University of Maryland; Timothy Woodruff from Southwestern University in Georgetown, TX; Ashley Zauderer from Agnes Scott College in Decatur, GA; and Robert Zavala from New Mexico State University in Las Cruces, NM. Frail also is an author of the research paper, published in the March

  10. Microlensing of unresolved stars as a brown dwarf detection method

    CERN Document Server

    Bouquet, A; Melchior, A L; Giraud-Héraud, Yannick; Baillon, Paul

    1993-01-01

    We describe a project of brown dwarf detection in the dark halo of a galaxy using the microlensing effect. We argue that monitoring pixels instead of stars could provide an enhancement in the number of detectable events. We estimate the detection efficiency with a Monte-Carlo simulation. We expect a ten-fold increase with respect to current experiments. To assess the feasibility of this method we have determined the photometric precision of a pixel by comparing several pictures of a same field in the LMC. To be published in the Proceeding of the workshop 'The dark side of the universe...', Roma, Juin 1993,

  11. EROS 2 proper motion survey a field brown dwarf and an L dwarf companion to LHS 102

    CERN Document Server

    Goldman, B; Forveille, T; Afonso, C; Alard, C; Albert, J N; Andersen, J; Ansari, R; Aubourg, E; Bareyre, P; Bauer, F; Beaulieu, J P; Borsenberger, J; Bouquet, A; Char, S; Charlot, X; Couchot, F; Coutures, C; Derue, F; Ferlet, R; Fouqué, P; Glicenstein, J F; Gould, A; Graff, D S; Gros, M H; Haïssinski, J; Hamilton, J C; Hardin, D P; De Kat, J; Kim, A; Lasserre, T; Lesquoy, E; Loup, C; Magneville, C; Mansoux, B; Marquette, J B; Martín, E L; Maurice, E; Milshtein, A I; Moniez, M; Palanque-Delabrouille, Nathalie; Perdereau, O; Prévôt, L; Regnault, N; Rich, J; Spiro, Michel; Vidal-Madjar, A; Virgoux, L; Zylberajch, S

    1999-01-01

    We report the discovery of two L dwarfs (the new spectral class defined for dwarfs cooler than the M type) in a two-epoch CCD proper motion survey of 413 square degrees, complemented by infrared photometry from DENIS. One of them has a strong lithium line and is therefore a brown dwarf. The other is a common proper motion companion to the mid-M dwarf LHS 102 (GJ 1001), which has a well determined trigonometric parallax. LHS 102B is thus the coolest L dwarf of known distance and luminosity. Its infrared absolute photometry are very well reproduced by the Allard et al DUSTY models.

  12. Youngest Brown Dwarf Yet in a Multiple Stellar System

    Science.gov (United States)

    2000-07-01

    ... and the Sharpest Optical Image (0.18 arcsec) from the VLT so far...! Astronomers are eager to better understand the formation of stars and planets - with an eye on the complex processes that lead to the emergence of our own solar system some 4600 million years ago. Brown Dwarfs (BDs) play a special role in this context. Within the cosmic zoo, they represent a class of "intermediate" objects. While they are smaller than normal stars, they shine by their own energy for a limited time, in contrast to planets. Recent observations with the ESO Very Large Telescope (VLT) of a "young" Brown Dwarf in a multiple stellar system are taking on a particular importance in this connection. An evaluation of the new data by an international team of astronomers [1] shows that it is by far the youngest of only four such objects found in a stellar system so far. The results are now providing new insights into the stellar formation process. This small object is known as TWA-5 B and with a mass of only 15 - 40 times that of Jupiter, it is near the borderline between planets and Brown Dwarfs, cf. the explanatory Appendix to this Press Release. However, visible and infrared VLT spectra unambiguously classify it in the latter category. Accurate positional measurements with the Hubble Space Telescope (HST) and the VLT hint that it is orbiting the central, much heavier and brighter star in this system, TWA-5 A (itself a close double star of which each component presumably has a mass of 0.75 solar masses), with a period that may be as long as 900 years. And, by the way, an (I-band) image of the TWA-5 system is the sharpest delivered by the VLT so far, with an image size of only 0.18 arcsec [2]! Brown Dwarfs: a cool subject In current astronomical terminology, Brown Dwarfs (BDs) are objects whose masses are below those of normal stars - the borderline is believed to be about 8% of the mass of our Sun - but larger than those of planets, cf. [3]. Unlike normal stars, Brown Dwarfs are unable

  13. THE FIRST SPECTRUM OF THE COLDEST BROWN DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Skemer, Andrew J.; Morley, Caroline V.; Fortney, Jonathan J. [University of California, Santa Cruz, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Allers, Katelyn N. [Bucknell University, 701 Moore Avenue, Lewisburg, PA 17837 (United States); Geballe, Thomas R. [Gemini Observatory, 670 North A’ohoku Place, Hilo, HI 96720 (United States); Marley, Mark S.; Lupu, Roxana [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Faherty, Jacqueline K. [Carnegie Institute for Science, Department of Terrestrial Magnetism, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States); Bjoraker, Gordon L. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2016-08-01

    The recently discovered brown dwarf WISE 0855 presents the first opportunity to directly study an object outside the solar system that is nearly as cold as our own gas giant planets. However, the traditional methodology for characterizing brown dwarfs—near-infrared spectroscopy—is not currently feasible, as WISE 0855 is too cold and faint. To characterize this frozen extrasolar world we obtained a 4.5–5.2 μ m spectrum, the same bandpass long used to study Jupiter’s deep thermal emission. Our spectrum reveals the presence of atmospheric water vapor and clouds, with an absorption profile that is strikingly similar to Jupiter’s. The spectrum quality is high enough to allow for the investigation of dynamical and chemical processes that have long been studied in Jupiter’s atmosphere, but now on an extrasolar world.

  14. PROTOPLANETARY DISK MASSES FROM STARS TO BROWN DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhanjoy; Mortlock, Daniel [Imperial College London, 1010 Blackett Lab, Prince Consort Rd., London SW7 2AZ (United Kingdom); Greaves, Jane [SUPA, Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Pascucci, Ilaria; Apai, Daniel [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721 (United States); Scholz, Aleks [School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Thompson, Mark [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Lodato, Giuseppe [Dipartimento di Fisica, Universita Degli Studi di Milano, Via Celoria 16, I-20133 Milano (Italy); Looper, Dagny, E-mail: s.mohanty@imperial.ac.uk [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States)

    2013-08-20

    We present SCUBA-2 850 {mu}m observations of seven very low mass stars (VLMS) and brown dwarfs (BDs). Three are in Taurus and four in the TW Hydrae Association (TWA), and all are classical T Tauri (cTT) analogs. We detect two of the three Taurus disks (one only marginally), but none of the TWA ones. For standard grains in cTT disks, our 3{sigma} limits correspond to a dust mass of 1.2 M{sub Circled-Plus} in Taurus and a mere 0.2 M{sub Circled-Plus} in the TWA (3-10 Multiplication-Sign deeper than previous work). We combine our data with other submillimeter/millimeter (sub-mm/mm) surveys of Taurus, {rho} Oph, and the TWA to investigate the trends in disk mass and grain growth during the cTT phase. Assuming a gas-to-dust mass ratio of 100:1 and fiducial surface density and temperature profiles guided by current data, we find the following. (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is {approx}100 AU for intermediate-mass stars, solar types, and VLMS, and {approx}20 AU for BDs. (2) While the upper envelope of apparent disk masses increases with M{sub *} from BDs to VLMS to solar-type stars, no such increase is observed from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate stellar masses. (3) Many of the disks around Taurus and {rho} Oph intermediate-mass and solar-type stars evince an opacity index of {beta} {approx} 0-1, indicating significant grain growth. Of the only four VLMS/BDs in these regions with multi-wavelength measurements, three are consistent with considerable grain growth, though optically thick disks are not ruled out. (4) For the TWA VLMS (TWA 30A and B), combining our 850 {mu}m fluxes with the known accretion rates and ages suggests substantial grain growth by 10 Myr, comparable to that in the previously studied TWA cTTs Hen 3-600A and TW Hya. The degree of grain growth in the TWA BDs (2M1207A and SSPM1102) remains largely unknown. (5) A

  15. Indications of Water Clouds in the Coldest Known Brown Dwarf

    Science.gov (United States)

    Faherty, Jacqueline K.; Tinney, C. G.; Skemer, Andrew; Monson, Andrew J.

    2014-09-01

    We present a deep near-infrared image of the newly discovered brown dwarf WISE J085510.83-071442.5 (W0855) using the FourStar imager at Las Campanas Observatory. Our detection of J3 = 24.8^{+0.53}_{-0.35} (J MKO = 25.0^{+0.53}_{-0.35}) at 2.6σ—or equivalently an upper limit of J3 > 23.8 (J MKO > 24.0) at 5σ makes W0855 the reddest brown dwarf ever categorized (J MKO - W2 = 10.984^{+0.53}_{-0.35} at 2.6σ—or equivalently an upper limit of J MKO - W2 > 9.984 at 5σ) and refines its position on color-magnitude diagrams. Comparing the new photometry with chemical equilibrium model atmosphere predictions, we demonstrate that W0855 is 2.7σ from models using a cloudless atmosphere and well reproduced by partly cloudy models (50%) containing sulfide and water ice clouds. Non-equilibrium chemistry or non-solar metallicity may change predictions, however using currently available model approaches, this is the first candidate outside our own solar system to have direct evidence for water clouds. This Letter includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  16. NEOWISE-R observation of the coolest known brown dwarf

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Edward L. [UCLA Astronomy, P.O. Box 951547, Los Angeles, CA 90095-1547 (United States); Mainzer, Amy; Bauer, James; Eisenhardt, Peter R. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Davy Kirkpatrick, J.; Masci, Frank; Fajardo-Acosta, Sergio; Gelino, Christopher R.; Beichman, Charles A.; Cutri, Roc [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cushing, Michael C. [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606-3328 (United States); Skrutskie, M. F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Grav, T., E-mail: wright@astro.ucla.edu [Planetary Science Institute, Tucson, AZ 85719 (United States)

    2014-11-01

    The Wide-field Infrared Survey Explorer (WISE) spacecraft has been reactivated as NEOWISE-R to characterize and search for near-Earth objects. The brown dwarf WISE J085510.83–071442.5 has now been re-observed by NEOWISE-R, and we confirm the results of Luhman, who found a very low effective temperature (≈250 K), a very high proper motion (8.''1 ± 0.''1 yr{sup –1}), and a large parallax (454 ± 45 mas). The large proper motion has separated the brown dwarf from the background sources that influenced the 2010 WISE data, allowing a measurement of a very red WISE color of W1 – W2 >3.9 mag. A re-analysis of the 2010 WISE astrometry using only the W2 band, combined with the new NEOWISE-R 2014 position, gives an improved parallax of 448 ± 33 mas and a proper motion of 8.''08 ± 0.''05 yr{sup –1}. These are all consistent with values from Luhman.

  17. The Spectral Energy Distribution of the Coldest Known Brown Dwarf

    Science.gov (United States)

    Luhman, K. L.; Esplin, T. L.

    2016-09-01

    WISE J085510.83-071442.5 (hereafter WISE 0855-0714) is the coldest known brown dwarf (˜250 K) and the fourth-closest known system to the Sun (2.2 pc). It has been previously detected only in the J band and two mid-IR bands. To better measure its spectral energy distribution (SED), we have performed deep imaging of WISE 0855-0714 in six optical and near-IR bands with Gemini Observatory, the Very Large Telescope, and the Hubble Space Telescope. Five of the bands show detections, although one detection is marginal (S/N ˜ 3). We also have obtained two epochs of images with the Spitzer Space Telescope for use in refining the parallax of the brown dwarf. By combining astrometry from this work and previous studies, we have derived a parallax of 0.449 ± 0.008″ (2.23 ± 0.04 pc). We have compared our photometry for WISE 0855-0714 to data for known Y dwarfs and to the predictions of three suites of models by Saumon et al. and Morley et al. that are defined by the presence or absence of clouds and nonequilibrium chemistry. Our estimates of Y - J and J - H for WISE 0855-0714 are redder than colors of other Y dwarfs, confirming a predicted reversal of near-IR colors to redder values at temperatures below 300-400 K. In color-magnitude diagrams, no single suite of models provides a clearly superior match to the sequence formed by WISE 0855-0714 and other Y dwarfs. Instead, the best-fitting model changes from one diagram to the next. Similarly, all of the models have substantial differences from the SED of WISE 0855-0714. As a result, we are currently unable to constrain the presence of clouds or nonequilibrium chemistry in its atmosphere. Based on observations made with the Spitzer Space Telescope, the NASA/ESA Hubble Space Telescope, Gemini Observatory, and the ESO Telescopes at Paranal Observatory.

  18. White dwarf pollution by planets in stellar binaries

    OpenAIRE

    Hamers, S.; Portegies, F, Zwart S.

    2016-01-01

    Approximately $0.2 \\pm 0.2$ of white dwarfs (WDs) show signs of pollution by metals, which is likely due to the accretion of tidally disrupted planetary material. Models invoking planet-planet interactions after WD formation generally cannot explain pollution at cooling times of several Gyr. We consider a scenario in which a planet is perturbed by Lidov-Kozai oscillations induced by a binary companion and exacerbated by stellar mass loss, explaining pollution at long cooling times. Our comput...

  19. Benchmark Transiting Brown Dwarf LHS 6343 C: Spitzer Secondary Eclipse Observations Yield Brightness Temperature and Mid-T Spectral Class

    NARCIS (Netherlands)

    Montet, B.T.; Johnson, J.A.; Fortney, J.J.; Desert, J.-M.

    2016-01-01

    There are no field brown dwarf analogs with measured masses, radii, and luminosities, precluding our ability to connect the population of transiting brown dwarfs with measurable masses and radii and field brown dwarfs with measurable luminosities and atmospheric properties. LHS 6343 C, a weakly

  20. A Statistical Study of Brown Dwarf Companions from the SDSS-III MARVELS Survey

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil; Ma, Bo; De Lee, Nathan M.; Lee, Brian L.; Fleming, Scott W.; Sithajan, Sirinrat; Varosi, Frank; Liu, Jian; Zhao, Bo; Li, Rui; Agol, Eric; MARVELS Team

    2016-01-01

    We present 23 new Brown Dwarf (BD) candidates from the Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III (SDSS-III). The BD candidates were selected from the processed MARVELS data using the latest University of Florida 2D pipeline, which shows significant improvement and reduction of systematic errors over the 1D pipeline results included in the SDSS Data Release 12. This sample is the largest BD yield from a single radial velocity survey. Of the 23 candidates, 18 are around main sequence stars and 5 are around giant stars. Given a giant contamination rate of ~24% for the MARVELS survey, we find a BD occurrence rate around main sequence stars of ~0.7%, which agrees with previous studies and confirms the BD desert, while the BD occurrence rate around the MARVELS giant stars is ~0.6%. Preliminary results show that our new candidates around solar type stars support a two population hypothesis, where BDs are divided at a mass of ~42.5 MJup. BDs less massive than 42.5 MJup have eccentricity distributions consistent with planet-planet scattering models, where BDs more massive than 42.5 MJup have both period and eccentricity distributions similar to that of stellar binaries. Special Brown Dwarf systems such as multiple BD systems and highly eccentric BDs will also be presented.

  1. 50 years of brown dwarfs from prediction to discovery to forefront of research

    CERN Document Server

    2014-01-01

    The years 2012/2013 mark the 50th anniversary of the theoretical prediction that Brown Dwarfs, i.e. degenerate objects which are just not massive enough to sustain stable hydrogen fusion, exist. Some 20 years after their discovery, how Brown Dwarfs form is still one of the main open questions in the theory of star formation. In this volume, the pioneers of Brown Dwarf research review the history of the theoretical prediction and the subsequent discovery of Brown Dwarfs. After an introduction, written by Viki Joergens, reviewing Shiv Kumar's theoretical prediction of the existence of brown dwarfs, Takenori Nakano reviews his and Hayashi's calculation of the Hydrogen Burning Minimum Mass. Both predictions happened in the early 1960s. Jill Tarter then writes on the introduction of the term 'Brown Dwarf', before Ben Oppenheimer, Rafael Rebolo and Gibor Basri describe their first discovery of Brown Dwarfs in the 1990s. Lastly, Michael Cushing and Isabelle Baraffe describe the development of the field to the curren...

  2. Bok Prize Lecture (shared) The Brown Dwarf Radial Velocity Survey

    Science.gov (United States)

    Charbonneau, Dave

    2004-03-01

    The swarm of nearby brown dwarfs and very low mass stars is an attractive sample for radial velocity monitoring. Such work is best conducted with an echelle spectrograph operating at infrared wavelengths where these objects(i) are most luminous, (ii) have a forest of molecular features, providing an excellent velocity metric, and {iii) are superimposed on the telluric spectrum, which yields the requisite wavelength calibration. I will present first results from such a survey, with a precision sufficient to detect Jupiter-mass planets with orbital periods of less than a year. Should such systems be uncovered, the planets would be amenable to direct study, due to system proximity, and the favorable contrast ratio between the planet and parent object.

  3. Outflows from low mass young stars and brown dwarfs

    Science.gov (United States)

    Ray, T. P.

    The phenomenon of jets from young stars has been known for over two decades. In most cases the jet is generated either by an embedded (IRAS Class I) low mass star or its more evolved, optically visible counterpart (a classical T Tauri star). In the case of the latter the flow can be traced optically right back to the star although its apparent length may be small in angular terms (typically a few arcseconds). For this reason such jets are sometimes referred to as ``micro-jets''. It is argued that brown dwarfs (BDs) outflows, when observed will almost certainly look like scaled-down versions of the micro-jet phenomenon observed in classical T Tauri stars. Not only then will we need large telescopes to detect such flows but it may also be necessary to employ special techniques, like spectro-astrometry, to resolve them.

  4. Surface Gravities for 228 M, L, and T Dwarfs in the NIRSPEC Brown Dwarf Spectroscopic Survey

    Science.gov (United States)

    Martin, Emily C.; Mace, Gregory N.; McLean, Ian S.; Logsdon, Sarah E.; Rice, Emily L.; Kirkpatrick, J. Davy; Burgasser, Adam J.; McGovern, Mark R.; Prato, Lisa

    2017-03-01

    We combine 131 new medium-resolution (R ˜ 2000) J-band spectra of M, L, and T dwarfs from the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) with 97 previously published BDSS spectra to study surface-gravity-sensitive indices for 228 low-mass stars and brown dwarfs spanning spectral types M5-T9. Specifically, we use an established set of spectral indices to determine surface gravity classifications for all of the M6-L7 objects in our sample by measuring the equivalent widths (EW) of the K I lines at 1.1692, 1.1778, and 1.2529 μm, and the 1.2 μm FeH J absorption index. Our results are consistent with previous surface gravity measurements, showing a distinct double peak—at ˜L5 and T5—in K I EW as a function of spectral type. We analyze the K I EWs of 73 objects of known ages and find a linear trend between log(Age) and EW. From this relationship, we assign age ranges to the very low gravity, intermediate gravity, and field gravity designations for spectral types M6-L0. Interestingly, the ages probed by these designations remain broad, change with spectral type, and depend on the gravity-sensitive index used. Gravity designations are useful indicators of the possibility of youth, but current data sets cannot be used to provide a precise age estimate. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  5. The EBLM Project I-Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the Brown Dwarf limit

    OpenAIRE

    Triaud, Amaury H. M. J.; Hebb, Leslie; Anderson, David R.; Cargile, Phill; Cameron, Andrew Collier; Doyle, Amanda P.; Faedi, Francesca; Gillon, Michaël; Chew, Yilen Gomez Maqueo; Hellier, Coel; Jehin, Emmanuel; Maxted, Pierre; Naef, Dominique; Pepe, Francesco; Pollacco, Don

    2012-01-01

    This paper introduces a series of papers aiming to study the dozens of low-mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F,...

  6. Resonant excitation of white dwarf oscillations in compact object binaries

    Science.gov (United States)

    Rathore, Yasser

    2005-12-01

    As an eccentric white dwarf-compact object binary shrinks and circularizes because of gravitational radiation, it will pass through resonances when harmonics of the orbital frequency match one of the white dwarf's normal mode eigenfrequencies. A formalism for calculating the resonant energy transfer is presented, both when the when the perturbation of the orbit by the excited mode is neglected (resonances without back reaction), and when the perturbation is included (resonances with back reaction). It is found that back reaction changes the resonant energy transfer both qualitatively and quantitatively. In particular, the energy transfer with back reaction is shown to be always positive, to lowest order in the rate of dissipation by gravitational radiation. Numerical simulations of resonant mode excitation and non-linear evolution of white dwarf oscillations are also considered. A hydrodynamics code for studying this is described. Results from several test problems and simulations of resonant tidal excitation are presented. If the amplitude of an excited mode is driven high enough, the mode may damp non-linearly and heat the white dwarf. If the temperature of the star can be raised to a critical value, then the star may undergo a thermonuclear detonation that results in a Type Ia supernova. The feasibility of such a detonation via excitation of quadrupolar [function of]-modes is studied. It is found that a system with a 1.4 [Special characters omitted.] companion is not viable, but, for companion masses of ~ 10--10 5 [Special characters omitted.] , there exist regions in the parameter space where the white dwarf can be detonated. The ejecta from such a detonation are expected to remain trapped in orbit around the companion in most cases. A preliminary evaluation of the importance of tidal resonances for gravitational wave observations of capture sources with central masses of ~ 10 6 [Special characters omitted.] is also presented. The excitation of [function of

  7. DISCOVERY OF THREE DISTANT, COLD BROWN DWARFS IN THE WFC3 INFRARED SPECTROSCOPIC PARALLELS SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Masters, D.; Siana, B. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); McCarthy, P.; Hathi, N. P.; Dressler, A. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Burgasser, A. J. [Center for Astrophysics and Space Science, University of California, San Diego, La Jolla, CA 92093 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Scarlata, C. [Astronomy Department, University of Minnesota, Minneapolis, MN 55455 (United States); Henry, A. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Colbert, J.; Atek, H. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Rafelski, M.; Teplitz, H. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Bunker, A. [Department of Physics, University of Oxford, Oxford (United Kingdom)

    2012-06-10

    We present the discovery of three late-type ({>=}T4.5) brown dwarfs, including a probable Y dwarf, in the WFC3 Infrared Spectroscopic Parallels (WISP) survey. We use the G141 grism spectra to determine the spectral types of the dwarfs and derive distance estimates based on a comparison with nearby T dwarfs with known parallaxes. These are the most distant spectroscopically confirmed T/Y dwarfs, with the farthest at an estimated distance of {approx}400 pc. We compare the number of cold dwarfs found in the WISP survey with simulations of the brown dwarf mass function. The number found is generally consistent with an initial stellar mass function dN/dM{proportional_to}M{sup -{alpha}} with {alpha} = 0.0-0.5, although the identification of a Y dwarf is somewhat surprising and may be indicative of either a flatter absolute magnitude/spectral-type relation than previously reported or an upturn in the number of very-late-type brown dwarfs in the observed volume.

  8. New light on dark stars red dwarfs, low-mass stars, brown dwarfs

    CERN Document Server

    Reid, I Neill

    2000-01-01

    Perhaps the most common question that a child asks when he or she sees the night sky from a dark site for the first time is: 'How many stars are there?' This happens to be a question which has exercised the intellectual skills of many astronomers over the course of most of the last century, including, for the last two decades, one of the authors of this text. Until recently, the most accurate answer was 'We are not certain, but there is a good chance that almost all of them are M dwarfs. ' Within the last three years, results from new sky-surveys - particularly the first deep surveys at near­ infrared wavelengths - have provided a breakthrough in this subject, solidifying our census of the lowest-mass stars and identifying large numbers of the hitherto almost mythical substellar-mass brown dwarfs. These extremely low-luminosity objects are the central subjects of this book, and the subtitle should be interpreted accordingly. The expression 'low-mass stars' carries a wide range of meanings in the astronomical...

  9. Deriving the true mass of an unresolved Brown Dwarf companion to an M-Dwarf with AO aided astrometry*

    Directory of Open Access Journals (Sweden)

    Kürster M.

    2011-07-01

    Full Text Available From radial velocity (RV detections alone one does not get all orbital parameters needed to derive the true mass of a non-transiting, unresolved substellar companion to a star. Additional astrometric measurements are needed to calculate the inclination and the longitude of the ascending node. Until today only few true substellar companion masses have been determined by this method with the HST fine guidance sensor [1, 2]. We aim to derive the true mass of a brown dwarf candidate companion to an early M 2.5V dwarf with groundbased high-resolution astrometry aided by adaptive optics. We found this unique brown dwarf desert object, whose distance to the host star is only 0.42 AU, in our UVES precision RV survey of M dwarfs, inferring a minimum companion mass of 27 Jupiter masses [3]. Combining the data with HIPPARCOS astrometry, we found a probability of only 2.9% that the companion is stellar. We therefore observed the host star together with a reference star within a monitoring program with VLT/NACO to derive the true mass of the companion and establish its nature (brown dwarf vs. star. Simultaneous observations of a reference field in a globular cluster are performed to determine the stability of the adaptive optics (AO plus detector system and check its suitability for such high-precision astrometric measurements over several epochs which are needed to find and analyse extrasolar planet systems.

  10. The NIRSPEC Brown Dwarf Spectroscopic Survey Online Archive BDSSarchive.org

    Science.gov (United States)

    Mace, G.; Rice, E.; McLean, I.

    2011-12-01

    The NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) was initiated in 1999 by Ian McLean (UCLA) and Davy Kirkpatrick (IPAC) following deployment of NIRSPEC to Keck II and the discovery of brown dwarf candidates in the Two Micron All Sky Survey (2MASS). High quality near-infrared spectra for a large sample of M, L, and T dwarfs have been obtained by many members of the BDSS team since inception of the project. Moderate-resolution (R˜2,000) near-IR spectra include over 200 objects (approximately 20% field M dwarfs, 30% young M dwarfs, 10% M giants, 30% L dwarfs, and 10% T dwarfs). These medium-resolution data products include J-band (1.143-1.375 micron) coverage for every object and broader coverage (0.96-2.31 micron) for about 30 targets. High-resolution (R˜20,000) spectra consist primarily of cross-dispersed J-band (1.165-1.323 micron) observations, resulting in eight dispersion orders for ˜70 objects (approximately 15% field M dwarfs, 40% young M dwarfs, 25% L dwarfs, and 20% T dwarfs). The BDSS Online Archive (BDSSarchive.org) described in this poster is a catalog of all observed objects, with published data available as reduced and extracted ascii files. Unpublished data are also available upon request. Other database updates, including a mutable table and links to reductions for multiple observational epochs, will be implemented in the near future. The sample size, wavelength coverage, spectral resolution, and high quality data makes the BDSS Online Archive a premier library of brown dwarf medium-to-high resolution near-infrared spectra.

  11. Is this a Brown Dwarf or an Exoplanet?

    Science.gov (United States)

    2005-04-01

    Since the discovery in 1995 of the first planet orbiting a normal star other than the Sun, there are now more than 150 candidates of these so-called exoplanets known. Most of them are detected by indirect methods, based either on variations of the radial velocity or the dimming of the star as the planet passes in front of it (see ESO PR 06/03, ESO PR 11/04 and ESO PR 22/04). Astronomers would, however, prefer to obtain a direct image of an exoplanet, allowing them to better characterize the object's physical nature. This is an exceedingly difficult task, as the planet is generally hidden in the "glare" of its host star. To partly overcome this problem, astronomers study very young objects. Indeed, sub-stellar objects are much hotter and brighter when young and therefore can be more easily detected than older objects of similar mass. Based on this approach, it might well be that last year's detection of a feeble speck of light next to the young brown dwarf 2M1207 by an international team of astronomers using the ESO Very Large Telescope (ESO PR 23/04) is the long-sought bona-fide image of an exoplanet. A recent report based on data from the Hubble Space Telescope seems to confirm this result. The even more recent observations made with the Spitzer Space Telescope of the warm infrared glows of two previously detected "hot Jupiter" planets is another interesting result in this context. This wealth of new results, obtained in the time span of a few months, illustrates perfectly the dynamic of this field of research. Tiny Companion ESO PR Photo 10a/05 ESO PR Photo 10a/05 The Sub-Stellar Companion to GQ Lupi (NACO/VLT) [Preview - JPEG: 400 x 429 pix - 22k] [Normal - JPEG: 800 x 875 pix - 132k] [Full Res - JPEG: 1042 x 1116 pix - 241k] Caption: ESO PR Photo 10a/05 shows the VLT NACO image, taken in the Ks-band, of GQ Lupi. The feeble point of light to the right of the star is the newly found cold companion. It is 250 times fainter than the star itself and it located 0

  12. The population of single and binary white dwarfs of the Galactic bulge

    Science.gov (United States)

    Torres, S.; García-Berro, E.; Cojocaru, R.; Calamida, A.

    2018-02-01

    Recent Hubble Space Telescope observations have unveiled the white dwarf cooling sequence of the Galactic bulge. Although the degenerate sequence can be well fitted employing the most up-to-date theoretical cooling sequences, observations show a systematic excess of red objects that cannot be explained by the theoretical models of single carbon-oxygen white dwarfs of the appropriate masses. Here we present a population synthesis study of the white dwarf cooling sequence of the Galactic bulge that takes into account the populations of both single white dwarfs and binary systems containing at least one white dwarf. These calculations incorporate state-of-the-art cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolutionary history of binary systems. Our Monte Carlo simulator also incorporates all the known observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. We find that the observed excess of red stars can be partially attributed to white dwarf plus main sequence binaries, and to cataclysmic variables or dwarf novae. Our best fit is obtained with a higher binary fraction and an initial mass function slope steeper than standard values, as well as with the inclusion of differential reddening and blending. Our results also show that the possible contribution of double degenerate systems or young and thick-disk bulge stars is negligible.

  13. The critical binary star separation for a planetary system origin of white dwarf pollution

    OpenAIRE

    Veras, Dimitri; Xu, Siyi; Rebassa-Mansergas, Alberto

    2017-01-01

    The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary...

  14. Exploring the brown dwarf desert: new substellar companions from the SDSS-III MARVELS survey

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil; Ma, Bo; Sithajan, Sirinrat; Ghezzi, Luan; Kimock, Ben; Willis, Kevin; De Lee, Nathan; Lee, Brian; Fleming, Scott W.; Agol, Eric; Troup, Nicholas; Paegert, Martin; Schneider, Donald P.; Stassun, Keivan; Varosi, Frank; Zhao, Bo; Jian, Liu; Li, Rui; Porto de Mello, Gustavo F.; Bizyaev, Dmitry; Pan, Kaike; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Santiago, Basílio X.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; del Peloso, E. F.

    2017-06-01

    Planet searches using the radial velocity technique show a paucity of companions to solar-type stars within ˜5 au in the mass range of ˜10-80 MJup. This deficit, known as the brown dwarf desert, currently has no conclusive explanation. New substellar companions in this region help assess the reality of the desert and provide insight to the formation and evolution of these objects. Here, we present 10 new brown dwarf and 2 low-mass stellar companion candidates around solar-type stars from the Multi-object APO Radial Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III. These companions were selected from processed MARVELS data using the latest University of Florida Two Dimensional pipeline, which shows significant improvement and reduction of systematic errors over previous pipelines. The 10 brown dwarf companions range in mass from ˜13 to 76 MJup and have orbital radii of less than 1 au. The two stellar companions have minimum masses of ˜98 and 100 MJup. The host stars of the MARVELS brown dwarf sample have a mean metallicity of [Fe/H] = 0.03 ± 0.08 dex. Given our stellar sample we estimate the brown dwarf occurrence rate around solar-type stars with periods less than ˜300 d to be ˜0.56 per cent.

  15. A Data-driven Approach for Retrieving Temperatures and Abundances in Brown Dwarf Atmospheres

    Science.gov (United States)

    Line, Michael R.; Fortney, Jonathan J.; Marley, Mark S.; Sorahana, Satoko

    2014-09-01

    Brown dwarf spectra contain a wealth of information about their molecular abundances, temperature structure, and gravity. We present a new data driven retrieval approach, previously used in planetary atmosphere studies, to extract the molecular abundances and temperature structure from brown dwarf spectra. The approach makes few a priori physical assumptions about the state of the atmosphere. The feasibility of the approach is first demonstrated on a synthetic brown dwarf spectrum. Given typical spectral resolutions, wavelength coverage, and noise, property precisions of tens of percent can be obtained for the molecular abundances and tens to hundreds of K on the temperature profile. The technique is then applied to the well-studied brown dwarf, Gl 570D. From this spectral retrieval, the spectroscopic radius is constrained to be 0.75-0.83 R J, log (g) to be 5.13-5.46, and T eff to be between 804 and 849 K. Estimates for the range of abundances and allowed temperature profiles are also derived. The results from our retrieval approach are in agreement with the self-consistent grid modeling results of Saumon et al. This new approach will allow us to address issues of compositional differences between brown dwarfs and possibly their formation environments, disequilibrium chemistry, and missing physics in current grid modeling approaches as well as a many other issues.

  16. Determining Optimal Parameters for Brown Dwarf Spectral Extraction using the aXe Pipeline

    Science.gov (United States)

    Davis, Jonathan D.; Radigan, Jacqueline

    2017-06-01

    This research seeks to find optimal extraction parameters for brown dwarf slitless spectra obtained using the Wide Field Camera 3 (WFC3), with the G141 grism on the Hubble Space Telescope. We have used the STScI aXe pipeline to extract spectral time series for three brown dwarf targets from HST program GO-13299 (PI: Radigan). These targets include two L/T transition dwarfs 2MASS-J16291840+033537 and SDSS-J075840.33+324723.4, and one L-dwarf 2MASS-J11263991-5003550. The parameters explored in this study include the spectral extraction width, the type of background subtraction, and the pixel weighting of the extraction. We also explore how target brightness effects the optimal reduction parameters. Scatter within the spectral time series are used to draw conclusions regarding the relative goodness of different sets of reduction parameters.

  17. Direct Test of the Brown Dwarf Evolutionary Models Through Secondary Eclipse Spectroscopy of LHS 6343

    Science.gov (United States)

    Albert, Loic

    2015-10-01

    As the number of field Brown Dwarfs counts in the thousands, interpreting their physical parameters (mass, temperature, radius, luminosity, age, metallicity) relies as heavily as ever on atmosphere and evolutionary models. Fortunately, models are largely successful in explaining observations (colors, spectral types, luminosity), so they appear well calibrated in a relative sense. However, an absolute model-independent calibration is still lacking. Eclipsing BDs systems are a unique laboratory in this respect but until recently only one such system was known, 2M0535-05 - a very young (Brown Dwarfs showing a peculiar temperature reversal (Stassun et al. 2006). Due to its young age, 2M0535-05 is an ill-suited test for Gyr-old field Brown Dwarfs whose population is by far the most common in the solar neighborhood. Recently, a second system - an evolved BD (>1 Gyr) - was identified (62.1+/-1.2 MJup, 0.783+/-0.011 RJup) transiting LHS6343 with a 12.7-day period. We propose to use WFC3 in drift scan mode and 5 HST orbits to determine the spectral type (a proxy for temperature) as well as the near-infrared luminosity of this brown dwarf. We conducted simulations that predict a signal-to-noise ratio ranging between 10 and 30 per resolution element in the peaks of the spectrum. These measurements, coupled with existing luminosity measurements with Spitzer at 3.6 and 4.5 microns, will allow us to trace the spectral energy distribution of the Brown Dwarf and directly calculate its blackbody temperature. It will be the first field Brown Dwarfs with simultaneous measurements of its radius, mass, luminosity and temperature all measured independently of models.

  18. White dwarf pollution by planets in stellar binaries

    Science.gov (United States)

    Hamers, Adrian S.; Portegies Zwart, Simon F.

    2016-10-01

    Approximately 0.2 ± 0.2 of white dwarfs (WDs) show signs of pollution by metals, which is likely due to the accretion of tidally disrupted planetary material. Models invoking planet-planet interactions after WD formation generally cannot explain pollution at cooling times of several Gyr. We consider a scenario in which a planet is perturbed by Lidov-Kozai oscillations induced by a binary companion and exacerbated by stellar mass-loss, explaining pollution at long cooling times. Our computed accretion rates are consistent with observations assuming planetary masses between ˜0.01 and 1 MMars, although non-gravitational effects may already be important for masses ≲0.3 MMars. The fraction of polluted WDs in our simulations, ˜0.05, is consistent with observations of WDs with intermediate cooling times between ˜0.1 and 1 Gyr. For cooling times ≲0.1 Gyr and ≳1 Gyr, our scenario cannot explain the high observed pollution fractions of up to 0.7. Nevertheless, our results motivate searches for companions around polluted WDs.

  19. Mass Transfer and Tidal Dynamics in White Dwarf Binary Systems

    Science.gov (United States)

    Gerber, Jeffrey; Fuller, J.

    2014-01-01

    Compact white dwarf (WD) binary systems (with orbital periods ranging from minutes to hours) can produce a variety of interesting astrophysical objects (e.g., type Ia supernovae, AM CVn systems, R Cor Bor stars, sdB stars) upon the onset of mass transfer. These systems are driven toward Roche lobe overflow by the emission of gravitational radiation, but it is not known whether the mass transfer will be stable (forming an Am CVn system) or become unstable (resulting in a merger). We analyze how the combined effects of mass transfer and tidal torques affect the evolution of these systems by creating numerical models with the MESA stellar evolution program. Using new calculations of the tidal torque in rotating WDs, we predict the outcome of mass transfer in these systems as a function of the masses of the WD components. We find that the stability of mass transfer depends primarily on the peak mass transfer rate near the period minimum, which is highly dependent on the WD masses and on the strength of the tidal torques. Except for low WD accretor masses, the tidal torques are insufficient to significantly increase the stability of mass transfer. We find that mass transfer is generally unstable for WD donor masses greater than about 0.25 solar masses, and that the 12 minute system SDSS J0615 will end its inspiral in a WD merger, likely producing an R Cor Bor star.

  20. First Detection of a Strong Magnetic Field on a Bursty Brown Dwarf: Puzzle Solved

    Science.gov (United States)

    Berdyugina, S. V.; Harrington, D. M.; Kuzmychov, O.; Kuhn, J. R.; Hallinan, G.; Kowalski, A. F.; Hawley, S. L.

    2017-09-01

    We report the first direct detection of a strong, 5 kG magnetic field on the surface of an active brown dwarf. LSR J1835+3259 is an M8.5 dwarf exhibiting transient radio and optical emission bursts modulated by fast rotation. We have detected the surface magnetic field as circularly polarized signatures in the 819 nm sodium lines when an active emission region faced the Earth. Modeling Stokes profiles of these lines reveals the effective temperature of 2800 K and log gravity acceleration of 4.5. These parameters place LSR J1835+3259 on evolutionary tracks as a young brown dwarf with the mass of 55+/- 4{M}{{J}} and age of 22 ± 4 Myr. Its magnetic field is at least 5.1 kG and covers at least 11% of the visible hemisphere. The active region topology recovered using line profile inversions comprises hot plasma loops with a vertical stratification of optical and radio emission sources. These loops rotate with the dwarf in and out of view causing periodic emission bursts. The magnetic field is detected at the base of the loops. This is the first time that we can quantitatively associate brown dwarf non-thermal bursts with a strong, 5 kG surface magnetic field and solve the puzzle of their driving mechanism. This is also the coolest known dwarf with such a strong surface magnetic field. The young age of LSR J1835+3259 implies that it may still maintain a disk, which may facilitate bursts via magnetospheric accretion, like in higher-mass T Tau-type stars. Our results pave a path toward magnetic studies of brown dwarfs and hot Jupiters.

  1. A search for companions to brown dwarfs in the Taurus and Chamaeleon star-forming regions

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, K. O.; Luhman, K. L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Konopacky, Q. M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); McLeod, K. K. [Whitin Observatory, Wellesley College, Wellesley, MA 02481 (United States); Apai, D.; Pascucci, I. [Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Ghez, A. M. [Division of Astronomy and Astrophysics, University of California, Los Angeles, CA 90095 (United States); Robberto, M., E-mail: todorovk@phys.ethz.ch [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-06-10

    We have used WFPC2 on board the Hubble Space Telescope to obtain images of 47 members of the Taurus and Chamaeleon I star-forming regions that have spectral types of M6-L0 (M ∼ 0.01-0.1 M {sub ☉}). An additional late-type member of Taurus, FU Tau (M7.25+M9.25), was also observed with adaptive optics at Keck Observatory. In these images, we have identified promising candidate companions to 2MASS J04414489+2301513 (ρ = 0.''105/15 AU), 2MASS J04221332+1934392 (ρ = 0.''05/7 AU), and ISO 217 (ρ = 0.''03/5 AU). We reported the first candidate in a previous study, showing that it has a similar proper motion as the primary in images from WFPC2 and Gemini adaptive optics. We have collected an additional epoch of data with Gemini that further supports that result. By combining our survey with previous high-resolution imaging in Taurus, Chamaeleon I, and Upper Sco (τ ∼ 10 Myr), we measure binary fractions of 14/93 = 0.15{sub −0.03}{sup +0.05} for M4-M6 (M ∼ 0.1-0.3 M {sub ☉}) and 4/108 = 0.04{sub −0.01}{sup +0.03} for >M6 (M ≲ 0.1 M {sub ☉}) at separations of >10 AU. Given the youth and low density of these regions, the lower binary fraction at later types is probably primordial rather than due to dynamical interactions among association members. The widest low-mass binaries (>100 AU) also appear to be more common in Taurus and Chamaeleon I than in the field, which suggests that the widest low-mass binaries are disrupted by dynamical interactions at >10 Myr, or that field brown dwarfs have been born predominantly in denser clusters where wide systems are disrupted or inhibited from forming.

  2. Habitable planets around white and brown dwarfs: the perils of a cooling primary.

    Science.gov (United States)

    Barnes, Rory; Heller, René

    2013-03-01

    White and brown dwarfs are astrophysical objects that are bright enough to support an insolation habitable zone (IHZ). Unlike hydrogen-burning stars, they cool and become less luminous with time; hence their IHZ moves in with time. The inner edge of the IHZ is defined as the orbital radius at which a planet may enter a moist or runaway greenhouse, phenomena that can remove a planet's surface water forever. Thus, as the IHZ moves in, planets that enter it may no longer have any water and are still uninhabitable. Additionally, the close proximity of the IHZ to the primary leads to concern that tidal heating may also be strong enough to trigger a runaway greenhouse, even for orbital eccentricities as small as 10(-6). Water loss occurs due to photolyzation by UV photons in the planetary stratosphere, followed by hydrogen escape. Young white dwarfs emit a large amount of these photons, as their surface temperatures are over 10(4) K. The situation is less clear for brown dwarfs, as observational data do not constrain their early activity and UV emission very well. Nonetheless, both types of planets are at risk of never achieving habitable conditions, but planets orbiting white dwarfs may be less likely to sustain life than those orbiting brown dwarfs. We consider the future habitability of the planet candidates KOI 55.01 and 55.02 in these terms and find they are unlikely to become habitable.

  3. Characterizing a New Candidate Benchmark Brown Dwarf Companion in the β Pic Moving Group

    Science.gov (United States)

    Phillips, Caprice; Bowler, Brendan; Liu, Michael C.; Mace, Gregory N.; Sokal, Kimberly R.

    2018-01-01

    Benchmark brown dwarfs are objects that have at least two measured fundamental quantities such as luminosity and age, and therefore can be used to test substellar atmospheric and evolutionary models. Nearby, young, loose associations such as the β Pic moving group represent some of the best regions in which to identify intermediate-age benchmark brown dwarfs due to their well-constrained ages and metallicities. We present a spectroscopic study of a new companion at the hydrogen-burning limit orbiting a low-mass star at a separation of 9″ (650 AU) in the 23 Myr old β Pic moving group. The medium-resolution near-infrared spectrum of this companion from IRTF/SpeX shows clear signs of low surface gravity and yields an index-based spectral type of M6±1 with a VL-G gravity on the Allers & Liu classification system. Currently, there are four known brown dwarf and giant planet companions in the β Pic moving group: HR 7329 B, PZ Tel B, β Pic b, and 51 Eri b. Depending on its exact age and accretion history, this new object may represent the third brown dwarf companion and fifth substellar companion in this association.

  4. The First Brown Dwarf Discovered by the Backyard Worlds: Planet 9 Citizen Science Project

    Science.gov (United States)

    Kuchner, Marc J.; Faherty, Jacqueline K.; Schneider, Adam C.; Meisner, Aaron M.; Filippazzo, Joseph C.; Gagné, Jonathan; Trouille, Laura; Silverberg, Steven M.; Castro, Rosa; Fletcher, Bob; Mokaev, Khasan; Stajic, Tamara

    2017-06-01

    The Wide-field Infrared Survey Explorer (WISE) is a powerful tool for finding nearby brown dwarfs and searching for new planets in the outer solar system, especially with the incorporation of NEOWISE and NEOWISE-Reactivation data. However, so far, searches for brown dwarfs in WISE data have yet to take advantage of the full depth of the WISE images. To efficiently search this unexplored space via visual inspection, we have launched a new citizen science project, called “Backyard Worlds: Planet 9,” which asks volunteers to examine short animations composed of difference images constructed from time-resolved WISE coadds. We report the first new substellar object discovered by this project, WISEA J110125.95+540052.8, a T5.5 brown dwarf located approximately 34 pc from the Sun with a total proper motion of ˜0.″7 {{yr}}-1. WISEA J110125.95+540052.8 has a WISE W2 magnitude of W2=15.37+/- 0.09; our sensitivity to this source demonstrates the ability of citizen scientists to identify moving objects via visual inspection that are 0.9 mag fainter than the W2 single-exposure sensitivity, a threshold that has limited prior motion-based brown dwarf searches with WISE.

  5. The First Brown Dwarf Discovered by the Backyard Worlds: Planet 9 Citizen Science Project

    Science.gov (United States)

    Kuchner, Marc J.; Faherty, Jacqueline K.; Schneider, Adam C.; Meisner, Aaron M.; Filippazzo, Joseph C.; Gagne, Jonathan; Trouille, Laura; Silverberg, Steven M.; Castro, Rosa; Fletcher, Bob; hide

    2017-01-01

    The Wide-field Infrared Survey Explorer (WISE) is a powerful tool for finding nearby brown dwarfs and searching for new planets in the outer solar system, especially with the incorporation of NEOWISE and NEOWISE Reactivation data. However, so far, searches for brown dwarfs in WISE data have yet to take advantage of the full depth of the WISE images. To efficiently search this unexplored space via visual inspection, we have launched anew citizen science project, called "Backyard Worlds: Planet 9," which asks volunteers to examine short animations composed of difference images constructed from time-resolved WISE co adds. We report the first new substellar object discovered by this project, WISEA J110125.95+540052.8, a T5.5 brown dwarf located approximately 34 pc from the Sun with a total proper motion of approx.0. "7/ yr. WISEA J110125.95+540052.8 has a WISE W2 magnitude of W2 = 15.37+/- 0.09; our sensitivity to this source demonstrates the ability of citizen scientists to identify moving objects via visual inspection that are 0.9 mag fainter than the W2 single-exposure sensitivity, a threshold that has limited prior motion-based brown dwarf searches with WISE.

  6. A spectroscopic survey of young brown dwarfs in the near-infrared

    Science.gov (United States)

    McGovern, Mark Roland

    Motivated by the discovery of numerous Jupiter-sized brown dwarfs in infrared imaging surveys, and stimulated by the advent of sensitive near-infrared (NIR) spectrometers on very large telescopes, this thesis presents the results of a unique observational survey to investigate and characterize the near-infrared spectra of low-mass stars and brown dwarfs. The project, called the NIRSPEC Brown Dwarf Spectroscopic Survey (or BDSS) was carried out with the Keck 10- m telescope on Mauna Kea, Hawaii using the facility cryogenic NIR spectrometer (NIRSPEC) developed at UCLA by Professor Ian McLean. Beginning in April 1999, immediately after NIRSPEC was delivered to the telescope, this infrared spectroscopic survey was developed in multiple phases to obtain the largest self-consistent set of high quality spectra yet obtained for the two new classes of very cool objects known as L and T dwarfs (T eff ~ 2200-750K). This work presents the results of two of the major phases of the BDSS and includes near-infrared spectra from over 150 low-mass stars and brown dwarfs. In the first phase of the project the emphasis was on the effects of decreasing effective temperature (T eff ) on the infrared spectral morphology. Observations were concentrated on the J -band region of the spectrum from 1.14- 1.36 microns. Over 50 objects spanning the spectral types from M6 to T8 were observed in this band. With the spectral resolving power of the NIRSPEC instrument (R ~ 2000) we developed nine spectral indices to classify these objects in the J -band. From this data base it was possible for the first time to create a pure infrared spectral classification system for the L dwarfs, and to confirm the existing infrared classification system for T dwarfs. This is an important development because most of the flux from L and T dwarfs is radiated in the near-infrared, where they are several magnitudes brighter than at visible wavelengths, and classification via NIR properties is not only important but

  7. Phase Curve Observations of the Irradaited Transiting Brown Dwarf KELT-1b

    Science.gov (United States)

    Beatty, Thomas; Colon, Knicole; Fortney, Jonathan; Gaudi, Scott; Marley, Mark; Rodriguez, Joseph; Showman, Adam

    2014-12-01

    We propose to observe full orbit phase curves, at 3.6um and 4.5um, of the transiting brown dwarf KELT-1b. KELT-1b is a 27MJ object on a short 1.2 day (29.2 hour) orbit around a bright (V=10.8) F5V star. This system is unique, in that it contains the only known highly irradiated brown dwarf on which it is possible to perform high precision atmospheric measurements, due to KELT-1b's short orbital period and the brightness of its host star. Future work to observationally and theoretically understand the properties of irradiated brown dwarfs will, therefore, rely on our ability to measure the properties of KELT-1b and its atmosphere. Furthermore, a comparison of KELT-1b's Spitzer phase curves to those of similarly irradiated giant planets offers the best possible test of the role of surface gravity in atmospheric circulation. Besides its one-of-a-kind status as an irradiated brown dwarf, KELT-1b is one of the best possible targets for phase curve observations. There are only seven transiting extrasolar giant planets or brown dwarfs with shorter orbital periods (11.8). Our proposed observations will therefore require a relativity low amount of Spitzer time compared to other phase curve proposals (74.5 hours for both bands), and will give very high signal-to-noise ratio (SNR) detections of the phase modulation (estimated SNR of 56 to 74). Our observations will yield one of the best defined phase curve measurements conducted by Spitzer: we estimate a SNR for the phase curve of KELT-1b similar to that achieved on WASP-18b, and a SNR 4 to 5 times higher than the next highest SNR achieved, for the phase curve of HD189733b.

  8. The critical binary star separation for a planetary system origin of white dwarf pollution

    Science.gov (United States)

    Veras, Dimitri; Xu, Siyi; Rebassa-Mansergas, Alberto

    2018-01-01

    The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here, we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary systems, and (ii) determine the critical binary separation beyond which the accretion source is from a planetary system. We hence obtain user-friendly functions relating this distance to the masses and radii of both stars, the companion wind, and the accretion rate on to the white dwarf, for a wide variety of published accretion prescriptions. We find that for the majority of white dwarfs in known binaries, if pollution is detected, then that pollution should originate from planetary material.

  9. Post Common Envelope Binaries as probes of M dwarf stellar wind and habitable zone radiation environments

    Science.gov (United States)

    Wilson, David

    2017-08-01

    M dwarf stars are promising targets in the search for extrasolar habitable planets, as their small size and close-in habitable zones make the detection of Earth-analog planets easier than at Solar-type stars. However, the effects of the high stellar activity of M dwarf hosts has uncertain effects on such planets, and may render them uninhabitable. Studying stellar activity at M dwarfs is hindered by a lack of measurements of high-energy radiation, flare activity and, in particular, stellar wind rates. We propose to rectify this by observing a sample of Post Common Envelope Binaries (PCEBs) with HST and XMM-Newton. PCEBs consist of an M dwarf with a white dwarf companion, which experiences the same stellar wind and radiation environment as a close-in planet. The stellar wind of the M dwarf accretes onto the otherwise pure hydrogen atmosphere white dwarf, producing metal lines detectable with ultraviolet spectroscopy. The metal lines can be used to measure accretion rates onto the white dwarf, from with we can accurately infer the stellar wind mass loss rate of the M dwarf, along with abundances of key elements. Simultaneous observations with XMM-Newton will probe X-ray flare occurrence rate and strength, in addition to coronal temperatures. Performing these measurements over twelve PCEBs will provide a sample of M dwarf stellar wind strengths, flare occurrence and X-ray/UV activity that will finally shed light on the true habitability of planets around small stars.

  10. HUBBLE SPACE TELESCOPE SPECTROSCOPY OF BROWN DWARFS DISCOVERED WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Adam C.; Cushing, Michael C. [Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606 (United States); Kirkpatrick, J. Davy; Gelino, Christopher R. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Mace, Gregory N.; Wright, Edward L. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Eisenhardt, Peter R. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Skrutskie, M. F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Griffith, Roger L. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Marsh, Kenneth A., E-mail: Adam.Schneider@Utoledo.edu [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom)

    2015-05-10

    We present a sample of brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE) for which we have obtained Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) near-infrared grism spectroscopy. The sample (22 in total) was observed with the G141 grism covering 1.10–1.70 μm, while 15 were also observed with the G102 grism, which covers 0.90–1.10 μm. The additional wavelength coverage provided by the G102 grism allows us to (1) search for spectroscopic features predicted to emerge at low effective temperatures (e.g.,ammonia bands) and (2) construct a smooth spectral sequence across the T/Y boundary. We find no evidence of absorption due to ammonia in the G102 spectra. Six of these brown dwarfs are new discoveries, three of which are found to have spectral types of T8 or T9. The remaining three, WISE J082507.35+280548.5 (Y0.5), WISE J120604.38+840110.6 (Y0), and WISE J235402.77+024015.0 (Y1), are the 19th, 20th, and 21st spectroscopically confirmed Y dwarfs to date. We also present HST grism spectroscopy and reevaluate the spectral types of five brown dwarfs for which spectral types have been determined previously using other instruments.

  11. SPIRAL INSTABILITY CAN DRIVE THERMONUCLEAR EXPLOSIONS IN BINARY WHITE DWARF MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Kashyap, Rahul; Fisher, Robert [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); García-Berro, Enrique; Aznar-Siguán, Gabriela [Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades, 5, E-08860 Castelldefels (Spain); Ji, Suoqing [Department of Physics, Broida Hall, University of California Santa Barbara, Santa Barbara, CA 93106–9530 (United States); Lorén-Aguilar, Pablo [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2015-02-10

    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon–oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model that yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia.

  12. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  13. A new L5 brown dwarf member of the Hyades cluster with chromospheric activity

    Science.gov (United States)

    Pérez-Garrido, A.; Lodieu, N.; Rebolo, R.

    2017-03-01

    Aims: Our aim is to identify brown dwarf members of the nearby Hyades open star cluster to determine the photometric and spectroscopic properties of brown dwarfs at moderately old ages and extend the knowledge of the substellar mass function of the cluster. Methods: We cross-matched the 2MASS and AllWISE public catalogues and measured proper motions to identify low-mass stars and brown dwarf candidates in an area of radius eight degrees around the central region of the Hyades cluster. We identified objects with photometry and proper motions consistent with cluster membership. For the faintest (J = 17.2 mag) most promising astrometric and photometric low-mass candidate 2MASS J04183483+2131275, with a membership probability of 94.5%, we obtained low-resolution (R = 300-1000) and intermediate-resolution (R = 2500) spectroscopy with the 10.4m Gran Telescopio Canarias. Results: From the low-resolution spectra we determined a L5.0 ± 0.5 spectral type, consistent with the available photometry. In the intermediate dispersion spectrum we detected Hα in emission (marginally resolved with a full width half maximum of 2.8 Å) and determined a log (LHα/Lbol) = -6.0 dex. From Hα we obtained a radial velocity of 38.0 ± 2.9 km s-1, which combined with the proper motion leads to space velocities which are fully consistent with membership in the Hyades cluster. We also report a detection in the H2 band by the UKIDSS Galactic Plane Survey. Using evolutionary models we determine from the available photometry of the object a mass in the range 0.039-0.055 M⊙. Brown dwarfs with masses below 0.055 M⊙ should fully preserve its initial lithium content, and indeed the spectrum at 6708 Å may show a feature consistent with lithium preservation; however, a higher S/N is needed to confirm this point. Conclusions: We have identified a new high-probability L5 brown dwarf member of the Hyades cluster. This is the first relatively old L5 brown dwarf with a well-determined age (500-700 Myr

  14. White Dwarf/M Dwarf Binaries as Single Degenerate Progenitors of Type Ia Supernovae

    Science.gov (United States)

    Wheeler, J. Craig

    2012-10-01

    Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, MV >~ 8.4 on the SN Ia in SNR 0509-67.5 and MV >~ 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a "magnetic bottle" connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the "nova limit" and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

  15. WHITE DWARF/M DWARF BINARIES AS SINGLE DEGENERATE PROGENITORS OF TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, J. Craig, E-mail: wheel@astro.as.utexas.edu [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2012-10-20

    Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, M{sub V} {approx}> 8.4 on the SN Ia in SNR 0509-67.5 and M{sub V} {approx}> 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a 'magnetic bottle' connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the 'nova limit' and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

  16. Spectroscopic binaries in the Solar Twin Planet Search program: from substellar-mass to M dwarf companions

    Science.gov (United States)

    dos Santos, Leonardo A.; Meléndez, Jorge; Bedell, Megan; Bean, Jacob L.; Spina, Lorenzo; Alves-Brito, Alan; Dreizler, Stefan; Ramírez, Iván; Asplund, Martin

    2017-12-01

    Previous studies on the rotation of Sun-like stars revealed that the rotational rates of young stars converge towards a well-defined evolution that follows a power-law decay. It seems, however, that some binary stars do not obey this relation, often by displaying enhanced rotational rates and activity. In the Solar Twin Planet Search program, we observed several solar twin binaries, and found a multiplicity fraction of 42 per cent ± 6 per cent in the whole sample; moreover, at least three of these binaries (HIP 19911, HIP 67620 and HIP 103983) clearly exhibit the aforementioned anomalies. We investigated the configuration of the binaries in the program, and discovered new companions for HIP 6407, HIP 54582, HIP 62039 and HIP 30037, of which the latter is orbited by a 0.06 M⊙ brown dwarf in a 1 m long orbit. We report the orbital parameters of the systems with well-sampled orbits and, in addition, the lower limits of parameters for the companions that only display a curvature in their radial velocities. For the linear trend binaries, we report an estimate of the masses of their companions when their observed separation is available, and a minimum mass otherwise. We conclude that solar twin binaries with low-mass stellar companions at moderate orbital periods do not display signs of a distinct rotational evolution when compared to single stars. We confirm that the three peculiar stars are double-lined binaries, and that their companions are polluting their spectra, which explains the observed anomalies.

  17. Double-lined M dwarf eclipsing binaries from Catalina Sky Survey and LAMOST

    Science.gov (United States)

    Lee, Chien-Hsiu; Lin, Chien-Cheng

    2017-02-01

    Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through light curve classification, yet their basic properties remain unexplored due to the extensive efforts needed to follow them up spectroscopically. In this paper we investigate three M2-M3 type double-lined eclipsing binaries discovered by cross-matching eclipsing binaries from the Catalina Sky Survey with spectroscopically classified M dwarfs from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey data release one and two. Because these three M dwarf binaries are faint, we further acquire radial velocity measurements using GMOS on the Gemini North telescope with R˜ 4000, enabling us to determine the mass and radius of individual stellar components. By jointly fitting the light and radial velocity curves of these systems, we derive the mass and radius of the primary and secondary components of these three systems, in the range between 0.28-0.42M_⊙ and 0.29-0.67R_⊙, respectively. Future observations with a high resolution spectrograph will help us pin down the uncertainties in their stellar parameters, and render these systems benchmarks to study M dwarfs, providing inputs to improving stellar models in the low mass regime, or establishing an empirical mass-radius relation for M dwarf stars.

  18. Near-infrared spectroscopic survey of brown dwarfs using NIRSPEC on the Keck II Telescope

    Science.gov (United States)

    McLean, Ian S.

    2003-02-01

    Since commissioning the near-infrared spectrometer (NIRSPEC) on the Keck II telescope in April 1999 we have been carrying out an extensive spectroscopic survey of low-mass stars and brown dwarfs. At least two objects in every spectral sub-class from M6 to T8 have been observed in the J band at a resolution of R ~ 2,000. For a subset of these we have obtained complete near-infrared flux-calibrated spectra from 0.9 - 2.5 μm. In addition, J band spectra at even higher resolution (R ~ 20,000) have been obtained for many sub-classes. The results of the NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) are summarized in this paper and presented as an illustration of the progress in infrared technology and the scientific productivity of the Keck telescopes.

  19. A T8.5 BROWN DWARF MEMBER OF THE {xi} URSAE MAJORIS SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Edward L.; Mace, Gregory; McLean, Ian S. [UCLA Astronomy, P.O. Box 951547, Los Angeles, CA 90095-1547 (United States); Skrutskie, M. F.; Nelson, M. J.; Borish, H. J. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Kirkpatrick, J. Davy; Gelino, Christopher R.; Griffith, Roger L.; Jarrett, Tom [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Marsh, Kenneth A. [School of Physics and Astronomy, Cardiff University, Cardiff CF243AA (United Kingdom); Mainzer, Amanda K.; Eisenhardt, Peter R. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8001 (United States); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Cushing, Michael C., E-mail: wright@astro.ucla.edu [Department of Physics and Astronomy, MS 111, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606-3328 (United States)

    2013-03-15

    The Wide-field Infrared Survey Explorer has revealed a T8.5 brown dwarf (WISE J111838.70+312537.9) that exhibits common proper motion with a solar-neighborhood (8 pc) quadruple star system-{xi} Ursae Majoris. The angular separation is 8.'5, and the projected physical separation is Almost-Equal-To 4000 AU. The sub-solar metallicity and low chromospheric activity of {xi} UMa A argue that the system has an age of at least 2 Gyr. The infrared luminosity and color of the brown dwarf suggests the mass of this companion ranges between 14 and 38 M{sub J} for system ages of 2 and 8 Gyr, respectively.

  20. Habitable Planets Around White and Brown Dwarfs: The Perils of a Cooling Primary

    Science.gov (United States)

    Heller, René

    2013-01-01

    Abstract White and brown dwarfs are astrophysical objects that are bright enough to support an insolation habitable zone (IHZ). Unlike hydrogen-burning stars, they cool and become less luminous with time; hence their IHZ moves in with time. The inner edge of the IHZ is defined as the orbital radius at which a planet may enter a moist or runaway greenhouse, phenomena that can remove a planet's surface water forever. Thus, as the IHZ moves in, planets that enter it may no longer have any water and are still uninhabitable. Additionally, the close proximity of the IHZ to the primary leads to concern that tidal heating may also be strong enough to trigger a runaway greenhouse, even for orbital eccentricities as small as 10−6. Water loss occurs due to photolyzation by UV photons in the planetary stratosphere, followed by hydrogen escape. Young white dwarfs emit a large amount of these photons, as their surface temperatures are over 104 K. The situation is less clear for brown dwarfs, as observational data do not constrain their early activity and UV emission very well. Nonetheless, both types of planets are at risk of never achieving habitable conditions, but planets orbiting white dwarfs may be less likely to sustain life than those orbiting brown dwarfs. We consider the future habitability of the planet candidates KOI 55.01 and 55.02 in these terms and find they are unlikely to become habitable. Key Words: Extrasolar terrestrial planets—Habitability—Habitable zone—Tides—Exoplanets. Astrobiology 13, 279–291. PMID:23537137

  1. Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana Elena; Freedman, Richard; Visscher, Channon

    2017-01-01

    Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure. In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations. We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 less than or equal to T(sub eff) less than or equal to 2400 K and 2.5 less than or equal to log g less than or equal to 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.

  2. Brown dwarf distances and atmospheres: Spitzer Parallaxes and the Keck/NIRSPEC upgrade

    Science.gov (United States)

    Martin, Emily C.

    2018-01-01

    Advances in infrared technology have been essential towards improving our understanding of the solar neighborhood, revealing a large population of brown dwarfs, which span the mass regime between planets and stars. My thesis combines near-infrared (NIR) spectroscopic and astrometric analysis of nearby low-mass stars and brown dwarfs with instrumentation work to upgrade the NIRSPEC instrument for the Keck II Telescope. I will present results from a program using Spitzer/IRAC data to measure precise locations and distances to 22 of the coldest and closest brown dwarfs. These distances allow us to constrain absolute physical properties, such as mass, radius, and age, of free-floating planetary-mass objects through comparison to atmospheric and evolutionary models. NIR spectroscopy combined with the Spitzer photometry reveals a detailed look into the atmospheres of brown dwarfs and gaseous extrasolar planets. Additionally, I will discuss the improvements we are making to the NIRSPEC instrument at Keck. NIRSPEC is a NIR echelle spectrograph, capable of R~2000 and R~25,000 observations in the 1-5 μm range. As part of the upgrade, I performed detector characterization, optical design of a new slit-viewing camera, mechanical testing, and electronics design. NIRSPEC’s increased efficiency will allow us to obtain moderate- and high-resolution NIR spectra of objects up to a magnitude fainter than the current NIRSPEC design. Finally, I will demonstrate the utility of a NIR laser frequency comb as a high-resolution calibrator. This new technology will revolutionize precision radial velocity measurements in the coming decade.

  3. Detection of brown dwarfs by the micro-lensing of unresolved stars

    CERN Document Server

    Baillon, Paul; Giraud-Héraud, Yannick; Kaplan, J; Baillon, Paul; Bouquet, Alain; Giraud-Héraud, Yannick; Kaplan, Jean

    1993-01-01

    The presence of brown dwarfs in the dark galactic halo could be detected through their gravitational lensing effect and experiments under way monitor about one million stars to observe a few lensing events per year. We show that if the photon flux from a galaxy is measured with a good precision, it is not necessary to resolve the stars and besides more events could be observed.

  4. The SOPHIE search for northern extrasolar planets. IX. Populating the brown dwarf desert

    Science.gov (United States)

    Wilson, P. A.; Hébrard, G.; Santos, N. C.; Sahlmann, J.; Montagnier, G.; Astudillo-Defru, N.; Boisse, I.; Bouchy, F.; Rey, J.; Arnold, L.; Bonfils, X.; Bourrier, V.; Courcol, B.; Deleuil, M.; Delfosse, X.; Díaz, , R. F.; Ehrenreich, D.; Forveille, T.; Moutou, C.; Pepe, F.; Santerne, A.; Ségransan, D.; Udry, S.

    2016-04-01

    Radial velocity planet search surveys of nearby solar-type stars have shown a strong scarcity of brown dwarf companions within ~5 AU. There is presently no comprehensive explanation for this lack of brown dwarf companions; therefore, increasing the sample of such objects is crucial to understand their formation and evolution. Based on precise radial velocities obtained using the SOPHIE spectrograph at Observatoire de Haute-Provence we characterise the orbital parameters of 15 companions to solar-type stars and constrain their true mass using astrometric data from the Hipparcos space mission. The nine companions not shown to be stellar in nature have minimum masses ranging from ~13 to 70 MJup, and are well distributed across the planet/brown dwarf mass regime, making them an important contribution to the known population of massive companions around solar-type stars. We characterise six companions as stellar in nature with masses ranging from a minimum mass of 76 ± 4 MJup to a mass of 0.35 ± 0.03 M⊙. The orbital parameters of two previously known substellar candidates are improved. Based on observations collected with the SOPHIE spectrograph on the 1.93 m telescope at Observatoire de Haute-Provence (CNRS), France, by the SOPHIE Consortium.The radial velocity measurements are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A144

  5. White Dwarf/M Dwarf Binaries as Single Degenerate Progenitors of Type Ia Supernovae

    OpenAIRE

    Wheeler, J. Craig

    2012-01-01

    Limits on the companions of white dwarfs in the single degenerate scenario for the origin of Type Ia supernovae (SNIa) have gotten increasingly tight. The only type of non-degenerate stars that survive the limits on the companions of SNIa in SNR 0509-67.5 and SN1572 are M dwarfs. M dwarfs have special properties that have not been considered in most work on the progenitors of SNIa: they have small but finite magnetic fields, and they flare frequently. These properties are explored in the cont...

  6. VizieR Online Data Catalog: Brown dwarf surface gravities with Keck/NIRSPEC (Martin , 2017)

    Science.gov (United States)

    Martin, E. C.; Mace, G. N.; McLean, I. S.; Logsdon, S. E.; Rice, E. L.; Kirkpatrick, J. D.; Burgasser, A. J.; McGovern, M. R.; Prato, L.

    2017-10-01

    In this paper, we follow up on prior NIR spectroscopy by our group and use a modified Allers & Liu (A13, 2013ApJ...772...79A) method to determine surface gravities for 228 M, L, and T dwarfs. We present medium-resolution (R~20000) J-band spectra of 85 M dwarfs, 92 L dwarfs, and 51 T dwarfs obtained as part of the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS). Ninety-seven spectra were published previously in McLean+ (2003ApJ...596..561M), Burgasser+ (2003ApJ...592.1186B), McGovern+ (2004ApJ...600.1020M), Rice+ (2010ApJS..186...63R), Kirkpatrick+ (2010, J/ApJS/190/100), Luhman (2012ARA&A..50...65L), Thompson+ (2013PASP..125..809T), Mace+ (2013, J/ApJS/205/6), Mace+ (2013ApJ...777...36M), and Kirkpatrick+ (2014, J/ApJ/783/122), and the remaining 131 are presented here for the first time. Observation information (spanning 1999 Apr to 2015 Mar) for all of the targets in our sample is listed in Table 1. (4 data files).

  7. HS 2231+2441: an HW Vir system composed of a low-mass white dwarf and a brown dwarf★

    Science.gov (United States)

    Almeida, L. A.; Damineli, A.; Rodrigues, C. V.; Pereira, M. G.; Jablonski, F.

    2017-12-01

    HW Vir systems are rare evolved eclipsing binaries composed of a hot compact star and a low-mass main sequence star in a close orbit. These systems provide a direct way to measure the fundamental properties, e.g. masses and radii, of their components, hence they are crucial in studying the formation of subdwarf B stars and low-mass white dwarfs, the common-envelope phase and the pre-phase of cataclysmic variables. Here, we present a detailed study of HS 2231+2441, an HW Vir type system, by analysing BVRCIC photometry and phase-resolved optical spectroscopy. The spectra of this system, which are dominated by the primary component features, were fitted using non-local thermodynamic equilibrium models providing an effective temperature Teff = 28 500 ± 500 K, surface gravity log g = 5.40 ± 0.05 cm s-2 and helium abundance log (n(He)/n(H)) = -2.52 ± 0.07. The geometrical orbit and physical parameters were derived by simultaneously modelling the photometric and spectroscopic data using the Wilson-Devinney code. We derive two possible solutions for HS 2231+2441 that provide the component masses: M1 = 0.19 M⊙ and M2 = 0.036 M⊙ or M1 = 0.288 M⊙ and M2 = 0.046 M⊙. Considering the possible evolutionary channels for forming a compact hot star, the primary of HS 2231+2441 probably evolved through the red-giant branch scenario and does not have a helium-burning core, which is consistent with a low-mass white dwarf. Both solutions are consistent with a brown dwarf as the secondary.

  8. Probing the Accretion Induced Collapse of White Dwarfs in the Binary Millisecond Pulsars Population

    Science.gov (United States)

    Taani, Ali

    The recycling process suggested that low-mass X-ray binaries (LMXBs) could evolve into binary Millisecond Pulsars (MSPs). I will discuss another possible channel involving the Accretion Induced Collapse (AIC) of a white dwarf (WD) in binaries. I will investigate the progenitors of MSPs with a distribution of long orbital periods, to show the link between WD binaries and long orbits for some binary MSPs. For this task, I present a model that attempts to turn binary MSPs into wide binaries (P_orb > 2 d) with high eccentricities (e > 0.1). in the Galactic disk, since the AIC process in a close binary will impart a kick velocity caused by asymmetric collapse to the thus formed neutron star, and the binding energy plus the mass loss (0.2~Msun) not expected to exceed a few tens of km/s. An appropriate kick can disrupt the binary system and result in the birth of isolated MSPs. Otherwise, the binary survives and an eccentric binary MSP is formed. The circularity of the orbit implies that the companion is a WD. In addition AIC can retain pulsars in globular clusters due to the small momentum kick expected to be associated with the implosion.

  9. Comparison of BT Settl Model Spectra in NIR to Brown Dwarfs and Massive Exoplanets

    Science.gov (United States)

    Popinchalk, Mark; Buzard, Cam; Alam, Munazza; Camnasio, Sara; Cruz, Kelle L.; Faherty, Jacqueline K.; Rice, Emily L.

    2017-01-01

    Brown dwarfs and giant exoplanets are difficult to observe, which hampers our understanding of their properties. Model spectra, such as the BT Settl model grid, can provide an opportunity to augment and validate our understanding of these faint objects by serving to contrast and complement our analysis of their observed spectra. We present work from an upcoming paper that leverages this opportunity. The near infrared (NIR) wavelength region is favorable for analysis of low mass brown dwarfs and high mass gaseous companions, in particular the K band (1.97 - 2.40 µm) due to its relatively high resolution and high signal-to-noise ratio wavelength range for spectra of planetary companions. We present a method to analyze two regions of the K band spectral structure (2.03 - 2.10 µm and 2.215 - 2.290 µm), and apply it to a sample of objects with field gravity, low gravity, and planetary mass as well as the BT Settl model grid for a similar range of effective temperatures and surface gravities. A correlation between spectral structure and effective temperature is found for the shorter wavelength region and there is evidence of gravity dependence for the longer wavelength range. This work suggests that the K band has the potential to be an indicator for brown dwarf and exoplanet surface gravity and effective temperature. We also present preliminary analysis from another upcoming paper. We examine equivalent widths of K I absorption lines at 1.1693 µm, 1.1773 µm, 1.2436 µm and 1.2525 µm in a selection of L dwarfs to explore their physical properties by comparing them to equivalent measurements in the BT Settl model grid.

  10. Identifying Cool Brown Dwarfs and Subdwarfs in the Solar Neighborhood: Prospects for a Near-Infrared Proper Motion Survey

    Science.gov (United States)

    Burgasser, A. J.

    2003-12-01

    Low-temperature stars and brown dwarfs emit predominantly in the near-infrared, and recent wide-field surveys sampling these wavelengths (2MASS, DENIS, SDSS) have unveiled a vast repository of intrinsically faint objects, including large numbers of field brown dwarfs and members of two new spectral classes. On the other hand, proper motion surveys have been exceptionally efficient at uncovering both the nearest stars and stars with high intrinsic motions; i.e., halo/thick disk dwarfs and white dwarfs. Unfortunately, proper motion surveys are insensitive to faint stars and brown dwarfs as they have been conducted primarily at optical bands. I therefore make a case for a wide-field near-infrared proper motion survey that would detect the nearest cool stars and brown dwarfs in an efficient and photometrically unbiased manner. I demonstrate how the currently known population of field brown dwarfs are easily discernible in such a survey, and how substellar subdwarfs could potentially be found in substantial numbers. This survey could make use of existing catalog data as its first epoch. I also describe a straightforward NIR survey program using a 2Kx2K IR camera on a dedicated 1-2m class automated telescope. This somewhat more ambitious program could repeatedly scan the sky on a 6-month cycle, and would be useful for cool dwarf searches, general variability studies, searches for transits around late-type stars, and deep survey programs. This research is supported by NASA through Hubble Fellowship grant HST-HF-01137.01 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  11. The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II

    Science.gov (United States)

    Spencer, Meghin E.; Mateo, Mario; Walker, Matthew G.; Olszewski, Edward W.; McConnachie, Alan W.; Kirby, Evan N.; Koch, Andreas

    2017-06-01

    We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determine that the binary fraction for Leo II ranges from {0.30}-0.10+0.09 to {0.34}-0.11+0.11, depending on the distributions of binary orbital parameters assumed. This value is smaller than what has been found for the solar neighborhood (˜0.4-0.6) but falls within the wide range of values that have been inferred for other dwarf spheroidals (0.14-0.69). The distribution of orbital periods has the greatest impact on the binary fraction results. If the fraction we find in Leo II is present in low-mass ultra-faints, it can artificially inflate the velocity dispersion of those systems and cause them to appear more dark matter rich than in actuality. For a galaxy with an intrinsic dispersion of 1 km s-1 and an observational sample of 100 stars, the dispersion can be increased by a factor of 1.5-2 for Leo II-like binary fractions or by a factor of three for binary fractions on the higher end of what has been seen in other dwarf spheroidals.

  12. Testing the white dwarf mass-radius relationship with eclipsing binaries

    Science.gov (United States)

    Parsons, S. G.; Gänsicke, B. T.; Marsh, T. R.; Ashley, R. P.; Bours, M. C. P.; Breedt, E.; Burleigh, M. R.; Copperwheat, C. M.; Dhillon, V. S.; Green, M.; Hardy, L. K.; Hermes, J. J.; Irawati, P.; Kerry, P.; Littlefair, S. P.; McAllister, M. J.; Rattanasoon, S.; Rebassa-Mansergas, A.; Sahman, D. I.; Schreiber, M. R.

    2017-10-01

    We present high-precision, model-independent, mass and radius measurements for 16 white dwarfs in detached eclipsing binaries and combine these with previously published data to test the theoretical white dwarf mass-radius relationship. We reach a mean precision of 2.4 per cent in mass and 2.7 per cent in radius, with our best measurements reaching a precision of 0.3 per cent in mass and 0.5 per cent in radius. We find excellent agreement between the measured and predicted radii across a wide range of masses and temperatures. We also find the radii of all white dwarfs with masses less than 0.48 M⊙ to be fully consistent with helium core models, but they are on average 9 per cent larger than those of carbon-oxygen core models. In contrast, white dwarfs with masses larger than 0.52 M⊙ all have radii consistent with carbon-oxygen core models. Moreover, we find that all but one of the white dwarfs in our sample have radii consistent with possessing thick surface hydrogen envelopes (10-5 ≥ MH/MWD ≥ 10-4), implying that the surface hydrogen layers of these white dwarfs are not obviously affected by common envelope evolution.

  13. Models of very-low-mass stars, brown dwarfs and exoplanets.

    Science.gov (United States)

    Allard, F; Homeier, D; Freytag, B

    2012-06-13

    Within the next few years, GAIA and several instruments aiming to image extrasolar planets will be ready. In parallel, low-mass planets are being sought around red dwarfs, which offer more favourable conditions, for both radial velocity detection and transit studies, than solar-type stars. In this paper, the authors of a model atmosphere code that has allowed the detection of water vapour in the atmosphere of hot Jupiters review recent advances in modelling the stellar to substellar transition. The revised solar oxygen abundances and cloud model allow the photometric and spectroscopic properties of this transition to be reproduced for the first time. Also presented are highlight results of a model atmosphere grid for stars, brown dwarfs and extrasolar planets.

  14. The Effect of Atmospheric Cooling on Vertical Velocity Dispersion and Density Distribution of Brown Dwarfs

    Science.gov (United States)

    Ryan, Russell E., Jr.; Thorman, Paul A.; Schmidt, Sarah J.; Cohen, Seth H.; Hathi, Nimish P.; Holwerda, Benne W.; Lunine, Jonathan I.; Pirzkal, Nor; Windhorst, Rogier A.; Young, Erick

    2017-09-01

    We present a Monte Carlo simulation designed to predict the vertical velocity dispersion of brown dwarfs in the Milky Way. We show that since these stars are constantly cooling, the velocity dispersion has a noticeable trend with the spectral type. With realistic assumptions for the initial mass function, star formation history, and the cooling models, we show that the velocity dispersion is roughly consistent with what is observed for M dwarfs, decreases to cooler spectral types, and increases again for the coolest types in our study (˜T9). We predict a minimum in the velocity dispersions for L/T transition objects, however, the detailed properties of the minimum predominately depend on the star formation history. Since this trend is due to brown dwarf cooling, we expect that the velocity dispersion as a function of spectral type should deviate from the constancy around the hydrogen-burning limit. We convert from velocity dispersion to vertical scale height using standard disk models and present similar trends in disk thickness as a function of spectral type. We suggest that future, wide-field photometric and/or spectroscopic missions may collect sizable samples of distant (˜ 1 kpc) dwarfs that span the hydrogen-burning limit. As such, we speculate that such observations may provide a unique way of constraining the average spectral type of hydrogen burning. Support for program #13266 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555.

  15. GPI Spectroscopy of the Mass, Age, and Metallicity Benchmark Brown Dwarf HD 4747 B

    Science.gov (United States)

    Crepp, Justin R.; Principe, David A.; Wolff, Schuyler; Giorla Godfrey, Paige A.; Rice, Emily L.; Cieza, Lucas; Pueyo, Laurent; Bechter, Eric B.; Gonzales, Erica J.

    2018-02-01

    The physical properties of brown dwarf companions found to orbit nearby, solar-type stars can be benchmarked against independent measures of their mass, age, chemical composition, and other parameters, offering insights into the evolution of substellar objects. The TRENDS high-contrast imaging survey has recently discovered a (mass/age/metallicity) benchmark brown dwarf orbiting the nearby (d = 18.69 ± 0.19 pc), G8V/K0V star HD 4747. We have acquired follow-up spectroscopic measurements of HD 4747 B using the Gemini Planet Imager to study its spectral type, effective temperature, surface gravity, and cloud properties. Observations obtained in the H-band and K 1-band recover the companion and reveal that it is near the L/T transition (T1 ± 2). Fitting atmospheric models to the companion spectrum, we find strong evidence for the presence of clouds. However, spectral models cannot satisfactorily fit the complete data set: while the shape of the spectrum can be well-matched in individual filters, a joint fit across the full passband results in discrepancies that are a consequence of the inherent color of the brown dwarf. We also find a 2σ tension in the companion mass, age, and surface gravity when comparing to evolutionary models. These results highlight the importance of using benchmark objects to study “secondary effects” such as metallicity, non-equilibrium chemistry, cloud parameters, electron conduction, non-adiabatic cooling, and other subtleties affecting emergent spectra. As a new L/T transition benchmark, HD 4747 B warrants further investigation into the modeling of cloud physics using higher resolution spectroscopy across a broader range of wavelengths, polarimetric observations, and continued Doppler radial velocity and astrometric monitoring.

  16. Modular Spectral Inference Framework Applied to Young Stars and Brown Dwarfs

    Science.gov (United States)

    Gully-Santiago, Michael A.; Marley, Mark S.

    2017-01-01

    In practice, synthetic spectral models are imperfect, causing inaccurate estimates of stellar parameters. Using forward modeling and statistical inference, we derive accurate stellar parameters for a given observed spectrum by emulating a grid of precomputed spectra to track uncertainties. Spectral inference as applied to brown dwarfs re: Synthetic spectral models (Marley et al 1996 and 2014) via the newest grid spans a massive multi-dimensional grid applied to IGRINS spectra, improving atmospheric models for JWST. When applied to young stars(10Myr) with large starpots, they can be measured spectroscopically, especially in the near-IR with IGRINS.

  17. The Next Generation Sky Survey and the Quest for Cooler Brown Dwarfs

    OpenAIRE

    Kirkpatrick, J. Davy

    2002-01-01

    The Next Generation Sky Survey (NGSS) is a proposed NASA MIDEX mission to map the entire sky in four infrared bandpasses - 3.5, 4.7, 12, and 23 um. The seven-month mission will use a 50-cm telescope and four-channel imager to survey the sky from a circular orbit above the Earth. Expected sensitivities will be half a million times that of COBE/DIRBE at 3.5 and 4.7 um and a thousand times that of IRAS at 12 and 23 um. NGSS will be particularly sensitive to brown dwarfs cooler than those present...

  18. Young stars and brown dwarfs surrounding Alnilam (eps Ori) and Mintaka (del Ori)

    OpenAIRE

    Caballero, J. A.; Solano, E.

    2008-01-01

    Aims: We look for new regions for the search of substellar objects. Methods: Two circular areas, 45 arcmin-radius each, centred on the young massive star systems Alnilam and Mintaka in the Orion Belt, have been explored. The regions are very young (less than 10 Ma), have low extinction, and are neighbours to sigma Orionis (~3 Ma), a young open cluster very rich in brown dwarfs and planetary-mass objects. We have used Virtual Observatory tools, the astro-photometric Tycho-2, DENIS and 2MASS ca...

  19. Very Low-mass Stars and Brown Dwarfs in Upper Scorpius Using Gaia DR1: Mass Function, Disks, and Kinematics

    Science.gov (United States)

    Cook, Neil J.; Scholz, Aleks; Jayawardhana, Ray

    2017-12-01

    Our understanding of the brown dwarf population in star-forming regions is dependent on knowing distances and proper motions and therefore will be improved through the Gaia space mission. In this paper, we select new samples of very low-mass objects (VLMOs) in Upper Scorpius using UKIDSS colors and optimized proper motions calculated using Gaia DR1. The scatter in proper motions from VLMOs in Upper Scorpius is now (for the first time) dominated by the kinematic spread of the region itself, not by the positional uncertainties. With age and mass estimates updated using Gaia parallaxes for early-type stars in the same region, we determine masses for all VLMOs. Our final most complete sample includes 453 VLMOs of which ˜125 are expected to be brown dwarfs. The cleanest sample is comprised of 131 VLMOs, with ˜105 brown dwarfs. We also compile a joint sample from the literature that includes 415 VLMOs, out of which 152 are likely brown dwarfs. The disk fraction among low-mass brown dwarfs (M< 0.05 {M}⊙ ) is substantially higher than in more massive objects, indicating that disks around low-mass brown dwarfs survive longer than in low-mass stars overall. The mass function for 0.01< M< 0.1 {M}⊙ is consistent with the Kroupa Initial Mass Function. We investigate the possibility that some “proper motion outliers” have undergone a dynamical ejection early in their evolution. Our analysis shows that the color-magnitude cuts used when selecting samples introduce strong bias into the population statistics due to varying levels of contamination and completeness.

  20. Star formation in the lagoon nebula & low-mass stars and brown dwarfs

    Science.gov (United States)

    Castro, Philip J.

    Topic I of this thesis reports on star formation in the Lagoon Nebula. We report on deep Chandra X-Ray Observatory observations of the Lagoon Nebula (NGC 6530 and the Hourglass Nebula) totaling 233 ks. We find 1482 X-ray sources, 1130 associated with catalogued near-infrared or optical stars. These X-ray sources are mainly concentrated in the young Hourglass Nebula Cluster (HNC), the older NGC 6530 cluster, and the young M8E cluster in the southern rim. The clustering of X-ray sources near 850mum emission along the central ridge of NGC 6530, M8E, the southern ridge, and coincident with the Hourglass Nebula, provides evidence of triggered star formation. Chandra point-source density contours show a ridge of increased density between NGC 6530 and the HNC, 9 Sgr and the HNC, and class III/II contours stretching from 9 Sgr to the HNC, respectively, provide support for a proposed sequence of star formation in the Lagoon Nebula. Topic II of this thesis reports on low-mass stars and brown dwarfs (BDs). We report on Chandra X-Ray Observatory observations of the TW Hydrae BD 2MASSW J1139511-315921 (2M1139). In the combined 31 ks ACIS-S exposure, 2M1139 is detected at the 3sigma confidence level. This object is similar to another TW Hydrae BD member, CD-33 7795B (TWA 5B), previously detected in X-rays an order of magnitude more luminous than 2M1139. We find the discrepancy between their X-ray luminosities is consistent with BDs of similar spectral type in the Orion Nebula Cluster. Though rotation may play a role in the X-ray activity of ultracool dwarfs like 2M1139 and TWA 5B, the discrepancy cannot be explained by rotation alone. We discover five high proper motion spectroscopically confirmed L dwarfs by comparing WISE to 2MASS. Two of these are L dwarfs at the L/T transition within 10 pc, and three are early L dwarfs within 25 pc. Of the early L dwarfs, one is a member of the class of unusually red L dwarfs whose red spectra can not be easily attributed to youth.

  1. MOA-2010-BLG-073L: AN M-DWARF WITH A SUBSTELLAR COMPANION AT THE PLANET/BROWN DWARF BOUNDARY

    Energy Technology Data Exchange (ETDEWEB)

    Street, R. A.; Tsapras, Y. [LCOGT, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Choi, J.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Furusawa, K. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Hundertmark, M.; Horne, K.; Dominik, M.; Browne, P.; Bajek, D. [SUPA/St Andrews, Department of Physics and Astronomy, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Gould, A. [Department of Astronomy, Ohio State University, McPherson Laboratory, 140 West 18th Avenue, Columbus, OH 43210-1173 (United States); Sumi, T. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan); Bond, I. A. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Wouters, D. [UPMC-CNRS, UMR 7095, Institut d' Astrophysique de Paris, 98bis boulevard Arago, F-75014 Paris (France); Zellem, R. [Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Snodgrass, C. [Max Planck Institute for Solar System Research, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau (Germany); Kains, N.; Bramich, D. M. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); Steele, I. A., E-mail: rstreet@lcogt.net [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead, Wirral CH41 1LD (United Kingdom); Collaboration: RoboNet Collaboration; MOA Collaboration; OGLE Collaboration; muFUN Collaboration; PLANET Collaboration; MiNDSTEp Collaboration; and others

    2013-01-20

    We present an analysis of the anomalous microlensing event, MOA-2010-BLG-073, announced by the Microlensing Observations in Astrophysics survey on 2010 March 18. This event was remarkable because the source was previously known to be photometrically variable. Analyzing the pre-event source light curve, we demonstrate that it is an irregular variable over timescales >200 days. Its dereddened color, (V - I) {sub S,0}, is 1.221 {+-} 0.051 mag, and from our lens model we derive a source radius of 14.7 {+-} 1.3 R {sub Sun }, suggesting that it is a red giant star. We initially explored a number of purely microlensing models for the event but found a residual gradient in the data taken prior to and after the event. This is likely to be due to the variability of the source rather than part of the lensing event, so we incorporated a slope parameter in our model in order to derive the true parameters of the lensing system. We find that the lensing system has a mass ratio of q = 0.0654 {+-} 0.0006. The Einstein crossing time of the event, t {sub E} = 44.3 {+-} 0.1 days, was sufficiently long that the light curve exhibited parallax effects. In addition, the source trajectory relative to the large caustic structure allowed the orbital motion of the lens system to be detected. Combining the parallax with the Einstein radius, we were able to derive the distance to the lens, D{sub L} = 2.8 {+-} 0.4 kpc, and the masses of the lensing objects. The primary of the lens is an M-dwarf with M {sub L,1} = 0.16 {+-} 0.03 M {sub Sun }, while the companion has M {sub L,2} = 11.0 {+-} 2.0 M {sub J}, putting it in the boundary zone between planets and brown dwarfs.

  2. The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs

    Science.gov (United States)

    Saumon, Didier; Hubbard, William B.; Chabrier, Gilles; Van Horn, Hugh M.

    1992-01-01

    An equation of state for hydrogen which predicts a molecular-metallic phase transition at finite temperatures has become available recently. The effect of this phase transition on the cooling histories of these two giant planets and of substellar brown dwarfs is studied. The phase transition alters the present age of Jupiter and of Saturn by a few percent. Interestingly, the cooling of brown dwarfs is most strongly affected at the time when the interior adiabat crosses the critical point of the phase transition.

  3. A HERSCHEL SEARCH FOR COLD DUST IN BROWN DWARF DISKS: FIRST RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Paul M.; Evans, Neal J. II [Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Henning, Thomas [Max-Planck-Institut for Astronomy, Koenigstuhl 17, 69117 Heidelberg (Germany); Menard, Francois; Pinte, Christophe [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique (IPAG) UMR 5274, BP 53, 38041 Grenoble cedex 9 (France); Wolf, Sebastian; Liu Yao [Institute of Theoretical Physics and Astrophysics, University of Kiel, Leibnizstr. 15, 24098 Kiel (Germany); Cieza, Lucas A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Pascucci, Ilaria [Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States); Merin, Bruno, E-mail: pmh@astro.as.utexas.edu, E-mail: nje@astro.as.utexas.edu, E-mail: henning@mpia.de, E-mail: menard@obs.ujf-grenoble.fr, E-mail: christophe.pinte@obs.ujf-grenoble.fr, E-mail: wolf@astrophysik.uni-kiel.de, E-mail: yliu@pmo.ac.cn, E-mail: lcieza@ifa.hawaii.edu, E-mail: pascucci@lpl.arizona.edu, E-mail: Bruno.Merin@sciops.esa.int [Herschel Science Centre, SRE-SDH, ESA, P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain)

    2012-01-15

    We report initial results from a Herschel program to search for far-infrared emission from cold dust around a statistically significant sample of young brown dwarfs. The first three objects in our survey are all detected at 70 {mu}m, and we report the first detection of a brown dwarf at 160 {mu}m. The flux densities are consistent with the presence of substantial amounts of cold dust in the outer disks around these objects. We modeled the spectral energy distributions (SEDs) with two different radiative transfer codes. We find that a broad range of model parameters provide a reasonable fit to the SEDs, but that the addition of our 70 {mu}m, and especially the 160 {mu}m, detection enables strong lower limits to be placed on the disk masses since most of the mass is in the outer disk. We find likely disk masses in the range of a few Multiplication-Sign 10{sup -6} to 10{sup -4} M{sub Sun }. Our models provide a good fit to the SEDs and do not require dust settling.

  4. The radius anomaly in the planet/brown dwarf overlapping mass regime

    Directory of Open Access Journals (Sweden)

    Baraffe I.

    2011-02-01

    Full Text Available The recent detection of the transit of very massive substellar companions (Deleuil et al. 2008; Bouchy et al. 2010; Anderson et al. 2010; Bakos et al. 2010 provides a strong constraint to planet and brown dwarf formation and migration mechanisms. Whether these objects are brown dwarfs originating from the gravitational collapse of a dense molecular cloud that, at the same time, gave birth to the more massive stellar companion, or whether they are planets that formed through core accretion of solids in the protoplanetary disk can not always be determined unambiguously and the mechanisms responsible for their short orbital distances are not yet fully understood. In this contribution, we examine the possibility to constrain the nature of a massive substellar object from the various observables provided by the combination of Radial Velocity and Photometry measurements (e.g. Mp , Rp , M⋆, Age, a, e.... In a second part, developments in the modeling of tidal evolution at high eccentricity and inclination - as measured for HD 80 606 with e = 0.9337 (Naef et al. 2001 , XO-3 with a stellar obliquity ε⋆  > 37.3 ± 3.7 deg (Hébrard et al. 2008; Winn et al. 2009 and several other exoplanets - are discussed along with their implication in the understanding of the radius anomaly problem of extrasolar giant planets.

  5. The physics of brown dwarfs and exoplanets - JWST/NIRSpec GTO program overview

    Science.gov (United States)

    Birkmann, Stephan; Alves de Oliveira, Catarina; Valenti, Jeff A.; Ferruit, Pierre; NIRSpec GTO Team

    2017-06-01

    The Near Infrared Spectrograph (NIRSpec) is one of the science instruments on the James Webb Space Telescope that is scheduled for launch in October 2018. The NIRSpec guaranteed time observer (GTO) team will use ~70 hours of NIRSpec guaranteed time to carry out spectroscopic observations of brown dwarfs as well as transiting and directly imaged exoplanets with NIRSpec. The instrument offers four distinct observing modes to proposers that will all be exercised by the GTO programs presented here: 1) multi object spectroscopy (MOS) of 10s to 100s of sources in a ~9 arcmin field of view (FOV), 2) integral field spectroscopy (IFS) with a 3” x 3” FOV, 3) high contrast slit spectroscopy of individual objects and 4) time series observations of bright sources, e.g. transiting exoplanets host stars. Seven dispersers are available in all observing modes: a prism covering the wavelength range from 0.6 to 5.3 micron with a spectral resolution R of ~30 to 300, and two sets of three gratings covering 0.7 to 5.2 micron with medium (R~1000) and high (R~2700) spectral resolution.We will present the science goals and targets for the brown dwarf and exoplanet GTO programs and discuss the planned implementation of the observations. The latter might be of particular interest to future JWST/NIRSpec proposers.

  6. Importance of tides for periastron precession in eccentric neutron star-white dwarf binaries

    Energy Technology Data Exchange (ETDEWEB)

    Sravan, N.; Valsecchi, F.; Kalogera, V. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Althaus, L. G., E-mail: niharika.sravan@gmail.com [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina Instituto de Astrofísica La Plata, CONICET-UNLP, Paseo del Bosque s/n, (1900) La Plata (Argentina)

    2014-09-10

    Although not nearly as numerous as binaries with two white dwarfs, eccentric neutron star-white dwarf (NS-WD) binaries are important gravitational-wave (GW) sources for the next generation of space-based detectors sensitive to low frequency waves. Here we investigate periastron precession in these sources as a result of general relativistic, tidal, and rotational effects; such precession is expected to be detectable for at least some of the detected binaries of this type. Currently, two eccentric NS-WD binaries are known in the galactic field, PSR J1141–6545 and PSR B2303+46, both of which have orbits too wide to be relevant in their current state to GW observations. However, population synthesis studies predict the existence of a significant Galactic population of such systems. Though small in most of these systems, we find that tidally induced periastron precession becomes important when tides contribute to more than 3% of the total precession rate. For these systems, accounting for tides when analyzing periastron precession rate measurements can improve estimates of the inferred WD component mass and, in some cases, will prevent us from misclassifying the object. However, such systems are rare, due to rapid orbital decay. To aid the inclusion of tidal effects when using periastron precession as a mass measurement tool, we derive a function that relates the WD radius and periastron precession constant to the WD mass.

  7. The effects of close binaries on the magnetic activity of M dwarfs as probed using close white dwarf companions

    Science.gov (United States)

    Morgan, D. P.

    2017-01-01

    I present a study of close white dwarf (WD) and M dwarf (dM) binary systems (WD+dM) to examine the effects that close companions have on magnetic field generation in dMs. Using the Sloan Digital Sky Survey (SDSS) Data Release 8 spectroscopic database, I constructed a sample of 1756 WD+dM high-quality pairs. I show that early-type dMs (M4), where stars become fully convective, the activity fraction and activity lifetimes of WD+dM binary systems become more comparable to those of the field dMs. The implications of having a close binary companion may include: increased stellar rotation through disk disruption, tidal effects, and/or angular momentum exchange. Thus, the similarity in activity between late-type field dMs and late-type dMs with close companions is likely due to the mechanism generating magnetic fields being less sensitive to the effects caused by a close companion; namely, increased stellar rotation. Using a subset of 181 close WD+dM pairs, matched to the time-domain SDSS Stripe 82 catalog, I show that enhanced magnetic activity extends to the flaring behavior of dMs in close binaries. Specifically, early spectral type dMs (M0-M4), in close WD+dM pairs, are two orders of magnitude more likely to flare than field dMs, whereas late-type dMs (M4-M6) in close WD+dM pairs flare as frequently or less than the late-type field dM sample. To test whether the presence of a close companion leads to star-star interactions, I searched for correlations between the WD occultations and flares from the dM member in KOI-256, an eclipsing WD+dM system. I find no correlations between the flaring activity of the dM and the WD occultations, indicating the there are no obvious signs of star-star interactions at work. In addition, the dM member of KOI-256 flares more than any other dM observed by Kepler and shows evidence for solar-like magnetic activity cycles, a feature not seen in many dMs to date.

  8. Angular momentum exchange in white dwarf binaries accreting through direct impact

    Energy Technology Data Exchange (ETDEWEB)

    Sepinsky, J. F. [Department of Physics and Electrical Engineering, The University of Scranton, Scranton, PA 18510 (United States); Kalogera, V., E-mail: jeremy.sepinsky@scranton.edu, E-mail: vicky@northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2014-04-20

    We examine the exchange of angular momentum between the component spins and the orbit in semi-detached double white dwarf binaries undergoing mass transfer through direct impact of the transfer stream. We approximate the stream as a series of discrete massive particles ejected in the ballistic limit at the inner Lagrangian point of the donor toward the accretor. This work improves upon similar earlier studies in a number of ways. First, we self-consistently calculate the total angular momentum of the orbit at all times. This includes changes in the orbital angular momentum during the ballistic trajectory of the ejected mass, as well as changes during the ejection/accretion due to the radial component of the particle's velocity. Second, we calculate the particle's ballistic trajectory for each system, which allows us to determine the precise position and velocity of the particle upon accretion. We can then include specific information about the radius of the accretor as well as the angle of impact. Finally, we ensure that the total angular momentum is conserved, which requires the donor star spin to vary self-consistently. With these improvements, we calculate the angular momentum change of the orbit and each binary component across the entire parameter space of direct impact double white dwarf binary systems. We find a significant decrease in the amount of angular momentum removed from the orbit during mass transfer, as well as cases where this process increases the angular momentum of the orbit at the expense of the spin angular momentum of the donor. We conclude that, unlike earlier claims in the literature, mass transfer through direct impact need not destabilize the binary and that the quantity and sign of the orbital angular momentum transfer depends on the binary properties, particularly the masses of the double white dwarf binary component stars. This stabilization may significantly impact the population synthesis calculations of the expected

  9. The possible false-detection of a transiting brown dwarf candidate in the overlapping fields of Kepler and MARVELS

    Science.gov (United States)

    Reyes, Alan; Ge, Jian; Thomas, Neil; Ma, Bo; Heslar, Michael Francis; SDSS-III MARVELS Team

    2016-01-01

    While searching for exoplanets via the transit method, it has been documented that the periodicity of an unresolved background eclipsing binary (BEB) can be misinterpreted as the orbital companion of a target star. We explore the possibility that this false-positive contamination method can also occur in Doppler surveys if the angular separation between a BEB and a selected primary is under a certain threshold, dependent on the fiber diameter of the spectrometer instrument. The case example of this investigation is a K2 giant in the constellation Cygnus, in the region of overlap of the Kepler and MARVELS surveys. This star was originally flagged for potentially having a 5.56d period companion as per the Kepler transit photometry. It was also imbricated with radial velocity (RV) observations performed by the SDSS-III MARVELS survey, in which Doppler information was extracted from along the dispersion direction of the fiducially-calibrated, post-pipeline-rendered spectra. The 5.56d period was corroborated after testing its probability against that of others via a Lomb-Scargle periodogram analysis. The pipeline mass determination yielded a ~17 MJupiter companion, within the characteristic mass-range of brown dwarfs. The MARVELS results seem to constitute an independent discovery, and hence confirmation, of the brown dwarf candidate. However, a later investigation conducted by EXPERT, intent upon refining the system's physical parameters, failed to identify the RV signal of any companion whatsoever. EXPERT, with its superior resolving power (R=30,000 vs R=11,000 in MARVELS), finer fiber width (1.2 vs 1.9 arcsec), and higher degree of precision (~10 m/s), was expected to finalize the confirmation, but now offers a major challenge to previous models of the system. Additionally, high-resolution adaptive optics imaging reveals the presence of a distinct, close-in object. The object may itself be an unbound BEB, and thus the source of the period signals reported by Kepler

  10. The Environment of X-Ray Binaries in the Dwarf Starburst Galaxy NGC 1569

    Science.gov (United States)

    Clark, David M.; Eikenberry, Stephen S.; Raines, Steven N.

    2008-05-01

    We use deep, J and Ks observations of NGC 1569 acquired with FLAMINGOS on the KPNO 4-m to search for star cluster counterparts to X-ray binaries identified in archived Chandra images of this dwarf starburst galaxy. Performing near-IR photometry on the star cluster counterparts, we determine their colors, luminosities and masses. Comparing these results to the properties for all clusters in this galaxy, we search for trends in clusters associated with X-ray sources. Combining this study with FISICA, near-IR spectral observations, we further characterize the surroundings to X-ray binaries in NGC 1569. Contrasting this work with findings from a similar study performed on the Antennae galaxies, a large, merging system, we investigate the differences in X-ray binary environments.

  11. Spitzer and z' secondary eclipse observations of the highly irradiated transiting brown dwarf KELT-1b

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, Thomas G.; Gaudi, B. Scott [Department of Astronomy, The Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Collins, Karen A.; Kielkopf, John F. [Department of Physics and Astronomy, University of Louisville, Louisville, KY 40292 (United States); Fortney, Jonathan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Knutson, Heather [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Bruns, Jacob M. [Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, 1629 E. University Blvd., University of Arizona, Tucson, AZ (United States); Eastman, Jason [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Santa Barbara, CA 93117 (United States); Pepper, Joshua [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States); Siverd, Robert J.; Stassun, Keivan G., E-mail: tbeatty@astronomy.ohio-state.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States)

    2014-03-10

    We present secondary eclipse observations of the highly irradiated transiting brown dwarf KELT-1b. These observations represent the first constraints on the atmospheric dynamics of a highly irradiated brown dwarf, the atmospheres of irradiated giant planets at high surface gravity, and the atmospheres of brown dwarfs that are dominated by external, rather than internal, energy. Using the Spitzer Space Telescope, we measure secondary eclipse depths of 0.195% ± 0.010% at 3.6 μm and 0.200% ± 0.012% at 4.5 μm. We also find tentative evidence for the secondary eclipse in the z' band with a depth of 0.049% ± 0.023%. These measured eclipse depths are most consistent with an atmosphere model in which there is a strong substellar hotspot, implying that heat redistribution in the atmosphere of KELT-1b is low. While models with a more mild hotspot or even with dayside heat redistribution are only marginally disfavored, models with complete heat redistribution are strongly ruled out. The eclipse depths also prefer an atmosphere with no TiO inversion layer, although a model with TiO inversion is permitted in the dayside heat redistribution case, and we consider the possibility of a day-night TiO cold trap in this object. For the first time, we compare the IRAC colors of brown dwarfs and hot Jupiters as a function of effective temperature. Importantly, our measurements reveal that KELT-1b has a [3.6] – [4.5] color of 0.07 ± 0.11, identical to that of isolated brown dwarfs of similarly high temperature. In contrast, hot Jupiters generally show redder [3.6] – [4.5] colors of ∼0.4, with a very large range from ∼0 to ∼1. Evidently, despite being more similar to hot Jupiters than to isolated brown dwarfs in terms of external forcing of the atmosphere by stellar insolation, KELT-1b appears to have an atmosphere most like that of other brown dwarfs. This suggests that surface gravity is very important in controlling the atmospheric systems of substellar mass bodies.

  12. Infrared rotational light curves on Jupiter induced by wave activities and cloud patterns andimplications on brown dwarfs

    Science.gov (United States)

    Ge, Huazhi; Zhang, Xi; Fletcher, Leigh; Orton, Glenn S.; Sinclair, James Andrew; Fernandes,, Joshua; Momary, Thomas W.; Warren, Ari; Kasaba, Yasumasa; Sato, Takao M.; Fujiyoshi, Takuya

    2017-10-01

    Many brown dwarfs exhibit infrared rotational light curves with amplitude varying from a fewpercent to twenty percent (Artigau et al. 2009, ApJ, 701, 1534; Radigan et al. 2012, ApJ, 750,105). Recently, it was claimed that weather patterns, especially planetary-scale waves in thebelts and cloud spots, are responsible for the light curves and their evolutions on brown dwarfs(Apai et al. 2017, Science, 357, 683). Here we present a clear relationship between the direct IRemission maps and light curves of Jupiter at multiple wavelengths, which might be similar withthat on cold brown dwarfs. Based on infrared disk maps from Subaru/COMICS and VLT/VISIR,we constructed full maps of Jupiter and rotational light curves at different wavelengths in thethermal infrared. We discovered a strong relationship between the light curves and weatherpatterns on Jupiter. The light curves also exhibit strong multi-bands phase shifts and temporalvariations, similar to that detected on brown dwarfs. Together with the spectra fromTEXES/IRTF, our observations further provide detailed information of the spatial variations oftemperature, ammonia clouds and aerosols in the troposphere of Jupiter (Fletcher et al. 2016,Icarus, 2016 128) and their influences on the shapes of the light curves. We conclude that waveactivities in Jupiter’s belts (Fletcher et al. 2017, GRL, 44, 7140), cloud holes, and long-livedvortices such as the Great Red Spot and ovals control the shapes of IR light curves and multi-wavelength phase shifts on Jupiter. Our finding supports the hypothesis that observed lightcurves on brown dwarfs are induced by planetary-scale waves and cloud spots.

  13. A search for J-band variability from late-L and T brown dwarfs

    Science.gov (United States)

    Clarke, F. J.; Hodgkin, S. T.; Oppenheimer, B. R.; Robertson, J.; Haubois, X.

    2008-06-01

    We present J-band photometric observations of eight late-L and T type brown dwarfs designed to search for variability. We detect small amplitude periodic variability from three of the objects on time-scales of several hours, probably indicating the rotation period of the objects. The other targets do not show any variability down to the level of 0.5-5 per cent This work is based on observations obtained at the European Southern Observatory, La Silla, Chile (ESO Programme 72.C-0006). E-mail: fclarke@astro.ox.ac.uk (FJC); sth@ast.cam.ac.uk (STH); bro@amnh.org (BRO); xavier.haubois@obspm.fr (XH)

  14. Measuring the wind speed on a radio-emitting brown dwarf

    Science.gov (United States)

    Allers, Katelyn; Vos, Johanna; Williams, Peter; Biller, Beth

    2017-10-01

    We propose for photometric monitoring observations of 2MASS J10475385+2124234 using Spitzer/IRAC. 2MASS J1047+21 is a late spectral type (T6.5) radio emitter with a measured radio period of 1.77 hrs. As a part of our successful Cycle 13 program, we detected photometric variability for 2MASS J1047+21. Our proposed observations will not only characterize this variability of the coolest known radio emitter, but also provide a unique opportunity to measure the wind speed of this brown dwarf. Spitzer is currently the only facility capable of the photometric stability, continuous observations and 4.5 micron sensitivity necessary for the success of our program.

  15. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. III. BREAKDOWN CONDITIONS FOR MINERAL CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Helling, Ch.; Jardine, M.; Stark, C. [SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Diver, D., E-mail: ch@leap2010.eu [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2013-04-20

    Electric discharges were detected directly in the cloudy atmospheres of Earth, Jupiter, and Saturn, are debatable for Venus, and indirectly inferred for Neptune and Uranus in our solar system. Sprites (and other types of transient luminous events) have been detected only on Earth, and are theoretically predicted for Jupiter, Saturn, and Venus. Cloud formation is a common phenomenon in ultra-cool atmospheres such as in brown dwarf and extrasolar planetary atmospheres. Cloud particles can be expected to carry considerable charges which may trigger discharge events via small-scale processes between individual cloud particles (intra-cloud discharges) or large-scale processes between clouds (inter-cloud discharges). We investigate electrostatic breakdown characteristics, like critical field strengths and critical charge densities per surface, to demonstrate under which conditions mineral clouds undergo electric discharge events which may trigger or be responsible for sporadic X-ray emission. We apply results from our kinetic dust cloud formation model that is part of the DRIFT-PHOENIX model atmosphere simulations. We present a first investigation of the dependence of the breakdown conditions in brown dwarf and giant gas exoplanets on the local gas-phase chemistry, the effective temperature, and primordial gas-phase metallicity. Our results suggest that different intra-cloud discharge processes dominate at different heights inside mineral clouds: local coronal (point discharges) and small-scale sparks at the bottom region of the cloud where the gas density is high, and flow discharges and large-scale sparks near, and maybe above, the cloud top. The comparison of the thermal degree of ionization and the number density of cloud particles allows us to suggest the efficiency with which discharges will occur in planetary atmospheres.

  16. Young stars and brown dwarfs surrounding Alnilam (ɛ Orionis) and Mintaka (δ Orionis)

    Science.gov (United States)

    Caballero, J. A.; Solano, E.

    2008-07-01

    Aims: We look for new regions to search for substellar objects. Methods: Two circular areas, 45 arcmin-radius each, centred on the young massive star systems Alnilam and Mintaka in the Orion Belt, were explored. The regions are very young (less than 10 Ma), have low extinction, and are neighbours to σ Orionis (~3 Ma), a young open cluster very rich in brown dwarfs and planetary-mass objects. We used Virtual Observatory tools, the astro-photometric Tycho-2, DENIS and 2MASS catalogues, 10 control fields at similar galactic latitudes, as well as X-ray, mid-infrared, and spectroscopic data from the literature. Results: We compiled exhaustive lists of known young stars and new candidate members in the Ori OB1b association and of fore- and background sources. A total of 136 stars display features of extreme youth, like early spectral types, lithium in absorption, or mid-infrared flux excess. Other two young brown dwarf and 289 star candidates have been identified from an optical/near-infrared colour-magnitude diagram. We list another 74 known objects that might belong to the association. This catalogue can serve as input for characterising the stellar and high-mass substellar populations in the Orion Belt. Finally, we investigated the surface densities and radial distributions of young objects surrounding Alnilam and Mintaka and compared them with those in the σ Orionis cluster. We report on a new open cluster centred on Mintaka. Conclusions: Both regions can be analogues to the σ Orionis cluster, but more massive, more extended, slightly older, and less radially concentrated. Tables A.1 to A.18 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/485/931

  17. Three New Cool Brown Dwarfs Discovered with the Wide-field Infrared Survey Explorer (WISE) and an Improved Spectrum of the Y0 Dwarf WISE J041022.71+150248.4

    Science.gov (United States)

    Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Mace, Gregory N.; Skrutskie, Michael F.; Gould, Andrew

    2014-05-01

    As part of a larger search of Wide-field Infrared Survey Explorer (WISE) data for cool brown dwarfs with effective temperatures less than 1000 K, we present the discovery of three new cool brown dwarfs with spectral types later than T7. Using low-resolution, near-infrared spectra obtained with the NASA Infrared Telescope Facility and the Hubble Space Telescope, we derive spectral types of T9.5 for WISE J094305.98+360723.5, T8 for WISE J200050.19+362950.1, and Y0: for WISE J220905.73+271143.9. The identification of WISE J220905.73+271143.9 as a Y dwarf brings the total number of spectroscopically confirmed Y dwarfs to 17. In addition, we present an improved spectrum (i.e., higher signal-to-noise ratio) of the Y0 dwarf WISE J041022.71+150248.4 that confirms the Cushing et al. classification of Y0. Spectrophotometric distance estimates place all three new brown dwarfs at distances less than 12 pc, with WISE J200050.19+362950.1 lying at a distance of only 3.9-8.0 pc. Finally, we note that brown dwarfs like WISE J200050.19+362950.1 that lie in or near the Galactic plane offer an exciting opportunity to directly measure the mass of a brown dwarf via astrometric microlensing.

  18. Three new cool brown dwarfs discovered with the wide-field infrared survey explorer (WISE) and an improved spectrum of the Y0 dwarf wise J041022.71+150248.4

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, Michael C. [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Kirkpatrick, J. Davy; Gelino, Christopher R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mace, Gregory N. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Gould, Andrew, E-mail: michael.cushing@utoledo.edu [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2014-05-01

    As part of a larger search of Wide-field Infrared Survey Explorer (WISE) data for cool brown dwarfs with effective temperatures less than 1000 K, we present the discovery of three new cool brown dwarfs with spectral types later than T7. Using low-resolution, near-infrared spectra obtained with the NASA Infrared Telescope Facility and the Hubble Space Telescope, we derive spectral types of T9.5 for WISE J094305.98+360723.5, T8 for WISE J200050.19+362950.1, and Y0: for WISE J220905.73+271143.9. The identification of WISE J220905.73+271143.9 as a Y dwarf brings the total number of spectroscopically confirmed Y dwarfs to 17. In addition, we present an improved spectrum (i.e., higher signal-to-noise ratio) of the Y0 dwarf WISE J041022.71+150248.4 that confirms the Cushing et al. classification of Y0. Spectrophotometric distance estimates place all three new brown dwarfs at distances less than 12 pc, with WISE J200050.19+362950.1 lying at a distance of only 3.9-8.0 pc. Finally, we note that brown dwarfs like WISE J200050.19+362950.1 that lie in or near the Galactic plane offer an exciting opportunity to directly measure the mass of a brown dwarf via astrometric microlensing.

  19. A STRANGE STAR SCENARIO FOR THE FORMATION OF ECCENTRIC MILLISECOND PULSAR/HELIUM WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Long; Li, Xiang-Dong [Department of Astronomy, Nanjing University, Nanjing 210046 (China); Dey, Jishnu; Dey, Mira, E-mail: lixd@nju.edu.cn [Department of Physics, Presidency University, 86/1, College Street, Kolkata 700 073 (India)

    2015-07-01

    According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during binary evolution, as observed in most binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are the PSRs J2234+06, J1946+3417, and J1950+2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf (WD) companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive WDs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars (NSs) in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from NSs to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitational mass of the NS during the transition. The eccentricities can be reproduced with a reasonable estimate of the mass loss. This scenario might also account for the formation of the youngest known X-ray binary Cir X–1, which also possesses a low-field compact star in an eccentric orbit.

  20. A Strange Star Scenario for the Formation of Eccentric Millisecond Pulsar/Helium White Dwarf Binaries

    Science.gov (United States)

    Jiang, Long; Li, Xiang-Dong; Dey, Jishnu; Dey, Mira

    2015-07-01

    According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during binary evolution, as observed in most binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are the PSRs J2234+06, J1946+3417, and J1950+2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf (WD) companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive WDs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars (NSs) in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from NSs to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitational mass of the NS during the transition. The eccentricities can be reproduced with a reasonable estimate of the mass loss. This scenario might also account for the formation of the youngest known X-ray binary Cir X-1, which also possesses a low-field compact star in an eccentric orbit.

  1. Deep search for companions to probable young brown dwarfs. VLT/NACO adaptive optics imaging using IR wavefront sensing

    Science.gov (United States)

    Chauvin, G.; Faherty, J.; Boccaletti, A.; Cruz, K.; Lagrange, A.-M.; Zuckerman, B.; Bessell, M. S.; Beuzit, J.-L.; Bonnefoy, M.; Dumas, C.; Lowrance, P.; Mouillet, D.; Song, I.

    2012-12-01

    Aims: We have obtained high contrast images of four nearby, faint, and very low mass objects 2MASS J04351455-1414468, SDSS J044337.61+000205.1, 2MASS J06085283-2753583 and 2MASS J06524851-5741376 (hereafter 2MASS0435-14, SDSS0443+00, 2MASS0608-27 and 2MASS0652-57), identified in the field as probable isolated young brown dwarfs. Our goal was to search for binary companions down to the planetary mass regime. Methods: We used the NAOS-CONICA adaptive optics instrument (NACO) and its unique capability to sense the wavefront in the near-infrared to acquire sharp images of the four systems in Ks, with a field of view of 28'' × 28''. Additional J and L' imaging and follow-up observations at a second epoch were obtained for 2MASS0652-57. Results: With a typical contrast ΔKs = 4.0-7.0 mag, our observations are sensitive down to the planetary mass regime considering a minimum age of 10 to 120 Myr for these systems. No additional point sources are detected in the environment of 2MASS0435-14, SDSS0443+00 and 2MASS0608-27 between 0.1-12'' (i.e. about 2 to 250 AU at 20 pc). 2MASS0652-57 is resolved as a ~230 mas binary. Follow-up observations reject a background contaminate, resolve the orbital motion of the pair, and confirm with high confidence that the system is physically bound. The J, Ks and L' photometry suggest a q ~ 0.7-0.8 mass ratio binary with a probable semi-major axis of 5-6 AU. Among the four systems, 2MASS0652-57 is probably the less constrained in terms of age determination. Further analysis would be necessary to confirm its youth. It would then be interesting to determine its orbital and physical properties to derive the system's dynamical mass and to test evolutionary model predictions. Based on observations collected at the European Southern Observatory, Chile (ESO programmes 076.C-0554(A), 076.C-0554(B) and 085.C-0257(A).

  2. CLOUD STRUCTURE OF THE NEAREST BROWN DWARFS. II. HIGH-AMPLITUDE VARIABILITY FOR LUHMAN 16 A AND B IN AND OUT OF THE 0.99 μm FeH FEATURE

    Energy Technology Data Exchange (ETDEWEB)

    Buenzli, Esther [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Marley, Mark S. [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Apai, Dániel [Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Saumon, Didier [Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States); Biller, Beth A. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Crossfield, Ian J. M. [Department of Planetary Sciences, University of Arizona, 1629 E. University Blvd, Tucson, AZ 85721 (United States); Radigan, Jacqueline, E-mail: buenzli@mpia.de [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-10-20

    The re-emergence of the 0.99 μm FeH feature in brown dwarfs of early- to mid-T spectral type has been suggested as evidence for cloud disruption where flux from deep, hot regions below the Fe cloud deck can emerge. The same mechanism could account for color changes at the L/T transition and photometric variability. We present the first observations of spectroscopic variability of brown dwarfs covering the 0.99 μm FeH feature. We observed the spatially resolved very nearby brown dwarf binary WISE J104915.57–531906.1 (Luhman 16AB), a late-L and early-T dwarf, with Hubble Space Telescope/WFC3 in the G102 grism at 0.8–1.15 μm. We find significant variability at all wavelengths for both brown dwarfs, with peak-to-valley amplitudes of 9.3% for Luhman 16B and 4.5% for Luhman 16A. This represents the first unambiguous detection of variability in Luhman 16A. We estimate a rotational period between 4.5 and 5.5 hr, very similar to Luhman 16B. Variability in both components complicates the interpretation of spatially unresolved observations. The probability for finding large amplitude variability in any two brown dwarfs is less than 10%. Our finding may suggest that a common but yet unknown feature of the binary is important for the occurrence of variability. For both objects, the amplitude is nearly constant at all wavelengths except in the deep K i feature below 0.84 μm. No variations are seen across the 0.99 μm FeH feature. The observations lend strong further support to cloud height variations rather than holes in the silicate clouds, but cannot fully rule out holes in the iron clouds. We re-evaluate the diagnostic potential of the FeH feature as a tracer of cloud patchiness.

  3. Polarimetric Evidence of the First White Dwarf Pulsar: The Binary System AR Scorpii

    Directory of Open Access Journals (Sweden)

    David A.H. Buckley

    2018-01-01

    Full Text Available The binary star AR Scorpii was recently discovered to exhibit high amplitude coherent variability across the electromagnetic spectrum (ultraviolet to radio at two closely spaced ∼2 min periods, attributed to the spin period of a white dwarf and the beat period. There is strong evidence (low X-ray luminosity, lack of flickering and absense of broad emission lines that AR Sco is a detached non-accreting system whose luminosity is dominated by the spin-down power of a white dwarf, due to magnetohydrodynamical (MHD interactions with its M5 companion. Optical polarimetry has revealed highly pulsed linear polarization on the same periods, reaching a maximum of 40%, consistent with a pulsar-like dipole, with the Stokes Q and U variations reminiscent of the Crab pulsar. These observations, coupled with the spectral energy distribution (SED which is dominated by non-thermal emission, characteristic of synchrotron emission, support the notion that a strongly magnetic (∼200 MG white dwarf is behaving like a pulsar, whose magnetic field interacts with the secondary star’s photosphere and magnetosphere. Radio synchrotron emission is produced from the pumping action of the white dwarf’s magnetic field on coronal loops from the M-star companion, while emission at high frequencies (UV/optical/X-ray comes from the particle wind, driven by large electric potential, again reminiscent of processes seen in neutron star pulsars.

  4. Formation of millisecond pulsars with low-mass helium white dwarf companions in very compact binaries

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Kun; Li, X.-D., E-mail: lixd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2014-08-20

    Binary millisecond pulsars (BMSPs) are thought to have evolved from low-mass X-ray binaries (LMXBs). If the mass transfer in LMXBs is driven by nuclear evolution of the donor star, the final orbital period is predicted to be well correlated with the mass of the white dwarf (WD), which is the degenerate He core of the donor. Here we show that this relation can be extended to very small WD mass (∼0.14-0.17 M {sub ☉}) and narrow orbital period (about a few hours), depending mainly on the metallicities of the donor stars. There is also discontinuity in the relation, which is due to the temporary contraction of the donor when the H-burning shell crosses the hydrogen discontinuity. BMSPs with low-mass He WD companions in very compact binaries can be accounted for if the progenitor binary experienced very late Case A mass transfer. The WD companion of PSR J1738+0333 is likely to evolve from a Pop II star. For PSR J0348+0432, to explain its extreme compact orbit in the Roche-lobe-decoupling phase, even lower metallicity (Z = 0.0001) is required.

  5. The population of white dwarf-main sequence binaries in the SDSS DR 12

    Science.gov (United States)

    Cojocaru, R.; Rebassa-Mansergas, A.; Torres, S.; García-Berro, E.

    2017-09-01

    We present a Monte Carlo population synthesis study of white dwarf-main sequence (WD+MS) binaries in the Galactic disc aimed at reproducing the ensemble properties of the entire population observed by the Sloan Digital Sky Survey (SDSS) Data Release 12. Our simulations take into account all known observational biases and use the most up-to-date stellar evolutionary models. This allows us to perform a sound comparison between the simulations and the observational data. We find that the properties of the simulated and observed parameter distributions agree best when assuming low values of the common envelope efficiency (0.2-0.3), a result that is in agreement with previous findings obtained by observational and population synthesis studies of close SDSS WD+MS binaries. We also show that all synthetic populations that result from adopting an initial mass ratio distribution with a positive slope are excluded by observations. Finally, we confirm that the properties of the simulated WD+MS binary populations are nearly independent of the age adopted for the thin disc, on the contribution of WD+MS binaries from the thick disc (0-17 per cent of the total population) and on the assumed fraction of the internal energy that is used to eject the envelope during the common envelope phase (0.1-0.5).

  6. The double helium-white dwarf channel for the formation of AM CVn binaries

    Science.gov (United States)

    Zhang, Xian-Fei; Liu, Jin-Zhong; Jeffery, C. Simon; Hall, Philip D.; Bi, Shao-Lan

    2018-01-01

    Most close double helium white dwarfs will merge within a Hubble time due to orbital decay by gravitational wave radiation. However, a significant fraction with low mass ratios will survive for a long time as a consequence of stable mass transfer. Such stable mass transfer between two helium white dwarfs (HeWDs) provides one channel for the production of AM CVn binary stars. In previous calculations of double HeWD progenitors, the accreting HeWD was treated as a point mass. We have computed the evolution of 16 double HeWD models in order to investigate the consequences of treating the evolution of both components in detail. We find that the boundary between binaries having stable and unstable mass transfer is slightly modified by this approach. By comparing with observed periods and mass ratios, we redetermine masses of eight known AM CVn stars by our double HeWDs channel, i.e. HM Cnc, AM CVn, V406 Hya, J0926, J1240, GP Com, Gaia14aae and V396 Hya.We propose that central spikes in the triple-peaked emission spectra of J1240, GP Com and V396 Hya and the surface abundance ratios of N/C/O in GP Com can be explained by the stable double HeWD channel. The mass estimates derived from our calculations are used to discuss the predicted gravitational wave signal in the context of the Laser Interferometer Space Antenna (LISA) project.

  7. Determining the Physical Properties of Very-Low-Mass Stars and Brown Dwarfs in the Near-Infrared

    Science.gov (United States)

    Rice, Emily L.; Barman, Travis S.; McLean, Ian S.; Prato, L.; Kirkpatrick, J. Davy

    2009-02-01

    Accurate measurements of the fundamental physical properties of very-low-mass stars and brown dwarfs are crucial for calibrating evolutionary models. Photometry and low-resolution spectroscopy effectively average over absorption features that sample different layers in complex cool atmospheres. By studying a large sample of objects bright enough for high-resolution spectroscopy, we can develop methods for determining physical properties as accurately and efficiently as possible. As part of the Brown Dwarf Spectroscopic Survey (BDSS [1, 2]), we are conducting a detailed comparison of observed and synthetic spectra for a sample of young M and L dwarfs and field M, L, and T dwarfs (~50 objects in total). High-resolution near-infrared spectra from NIRSPEC on Keck II provide an unequaled combination of resolving power and wavelength coverage. Synthetic spectra were created from PHOENIX atmosphere models calculated exclusively for this project with updated line lists and solar abundances. Combined with spectral types from photometric studies and low-resolution spectra and surface gravity estimates from age determination, the high-resolution spectra enable precise measurements of effective temperature and surface gravity, as well as accurate determination of radial velocity and projected rotational velocity. Our preliminary observation-model comparisons distinguish between wavelength regimes for which the models reproduce observed high-resolution spectra and regimes in which model data (line lists, oscillator strengths, etc.) are lacking.

  8. A PRECISE PHYSICAL ORBIT FOR THE M-DWARF BINARY GLIESE 268

    Energy Technology Data Exchange (ETDEWEB)

    Barry, R. K.; Danchi, W. C. [NASA Goddard Space Flight Center, Laboratory for Exoplanets and Stellar Astrophysics, Code 667, Greenbelt, MD 20771 (United States); Demory, B.-O.; Segransan, D.; Di Folco, E.; Queloz, D.; Udry, S. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Forveille, T.; Delfosse, X.; Mayor, M.; Perrier, C. [Geneva Observatory, Geneva University, 51 Ch.des Maillettes, CH-1290 Versoix (Switzerland); Spooner, H. R. [University of Maryland, College Park, MD 20742 (United States); Torres, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02136 (United States); Traub, W. A., E-mail: Richard.K.Barry@nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-11-20

    We report high-precision interferometric and radial velocity (RV) observations of the M-dwarf binary Gl 268. Combining measurements conducted using the IOTA interferometer and the ELODIE and Harvard Center for Astrophysics RV instruments leads to a mass of 0.22596 {+-} 0.00084 M {sub Sun} for component A and 0.19230 {+-} 0.00071 M {sub Sun} for component B. The system parallax as determined by these observations is 0.1560 {+-} 0.0030 arcsec-a measurement with 1.9% uncertainty in excellent agreement with Hipparcos (0.1572 {+-} 0.0033). The absolute H-band magnitudes of the component stars are not well constrained by these measurements; however, we can place an approximate upper limit of 7.95 and 8.1 for Gl 268A and B, respectively. We test these physical parameters against the predictions of theoretical models that combine stellar evolution with high fidelity, non-gray atmospheric models. Measured and predicted values are compatible within 2{sigma}. These results are among the most precise masses measured for visual binaries and compete with the best adaptive optics and eclipsing binary results.

  9. Extremely Low Mass: The Circumstellar Envelope of a Potential Proto-Brown Dwarf

    Science.gov (United States)

    Wiseman, Jennifer

    2011-01-01

    What is the environment for planet formation around extremely low mass stars? Is the environment around brown dwarfs and extremely low mass stars conducive and sufficiently massive for planet production? The determining conditions may be set very early in the process of the host object's formation. IRAS 16253-2429, the source of the Wasp-Waist Nebula seen in Spitzer IRAC images, is an isolated, very low luminosity ("VeLLO") Class 0 protostar in the nearby rho Ophiuchi cloud. We present VLA ammonia mapping observations of the dense gas envelope feeding the central core accreting system. We find a flattened envelope perpendicular to the outflow axis, and gas cavities that appear to cradle the outflow lobes as though carved out by the flow and associated (apparently precessing) jet, indicating environmental disruption. Based on the NH3 (1,1) and (2,2) emission distribution, we derive the mass, velocity fields and temperature distribution for the envelope. We discuss the combined evidence for this source to be one of the youngest and lowest mass sources in formation yet known, and discuss the ramifications for planet formation potential in this extremely low mass system.

  10. ON THE SURVIVAL OF BROWN DWARFS AND PLANETS ENGULFED BY THEIR GIANT HOST STAR

    Energy Technology Data Exchange (ETDEWEB)

    Passy, Jean-Claude; Mac Low, Mordecai-Mark [Department of Astrophysics, American Museum of Natural History, New York, NY (United States); De Marco, Orsola [Department of Physics and Astronomy, Macquarie University, Sydney, NSW (Australia)

    2012-11-10

    The recent discovery of two Earth-mass planets in close orbits around an evolved star has raised questions as to whether substellar companions can survive encounters with their host stars. We consider whether these companions could have been stripped of significant amounts of mass during the phase when they orbited through the dense inner envelopes of the giant. We apply the criterion derived by Murray et al. for disruption of gravitationally bound objects by ram pressure to determine whether mass loss may have played a role in the histories of these and other recently discovered low-mass companions to evolved stars. We find that the brown dwarf and Jovian-mass objects circling WD 0137-349, SDSS J08205+0008, and HIP 13044 are most unlikely to have lost significant mass during the common envelope phase. However, the Earth-mass planets found around KIC 05807616 could well be the remnants of one or two Jovian-mass planets that lost extensive mass during the common envelope phase.

  11. Molecular Outflows Driven by Young Brown Dwarfs And VLMs. New Clues from IRAM Interferometer Observations

    Science.gov (United States)

    Monin, J.-L.; Whelan, E.; Lefloch, B.; Dougados, C.

    2015-01-01

    The outflow phenomenon is ubiquitous in star forming regions and is now known to play an important role in the formation of both young stellar objects (YSOs) and brown dwarfs (BDs) (Whelan et al., 2012). Observations of outflows from both stars and BDs are thus essential to our understanding of the overall star & planet formation process. In 2011 and 2012 we conducted a survey with the IRAM 30 m telescope of the CO emission in the vicinity of a large sample of BDs and VLMSs to check for molecular outflows. We followed up three of the most remarkable sources namely MHO 5, BD Tau 6 and FU Tau A with high angular resolution observations with the Plateau de Bure Interferometer (PdBI). These sources were chosen because their associated CO emission showed clear evidence of an outflow and / or their spectral energy distributions (SEDs) showed strong evidence of a massive accretion disk, that we postulate to be associated with an outflow. In this paper, we present the first results of our CO(1-0) PdBI investigations of the molecular outflows of 2 of these sources, MHO5 and BD Tau 6. The signal to noise ratio on FU Tau is 3 times less than on the other sources and the results need more investigation.

  12. An overlooked brown dwarf neighbour (T7.5 at d ~ 5 pc) of the Sun and two additional T dwarfs at about 10 pc

    Science.gov (United States)

    Bihain, G.; Scholz, R.-D.; Storm, J.; Schnurr, O.

    2013-09-01

    Context. Although many new brown dwarf (BD) neighbours have recently been discovered thanks to new sky surveys in the mid- and near-infrared (MIR, NIR), their numbers are still more than five times lower than those of stars in the same volume. Aims: Our aim is to detect and classify new BDs to eventually complete their census in the immediate solar neighbourhood. Methods: We combined multi-epoch data from sky surveys at different wavelengths to detect BD neighbours of the Sun by their high proper motion (HPM). We concentrated on relatively bright MIR (w2 new BDs and estimated their distances and velocities. Results: We have discovered the HPM (μ ~ 470 mas/yr) T7.5 dwarf, WISE J0521+1025, which is at d = 5.0 ± 1.3 pc from the Sun the nearest known T dwarf in the northern sky, and two early T dwarfs, WISE J0457-0207 (T2) and WISE J2030+0749 (T1.5), with proper motions of ~120 and ~670 mas/yr and distances of 12.5 ± 3.1 pc and 10.5 ± 2.6 pc, respectively. The last one was independently discovered and also classified as a T1.5 dwarf by Mace and coworkers. All three show thin disc kinematics. They may have been overlooked in the past owing to overlapping images and because of problems with matching objects between different surveys and measuring their proper motions. Based on observations with the Large Binocular Telescope (LBT).

  13. Recent Variability Observations of Solar System Giant Planets: Fresh Context for Understanding Exoplanet and Brown Dwarf Weather

    Science.gov (United States)

    Marley, Mark Scott

    2016-01-01

    Over the past several years a number of high cadence photometric observations of solar system giant planets have been acquired by various platforms. Such observations are of interest as they provide points of comparison to the already expansive set of brown dwarf variability observations and the small, but growing, set of exoplanet variability observations. By measuring how rapidly the integrated light from solar system giant planets can evolve, variability observations of substellar objects that are unlikely to ever be resolved can be placed in a fuller context. Examples of brown dwarf variability observations include extensive work from the ground (e.g., Radigen et al. 2014), Spitzer (e.g., Metchev et al. 2015), Kepler (Gizis et al. 2015), and HST (Yang et al. 2015).Variability has been measured on the planetary mass companion to the brown dwarf 2MASS 1207b (Zhou et al. 2016) and further searches are planned in thermal emission for the known directly imaged planets with ground based telescopes (Apai et al. 2016) and in reflected light with future space based telescopes. Recent solar system variability observations include Kepler monitoring of Neptune (Simon et al. 2016) and Uranus, Spitzer observations of Neptune (Stauffer et al. 2016), and Cassini observations of Jupiter (West et al. in prep). The Cassini observations are of particular interest as they measured the variability of Jupiter at a phase angle of approximately 60 deg, comparable to the viewing geometry expected for space based direct imaging of cool extrasolar Jupiters in reflected light. These solar system analog observations capture many of the characteristics seen in brown dwarf variability, including large amplitudes and rapid light curve evolution on timescales as short as a few rotation periods. Simon et al. (2016) attribute such variations at Neptune to a combination of large scale, stable cloud structures along with smaller, more rapidly varying, cloud patches. The observed brown dwarf and

  14. DEEP NEAR-IR OBSERVATIONS OF THE GLOBULAR CLUSTER M4: HUNTING FOR BROWN DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Dieball, A. [Argelander Institut für Astronomie, Helmholtz Institut für Strahlen- und Kernphysik, University of Bonn (Germany); Bedin, L. R. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Knigge, C. [Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Rich, R. M. [Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095-1562 (United States); Allard, F. [Centre de Recherche Astrophysique de Lyon, UMR 5574: CNRS, Université de Lyon, École Normale Supérieure de Lyon, 46 allée d’Italie, F-69364 Lyon Cedex 07 (France); Dotter, A. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT (Australia); Richer, H. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Zurek, D., E-mail: adieball@astro.uni-bonn.de [Department of Astrophysics, American Museum of Natural History, New York, NY 10024 (United States)

    2016-01-20

    We present an analysis of deep Hubble Space Telescope (HST)/Wide Field Camera 3 near-IR (NIR) imaging data of the globular cluster (GC) M4. The best-photometry NIR color–magnitude diagram (CMD) clearly shows the main sequence extending toward the expected end of the hydrogen-burning limit and going beyond this point toward fainter sources. The white dwarf (WD) sequence can be identified. As such, this is the deepest NIR CMD of a GC to date. Archival HST optical data were used for proper-motion cleaning of the CMD and for distinguishing the WDs from brown dwarf (BD) candidates. Detection limits in the NIR are around F110W ≈ 26.5 mag and F160W ≈ 27 mag, and in the optical around F775W ≈ 28 mag. Comparing our observed CMDs with theoretical models, we conclude that we have reached beyond the H-burning limit in our NIR CMD and are probably just above or around this limit in our optical–NIR CMDs. Thus, any faint NIR sources that have no optical counterpart are potential BD candidates, since the optical data are not deep enough to detect them. We visually inspected the positions of NIR sources that are fainter than the H-burning limit in F110W and for which the optical photometry did not return a counterpart. We found in total five sources for which we did not get an optical measurement. For four of these five sources, a faint optical counterpart could be visually identified, and an upper optical magnitude was estimated. Based on these upper optical magnitude limits, we conclude that one source is likely a WD, one source could be either a WD or BD candidate, and the remaining two sources agree with being BD candidates. No optical counterpart could be detected for just one source, which makes this source a good BD candidate. We conclude that we found in total four good BD candidates.

  15. A Search for Water Maser Emission from Brown Dwarfs and Low-luminosity Young Stellar Objects

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, José F.; Manjarrez, Guillermo [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Palau, Aina [Instituto de Radioastronomía y Astrofísica, UNAM, P.O. Box 3-72, 58090, Morelia, Michoacán, México (Mexico); Uscanga, Lucero [Departamento de Astronomía, Universidad de Guanajuato, A.P. 144, 36000 Guanajuato, Gto., México (Mexico); Barrado, David, E-mail: jfg@iaa.es [Centro de Astrobiología, INTA-CSIC, PO BOX 28692, ESAC Campus, E-208691 Villanueva de la Cañada, Madrid (Spain)

    2017-05-01

    We present a survey for water maser emission toward a sample of 44 low-luminosity young objects, comprising (proto-)brown dwarfs, first hydrostatic cores (FHCs), and other young stellar objects (YSOs) with bolometric luminosities lower than 0.4 L {sub ⊙}. Water maser emission is a good tracer of energetic processes, such as mass-loss and/or accretion, and is a useful tool to study these processes with very high angular resolution. This type of emission has been confirmed in objects with L {sub bol} ≳ 1 L {sub ⊙}. Objects with lower luminosities also undergo mass-loss and accretion, and thus, are prospective sites of maser emission. Our sensitive single-dish observations provided a single detection when pointing toward the FHC L1448 IRS 2E. However, follow-up interferometric observations showed water maser emission associated with the nearby YSO L1448 IRS 2 (a Class 0 protostar of L {sub bol} ≃ 3.6–5.3 L {sub ⊙}) and did not find any emission toward L1448 IRS 2E. The upper limits for water maser emission determined by our observations are one order of magnitude lower than expected from the correlation between water maser luminosities and bolometric luminosities found for YSOs. This suggests that this correlation does not hold at the lower end of the (sub)stellar mass spectrum. Possible reasons are that the slope of this correlation is steeper at L {sub bol} ≤ 1 L {sub ⊙} or that there is an absolute luminosity threshold below which water maser emission cannot be produced. Alternatively, if the correlation still stands at low luminosity, the detection rates of masers would be significantly lower than the values obtained in higher-luminosity Class 0 protostars.

  16. First Large-scale Herbig-Haro Jet Driven by a Proto-brown Dwarf

    Science.gov (United States)

    Riaz, B.; Briceño, C.; Whelan, E. T.; Heathcote, S.

    2017-07-01

    We report the discovery of a new Herbig-Haro jet, HH 1165, in SOAR narrow-band imaging of the vicinity of the σ Orionis cluster. HH 1165 shows a spectacular extended and collimated spatial structure, with a projected length of 0.26 pc, a bent C-shaped morphology, multiple knots, and fragmented bow shocks at the apparent ends of the flow. The Hα image shows a bright halo with a clumpy distribution of material seen around the driving source, and curved reflection nebulosity tracing the outflow cavities. The driving source of HH 1165 is a Class I proto-brown dwarf, Mayrit 1701117 (M1701117), with a total (dust+gas) mass of ˜36 M Jup and a bolometric luminosity of ˜0.1 L ⊙. High-resolution VLT/UVES spectra of M1701117 show a wealth of emission lines indicative of strong outflow and accretion activity. SOAR/Goodman low-resolution spectra along the jet axis show an asymmetrical morphology for HH 1165. We find a puzzling picture wherein the northwest part exhibits a classical HH jet running into a pre-dominantly neutral medium, while the southern part resembles an externally irradiated jet. The C-shaped bending in HH 1165 may be produced by the combined effects from the massive stars in the ionization front to the east, the σ Orionis core to the west, and the close proximity to the B2-type star HR 1950. HH 1165 shows all of the signatures to be considered as a scaled-down version of parsec-length HH jets, and can be termed as the first sub-stellar analog of a protostellar HH jet system.

  17. Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

    Science.gov (United States)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria; Greenwood, Aaron; Kamp, Inga; Henning, Thomas; Ménard, François; Dent, William R. F.; Evans, Neal J., II

    2017-06-01

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O I] 63 μm line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3-78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature-stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O I] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O I] 63 μm nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  18. FIRST DETECTION OF THERMAL RADIOJETS IN A SAMPLE OF PROTO-BROWN DWARF CANDIDATES

    Energy Technology Data Exchange (ETDEWEB)

    Morata, Oscar [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Palau, Aina; González, Ricardo F. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090 Morelia, Michoacán, México (Mexico); Gregorio-Monsalvo, Itziar de [Joint ALMA Observatory (JAO), Alonso de Córdova 3107, Vitacura, Santiago (Chile); Ribas, Álvaro [European Space Astronomy Centre (ESA), P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Perger, Manuel [Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB—Facultat de Ciències, Torre C5—parell 2, E-08193 Bellaterra, Catalunya (Spain); Bouy, Hervé; Barrado, David; Huélamo, Nuria; Morales-Calderón, María [Centro de Astrobiología, INTA-CSIC, Dpto.Astrofísica, ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Eiroa, Carlos [Departamento de Física Teórica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Bayo, Amelia, E-mail: omorata@asiaa.sinica.edu.tw [Max Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); and others

    2015-07-01

    We observed with the Jansky Very Large Array at 3.6 and 1.3 cm a sample of 11 proto-brown dwarf (BD) candidates in Taurus in a search for thermal radio jets driven by the most embedded BDs. We detected for the first time four thermal radio jets in proto-BD candidates. We compiled data from UKIDSS, 2MASS, Spitzer, WISE, and Herschel to build the spectral energy distribution (SED) of the objects in our sample, which are similar to typical Class I SEDs of young stellar objects (YSOs). The four proto-BD candidates driving thermal radio jets also roughly follow the well-known trend of centimeter luminosity against bolometric luminosity determined for YSOs, assuming they belong to Taurus, although they present some excess of radio emission compared to the known relation for YSOs. Nonetheless, we are able to reproduce the flux densities of the radio jets modeling the centimeter emission of the thermal radio jets using the same type of models applied to YSOs, but with corresponding smaller stellar wind velocities and mass-loss rates, and exploring different possible geometries of the wind or outflow from the star. Moreover, we also find that the modeled mass outflow rates for the bolometric luminosities of our objects agree reasonably well with the trends found between the mass outflow rates and bolometric luminosities of YSOs, which indicates that, despite the “excess” centimeter emission, the intrinsic properties of proto-BDs are consistent with a continuation of those of very low-mass stars to a lower mass range. Overall, our study favors the formation of BDs as a scaled-down version of low-mass stars.

  19. An Eccentric Binary Millisecond Pulsar with a Helium White Dwarf Companion in the Galactic field

    Science.gov (United States)

    Antoniadis, John; Kaplan, David L.; Stovall, Kevin; Freire, Paulo C. C.; Deneva, Julia S.; Koester, Detlev; Jenet, Fredrick; Martinez, Jose G.

    2016-10-01

    Low-mass white dwarfs (LMWDs) are believed to be exclusive products of binary evolution, as the universe is not old enough to produce them from single stars. Because of the strong tidal forces operating during the binary interaction phase, the remnant systems observed today are expected to have negligible eccentricities. Here, we report on the first unambiguous identification of an LMWD in an eccentric (e = 0.13) orbit around the millisecond pulsar PSR J2234+0511, which directly contradicts this picture. We use our spectra and radio-timing solution (derived elsewhere) to infer the WD temperature ({T}{{eff}}=8600+/- 190 K), and peculiar systemic velocity relative to the local standard of rest (≃ 31 km s-1). We also place model-independent constraints on the WD radius ({R}{{WD}}={0.024}-0.002+0.004 {R}⊙ ) and surface gravity ({log} g={7.11}-0.16+0.08 dex). The WD and kinematic properties are consistent with the expectations for low-mass X-ray binary evolution and disfavor a dynamic three-body formation channel. In the case of the high eccentricity being the result of a spontaneous phase transition, we infer a mass of ˜1.60 M ⊙ for the pulsar progenitor, which is too low for the quark-nova mechanism proposed by Jiang et al., and too high for the scenario of Freire & Tauris, in which a WD collapses into a neutron star via a rotationally delayed accretion-induced collapse. We find that eccentricity pumping via interaction with a circumbinary disk is consistent with our inferred parameters. Finally, we report tentative evidence for pulsations that, if confirmed, would transform the star into an unprecedented laboratory for WD physics.

  20. FURTHER DEFINING SPECTRAL TYPE 'Y' AND EXPLORING THE LOW-MASS END OF THE FIELD BROWN DWARF MASS FUNCTION

    Energy Technology Data Exchange (ETDEWEB)

    Davy Kirkpatrick, J.; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Cushing, Michael C. [Department of Physics and Astronomy, MS 111, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606-3328 (United States); Mace, Gregory N.; Wright, Edward L.; McLean, Ian S. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Eisenhardt, Peter R.; Mainzer, Amanda K. [NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Burgasser, Adam J. [Department of Physics, University of California, San Diego, CA 92093 (United States); Tinney, C. G.; Parker, Stephen; Salter, Graeme, E-mail: davy@ipac.caltech.edu [Department of Astrophysics, School of Physics, University of New South Wales, NSW 2052 (Australia)

    2012-07-10

    We present the discovery of another seven Y dwarfs from the Wide-field Infrared Survey Explorer (WISE). Using these objects, as well as the first six WISE Y dwarf discoveries from Cushing et al., we further explore the transition between spectral types T and Y. We find that the T/Y boundary roughly coincides with the spot where the J - H colors of brown dwarfs, as predicted by models, turn back to the red. Moreover, we use preliminary trigonometric parallax measurements to show that the T/Y boundary may also correspond to the point at which the absolute H (1.6 {mu}m) and W2 (4.6 {mu}m) magnitudes plummet. We use these discoveries and their preliminary distances to place them in the larger context of the solar neighborhood. We present a table that updates the entire stellar and substellar constituency within 8 pc of the Sun, and we show that the current census has hydrogen-burning stars outnumbering brown dwarfs by roughly a factor of six. This factor will decrease with time as more brown dwarfs are identified within this volume, but unless there is a vast reservoir of cold brown dwarfs invisible to WISE, the final space density of brown dwarfs is still expected to fall well below that of stars. We also use these new Y dwarf discoveries, along with newly discovered T dwarfs from WISE, to investigate the field substellar mass function. We find that the overall space density of late-T and early-Y dwarfs matches that from simulations describing the mass function as a power law with slope -0.5 < {alpha} < 0.0; however, a power law may provide a poor fit to the observed object counts as a function of spectral type because there are tantalizing hints that the number of brown dwarfs continues to rise from late-T to early-Y. More detailed monitoring and characterization of these Y dwarfs, along with dedicated searches aimed at identifying more examples, are certainly required.

  1. VizieR Online Data Catalog: Astrometric monitoring of ultracool dwarf binaries (Dupuy+, 2017)

    Science.gov (United States)

    Dupuy, T. J.; Liu, M. C.

    2017-09-01

    In Table 1 we list all 33 binaries in our Keck+CFHT astrometric monitoring sample, along with three other binaries that have published orbit and parallax measurements. We began obtaining resolved Keck AO astrometry in 2007-2008, and we combined our new astrometry with available data in the literature or public archives (e.g., HST and Gemini) to refine our orbital period estimates and thereby our prioritization for Keck observations. We present here new Keck/NIRC2 AO imaging and non-redundant aperture-masking observations, in addition to a re-analysis of our own previously published data and publicly available archival data for our sample binaries. Table 2 gives our measured astrometry and flux ratios for all Keck AO data used in our orbital analysis spanning 2003 Apr 15 to 2016 May 13. In total there are 339 distinct measurements (unique bandpass and epoch for a given target), where 302 of these are direct imaging and 37 are non-redundant aperture masking. Eight of the imaging measurements are from six unpublished archival data sets. See section 3.1.1 for further details. In addition to our Keck AO monitoring, we also obtained data for three T dwarf binaries over a three-year HST program using the Advanced Camera for Surveys (ACS) Wide Field Camera (WFC) in the F814W bandpass. See section 3.1.2 for further details. Many of our sample binaries have HST imaging data in the public archive. We have re-analyzed the available archival data coming from the WFPC2 Planetary Camera (WFPC2-PC1), ACS High Resolution Channel (ACS-HRC), and NICMOS Camera 1 (NICMOS-NIC1). See section 3.1.3 for further details. We present here an updated analysis of our data from the Hawaii Infrared Parallax Program that uses the CFHT facility infrared camera WIRCam. Our observing strategy and custom astrometry pipeline are described in detail in Dupuy & Liu (2012, J/ApJS/201/19). See section 3.2 for further explanations. (10 data files).

  2. A Strange Dwarf Scenario for the Formation of the Peculiar Double White Dwarf Binary SDSS J125733.63+542850.5

    Science.gov (United States)

    Jiang, Long; Chen, Wen-Cong; Li, Xiang-Dong

    2018-01-01

    The Hubble Space Telescope observation of the double white dwarf (WD) binary SDSS J125733.63+542850.5 reveal that the massive WD has a surface gravity logg1 ˜ 8.7 (which implies a mass of M1 ˜ 1.06 M⊙) and an effective temperature T1 ˜ 13000 K, while the effective temperature of the low-mass WD (M2 double WD binary. We assume that the massive WD is a strange dwarf originating from a phase transition in a ˜1.1 M⊙ WD, which has experienced accretion and spin-down processes. Its high effective temperature could arise from the heating process during the phase transition. Our simulations suggest that the progenitor of SDSS J125733.63+542850.5 can be a binary system consisting of a 0.65 M_{⊙} WD and a 1.5 M_{⊙} main sequence star in a 1.492 day orbit. Especially, the secondary star (i.e., the progenitor of the low mass WD) is likely to have an ultra-low metallicity of Z = 0.0001.

  3. Effect of accretion on the pre-main-sequence evolution of low-mass stars and brown dwarfs

    Science.gov (United States)

    Vorobyov, Eduard I.; Elbakyan, Vardan; Hosokawa, Takashi; Sakurai, Yuya; Guedel, Manuel; Yorke, Harold

    2017-09-01

    Aims: The pre-main-sequence evolution of low-mass stars and brown dwarfs is studied numerically starting from the formation of a protostellar or proto-brown dwarf seed and taking into account the mass accretion onto the central object during the initial several Myr of evolution. Methods: The stellar evolution was computed using the STELLAR evolution code with recent modifications. The mass accretion rates were taken from numerical hydrodynamics models by computing the circumstellar disk evolution starting from the gravitational collapse of prestellar cloud cores of various mass and angular momentum. The resulting stellar evolution tracks were compared with the isochrones and isomasses calculated using non-accreting models. Results: We find that mass accretion in the initial several Myr of protostellar evolution can have a strong effect on the subsequent evolution of young stars and brown dwarfs. The disagreement between accreting and non-accreting models in terms of the total stellar luminosity L∗, stellar radius R∗, and effective temperature Teff depends on the thermal efficiency of accretion, that is, on the fraction of accretion energy that is absorbed by the central object. The largest mismatch is found for the cold accretion case, in which essentially all accretion energy is radiated away. The relative deviations in L∗ and R∗ in this case can reach 50% for objects 1.0 Myr old, and they remain notable even for objects 10 Myr old. In the hot and hybrid accretion cases, in which a constant fraction of accretion energy is absorbed, the disagreement between accreting and non-accreting models becomes less pronounced, but still remains notable for objects 1.0 Myr old. These disagreements may lead to an incorrect age estimate for objects of (sub-)solar mass when using the isochrones that are based on non-accreting models, as has also been noted previously. We find that objects with strong luminosity bursts exhibit notable excursions in the L∗-Teff diagram

  4. Periodic Radio and Hα emission from the L dwarf binary 2MASSW J0746425+200032: exploring the magnetic field topology and radius of an L dwarf

    OpenAIRE

    Berger, Edo; Rutledge, R. E.; Phan-Bao, N.; Basri, G.; Giampapa, M. S.; Gizis, J. E.; Liebert, J.; Martín, E.; Fleming, T. A.

    2009-01-01

    We present an 8.5-hour simultaneous radio, X-ray, UV, and optical observation of the L dwarf binary 2MASSW J0746425+200032. We detect strong radio emission, dominated by short-duration periodic pulses at 4.86 GHz with P = 124.32±0.11 min. The stability of the pulse profiles and arrival times demonstrates that they are due to the rotational modulation of a B ≈ 1.7 kG magnetic field. A quiescent non-variable component is also detected, likely due to emission from a uniform large-scale field. Th...

  5. The age-metallicity relation in the solar neighbourhood from a pilot sample of white dwarf-main sequence binaries

    Science.gov (United States)

    Rebassa-Mansergas, A.; Anguiano, B.; García-Berro, E.; Freeman, K. C.; Cojocaru, R.; Manser, C. J.; Pala, A. F.; Gänsicke, B. T.; Liu, X.-W.

    2016-12-01

    The age-metallicity relation (AMR) is a fundamental observational constraint for understanding how the Galactic disc formed and evolved chemically in time. However, there is not yet an agreement on the observational properties of the AMR for the solar neighbourhood, primarily due to the difficulty in obtaining accurate stellar ages for individual field stars. We have started an observational campaign for providing the much needed observational input by using wide white-dwarf-main-sequence (WDMS) binaries. White dwarfs are `natural' clocks and can be used to derive accurate ages. Metallicities can be obtained from the main-sequence companions. Since the progenitors of white dwarfs and the main-sequence stars were born at the same time, WDMS binaries provide a unique opportunity to observationally constrain in a robust way the properties of the AMR. In this work we present the AMR derived from analysing a pilot sample of 23 WDMS binaries and provide clear observational evidence for the lack of correlation between age and metallicity at young and intermediate ages (0-7 Gyr).

  6. The binary fraction, separation distribution, and merger rate of white dwarfs from SPY

    Science.gov (United States)

    Maoz, Dan; Hallakoun, Na'ama

    2017-05-01

    From a sample of spectra of 439 white dwarfs (WDs) from the ESO-VLT Supernova-Ia Progenitor Survey (SPY), we measure the maximal changes in radial velocity (ΔRVmax) between epochs (generally two epochs, separated by up to 470 d), and model the observed ΔRVmax statistics via Monte Carlo simulations, to constrain the population characteristics of double WDs (DWDs). The DWD fraction among WDs is fbin = 0.10 ± 0.02 (1σ, random) +0.02 (systematic), in the separation range ≲4 au within which the data are sensitive to binarity. Assuming the distribution of binary separation, a, is a power law, dN/da ∝ aα, at the end of the last common-envelope phase and the start of solely gravitational-wave-driven binary evolution, the constraint by the data is α = -1.3 ± 0.2 (1σ) ±0.2 (systematic). If these parameters extend to small separations, the implied Galactic WD merger rate per unit stellar mass is Rmerge = (1-80) × 10-13 yr^{-1} M_{⊙}^{-1} (2σ), with a likelihood-weighted mean of Rmerge = (7 ± 2) × 10-13 yr^{-1} M_{⊙}^{-1} (1σ). The Milky Way's specific Type Ia supernova (SN Ia) rate is likely RIa ≈ 1.1 × 10-13 yr^{-1} M_{⊙}^{-1} and therefore, in terms of rates, a possibly small fraction of all merging DWDs (e.g. those with massive-enough primary WDs) could suffice to produce most or all SNe Ia.

  7. Transmission of Rice Black-Streaked Dwarf Virus from Frozen Infected Leaves to Healthy Rice Plants by Small Brown Planthopper (Laodelphax striatellus)

    OpenAIRE

    Zhou, Tong; Wu, Li-juan; Wang, Ying; Cheng, Zhao-Bang; Ji, Ying-Hua; Yong-jian FAN; Zhou, Yi-Jun

    2011-01-01

    In order to preserve virus for identifying the resistance of rice varieties against rice black-streaked dwarf disease, a simple and reliable method was developed, through which virus-free small brown planthopper (SBPH) acquired rice black-streaked dwarf virus (RBSDV) from frozen infected leaves and the virus was transmitted to healthy rice plants. The experimental results showed that SBPH could obtain RBSDV from frozen infected rice leaves and the virus could be transmitted to a susceptible r...

  8. FORMATION OF BINARY MILLISECOND PULSARS BY ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS UNDER WIND-DRIVEN EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Ablimit, Iminhaji; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210046 (China)

    2015-02-20

    Accretion-induced collapse (AIC) of massive white dwarfs (WDs) has been proposed to be an important channel to form binary millisecond pulsars (MSPs). Recent investigations on thermal timescale mass transfer in WD binaries demonstrate that the resultant MSPs are likely to have relatively wide orbit periods (≳ 10 days). Here we calculate the evolution of WD binaries taking into account the excited wind from the companion star induced by X-ray irradiation of the accreting WD, which may drive rapid mass transfer even when the companion star is less massive than the WD. This scenario can naturally explain the formation of the strong-field neutron star in the low-mass X-ray binary 4U 1822–37. After AIC the mass transfer resumes when the companion star refills its Roche lobe, and the neutron star is recycled owing to mass accretion. A large fraction of the binaries will evolve to become binary MSPs with an He WD companion, with the orbital periods distributed between ≳ 0.1 days and ≲ 30 days, while some of them may follow the cataclysmic variable-like evolution toward very short orbits. If we instead assume that the newborn neutron star appears as an MSP and that part of its rotational energy is used to ablate its companion star, the binaries may also evolve to be the redback-like systems.

  9. Formation of Binary Millisecond Pulsars by Accretion-induced Collapse of White Dwarfs under Wind-driven Evolution

    Science.gov (United States)

    Ablimit, Iminhaji; Li, Xiang-Dong

    2015-02-01

    Accretion-induced collapse (AIC) of massive white dwarfs (WDs) has been proposed to be an important channel to form binary millisecond pulsars (MSPs). Recent investigations on thermal timescale mass transfer in WD binaries demonstrate that the resultant MSPs are likely to have relatively wide orbit periods (gsim 10 days). Here we calculate the evolution of WD binaries taking into account the excited wind from the companion star induced by X-ray irradiation of the accreting WD, which may drive rapid mass transfer even when the companion star is less massive than the WD. This scenario can naturally explain the formation of the strong-field neutron star in the low-mass X-ray binary 4U 1822-37. After AIC the mass transfer resumes when the companion star refills its Roche lobe, and the neutron star is recycled owing to mass accretion. A large fraction of the binaries will evolve to become binary MSPs with an He WD companion, with the orbital periods distributed between >~ 0.1 days and <~ 30 days, while some of them may follow the cataclysmic variable-like evolution toward very short orbits. If we instead assume that the newborn neutron star appears as an MSP and that part of its rotational energy is used to ablate its companion star, the binaries may also evolve to be the redback-like systems.

  10. The True Ultracool Binary Fraction Using Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown dwarfs.

  11. Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries

    Science.gov (United States)

    Weston, Jennifer H. S.

    2016-07-01

    This dissertation uses radio observations with the Karl G. Jansky Very Large Array (VLA) to investigate the mechanisms that power and shape accreting white dwarfs (WD) and their ejecta. We test the predictions of both simple spherical and steady-state radio emission models by examining nova V1723 Aql, nova V5589 Sgr, symbiotic CH Cyg, and two small surveys of symbiotic binaries. First, we highlight classical nova V1723 Aql with three years of radio observations alongside optical and X-ray observations. We use these observations to show that multiple outflows from the system collided to create early non-thermal shocks with a brightness temperature of ≥106 K. While the late-time radio light curve is roughly consistent an expanding thermal shell of mass 2x10-4 M⊙ solar masses, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months, much like what is seen in gamma-ray producing nova V959 Mon, suggesting similar structures in the two systems. Next, we examine nova V5589 Sgr, where we find that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. We additionally find roughly 10-5 M⊙ solar masses of thermal bremsstrahlung emitting material, all at a distance of ~4 kpc. The similarities in the evolution of both V1723 Aql and V5589 Sgr to that of nova V959 Mon suggest that these systems may all have dense equatorial tori shaping faster flows at their poles. Turning our focus to symbiotic binaries, we first use our radio observations of CH Cyg to link the ejection of a collimated jet to a change of state in the accretion disk. We additionally estimate the amount of mass ejected during this period (10-7 M⊙ masses), and improve measurements of the period of jet precession (P=12013 ± 74 days). We then use our survey of eleven accretion-driven symbiotic systems to determine that the radio brightness of a symbiotic system could potentially

  12. The SOPHIE search for northern extrasolar planets. VIII. Follow-up of ELODIE candidates: long-period brown-dwarf companions

    Science.gov (United States)

    Bouchy, F.; Ségransan, D.; Díaz, R. F.; Forveille, T.; Boisse, I.; Arnold, L.; Astudillo-Defru, N.; Beuzit, J.-L.; Bonfils, X.; Borgniet, S.; Bourrier, V.; Courcol, B.; Delfosse, X.; Demangeon, O.; Delorme, P.; Ehrenreich, D.; Hébrard, G.; Lagrange, A.-M.; Mayor, M.; Montagnier, G.; Moutou, C.; Naef, D.; Pepe, F.; Perrier, C.; Queloz, D.; Rey, J.; Sahlmann, J.; Santerne, A.; Santos, N. C.; Sivan, J.-P.; Udry, S.; Wilson, P. A.

    2016-01-01

    Long-period brown dwarf companions detected in radial velocity surveys are important targets for direct imaging and astrometry to calibrate the mass-luminosity relation of substellar objects. Through a 20-yr radial velocity monitoring of solar-type stars that began with ELODIE and was extended with SOPHIE spectrographs, giant exoplanets and brown dwarfs with orbital periods longer than ten years are discovered. We report the detection of five new potential brown dwarfs with minimum masses between 32 and 83 MJup orbiting solar-type stars with periods longer than ten years. An upper mass limit of these companions is provided using astrometric Hipparcos data, high-angular resolution imaging made with PUEO, and a deep analysis of the cross-correlation function of the main stellar spectra to search for blend effects or faint secondary components. These objects double the number of known brown dwarf companions with orbital periods longer than ten years and reinforce the conclusion that the occurrence of such objects increases with orbital separation. With a projected separation larger than 100 mas, all these brown dwarf candidates are appropriate targets for high-contrast and high angular resolution imaging. Based on observations made with ELODIE and SOPHIE spectrographs on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS/AMU), France.Tables 5-9 (RV data) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A46

  13. Emission line diagnostics for accretion and outflows in young very low-mass stars and brown dwarfs

    Science.gov (United States)

    Stelzer, B.; Alcalá, J. M.; Whelan, E.; Scholz, A.

    2014-01-01

    We discuss accretion and outflow properties of three very low-mass young stellar objects based on broad-band mid-resolution X-Shooter/VLT spectra. Our targets (FU Tau A, 2M1207-39, and Par-Lup3-4) have spectral types between M5 and M8, ages between 1Myr and ~ 10Myr, and are known to be accreting from previous studies. The final objective of our project is the determination of mass outflow to accretion rate for objects near or within the substellar regime as a probe for the T Tauri phase of brown dwarfs and the investigation of variability in the accretion and outflow processes.

  14. Emission line diagnostics for accretion and outflows in young very low-mass stars and brown dwarfs

    Directory of Open Access Journals (Sweden)

    Stelzer B.

    2014-01-01

    Full Text Available We discuss accretion and outflow properties of three very low-mass young stellar objects based on broad-band mid-resolution X-Shooter/VLT spectra. Our targets (FU Tau A, 2M1207-39, and Par-Lup3-4 have spectral types between M5 and M8, ages between 1Myr and ~ 10Myr, and are known to be accreting from previous studies. The final objective of our project is the determination of mass outflow to accretion rate for objects near or within the substellar regime as a probe for the T Tauri phase of brown dwarfs and the investigation of variability in the accretion and outflow processes.

  15. VizieR Online Data Catalog: Young stars and brown dwarfs in Ori OB1b (Caballero+, 2008)

    Science.gov (United States)

    Caballero, J. A.; Solano, E.

    2008-06-01

    We present here exhaustive lists of known young stars and new candidate members around Alnilam and Mintaka in the Ori OB1b association as well as of fore- and background sources. A total of 133 stars display features of extreme youth, including early spectral types, lithium in absorption, or mid-infrared flux excess. Other two young brown dwarf and 289 star candidates have been identified from an optical/near-infrared colour-magnitude diagram. We list additional 74 known objects that might belong to the association. This compilation of tables can serve as an input for characterisation of the stellar and high-mass substellar populations in the Orion Belt. (20 data files).

  16. Transmission of Rice Black-Streaked Dwarf Virus from Frozen Infected Leaves to Healthy Rice Plants by Small Brown Planthopper (Laodelphax striatellus

    Directory of Open Access Journals (Sweden)

    Tong ZHOU

    2011-06-01

    Full Text Available In order to preserve virus for identifying the resistance of rice varieties against rice black-streaked dwarf disease, a simple and reliable method was developed, through which virus-free small brown planthopper (SBPH acquired rice black-streaked dwarf virus (RBSDV from frozen infected leaves and the virus was transmitted to healthy rice plants. The experimental results showed that SBPH could obtain RBSDV from frozen infected rice leaves and the virus could be transmitted to a susceptible rice variety. For the ability to acquire RBSDV and transmit the virus to healthy plants by SBPH, there was no significant difference between frozen infected leaves and in vitro infected leaves. The novel method could be applied to identification of rice variety resistance to rice black-streaked dwarf disease, facilitating the breeding process for rice black-streaked dwarf disease resistance.

  17. Modeling the Cloudy Atmospheres of Cool Stars, Brown Dwarfs and Hot Exoplanets

    DEFF Research Database (Denmark)

    Juncher, Diana

    M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing the proper......M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing......-consistent cloudy atmosphere models that can be used to properly determine the stellar parameters of cool stars. With this enhanced model atmosphere code I have created a grid of cool, dusty atmosphere models ranging in effective temperatures from Teff = 2000 − 3000 K. I have studied the formation and structure...... of their clouds and found that their synthetic spectra fit the observed spectra of mid to late type M-dwarfs and early type L-dwarfs well. With additional development into even cooler regimes, they could be used to characterize the atmospheres of exoplanets and aid us in our search for the kind of chemical...

  18. A Pan-STARRS1 Proper-Motion Survey for Young Brown Dwarfs in the Nearest Star-Forming Regions and a Reddening-Free Classification Method for Ultracool Dwarfs

    Science.gov (United States)

    Zhang, Zhoujian; Liu, Michael C.; Best, William M. J.; Magnier, Eugene; Aller, Kimberly

    2018-01-01

    Young brown dwarfs are of prime importance to investigate the universality of the initial mass function (IMF). Based on photometry and proper motions from the Pan-STARRS1 (PS1) 3π survey, we are conducting the widest and deepest brown dwarf survey in the nearby star-forming regions, Taurus–Auriga (Taurus) and Upper Scorpius (USco). Our work is the first to measure proper motions, a robust proxy of membership, for brown dwarf candidates in Taurus and USco over such a large area and long time baseline (≈ 15 year) with such high precision (≈ 4 mas yr-1). Since extinction complicates spectral classification, we have developed a new approach to quantitatively determine reddening-free spectral types, extinctions, and gravity classifications for mid-M to late-L ultracool dwarfs (≈ 100–5 MJup), using low-resolution near-infrared spectra. So far, our IRTF/SpeX spectroscopic follow-up has increased the substellar and planetary-mass census of Taurus by ≈ 50% and almost doubled the substellar census of USco, constituting the largest single increases of brown dwarfs and free-floating planets found in both regions to date. Most notably, our new discoveries reveal an older (> 10 Myr) low-mass population in Taurus, in accord with recent studies of the higher-mass stellar members. In addition, the mass function appears to differ between the younger and older Taurus populations, possibly due to incompleteness of the older stellar members or different star formation processes. Upon completion, our survey will establish the most complete substellar and planetary-mass census in both Taurus and USco associations, make a significant addition to the low-mass IMF in both regions, and deliver more comprehensive pictures of star formation histories.

  19. Low-mass Pre-He White Dwarf Stars in Kepler Eclipsing Binaries with Multi-periodic Pulsations

    Science.gov (United States)

    Zhang, X. B.; Fu, J. N.; Liu, N.; Luo, C. Q.; Ren, A. B.

    2017-12-01

    We report the discovery of two thermally bloated low-mass pre-He white dwarfs (WDs) in two eclipsing binaries, KIC 10989032 and KIC 8087799. Based on the Kepler long-cadence photometry, we determined comprehensive photometric solutions of the two binary systems. The light curve analysis reveals that KIC 10989032 is a partially eclipsed detached binary system containing a probable low-mass WD with the temperature of about 10,300 K. Having a WD with the temperature of about 13,300, KKIC 8087799 is typical of an EL CVn system. By utilizing radial velocity measurements available for the A-type primary star of KIC 10989032, the mass and radius of the WD component are determined to be 0.24+/- 0.02 {M}⊙ and 0.50+/- 0.01 {R}⊙ , respectively. The values of mass and radius of the WD in KIC 8087799 are estimated as 0.16 ± 0.02 M ⊙ and 0.21 ± 0.01 R ⊙, respectively, according to the effective temperature and mean density of the A-type star derived from the photometric solution. We therefore introduce KIC 10989032 and KIC 8087799 as the eleventh and twelfth dA+WD eclipsing binaries in the Kepler field. Moreover, both binaries display marked multi-periodic pulsations superimposed on binary effects. A preliminary frequency analysis is applied to the light residuals when subtracting the synthetic eclipsing light curves from the observations, revealing that the light pulsations of the two systems are both due to the δ Sct-type primaries. We hence classify KIC 10989032 and KIC 8087799 as two WD+δ Sct binaries.

  20. A black hole-white dwarf compact binary model for long gamma-ray bursts without supernova association

    Science.gov (United States)

    Dong, Yi-Ze; Gu, Wei-Min; Liu, Tong; Wang, Junfeng

    2018-03-01

    Gamma-ray bursts (GRBs) are luminous and violent phenomena in the Universe. Traditionally, long GRBs are expected to be produced by the collapse of massive stars and associated with supernovae. However, some low-redshift long GRBs have no detection of supernova association, such as GRBs 060505, 060614, and 111005A. It is hard to classify these events convincingly according to usual classifications, and the lack of the supernova implies a non-massive star origin. We propose a new path to produce long GRBs without supernova association, the unstable and extremely violent accretion in a contact binary system consisting of a stellar-mass black hole and a white dwarf, which fills an important gap in compact binary evolution.

  1. A Black Hole - White Dwarf Compact Binary Model for Long Gamma-ray Bursts without Supernova Association

    Science.gov (United States)

    Dong, Yi-Ze; Gu, Wei-Min; Liu, Tong; Wang, Junfeng

    2018-01-01

    Gamma-ray bursts (GRBs) are luminous and violent phenomena in the universe. Traditionally, long GRBs are expected to be produced by the collapse of massive stars and associated with supernovae. However, some low-redshift long GRBs have no detection of supernova association, such as GRBs 060505, 060614 and 111005A. It is hard to classify these events convincingly according to usual classifications, and the lack of the supernova implies a non-massive star origin. We propose a new path to produce long GRBs without supernova association, the unstable and extremely violent accretion in a contact binary system consisting of a stellar-mass black hole and a white dwarf, which fills an important gap in compact binary evolution.

  2. Novel modelling of ultracompact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars

    Science.gov (United States)

    Sengar, Rahul; Tauris, Thomas M.; Langer, Norbert; Istrate, Alina G.

    2017-09-01

    Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually 'merge' due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultracompact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-low-mass X-ray binary systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 min. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ˜0.005 M⊙ after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate versus orbital period.

  3. Three new massive companions in the planet-brown dwarf boundary detected with SOPHIE

    Directory of Open Access Journals (Sweden)

    Santerne A.

    2011-02-01

    Full Text Available We report the detection of three new massive companions to mainsequence stars based on precise radial velocities obtained with the SOPHIE spectrograph, as part of an ongoing programme to search for extrasolar planets. The minimum masses of the detected companions range from around 16 Mjup to around 60 Mjup, and therefore lie at both sides of the boundary between massive extrasolar planets and brown dwarves.

  4. The T Tauri Phase Down to Nearly Planetary Masses: Echelle Spectra of 82 Very Low Mass Stars and Brown Dwarfs

    Science.gov (United States)

    Mohanty, Subhanjoy; Jayawardhana, Ray; Basri, Gibor

    2005-06-01

    Using the largest high-resolution spectroscopic sample to date of young, very low mass stars and brown dwarfs, we investigate disk accretion in objects ranging from just above the hydrogen-burning limit all the way to nearly planetary masses. Our 82 targets span spectral types from M5 to M9.5, or masses from 0.15 Msolar down to about 15 jupiters. They are confirmed members of the ρ Ophiuchus, Taurus, Chamaeleon I, IC 348, R Coronae Australis, Upper Scorpius, and TW Hydrae star-forming regions and young clusters, with ages from =M6.5). We have previously presented high-resolution optical spectra for roughly half the sample; the rest are new. This is a close to complete survey of all confirmed brown dwarfs known so far in the regions examined, except in ρ Oph and IC 348 (where we are limited by a combination of extinction and distance). We find that (1) classical T Tauri-like disk accretion persists in the substellar domain down to nearly the deuterium-burning limit; (2) while an Hα 10% width >~200 km s-1 is our prime accretion diagnostic (following our previous work), permitted emission lines of Ca II, O I, and He I are also good accretion indicators, just as in classical T Tauri stars (we caution against a blind use of Hα width alone, since inclination and rotation effects on the line are especially important at the low accretion rates in very low mass objects); (3) the Ca II λ8662 line flux is an excellent quantitative measure of the accretion rate in very low mass stars and brown dwarfs (as in higher mass classical T Tauri Stars), correlating remarkably well with the M˙ obtained from veiling and Hα modeling; (4) the accretion rate diminishes rapidly with mass-our measurements support previous suggestions that M˙~M2* (albeit with considerable scatter) and extend this correlation to the entire range of substellar masses; (5) the fraction of very low mass stellar and substellar accretors decreases substantially with age, as in higher mass stars; (6) at any

  5. OGLE-2016-BLG-1190Lb: The First Spitzer Bulge Planet Lies Near the Planet/Brown-dwarf Boundary

    Science.gov (United States)

    Ryu, Y.-H.; Yee, J. C.; Udalski, A.; Bond, I. A.; Shvartzvald, Y.; Zang, W.; Figuera Jaimes, R.; Jørgensen, U. G.; Zhu, W.; Huang, C. X.; Jung, Y. K.; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Hwang, K.-H.; Shin, I.-G.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration; Calchi Novati, S.; Carey, S.; Henderson, C. B.; Beichman, C.; Gaudi, B. S.; Spitzer team; Mróz, P.; Poleski, R.; Skowron, J.; Szymański, M. K.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Abe, F.; Asakura, Y.; Barry, R.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Hirao, Y.; Itow, Y.; Kawasaki, K.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Miyazaki, S.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Rattenbury, N. J.; Saito, To.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yamada, T.; Yonehara, A.; MOA Collaboration; Bryden, G.; Howell, S. B.; Jacklin, S.; UKIRT Microlensing Team; Penny, M. T.; Mao, S.; Fouqué, Pascal; Wang, T.; CFHT-K2C9 Microlensing Survey group; Street, R. A.; Tsapras, Y.; Hundertmark, M.; Bachelet, E.; Dominik, M.; Li, Z.; Cross, S.; Cassan, A.; Horne, K.; Schmidt, R.; Wambsganss, J.; Ment, S. K.; Maoz, D.; Snodgrass, C.; Steele, I. A.; RoboNet Team; Bozza, V.; Burgdorf, M. J.; Ciceri, S.; D’Ago, G.; Evans, D. F.; Hinse, T. C.; Kerins, E.; Kokotanekova, R.; Longa, P.; MacKenzie, J.; Popovas, A.; Rabus, M.; Rahvar, S.; Sajadian, S.; Skottfelt, J.; Southworth, J.; von Essen, C.; MiNDSTEp Team

    2018-01-01

    We report the discovery of OGLE-2016-BLG-1190Lb, which is likely to be the first Spitzer microlensing planet in the Galactic bulge/bar, an assignation that can be confirmed by two epochs of high-resolution imaging of the combined source–lens baseline object. The planet’s mass, M p = 13.4 ± 0.9 M J , places it right at the deuterium-burning limit, i.e., the conventional boundary between “planets” and “brown dwarfs.” Its existence raises the question of whether such objects are really “planets” (formed within the disks of their hosts) or “failed stars” (low-mass objects formed by gas fragmentation). This question may ultimately be addressed by comparing disk and bulge/bar planets, which is a goal of the Spitzer microlens program. The host is a G dwarf, M host = 0.89 ± 0.07 M ⊙, and the planet has a semimajor axis a ∼ 2.0 au. We use Kepler K2 Campaign 9 microlensing data to break the lens-mass degeneracy that generically impacts parallax solutions from Earth–Spitzer observations alone, which is the first successful application of this approach. The microlensing data, derived primarily from near-continuous, ultradense survey observations from OGLE, MOA, and three KMTNet telescopes, contain more orbital information than for any previous microlensing planet, but not quite enough to accurately specify the full orbit. However, these data do permit the first rigorous test of microlensing orbital-motion measurements, which are typically derived from data taken over <1% of an orbital period.

  6. CFBDSIR 2149-0403: young isolated planetary-mass object or high-metallicity low-mass brown dwarf?

    Science.gov (United States)

    Delorme, P.; Dupuy, T.; Gagné, J.; Reylé, C.; Forveille, T.; Liu, M. C.; Artigau, E.; Albert, L.; Delfosse, X.; Allard, F.; Homeier, D.; Malo, L.; Morley, C.; Naud, M. E.; Bonnefoy, M.

    2017-06-01

    Aims: We conducted a multi-wavelength, multi-instrument observational characterisation of the candidate free-floating planet CFBDSIR J214947.2-040308.9, a late T-dwarf with possible low-gravity features, in order to constrain its physical properties. Methods: We analysed nine hours of X-shooter spectroscopy with signal detectable from 0.8 to 2.3 μm, as well as additional photometry in the mid-infrared using the Spitzer Space Telescope. Combined with a VLT/HAWK-I astrometric parallax, this enabled a full characterisation of the absolute flux from the visible to 5 μm, encompassing more than 90% of the expected energy emitted by such a cool late T-type object. Our analysis of the spectrum also provided the radial velocity and therefore the determination of its full 3D kinematics. Results: While our new spectrum confirms the low gravity and/or high metallicity of CFBDSIR 2149, the parallax and kinematics safely rule out membership to any known young moving group, including AB Doradus. We use the equivalent width of the K I doublet at 1.25 μm as a promising tool to discriminate the effects of low-gravity from the effects of high-metallicity on the emission spectra of cool atmospheres. In the case of CFBDSIR 2149, the observed K I doublet clearly favours the low-gravity solution. Conclusions: CFBDSIR 2149 is therefore a peculiar late-T dwarf that is probably a young, planetary-mass object (2-13 MJup, <500 Myr) possibly similar to the exoplanet 51 Eri b, or perhaps a 2-40 MJup brown dwarf with super-solar metallicity. Based on observations obtained with X-shooter on VLT-UT2 at ESO-Paranal (run 091.D-0723). Based on observations obtained with HAWKI on VLT-UT4 (run 089.C-0952, 090.C-0483, 091.C-0543,092.C-0548,293.C-5019(A) and run 086.C-0655(A)). Based on observations obtained with ISAAC on VLT-UT3 at ESO-Paranal (run 290.C-5083). Based on observation obtained with WIRCam at CFHT (program 2012BF12). Based on Spitzer Space telescope DDT observation (program 10166).

  7. Cloud Atlas: Discovery of Rotational Spectral Modulations in a Low-mass, L-type Brown Dwarf Companion to a Star

    Science.gov (United States)

    Manjavacas, Elena; Apai, Dániel; Zhou, Yifan; Karalidi, Theodora; Lew, Ben W. P.; Schneider, Glenn; Cowan, Nicolas; Metchev, Stan; Miles-Páez, Paulo A.; Burgasser, Adam J.; Radigan, Jacqueline; Bedin, Luigi R.; Lowrance, Patrick J.; Marley, Mark S.

    2018-01-01

    Observations of rotational modulations of brown dwarfs and giant exoplanets allow the characterization of condensate cloud properties. As of now, rotational spectral modulations have only been seen in three L-type brown dwarfs. We report here the discovery of rotational spectral modulations in LP261-75B, an L6-type intermediate surface gravity companion to an M4.5 star. As a part of the Cloud Atlas Treasury program, we acquired time-resolved Wide Field Camera 3 grism spectroscopy (1.1–1.69 μm) of LP261-75B. We find gray spectral variations with the relative amplitude displaying only a weak wavelength dependence and no evidence for lower-amplitude modulations in the 1.4 μm water band than in the adjacent continuum. The likely rotational modulation period is 4.78 ± 0.95 hr, although the rotational phase is not well sampled. The minimum relative amplitude in the white light curve measured over the whole wavelength range is 2.41% ± 0.14%. We report an unusual light curve, which seems to have three peaks approximately evenly distributed in rotational phase. The spectral modulations suggests that the upper atmosphere cloud properties in LP261-75B are similar to two other mid-L dwarfs of typical infrared colors, but differ from that of the extremely red L-dwarf WISE0047.

  8. An Independent Analysis of the Brown Dwarf Atmosphere Monitoring (BAM) Data: Large-amplitude Variability is Rare Outside the L/T Transition

    Science.gov (United States)

    Radigan, Jacqueline

    2014-12-01

    Observations of variability can provide valuable information about the processes of cloud formation and dissipation in brown dwarf atmospheres. Here we report the results of an independent analysis of archival data from the Brown dwarf Atmosphere Monitoring (BAM) program. Time series data for 14 L and T dwarfs reported to be significantly variable over timescales of hours were analyzed. We confirm large-amplitude variability (amplitudes >2%) for 4 out of 13 targets and place upper limits of 0.7%-1.6% on variability in the remaining sample. For two targets we find evidence of weak variability at amplitudes of 1.3% and 1.6%. Based on our revised classification of variable objects in the BAM study, we find strong variability outside the L/T transition to be rare at near infrared wavelengths. From a combined sample of 81 L0-T9 dwarfs from the revised BAM sample and the variability survey of Radigan et al., we infer an overall observed frequency for large-amplitude variability outside the L/T transition of 3.2-1.8+2.8%, in contrast to 24+11-9% for L9-T3.5 spectral types. We conclude that while strong variability is not limited to the L/T transition, it occurs more frequently in this spectral type range, indicative of larger or more highly contrasting cloud features at these spectral types.

  9. Detection of Binary and Multiple Systems Among Rapidly Rotating K and M Dwarf Stars From Kepler Data

    Science.gov (United States)

    Oláh, K.; Rappaport, S.; Joss, M.

    2015-07-01

    From an examination of ˜18,000 Kepler light curves of K- and M-stars we find some 500 which exhibit rotational periods of less than 2 days. Among such stars, approximately 50 show two or more incommensurate periodicities. We discuss the tools that allow us to differentiate between rotational modulation and other types of light variations, e.g., due to pulsations or binary modulations. We find that these multiple periodicities are independent of each other and likely belong to different, but physically bound, stars. This scenario was checked directly by UKIRT and adaptive optics imaging, time-resolved Fourier transforms, and pixel-level analysis of the data. Our result is potentially important for discovering young multiple stellar systems among rapidly rotating K- and M-dwarfs.

  10. NEPTUNE’S DYNAMIC ATMOSPHERE FROM KEPLER K2 OBSERVATIONS: IMPLICATIONS FOR BROWN DWARF LIGHT CURVE ANALYSES

    Science.gov (United States)

    Rowe, Jason F.; Gaulme, Patrick; Hammel, Heidi B.; Casewell, Sarah L.; Fortney, Jonathan J.; Gizis, John E.; Lissauer, Jack J.; Morales-Juberias, Raul; Orton, Glenn S.; Wong, Michael H.; Marley, Mark S.

    2017-01-01

    Observations of Neptune with the Kepler Space Telescope yield a 49 day light curve with 98% coverage at a 1 minute cadence. A significant signature in the light curve comes from discrete cloud features. We compare results extracted from the light curve data with contemporaneous disk-resolved imaging of Neptune from the Keck 10-m telescope at 1.65 microns and Hubble Space Telescope visible imaging acquired nine months later. This direct comparison validates the feature latitudes assigned to the K2 light curve periods based on Neptune’s zonal wind profile, and confirms observed cloud feature variability. Although Neptune’s clouds vary in location and intensity on short and long timescales, a single large discrete storm seen in Keck imaging dominates the K2 and Hubble light curves; smaller or fainter clouds likely contribute to short-term brightness variability. The K2 Neptune light curve, in conjunction with our imaging data, provides context for the interpretation of current and future brown dwarf and extrasolar planet variability measurements. In particular we suggest that the balance between large, relatively stable, atmospheric features and smaller, more transient, clouds controls the character of substellar atmospheric variability. Atmospheres dominated by a few large spots may show inherently greater light curve stability than those which exhibit a greater number of smaller features. PMID:28127087

  11. HST NICMOS Imaging of the Planetary-mass Companion to the Young Brown Dwarf 2MASSW J1207334-393254

    Science.gov (United States)

    Song, Inseok; Schneider, G.; Zuckerman, B.; Farihi, J.; Becklin, E. E.; Bessell, M. S.; Lowrance, P.; Macintosh, B. A.

    2006-11-01

    Multiband (0.9-1.6 μm) images of the TW Hydrae association (TWA) brown dwarf 2MASSW J1207334-393254 (also known as 2M 1207) and its candidate planetary-mass companion (2M 1207b) were obtained on 2004 August 28 and 2005 April 26 with HST NICMOS. The images from these two epochs unequivocally confirm the two objects as a common proper motion pair (16.0 σ confidence). A new measurement of the proper motion of 2M 1207 implies a distance to the system of 59+/-7 pc and a projected separation of 46+/-5 AU. The NICMOS and previously published VLT photometry of 2M 1207b, extending overall from 0.9 to 3.8 μm, are fully consistent with an object of a few Jupiter masses at the canonical age of a TWA member (~8 Myr) based on evolutionary models of young giant planets. These observations provide information on the physical nature of 2M 1207b and unambiguously establish that the first direct image of a planetary-mass companion in orbit around a self-luminous body, other than our Sun, has been secured.

  12. HST ROTATIONAL SPECTRAL MAPPING OF TWO L-TYPE BROWN DWARFS: VARIABILITY IN AND OUT OF WATER BANDS INDICATES HIGH-ALTITUDE HAZE LAYERS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Apai, Dániel; Karalidi, Theodora [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, Naval Air Station, Moffett Field, Mountain View, CA 94035 (United States); Saumon, Didier [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Morley, Caroline V. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Buenzli, Esther [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Artigau, Étienne [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada); Radigan, Jacqueline [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Metchev, Stanimir [Department of Physics and Astronomy, Western University, 1151 Richmond Street, London, ON N6A 3K7 (Canada); Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Mohanty, Subhanjoy [Imperial College London, 1010 Blackett Lab, Prince Consort Road, London SW7 2AZ (United Kingdom); Lowrance, Patrick J. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Showman, Adam P.; Flateau, Davin [Department of Planetary Sciences, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States); Heinze, Aren N., E-mail: haoyang@email.arizona.edu [Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800 (United States)

    2015-01-01

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759–1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at other wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon and Marley and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers—the driver of the variability—must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.

  13. Normal Type Ia Supernovae from Violent Mergers of White Dwarf Binaries

    Science.gov (United States)

    Pakmor, R.; Kromer, M.; Taubenberger, S.; Sim, S. A.; Röpke, F. K.; Hillebrandt, W.

    2012-03-01

    One of the most important questions regarding the progenitor systems of Type Ia supernovae (SNe Ia) is whether mergers of two white dwarfs can lead to explosions that reproduce observations of normal events. Here we present a fully three-dimensional simulation of a violent merger of two carbon-oxygen white dwarfs with masses of 0.9 M ⊙ and 1.1 M ⊙ combining very high resolution and exact initial conditions. A well-tested combination of codes is used to study the system. We start with the dynamical inspiral phase and follow the subsequent thermonuclear explosion under the plausible assumption that a detonation forms in the process of merging. We then perform detailed nucleosynthesis calculations and radiative transfer simulations to predict synthetic observables from the homologously expanding supernova ejecta. We find that synthetic color light curves of our merger, which produces about 0.62 M ⊙ of 56Ni, show good agreement with those observed for normal SNe Ia in all wave bands from U to K. Line velocities in synthetic spectra around maximum light also agree well with observations. We conclude that violent mergers of massive white dwarfs can closely resemble normal SNe Ia. Therefore, depending on the number of such massive systems available these mergers may contribute at least a small fraction to the observed population of normal SNe Ia.

  14. NORMAL TYPE Ia SUPERNOVAE FROM VIOLENT MERGERS OF WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Pakmor, R. [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg (Germany); Kromer, M.; Taubenberger, S.; Hillebrandt, W. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Sim, S. A. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Roepke, F. K. [Institut Fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, Emil-Fischer-Str. 31, 97074 Wuerzburg (Germany)

    2012-03-15

    One of the most important questions regarding the progenitor systems of Type Ia supernovae (SNe Ia) is whether mergers of two white dwarfs can lead to explosions that reproduce observations of normal events. Here we present a fully three-dimensional simulation of a violent merger of two carbon-oxygen white dwarfs with masses of 0.9 M{sub Sun} and 1.1 M{sub Sun} combining very high resolution and exact initial conditions. A well-tested combination of codes is used to study the system. We start with the dynamical inspiral phase and follow the subsequent thermonuclear explosion under the plausible assumption that a detonation forms in the process of merging. We then perform detailed nucleosynthesis calculations and radiative transfer simulations to predict synthetic observables from the homologously expanding supernova ejecta. We find that synthetic color light curves of our merger, which produces about 0.62 M{sub Sun} of {sup 56}Ni, show good agreement with those observed for normal SNe Ia in all wave bands from U to K. Line velocities in synthetic spectra around maximum light also agree well with observations. We conclude that violent mergers of massive white dwarfs can closely resemble normal SNe Ia. Therefore, depending on the number of such massive systems available these mergers may contribute at least a small fraction to the observed population of normal SNe Ia.

  15. Project 1640 Observations of Brown Dwarf GJ 758 B: Near-infrared Spectrum and Atmospheric Modeling

    Science.gov (United States)

    Nilsson, R.; Veicht, A.; Giorla Godfrey, P. A.; Rice, E. L.; Aguilar, J.; Pueyo, L.; Roberts, L. C., Jr.; Oppenheimer, R.; Brenner, D.; Luszcz-Cook, S. H.; Bacchus, E.; Beichman, C.; Burruss, R.; Cady, E.; Dekany, R.; Fergus, R.; Hillenbrand, L.; Hinkley, S.; King, D.; Lockhart, T.; Parry, I. R.; Sivaramakrishnan, A.; Soummer, R.; Vasisht, G.; Zhai, C.; Zimmerman, N. T.

    2017-03-01

    The nearby Sun-like star GJ 758 hosts a cold substellar companion, GJ 758 B, at a projected separation of ≲30 au, previously detected in high-contrast multi-band photometric observations. In order to better constrain the companion’s physical characteristics, we acquired the first low-resolution (R ˜ 50) near-infrared spectrum of it using the high-contrast hyperspectral imaging instrument Project 1640 on Palomar Observatory’s 5 m Hale telescope. We obtained simultaneous images in 32 wavelength channels covering the Y, J, and H bands (˜952-1770 nm), and used data processing techniques based on principal component analysis to efficiently subtract chromatic background speckle-noise. GJ 758 B was detected in four epochs during 2013 and 2014. Basic astrometric measurements confirm its apparent northwest trajectory relative to the primary star, with no clear signs of orbital curvature. Spectra of SpeX/IRTF observed T dwarfs were compared to the combined spectrum of GJ 758 B, with χ 2 minimization suggesting a best fit for spectral type T7.0 ± 1.0, but with a shallow minimum over T5-T8. Fitting of synthetic spectra from the BT-Settl13 model atmospheres gives an effective temperature T eff = 741 ± 25 K and surface gravity {log}g=4.3+/- 0.5 dex (cgs). Our derived best-fit spectral type and effective temperature from modeling of the low-resolution spectrum suggest a slightly earlier and hotter companion than previous findings from photometric data, but do not rule out current results, and confirm GJ 758 B as one of the coolest sub-stellar companions to a Sun-like star to date.

  16. Using brown midrib 6 dwarf forage sorghum silage and fall-grown oat silage in lactating dairy cow rations.

    Science.gov (United States)

    Harper, M T; Oh, J; Giallongo, F; Lopes, J C; Roth, G W; Hristov, A N

    2017-07-01

    Double cropping and increasing crop diversity could improve dairy farm economic and environmental sustainability. In this experiment, corn silage was partially replaced with 2 alternative forages, brown midrib-6 brachytic dwarf forage sorghum (Sorghum bicolor) or fall-grown oat (Avena sativa) silage, in the diet of lactating dairy cows. We investigated the effect on dry matter (DM) intake, milk yield (MY), milk components and fatty acid profile, apparent total-tract nutrient digestibility, N utilization, enteric methane emissions, and income over feed cost. We analyzed the in situ DM and neutral detergent fiber disappearance of the alternative forages versus corn silage and alfalfa haylage. Sorghum was grown in the summer and harvested in the milk stage. Oats were grown in the fall and harvested in the boot stage. Compared with corn silage, neutral detergent fiber and acid detergent fiber concentrations were higher in the alternative forages. Lignin content was highest for sorghum silage and similar for corn silage and oat silage. The alternative forages had less than 1% starch compared with the approximately 35% starch in the corn silage. Ruminal in situ DM effective degradability was similar, although statistically different, for corn silage and oat silage, but lower for sorghum silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, sorghum or oat silages were included at 10% of dietary DM, replacing corn silage. Sorghum silage inclusion decreased DM intake, MY, and milk protein content but increased milk fat and maintained energy-corrected MY similar to the control. Oat silage had no effect on DM intake, MY, or milk components compared to the control. The oat silage diet increased apparent total-tract digestibility of dietary nutrients, except starch, whereas the sorghum diet slightly

  17. Maximum mass ratio of am CVn-type binary systems and maximum white dwarf mass in ultra-compact x-ray binaries (addendum - Serb. Astron. J. No. 183 (2011, 63

    Directory of Open Access Journals (Sweden)

    Arbutina B.

    2012-01-01

    Full Text Available We recalculated the maximum white dwarf mass in ultra-compact X-ray binaries obtained in an earlier paper (Arbutina 2011, by taking the effects of super-Eddington accretion rate on the stability of mass transfer into account. It is found that, although the value formally remains the same (under the assumed approximations, for white dwarf masses M2 >~0.1MCh mass ratios are extremely low, implying that the result for Mmax is likely to have little if any practical relevance.

  18. A VERY BRIGHT, VERY HOT, AND VERY LONG FLARING EVENT FROM THE M DWARF BINARY SYSTEM DG CVn

    Energy Technology Data Exchange (ETDEWEB)

    Osten, Rachel A. [Space Telescope Science Institute (United States); Kowalski, Adam [U. Md/GSFC (United States); Drake, Stephen A. [USRA/CRESST and NASA/GSFC (United States); Krimm, Hans [USRA/CRESST (United States); Page, Kim [X-ray and Observational Astronomy Group, Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom); Gazeas, Kosmas [Department of Astrophysics, Astronomy and Mechanics, University of Athens, GR-15784 Zografos, Athens (Greece); Kennea, Jamie [Penn State (United States); Oates, Samantha [Instituto de Astrofsica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Page, Mathew [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom); De Miguel, Enrique [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, E-21071 Huelva (Spain); Novák, Rudolf [Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 3, 625 00 Brno (Czech Republic); Apeltauer, Tomas [Brno University of Technology, Faculty of Civil Engineering, Veveri 331/95, 602 00 Brno (Czech Republic); Gehrels, Neil, E-mail: osten@stsci.edu [NASA/GSFC (United States)

    2016-12-01

    On 2014 April 23, the Swift satellite responded to a hard X-ray transient detected by its Burst Alert Telescope, which turned out to be a stellar flare from a nearby, young M dwarf binary DG CVn. We utilize observations at X-ray, UV, optical, and radio wavelengths to infer the properties of two large flares. The X-ray spectrum of the primary outburst can be described over the 0.3–100 keV bandpass by either a single very high-temperature plasma or a nonthermal thick-target bremsstrahlung model, and we rule out the nonthermal model based on energetic grounds. The temperatures were the highest seen spectroscopically in a stellar flare, at T{sub X} of 290 MK. The first event was followed by a comparably energetic event almost a day later. We constrain the photospheric area involved in each of the two flares to be >10{sup 20} cm{sup 2}, and find evidence from flux ratios in the second event of contributions to the white light flare emission in addition to the usual hot, T  ∼ 10{sup 4} K blackbody emission seen in the impulsive phase of flares. The radiated energy in X-rays and white light reveal these events to be the two most energetic X-ray flares observed from an M dwarf, with X-ray radiated energies in the 0.3–10 keV bandpass of 4 × 10{sup 35} and 9 × 10{sup 35} erg, and optical flare energies at E{sub V} of 2.8 × 10{sup 34} and 5.2 × 10{sup 34} erg, respectively. The results presented here should be integrated into updated modeling of the astrophysical impact of large stellar flares on close-in exoplanetary atmospheres.

  19. The White-Dwarf Mass-Radius Relation from 40 Eridani B and Other Nearby Visual Binaries

    Science.gov (United States)

    Bond, Howard E.; Bergeron, P.; Bedard, A.

    2018-01-01

    The bright, nearby DA-type white dwarf (WD) 40 Eridani B is orbited by the M dwarf 40 Eri C, allowing determination of the WD's mass. Until recently, however, the mass depended on orbital elements determined four decades ago, and that mass was so low that it created several astrophysical puzzles. Using new astrometric measurements, the binary-star group at the U.S. Naval Observatory has revised the dynamical mass upward, to 0.573 ± 0.018 M⊙. We have used model-atmosphere analysis to update other parameters of the WD, including effective temperature, surface gravity, radius, and luminosity. We then comparethese results with WD interior models.Within the observational uncertainties, theoretical cooling tracks for CO-core WDs of its measured mass are consistent with the position of 40 Eri B in the H-R diagram; equivalently, the theoretical mass-radius relation (MRR) is consistent with the star's location in the mass-radius plane. This consistency is, however, achieved only if we assume a "thin'' outer hydrogen layer, with qH = MH/MWD ∼ 10–10.We discuss other evidence that a significant fraction of DA WDs have such thin H layers, in spite of expectation from canonical stellar-evolution theory of "thick'' H layers with qH ∼ 10–4 . The cooling age of 40 Eri B is ~122 Myr, and its total age is ~1.8 Gyr. We present the MRRs for 40 Eri B and three other nearby WDs in visual binaries with precise mass determinations, and show that the agreement of current theory with observation is excellent in all cases.However, astrophysical puzzles remain. The eccentricity of the BC orbit has remained high (0.43), even though the progenitor of B ought to have interacted tidally with C when it was an AGB star. This puzzle exists also for the Sirius and Procyon systems. If thin hydrogen layers are common among WDs, the mass scale will need to be shifted downwards by a few hundredths of a solar mass.

  20. Diffusive settling of neon-22 in isolated carbon-oxygen white dwarfs, and, Arbitrarily degenerate donors in ultracompact stellar binaries

    Science.gov (United States)

    Deloye, Christopher J.

    I detail my work, conducted under Professor Lars Bildsten concerning several aspects of white dwarf (WD) physics. In Part I, I describe our study of the impact of 22Ne diffusion in liquid WD interiors. The neutron excess of 22Ne compared to 12C and 16O allows it to sink towards the center, releasing gravitational binding energy. This energy slows WD cooling by an amount that depends on the mass of the WD, the 22Ne diffusion rate, and metallicity. A gradient in 22Ne also affects the internal buoyancy of the WD, altering the star's g-mode frequencies at a detectable level. In Part II, I move onto the donors in ultracompact binary systems (UCBs). These systems represent extreme examples of mass-transferring binaries, having orbital periods less than 70 min. I detail our new model set for the donors in these systems, which allows consideration of donors with arbitrary composition and entropy. This is a major improvement over the models available prior to our work as we can now consider constraining internal donor properties from observational data. We apply these models to UCB systems that contain either a neutron star (NS) accretor or a WD accretor, placing constraints on members of both classes of systems. In particular, we find that the composition of the donors in certain NS accretor systems can be strongly constrained, while we can provide weak limits on the entropy of the donors in the WD accretor systems. This latter fact may help distinguish between possible formation channels for these systems. Finally, I conclude by considering several outstanding questions in both classes of systems and outline how our models can be used or modified to address each of them.

  1. Kepler and L Dwarfs

    OpenAIRE

    Gizis, John

    2014-01-01

    I presented results from the original Kepler and new K2 missions on L dwarfs. The L1 dwarf star WISE 1906 was monitored with both Spitzer and Kepler, revealing variability and evidence of both clouds and flares. The L8 brown dwarf WISE 0607 was recently monitored with both Kepler K2 and Spitzer, but did not vary. I discussed challenges for the K2 analysis, which is ongoing, but many L dwarfs should be monitored in the future.

  2. Dust in brown dwarfs and extrasolar planets. V. Cloud formation in carbon- and oxygen-rich environments

    Science.gov (United States)

    Helling, Ch.; Tootill, D.; Woitke, P.; Lee, G.

    2017-07-01

    Context. Recent observations indicate potentially carbon-rich (C/O > 1) exoplanet atmospheres. Spectral fitting methods for brown dwarfs and exoplanets have invoked the C/O ratio as additional parameter but carbon-rich cloud formation modeling is a challenge for the models applied. The determination of the habitable zone for exoplanets requires the treatment of cloud formation in chemically different regimes. Aims: We aim to model cloud formation processes for carbon-rich exoplanetary atmospheres. Disk models show that carbon-rich or near-carbon-rich niches may emerge and cool carbon planets may trace these particular stages of planetary evolution. Methods: We extended our kinetic cloud formation model by including carbon seed formation and the formation of C[s], TiC[s], SiC[s], KCl[s], and MgS[s] by gas-surface reactions. We solved a system of dust moment equations and element conservation for a prescribed Drift-Phoenixatmosphere structure to study how a cloud structure would change with changing initial C/O0 = 0.43...10.0. Results: The seed formation efficiency is lower in carbon-rich atmospheres than in oxygen-rich gases because carbon is a very effective growth species. The consequence is that fewer particles make up a cloud if C/O0 > 1. The cloud particles are smaller in size than in an oxygen-rich atmosphere. An increasing initial C/O ratio does not revert this trend because a much greater abundance of condensible gas species exists in a carbon-rich environment. Cloud particles are generally made of a mix of materials: carbon dominates if C/O0 > 1 and silicates dominate if C/O0 < 1. A carbon content of 80-90% carbon is reached only in extreme cases where C/O0 = 3.0 or 10.0. Conclusions: Carbon-rich atmospheres form clouds that are made of particles of height-dependent mixed compositions, sizes and numbers. The remaining gas phase is far less depleted than in an oxygen-rich atmosphere. Typical tracer molecules are HCN and C2H2 in combination with a featureless

  3. ON THE BINARY FREQUENCY OF THE LOWEST MASS MEMBERS OF THE PLEIADES WITH HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E. V. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff (United States); Dupuy, Trent J. [The University of Texas at Austin, Department of Astronomy, 2515 Speedway C1400, Austin, TX 78712 (United States); Allers, Katelyn N. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Deacon, Niall R., E-mail: eugenio.v.garcia@gmail.com [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL1 5TL (United Kingdom)

    2015-05-01

    We present the results of a Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging survey of 11 of the lowest mass brown dwarfs in the Pleiades known (25–40 M{sub Jup}). These objects represent the predecessors to T dwarfs in the field. Using a semi-empirical binary point-spread function (PSF)-fitting technique, we are able to probe to 0.″ 03 (0.75 pixel), better than 2x the WFC3/UVIS diffraction limit. We did not find any companions to our targets. From extensive testing of our PSF-fitting method on simulated binaries, we compute detection limits which rule out companions to our targets with mass ratios of ≳0.7 and separations ≳4 AU. Thus, our survey is the first to attain the high angular resolution needed to resolve brown dwarf binaries in the Pleiades at separations that are most common in the field population. We constrain the binary frequency over this range of separation and mass ratio of 25–40 M{sub Jup} Pleiades brown dwarfs to be <11% for 1σ (<26% at 2σ). This binary frequency is consistent with both younger and older brown dwarfs in this mass range.

  4. Chromospherically active stars. 13: HD 30957: A double lined K dwarf binary

    Science.gov (United States)

    Fekel, Francis C.; Dadonas, Virgilijus; Sperauskas, Julius; Vaccaro, Todd R.; Patterson, L. Ronald

    1994-01-01

    HD 30957 is a double-lined spectroscopic binary with a period of 44.395 days and a modest eccentricity of 0.09. The spectral types of the components are K2-3 V and K5 V. The measured v sin i for both components is less than or equal to 3 km/s and the orbital inclination is estimated to be 69 deg. The system is relatively nearby with a parallax of 0.025 sec or a distance of 40 pc. Space motions of the system indicate that it does not belong to any of the known moving groups. Absolute surface fluxes of the Ca II H and K lines have been recomputed and indicate only modest chromospheric activity. If the stars are rotating pseudosynchronously, the lack of light variability is consistent with the value of the critical Rossby number for starspot activity.

  5. THE CRITICAL MASS RATIO OF DOUBLE WHITE DWARF BINARIES FOR VIOLENT MERGER-INDUCED TYPE IA SUPERNOVA EXPLOSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yushi [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakasato, Naohito [Department of Computer Science and Engineering, University of Aizu, Tsuruga Ikki-machi Aizu-Wakamatsu, Fukushima 965-8580 (Japan); Tanikawa, Ataru; Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Nomoto, Ken’ichi [Kavli Institute for the Physics and Mathematics of the universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Maeda, Keiichi, E-mail: sato@ea.c.u-tokyo.ac.jp [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-04-10

    Mergers of carbon–oxygen (CO) white dwarfs (WDs) are considered to be one of the potential progenitors of type Ia supernovae (SNe Ia). Recent hydrodynamical simulations showed that the less massive (secondary) WD violently accretes onto the more massive (primary) one, carbon detonation occurs, the detonation wave propagates through the primary, and the primary finally explodes as a sub-Chandrasekhar mass SN Ia. Such an explosion mechanism is called the violent merger scenario. Based on the smoothed particle hydrodynamics simulations of merging CO WDs, we derived a critical mass ratio (q{sub cr}) leading to the violent merger scenario that is more stringent than previous results. We conclude that this difference mainly comes from the differences in the initial condition of whether or not the WDs are synchronously spinning. Using our new results, we estimated the brightness distribution of SNe Ia in the violent merger scenario and compared it with previous studies. We found that our new q{sub cr} does not significantly affect the brightness distribution. We present the direct outcome immediately following CO WD mergers for various primary masses and mass ratios. We also discussed the final fate of the central system of the bipolar planetary nebula Henize 2-428, which was recently suggested to be a double CO WD system whose total mass exceeds the Chandrasekhar-limiting mass, merging within the Hubble time. Even considering the uncertainties in the proposed binary parameters, we concluded that the final fate of this system is almost certainly a sub-Chandrasekhar mass SN Ia in the violent merger scenario.

  6. Individual Dynamical Masses of Ultracool Dwarfs

    Science.gov (United States)

    Dupuy, Trent J.; Liu, Michael C.

    2017-08-01

    We present the full results of our decade-long astrometric monitoring programs targeting 31 ultracool binaries with component spectral types M7-T5. Joint analysis of resolved imaging from Keck Observatory and Hubble Space Telescope and unresolved astrometry from CFHT/WIRCam yields parallactic distances for all systems, robust orbit determinations for 23 systems, and photocenter orbits for 19 systems. As a result, we measure 38 precise individual masses spanning 30-115 {M}{Jup}. We determine a model-independent substellar boundary that is ≈70 {M}{Jup} in mass (≈L4 in spectral type), and we validate Baraffe et al. evolutionary model predictions for the lithium-depletion boundary (60 {M}{Jup} at field ages). Assuming each binary is coeval, we test models of the substellar mass-luminosity relation and find that in the L/T transition, only the Saumon & Marley “hybrid” models accounting for cloud clearing match our data. We derive a precise, mass-calibrated spectral type-effective temperature relation covering 1100-2800 K. Our masses enable a novel direct determination of the age distribution of field brown dwarfs spanning L4-T5 and 30-70 {M}{Jup}. We determine a median age of 1.3 Gyr, and our population synthesis modeling indicates our sample is consistent with a constant star formation history modulated by dynamical heating in the Galactic disk. We discover two triple-brown-dwarf systems, the first with directly measured masses and eccentricities. We examine the eccentricity distribution, carefully considering biases and completeness, and find that low-eccentricity orbits are significantly more common among ultracool binaries than solar-type binaries, possibly indicating the early influence of long-lived dissipative gas disks. Overall, this work represents a major advance in the empirical view of very low-mass stars and brown dwarfs.

  7. Finding binaries from phase modulation of pulsating stars with Kepler

    Directory of Open Access Journals (Sweden)

    Shibahashi Hiromoto

    2017-01-01

    Full Text Available Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.

  8. A STUDY OF THE DIVERSE T DWARF POPULATION REVEALED BY WISE

    Energy Technology Data Exchange (ETDEWEB)

    Mace, Gregory N.; Wright, Edward L.; McLean, Ian S. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Davy Kirkpatrick, J.; Gelino, Christopher R.; Griffith, Roger L.; Mix, Katholeen; Beichman, Charles A.; Lowrance, Patrick J. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Cushing, Michael C. [Department of Physics and Astronomy, MS 111, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606-3328 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Marsh, Kenneth A. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Eisenhardt, Peter R. [NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Thompson, Maggie A. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544-1001 (United States); Bailey, Vanessa; Hinz, Philip M.; Knox, Russell P. [Steward Observatory, The University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Bloom, Joshua S. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Burgasser, Adam J. [Department of Physics, University of California, San Diego, CA 92093 (United States); Fortney, Jonathan J., E-mail: gmace@astro.ucla.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); and others

    2013-03-01

    We report the discovery of 87 new T dwarfs uncovered with the Wide-field Infrared Survey Explorer (WISE) and 3 brown dwarfs with extremely red near-infrared colors that exhibit characteristics of both L and T dwarfs. Two of the new T dwarfs are likely binaries with L7 {+-} 1 primaries and mid-type T secondaries. In addition, our follow-up program has confirmed 10 previously identified T dwarfs and 4 photometrically selected L and T dwarf candidates in the literature. This sample, along with the previous WISE discoveries, triples the number of known brown dwarfs with spectral types later than T5. Using the WISE All-Sky Source Catalog we present updated color-color and color-type diagrams for all the WISE-discovered T and Y dwarfs. Near-infrared spectra of the new discoveries are presented along with spectral classifications. To accommodate later T dwarfs we have modified the integrated flux method of determining spectral indices to instead use the median flux. Furthermore, a newly defined J-narrow index differentiates the early-type Y dwarfs from late-type T dwarfs based on the J-band continuum slope. The K/J indices for this expanded sample show that 32% of late-type T dwarfs have suppressed K-band flux and are blue relative to the spectral standards, while only 11% are redder than the standards. Comparison of the Y/J and K/J index to models suggests diverse atmospheric conditions and supports the possible re-emergence of clouds after the L/T transition. We also discuss peculiar brown dwarfs and candidates that were found not to be substellar, including two young stellar objects and two active galactic nuclei. The substantial increase in the number of known late-type T dwarfs provides a population that will be used to test models of cold atmospheres and star formation. The coolest WISE-discovered brown dwarfs are the closest of their type and will remain the only sample of their kind for many years to come.

  9. SCExAO and GPI Y JHBand Photometry and Integral Field Spectroscopy of the Young Brown Dwarf Companion to HD 1160

    Science.gov (United States)

    Garcia, E. Victor; Currie, Thayne; Guyon, Olivier; Stassun, Keivan G.; Jovanovic, Nemanja; Lozi, Julien; Kudo, Tomoyuki; Doughty, Danielle; Schlieder, Josh; Kwon, J.; Uyama, T.; Kuzuhara, M.; Carson, J. C.; Nakagawa, T.; Hashimoto, J.; Kusakabe, N.; Abe, L.; Brandner, W.; Brandt, T. D.; Feldt, M.; Goto, M.; Grady, C. A.; Hayano, Y.; Hayashi, M.; Hayashi, S. S.; Henning, T.; Hodapp, K. W.; Ishii, M.; Iye, M.; Janson, M.; Kandori, R.; Knapp, G. R.; Matsuo, T.; McElwain, M. W.; Miyama, S.; Morino, J.-I.; Moro-Martin, A.; Nishimura, T.; Pyo, T.-S.; Serabyn, E.; Suenaga, T.; Suto, H.; Suzuki, R.; Takahashi, Y. H.; Takami, H.; Takami, M.; Takato, N.; Terada, H.; Thalmann, C.; Turner, E. L.; Watanabe, M.; Wisniewski, J.; Yamada, T.; Usuda, T.; Tamura, M.

    2017-01-01

    We present high signal-to-noise ratio, precise Y JH photometry and Y band (0.957-1.120 μm) spectroscopy of HD 1160 B, a young substellar companion discovered from the Gemini NICI Planet Finding Campaign using the Subaru Coronagraphic Extreme Adaptive Optics instrument and the Gemini Planet Imager. HD 1160 B has typical mid-M dwarf-like infrared colors and a spectral type of M5.5{}-0.5+1.0, where the blue edge of our Y band spectrum rules out earlier spectral types. Atmospheric modeling suggests HD 1160 B has an effective temperature of 3000-3100 K, a surface gravity of log g = 4-4.5, a radius of 1.55 ± 0.10 R J, and a luminosity of log L/L ⊙ = -2.76 ± 0.05. Neither the primary’s Hertzspring-Russell diagram position nor atmospheric modeling of HD 1160 B show evidence for a subsolar metallicity. Interpretation of the HD 1160 B spectroscopy depends on which stellar system components are used to estimate the age. Considering HD 1160 A, B and C jointly, we derive an age of 80-125 Myr, implying that HD 1160 B straddles the hydrogen-burning limit (70-90 M J). If we consider HD 1160 A alone, younger ages (20-125 Myr) and a brown dwarf-like mass (35-90 M J) are possible. Interferometric measurements of the primary, a precise Gaia parallax, and moderate-resolution spectroscopy can better constrain the system’s age and how HD 1160 B fits within the context of (sub)stellar evolution.

  10. An eccentric companion at the edge of the brown dwarf desert orbiting the 2.4 M⊙ giant star HIP 67537

    Science.gov (United States)

    Jones, M. I.; Brahm, R.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Melo, C. H. F.; Vos, J.; Rojo, P.

    2017-06-01

    We report the discovery of a substellar companion around the giant star HIP 67537. Based on precision radial velocity measurements from CHIRON and FEROS high-resolution spectroscopic data, we derived the following orbital elements for HIP 67537 b: mb sin I = 11.1+0.4-1.1Mjup, a =4.9+0.14-0.13 AU and e = 0.59+0.05-0.02 . Considering random inclination angles, this object has ≳65% probability to be above the theoretical deuterium-burning limit, thus it is one of the few known objects in the planet to brown-dwarf (BD) transition region. In addition, we analyzed the Hipparcos astrometric data of this star, from which we derived a minimum inclination angle for the companion of 2 deg. This value corresponds to an upper mass limit of 0.3 M⊙, therefore the probability that HIP 67537 b is stellar in nature is ≲7%. The large mass of the host star and the high orbital eccentricity makes HIP 67537 b a very interesting and rare substellar object. This is the second candidate companion in the brown dwarf desert detected in the sample of intermediate-mass stars targeted by the EXoPlanets aRound Evolved StarS (EXPRESS) radial velocity program, which corresponds to a detection fraction of f = +2.0-0.5 %. This value is larger than the fraction observed in solar-type stars, providing new observational evidence of an enhanced formation efficiency of massive substellar companions in massive disks. Finally, we speculate about different formation channels for this object. Based on observations collected at La Silla - Paranal Observatory under programs ID's 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345 and through the Chilean Telescope Time under programs ID's CN-12A-073, CN-12B-047, CN-13A-111, CN-2013B-51, CN-2014A-52, CN-15A-48, CN-15B-25 and CN-16A-13.

  11. Very Low Mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. IV. A Candidate Brown Dwarf or Low-mass Stellar Companion to HIP 67526

    Science.gov (United States)

    Jiang, Peng; Ge, Jian; Cargile, Phillip; Crepp, Justin R.; De Lee, Nathan; Porto de Mello, Gustavo F.; Esposito, Massimiliano; Ferreira, Letícia D.; Femenia, Bruno; Fleming, Scott W.; Gaudi, B. Scott; Ghezzi, Luan; González Hernández, Jonay I.; Hebb, Leslie; Lee, Brian L.; Ma, Bo; Stassun, Keivan G.; Wang, Ji; Wisniewski, John P.; Agol, Eric; Bizyaev, Dmitry; Brewington, Howard; Chang, Liang; Nicolaci da Costa, Luiz; Eastman, Jason D.; Ebelke, Garrett; Gary, Bruce; Kane, Stephen R.; Li, Rui; Liu, Jian; Mahadevan, Suvrath; Maia, Marcio A. G.; Malanushenko, Viktor; Malanushenko, Elena; Muna, Demitri; Nguyen, Duy Cuong; Ogando, Ricardo L. C.; Oravetz, Audrey; Oravetz, Daniel; Pan, Kaike; Pepper, Joshua; Paegert, Martin; Allende Prieto, Carlos; Rebolo, Rafael; Santiago, Basilio X.; Schneider, Donald P.; Shelden Bradley, Alaina C.; Sivarani, Thirupathi; Snedden, Stephanie; van Eyken, J. C.; Wan, Xiaoke; Weaver, Benjamin A.; Zhao, Bo

    2013-09-01

    We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr. Our Keplerian fit, using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695^{+0.0188}_{-0.0187} days, an eccentricity of 0.4375 ± 0.0040, and a semi-amplitude of 2948.14^{+16.65}_{-16.55} m s-1. Using additional high-resolution spectroscopy, we find the host star has an effective temperature T eff = 6004 ± 34 K, a surface gravity log g (cgs) =4.55 ± 0.17, and a metallicity [Fe/H] =+0.04 ± 0.06. The stellar mass and radius determined through the empirical relationship of Torres et al. yields 1.10 ± 0.09 M ⊙ and 0.92 ± 0.19 R ⊙. The minimum mass of MARVELS-5b is 65.0 ± 2.9M Jup, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101 ± 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2 M ⊙ at a separation larger than 40 AU.

  12. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. IV. A CANDIDATE BROWN DWARF OR LOW-MASS STELLAR COMPANION TO HIP 67526

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Peng; Ge Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Ma Bo; Wang, Ji [Astronomy Department, University of Florida, 211 Bryant Space Science Center, P.O. Box 112055, Gainesville, FL 32611 (United States); Cargile, Phillip; Hebb, Leslie; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Porto de Mello, Gustavo F.; Ferreira, Leticia D. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antonio, 43, CEP: 20080-090, Rio de Janeiro, RJ (Brazil); Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I. [Instituto de Astrofisica de Canarias, C/Via Lactea S/N, E-38200 La Laguna (Spain); Gaudi, B. Scott [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Ghezzi, Luan [Laboratorio Interinstitucional de e-Astronomia (LIneA), Rio de Janeiro, RJ 20921-400 (Brazil); Wisniewski, John P. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Agol, Eric, E-mail: jpaty@mail.ustc.edu.cn [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); and others

    2013-09-15

    We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr. Our Keplerian fit, using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695{sup +0.0188}{sub -0.0187} days, an eccentricity of 0.4375 {+-} 0.0040, and a semi-amplitude of 2948.14{sup +16.65}{sub -16.55} m s{sup -1}. Using additional high-resolution spectroscopy, we find the host star has an effective temperature T{sub eff} = 6004 {+-} 34 K, a surface gravity log g (cgs) =4.55 {+-} 0.17, and a metallicity [Fe/H] =+0.04 {+-} 0.06. The stellar mass and radius determined through the empirical relationship of Torres et al. yields 1.10 {+-} 0.09 M{sub Sun} and 0.92 {+-} 0.19 R{sub Sun }. The minimum mass of MARVELS-5b is 65.0 {+-} 2.9M{sub Jup}, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101 {+-} 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2 M{sub Sun} at a separation larger than 40 AU.

  13. The formation of low-mass helium white dwarfs orbiting pulsars . Evolution of low-mass X-ray binaries below the bifurcation period

    Science.gov (United States)

    Istrate, A. G.; Tauris, T. M.; Langer, N.

    2014-11-01

    Context. Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs) that have been spun up to high rotation rates via accretion of matter from a companion star in a low-mass X-ray binary (LMXB). This scenario has been strongly supported by various pieces of observational evidence. However, many details of this recycling scenario remain to be understood. Aims: Here we investigate binary evolution in close LMXBs to study the formation of radio MSPs with low-mass helium white dwarf companions (He WDs) in tight binaries with orbital periods Porb ≃ 2-9h. In particular, we examine i) if the observed systems can be reproduced by theoretical modelling using standard prescriptions of orbital angular momentum losses (i.e. with respect to the nature and the strength of magnetic braking), ii) if our computations of the Roche-lobe detachments can match the observed orbital periods, and iii) if the correlation between WD mass and orbital period (MWD, Porb) is valid for systems with Porb< 2 days. Methods: Numerical calculations with a detailed stellar evolution code were used to trace the mass-transfer phase in ~400 close LMXB systems with different initial values of donor star mass, NS mass, orbital period, and the so-called γ-index of magnetic braking. Subsequently, we followed the orbital and the interior evolution of the detached low-mass (proto) He WDs, including stages with residual shell hydrogen burning. Results: We find that severe fine-tuning is necessary to reproduce the observed MSPs in tight binaries with He WD companions of mass <0.20 M⊙, which suggests that something needs to be modified or is missing in the standard input physics of LMXB modelling. Results from previous independent studies support this conclusion. We demonstrate that the theoretically calculated (MWD, Porb)-relation is in general also valid for systems with Porb< 2 days, although with a large scatter in He WD masses between 0.15-0.20 M⊙. The results of the thermal

  14. mocca-SURVEY database I. Accreting white dwarf binary systems in globular clusters - III. Cataclysmic variables - implications of model assumptions

    Science.gov (United States)

    Belloni, Diogo; Zorotovic, Mónica; Schreiber, Matthias R.; Leigh, Nathan W. C.; Giersz, Mirek; Askar, Abbas

    2017-06-01

    In this third of a series of papers related to cataclysmic variables (CVs) and related objects, we analyse the population of CVs in a set of 12 globular cluster models evolved with the MOCCA Monte Carlo code, for two initial binary populations (IBPs), two choices of common-envelope phase (CEP) parameters, and three different models for the evolution of CVs and the treatment of angular momentum loss. When more realistic models and parameters are considered, we find that present-day cluster CV duty cycles are extremely low (≲0.1 per cent) that makes their detection during outbursts rather difficult. Additionally, the IBP plays a significant role in shaping the CV population properties, and models that follow the Kroupa IBP are less affected by enhanced angular momentum loss. We also predict from our simulations that CVs formed dynamically in the past few Gyr (massive CVs) correspond to bright CVs (as expected) and that faint CVs formed several Gyr ago (dynamically or not) represent the overwhelming majority. Regarding the CV formation rate, we rule out the notion that it is similar irrespective of the cluster properties. Finally, we discuss the differences in the present-day CV properties related to the IBPs, the initial cluster conditions, the CEP parameters, formation channels, the CV evolution models and the angular momentum loss treatments.

  15. Chromospherically active stars. 12: ADS 11060 C: A double lined K dwarf binary in a quintuple system

    Science.gov (United States)

    Fekel, Francis C.; Henry, Gregory W.; Hampton, Melissa L.; Fried, Robert; Morton, Mary D.

    1994-01-01

    ADS 11060 C is a double lined spectroscopic binary with a period of 25.7631 days and an eccentricity of 0.565. Spectral types of the two stars are estimated as K7 V and MO V with a magnitude difference of about 0.55 mag in V. The stars appear to be somewhat metal rich with respect to the Sun. Despite the relatively large masses of 0.53 and 0.51 solar mass, our photometric observations find no evidence for eclipses and we estimate an inclination of 77 deg plus or minus 11 deg. ADS 11060 C is, however, photometrically variable with a period of 9 plus or minus 1 day and an amplitude of 0.05 mag in V. Thus, it is a newly identified BY Draconis variable. The center-of-mass velocity of ADS 11060 C and an estimated parallax of 0.030 sec support its physical association with ADS 11060 AB, making this a quintuple system. The projected separation of the AB-C system is nearly 1200 AU. Although the log lithium abundances of the two components of ADS 11060 C are only upper limits, less than or equal to -0.14, lithium abundances of the AB-C components appear to be consistent with those of similar stars in the alpha Persei and Pleiades clusters, suggesting an age of about 70 Myr for ADS 11060 AB-C. The system is a possible member of the Pleiades moving group. Listed as an optical counterpart to a source in the ROSAT Wide Field Camera extreme-ultraviolet bright source catalog, both ADS 11060 AB and C may contribute to the observed flux.

  16. Transition of an X-ray binary to the hard ultraluminous state in the blue compact dwarf galaxy VII Zw 403

    Science.gov (United States)

    Brorby, M.; Kaaret, P.; Feng, H.

    2015-04-01

    We examine the X-ray spectra of VII Zw 403, a nearby low-metallicity blue compact dwarf (BCD) galaxy. The galaxy has been observed to contain an X-ray source, likely a high-mass X-ray binary (HMXB), with a luminosity of 1.3-23 × 1038 erg s-1 in the 0.3-8 keV energy range. A new Suzaku observation shows a transition to a luminosity of 1.7 × 1040 erg s-1 [0.3-8 keV], higher by a factor of 7-130. The spectra from the high-flux state are hard, best described by a disc plus Comptonization model, and exhibit curvature at energies above 5 keV. This is consistent with many high-quality ultraluminous X-ray source spectra which have been interpreted as stellar mass black holes accreting at super-Eddington rates. However, this lies in contrast to another HMXB in a low-metallicity BCD, I Zw 18, that exhibits a soft spectrum at high flux, similar to Galactic black hole binaries and has been interpreted as a possible intermediate-mass black hole. Determining the spectral properties of HMXBs in BCDs has important implications for models of the Epoch of Reionization. It is thought that the main component of X-ray heating in the early Universe was dominated by HMXBs within the first galaxies. Early galaxies were small, metal-deficient, star-forming galaxies with large H I mass fractions - properties shared by local BCDs we see today. Understanding the spectral evolution of HMXBs in early Universe analogue galaxies, such as BCDs, is an important step in estimating their contribution to the heating of the intergalactic medium during the Epoch of Reionization. The strong contrast between the properties of the only two spectroscopically studied HMXBs within BCDs motivates further study on larger samples of HMXBs in low-metallicity environments in order to properly estimate the X-ray heating in the early Universe.

  17. Surprisingly different star-spot distributions on the near equal-mass equal-rotation-rate stars in the M dwarf binary GJ 65 AB

    Science.gov (United States)

    Barnes, J. R.; Jeffers, S. V.; Haswell, C. A.; Jones, H. R. A.; Shulyak, D.; Pavlenko, Ya. V.; Jenkins, J. S.

    2017-10-01

    We aim to understand how stellar parameters such as mass and rotation impact the distribution of star-spots on the stellar surface. To this purpose, we have used Doppler imaging to reconstruct the surface brightness distributions of three fully convective M dwarfs with similar rotation rates. We secured high cadence spectral time series observations of the 5.5 au separation binary GJ 65, comprising GJ 65A (M5.5V, Prot = 0.24 d) and GJ 65B (M6V, Prot = 0.23 d). We also present new observations of GJ 791.2A (M4.5V, Prot = 0.31 d). Observations of each star were made on two nights with UVES, covering a wavelength range from 0.64 - 1.03μm. The time series spectra reveal multiple line distortions that we interpret as cool star-spots and which are persistent on both nights suggesting stability on the time-scale of 3 d. Spots are recovered with resolutions down to 8.3° at the equator. The global spot distributions for GJ 791.2A are similar to observations made a year earlier. Similar high latitude and circumpolar spot structure is seen on GJ 791.2A and GJ 65A. However, they are surprisingly absent on GJ 65B, which instead reveals more extensive, larger, spots concentrated at intermediate latitudes. All three stars show small amplitude latitude-dependent rotation that is consistent with solid body rotation. We compare our measurements of differential rotation with previous Doppler imaging studies and discuss the results in the wider context of other observational estimates and recent theoretical predictions.

  18. Periodic optical variability of radio-detected ultracool dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L. K.; Golden, A.; Singh, Navtej; Sheehan, B.; Butler, R. F. [Centre for Astronomy, National University of Ireland, Galway, University Road, Galway (Ireland); Hallinan, G. [Cahill Center for Astrophysics, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Boyle, R. P. [Vatican Observatory Research Group, Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Zavala, R. T., E-mail: lkh@astro.caltech.edu [United States Naval Observatory, Flagstaff Station, Flagstaff, AZ 86001 (United States)

    2013-12-20

    A fraction of very low mass stars and brown dwarfs are known to be radio active, in some cases producing periodic pulses. Extensive studies of two such objects have also revealed optical periodic variability, and the nature of this variability remains unclear. Here, we report on multi-epoch optical photometric monitoring of six radio-detected dwarfs, spanning the ∼M8-L3.5 spectral range, conducted to investigate the ubiquity of periodic optical variability in radio-detected ultracool dwarfs. This survey is the most sensitive ground-based study carried out to date in search of periodic optical variability from late-type dwarfs, where we obtained 250 hr of monitoring, delivering photometric precision as low as ∼0.15%. Five of the six targets exhibit clear periodicity, in all cases likely associated with the rotation period of the dwarf, with a marginal detection found for the sixth. Our data points to a likely association between radio and optical periodic variability in late-M/early-L dwarfs, although the underlying physical cause of this correlation remains unclear. In one case, we have multiple epochs of monitoring of the archetype of pulsing radio dwarfs, the M9 TVLM 513–46546, spanning a period of 5 yr, which is sufficiently stable in phase to allow us to establish a period of 1.95958 ± 0.00005 hr. This phase stability may be associated with a large-scale stable magnetic field, further strengthening the correlation between radio activity and periodic optical variability. Finally, we find a tentative spin-orbit alignment of one component of the very low mass binary, LP 349–25.

  19. Comparative study of the banana pulp browning process of 'Giant Dwarf' and FHIA-23 during fruit ripening based on image analysis and the polyphenol oxidase and peroxidase biochemical properties.

    Science.gov (United States)

    Escalante-Minakata, Pilar; Ibarra-Junquera, Vrani; Ornelas-Paz, José de Jesús; García-Ibáñez, Victoria; Virgen-Ortíz, José J; González-Potes, Apolinar; Pérez-Martínez, Jaime D; Orozco-Santos, Mario

    2018-01-01

    This work presents a novel method to associate the polyphenol oxidase (PPO) and the peroxidase (POD) activities with the ripening-mediated color changes in banana peel and pulp by computational image analysis. The method was used to follow up the de-greening of peel and browning of homogenized pulp from 'Giant Dwarf' (GD: Musa AAA, subgroup Cavendish) and FHIA-23 (tetraploid hybrid, AAAA) banana cultivars. In both cultivars, the color changes of peel during the ripening process clearly showed four stages, which were used to group the fruit into ripening stages. The PPO and POD were extracted from pulp of fruit at these ripening stages, precipitated, and partially purified by gel filtration chromatography. Moreover, the pulp browning was digitally monitored after homogenization for a span time of up to 120 min. The browning level was higher for GD than FHIA-23 tissues. This fact correlated with an 11.7-fold higher PPO activity in the GD cultivar, as compared with that of FHIA-23. POD activity was 8.1 times higher for GD as compared that that of FHIA-23.

  20. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    Science.gov (United States)

    Zhou, Yifan; Apai, Dániel; Lew, Ben W. P.; Schneider, Glenn

    2017-06-01

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium. We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam) may also benefit from the extension of this model if similar systematic profiles are observed.

  1. Uniform Atmospheric Retrieval Analysis of Ultracool Dwarfs. II. Properties of 11 T dwarfs

    Science.gov (United States)

    Line, Michael R.; Marley, Mark S.; Liu, Michael C.; Burningham, Ben; Morley, Caroline V.; Hinkel, Natalie R.; Teske, Johanna; Fortney, Jonathan J.; Freedman, Richard; Lupu, Roxana

    2017-10-01

    Brown dwarf spectra are rich in information revealing of the chemical and physical processes operating in their atmospheres. We apply a recently developed atmospheric retrieval tool to an ensemble of late-T dwarf (600-800 K) near-infrared (1-2.5 μm) spectra. With these spectra we are able to directly constrain the molecular abundances for the first time of H2O, CH4, CO, CO2, NH3, H2S, and Na+K, surface gravity, effective temperature, thermal structure, photometric radius, and cloud optical depths. We find that ammonia, water, methane, and the alkali metals are present and that their abundances are well constrained in all 11 objects. We find no significant trend in the water, methane, or ammonia abundances with temperature, but find a very strong (>25σ) decreasing trend in the alkali metal abundances with decreasing effective temperature, indicative of alkali rainout. As expected from previous work, we also find little evidence for optically thick clouds. With the methane and water abundances, we derive the intrinsic atmospheric metallicity and carbon-to-oxygen ratios. We find in our sample that metallicities are typically subsolar (-0.4 , different than expectations from the local stellar population. We also find that the retrieved vertical thermal profiles are consistent with radiative equilibrium over the photospheric regions. Finally, we find that our retrieved effective temperatures are lower than previous inferences for some objects and that some of our radii are larger than expectations from evolutionary models, possibly indicative of unresolved binaries. This investigation and method represent a new and powerful paradigm for using spectra to determine the fundamental chemical and physical processes governing cool brown dwarf atmospheres.

  2. ESO 439-162/163 - a common proper motion binary formed by a magnetic DQ and a DC type white dwarf

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, M.T.; Maza, J.

    1988-12-01

    In the course of a search for faint large proper motion stars, a common proper motion pair was identified having a mu = 0.38 + or - 0.03 arcsec/yr in the direction theta = 233 deg. The stars are separated by 23 arcsec and have apparent visual magnitudes 18.77 and 19.84, respectively. Spectrophotometry of the stars established that the fainter component is a cold DC white dwarf, while the brighter one is a magnetic white dwarf with strong Swan bands of C2 shifted and broadened by an about 10 to the 8th G magnetic field. 6 references.

  3. Analysis of 45-years of Eclipse Timings of the Hyades (K2 V+ DA) Eclipsing Binary V471 Tauri

    Science.gov (United States)

    Marchioni, Lucas; Guinan, Edward; Engle, Scott

    2018-01-01

    V471 Tau is an important detached 0.521-day eclipsing binary composed of a K2 V and a hot DA white dwarf star. This system resides in the Hyades star cluster located approximately 153 Ly from us. V471 Tau is considered to be the end-product of common-envelope binary star evolution and is currently a pre-CV system. V471 Tau serves as a valuable astrophysical laboratory for studying stellar evolution, white dwarfs, stellar magnetic dynamos, and possible detection of low mass companions using the Light Travel Time (LTT) Effects. Since its discovery as an eclipsing binary in 1970, photometry has been carried out and many eclipse timings have been determined. We have performed an analysis of the available photometric data available on V471 Tauri. The binary system has been the subject of analyses regarding the orbital period. From this analysis several have postulated the existence of a third body in the form of a brown dwarf that is causing periodic variations in the system’s apparent period. In this study we combine ground based data with photometry secured recently from the Kepler K2 mission. After detrending and phasing the available data, we are able to compare the changing period of the eclipsing binary system against predictions on the existence of this third body. The results of the analysis will be presented. This research is sponsored by grants from NASA and NSF for which we are very grateful.

  4. OGLE‐2008‐BLG‐510: first automated real‐time detection of a weak microlensing anomaly – brown dwarf or stellar binary?★

    DEFF Research Database (Denmark)

    Bozza, V.; Dominik, M.; Rattenbury, N. J.

    2012-01-01

    The microlensing event OGLE‐2008‐BLG‐510 is characterized by an evident asymmetric shape of the peak, promptly detected by the Automated Robotic Terrestrial Exoplanet Microlensing Search (ARTEMiS) system in real time. The skewness of the light curve appears to be compatible both with binary‐lens ...

  5. A Statistical Survey of Peculiar L and T Dwarfs in SDSS, 2MASS, and WISE

    Science.gov (United States)

    Kellogg, Kendra; Metchev, Stanimir; Miles-Páez, Paulo A.; Tannock, Megan E.

    2017-09-01

    We present the final results from a targeted search for brown dwarfs with unusual near-infrared colors. From a positional cross-match of the Sloan Digital Sky Survey (SDSS), 2-Micron All-Sky Survey (2MASS), and Wide-Field Infrared Survey Explorer (WISE) catalogs, we have identified 144 candidate peculiar L and T dwarfs. Spectroscopy confirms that 20 of the objects are peculiar or are candidate binaries. Of the 420 objects in our full sample 9 are young (≲ 200 {Myr}; 2.1%) and another 8 (1.9%) are unusually red, with no signatures of youth. With a spectroscopic J-{K}s color of 2.58 ± 0.11 mag, one of the new objects, the L6 dwarf 2MASS J03530419+0418193, is among the reddest field dwarfs currently known and is one of the reddest objects with no signatures of youth known to date. We have also discovered another potentially very-low-gravity object, the L1 dwarf 2MASS J00133470+1109403, and independently identified the young L7 dwarf 2MASS J00440332+0228112, which was first reported by Schneider and collaborators. Our results confirm that signatures of low gravity are no longer discernible in low to moderate resolution spectra of objects older than ˜200 Myr. The 1.9% of unusually red L dwarfs that do not show other signatures of youth could be slightly older, up to ˜400 Myr. In this case a red J-{K}s color may be more diagnostic of moderate youth than individual spectral features. However, its is also possible that these objects are relatively metal-rich, and thus have enhanced atmospheric dust content.

  6. Compact stars and the evolution of binary systems

    NARCIS (Netherlands)

    van den Heuvel, E.P.J.

    2011-01-01

    The Chandrasekhar limit is of key importance for the evolution of white dwarfs in binary systems and for the formation of neutron stars and black holes in binaries. Mass transfer can drive a white dwarf in a binary over the Chandrasekhar limit, which may lead to a Type Ia supernova (in case of a CO

  7. Physical Properties of T Dwarfs Inferred from High-Resolution Near-Infrared Spectra

    Science.gov (United States)

    Rice, Emily L.; Barman, T. S.; McLean, I. S.; Kirkpatrick, J. D.

    2010-01-01

    T dwarfs are ideal laboratories for understanding cool, complex atmospheres and calibrating low-mass evolutionary models in preparation for spectral studies of exoplanetary atmospheres. We present the expanded sample of T dwarfs from the NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS). High-resolution near-infrared spectra from the cross-dispersed echelle spectrometer NIRSPEC on Keck II provide an unequaled combination of resolving power and wavelength coverage for detailed study of these intrinsically faint objects. The sample of 14 objects covers spectral types from T0 to T7.5, including two unresolved binaries and two peculiar objects. Physical properties of the T dwarfs are inferred from comparison of the observed spectra with synthetic spectra from PHOENIX "cond" model atmospheres, in which dust opacity is removed. We estimate effective temperature, surface gravity, radial and projected rotational velocity for the targets and compare to previously derived quantities. Furthermore we identify successes and deficiencies in the synthetic spectra, particularly in the reproduction of T0-T4 spectra.

  8. A SEARCH FOR L/T TRANSITION DWARFS WITH Pan-STARRS1 AND WISE: DISCOVERY OF SEVEN NEARBY OBJECTS INCLUDING TWO CANDIDATE SPECTROSCOPIC VARIABLES

    Energy Technology Data Exchange (ETDEWEB)

    Best, William M. J.; Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Morgan, J. S.; Tonry, J. L.; Wainscoat, R. J. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Deacon, Niall R. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Dupuy, Trent J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Redstone, Joshua [Facebook, 335 Madison Ave, New York, NY 10017-4677 (United States); Price, P. A., E-mail: wbest@ifa.hawaii.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2013-11-10

    We present initial results from a wide-field (30,000 deg{sup 2}) search for L/T transition brown dwarfs within 25 pc using the Pan-STARRS1 and Wide-field Infrared Survey Explorer (WISE) surveys. Previous large-area searches have been incomplete for L/T transition dwarfs, because these objects are faint in optical bands and have near-infrared (near-IR) colors that are difficult to distinguish from background stars. To overcome these obstacles, we have cross-matched the Pan-STARRS1 (optical) and WISE (mid-IR) catalogs to produce a unique multi-wavelength database for finding ultracool dwarfs. As part of our initial discoveries, we have identified seven brown dwarfs in the L/T transition within 9-15 pc of the Sun. The L9.5 dwarf PSO J140.2308+45.6487 and the T1.5 dwarf PSO J307.6784+07.8263 (both independently discovered by Mace et al.) show possible spectroscopic variability at the Y and J bands. Two more objects in our sample show evidence of photometric J-band variability, and two others are candidate unresolved binaries based on their spectra. We expect our full search to yield a well-defined, volume-limited sample of L/T transition dwarfs that will include many new targets for study of this complex regime. PSO J307.6784+07.8263 in particular may be an excellent candidate for in-depth study of variability, given its brightness (J = 14.2 mag) and proximity (11 pc)

  9. Throwing Icebergs at White Dwarfs

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    Where do the metals come from that pollute the atmospheres of many white dwarfs? Close-in asteroids may not be the only culprits! A new study shows that distant planet-size and icy objects could share some of the blame.Pollution ProblemsArtists impression of rocky debris lying close around a white dwarf star. [NASA/ESA/STScI/G. Bacon]When a low- to intermediate-mass star reaches the end of its life, its outer layers are blown off, leaving behind its compact core. The strong gravity of this white dwarf causes elements heavier than hydrogen and helium to rapidly sink to its center in a process known as sedimentation, leaving an atmosphere that should be free of metallic elements.Therefore its perhaps surprising that roughly 2550% of all white dwarfs are observed to have atmospheric pollution by heavy elements. The short timescales for sedimentation suggest that these elements were added to the white dwarf recently but how did they get there?Bringing Ice InwardIn the generally accepted theory, pre-existing rocky bodies or an orbiting asteroid belt survive the stars evolution, later accreting onto the final white dwarf. But this scenario doesnt explain a few observations that suggest white dwarfs might be accreting larger planetary-size bodies and bodies with ices and volatile materials.Dynamical evolution of a Neptune-like planet (a) and a Kuiper belt analog object (b) in wide binary star systems. Both have large eccentricity excitations during the white dwarf phase. [Stephan et al. 2017]How might you get large or icy objects which would begin on very wide orbits close enough to a white dwarf to become disrupted and accrete? Led by Alexander Stephan, a team of scientists at UCLA now suggest that the key is for the white dwarf to be in a binary system.Influence of a CompanionIn the authors model, the white-dwarf progenitor is orbited by both a distant stellar companion (a common occurrence) and a number of large potential polluters, which could have masses between that

  10. Very Low Mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. V. A Low Eccentricity Brown Dwarf from the Driest Part of the Desert, MARVELS-6b

    Science.gov (United States)

    De Lee, Nathan; Ge, Jian; Crepp, Justin R.; Eastman, Jason; Esposito, Massimiliano; Femenía, Bruno; Fleming, Scott W.; Gaudi, B. Scott; Ghezzi, Luan; González Hernández, Jonay I.; Lee, Brian L.; Stassun, Keivan G.; Wisniewski, John P.; Wood-Vasey, W. Michael; Agol, Eric; Allende Prieto, Carlos; Barnes, Rory; Bizyaev, Dmitry; Cargile, Phillip; Chang, Liang; Da Costa, Luiz N.; Porto De Mello, G. F.; Ferreira, Leticia D.; Gary, Bruce; Hebb, Leslie; Holtzman, Jon; Liu, Jian; Ma, Bo; Mack, Claude E., III; Mahadevan, Suvrath; Maia, Marcio A. G.; Nguyen, Duy Cuong; Oravetz, Audrey; Oravetz, Daniel J.; Paegert, Martin; Pan, Kaike; Pepper, Joshua; Malanushenko, Elena; Malanushenko, Viktor; Rebolo, Rafael; Santiago, Basilio X.; Schneider, Donald P.; Shelden Bradley, Alaina C.; Wan, Xiaoke; Wang, Ji; Zhao, Bo

    2013-06-01

    We describe the discovery of a likely brown dwarf (BD) companion with a minimum mass of 31.7 ± 2.0 M Jup to GSC 03546-01452 from the MARVELS radial velocity survey, which we designate as MARVELS-6b. For reasonable priors, our analysis gives a probability of 72% that MARVELS-6b has a mass below the hydrogen-burning limit of 0.072 M ⊙, and thus it is a high-confidence BD companion. It has a moderately long orbital period of 47.8929^{+0.0063}_{-0.0062} days with a low eccentricity of 0.1442^{+0.0078}_{-0.0073}, and a semi-amplitude of 1644^{+12}_{-13} m s-1. Moderate resolution spectroscopy of the host star has determined the following parameters: T eff = 5598 ± 63, log g = 4.44 ± 0.17, and [Fe/H] = +0.40 ± 0.09. Based upon these measurements, GSC 03546-01452 has a probable mass and radius of M * = 1.11 ± 0.11 M ⊙ and R * = 1.06 ± 0.23 R ⊙ with an age consistent with less than ~6 Gyr at a distance of 219 ± 21 pc from the Sun. Although MARVELS-6b is not observed to transit, we cannot definitively rule out a transiting configuration based on our observations. There is a visual companion detected with Lucky Imaging at 7.''7 from the host star, but our analysis shows that it is not bound to this system. The minimum mass of MARVELS-6b exists at the minimum of the mass functions for both stars and planets, making this a rare object even compared to other BDs. It also exists in an underdense region in both period/eccentricity and metallicity/eccentricity space.

  11. KIC 7177553: A QUADRUPLE SYSTEM OF TWO CLOSE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, H. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Borkovits, T. [Baja Astronomical Observatory of Szeged University, H-6500 Baja, Szegedi út, Kt. 766 (Hungary); Rappaport, S. A. [Massachusetts Institute of Technology, Department of Physics, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Ngo, H. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 E. California Boulevard, MC 150-21, Pasadena, CA 91125 (United States); Mawet, D. [California Institute of Technology, Astronomy Dept. MC 249-17, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Csizmadia, Sz. [German Aerospace Center (DLR), Institut für Planeten-forschung, Rutherfordstraße 2, D-12489 Berlin (Germany); Forgács-Dajka, E., E-mail: lehm@tls-tautenburg.de, E-mail: borko@electra.bajaobs.hu, E-mail: sar@mit.edu, E-mail: hngo@caltech.edu, E-mail: dmawet@astro.caltech.edu, E-mail: szilard.csizmadia@dlr.de, E-mail: e.forgacs-dajka@astro.elte.hu [Astronomical Department, Eötvös University, H-1118 Budapest, Pázmány Péter stny. 1/A (Hungary)

    2016-03-01

    KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations (ETVs) in this object with an amplitude of ∼100 s and an outer period of 529 days. The implied mass of the third body is that of a super-Jupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity (RV) study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. From the RV measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.″4 (∼167 AU) and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries and very similar γ velocities strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, nonevolved, solar-like stars of comparable masses. From the orbital separation and the small difference in γ velocity, we infer that the period of the outer orbit most likely lies in the range of 1000–3000 yr. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed ETVs in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer timescale will be required to prove the existence of the massive planet.

  12. Very-low-mass Stellar and Substellar Companions to Solar-like Stars from Marvels. III. A Short-period Brown Dwarf Candidate around an Active G0IV Subgiant

    Science.gov (United States)

    Ma, Bo; Ge, Jian; Barnes, Rory; Crepp, Justin R.; De Lee, Nathan; Dutra-Ferreira, Leticia; Esposito, Massimiliano; Femenia, Bruno; Fleming, Scott W.; Gaudi, B. Scott; Ghezzi, Luan; Hebb, Leslie; Gonzalez Hernandez, Jonay I.; Lee, Brian L.; Porto de Mello, G. F.; Stassun, Keivan G.; Wang, Ji; Wisniewski, John P.; Agol, Eric; Bizyaev, Dmitry; Cargile, Phillip; Chang, Liang; Nicolaci da Costa, Luiz; Eastman, Jason D.; Gary, Bruce; Jiang, Peng; Kane, Stephen R.; Li, Rui; Liu, Jian; Mahadevan, Suvrath; Maia, Marcio A. G.; Muna, Demitri; Nguyen, Duy Cuong; Ogando, Ricardo L. C.; Oravetz, Daniel; Pepper, Joshua; Paegert, Martin; Allende Prieto, Carlos; Rebolo, Rafael; Santiago, Basilio X.; Schneider, Donald P.; Shelden, Alaina; Simmons, Audrey; Sivarani, Thirupathi; van Eyken, J. C.; Wan, Xiaoke; Weaver, Benjamin A.; Zhao, Bo

    2013-01-01

    We present an eccentric, short-period brown dwarf candidate orbiting the active, slightly evolved subgiant star TYC 2087-00255-1, which has effective temperature T eff = 5903 ± 42 K, surface gravity log (g) = 4.07 ± 0.16 (cgs), and metallicity [Fe/H] = -0.23 ± 0.07. This candidate was discovered using data from the first two years of the Multi-object APO Radial Velocity Exoplanets Large-area Survey, which is part of the third phase of Sloan Digital Sky Survey. From our 38 radial velocity measurements spread over a two-year time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 3.571 ± 0.041 km s-1, period P = 9.0090 ± 0.0004 days, and eccentricity e = 0.226 ± 0.011. Adopting a mass of 1.16 ± 0.11 M ⊙ for the subgiant host star, we infer that the companion has a minimum mass of 40.0 ± 2.5 M Jup. Assuming an edge-on orbit, the semimajor axis is 0.090 ± 0.003 AU. The host star is photometrically variable at the ~1% level with a period of ~13.16 ± 0.01 days, indicating that the host star spin and companion orbit are not synchronized. Through adaptive optics imaging we also found a point source 643 ± 10 mas away from TYC 2087-00255-1, which would have a mass of 0.13 M ⊙ if it is physically associated with TYC 2087-00255-1 and has the same age. Future proper motion observation should be able to resolve if this tertiary object is physically associated with TYC 2087-00255-1 and make TYC 2087-00255-1 a triple body system. Core Ca II H and K line emission indicate that the host is chromospherically active, at a level that is consistent with the inferred spin period and measured v rotsin i, but unusual for a subgiant of this T eff. This activity could be explained by ongoing tidal spin-up of the host star by the companion.

  13. VERY-LOW-MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. III. A SHORT-PERIOD BROWN DWARF CANDIDATE AROUND AN ACTIVE G0IV SUBGIANT

    Energy Technology Data Exchange (ETDEWEB)

    Ma Bo; Ge Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Wang Ji [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Barnes, Rory; Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Dutra-Ferreira, Leticia; Porto de Mello, G. F. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antonio, 43, CEP: 20080-090, Rio de Janeiro, RJ (Brazil); Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I. [Instituto de Astrofisica de Canarias, C/Via Lctea S/N, E-38200 La Laguna (Spain); Gaudi, B. Scott [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Ghezzi, Luan [Laboratorio Interinstitucional de e-Astronomia (LIneA), Rio de Janeiro, RJ 20921-400 (Brazil); Hebb, Leslie; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Wisniewski, John P. [Homer L Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks St, Norman, OK 73019 (United States); Bizyaev, Dmitry, E-mail: boma@astro.ufl.edu [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); and others

    2013-01-01

    We present an eccentric, short-period brown dwarf candidate orbiting the active, slightly evolved subgiant star TYC 2087-00255-1, which has effective temperature T{sub eff} = 5903 {+-} 42 K, surface gravity log (g) = 4.07 {+-} 0.16 (cgs), and metallicity [Fe/H] = -0.23 {+-} 0.07. This candidate was discovered using data from the first two years of the Multi-object APO Radial Velocity Exoplanets Large-area Survey, which is part of the third phase of Sloan Digital Sky Survey. From our 38 radial velocity measurements spread over a two-year time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 3.571 {+-} 0.041 km s{sup -1}, period P = 9.0090 {+-} 0.0004 days, and eccentricity e = 0.226 {+-} 0.011. Adopting a mass of 1.16 {+-} 0.11 M{sub Sun} for the subgiant host star, we infer that the companion has a minimum mass of 40.0 {+-} 2.5 M{sub Jup}. Assuming an edge-on orbit, the semimajor axis is 0.090 {+-} 0.003 AU. The host star is photometrically variable at the {approx}1% level with a period of {approx}13.16 {+-} 0.01 days, indicating that the host star spin and companion orbit are not synchronized. Through adaptive optics imaging we also found a point source 643 {+-} 10 mas away from TYC 2087-00255-1, which would have a mass of 0.13 M{sub Sun} if it is physically associated with TYC 2087-00255-1 and has the same age. Future proper motion observation should be able to resolve if this tertiary object is physically associated with TYC 2087-00255-1 and make TYC 2087-00255-1 a triple body system. Core Ca II H and K line emission indicate that the host is chromospherically active, at a level that is consistent with the inferred spin period and measured v{sub rot}sin i, but unusual for a subgiant of this T{sub eff}. This activity could be explained by ongoing tidal spin-up of the host star by the companion.

  14. 67 additional L dwarfs discovered by the Two Micron All Sky Survey

    Science.gov (United States)

    Kirkpatrick, J.; Reid, I.; Liebert, J.; Gizis, J.; Burgasser, A.; Monet, D.; Dahn, C.; Nelson, B.; Williams, R.

    2000-01-01

    One of the goals of this new search was to locate more examples of the latest L dwarfs. Of the 67 new discoveries, 17 have types of L6 or later. Analysis of these new discoveries shows that 16 (and possibly four more) of the new L dwarfs are lithium brown dwarfs and that the average line strength for those L dwarfs showing lithium increases until type L6.5 V, then declines for later types.

  15. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Shao, Y.

    2017-07-01

    -donor mass plane increases with the increasing neutron star mass. This may help to explain why some millisecond pulsars with orbital periods longer than ˜ 60 d seem to have less massive white dwarfs than expected. Alternatively, some of these wide binary pulsars may be formed through mass transfer driven by planet/brown dwarf-involved common envelope evolution; (2) Some of the pulsars in compact binaries might have evolved from intermediate-mass X-ray binaries with an anomalous magnetic braking; (3) The equilibrium spin periods of neutron stars in low-mass X-ray binaries are in general shorter than the observed spin periods of binary pulsars by more than one order of magnitude, suggesting that either the simple equilibrium spin model does not apply, or there are other mechanisms/processes spinning down the neutron stars. In Chapter 4, angular momentum loss mechanisms in the cataclysmic variables below the period gap are presented. By considering several kinds of consequential angular momentum loss mechanisms, we find that neither isotropic wind from the white dwarf nor outflow from the L1 point can explain the extra angular momentum loss rate, while an ouflow from the L2 point or a circumbinary disk can effectively extract the angular momentum provided that ˜ 15%-45% of the transferred mass is lost from the binary. A more promising mechanism is a circumbinary disk exerting a gravitational torque on the binary. In this case the mass loss fraction can be as low as ≲ 10-3. In Chapter 5 we present a study on the population of ultraluminous X-ray sources with an accreting neutron star. Most ULXs are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized neutron star. In this chapter we model the formation history of neutron star ULXs in an M82- or Milky Way-like galaxy, by

  16. Water clouds in Y dwarfs and exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Caroline V.; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Marley, Mark S.; Lupu, Roxana; Greene, Tom [NASA Ames Research Center, Naval Air Station, Moffett Field, Mountain View, CA 94035 (United States); Saumon, Didier [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Lodders, Katharina, E-mail: cmorley@ucolick.org [Washington University in St Louis, 1 Brookings Drive, St Louis, MO 63130 (United States)

    2014-05-20

    The formation of clouds affects brown dwarf and planetary atmospheres of nearly all effective temperatures. Iron and silicate condense in L dwarf atmospheres and dissipate at the L/T transition. Minor species such as sulfides and salts condense in mid- to late T dwarfs. For brown dwarfs below T {sub eff} ∼ 450 K, water condenses in the upper atmosphere to form ice clouds. Currently, over a dozen objects in this temperature range have been discovered, and few previous theoretical studies have addressed the effect of water clouds on brown dwarf or exoplanetary spectra. Here we present a new grid of models that include the effect of water cloud opacity. We find that they become optically thick in objects below T {sub eff} ∼ 350-375 K. Unlike refractory cloud materials, water-ice particles are significantly nongray absorbers; they predominantly scatter at optical wavelengths through the J band and absorb in the infrared with prominent features, the strongest of which is at 2.8 μm. H{sub 2}O, NH{sub 3}, CH{sub 4}, and H{sub 2} CIA are dominant opacity sources; less abundant species may also be detectable, including the alkalis, H{sub 2}S, and PH{sub 3}. PH{sub 3}, which has been detected in Jupiter, is expected to have a strong signature in the mid-infrared at 4.3 μm in Y dwarfs around T {sub eff} = 450 K; if disequilibrium chemistry increases the abundance of PH{sub 3}, it may be detectable over a wider effective temperature range than models predict. We show results incorporating disequilibrium nitrogen and carbon chemistry and predict signatures of low gravity in planetary mass objects. Finally, we make predictions for the observability of Y dwarfs and planets with existing and future instruments, including the James Webb Space Telescope and Gemini Planet Imager.

  17. Brown Syndrome

    Science.gov (United States)

    ... extraction) have also been linked to acquired Brown syndrome. Inflammation of the tendon-trochlea complex (from adult and juvenile rheumatoid arthritis, systemic lupus erythematosus and sinusitis) can be ... syndrome hereditary? Hereditary cases of Brown syndrome are rare. ...

  18. Astrometric orbit of a low-mass companion to an ultracool dwarf

    OpenAIRE

    {Sahlmann} J.; {Lazorenko} P.~F.; {S{é}gransan}}} D.; {Mart{í}}}n}} E.~L.; {Queloz} D.; {Mayor} M.; {Udry} S.

    2013-01-01

    Little is known about the existence of extrasolar planets around ultracool dwarfs. Furthermore, binary stars with Sun-like primaries and very low-mass binaries composed of ultracool dwarfs show differences in the distributions of mass ratio and orbital separation that can be indicative of distinct formation mechanisms. Using FORS2/VLT optical imaging for high precision astrometry we are searching for planets and substellar objects around ultracool dwarfs to investigate their multiplicity prop...

  19. Modelling the formation of double white dwarfs

    NARCIS (Netherlands)

    van der Sluijs, M.V.; Verbunt, F.W.M.|info:eu-repo/dai/nl/068970374; Pols, O.|info:eu-repo/dai/nl/111811155

    2006-01-01

    We investigate the formation of the ten double-lined double white dwarfs that have been observed so far. A detailed stellar evolution code is used to calculate grids of single-star and binary models and we use these to reconstruct possible evolutionary scenarios. We apply various criteria to select

  20. Period changes in ultracompact double white dwarfs

    NARCIS (Netherlands)

    Marsh, T.R.; Nelemans, G.A.

    2005-01-01

    In recent years there has been much interest in the nature of two stars, V407 Vul and RX J0806+1527, which are widely thought to be binary white dwarfs of very short orbital period, 570 and 321s, respectively. As such they should be strong sources of gravitational waves and possible ancestors of the

  1. The White Dwarf Companions of Recycled Pulsars

    OpenAIRE

    van Kerkwijk, M. H.

    1996-01-01

    I review what properties of the white-dwarf companions of recycled pulsars can be inferred from optical observations, and discuss how these can help us understand the characteristics and evolution of these binaries. I focus on spectroscopic observations, describing results obtained recently, and looking forward to what may come.

  2. DISCOVERY AND CHARACTERIZATION OF WIDE BINARY SYSTEMS WITH A VERY LOW MASS COMPONENT

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Frédérique; Lafrenière, David; Artigau, Étienne; Doyon, René; Gagné, Jonathan; Robert, Jasmin; Nadeau, Daniel [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada); Davison, Cassy L. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Malo, Lison [Canada-France-Hawaii Telescope, 65–1238 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Reylé, Céline, E-mail: baron@astro.umontreal.ca [Institut Utinam, CNRS UMR6213, Université de Franche-Comté, OSU THETA Franche-Comté-Bourgogne, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France)

    2015-03-20

    We report the discovery of 14 low-mass binary systems containing mid-M to mid-L dwarf companions with separations larger than 250 AU. We also report the independent discovery of nine other systems with similar characteristics that were recently discovered in other studies. We have identified these systems by searching for common proper motion sources in the vicinity of known high proper motion stars, based on a cross-correlation of wide area near-infrared surveys (2MASS, SDSS, and SIMP). An astrometric follow-up, for common proper motion confirmation, was made with SIMON and/or CPAPIR at the Observatoire du Mont Mégantic 1.6 m and CTIO 1.5 m telescopes for all the candidates identified. A spectroscopic follow-up was also made with GMOS or GNIRS at Gemini to determine the spectral types of 11 of our newly identified companions and 10 of our primaries. Statistical arguments are provided to show that all of the systems we report here are very likely to be physical binaries. One of the new systems reported features a brown dwarf companion: LSPM J1259+1001 (M5) has an L4.5 (2M1259+1001) companion at ∼340 AU. This brown dwarf was previously unknown. Seven other systems have a companion of spectral type L0–L1 at a separation in the 250–7500 AU range. Our sample includes 14 systems with a mass ratio below 0.3.

  3. PREFACE: 16th European White Dwarfs Workshop

    Science.gov (United States)

    Garcia-Berro, Enrique; Hernanz, Margarita; Isern, Jordi; Torres, Santiago

    2009-07-01

    The 16th European Workshop on White Dwarfs was held in Barcelona, Spain, from 30 June to 4 July 2008 at the premises of the UPC. Almost 120 participants from Europe (France, Germany, United Kingdom, Italy, and several others), America (USA, Canada, Argentina, Brazil, and Chile), and other continents (Australia, South Africa, . . . ) attended the workshop. Among these participants were the most relevant specialists in the field. The topics covered by the conference were: White dwarf structure and evolution Progenitors and Planetary Nebulae White dwarfs in binaries: cataclysmic variables, double degenerates and other binaries White dwarfs, dust disks and planetary systems Atmospheres, chemical composition, magnetic fields Variable white dwarfs White dwarfs in stellar clusters and the halo White Dwarfs as SNIa progenitors The programme included 54 talks, and 45 posters. The oral presentations were distributed into the following sessions: Luminosity function, mass function and populations White dwarf structure and evolution White dwarf ages White dwarf catalogs and surveys Central stars of planetary nebulae Supernovae progenitors White dwarfs in novae and CVs Physical processes in white dwarfs and magnetic white dwarfs Disks, dust and planets around white dwarfs Pulsating white dwarfs Additionally we had a special open session about Spitzer and white dwarfs. The Proceedings of the 16th European Workshop on White Dwarfs are representative of the current state-of-the-art of the research field and include new and exciting results. We acknowledge the very positive attitude of the attendants to the workshop, which stimulated very fruitful discussions that took place in all the sessions and after the official schedule. Also, the meeting allowed new collaborations tp start that will undoubtedly result in significant advances in the research field. We also acknowledge the willingness of the participants to deliver their contributions before the final deadline. We sincerely

  4. Population synthesis studies of white dwarf binaries

    OpenAIRE

    Kolb, U.; Willems, B.

    2004-01-01

    Presentamos estudios de s ntesis de poblaci on de binarias enana blanca { estrella de la secuencia principal, de variables catacl smicas que son conducidas por discos circumbinarios y de binarias eclipsantes, en la b usqueda del tr ansito de exoplanetas SuperWASP.

  5. Naming Disney's Dwarfs.

    Science.gov (United States)

    Sidwell, Robert T.

    1980-01-01

    Discusses Disney's version of the folkloric dwarfs in his production of "Snow White" and weighs the Disney rendition of the dwarf figure against the corpus of traits and behaviors pertaining to dwarfs in traditional folklore. Concludes that Disney's dwarfs are "anthropologically true." (HOD)

  6. Is There a Substellar Object Orbiting the Solar-like Stable Contact Binary V2284 Cyg?

    Science.gov (United States)

    Wang, J.-J.; Jiang, L.-Q.; Zhang, B.; Zhao, S.-Q.; Yu, J.

    2017-12-01

    V2284 Cyg is a neglected W UMa-type binary star for photometric investigations. Monitored by the Kepler Space Telescope from 2009 to 2013, its light curves are continuously stable, suggesting that both components are inactive during this time interval. Based on the short-cadence observations, we determined the photometric solutions by using the 2013 version of the Wilson-Devinney code. These parameters reveal that V2284 Cyg is a W-type system with a degree of contact factor of f = 39.23% and a mass ratio of q = 2.90. Meanwhile, hundreds of times of minimum light were obtained and applied to analyze the orbital period changes. In the O-C diagram, a small-amplitude cyclic oscillation (A 3 = 0.00030 days and T 3 = 2.06 years) superimposed on a secular decreasing was found. The continuous decreasing may be a result from the mass transfer from the more massive component to the less massive one. With the long-term decreasing of the orbital period, this binary will evolve into a deeper contact system. Because the light curve is stable, the cyclic variation is plausibly explained as the light-travel time effect (LTTE) due to the presence of an additional body. The mass of the companion is {M}3\\sin i\\prime =0.036(+/- 0.003) {M}⊙ . If the orbital plane inclination is a random distribution, it is a brown dwarf with 66.7% probability. Therefore, the companion of V2284 Cyg is possibly the first candidate of the brown dwarf orbiting around contact binary, where both component are sharing a common convective envelope.

  7. A SEARCH FOR L/T TRANSITION DWARFS WITH PAN-STARRS1 AND WISE. II. L/T TRANSITION ATMOSPHERES AND YOUNG DISCOVERIES

    Energy Technology Data Exchange (ETDEWEB)

    Best, William M. J.; Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M.; Chambers, K. C.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Tonry, J. L.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Deacon, Niall R. [Centre for Astrophysics Research, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB (United Kingdom); Redstone, Joshua [Equatine Labs, 89 Antrim Street, #2, Cambridge, MA 02139 (United States); Burgett, W. S. [GMTO Corporation, 251 S. Lake Ave., Suite 300, Pasadena, CA 91101 (United States); Draper, P.; Metcalfe, N., E-mail: wbest@ifa.hawaii.edu [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2015-12-01

    The evolution of brown dwarfs from L to T spectral types is one of the least understood aspects of the ultracool population, partly for lack of a large, well-defined, and well-characterized sample in the L/T transition. To improve the existing census, we have searched ≈28,000 deg{sup 2} using the Pan-STARRS1 and Wide-field Infrared Survey Explorer surveys for L/T transition dwarfs within 25 pc. We present 130 ultracool dwarf discoveries with estimated distances ≈9–130 pc, including 21 that were independently discovered by other authors and 3 that were previously identified as photometric candidates. Seventy-nine of our objects have near-IR spectral types of L6–T4.5, the most L/T transition dwarfs from any search to date, and we have increased the census of L9–T1.5 objects within 25 pc by over 50%. The color distribution of our discoveries provides further evidence for the “L/T gap,” a deficit of objects with (J − K){sub MKO} ≈ 0.0–0.5 mag in the L/T transition, and thus reinforces the idea that the transition from cloudy to clear photospheres occurs rapidly. Among our discoveries are 31 candidate binaries based on their low-resolution spectral features. Two of these candidates are common proper motion companions to nearby main sequence stars; if confirmed as binaries, these would be rare benchmark systems with the potential to stringently test ultracool evolutionary models. Our search also serendipitously identified 23 late-M and L dwarfs with spectroscopic signs of low gravity implying youth, including 10 with vl-g or int-g gravity classifications and another 13 with indications of low gravity whose spectral types or modest spectral signal-to-noise ratio do not allow us to assign formal classifications. Finally, we identify 10 candidate members of nearby young moving groups (YMG) with spectral types L7–T4.5, including three showing spectroscopic signs of low gravity. If confirmed, any of these would be among the coolest known YMG members

  8. A Pulsar and White Dwarf in an Unexpected Orbit

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    Astronomers have discovered a binary system consisting of a low-mass white dwarf and a millisecond pulsar but its eccentric orbit defies all expectations of how such binaries form.Observed orbital periods and binary eccentricities for binary millisecond pulsars. PSR J2234+0511 is the furthest right of the green stars that mark the five known eccentric systems. [Antoniadis et al. 2016]Unusual EccentricityIt would take a low-mass (0.4 solar masses) white dwarf over 100 billion years to form from the evolution of a single star. Since this is longer than the age of the universe, we believe that these lightweights are instead products of binary-star evolution and indeed, we observe many of these stars to still be in binary systems.But the binary evolution that can create a low-mass white dwarf includes a period of mass transfer, in which efficient tidal dissipation damps the systems orbital eccentricity. Because of this, we would expect all systems containing low-mass white dwarfs to have circular orbits.In the past, our observations of low-mass white dwarfmillisecond pulsar binaries have all been consistent with this expectation. But a new detection has thrown a wrench in the works: the unambiguous identification of a low-mass white dwarf thats in an eccentric (e=0.13) orbit with the millisecond pulsar PSR J2234+0511. How could this system have formed?Eliminating Formation ModelsLed by John Antoniadis (Dunlap Institute at University of Toronto), a team of scientists has used newly obtained optical photometry (from the Sloan Digital Sky Survey) and spectroscopy (from the Very Large Telescope in Chile) of the white dwarf to confirm the identification of this system.Antoniadis and collaborators then use measurements of the bodies masses (0.28 and 1.4 solar masses for the white dwarf and pulsar, respectively) and velocities, and constraints on the white dwarfs temperature, radius and surface gravity, to address three proposed models for the formation of this system.The 3D

  9. Strain characterization of West African Dwarf goats of Ogun State II ...

    African Journals Online (AJOL)

    The West African Dwarf (WAD) goat presents variable coat colours, ranging from black, brown, gray, red and white and sometimes combinations of these variety of patterns. In this study, strains of West African Dwarf (WAD) goat were characterized using linear body measurement. The WAD goat included the chocolate, white ...

  10. Building Magnetic Fields in White Dwarfs

    Science.gov (United States)

    Kohler, Susanna

    2017-03-01

    White dwarfs, the compact remnants left over at the end of low- and medium-mass stars lifetimes, are often found to have magnetic fields with strengths ranging from thousands to billions of times that of Earth. But how do these fields form?MultiplePossibilitiesAround 1020% of white dwarfs have been observed to have measurable magnetic fields with a wide range of strengths. There are several theories as to how these fields might be generated:The fields are fossil.The original weak magnetic fields of the progenitor stars were amplified as the stars cores evolved into white dwarfs.The fields are caused by binary interactions.White dwarfs that formed in the merger of a binary pair might have had a magnetic field amplified as a result of a dynamo that was generated during the merger.The fields were produced by some other internal physical mechanism during the cooling of the white dwarf itself.In a recent publication, a team of authors led by Jordi Isern (Institute of Space Sciences, CSIC, and Institute for Space Studies of Catalonia, Spain) explored this third possibility.Dynamos from CrystallizationThe inner and outer boundaries of the convective mantle of carbon/oxygen white dwarfs of two different masses (top vs. bottom panel) as a function of luminosity. As the white dwarf cools (toward the right), the mantle grows thinner due to the crystallization and settling of material. [Isern et al. 2017]As white dwarfs have no nuclear fusion at their centers, they simply radiate heat and gradually cool over time. The structure of the white dwarf undergoes an interesting change as it cools, however: though the object begins as a fluid composed primarily of an ionized mixture of carbon and oxygen (and a few minor species like nickel and iron), it gradually crystallizes as its temperature drops.The crystallized phase of the white dwarf is oxygen-rich which is denser than the liquid, so the crystallized material sinks to the center of the dwarf as it solidifies. As a result, the

  11. White Dwarfs in Gaia Data Release 1

    Science.gov (United States)

    Jordan, S.

    2017-03-01

    On September 14, the Gaia archives opened for access to the Gaia DR1. The catalogue with more than one billion star positions and more than two million parallaxes and proper motions will have enormous influence on many topics in astronomy. However, due to their extremely blue colour, parallaxes and proper motions of only six white dwarfs were directly measured. Tremblay et al. used these data and those for 46 white dwarfs in binaries in order to construct an empirical mass-radius relation. As it was the case for Hipparcos, the precision of the data does not allow for the characterisation of hydrogen envelope masses. With Gaia DR2 coming in late 2017 the prospects for white dwarf research are much better.

  12. White Dwarf Mergers on Adaptive Meshes

    Science.gov (United States)

    Katz, Maximilian Peter

    The mergers of binary white dwarf systems are potential progenitors of astrophysical explosions such as Type Ia supernovae. These white dwarfs can merge either by orbital decay through the emission of gravitational waves or by direct collisions as a result of orbital perturbations. The coalescence of the stars may ignite nuclear fusion, resulting in the destruction of both stars through a thermonuclear runaway and ensuing detonation. The goal of this dissertation is to simulate binary white dwarf systems using the techniques of computational fluid dynamics and therefore to understand what numerical techniques are necessary to obtain accurate dynamical evolution of the system, as well as to learn what conditions are necessary to enable a realistic detonation. For this purpose I have used software that solves the relevant fluid equations, the Poisson equation for self-gravity, and the systems governing nuclear reactions between atomic species. These equations are modeled on a computational domain that uses the technique of adaptive mesh refinement to have the highest spatial resolution in the areas of the domain that are most sensitive to the need for accurate numerical evolution. I have identified that the most important obstacles to accurate evolution are the numerical violation of conservation of energy and angular momentum in the system, and the development of numerically seeded thermonuclear detonations that do not bear resemblance to physically correct detonations. I then developed methods for ameliorating these problems, and determined what metrics can be used for judging whether a given white dwarf merger simulation is trustworthy. This involved the development of a number of algorithmic improvements to the simulation software, which I describe. Finally, I performed high-resolution simulations of typical cases of white dwarf mergers and head-on collisions to demonstrate the impacts of these choices. The results of these simulations and the corresponding

  13. The quest for companions to post-common envelope binaries. I. Searching a sample of stars from the CSS and SDSS

    Science.gov (United States)

    Backhaus, U.; Bauer, S.; Beuermann, K.; Diese, J.; Dreizler, S.; Hessman, F. V.; Husser, T.-O.; Klapdohr, K.-H.; Möllmanns, J.; Schünecke, R.; Dette, J.; Dubbert, J.; Miosga, T.; Rochus Vogel, A. L.; Simons, S.; Biriuk, S.; Debrah, M.; Griemens, M.; Hahn, A.; Möller, T.; Pawlowski, M.; Schweizer, M.; Speck, A.-L.; Zapros, C.; Bollmann, T.; Habermann, F. N.; Haustovich, N.; Lauser, M.; Liebing, F.; Niederstadt, F.; Hoppen, K.; Kindermann, D.; Küppers, F.; Rauch, B.; Althoff, F.; Horstmann, M.; Kellerman, J. N.; Kietz, R.; Nienaber, T.; Sauer, M.; Secci, A.; Wüllner, L.

    2012-02-01

    As part of an ongoing collaboration between student groups at high schools and professional astronomers, we have searched for the presence of circum-binary planets in a bona-fide unbiased sample of twelve post-common envelope binaries (PCEBs) from the Catalina Sky Survey (CSS) and the Sloan Digital Sky Survey (SDSS). Although the present ephemerides are significantly more accurate than previous ones, we find no clear evidence for orbital period variations between 2005 and 2011 or during the 2011 observing season. The sparse long-term coverage still permits O-C variations with a period of years and an amplitude of tens of seconds, as found in other systems. Our observations provide the basis for future inferences about the frequency with which planet-sized or brown-dwarf companions have either formed in these evolved systems or survived the common envelope (CE) phase.

  14. Ultra-short Period Binaries from the Catalina Surveys

    Science.gov (United States)

    Drake, A. J.; Djorgovski, S. G.; García-Álvarez, D.; Graham, M. J.; Catelan, M.; Mahabal, A. A.; Donalek, C.; Prieto, J. L.; Torrealba, G.; Abraham, S.; Williams, R.; Larson, S.; Christensen, E.

    2014-08-01

    We investigate the properties of 367 ultra-short period binary candidates selected from 31,000 sources recently identified from Catalina Surveys data. Based on light curve morphology, along with WISE, Sloan Digital Sky Survey, and GALEX multi-color photometry, we identify two distinct groups of binaries with periods below the 0.22 day contact binary minimum. In contrast to most recent work, we spectroscopically confirm the existence of M dwarf+M dwarf contact binary systems. By measuring the radial velocity variations for five of the shortest-period systems, we find examples of rare cool white dwarf (WD)+M dwarf binaries. Only a few such systems are currently known. Unlike warmer WD systems, their UV flux and optical colors and spectra are dominated by the M-dwarf companion. We contrast our discoveries with previous photometrically selected ultra-short period contact binary candidates and highlight the ongoing need for confirmation using spectra and associated radial velocity measurements. Overall, our analysis increases the number of ultra-short period contact binary candidates by more than an order of magnitude.

  15. The Late-Type Extension to MoVeRS (LaTE-MoVeRS): Proper Motion Verified Low-mass Stars and Brown Dwarfs from SDSS, 2MASS, and WISE

    Science.gov (United States)

    Theissen, Christopher A.; West, Andrew A.; Shippee, Guillaume; Burgasser, Adam J.; Schmidt, Sarah J.

    2017-03-01

    We present the Late-Type Extension to the Motion Verified Red Stars (LaTE-MoVeRS) catalog, containing 46,463 photometric late-type (>M5) dwarfs within the Sloan Digital Sky Survey (SDSS) footprint. Proper motions were computed for objects combining astrometry from the SDSS Data Release 12 (DR12), the Two-micron All-Sky Survey (2MASS) Point Source Catalog, and the Wide-field Infrared Survey Explorer (WISE) AllWISE data sets. LaTE-MoVeRS objects were required to have significant proper motion ({μ }{tot}≥slant 2{σ }{μ {tot}}). Using the LaTE-MoVeRS sample and Gaia Data Release 1, we estimate Gaia will be ˜64% complete for very low-mass objects (>M5) in comparison to the combined SDSS+2MASS+WISE data set (i< 21.3). We computed photometric distances and estimated stellar effective temperatures for the LaTE-MoVeRS catalog. The majority of the dwarfs in the sample have distances < 150 pc and {T}{eff}< 3000 K. Thirteen objects that have not been previously identified as nearby objects were identified within LaTE-MoVeRS with estimated photometric distances within 25 pc. We also identified one new object that has not been previously identified with a large amount of excess mid-infrared flux (2MASS J11151597+1937266). This object appears to be an L2γ at ˜50 pc showing spectroscopic signs of a flaring event (e.g., strong hydrogen Balmer emission lines). This object does not exhibit kinematics similar to any known kinematic association. The LaTE-MoVeRS catalog is available through SDSS CasJobs and VizieR.

  16. Haematological and physiological parameters of West African dwarf ...

    African Journals Online (AJOL)

    Twenty four West African Dwarf (WAD) goats of both sexes (12 bucks and 12 does) raised under intensive system and weighing between 5 and 11 kg with different coat colours (Black, Brown, Tan and White) were used for this study to evaluate the effects of sex and coat colour on their haematological and physiological ...

  17. The EBLM Project. IV. Spectroscopic orbits of over 100 eclipsing M dwarfs masquerading as transiting hot Jupiters

    Science.gov (United States)

    Triaud, Amaury H. M. J.; Martin, David V.; Ségransan, Damien; Smalley, Barry; Maxted, Pierre F. L.; Anderson, David R.; Bouchy, François; Collier Cameron, Andrew; Faedi, Francesca; Gómez Maqueo Chew, Yilen; Hebb, Leslie; Hellier, Coel; Marmier, Maxime; Pepe, Francesco; Pollacco, Don; Queloz, Didier; Udry, Stéphane; West, Richard

    2017-12-01

    We present 2271 radial velocity measurements taken on 118 single-line binary stars, taken over eight years with the CORALIE spectrograph. The binaries consist of F/G/K primaries and M dwarf secondaries. They were initially discovered photometrically by the WASP planet survey, as their shallow eclipses mimic a hot Jupiter transit. The observations we present permit a precise characterisation of the binary orbital elements and mass function. With modelling of the primary star, this mass function is converted to a mass of the secondary star. In the future, this spectroscopic work will be combined with precise photometric eclipses to draw an empirical mass/radius relation for the bottom of the mass sequence. This has applications in both stellar astrophysics and the growing number of exoplanet surveys around M dwarfs. In particular, we have discovered 34 systems with a secondary mass below 0.2 M⊙, and so we will ultimately double the number of known very low-mass stars with well-characterised masses and radii. The quality of our data combined with the amplitude of the Doppler variations mean that we are able to detect eccentricities as small as 0.001 and orbital periods to sub-second precision. Our sample can revisit some earlier work on the tidal evolution of close binaries, extending it to low mass ratios. We find some exceptional binary systems that are eccentric at orbital periods below three days, while our longest circular orbit has a period of 10.4 days. Amongst our systems, we note one remarkable architecture in J1146-42 that boasts three stars within one astronomical unit. By collating the EBLM binaries with published WASP planets and brown dwarfs, we derive a mass spectrum with twice the resolution of previous work. We compare the WASP/EBLM sample of tightly bound orbits with work in the literature on more distant companions up to 10 AU. We note that the brown dwarf desert appears wider, as it carves into the planetary domain for our short-period orbits

  18. WISEP J061135.13–041024.0 AB: A J-band flux reversal binary at the L/T transition

    Energy Technology Data Exchange (ETDEWEB)

    Gelino, Christopher R. [NASA Exoplanet Science Institute, Mail Code 100-22, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Smart, R. L. [Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Marocco, Federico; Jones, Hugh R. A. [Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Kirkpatrick, J. Davy [Infrared Processing and Analysis Center, Mail Code 100-22, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Cushing, Michael C. [Department of Physics and Astronomy, MS 111, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606-3328 (United States); Mace, Gregory [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Mendez, Rene A. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Tinney, C. G. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia)

    2014-07-01

    We present Keck II laser guide star adaptive optics observations of the brown dwarf WISEP J061135.13–041024.0 showing it is a binary with a component separation of 0.''4. This system is one of the six known resolved binaries in which the magnitude differences between the components show a reversal in sign between the Y/J band and the H/K bands. Deconvolution of the composite spectrum results in a best-fit binary solution with L9 and T1.5 components. We also present a preliminary parallax placing the system at a distance of 21.2 ± 1.3 pc. Using the distance and resolved magnitudes we are able to place WISEP J061135.13–041024.0 AB on a color-absolute magnitude diagram, showing that this system contributes to the well-known 'J-band bump' and the components' properties appear similar to other late-type L and early-type T dwarfs. Fitting our data to a set of cloudy atmosphere models suggests the system has an age >1 Gyr with WISE 0611–0410 A having an effective temperature (T {sub eff}) of 1275-1325 K and mass of 64-65 M {sub Jup}, and WISE 0611–0410 B having T {sub eff} = 1075-1115 K and mass 40-65 M {sub Jup}.

  19. Unmaking Brown

    Science.gov (United States)

    Lockette, Tim

    2010-01-01

    America's schools are more segregated now than they were in the late 1960s. More than 50 years after "Brown v. Board of Education," educators need to radically rethink the meaning of "school choice." For decades at Wake County, buses would pick up public school students in largely minority communities along the Raleigh…

  20. Identification of 13 DB + dM and 2 DC + dM binaries from the Sloan Digital Sky Survey

    OpenAIRE

    Besselaar, E. J. M. van den; Roelofs, G. H. A.; Nelemans, G.A.; Augusteijn, T.; Groot, P.J.

    2005-01-01

    We present the identification of 13 DB + dM binaries and 2 DC + dM binaries from the Sloan Digital Sky Survey (SDSS). Before the SDSS only 2 DB + dM binaries and 1 DC + dM binary were known. At least three, possibly 8, of the new DB + dM binaries seem to have white dwarf temperatures well above 30000 K which would place them in the so called DB-gap. Finding these DB white dwarfs in binaries may suggest that they have formed through a different evolutionary channel than the ones in which DA wh...

  1. A Study of the SDSS White Dwarf Component in the LSPM Proper Motion Survey

    Science.gov (United States)

    Darveau-Bernier, A.; Bergeron, P.; Lépine, S.

    2017-03-01

    We present a model atmosphere analysis of the white dwarfs identified in the Sloan Digital Sky Survey with proper motions measured in the LSPM proper motion survey of Lépine et al. We rely on reduced proper motion diagrams to build a sample of white dwarfs in the SDSS footprint, and cross correlate this sample with the SDSS spectroscopic database to understand the systematics related to completeness, contamination, WD+M dwarf binaries, reddening, etc. We then determine a white dwarf luminosity function for this sample using various methods.

  2. Local Thermonuclear Runaways in Dwarf Novae?

    Science.gov (United States)

    Shara, Michael

    2012-10-01

    We have no hope of understanding the structure and evolution of a class of astrophysical objects if we cannot identify the dominant energy source of those objects.The Disk Instability Model {DIM} postulates that Dwarf Nova {DN} outbursts are powered by runaway accretion from an accretion disk onto a White Dwarf {WD} in a red dwarf-WD mass transferring binary. Ominously, HST observations {e.g. Sion et al. 2001} of WD surface abundances hint at a significant shortcoming of the DIM. The data from the present proposal will be able to unequivocally demonstrate if the observed highly Carbon-depleted and Nitrogen-enhanced abundances on WD surfaces {NOT predicted by DIM} vary with binary orbital phase, or throughout a DN quiescence cycle, or from cycle to cycle. These same data will test if predicted {but never observed} Local Thermonuclear Runaways {"Nuclear-powered mini-novas"} occur on the WDs of DN. Such events could trigger or even power DN, providing the long-sought physical mechanism of DN eruptions that DIM lacks. As a "free" bonus, the same data may also directly detect the diffusion of accreted metals in a WD atmosphere for the first time, or provide significant limits on the diffusion rate.

  3. Theoretical Study of White Dwarf Double Stars

    Science.gov (United States)

    Hira, Ajit; Koetter, Ted; Rivera, Ruben; Diaz, Juan

    2015-04-01

    We continue our interest in the computational simulation of the astrophysical phenomena with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.0 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We hope to extend our computational studies to blue giant stars in the future. Research Supported by National Science Foundation.

  4. Mystery of a Dimming White Dwarf

    Science.gov (United States)

    Kohler, Susanna

    2015-12-01

    In the wake of the recent media attention over an enigmatic, dimming star, another intriguing object has been discovered: J1529+2928, a white dwarf that periodically dims. This mystery, however, may have a simple solution with interesting consequences for future surveys of white dwarfs.Unexpected VariabilityJ1529+2928 is an isolated white dwarf that appears to have a mass of slightly more than the Sun. But rather than radiating steadily, J1529+2928 dims once every 38 minutes almost as though it were being eclipsed.The team that discovered these variations, led by Mukremin Kilic (University of Oklahoma), used telescopes at the Apache Point Observatory and the McDonald Observatory to obtain follow-up photometric data of J1529+2928 spread across 66 days. The team also took spectra of the white dwarf with the Gemini North telescope.Kilic and collaborators then began, one by one, to rule out possible causes of this objects variability.Eliminating OptionsThe period of the variability is too long for J1529+2928 to be a pulsating white dwarf with luminosity variation caused by gravity-wave pulsations.The variability cant be due to an eclipse by a stellar or brown-dwarf companion, because there isnt any variation in J1529+2928s radial velocity.Its not due to the orbit of a solid-body planetary object; such a transit would be too short to explain observations.It cant be due to the orbit of a disintegrated planet; this wouldnt explain the light curves observed in different filters plus the light curve doesnt change over the 66-day span.Spotty SurfaceTop and middle two panels: light curves from three different nights observing J1529+2928s periodic dimming. Bottom panel: The Fourier transform shows a peak at 37.7 cycles/day (and another, smaller peak at its first harmonic). [Kilic et al. 2015]So what explanation is left? The authors suggest that J1529+2928s variability is likely caused by a starspot on the white dwarfs surface that rotates into and out of our view. Estimates

  5. Brown recluse spider (image)

    Science.gov (United States)

    The brown recluse is a venomous spider most commonly found in midwestern and southern states of the United States. It ... inch overall and has long skinny legs. The brown recluse is brown with a characteristic dark violin-shaped ...

  6. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  7. Binary stars: Mass transfer and chemical composition

    Science.gov (United States)

    Lambert, D. L.

    1982-01-01

    It is noted that mass exchange (and mass loss) within a binary system should produce observable changes in the surface chemical composition of both the mass losing and mass gaining stars as a stellar interior exposed to nucleosyntheses is uncovered. Three topics relating mass exchange and/or mass loss to nucleosynthesis are sketched: the chemical composition of Algol systems; the accretion disk of a cataclysmic variable fed by mass from a dwarf secondary star; and the hypothesis that classical Ba II giants result from mass transfer from a more evolved companion now present as a white dwarf.

  8. Analysis of the southern pre-contact W UMa binary ZZ Eridani: A 34 year period study yields a possible low-mass companion

    Energy Technology Data Exchange (ETDEWEB)

    Samec, R. G. [Faculty Research Associate, Pisgah Astronomical Research Institute, One Pari Drive, Rosman, NC 28772 (United States); Clark, J. D. [Astronomy Group, Physics and Engineering Department, Bob Jones University, 1700 Wade Hampton Boulevard, Greenville, SC 29614 (United States); Hamme, W. Van [Physics Department, Florida International University, 11200 SW 8th Street, Miami, FL 33199 (United States); Faulkner, D. R. [University of South Carolina, Lancaster, 476 Hubbard Drive Lancaster, SC 29720 (United States)

    2015-02-01

    Complete Bessel BVRI light curves of ZZ Eridani [2MASS J04130109-1044545, HV 6280, NSVS 14888164 α(2000) = 04{sup h}13{sup m}1{sub ·}{sup s}10, δ(2000) = −10°44′54{sub ·}{sup ″}5 (ICRS), V = 13.9-14.4-15.0] are observed and analyzed. The system is a southern pre-contact W UMa binary. Its light curve has the appearance of an Algol (EA) light curve, however, it is made up of dwarf solar-type components with a period of only 0.4521 days. Our 34 year period study yields a sinusoidal fit or an increasing quadratic fit. The sinusoid may indicate that a third body is orbiting the close binary. The lower-limit mass of the third body is near that of the brown dwarf limit (0.095 M α). Also included is an improved ephemeris, a mass ratio search, and a simultaneous BVRI Wilson–Devinney solution.

  9. Seven New Binaries Discovered in the Kepler Light Curves through the BEER Method Confirmed by Radial-velocity Observations

    Science.gov (United States)

    Faigler, S.; Mazeh, T.; Quinn, S. N.; Latham, D. W.; Tal-Or, L.

    2012-02-01

    We present seven newly discovered non-eclipsing short-period binary systems with low-mass companions, identified by the recently introduced BEER algorithm, applied to the publicly available 138-day photometric light curves obtained by the Kepler mission. The detection is based on the beaming effect (sometimes called Doppler boosting), which increases (decreases) the brightness of any light source approaching (receding from) the observer, enabling a prediction of the stellar Doppler radial-velocity (RV) modulation from its precise photometry. The BEER algorithm identifies the BEaming periodic modulation, with a combination of the well-known Ellipsoidal and Reflection/heating periodic effects, induced by short-period companions. The seven detections were confirmed by spectroscopic RV follow-up observations, indicating minimum secondary masses in the range 0.07-0.4 M ⊙. The binaries discovered establish for the first time the feasibility of the BEER algorithm as a new detection method for short-period non-eclipsing binaries, with the potential to detect in the near future non-transiting brown-dwarf secondaries, or even massive planets.

  10. The Mass-Luminosity-Metallicity Relation for M Dwarfs

    Science.gov (United States)

    Mann, Andrew; Dupuy, Trent; Rizzuto, Aaron; Kraus, Adam; Gaidos, Eric; Ansdell, Megan

    2018-01-01

    One of the most powerful tools for stellar characterization is the mass-luminosity relation (MLR). In addition to its use for characterizing exoplanet hosts, the MLR for late-type stars is critical to measuring the stellar IMF, testing isochrones, and studies of Galactic archeology. However, existing MLRs do not fully account for metallicity effects, do not extend down to the substellar boundary, and are not precise enough to take full advantage of the impending arrival of Gaia parallaxes for millions of late-type stars. For two years we monitored 72 nearby M-dwarf astrometric binaries using adaptive optics and non-redundant aperture masking, with the goal of better constraining the MLR. We combined our astrometry with measurements from the literature and Keck archive to measure orbits, masses, and flux ratios of all binaries in JHK bands. In parallel, we obtained moderate-resolution NIR spectra of all binaries, from which we determine empirical metallicities for each system. We derived an updated MLR-metallicity relation that spans most of the M dwarf sequence (K5 to M7) and the metallicity range expected in the solar neighborhood (-0.5 metallicity plays in the MLR. With our revised relation and Gaia-precision parallaxes, it will soon be possible to calculate empirical masses of nearby M dwarfs to better than 2%, and future studies will enable us to extend our relation to more metal-poor stars and explore the role of youth and evolution of the MLR for M dwarfs.

  11. Identification of 13 DB + dM and 2 DC + dM binaries from the Sloan Digital Sky Survey

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den; Roelofs, G.H.A.; Nelemans, G.A.; Augusteijn, T.; Groot, P.J.

    2005-01-01

    We present the identification of 13 DB + dM binaries and 2 DC + dM binaries from the Sloan Digital Sky Survey (SDSS). Before the SDSS only 2 DB + dM binaries and 1 DC + dM binary were known. At least three, possibly 8, of the new DB + dM binaries seem to have white dwarf temperatures well above 30

  12. New Low-mass Eclipsing Binary Systems in Praesepe Discovered by K2

    Science.gov (United States)

    Gillen, Edward; Hillenbrand, Lynne A.; David, Trevor J.; Aigrain, Suzanne; Rebull, Luisa; Stauffer, John; Cody, Ann Marie; Queloz, Didier

    2017-11-01

    We present the discovery and characterization of four low-mass (Msystems in the sub-Gyr old Praesepe open cluster using Kepler/K2 time series photometry and Keck/HIRES spectroscopy. We present a new Gaussian process EB model, GP–EBOP, as well as a method of simultaneously determining effective temperatures and distances for EBs. Three of the reported systems (AD 3814, AD 2615 and AD 1508) are detached and double-lined, and precise solutions are presented for the first two. We determine masses and radii to 1%–3% precision for AD 3814 and to 5%–6% for AD 2615. Together with effective temperatures determined to ∼50 K precision, we test the PARSEC v1.2 and BHAC15 stellar evolution models. Our EB parameters are more consistent with the PARSEC models, primarily because the BHAC15 temperature scale is hotter than our data over the mid-M-dwarf mass range probed. Both ADs 3814 and 2615, which have orbital periods of 6.0 and 11.6 days, are circularized but not synchronized. This suggests that either synchronization proceeds more slowly in fully convective stars than the theory of equilibrium tides predicts, or magnetic braking is currently playing a more important role than tidal forces in the spin evolution of these binaries. The fourth system (AD 3116) comprises a brown dwarf transiting a mid-M-dwarf, which is the first such system discovered in a sub-Gyr open cluster. Finally, these new discoveries increase the number of characterized EBs in sub-Gyr open clusters by 20% (40%) below M< 1.5 M ⊙ (M< 0.6 M ⊙).

  13. Dwarfs in ancient Egypt.

    Science.gov (United States)

    Kozma, Chahira

    2006-02-15

    Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities. Copyright (c) 2005 Wiley-Liss, Inc.

  14. The Dynamics of White Dwarfs, Black Holes and Stellar Cusps

    Science.gov (United States)

    Wegg, Christopher

    2013-03-01

    This thesis contains topics related mostly to the dynamics of white dwarfs (chapter 2), the dynamics of stars around binary super massive black holes (chapters 4, 5 and 6) and dynamics in the singular isothermal sphere (chapter 7). In chapter 2 the kinematics of young (white dwarfs are investigated. A relationship between the mass and kinematics of white dwarfs is demonstrated, whereby high-mass white dwarfs have low velocity dispersion. This is the result of less scattering during the shorter lifetime of their more massive precursors. The kinematics of the highest-mass white dwarfs (> 0.95 M⊙ ) are also investigated, and it is shown that they are consistent with the majority being formed via single-star evolution from massive progenitor stars. In chapter 3 it is shown that the coolest, oldest white dwarfs can be identified photometrically from their unique colors, and five new ultracool white dwarfs are spectroscopically confirmed. In chapter 4 it is shown that close binary supermassive black holes (SMBHs) should produce a burst of tidal disruptions of up to 0.1 yr-1 as they form. The quiescent rate is ˜ 10-5 yr-1 per galaxy, and it is therefore shown that binary SMBHs can potentially be identified via multiple tidal disruptions from the same system. In chapter 5 we perform more extensive simulations of the dynamics of stars around binary SMBHs to better quantify and understand the stellar dynamics. By incorporating general relativistic corrections, we also investigate the processes undergone by compact remnants orbiting the binary SMBHs, analyzing both objects that plunge directly into the SMBHs, and those that undergo extreme mass ratio inspirals (EMRIs). The potential used to mimic general relativistic precession in these simulations is novel, and more accurate for the type of nearly parabolic orbits considered in this work: It is described in chapter 6. In chapter 7 an analytic solution to the manner in which stars diffuse in the background of a singular

  15. High-Resolution Infrared Spectroscopic Observations of the Upper Scorpius Eclipsing Binary EPIC 203868608

    Science.gov (United States)

    Johnson, Marshall C.; Mace, Gregory N.; Kim, Hwihyun; Kaplan, Kyle; McLane, Jacob; Sokal, Kimberly R.

    2017-06-01

    EPIC 203868608 is a source in the ~10 Myr old Upper Scorpius OB association. Using K2 photometry and ground-based follow-up observations, David et al. (2016) found that it consists of two brown dwarfs with a tertiary object at a projected separation of ~20 AU; the former objects appear to be a double-lined eclipsing binary with a period of 4.5 days. This is one of only two known eclipsing SB2s where both components are below the hydrogen-burning limit. We present additional follow-up observations of this system from the IGRINS high-resolution near-infrared spectrograph at McDonald Observatory. Our measured radial velocities do not follow the orbital solution presented by David et al. (2016). Instead, our combined IGRINS plus literature radial velocity dataset appears to indicate a period significantly different than that of the eclipsing binary obvious from the K2 light curve. We will discuss possible scenarios to account for the conflicting observations of this system.

  16. Rx J0648.0-4418: the Fastest-Spinning White Dwarf

    Science.gov (United States)

    Mereghetti, S.

    2015-01-01

    HD 49798/RX J0648.0-4418 is a post common-envelope X-ray binary composed of a hot subdwarf and one of the most massive white dwarfs with a dynamical mass measurement (1.28±0.05 M⊙). This white dwarf, with a spin period of 13.2 s, rotates more than twice faster than the white dwarf in the cataclysmic variable AE Aqr. The current properties of these two binaries, as well as their future evolution, are quite different, despite both contain a fast-spinning white dwarf. HD 49798/RX J0648.0-4418 could be the progenitor of either a Type Ia supernova or of a non-recycled millisecond pulsars.

  17. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    Science.gov (United States)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  18. Binary population synthesis and SNIa rates

    Science.gov (United States)

    Toonen, S.; Nelemans, G.; Bours, M.; Portegies Zwart, S.

    2013-01-01

    Despite the significance of type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. We investigate the potential contribution to the SNeIa rate from the most common progenitor channels using the binary population synthesis (BPS) code SeBa. Using SeBa, we aim constrain binary processes such as the common envelope phase and the efficiency of mass retention of white dwarf accretion. We find that the simulated rates are not sufficient to explain the observed rates. Further, we find that the mass retention efficiency of white dwarf accretion significantly influences the rates, but does not explain all the differences between simulated rates from different BPS codes.

  19. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Yungelson, Lev R.

    2006-12-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA. Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  20. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Konstantin A. Postnov

    2014-05-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  1. OGLE-2016-BLG-0168 Binary Microlensing Event: Prediction and Confirmation of the Microlens Parallax Effect from Space-based Observations

    Energy Technology Data Exchange (ETDEWEB)

    Shin, I.-G.; Yee, J. C.; Jung, Y. K. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Udalski, A.; Skowron, J.; Mróz, P.; Soszyński, I.; Poleski, R.; Szymański, M. K.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M. [Warsaw University Observatory, Al. Ujazdowskie 4,00-478 Warszawa (Poland); Novati, S. Calchi [IPAC, Mail Code 100-22, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Han, C. [Department of Physics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Albrow, M. D. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch 8020 (New Zealand); Gould, A. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Chung, S.-J.; Hwang, K.-H.; Ryu, Y.-H. [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-Gu, Daejeon 34055 (Korea, Republic of); Collaboration: OGLE Collaboration; KMTNet Group; Spitzer Team; and others

    2017-11-01

    The microlens parallax is a crucial observable for conclusively identifying the nature of lens systems in microlensing events containing or composed of faint (even dark) astronomical objects such as planets, neutron stars, brown dwarfs, and black holes. With the commencement of a new era of microlensing in collaboration with space-based observations, the microlens parallax can be routinely measured. In addition, space-based observations can provide opportunities to verify the microlens parallax measured from ground-only observations and to find a unique solution to the lensing light-curve analysis. Furthermore, since most space-based observations cannot cover the full light curves of lensing events, it is also necessary to verify the reliability of the information extracted from fragmentary space-based light curves. We conduct a test based on the microlensing event OGLE-2016-BLG-0168, created by a binary lens system consisting of almost equal mass M-dwarf stars, to demonstrate that it is possible to verify the microlens parallax and to resolve degeneracies using the space-based light curve even though the observations are fragmentary. Since space-based observatories will frequently produce fragmentary light curves due to their short observing windows, the methodology of this test will be useful for next-generation microlensing experiments that combine space-based and ground-based collaboration.

  2. Validation of the frequency modulation technique applied to the pulsating δ Sct-γ Dor eclipsing binary star KIC 8569819

    Science.gov (United States)

    Kurtz, Donald W.; Hambleton, Kelly M.; Shibahashi, Hiromoto; Murphy, Simon J.; Prša, Andrej

    2015-01-01

    KIC 8569819 is an eclipsing binary star with an early F primary and G secondary in a 20.85-d eccentric orbit. The primary is a δ Sct-γ Dor star pulsating in both p modes and g modes. Using four years of Kepler Mission photometric data, we independently model the light curve using the traditional technique with the modelling code PHOEBE, and we study the orbital characteristics using the new frequency modulation technique. We show that both methods provide the equivalent orbital period, eccentricity and argument of periastron, thus illustrating and validating the FM technique. In the amplitude spectrum of the p-mode pulsations, we also discovered an FM signal compatible with a third body in the system, a low-mass M dwarf in an 861-d orbit around the primary pair. However, the eclipses show no timing variations, indicating that the FM signal is a consequence of the intrinsic change in pulsation frequency, thus providing a cautionary tale. Our analysis shows the potential of the FM technique using Kepler data, and we discuss the prospects to detect planets and brown dwarfs in Kepler data for A and F stars even in the absence of transits and with no spectroscopic radial velocity curves. This opens the possibility of finding planets orbiting hotter stars that cannot be found by traditional techniques.

  3. Search with UVES and X-Shooter for signatures of the low-mass secondary in the post common-envelope binary AA Doradus

    Science.gov (United States)

    Hoyer, D.; Rauch, T.; Werner, K.; Hauschildt, P. H.; Kruk, J. W.

    2015-06-01

    Context. AA Dor is a close, totally eclipsing, post common-envelope binary with an sdOB-type primary star and an extremely low-mass secondary star, located close to the mass limit of stable central hydrogen burning. Within error limits, it may either be a brown dwarf or a late M-type dwarf. Aims: We aim to extract the secondary's contribution to the phase-dependent composite spectra. The spectrum and identified lines of the secondary decide on its nature. Methods: In January 2014, we measured the phase-dependent spectrum of AA Dor with X-Shooter over one complete orbital period. Since the secondary's rotation is presumable synchronized with the orbital period, its surface strictly divides into a day and night side. Therefore, we may obtain the spectrum of its cool side during its transit and of its hot, irradiated side close to its occultation. We developed the Virtual Observatory (VO) tool TLISA to search for weak lines of a faint companion in a binary system. We successfully applied it to the observations of AA Dor. Results: We identified 53 spectral lines of the secondary in the ultraviolet-blue, visual, and near-infrared X-Shooter spectra that are strongest close to its occultation. We identified 57 (20 additional) lines in available Ultraviolet and Visual Echelle Spectrograph (UVES) spectra from 2001. The lines are mostly from C ii-iii and O ii, typical for a low-mass star that is irradiated and heated by the primary. We verified the orbital period of P = 22 597.033201 ± 0.00007 s and determined the orbital velocity K_sec = 232.9+16.6-6.5 km s-1 of the secondary. The mass of the secondary is M_sec = 0.081+0.018-0.010 M_⊙ and, hence, it is not possible to reliably determine a brown dwarf or an M-type dwarf nature. Conclusions: Although we identified many emission lines of the secondary's irradiated surface, the resolution and signal-to-noise ratio of our UVES and X-Shooter spectra are not good enough to extract a good spectrum of the secondary

  4. Two new color-selected magnetic DA white dwarfs

    Science.gov (United States)

    Liebert, J.; Schmidt, G. D.; Sion, E. M.; Starrfield, S. G.; Green, R. F.; Boroson, T. A.

    1985-01-01

    The discovery of two magnetic white dwarfs culled from blue star surveys is reported. The surveys were carried out with the Mount Lemnon 1.5-meter reflecting telescope attached to a two-holer polarimeter/photometer. Spectral observations of the objects, (PG 1533 - 057, and K813 - 14), indicate the presence of hydrogen and Zeeman components. On the basis of dipolar field simulations, it is shown that PG 1533 - 057 has a polar field strength of 31 megagauss (MG) while K813 - 14 has a polar field strength of 29 MG. A third known white dwarf has a polar field strength of 18 MG. All the dwarfs had temperatures in the 11,000-20,000 K range. The possibility that a significant fraction of isolated magnetic degenerate stars could be the progeny of magnetic accreting binary systems is considered.

  5. A Dark Spot on a Massive White Dwarf

    Science.gov (United States)

    Kilic, Mukremin; Gianninas, Alexandros; Bell, Keaton J.; Curd, Brandon; Brown, Warren R.; Hermes, J. J.; Dufour, Patrick; Wisniewski, John P.; Winget, D. E.; Winget, K. I.

    2015-12-01

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  6. AR Sco as a possible seed of highly magnetized white dwarf

    Science.gov (United States)

    Mukhopadhyay, Banibrata; Rao, A. R.; Bhatia, Tanayveer Singh

    2017-12-01

    We explore the possibility that the recently discovered white dwarf pulsar AR Sco acquired its high spin and magnetic field due to repeated episodes of accretion and spin-down. An accreting white dwarf can lead to a larger mass and consequently a smaller radius thus causing an enhanced rotation period and a magnetic field. This spinning magnetic white dwarf temporarily can inhibit accretion, spin down and eventually, the accretion can start again due to the shrinking of the binary period by gravitational radiation. A repetition of the above cycle can eventually lead to a high magnetic field white dwarf, recently postulated to be the reason for overluminous type Ia supernovae. We also point out that these high magnetic field spinning white dwarfs are attractive sites for gravitational radiation.

  7. A circumbinary debris disk in a polluted white dwarf system

    Science.gov (United States)

    Farihi, J.; Parsons, S. G.; Gänsicke, B. T.

    2017-03-01

    Planetary systems commonly survive the evolution of single stars, as evidenced by terrestrial-like planetesimal debris observed orbiting and polluting the surfaces of white dwarfs 1,2 . Here, we report the identification of a circumbinary dust disk surrounding a white dwarf with a substellar companion in a 2.27 h orbit. The system bears the dual hallmarks of atmospheric metal pollution and infrared excess 3,4 ; however, the standard (flat and opaque) disk configuration is dynamically precluded by the binary. Instead, the detected reservoir of debris must lie well beyond the Roche limit in an optically thin configuration, where erosion by stellar irradiation is relatively rapid. This finding shows that rocky planetesimal formation is robust around close binaries, even those with low mass ratios.

  8. The white dwarf population of NGC 6397

    Science.gov (United States)

    Torres, Santiago; García-Berro, Enrique; Althaus, Leandro G.; Camisassa, María E.

    2015-09-01

    Context. NGC 6397 is one of the most interesting, well-observed, and most thoroughly theoretically studied globular clusters. The existing wealth of observations allows us to study the reliability of the theoretical white dwarf cooling sequences of low-metallicity progenitors, to determine the age of NGC 6397 and the percentage of unresolved binaries. We also assess other important characteristics of the cluster, such as the slope of the initial mass function or the fraction of white dwarfs with hydrogen-deficient atmospheres. Aims: We present a population synthesis study of the white dwarf population of NGC 6397. In particular, we study the shape of the color-magnitude diagram and the corresponding magnitude and color distributions. Methods: To do this, we used an advanced Monte Carlo code that incorporates the most recent and reliable cooling sequences and an accurate modeling of the observational biases. Results: Our theoretical models and the observed data agree well. In particular, we find that this agreement is best for those cooling sequences that take into account residual hydrogen burning. This result has important consequences for the evolution of progenitor stars during the thermally pulsing asymptotic giant branch phase, since it implies that appreciable third dredge-up in low-mass, low-metallicity progenitors is not expected to occur. Using a standard burst duration of 1.0 Gyr, we obtain that the age of the cluster is 12.8+0.50-0.75 Gyr. Greater ages are also compatible with the observed data, but then unrealistic longer durations of the initial burst of star formation are needed to fit the luminosity function. Conclusions: We conclude that a correct modeling of the white dwarf population of globular clusters, used in combination with the number counts of main-sequence stars, provides a unique tool for modeling the properties of globular clusters.

  9. The evolution of ultracompact X-ray binaries

    OpenAIRE

    van Haaften, L. M.; Nelemans, G.; Voss, R.; Wood, M. A.; Kuijpers, J.

    2011-01-01

    Context. Ultracompact X-ray binaries (UCXBs) typically consist of a white dwarf donor and a neutron star or black hole accretor. The evolution of UCXBs and very low mass ratio binaries in general is poorly understood. Aims. We investigate the evolution of UCXBs in order to learn for which mass ratios and accretor types these systems can exist, and if they do, what are their orbital and neutron star spin periods, mass transfer rates and evolutionary timescales. Methods. For different assumptio...

  10. BEER analysis of Kepler and CoRoT light curves. III. Spectroscopic confirmation of seventy new beaming binaries discovered in CoRoT light curves

    Science.gov (United States)

    Tal-Or, L.; Faigler, S.; Mazeh, T.

    2015-08-01

    Context. The BEER algorithm searches stellar light curves for the BEaming, Ellipsoidal, and Reflection photometric modulations that are caused by a short-period companion. These three effects are typically of very low amplitude and can mainly be detected in light curves from space-based photometers. Unlike eclipsing binaries, these effects are not limited to edge-on inclinations. Aims: Applying the algorithm to wide-field photometric surveys such as CoRoT and Kepler offers an opportunity to better understand the statistical properties of short-period binaries. It also widens the window for detecting intrinsically rare systems, such as short-period brown-dwarf and massive-planetary companions to main-sequence stars. Methods: Applying the search to the first five long-run center CoRoT fields, we identified 481 non-eclipsing candidates with periodic flux amplitudes of 0.5-87 mmag. Optimizing the Anglo-Australian-Telescope pointing coordinates and the AAOmega fiber-allocations with dedicated softwares, we acquired six spectra for 231 candidates and seven spectra for another 50 candidates in a seven-night campaign. Analysis of the red-arm AAOmega spectra, which covered the range of 8342-8842 Å, yielded a radial-velocity precision of ~1 km s-1. Spectra containing lines of more than one star were analyzed with the two-dimensional correlation algorithm TODCOR. Results: The measured radial velocities confirmed the binarity of seventy of the BEER candidates - 45 single-line binaries, 18 double-line binaries, and 7 diluted binaries. We show that red giants introduce a major source of false candidates and demonstrate a way to improve BEER's performance in extracting higher fidelity samples from future searches of CoRoT light curves. The periods of the confirmed binaries span a range of 0.3-10 days and show a rise in the number of binaries per ΔlogP toward longer periods. The estimated mass ratios of the double-line binaries and the mass ratios assigned to the single

  11. Planetary Engulfment as a Trigger for White Dwarf Pollution

    Science.gov (United States)

    Petrovich, Cristobal; Muñoz, Diego J.

    2017-01-01

    The presence of a planetary system can shield a planetesimal disk from the secular gravitational perturbations due to distant outer massive objects (planets or stellar companions). As the host star evolves off the main sequence to become a white dwarf, these planets can be engulfed during the giant phase, triggering secular instabilities and leading to the tidal disruptions of small rocky bodies. These disrupted bodies can feed the white dwarfs with rocky material and possibly explain the high-metallicity material in their atmospheres. We illustrate how this mechanism can operate when the gravitational perturbations are due to the KL mechanism from a stellar binary companion, a process that is activated only after the planet has been removed/engulfed. We show that this mechanism can explain the observed accretion rates if: (1) the planetary engulfment happens rapidly compared to the secular timescale, which is generally the case for wide binaries (> 100 au) and planetary engulfment during the asymptotic giant branch; (2) the planetesimal disk has a total mass of ˜ {10}-4-{10}-2{M}\\oplus . We show that this new mechanism can provide a steady supply of material throughout the entire life of the white dwarfs for all cooling ages and can account for a large fraction (up to nearly half) of the observed polluted white dwarfs.

  12. Brown Dwarfs in the UKIRT Infrared Deep Sky Survey (UKIDSS)

    Science.gov (United States)

    Hambly, Nigel; UKIDSS Consortium

    2003-06-01

    During the final quarter of 2003, UKIRT will take delivery of WFCAM. This new wide--field camera will have a FOV of 0.2 square degrees, and is therefore well suited to large--scale survey work. A consortium of more than 60 astronomers has successfully bid for a large fraction of all UKIRT time over the next 5 years to undertake several public surveys using this new facility. These surveys are collectively known as the UKIRT Infrared Deep Sky Survey (UKIDSS). In this short paper I will describe the project and review the prospects for BD research using UKIDSS data, highlighting some of the major science goals related to BDs that we hope will be achieved.

  13. Discovery of a Visual T-dwarf Triple System and Binarity at the L/T Transition

    Science.gov (United States)

    Radigan, Jacqueline; Jayawardhana, Ray; Lafrenière, David; Dupuy, Trent J.; Liu, Michael C.; Scholz, Alexander

    2013-11-01

    We present new high contrast imaging of eight L/T transition brown dwarfs (BDs) using the NIRC2 camera on the Keck II telescope. One of our targets, the T3.5 dwarf 2MASS J08381155+1511155, was resolved into a hierarchal triple with projected separations of 2.5 ± 0.5 AU and 27 ± 5 AU for the BC and A(BC) components, respectively. Resolved OSIRIS spectroscopy of the A(BC) components confirms that all system members are T dwarfs. The system therefore constitutes the first triple T-dwarf system ever reported. Using resolved photometry to model the integrated-light spectrum, we infer spectral types of T3 ± 1, T3 ± 1, and T4.5 ± 1 for the A, B, and C components, respectively. The uniformly brighter primary has a bluer J - Ks color than the next faintest component, which may reflect a sensitive dependence of the L/T transition temperature on gravity, or alternatively divergent cloud properties among components. Relying on empirical trends and evolutionary models we infer a total system mass of 0.034-0.104 M ⊙ for the BC components at ages of 0.3-3 Gyr, which would imply a period of 12-21 yr assuming the system semimajor axis to be similar to its projection. We also infer differences in effective temperatures and surface gravities between components of no more than ~150 K and ~0.1 dex. Given the similar physical properties of the components, the 2M0838+15 system provides a controlled sample for constraining the relative roles of effective temperature, surface gravity, and dust clouds in the poorly understood L/T transition regime. For an age of 3 Gyr we estimate a binding energy of ~20 × 1041 erg for the wide A(BC) pair, which falls above the empirical minimum found for typical BD binaries, and suggests that the system may have been able to survive a dynamical ejection during formation. Combining our imaging survey results with previous work we find an observed binary fraction of 4/18 or 22_{-8}^{+10}% for unresolved spectral types of L9-T4 at separations >~ 0

  14. Probing the accretion induced collapse of white dwarfs in millisecond pulsars

    Science.gov (United States)

    Taani, A.; Khasawneh, A.

    2017-06-01

    This paper investigates the progenitors of Millisecond Pulsars (MSPs) with a distribution of long orbital periods (Porb > 2 d), to show the link between white dwarf (WD) binaries and long orbits for some binary MSPs through the Accretion Induced Collapse (AIC) of a WD. For this purpose, a model is presented to turn binary MSPs into wide binaries and highly circular orbits (e pulsar during the AIC process, which may indicate a sizeable kick velocity along the rotation of the proto-neutron star. The results show the effects of shock wave, binding energy, and mass loss (0.2M⊙). The model shows the pulsar systems are relevant to AIC-candidates.

  15. Brown Recluse Spider

    Science.gov (United States)

    ... 6.4-19.1mm) • Color: Golden brown • A dark violin/fiddle shape (see top photo) is located ... Habitat The Brown Recluse Spider builds small retreat webs behind objects of any type. Symptoms • The severity ...

  16. Strain characterization of West African Dwarf Goats of Ogun State I ...

    African Journals Online (AJOL)

    Characterization of West African Dwarf goat is an approach to a sustainable use of its great potentials. In this study, strains of WAD goat were characterized using linear body measurement. The WAD goat included the gold (brown), black, buckskin and chaimose of ages 1, 2, 3 and 4 years,raised under extensive system of ...

  17. Do all barium stars have a white dwarf companion?

    Science.gov (United States)

    Dominy, J. F.; Lambert, D. L.

    1983-01-01

    International Ultraviolet Explorer short-wavelength, low-dispersion spectra were analyzed for four barium, two mild barium, and one R-type carbon star in order to test the hypothesis that the barium and related giants are produced by mass transfer from a companion now present as a white dwarf. An earlier tentative identification of a white dwarf companion to the mild barium star Zeta Cyg is confirmed. For the other stars, no ultraviolet excess attributable to a white dwarf is seen. Limits are set on the bolometric magnitude and age of a possible white dwarf companion. Since the barium stars do not have obvious progenitors among main-sequence and subgiant stars, mass transfer must be presumed to occur when the mass-gaining star is already on the giant branch. This restriction, and the white dwarf's minimum age, which is greater than 8 x 10 to the 8th yr, determined for several stars, effectively eliminates the hypothesis that mass transfer from an asymptotic giant branch star creates a barium star. Speculations are presented on alternative methods of producing a barium star in a binary system.

  18. Photometric Properties of the HW Vir-type Binary OGLE-GD-ECL-11388

    Science.gov (United States)

    Hong, Kyeongsoo; Lee, Jae Woo; Lee, Dong-Joo; Kim, Seung-Lee; Koo, Jae-Rim; Park, Jang-Ho; Lee, Chung-Uk; Kim, Dong-Jin; Cha, Sang-Mok; Lee, Yongseok

    2017-01-01

    We present the first extensive photometric results for the eclipsing binary OGLE-GD-ECL-11388 with a period of about 3.5 hours located in the Galactic disk. For the photometric solutions, we obtained the BVI light curves from both the KMTNet observations in 2015 and the OGLE-III survey data from 2001-2009, which show striking reflection effects and very sharp eclipses. The light curve synthesis indicates that the eclipsing system is a HW Vir-type binary with a mass ratio of q = 0.289, an orbital inclination of i = 81.9 deg, and a temperature ratio between both components of T 2/T 1 = 0.091. A frequency analysis was applied to the light residuals from our binary model; however, no pulsating periodicity from the subdwarf B-type primary component was detected under signal-to-noise amplitude ratios larger than 4.0. A total of 27 minimum epochs spanning 15 yr were used to analyze the eclipse timing variations of OGLE-GD-ECL-11388. It was found that the orbital period has varied due to a continuous period decrease at a rate of dP/dt = -1.1 × 10-8 day yr-1 or a sinusoidal oscillation with a semiamplitude of K = 35 s and a cycle of P 3 = 8.9 yr. The period decrease may be explained by an angular momentum loss via magnetic stellar wind braking or may be only a part of the sinusoidal variation. We think the most likely interpretation of the orbital period change, at present, is the light-time effect via the presence of a third body with a mass of {M}3\\sin {i}3=12.5 M Jup, putting it in the boundary zone between planets and brown dwarfs.

  19. THE HAWAII INFRARED PARALLAX PROGRAM. I. ULTRACOOL BINARIES AND THE L/T TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, Trent J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2012-08-01

    We present the first results from our high-precision infrared (IR) astrometry program at the Canada-France-Hawaii Telescope. We measure parallaxes for 83 ultracool dwarfs (spectral types M6-T9) in 49 systems, with a median uncertainty of 1.1 mas (2.3%) and as good as 0.7 mas (0.8%). We provide the first parallaxes for 48 objects in 29 systems, and for another 27 objects in 17 systems, we significantly improve upon published results, with a median (best) improvement of 1.7 times (5 times). Three systems show astrometric perturbations indicative of orbital motion; two are known binaries (2MASS J0518-2828AB and 2MASS J1404-3159AB) and one is spectrally peculiar (SDSS J0805+4812). In addition, we present here a large set of Keck adaptive optics imaging that more than triples the number of binaries with L6-T5 components that have both multi-band photometry and distances. Our data enable an unprecedented look at the photometric properties of brown dwarfs as they cool through the L/T transition. Going from Almost-Equal-To L8 to Almost-Equal-To T4.5, flux in the Y and J bands increases by Almost-Equal-To 0.7 mag and Almost-Equal-To 0.5 mag, respectively (the Y- and J-band 'bumps'), while flux in the H, K, and L' bands declines monotonically. This wavelength dependence is consistent with cloud clearing over a narrow range of temperature, since condensate opacity is expected to dominate at 1.0-1.3 {mu}m. Interestingly, despite more than doubling the near-IR census of L/T transition objects, we find a conspicuous paucity of objects on the color-magnitude diagram just blueward of the late-L/early-T sequence. This 'L/T gap' occurs at (J - H){sub MKO} 0.1-0.3 mag, (J - K){sub MKO} = 0.0-0.4 mag, and implies that the last phases of cloud evolution occur rapidly. Finally, we provide a comprehensive update to the absolute magnitudes of ultracool dwarfs as a function of spectral type using a combined sample of 314 objects.

  20. A Volume-Limited Sample of L and T Dwarfs Defined by Parallaxes

    Science.gov (United States)

    Best, William M. J.; Liu, Michael C.; Magnier, Eugene; Dupuy, Trent

    2018-01-01

    Volume-limited samples are the gold standard for stellar population studies, as they enable unbiased measurements of space densities and luminosity functions. Parallaxes are the most direct measures of distance and are therefore essential for defining high-confidence volume limited samples. Previous efforts to model the local brown dwarf population were hampered by samples based on a small number of parallaxes. We are using UKIRT/WFCAM to conduct the largest near-infrared program to date to measure parallaxes and proper motions of L and T dwarfs. For the past 3+ years we have monitored over 350 targets, ≈90% of which are too faint to be observed by Gaia. We present preliminary results from our observations. Our program more than doubles the number of known L and T dwarf parallaxes, defining a volume-limited sample of ≈400 L0-T6 dwarfs out to 25 parsecs, the first L and T dwarf sample of this size and depth based entirely on parallaxes. Our sample will combine with the upcoming stellar census from Gaia DR2 parallaxes to form a complete volume-limited sample of nearby stars and brown dwarfs.

  1. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...

  2. Binary star influence on post-main-sequence multi-planet stability

    Science.gov (United States)

    Veras, Dimitri; Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Gänsicke, Boris T.

    2017-02-01

    Nearly every star known to host planets will become a white dwarf, and nearly 100 planet-hosts are now known to be accompanied by binary stellar companions. Here, we determine how a binary companion triggers instability in otherwise unconditionally stable single-star two-planet systems during the giant branch and white dwarf phases of the planet host. We perform about 700 full-lifetime (14 Gyr) simulations with A0 and F0 primary stars and secondary K2 companions, and identify the critical binary distance within which instability is triggered at any point during stellar evolution. We estimate this distance to be about seven times the outer planet separation for circular binaries. Our results help characterize the fates of planetary systems, and in particular which ones might yield architectures which are conducive to generating observable metal pollution in white dwarf atmospheres.

  3. [Human brown adipose tissue].

    Science.gov (United States)

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  4. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Jack S.; Palmer, Paul I. [School of GeoSciences, University of Edinburgh (United Kingdom); Biller, Beth; Cockell, Charles S., E-mail: j.s.yates@ed.ac.uk [Centre for Exoplanet Science, University of Edinburgh (United Kingdom)

    2017-02-20

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83–0714442.5, whose 4.5–5.2 μ m spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 10{sup 9} cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.

  5. Photometry, Astrometry, and Discoveries of Ultracool Dwarfs in the Pan-STARRS 3π Survey

    Science.gov (United States)

    Best, William M. J.; Magnier, Eugene A.; Liu, Michael C.; Deacon, Niall; Aller, Kimberly; Zhang, Zhoujian; Pan-STARRS1 Builders

    2018-01-01

    The Pan-STARRS1 3π Survey (PS1)'s far-red optical sensitivity makes it an exceptional new resource for discovering and characterizing ultracool dwarfs. We present a PS1-based catalog of photometry and proper motions of nearly 10,000 M, L, and T dwarfs, along with our analysis of the kinematics of nearby M6-T9 dwarfs, building a comprehensive picture of the local ultracool population. We highlight some especially interesting ultracool discoveries made with PS1, including brown dwarfs with spectral types in the enigmatic L/T transition, wide companions to main sequence stars that serve as age and metallicity bechmarks for substellar models, and free-floating members of the nearby young moving groups and star-forming regions with masses down to ≈5 MJup. With its public release, PS1 will continue to be a vital tool for studying the ultracool population.

  6. On binary channels to anomalous Cepheids

    Science.gov (United States)

    Gautschy, Alfred; Saio, Hideyuki

    2017-07-01

    Anomalous Cepheids are a rather rare family of pulsating variables preferably found in dwarf galaxies. Attempts to model these variable stars via single-star evolution scenarios still leave space for improvements to better grasp their origin. Focusing on the Large Magellanic Cloud with its rich population of anomalous Cepheids to compare against, we probe the role binary stars might play to understand the nature of anomalous Cepheids. The evolution of donors and accretors undergoing Case-B mass transfer along the first red giant branch as well as merger-like models was calculated. First results show that in binary scenarios, a larger range of star masses and metallicities up to Z ≲ 0.008, higher than deemed possible hitherto, enter and pass through the instability strip. If binary stars play a role in anomalous Cepheid populations, mass donors, mass accretors or even mergers are potential candidates to counteract constraints imposed by the single-star approach.

  7. The Brown Dwarf Kinematics Project (BDKP. III. Parallaxes for 70 Ultracool Dwarfs

    Science.gov (United States)

    2012-06-10

    2006; (78) Reid et al. 1995; (79) Rice et al. 2010; (80) Jao et al. 2005; (81) Cruz et al. 2009; (82) Scholz et al. 2004b; (83) Chauvin et al. 2005...G239-25 (Forveille et al. 2004), and 2MASS J0619−5803 which is a companion (∼260 AU) to the young K2 star AB Pic ( Chauvin et al. 2005). The independent...al. 2010; Chauvin et al. 2005; Dupuy et al. 2008; Wahhaj et al. 2011). Figure 11 shows the near-IR absolute magnitude versus spectral type diagrams

  8. White dwarf planets

    Directory of Open Access Journals (Sweden)

    Bonsor Amy

    2013-04-01

    Full Text Available The recognition that planets may survive the late stages of stellar evolution, and the prospects for finding them around White Dwarfs, are growing. We discuss two aspects governing planetary survival through stellar evolution to the White Dwarf stage. First we discuss the case of a single planet, and its survival under the effects of stellar mass loss, radius expansion, and tidal orbital decay as the star evolves along the Asymptotic Giant Branch. We show that, for stars initially of 1 − 5 M⊙, any planets within about 1 − 5 AU will be engulfed, this distance depending on the stellar and planet masses and the planet's eccentricity. Planets engulfed by the star's envelope are unlikely to survive. Hence, planets surviving the Asymptotic Giant Branch phase will probably be found beyond ∼ 2 AU for a 1  M⊙ progenitor and ∼ 10 AU for a 5 M⊙ progenitor. We then discuss the evolution of two-planet systems around evolving stars. As stars lose mass, planet–planet interactions become stronger, and many systems stable on the Main Sequence become destabilised following evolution of the primary. The outcome of such instabilities is typically the ejection of one planet, with the survivor being left on an eccentric orbit. These eccentric planets could in turn be responsible for feeding planetesimals into the neighbourhood of White Dwarfs, causing observed pollution and circumstellar discs.

  9. Throwing Icebergs at White Dwarfs

    OpenAIRE

    Stephan, Alexander P.; Naoz, Smadar; Zuckerman, B.

    2017-01-01

    White dwarfs have atmospheres that are expected to consist nearly entirely of hydrogen and helium, since heavier elements will sink out of sight on short timescales. However, observations have revealed atmospheric pollution by heavier elements in about a quarter to a half of all white dwarfs. While most of the pollution can be accounted for with asteroidal or dwarf planetary material, recent observations indicate that larger planetary bodies, as well as icy and volatile material from Kuiper b...

  10. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.

    Science.gov (United States)

    Gilfanov, Marat; Bogdán, Akos

    2010-02-18

    There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.

  11. Understanding the Population of Distant Ultracool-Dwarfs from WISPS and 3d-HST

    Science.gov (United States)

    Ryan, Russell

    2013-10-01

    We are the proposing largest, most comprehensive archival campaign with HST to identify and characterize distant brown dwarfs to date. By exploiting the unprecedented sensitivity and excellent field-of-view of the WFC3/IR detector, we expect to find 110 M- and 30 L-dwarfs out to heliocentric distances of >1000 pc {for an L8-dwarf}, whereas current surveys are limited to 90% complete to J 24 and nearly 100% free of contaminating objects {such as giants, subdwarfs, or high-redshift quasars}. We have four main science goals for these ultracool dwarfs:{1} Identify ultracool dwarfs from water absorption;{2} Measure the vertical scale height as a function of spectral type;{3} Characterize the atmospheric properties of distant ultracool-dwarfs; and {4} Search for rare T/Y transition dwarfs by complete water/methane and enhanced ammonia absorption.We plan to mine 0.5 square degrees of archival grism data in G141 taken by the pure-parallel {WISPS} and the Legacy {3d-HST} surveys. Our approach represents the most efficient means of surveying these low luminosity objects at kiloparsec distances with robust spectral types.

  12. The Fate of Exploding White Dwarfs

    Science.gov (United States)

    Fisher, Robert

    2018-01-01

    Type Ia supernovae play an important role as standardizable candles for cosmology, providing one of the most important probes into the nature of dark energy. Yet, the nature of the stellar progenitors which give rise to Type Ia supernovae remains elusive. For decades, the leading model explaining Type Ia supernovae properties consisted of a white dwarf accreting to near the Chandrasekhar mass, in the single-degenerate channel. More recently, a variety of lines of evidence point instead towards merging binary white dwarfs, in the double-degenerate channel, as the progenitors of most Type Ia supernovae. In this talk, I will focus upon recent advances at the interface between observation and theory which will help crack the Type Ia progenitor problem. In particular, I will present new insights obtained from recent multidimensional numerical simulations of both the double-degenerate and single-degenerate channels which I have undertaken with my students and collaborators. I will discuss how new models and observations will help elucidate the long-standing mystery of Type supernovae.

  13. Stripped Red Giants - Helium Core White Dwarf Progenitors and their sdB Siblings

    Science.gov (United States)

    Heber, U.

    2017-03-01

    Some gaps in the mosaic of binary star evolution have recently been filled by the discoveries of helium-core white dwarf progenitors (often called extremely low mass (ELM) white dwarfs) as stripped cores of first-giant branch objects. Two varieties can be distinguished. One class is made up by SB1 binaries, companions being white dwarfs as well. Another class, the so-called EL CVn stars, are composite spectrum binaries, with A-Type companions. Pulsating stars are found among both classes. A riddle is posed by the apparently single objects. There is a one-to-one correspondence of the phenomena found for these new classes of star to those observed for sdB stars. In fact, standard evolutionary scenarios explain the origin of sdB stars as red giants that have been stripped close to the tip of first red giant branch. A subgroup of subluminous B stars can also be identified as stripped helium-cores of red giants. They form an extension of the ELM sequence to higher temperatures. Hence low mass white dwarfs of helium cores and sdB stars in binaries are close relatives in terms of stellar evolution.

  14. Tides in Close Binary Systems

    Science.gov (United States)

    Burkart, Joshua

    2014-09-01

    We consider three aspects of tidal interactions in close binary systems. 1) We first develop a framework for predicting and interpreting photometric observations of eccentric binaries, which we term tidal asteroseismology. In such systems, the Fourier transform of the observed lightcurve is expected to consist of pulsations at harmonics of the orbital frequency. We use linear stellar perturbation theory to predict the expected pulsation amplitude spectra. Our numerical model does not assume adiabaticity, and accounts for stellar rotation in the traditional approximation. We apply our model to the recently discovered Kepler system KOI-54, a 42-day face-on stellar binary with e=0.83. Our modeling yields pulsation spectra that are semi-quantitatively consistent with observations of KOI-54. KOI-54's spectrum also contains several nonharmonic pulsations, which can be explained by nonlinear three-mode coupling. 2) We next consider the situation of a white dwarf (WD) binary inspiraling due to the emission of gravitational waves. We show that resonance locks, previously considered in binaries with an early-type star, occur universally in WD binaries. In a resonance lock, the orbital and spin frequencies evolve in lockstep, so that the tidal forcing frequency is approximately constant and a particular normal mode remains resonant, producing efficient tidal dissipation and nearly synchronous rotation. We derive analytic formulas for the tidal quality factor and tidal heating rate during a g-mode resonance lock, and verify our results numerically. We apply our analysis to the 13-minute double-WD binary J0651, and show that our predictions are roughly consistent with observations. 3) Lastly, we examine the general dynamics of resonance locking in more detail. Previous analyses of resonance locking, including my own earlier work, invoke the adiabatic (a.k.a. Lorentzian) approximation for the mode amplitude, valid only in the limit of relatively strong mode damping. We relax

  15. Brown recluse spider envenomation.

    Science.gov (United States)

    Furbee, R Brent; Kao, Louise W; Ibrahim, Danyal

    2006-03-01

    Brown recluse spider bite is a common diagnosis in almost every state in America. In fact, cases have been reported in areas where the spider has never been seen. A review of medical literature reveals that most current concepts regarding brown recluse spider envenomation are based on supposition. In this article, we attempt to review critically our present understanding of brown recluse bites with a focus on the published evidence.

  16. Brown Fat Cell Isolation

    OpenAIRE

    sprotocols

    2014-01-01

    Author: C.R. Kahn ### 1.) ISOLATION AND PRIMARY CULTURE OF BROWN FAT PREADIPOCYTES ### Rationale: To prepare primary brown preadipocytes for immortalization: useful for metabolic studies from knockout mice. This consists of the following five protocols. References: Fasshauer, M., J. Klein, K M. Kriauciunas, K. Ueki, M.Benito, and C.R. Kahn. 2001. Essential role of insulin substrate 1 in differentiation of brown adipocytes. *Mol Cell Biol* 21: 319-329. Fasshauer, M....

  17. Plasmodesmata of brown algae

    OpenAIRE

    Terauchi, Makoto; Nagasato, Chikako; Motomura, Taizo

    2014-01-01

    Plasmodesmata (PD) are intercellular connections in plants which play roles in various developmental processes. They are also found in brown algae, a group of eukaryotes possessing complex multicellularity, as well as green plants. Recently, we conducted an ultrastructural study of PD in several species of brown algae. PD in brown algae are commonly straight plasma membrane-lined channels with a diameter of 10?20?nm and they lack desmotubule in contrast to green plants. Moreover, branched PD ...

  18. Magnetically gated accretion in an accreting ‘non-magnetic’ white dwarf

    Science.gov (United States)

    Scaringi, S.; Maccarone, T. J.; D’Angelo, C.; Knigge, C.; Groot, P. J.

    2017-12-01

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 106 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as ‘non-magnetic’, because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the ‘non-magnetic’ accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 104 gauss and 1 × 105 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  19. Slowly Spinning Southern M Dwarfs

    Science.gov (United States)

    Newton, Elisabeth; Mondrik, Nicholas; Irwin, Jonathan; Charbonneau, David

    2018-01-01

    M dwarf stars are the most common type of star in the galaxy, but their ages are challenging to determine due to their trillion-year lifetimes on the main sequence. Consequently, the evolution of rotation and magnetism at field ages is difficult to investigate observationally. M dwarfs in the Solar Neighborhood provide a unique opportunity to make progress in this area due to the availability of parallaxes and the accessibility of spectroscopy. We have used new rotation period measurements and our compilation of H-alpha emission for nearby M dwarfs to explore two questions: 1) What is the longest rotation period an M dwarf can have? And 2) Do M dwarfs undergo an era of rapid angular momentum evolution? Here, we focus on the view from the Southern hemisphere, presenting approximately 200 new rotation periods for fully convective M dwarfs. Amongst the highest-quality datasets, we identify rotation periods in three-quarters of all stars; of these, half have rotation periods longer than 70 days. The longest rotation period we detect is 148 days, which is for a 0.15 solar-mass star. The lack of M dwarfs with intermediate rotation periods that we previously identified persists, supporting our hypothesis that M dwarfs rapidly spin down from 10-day to 100-day periods.ERN is supported by the National Science Foundation Astronomy & Astrophysics Postdoctoral Fellowship. We gratefully acknowledge support from the David and Lucille Packard Foundation, the National Science Foundation, and the John Templeton Foundation.

  20. Axion cooling of white dwarfs

    OpenAIRE

    Isern, J.; Catalan, S.; Garcia--Berro, E.; Salaris, M.; Torres, S.

    2013-01-01

    The evolution of white dwarfs is a simple gravothermal process. This process can be tested in two ways, through the luminosity function of these stars and through the secular variation of the period of pulsation of those stars that are variable. Here we show how the mass of the axion can be constrained using the white dwarf luminosity function.

  1. High-Resolution EUV Spectroscopy of White Dwarfs

    Science.gov (United States)

    Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.

    2014-01-01

    We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.

  2. A Common Origin of Magnetism from Planets to White Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Isern, Jordi; Külebi, Baybars [Institut de Ciències de l’Espai (CSIC), Campus UAB, 08193 Cerdanyola (Spain); García-Berro, Enrique [Institut d’Estudis Espacials de Catalunya, Ed. Nexus-201, c/Gran Capità 2-4, E-08034 Barcelona (Spain); Lorén-Aguilar, Pablo [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2017-02-20

    Isolated magnetic white dwarfs have field strengths ranging from kilogauss to gigagauss. However, the origin of the magnetic field has not been hitherto elucidated. Whether these fields are fossil, hence the remnants of original weak magnetic fields amplified during the course of the evolution of their progenitor stars, or are the result of binary interactions, or, finally, they are produced by other internal physical mechanisms during the cooling of the white dwarf itself, remains a mystery. At sufficiently low temperatures, white dwarfs crystallize. Upon solidification, phase separation of its main constituents, {sup 12}C and {sup 16}O, and of the impurities left by previous evolution occurs. This process leads to the formation of a Rayleigh–Taylor unstable liquid mantle on top of a solid core. This convective region, as it occurs in solar system planets like the Earth and Jupiter, can produce a dynamo able to yield magnetic fields of strengths of up to 0.1 MG, thus providing a mechanism that could explain magnetism in single white dwarfs.

  3. First Detection of Krypton and Xenon in a White Dwarf

    Science.gov (United States)

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-01-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 KrVI-VII and Xe VI-VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 plus or minus 0.5 and log Xe = -4.2 plus or minus 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the-precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and thaI the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell nash or a binary white dwarf merger.

  4. Seeing Baby Dwarf Galaxies

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version The unique ultraviolet vision of NASA's Galaxy Evolution Explorer reveals, for the first time, dwarf galaxies forming out of nothing more than pristine gas likely leftover from the early universe. Dwarf galaxies are relatively small collections of stars that often orbit around larger galaxies like our Milky Way. The forming dwarf galaxies shine in the far ultraviolet spectrum, rendered as blue in the call-out on the right hand side of this image. Near ultraviolet light, also obtained by the Galaxy Evolution Explorer, is displayed in green, and visible light from the blue part of the spectrum here is represented by red. The clumps (in circles) are distinctively blue, indicating they are primarily detected in far ultraviolet light. The faint blue overlay traces the outline of the Leo Ring, a huge cloud of hydrogen and helium that orbits around two massive galaxies in the constellation Leo (left panel). The cloud is thought likely to be a primordial object, an ancient remnant of material that has remained relatively unchanged since the very earliest days of the universe. Identified about 25 years ago by radio waves, the ring cannot be seen in visible light. Only a portion of the Leo Ring has been imaged in the ultraviolet, but this section contains the telltale ultraviolet signature of recent massive star formation within this ring of pristine gas. Astronomers have previously only seen dwarf galaxies form out of gas that has already been cycled through a galaxy and enriched with metals elements heavier than helium produced as stars evolve. The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md. The Leo Ring visible image (left

  5. White dwarf dynamical interactions

    OpenAIRE

    Aznar Siguan, Gabriela

    2015-01-01

    Premi Extraordinari de Doctorat, promoció 2014-2015. Àmbit de Ciències Merging white dwarfs is a promising channel to trigger Type Ia supernovae, known as the double degenerate scenario. Supernovae are stellar explosions that radiate as much energy as any ordinary star is expected to emit over its entire life span, outshining briefly the whole hosting galaxy. They enrich the interstellar medium with higher mass elements and trigger the formation of new stars by the produced expanding shock...

  6. Multiband photometry and spectroscopy of an all-sky sample of bright white dwarfs

    Science.gov (United States)

    Raddi, R.; Gentile Fusillo, N. P.; Pala, A. F.; Hermes, J. J.; Gänsicke, B. T.; Chote, P.; Hollands, M. A.; Henden, A.; Catalán, S.; Geier, S.; Koester, D.; Munari, U.; Napiwotzki, R.; Tremblay, P.-E.

    2017-12-01

    The upcoming NASA Transiting Exoplanet Survey Satellite (TESS) will obtain space-based uninterrupted light curves for a large sample of bright white dwarfs distributed across the entire sky, providing a very rich resource for asteroseismological studies and the search for transits from planetary debris. We have compiled an all-sky catalogue of ultraviolet, optical and infrared photometry as well as proper motions, which we propose as an essential tool for the preliminary identification and characterization of potential targets. We present data for 1864 known white dwarfs and 305 high-probability white dwarf candidates brighter than 17 mag. We describe the spectroscopic follow-up of 135 stars, of which 82 are white dwarfs and 25 are hot subdwarfs. The new confirmed stars include six pulsating white dwarf candidates (ZZ Cetis), and nine white dwarf binaries with a cool main-sequence companion. We identify one star with a spectroscopic distance of only 25 pc from the Sun. Around the time TESS is launched, we foresee that all white dwarfs in this sample will have trigonometric parallaxes measured by the ESA Gaia mission next year.

  7. Father Brown, Selected sories

    NARCIS (Netherlands)

    Chesterton, G.K.

    2005-01-01

    Father Brown, a small, round Catholic priest with a remarkable understanding of the criminal mind, is one of literature's most unusual and endearing detectives, able to solve the strangest crimes in a most fascinating manner. This collection draws from all five Father Brown books, and within their

  8. Brown adipocyte function

    DEFF Research Database (Denmark)

    Winther, Sally

    . The first part of this thesis explores this by identifying and investigating two novel kinase regulators of brown adipocyte function. Study 1 demonstrates that spleen tyrosine kinase is a hitherto undescribed regulator of brown adipocyte differentiation and activation. Study 2 identifies glycogen synthase...... kinase 3 as a negative regulator of the canonical p38 mitogen-activated protein kinase signaling cascade. Thus both studies add novel regulatory layers to the growing understanding of brown adipocyte signal transduction. Activated BAT also exerts great influence on whole body glucose homeostasis......, of great interest for diabetes treatment. The second part of this thesis explores this by investigating glycolytic flux in activated brown adipocytes. Study 3 identifies hypoxia-inducible factor 1α as an important regulator of glycolytic gene expression in brown adipocytes. Study 4 establishes...

  9. Accreting Black Hole Binaries in Globular Clusters

    Science.gov (United States)

    Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl L.; Rasio, Frederic A.

    2018-01-01

    We explore the formation of mass-transferring binary systems containing black holes (BHs) within globular clusters (GC). We show that it is possible to form mass-transferring BH binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in GCs spanning a large range in present-day properties. All mass-transferring BH binaries found in our models at late times are dynamically created. The BHs in these systems experienced a median of ∼30 dynamical encounters within the cluster before and after acquiring the donor. Furthermore, we show that the presence of mass-transferring BH systems has little correlation with the total number of BHs within the cluster at any time. This is because the net rate of formation of BH–non-BH binaries in a cluster is largely independent of the total number of retained BHs. Our results suggest that the detection of a mass-transferring BH binary in a GC does not necessarily indicate that the host cluster contains a large BH population.

  10. COSMIC probes into compact binary formation and evolution

    Science.gov (United States)

    Breivik, Katelyn

    2018-01-01

    The population of compact binaries in the galaxy represents the final state of all binaries that have lived up to the present epoch. Compact binaries present a unique opportunity to probe binary evolution since many of the interactions binaries experience can be imprinted on the compact binary population. By combining binary evolution simulations with catalogs of observable compact binary systems, we can distill the dominant physical processes that govern binary star evolution, as well as predict the abundance and variety of their end products.The next decades herald a previously unseen opportunity to study compact binaries. Multi-messenger observations from telescopes across all wavelengths and gravitational-wave observatories spanning several decades of frequency will give an unprecedented view into the structure of these systems and the composition of their components. Observations will not always be coincident and in some cases may be separated by several years, providing an avenue for simulations to better constrain binary evolution models in preparation for future observations.I will present the results of three population synthesis studies of compact binary populations carried out with the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC). I will first show how binary-black-hole formation channels can be understood with LISA observations. I will then show how the population of double white dwarfs observed with LISA and Gaia could provide a detailed view of mass transfer and accretion. Finally, I will show that Gaia could discover thousands black holes in the Milky Way through astrometric observations, yielding view into black-hole astrophysics that is complementary to and independent from both X-ray and gravitational-wave astronomy.

  11. Ultracool dwarf benchmarks with Gaia primaries

    Science.gov (United States)

    Marocco, F.; Pinfield, D. J.; Cook, N. J.; Zapatero Osorio, M. R.; Montes, D.; Caballero, J. A.; Gálvez-Ortiz, M. C.; Gromadzki, M.; Jones, H. R. A.; Kurtev, R.; Smart, R. L.; Zhang, Z.; Cabrera Lavers, A. L.; García Álvarez, D.; Qi, Z. X.; Rickard, M. J.; Dover, L.

    2017-10-01

    We explore the potential of Gaia for the field of benchmark ultracool/brown dwarf companions, and present the results of an initial search for metal-rich/metal-poor systems. A simulated population of resolved ultracool dwarf companions to Gaia primary stars is generated and assessed. Of the order of ˜24 000 companions should be identifiable outside of the Galactic plane (|b| > 10 deg) with large-scale ground- and space-based surveys including late M, L, T and Y types. Our simulated companion parameter space covers 0.02 ≤ M/M⊙ ≤ 0.1, 0.1 ≤ age/Gyr ≤ 14 and -2.5 ≤ [Fe/H] ≤ 0.5, with systems required to have a false alarm probability Gaia benchmarks. As a test of the veracity of our methodology and simulations, our initial search uses UKIRT Infrared Deep Sky Survey and Sloan Digital Sky Survey to select secondaries, with the parameters of primaries taken from Tycho-2, Radial Velocity Experiment, Large sky Area Multi-Object fibre Spectroscopic Telescope and Tycho-Gaia Astrometric Solution. We identify and follow up 13 new benchmarks. These include M8-L2 companions, with metallicity constraints ranging in quality, but robust in the range -0.39 ≤ [Fe/H] ≤ +0.36, and with projected physical separation in the range 0.6 Gaia offers a very high yield of benchmark systems, from which diverse subsamples may be able to calibrate a range of foundational ultracool/sub-stellar theory and observation.

  12. Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence

    CERN Document Server

    Colpi, Monica; Gorini, Vittorio; Moschella, Ugo; Possenti, Andrea

    2009-01-01

    This book provides a comprehensive, authoritative and timely review of the astrophysical approach to the investigation of gravity theories. Particular attention is paid to strong-field tests of general relativity and alternative theories of gravity, performed using collapsed objects (neutron stars, black holes and white dwarfs) in relativistic binaries as laboratories. The book starts with an introduction which gives the background linking experimental gravity in cosmic laboratories to astrophysics and fundamental physics. Subsequent chapters cover observational and theoretical aspects of the following topics: from binaries as test-beds of gravity theories to binary pulsars as cosmic laboratories; from binary star evolution to the formation of relativistic binaries; from short gamma-ray bursts to low mass X-ray binaries; from stellar-mass black hole binaries to coalescing super-massive black holes in galaxy mergers. The book will be useful to researchers, PhD and graduate students in Astrophysics, Cosmology, ...

  13. Satellite Dwarf Galaxies in a Hierarchical Universe: The Prevalence of Dwarf-Dwarf Major Mergers

    OpenAIRE

    Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ~10% of satellite dwarf galaxies with M_star > 10^6 M_sun that are within the host...

  14. Study of Dwarf Novae Outbursts

    Science.gov (United States)

    Otulakowska-Hypka, Magdalena; Olech, Arkadiusz

    2015-06-01

    Based on all accessible data for the whole sample of dwarf novae, we performed an extensive study of all photometric features which are possible to measure during their outburst and superoutbursts. For all of them we looked for possible correlations. We confirmed a few of the known relations, questioned the existence of others, found new ones, as well as failed to find another presumed relation. In particular, in the context of white dwarfs, we present one of the most interesting correlations among them. Based on vast amount of up-to-date measurements, we were able to enhance the Stolz and Schoembs relation and make accurate estimates on the mass ratio and thus on masses of white dwarfs in such systems. We hope that results of this study will impact our knowledge on the physical phenomena which take place in dwarf novae and help to direct theoretical work to the areas where there is still a discrepancy between observations and theory.

  15. Singing and dancing white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Mukadam, Anjum S; Szkody, Paula [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Gaensicke, Boris T [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Nitta, Atsuko, E-mail: anjum@astro.washington.ed [Gemini Observatory, Hilo, HI 96720 (United States)

    2009-06-01

    Accreting white dwarfs have recently been shown to exhibit non-radial pulsations similar to their non-interacting counterparts. This allows us to probe the interior of the accreting white dwarf using seismology, and may be the only way to determine masses for non-eclipsing cataclysmic variables. Improving our understanding of accreting white dwarfs will have implications for models of supernovae Type Ia. Pulsating white dwarfs in cataclysmic variables are also useful in establishing the effects of accretion on pulsations. A search for nonradial pulsations among suitable candidates has led to the discovery of twelve such systems known to date. With the goal of establishing an instability strip (or strips) for these pulsating accretors, we acquired HST ultra-violet time-series spectroscopy of six pulsating white dwarfs in cataclysmic variables in 2007 and 2008. This approach enables us to measure the effective temperature of the white dwarf using the co-added spectrum, and to simultaneously characterize the pulsations. We also intended to constrain the pulsation mode identification by comparing the ultra-violet amplitudes to those from near-simultaneous ground-based photometry. Our preliminary results indicate a broad instability strip in the temperature range of 10500-15400 K.

  16. The binarity of the local white dwarf population

    Science.gov (United States)

    Toonen, S.; Hollands, M.; Gänsicke, B. T.; Boekholt, T.

    2017-06-01

    Context. As endpoints of stellar evolution, white dwarfs (WDs) are powerful tools to study the evolutionary history of the Galaxy. In particular, the multiplicity of WDs contains information regarding the formation and evolution of binary systems. Aims: Can we understand the multiplicity of the local WD sample from a theoretical point of view? Population synthesis methods are often applied to estimate stellar space densities and event rates, but how well are these estimates calibrated? This can be tested by a comparison with the 20 pc sample, which contains ≃100 stars and is minimally affected by selection biases. Methods: We model the formation and evolution of single stars and binaries within 20 pc with a population synthesis approach. We construct a model of the current sample of WDs and differentiate between WDs in different configurations, that is single WDs, and resolved and unresolved binaries containing a WD with either a main-sequence (MS) component or with a second WD. We also study the effect of different assumptions concerning the star formation history, binary evolution, and the initial distributions of binary parameters. We compile from the literature the available information on the sample of WDs within 20 pc, with a particular emphasis on their multiplicity, and compare this to the synthetic models. Results: The observed space densities of single and binary WDs are well reproduced by the models. The space densities of the most common WD systems (single WDs and unresolved WD-MS binaries) are consistent within a factor two with the observed value. We find a discrepancy only for the space density of resolved double WDs. We exclude that observational selection effects, fast stellar winds, or dynamical interactions with other objects in the Milky Way explain this discrepancy. We find that either the initial mass ratio distribution in the solar neighbourhood is biased towards low mass-ratios, or more than ten resolved DWDs have been missed

  17. DISCOVERY OF THE Y1 DWARF WISE J064723.23–623235.5

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, J. Davy; Gelino, Christopher R.; Beichman, Charles A.; Mace, Gregory N. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Cushing, Michael C.; Schneider, Adam [Department of Physics and Astronomy, MS 111, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606-3328 (United States); Tinney, C. G. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Faherty, Jacqueline K., E-mail: davy@ipac.caltech.edu [Department of Astronomy, University of Chile, Camino El Observatorio 1515, Casilla 36-D Santiago (Chile)

    2013-10-20

    We present the discovery of a very cold, very low mass, nearby brown dwarf using data from the NASA Wide-field Infrared Survey Explorer (WISE). The object, WISE J064723.23–623235.5, has a very red WISE color of W1–W2 > 3.77 mag and a very red Spitzer Space Telescope color of ch1–ch2 = 2.82 ± 0.09 mag. In J{sub MKO} –ch2 color (7.58 ± 0.27 mag) it is one of the two or three reddest brown dwarfs known. Our grism spectrum from the Hubble Space Telescope (HST) confirms it to be the seventeenth Y dwarf discovered, and its spectral type of Y1 ± 0.5 makes it one of the four latest-type Y dwarfs classified. Astrometric imaging from Spitzer and HST, combined with data from WISE, provides a preliminary parallax of π = 115 ± 12 mas (d = 8.7 ± 0.9 pc) and proper motion of μ = 387 ± 25 mas yr{sup –1} based on 2.5 yr of monitoring. The spectrum implies a blue J–H color, for which model atmosphere calculations suggest a relatively low surface gravity. The best fit to these models indicates an effective temperature of 350-400 K and a mass of ∼5-30 M{sub Jup}. Kinematic analysis hints that this object may belong to the Columba moving group, which would support an age of ∼30 Myr and thus an even lower mass of <2 M{sub Jup}, but verification would require a radial velocity measurement not currently possible for a J = 22.7 mag brown dwarf.

  18. Plasmodesmata of brown algae.

    Science.gov (United States)

    Terauchi, Makoto; Nagasato, Chikako; Motomura, Taizo

    2015-01-01

    Plasmodesmata (PD) are intercellular connections in plants which play roles in various developmental processes. They are also found in brown algae, a group of eukaryotes possessing complex multicellularity, as well as green plants. Recently, we conducted an ultrastructural study of PD in several species of brown algae. PD in brown algae are commonly straight plasma membrane-lined channels with a diameter of 10-20 nm and they lack desmotubule in contrast to green plants. Moreover, branched PD could not be observed in brown algae. In the brown alga, Dictyota dichotoma, PD are produced during cytokinesis through the formation of their precursor structures (pre-plasmodesmata, PPD). Clustering of PD in a structure termed "pit field" was recognized in several species having a complex multicellular thallus structure but not in those having uniseriate filamentous or multiseriate one. The pit fields might control cell-to-cell communication and contribute to the establishment of the complex multicellular thallus. In this review, we discuss fundamental morphological aspects of brown algal PD and present questions that remain open.

  19. AT Cnc: A SECOND DWARF NOVA WITH A CLASSICAL NOVA SHELL

    Energy Technology Data Exchange (ETDEWEB)

    Shara, Michael M.; Mizusawa, Trisha; Zurek, David [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (United States); Wehinger, Peter [Steward Observatory, the University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Martin, Christopher D.; Neill, James D.; Forster, Karl [Department of Physics, Math and Astronomy, California Institute of Technology, 1200 East California Boulevard, Mail Code 405-47, Pasadena, CA 91125 (United States); Seibert, Mark [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2012-10-20

    We are systematically surveying all known and suspected Z Cam-type dwarf novae for classical nova shells. This survey is motivated by the discovery of the largest known classical nova shell, which surrounds the archetypal dwarf nova Z Camelopardalis. The Z Cam shell demonstrates that at least some dwarf novae must have undergone classical nova eruptions in the past, and that at least some classical novae become dwarf novae long after their nova thermonuclear outbursts, in accord with the hibernation scenario of cataclysmic binaries. Here we report the detection of a fragmented 'shell', 3 arcmin in diameter, surrounding the dwarf nova AT Cancri. This second discovery demonstrates that nova shells surrounding Z Cam-type dwarf novae cannot be very rare. The shell geometry is suggestive of bipolar, conical ejection seen nearly pole-on. A spectrum of the brightest AT Cnc shell knot is similar to that of the ejecta of the classical nova GK Per, and of Z Cam, dominated by [N II] emission. Galaxy Evolution Explorer FUV imagery reveals a similar-sized, FUV-emitting shell. We determine a distance of 460 pc to AT Cnc, and an upper limit to its ejecta mass of {approx}5 Multiplication-Sign 10{sup -5} M {sub Sun }, typical of classical novae.

  20. The Contribution of Outer H I Disks to the Merging Binary Black Hole Population

    Science.gov (United States)

    Chakrabarti, Sukanya; Chang, Philip; O'Shaughnessy, Richard; Brooks, Alyson M.; Shen, Sijing; Bellovary, Jillian; Gladysz, Wojciech; Belczynski, Chris

    2017-11-01

    We investigate the contribution of outer H I disks to the observable population of merging black hole binaries. Like dwarf galaxies, the outer H I disks of spirals have low star formation rates and lower metallicities than the inner disks of spirals. Since low-metallicity star formation can produce more detectable compact binaries than typical star formation, the environments in the outskirts of spiral galaxies may be conducive to producing a rich population of massive binary black holes. We consider here both detailed controlled simulations of spirals and cosmological simulations, as well as the current range of observed values for metallicity and star formation in outer disks. We find that the outer H I disks contribute at least as much as dwarf galaxies do to the observed LIGO/Virgo detection rates. Identifying the host galaxies of merging massive black holes should provide constraints on cosmological parameters and insights into the formation channels of binary mergers.

  1. Dwarf elliptical galaxies

    Science.gov (United States)

    Ferguson, Henry C.; Binggeli, Bruno

    1994-01-01

    Dwarf elliptical (dE) galaxies, with blue absolute magnitudes typically fainter than M(sub B) = -16, are the most numerous type of galaxy in the nearby universe. Tremendous advances have been made over the past several years in delineating the properties of both Local Group satellite dE's and the large dE populations of nearby clusters. We review some of these advances, with particular attention to how well currently availiable data can constrain (a) models for the formation of dE's, (b) the physical and evolutionary connections between different types of galaxies that overlap in the same portion of the mass-spectrum of galaxies, (c) the contribution of dE's to the galaxy luminosity functions in clusters and the field, (d) the star-forming histories of dE's and their possible contribution to faint galaxy counts, and (e) the clustering properties of dE's. In addressing these issues, we highlight the extent to which selection effects temper these constraints, and outline areas where new data would be particularly valuable.

  2. Retrieval of atmospheric properties of cloudy L dwarfs

    Science.gov (United States)

    Burningham, Ben; Marley, M. S.; Line, M. R.; Lupu, R.; Visscher, C.; Morley, C. V.; Saumon, D.; Freedman, R.

    2017-09-01

    We present the first results from applying the spectral inversion technique in the cloudy L dwarf regime. Our new framework provides a flexible approach to modelling cloud opacity which can be built incrementally as the data require and improves upon previous retrieval experiments in the brown dwarf regime by allowing for scattering in two-stream radiative transfer. Our first application of the tool to two mid-L dwarfs is able to reproduce their near-infrared spectra far more closely than grid models. Our retrieved thermal, chemical and cloud profiles allow us to estimate T_eff = 1796^{+23}_{-25} K and log g = 5.21^{+0.05}_{-0.08} for 2MASS J05002100+0330501, and for 2MASSW J2224438-015852 we find T_eff = 1723^{+18}_{-19} K and log g = 5.31^{+0.04}_{-0.08}, in close agreement with previous empirical estimates. Our best model for both objects includes an optically thick cloud deck which passes τcloud ≥ 1 (looking down) at a pressure of around 5 bar. The temperature at this pressure is too high for silicate species to condense, and we argue that corundum and/or iron clouds are responsible for this cloud opacity. Our retrieved profiles are cooler at depth and warmer at altitude than the forward grid models that we compare, and we argue that some form of heating mechanism may be at work in the upper atmospheres of these L dwarfs. We also identify anomalously high CO abundance in both targets, which does not correlate with the warmth of our upper atmospheres or our choice of cloud model, and find similarly anomalous alkali abundance for one of our targets. These anomalies may reflect unrecognized shortcomings in our retrieval model or inaccuracies in our gas phase opacities.

  3. COS Spectroscopy of White Dwarf Companions to Blue Stragglers

    Science.gov (United States)

    Gosnell, Natalie M.; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leiner, Emily; Leigh, Nathan

    2017-01-01

    Complete membership studies of open stellar clusters reveal that 25% of the evolved stars follow alternative pathways in stellar evolution, meaning something in the history of these stars changed their composition or mass (or both). In order to draw a complete picture of stellar evolution we must include these canonically "strange" stars in our definition of standard stellar populations. The formation mechanism of blue straggler stars, traditionally defined to be brighter and bluer than the main sequence turnoff in a star cluster, has been an outstanding question for almost six decades. Recent Hubble Space Telescope (HST) far-ultraviolet (far-UV) observations directly reveal that the blue straggler stars in the old (7 Gyr) open cluster NGC 188 are predominantly formed through mass transfer. We will present HST far-UV COS spectroscopy of white dwarf companions to blue stragglers. These white dwarfs are the remnants of the mass transfer formation process. The effective temperatures and surface gravities of the white dwarfs delineate the timeline of blue straggler formation in this cluster. The existence of these binaries in a well-studied cluster environment provides an unprecedented opportunity to observationally constrain mass transfer models and inform our understanding of many other alternative pathway stellar products.

  4. Instabilities in Interacting Binary Stars

    Science.gov (United States)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other

  5. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...... binary mask -- is introduced. The target binary mask shows the same substantial increase in intelligibility as the ideal binary mask and is proposed as a new reference for binary masking. In the category of real-life applications, two new methods are proposed: a method for estimation of the ideal binary...... mask using a directional system and a method for correcting errors in the target binary mask. The last part of the thesis, proposes a new method for objective evaluation of speech intelligibility....

  6. Population Synthesis Studies of the White Dwarfs of the Galactic Disk and Halo

    Science.gov (United States)

    Cojocaru, Elena-Ruxandra

    2016-09-01

    ía-Berro et al., 2014). In this thesis we investigate different properties of single and binary white dwarf populations in the Galactic disk and halo. We first study the effect of progenitor metallicity on the thin disk white dwarf luminosity function. Stellar metallicity is an important parameter in computing both main-sequence evolutionary sequences and white dwarf cooling tracks. At the same, studies of the metallicity distribution function for the Galactic disk have shown that both high and low-metallicity stars can be found throughout the entire mass range, although a clear dependence between age and metallicity has yet to be proven and more recent findings actually show little correlation. With this in mind, we test two different age-metallicity relations, one assuming a Gaussian distribution of metallicity around the Solar value, the other one a decreasing relation between age and metallicity. We take into account the influence of metallicity on both main sequence lifetimes and white dwarf s! tellar parameters. Finally, we compute the theoretical white dwarf luminosity function applying the observational selection criteria of two different surveys, the Sloan Digital Sky Survey (SDSS) and the Supercosmos Sky Survey (SSS). Next, we compute the white dwarf luminosity, mass and cumulative age functions derived from a sample of DA white dwarfs obtained from the LAMOST Spectroscopic Survey of the Galactic anti-center (LSS-GAC). We also derive the local space density and the formation rate for DA white dwarf. Given that both the observed mass distribution obtained from this sample and that derived from the local sample of white dwarfs present an apparent excess of massive white dwarfs, we investigate the possibility of accounting for this excess by reproducing the white dwarf population of the thin disk under different sets of initial assumptions, accounting also for selection criteria and observational biases. Another issue that we investigate is the robustness of the halo

  7. From Accretion to Explosion and Beyond: Transforming White Dwarfs to Neutron Stars and Black Holes

    Science.gov (United States)

    Di Stefano, Rosanne; Harris, R.

    2010-03-01

    White dwarfs accreting at high rates can grow in mass, exhibiting episodes of supersoft-source activity. Some can achieve the Chandrasekhar mass and will either become Type Ia supernovae or else will collapse, becoming neutron stars. We consider white dwarfs with giant donors, computing the rates of both supernovae and collapses. For the collapses, we follow each system to the end of accretion. Some of these systems will appear as ultraluminous x-ray sources and some will go on to become low-mass black holes. This scenario should be fairly common in young stellar populations and links a wide range of astrophysical phenomena. Indeed, it is a veritable cornucopia for the high-energy astrophysicist, offering accreting white dwarfs, neutron stars, and black holes, Type Ia supernovae, gamma-ray bursts, supersoft sources, ultraluminous sources, and neutron star and black hole binaries in globular clusters.

  8. Star Formation Histories of Nearby Dwarf Galaxies

    OpenAIRE

    Grebel, Eva K.

    2000-01-01

    Properties of nearby dwarf galaxies are briefly discussed. Dwarf galaxies vary widely in their star formation histories, the ages of their subpopulations, and in their enrichment history. Furthermore, many dwarf galaxies show evidence for spatial variations in their star formation history; often in the form of very extended old populations and radial gradients in age and metallicity. Determining factors in dwarf galaxy evolution appear to be both galaxy mass and environment. We may be observi...

  9. Solving a Binary Puzzle

    NARCIS (Netherlands)

    P.H. Utomo (Putranto); R.H. Makarim (Rusydi)

    2017-01-01

    textabstractA Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set (Formula presented.). Let (Formula presented.) be an even integer, a solved binary puzzle is an (Formula presented.) binary array that satisfies the following conditions: (1) no three consecutive ones and

  10. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  11. The close-binary content of massive star clusters

    Science.gov (United States)

    van den Berg, Maureen C.

    2015-08-01

    The fates of star clusters and the binaries in them are closely intertwined. Close binaries support a cluster against core collapse, while stellar encounters in the dense cores of massive star clusters shape the properties and numbers of the binaries. Observations of massive globular clusters with the Chandra X-ray Observatory have revealed hundreds of close binaries. I will present new results from deep HST observations of massive star clusters including 47Tuc, M28, and M4, that are aimed at classifying the X-ray source populations. Besides exotic systems such as low-mass X-ray binaries and millisecond pulsars, more mundane systems such as magnetically active binaries and accreting white dwarfs have been found. I will discuss how a breakdown of sources by class has revealed how the various binary populations bear the imprints of stellar encounters: some are dominated by dynamical creation, others by dynamical destruction. I will also discuss the effects on the integrated X-ray emissivity of massive star clusters, which is suppressed compared to lower-density environments.

  12. Branes constrictions with White Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    García-Aspeitia, Miguel A., E-mail: aspeitia@fisica.uaz.edu.mx [Consejo Nacional de Ciencia y Tecnología, Av, Insurgentes Sur 1582, Colonia Crédito Constructor, Del. Benito Juárez, C.P. 03940, Mexico, D.F. (Mexico); Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo a la Bufa S/N, C.P. 98060, Zacatecas (Mexico)

    2015-11-06

    We consider here a robust study of stellar dynamics for white dwarf stars with polytropic matter in the weak-field approximation using the Lane–Emden equation from the brane-world scenario. We also derive an analytical solution to the nonlocal energy density and show the behavior and sensitivity of these stars to the presence of extra dimensions. Similarly, we analyze stability and compactness, in order to show whether it is possible to agree with the conventional wisdom of white dwarfs dynamics. Our results predict an average value of the brane tension of <λ>≳84.818 MeV{sup 4}, with a standard deviation σ≃82.021 MeV{sup 4}, which comes from a sample of dwarf stars, being weaker than other astrophysical observations but remaining higher than cosmological results provided by nucleosynthesis among others.

  13. Branes constrictions with White Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Aspeitia, Miguel A. [Consejo Nacional de Ciencia y Tecnologia, Mexico (Mexico); Unidad Academica de Fisica, Universidad Autonoma de Zacatecas (Mexico)

    2015-11-15

    We consider here a robust study of stellar dynamics for white dwarf stars with polytropic matter in the weak-field approximation using the Lane-Emden equation from the brane-world scenario. We also derive an analytical solution to the nonlocal energy density and show the behavior and sensitivity of these stars to the presence of extra dimensions. Similarly, we analyze stability and compactness, in order to show whether it is possible to agree with the conventional wisdom of white dwarfs dynamics. Our results predict an average value of the brane tension of left angle λ right angle >or similar 84.818 MeV{sup 4}, with a standard deviation σ ≅ 82.021 MeV{sup 4}, which comes from a sample of dwarf stars, being weaker than other astrophysical observations but remaining higher than cosmological results provided by nucleosynthesis among others. (orig.)

  14. Branes constrictions with White Dwarfs

    Science.gov (United States)

    García-Aspeitia, Miguel A.

    2015-11-01

    We consider here a robust study of stellar dynamics for white dwarf stars with polytropic matter in the weak-field approximation using the Lane-Emden equation from the brane-world scenario. We also derive an analytical solution to the nonlocal energy density and show the behavior and sensitivity of these stars to the presence of extra dimensions. Similarly, we analyze stability and compactness, in order to show whether it is possible to agree with the conventional wisdom of white dwarfs dynamics. Our results predict an average value of the brane tension of < λ rangle ≳ 84.818MeV^4, with a standard deviation σ ˜eq 82.021MeV^4, which comes from a sample of dwarf stars, being weaker than other astrophysical observations but remaining higher than cosmological results provided by nucleosynthesis among others.

  15. The Dusty Accretion of Polluted White Dwarfs

    Science.gov (United States)

    Bonsor, A.; Farihi, J.; Wyatt, M. C.; van Lieshout, R.

    2017-03-01

    Infrared observations of polluted white dwarfs provide key insights into the accretion processes in action. The standard model for the observed infrared excesses is a flat, opaque, dust disc. The infrared observations are inconsistent with the presence of such a disc around all polluted white dwarfs. We discuss potential explanations for the absence of an infrared excess for many polluted white dwarfs.

  16. Accreting White Dwarfs as Universal Accretion Laboratories

    Science.gov (United States)

    Knigge, Christian

    Accreting white dwarfs (AWDs) are numerous, bright and nearby, making them excellent laboratories for the study of accretion physics. Since their accretion flows are unaffected by relativistic effects or ultra-strong magnetic fields, they provide a crucial "control" group for efforts to understand more complex/compact systems, such as accreting neutron stars (NSs) and black holes (BHs). Here, I will review recent work on AWDs, which has revealed that these superficially simple systems actually exhibit the full range of accretion-related phenomenology seen in accreting NSs and BHs. For example, (i) AWDs undergo mass loss in the form of both disk winds and radio jets; (ii) their disk winds are only seen in high-Mdot states, similar to what is observed in accreting BHs; (iii) they exhibit (possibly hysteretic) outbursts produced by disk instabilities, as also seen in NS and BH transients; and (iv) they produce accretion-induced stochastic variability ("flickering") that exhibits the same rms-flux relation as observed in low-mass X-ray binaries and AGN. Based on this rich and shared phenomenology, it is reasonable to hope that much of accretion physics is universal. In this context, AWDs hold great promise as observational testing grounds for attempts to model and understand these physics.

  17. Tune Your Brown Clustering, Please

    DEFF Research Database (Denmark)

    Derczynski, Leon; Chester, Sean; Bøgh, Kenneth Sejdenfaden

    2015-01-01

    Brown clustering, an unsupervised hierarchical clustering technique based on ngram mutual information, has proven useful in many NLP applications. However, most uses of Brown clustering employ the same default configuration; the appropriateness of this configuration has gone predominantly...

  18. Sirius B: Confronting the Limits of our Understanding of White Dwarfs

    Science.gov (United States)

    Barstow, M. A.; Joyce, S.; Casewell, S. L.; Holberg, J. B.; Bond, H. E.; Burleigh, M. R.

    2017-03-01

    Sirius B is the visually brightest and closest of all white dwarfs and we should understand it better than any other. However, as part of a binary system, its proximity to the main sequence companion Sirius A makes it very difficult to observe from the ground. Consequently, detailed study of this white dwarf has relied on a range of space-based observatories, including ROSAT, EUVE, FUSE and HST. Photometry and spectroscopy of exquisite quality and the highest signal-to- noise have been obtained from these missions from which we have been able to study the star in great detail. In principle, the measurements made are the most precise of any white dwarf. Nevertheless, Sirius B remains a challenging object to understand. So far it has proved impossible to compute a self-consistent model atmosphere that can match observations across its full energy distribution. Furthermore, separate determinations of its mass and radius from Balmer line fitting, measurement of the gravitational redshift and astrometry of the binary remain stubbornly in significant disagreement. We examine all the systematic effects that come into play with the various models and measurements and consider what improvements need to be made to finally understand Sirius B and, by implication, many other white dwarfs.

  19. Measurements of Physical Parameters of White Dwarfs: A Test of the Mass-Radius Relation

    Science.gov (United States)

    Bédard, A.; Bergeron, P.; Fontaine, G.

    2017-10-01

    We present a detailed spectroscopic and photometric analysis of 219 DA and DB white dwarfs for which trigonometric parallax measurements are available. Our aim is to compare the physical parameters derived from the spectroscopic and photometric techniques, and then to test the theoretical mass-radius relation for white dwarfs using these results. The agreement between spectroscopic and photometric parameters is found to be excellent, especially for effective temperatures, showing that our model atmospheres and fitting procedures provide an accurate, internally consistent analysis. The values of surface gravity and solid angle obtained, respectively, from spectroscopy and photometry, are combined with parallax measurements in various ways to study the validity of the mass-radius relation from an empirical point of view. After a thorough examination of our results, we find that 73% and 92% of the white dwarfs are consistent within 1σ and 2σ confidence levels, respectively, with the predictions of the mass-radius relation, thus providing strong support to the theory of stellar degeneracy. Our analysis also allows us to identify 15 stars that are better interpreted in terms of unresolved double degenerate binaries. Atmospheric parameters for both components in these binary systems are obtained using a novel approach. We further identify a few white dwarfs that are possibly composed of an iron core rather than a carbon/oxygen core, since they are consistent with Fe-core evolutionary models.

  20. Dwarfs and Giants: Massive Stars in Little Dwarf Galaxies

    Science.gov (United States)

    Andrews, Jennifer

    2017-08-01

    Dwarf galaxies are sensitive laboratories for testing theories of star formation and for investigating possible variations of the stellar Initial Mass Function (IMF). Establishing whether the IMF, in particular the upper end of the IMF (uIMF), is invariant or dependent upon the conditions of star formation is key for interpreting the vast majority of observations on galaxy evolution, and for understanding cosmic reionization. Low-metallicity dwarf galaxies are fairly isolated systems that are ideal locales to test the uIMF. We propose to obtain STIS UV/optical spectroscopy of 8 H-alpha bright stellar clusters in 4 dwarf galaxies within 3 Mpc to accurately determine their ages, masses, extinction, metallicity, and stellar content. We will use state of the art stellar synthesis models that include massive star specific evolutionary tracks, massive star rotation, and stochasticity to test whether dwarf galaxies really do have a top-light IMF. The success of this project relies on the spectroscopic UV capability of HST/STIS to isolate young compact star clusters and break the degeneracies between reddening and age.

  1. Natural Inhibitors of Maillard Browning

    Science.gov (United States)

    2013-12-01

    incorporated into pre-selected candidate ration components for evaluation via storage, sensory and chemical analysis. The concentration of inhibitor was...inhibiting Maillard browning, also known as non-enzymatic browning, a complex reaction which can lead to darkening of color, off- odors , off-flavors...nutritional intake, and decrease waste due to non-consumption of sensory degraded ration components. 1.1 Maillard Browning Maillard browning, also

  2. Stellar Archeology: What White Dwarf Stars Tell Us About the History of the Galaxy

    Directory of Open Access Journals (Sweden)

    Terry D. Oswalt

    2012-06-01

    Full Text Available White dwarf stars have played important roles in rather diverse areas of astrophysics. This paper outlines how these stellar remnants, especially those in widely separated “fragile” binaries, have provided unique leverage on difficult astrophysical problems such as the ages of stars, the structure and evolution of the Galaxy, the nature of dark matter and even the discovery of dark energy.

  3. Gaia and VLT astrometry of faint stars: Precision of Gaia DR1 positions and updated VLT parallaxes of ultracool dwarfs

    Science.gov (United States)

    Lazorenko, P. F.; Sahlmann, J.

    2017-10-01

    Aims: We compared positions of the Gaia first data release (DR1) secondary data set at its faint limit with CCD positions of stars in 20 fields observed with the Very Large Telescope (VLT) FORS2. We aim at an independent verification of the DR1 astrometric precision taking advantage of the FORS2 position uncertainties which are smaller than one milli-arcsecond (mas). Methods: In the fields that we observed with FORS2, we projected the Gaia DR1 positions into the CCD plane, performed a polynomial fit between the two sets of matching stars, and carried out statistical analyses of the residuals in positions. Results: The residual root mean square (rms) roughly matches the expectations given by the Gaia DR1 uncertainties, where we identified three regimes in terms of Gaia DR1 precision: for G ≃ 17-20 stars we found that the formal DR1 position uncertainties of stars with DR1 precisions in the range of 0.5-5 mas are underestimated by 63 ± 5%, whereas the DR1 uncertainties of stars in the range 7-10 mas are overestimated by a factor of two. For the best-measured and generally brighter G ≃ 16-18 stars with DR1 positional uncertainties of mas, we detected 0.44 ± 0.13 mas excess noise in the residual rms, whose origin could be in both FORS2 and Gaia DR1. By adopting Gaia DR1 as the absolute reference frame, we refined the pixel scale determination of FORS2,leading to minor updates to the parallaxes of 20 ultracool dwarfs that we published previously. We also updated the FORS2 absolute parallax of the Luhman 16 binary brown dwarf system to 501.42 ± 0.11 mas. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme IDs 086.C-0680, 087.C-0567, 088.C-0679, 089.C-0397, and 090.C-0786.

  4. PHOEBE: PHysics Of Eclipsing BinariEs

    Science.gov (United States)

    Prsa, Andrej; Matijevic, Gal; Latkovic, Olivera; Vilardell, Francesc; Wils, Patrick

    2011-06-01

    PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.

  5. Backyard Telescopes Watch an Expanding Binary

    Science.gov (United States)

    Kohler, Susanna

    2018-01-01

    What can you do with a team of people armed with backyard telescopes and a decade of patience? Test how binary star systems evolve under Einsteins general theory of relativity!Unusual VariablesCataclysmic variables irregularly brightening binary stars consisting of an accreting white dwarf and a donor star are a favorite target among amateur astronomers: theyre detectable even with small telescopes, and theres a lot we can learn about stellar astrophysics by observing them, if were patient.Diagram of a cataclysmic variable. In an AM CVn, the donor is most likely a white dwarf as well, or a low-mass helium star. [Philip D. Hall]Among the large family of cataclysmic variables is one unusual type: the extremely short-period AM Canum Venaticorum (AM CVn) stars. These rare variables (only 40 are known) are unique in having spectra dominated by helium, suggesting that they contain little or no hydrogen. Because of this, scientists have speculated that the donor stars in these systems are either white dwarfs themselves or very low-mass helium stars.Why study AM CVn stars? Because their unusual configuration allows us to predict the behavior of their orbital evolution. According to the general theory of relativity, the two components of an AM CVn will spiral closer and closer as the system loses angular momentum to gravitational-wave emission. Eventually they will get so close that the low-mass companion star overflows its Roche lobe, beginning mass transfer to the white dwarf. At this point, the orbital evolution will reverse and the binary orbit will expand, increasing its period.CBA member Enrique de Miguel, lead author on the study, with his backyard telescope in Huelva, Spain. [Enrique de Miguel]Backyard Astronomy Hard at WorkMeasuring the evolution of an AM CVns orbital period is the best way to confirm this model, but this is no simple task! To observe this evolution, we first need a system with a period that can be very precisely measured best achieved with an

  6. SHORT-PERIOD g-MODE PULSATIONS IN LOW-MASS WHITE DWARFS TRIGGERED BY H-SHELL BURNING

    Energy Technology Data Exchange (ETDEWEB)

    Córsico, A. H.; Althaus, L. G., E-mail: acorsico@fcaglp.unlp.edu.ar [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata (Argentina)

    2014-09-20

    The detection of pulsations in white dwarfs with low mass offers the possibility of probing their internal structures through asteroseismology and placing constraints on the binary evolutionary processes involved in their formation. In this Letter, we assess the impact of stable H burning on the pulsational stability properties of low-mass He-core white dwarf models resulting from binary star evolutionary calculations. We found that besides a dense spectrum of unstable radial modes and nonradial g and p modes driven by the κ mechanism due to the partial ionization of H in the stellar envelope, some unstable g modes with short pulsation periods are also powered by H burning via the ε mechanism of mode driving. This is the first time that ε destabilized modes are found in models representative of cool white dwarf stars. The short periods recently detected in the pulsating low-mass white dwarf SDSS J111215.82+111745.0 could constitute the first evidence of the existence of stable H burning in these stars, in particular in the so-called extremely low-mass white dwarfs.

  7. Fucoidans from brown seaweeds

    DEFF Research Database (Denmark)

    Ale, Marcel Tutor; Meyer, Anne S.

    2013-01-01

    structural details of fucoidans. Mild extraction techniques coupled with the use of new tools such as enzymes can provide the much needed knowledge about structural characteristics of different fucoidan molecules and thus pave the way for a better understanding of the structural chemistry and bioactivities......-proliferative effects on cancer cells. Recent work has revealed distinct structural features of fucoidans obtained from different brown seaweed sources. Fucoidans are classically obtained from brown seaweeds by multi-step, hot acid extraction, but the structural and compositional traits, and possibly the bioactivity......, of the fucoidan polysaccharides are significantly influenced by the extraction parameters. This review discusses the structural features of fucoidans, the significance of different extraction technologies, and reviews enzymatic degradation of fucoidans and the use of fucoidan-modifying enzymes for elucidating...

  8. Orbiting a binary. SPHERE characterisation of the HD 284149 system

    Science.gov (United States)

    Bonavita, M.; D'Orazi, V.; Mesa, D.; Fontanive, C.; Desidera, S.; Messina, S.; Daemgen, S.; Gratton, R.; Vigan, A.; Bonnefoy, M.; Zurlo, A.; Antichi, J.; Avenhaus, H.; Baruffolo, A.; Baudino, J. L.; Beuzit, J. L.; Boccaletti, A.; Bruno, P.; Buey, T.; Carbillet, M.; Cascone, E.; Chauvin, G.; Claudi, R. U.; De Caprio, V.; Fantinel, D.; Farisato, G.; Feldt, M.; Galicher, R.; Giro, E.; Gry, C.; Hagelberg, J.; Incorvaia, S.; Janson, M.; Jaquet, M.; Lagrange, A. M.; Langlois, M.; Lannier, J.; Le Coroller, H.; Lessio, L.; Ligi, R.; Maire, A. L.; Meyer, M.; Menard, F.; Perrot, C.; Peretti, S.; Petit, C.; Ramos, J.; Roux, A.; Salasnich, B.; Salter, G.; Samland, M.; Scuderi, S.; Schlieder, J.; Surez, M.; Turatto, M.; Weber, L.

    2017-12-01

    Aims: In this paper we present the results of the SPHERE observation of the HD 284149 system, aimed at a more detailed characterisation of both the primary and its brown dwarf companion. Methods: We observed HD 284149 in the near-infrared with SPHERE, using the imaging mode (IRDIS+IFS) and the long-slit spectroscopy mode (IRDIS-LSS). The data were reduced using the dedicated SPHERE pipeline, and algorithms such as PCA and TLOCI were applied to reduce the speckle pattern. Results: The IFS images revealed a previously unknown low-mass ( 0.16 M⊙) stellar companion (HD 294149 B) at 0.1'', compatible with previously observed radial velocity differences, as well as proper motion differences between Gaia and Tycho-2 measurements. The known brown dwarf companion (HD 284149 b) is clearly visible in the IRDIS images. This allowed us to refine both its photometry and astrometry. The analysis of the medium resolution IRDIS long slit spectra also allowed a refinement of temperature and spectral type estimates. A full reassessment of the age and distance of the system was also performed, leading to more precise values of both mass and semi-major axis. Conclusions: As a result of this study, HD 284149 ABb therefore becomes the latest addition to the (short) list of brown dwarfs on wide circumbinary orbits, providing new evidence to support recent claims that object in such configuration occur with a similar frequency to wide companions to single stars. The reduced spectrum is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A106

  9. SLoWPoKES-II: 100,000 WIDE BINARIES IDENTIFIED IN SDSS WITHOUT PROPER MOTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dhital, Saurav [Department of Physical Sciences, Embry-Riddle Aeronautical University, 600 South Clyde Morris Blvd., Daytona Beach, FL 32114 (United States); West, Andrew A.; Schluns, Kyle J.; Massey, Angela P. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Stassun, Keivan G., E-mail: dhitals@erau.edu [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235 (United States)

    2015-08-15

    We present the Sloan Low-mass Wide Pairs of Kinematically Equivalent Stars (SLoWPoKES)-II catalog of low-mass visual binaries identified from the Sloan Digital Sky Survey (SDSS) by matching photometric distances. The candidate pairs are vetted by comparing the stellar information. The candidate pairs are vetted by comparing the stellar density at their respective Galactic positions to Monte Carlo realizations of a simulated Milky Way. In this way, we are able to identify large numbers of bona fide wide binaries without the need for proper motions. Here, 105,537 visual binaries with angular separations of ∼1–20″ were identified, each with a probability of chance alignment of ≤5%. This is the largest catalog of bona fide wide binaries to date, and it contains a diversity of systems—in mass, mass ratios, binary separations, metallicity, and evolutionary states—that should facilitate follow-up studies to characterize the properties of M dwarfs and white dwarfs. There is a subtle but definitive suggestion of multiple populations in the physical separation distribution, supporting earlier findings. We suggest that wide binaries are composed of multiple populations, most likely representing different formation modes. There are 141 M7 or later wide binary candidates, representing a seven-fold increase over the number currently known. These binaries are too wide to have been formed via the ejection mechanism. Finally, we found that 6% of spectroscopically confirmed M dwarfs are not included in the SDSS STAR catalog; they are misclassified as extended sources due to the presence of a nearby or partially resolved companion. The SLoWPoKES-II catalog is publicly available to the entire community on the World Wide Web via the Filtergraph data visualization portal.

  10. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  11. Kinematics of chromospherically active late-type dwarfs in the solar neighborhood

    Energy Technology Data Exchange (ETDEWEB)

    Soderblom, D.R. (Space Telescope Science Institute, Baltimore, MD (USA))

    1990-07-01

    The space motions of chromospherically active late-type dwarfs (solar-type stars, K and M dwarfs, and BY Draconis binaries) are illustrated and discussed. Except for a small number of deviant stars, all the active single stars have the kinematics of young stars (age about 0.5 Gyr). The most egregious exception is HD 152391, which appears to be a single star with a high level of chromospheric activity but with the kinematics of the old disk population, for reasons unknown. The BY Dra binaries, with a few exceptions, also have the kinematics of youth, being characterized by an age of about 1-2 Gyr. This lack of old BY Dra binaries seems puzzling, since a binary should be able to draw on orbital angular momentum to maintain rapid rotation well into old age, but this dearth is suggested to be due to the very rapid loss of angular momentum that a double star can maintain until essentially all the angular momentum is lost and the stars coalesce. No strong kinematic coherence is seen among the active single stars, indicating that these stars were born in many different nurseries and have come to the solar neighborhood through random processes. 70 refs.

  12. A WHITE DWARF MERGER AS PROGENITOR OF THE ANOMALOUS X-RAY PULSAR 4U 0142+61?

    Energy Technology Data Exchange (ETDEWEB)

    Rueda, J. A.; Boshkayev, K.; Izzo, L.; Ruffini, R. [Dipartimento di Fisica and ICRA, Sapienza Universita di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); Loren-Aguilar, P. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Kuelebi, B. [Institut de Ciencies de l' Espai (CSIC), Facultat de Ciencies, Campus UAB, Torre C5-parell, E-08193 Bellaterra (Spain); Aznar-Siguan, G.; Garcia-Berro, E., E-mail: jorge.rueda@icra.it, E-mail: enrique.garcia-berro@upc.edu [Institute for Space Studies of Catalonia, c/Gran Capita 2-4, Edif. Nexus 104, E-08034 Barcelona (Spain)

    2013-08-01

    It has been recently proposed that massive, fast-rotating, highly magnetized white dwarfs could describe the observational properties of some of soft gamma-ray repeaters and anomalous X-ray pulsars (AXPs). Moreover, it has also been shown that high-field magnetic white dwarfs can be the outcome of white dwarf binary mergers. The products of these mergers consist of a hot central white dwarf surrounded by a rapidly rotating disk. Here we show that the merger of a double degenerate system can explain the characteristics of the peculiar AXP 4U 0142+61. This scenario accounts for the observed infrared excess. We also show that the observed properties of 4U 0142+6 are consistent with an approximately 1.2 M{sub Sun} white dwarf, remnant of the coalescence of an original system made of two white dwarfs of masses 0.6 M{sub Sun} and 1.0 M{sub Sun }. Finally, we infer a post-merging age {tau}{sub WD} Almost-Equal-To 64 kyr and a magnetic field B Almost-Equal-To 2 Multiplication-Sign 10{sup 8} G. Evidence for such a magnetic field may come from the possible detection of the electron cyclotron absorption feature observed between the B and V bands at Almost-Equal-To 10{sup 15} Hz in the spectrum of 4U 0142+61.

  13. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. V. Asteroseismology of ELMV white dwarf stars

    Science.gov (United States)

    Calcaferro, Leila M.; Córsico, Alejandro H.; Althaus, Leandro G.

    2017-11-01

    Context. Many pulsating low-mass white dwarf stars have been detected in the past years in the field of our Galaxy. Some of them exhibit multiperiodic brightness variation, therefore it is possible to probe their interiors through asteroseismology. Aims: We present a detailed asteroseismological study of all the known low-mass variable white dwarf stars based on a complete set of fully evolutionary models that are representative of low-mass He-core white dwarf stars. Methods: We employed adiabatic radial and nonradial pulsation periods for low-mass white dwarf models with stellar masses ranging from 0.1554 to 0.4352 M⊙ that were derived by simulating the nonconservative evolution of a binary system consisting of an initially 1 M⊙ zero-age main-sequence (ZAMS) star and a 1.4 M⊙ neutron star companion. We estimated the mean period spacing for the stars under study (where this was possible), and then we constrained the stellar mass by comparing the observed period spacing with the average of the computed period spacings for our grid of models. We also employed the individual observed periods of every known pulsating low-mass white dwarf star to search for a representative seismological model. Results: We found that even though the stars under analysis exhibit few periods and the period fits show multiplicity of solutions, it is possible to find seismological models whose mass and effective temperature are in agreement with the values given by spectroscopy for most of the cases. Unfortunately, we were not able to constrain the stellar masses by employing the observed period spacing because, in general, only few periods are exhibited by these stars. In the two cases where we were able to extract the period spacing from the set of observed periods, this method led to stellar mass values that were substantially higher than expected for this type of stars. Conclusions: The results presented in this work show the need for further photometric searches, on the one hand

  14. Formation of dwarf ellipticals and dwarf irregular galaxies by interaction of giant galaxies under environmental influence

    OpenAIRE

    Chattopadhyay, Tanuka; Debsarma, Suma; Karmakar, Pradip; Davoust, Emmanuel

    2014-01-01

    A model is proposed for the formation of gas-rich dwarf irregular galaxies and gas-poor, rotating dwarf elliptical galaxies following the interaction between two giant galaxies as a function of space density. The formation of dwarf galaxies is considered to depend on a random variable, the tidal index theta, an environmental parameter defined by Karachentsev et al. (2004), such that for theta less than zero, the formation of dwarf irregular galaxy is assured whereas for theta greater than zer...

  15. AGN feedback in dwarf galaxies?

    Science.gov (United States)

    Dashyan, Gohar; Silk, Joseph; Mamon, Gary A.; Dubois, Yohan; Hartwig, Tilman

    2018-02-01

    Dwarf galaxy anomalies, such as their abundance and cusp-core problems, remain a prime challenge in our understanding of galaxy formation. The inclusion of baryonic physics could potentially solve these issues, but the efficiency of stellar feedback is still controversial. We analytically explore the possibility of feedback from active galactic nuclei (AGNs) in dwarf galaxies and compare AGN and supernova (SN) feedback. We assume the presence of an intermediate-mass black hole within low-mass galaxies and standard scaling relations between the relevant physical quantities. We model the propagation and properties of the outflow and explore the critical condition for global gas ejection. Performing the same calculation for SNe, we compare the ability of AGNs and SNe to drive gas out of galaxies. We find that a critical halo mass exists below which AGN feedback can remove gas from the host halo and that the critical halo mass for an AGN is greater than the equivalent for SNe in a significant part of the parameter space, suggesting that an AGN could provide an alternative and more successful source of negative feedback than SNe, even in the most massive dwarf galaxies.

  16. Massive binary evolution

    Science.gov (United States)

    Podsiadlowski, Philipp

    2010-03-01

    Understanding the evolution of massive binaries is essential for understanding many observed classes of stellar systems, ranging from Algols to X-ray binaries, recycled pulsars, double-neutron-star systems and quite possibly gamma-ray burst sources. Here recent progress and some of the main remaining uncertainties are being reviewed, particularly emphasizing stellar mergers and their possible implications for supernovae like SN 1987A, Thorne-Żytkow objects and η Car-like eruptions. It is shown how binary evolution can affect both the envelope and the core structure of a massive star, explaining - at least in part - the observed diversity of core-collapse supernovae and potentially producing different kick distributions for systems in binaries. Various ideas linking gamma-ray bursts to massive binaries are also being discussed.

  17. Stellar explosions from accreting white dwarfs

    Science.gov (United States)

    Moore, Kevin L.

    Unstable thermonuclear burning on accreting white dwarfs (WDs) can lead to a wide variety of outcomes, and induce shock waves in several contexts. In classical and recurrent novae, a WD accreting hydrogen-rich material from a binary companion can experience thermonuclear runaways, ejecting mass into the interstellar/circumbinary environment at ~1000 km/s. This highly supersonic ejecta drives shock waves into the interstellar gas which may be relevant for sweeping out gas from globular clusters or forming circumstellar absorption regions in interacting supernovae. While runaway nuclear burning in novae releases enough energy for these objects to brighten by a factor of ~10 4 over roughly a weeklong outburst, it does not become dynamically unstable. In contrast, certain helium accretion scenarios may allow for dynamical burning modes, in part due to the higher temperature sensitivity of helium burning reactions and larger accreted envelopes. The majority of this thesis involves such dynamical burning modes, specifically detonations - shock waves sustained by nuclear energy release behind the shock front. We investigate when steady-state detonations are realizable in accreted helium layers on WDs, and model their strength and burning products using both semi-analytic and numerical models. We find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically 12 C and 16O. Though gravitationally unbound, the ashes still have unburned helium (~80% in the thinnest cases) and only reach up to heavy elements such as 40Ca, 44Ti, 48Cr, and 52Fe. It is rare for these thin shells to generate large amounts of radioactive isotopes necessary to power light curves, such as 56Ni. This has important implications on whether the unbound helium burning ashes may create faint and fast peculiar supernovae or events with virtually no radioactivity, as well as on off

  18. Probing the Long Timescale Evolution of Magnetic Activity of Ultracool Dwarfs

    Science.gov (United States)

    Cid, Aurora; Schmidt, Sarah J.; Rice, Emily; Cruz, Kelle; Ventura, Jean-Paul

    2018-01-01

    The chromospheric variability, as measured by H-alpha emission, of ultracool dwarfs (M7-L3) is still not completely understood. Objects of these spectral types encompass the transition between stars and brown dwarfs. We want to compare these objects to the Sun and Jupiter to understand the dynamo causing magnetic activity. Using spectra from the Sloan Digital Sky Survey (SDSS), we measure equivalent widths of the H-alpha emission lines of ultracool dwarfs over multi-year timescales. More specifically, we are utilizing spectra from Data Release 7, composed of data from 2000-2008, and the Few Epoch Spectroscopy (FES) component of the Time Domain Spectroscopic Survey (TDSS), which is composed of data from 2014-2018. By the end of this project we will have 2-3 spectra for about 1000 objects. We will obtain H-alpha equivalent width measurements of these objects over time spans of 6-18 years. By studying the chromospheres of ultracool dwarfs on these timescales, we can make comparisons to the solar magnetic cycle and try to understand the process causing their H-alpha variability. Additionally, we can investigate any relationship between variability and stellar age by combining our measurements with age tracers like galactic height and UVW kinematics. We will present preliminary results of this work.

  19. Transit detection limits for sub-stellar and terrestrial companions to white dwarfs

    Science.gov (United States)

    Faedi, F.; West, R.; Burleigh, M. R.; Goad, M. R.; Hebb, L.

    2009-06-01

    The SuperWASP project is a ground-based ultra wide angle search for extra-solar planetary transits that has successfully detected 15 previously unknown planets in the last two years. We have used SuperWASP photometric data to investigate the transit characteristics of and detection limits for brown dwarfs, gas giants and terrestrial companions in orbit around white dwarfs. The relatively small size of a white dwarf host star (approximately 1 Earth radius), implies that any sub-stellar or gas giant companion will completely eclipse it, while terrestrial bodies smaller than the Moon will produce relatively large (> 1%) transits, detectable in good S/N light-curves. We performed extensive simulations using SuperWASP photometric data and we found that for Gaussian random noise we are sensitive to companions as small as the Moon. Our sensitivity drops in the presence of co-variant noise structure, nevertheless Earth-size bodies remain readily detectable in relatively low S/N data. We searched for eclipses and transit signals in a sample of 174 WASP targets, resulting from a cross-correlation of the McCook & Sion catalogue and the SuperWASP data archive. This study found no evidence for sub-stellar or planetary companions in close orbits around our sample of white dwarfs.

  20. Calibrating Detailed Chemical Analysis of M dwarfs

    Science.gov (United States)

    Veyette, Mark; Muirhead, Philip Steven; Mann, Andrew; Brewer, John; Allard, France; Homeier, Derek

    2018-01-01

    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications including studying the chemical evolution of the Galaxy, assessing membership in stellar kinematic groups, and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres has hindered similar analysis of M-dwarf stars. Large surveys of FGK abundances play an important role in developing methods to measure the compositions of M dwarfs by providing benchmark FGK stars that have widely-separated M dwarf companions. These systems allow us to empirically calibrate metallicity-sensitive features in M dwarf spectra. However, current methods to measure metallicity in M dwarfs from moderate-resolution spectra are limited to measuring overall metallicity and largely rely on astrophysical abundance correlations in stellar populations. In this talk, I will discuss how large, homogeneous catalogs of precise FGK abundances are crucial to advancing chemical analysis of M dwarfs beyond overall metallicity to direct measurements of individual elemental abundances. I will present a new method to analyze high-resolution, NIR spectra of M dwarfs that employs an empirical calibration of synthetic M dwarf spectra to infer effective temperature, Fe abundance, and Ti abundance. This work is a step toward detailed chemical analysis of M dwarfs at a similar precision achieved for FGK stars.

  1. White dwarf cooling sequences and cosmochronology

    Science.gov (United States)

    Isern, J.; Artigas, A.; García-Berro, E.

    2013-03-01

    The evolution of white dwarfs is a simple gravothermal process. This means that their luminosity function, i.e. the number of white dwarfs per unit bolometric magnitude and unit volume as a function of bolometric magnitude, is a monotonically increasing function that decreases abruptly as a consequence of the finite age of the Galaxy. The precision and the accuracy of the white dwarf luminosity functions obtained with the recent large surveys together with the improved quality of the theoretical models of evolution of white dwarfs allow to feed the hope that in a near future it will be possible to reconstruct the history of the different Galactic populations.

  2. Short-Period Binary Stars: Observations, Analyses, and Results

    CERN Document Server

    Milone, Eugene F; Hobill, David W

    2008-01-01

    Short-period binaries run the gamut from widely separated stars to black-hole pairs; in between are systems that include neutron stars and white dwarfs, and partially evolved systems such as tidally distorted and over-contact systems. These objects represent stages of evolution of binary stars, and their degrees of separation provide critical clues to how their evolutionary paths differ from that of single stars. The widest and least distorted systems provide astronomers with the essential precise data needed to study all stars: mass and radius. The interactions of binary star components, on the other hand, provide a natural laboratory to observe how the matter in these stars behaves under different and often varying physical conditions. Thus, cataclysmic variables with and without overpoweringly strong magnetic fields, and stars with densities from that found in the Sun to the degenerate matter of white dwarfs and the ultra-compact states of neutron stars and black holes are all discussed. The extensive inde...

  3. White Dwarfs in Cataclysmic Variable Stars: Surface Temperatures and Evolution

    Directory of Open Access Journals (Sweden)

    Edward M. Sion

    2012-06-01

    Full Text Available A summary is presented of what is currently known about the surface temperatures of accreting white dwarfs (WDs detected in non-magnetic and magnetic cataclysmic variables (CVs based upon synthetic spectral analyses of far ultraviolet data. A special focus is placed on WD temperatures above and below the CV period gap as a function of the orbital period, Porb. The principal uncertainty of the temperatures for the CV WDs in the Teff - Porb distribution, besides the distance to the CV, is the mass of the WD. Only in eclipsing CV systems, an area of eclipsing binary studies, which was so central to Robert H. Koch’s career, is it possible to know CV WD masses with high precision.

  4. Search for bright nearby M dwarfs with virtual observatory tools

    Energy Technology Data Exchange (ETDEWEB)

    Aberasturi, M.; Caballero, J. A.; Montesinos, B.; Gálvez-Ortiz, M. C.; Solano, E.; Martín, E. L. [Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain)

    2014-08-01

    Using Virtual Observatory tools, we cross-matched the Carlsberg Meridian 14 and the 2MASS Point Source catalogs to select candidate nearby bright M dwarfs distributed over ∼25,000 deg{sup 2}. Here, we present reconnaissance low-resolution optical spectra for 27 candidates that were observed with the Intermediate Dispersion Spectrograph at the 2.5 m Isaac Newton Telescope (R≈ 1600). We derived spectral types from a new spectral index, R, which measures the ratio of fluxes at 7485-7015 Å and 7120-7150 Å. We also used VOSA, a Virtual Observatory tool for spectral energy distribution fitting, to derive effective temperatures and surface gravities for each candidate. The resulting 27 targets were M dwarfs brighter than J = 10.5 mag, 16 of which were completely new in the Northern hemisphere and 7 of which were located at less than 15 pc. For all of them, we also measured Hα and Na I pseudo-equivalent widths, determined photometric distances, and identified the most active stars. The targets with the weakest sodium absorption, namely, J0422+2439 (with X-ray and strong Hα emissions), J0435+2523, and J0439+2333, are new members in the young Taurus-Auriga star-forming region based on proper motion, spatial distribution, and location in the color-magnitude diagram, which reopens the discussion on the deficit of M2-4 Taurus stars. Finally, based on proper motion diagrams, we report on a new wide M dwarf binary system in the field, LSPM J0326+3929EW.

  5. The nature of millisecond pulsars with helium white dwarf companions

    Science.gov (United States)

    Smedley, Sarah L.; Tout, Christopher A.; Ferrario, Lilia; Wickramasinghe, Dayal T.

    2014-01-01

    We examine the growing data set of binary millisecond pulsars that are thought to have a helium white dwarf companion. These systems are believed to form when a low- to intermediate-mass companion to a neutron star fills its Roche lobe between central hydrogen exhaustion and core helium ignition. We confirm that our own stellar models reproduce a well-defined period-companion mass relation irrespective of the details of the mass transfer process. With magnetic braking, this relation extends to periods of less than 1 d for a 1 M⊙ giant donor. With this and the measured binary mass functions, we calculate the orbital inclination of each system for a given pulsar mass. We expect these inclinations to be randomly oriented in space. If the masses of the pulsars were typically 1.35 M⊙, then there would appear to be a distinct dearth of high-inclination systems. However, if the pulsar masses are more typically from 1.55 to 1.65 M⊙, then the distribution of inclinations is indeed indistinguishable from random. If it were as much as 1.75 M⊙, then there would appear to be an excess of high-inclination systems. Thus, with the available data, we can argue that the neutron star masses in binary millisecond pulsars recycled by mass transfer from a red giant typically lie around 1.6 M⊙ and that there is no preferred inclination at which these systems are observed. Hence, there is reason to believe that pulsar beams are either sufficiently broad or show no preferred direction relative to the pulsar's spin axis which is aligned with the binary orbit. This is contrary to some previous claims, based on a subset of the data available today, that there might be a tendency for the pulsar beams to be perpendicular to their spin.

  6. [Brown recluse bite].

    Science.gov (United States)

    Nehemya, Moshe

    2008-01-01

    Spider bites are not uncommon in our warm climate. The most prevalent species of venomous spiders in Israel are the brown recluse and the black widow. Although the black widow is more notorious than the recluse, for every bite by a black widow there are hundreds of recluse bites reported. Despite the numerous bites, there is little awareness amongst physicians with regard to the clinical signs of recluse bites, and very often the wrong diagnosis is made, resulting in complex and unnecessary treatments. The basis of this error stems from the numerous clinical diagnoses which closely imitate a recluse bite, the relative scarceness of documented recluse bites and the fact that in most cases the spider is not witnessed by the victim. The following article describes three cases of children admitted to our department, presenting with high fever, a necrotic lesion and an extensive maculopapular rash. The children were eventually diagnosed with brown recluse bites. Furthermore, the article summarizes the literature regarding the clinical signs of recluse bites, possible complications and treatment options. The objective of this review is to increase awareness towards recluse bites, thereby preventing misdiagnoses and unnecessary treatments.

  7. Direct formation of millisecond pulsars from rotationally delayed accretion-induced collapse of massive white dwarfs

    Science.gov (United States)

    Freire, Paulo C. C.; Tauris, Thomas M.

    2014-02-01

    Millisecond pulsars (MSPs) are believed to be old neutron stars, formed via Type Ib/c core-collapse supernovae, which have subsequently been spun up to high rotation rates via accretion from a companion star in a highly circularized low-mass X-ray binary. The recent discoveries of Galactic field binary MSPs in eccentric orbits, and mass functions compatible with that expected for helium white dwarf companions, PSR J2234+06 and PSR J1946+3417, therefore challenge this picture. Here, we present a hypothesis for producing this new class of systems, where the MSPs are formed directly from a rotationally delayed accretion-induced collapse of a super-Chandrasekhar mass white dwarf. We compute the orbital properties of the MSPs formed in such events and demonstrate that our hypothesis can reproduce the observed eccentricities, masses and orbital periods of the white dwarfs, as well as forecasting the pulsar masses and velocities. Finally, we compare this hypothesis to a triple-star scenario.

  8. [Gene analysis of Chinese barley dwarf germplasm resources. I. Inheritance and allelism test of the dwarf genes] [In Process Citation

    Science.gov (United States)

    Zhang

    1999-01-01

    The plant height inheritance of 24 Chinese barley dwarf germplasms and the allelic relationships between the dwarf genes in them and the known dwarf genes uz, sdw, br and denso were studied. It was found that most Chinese barley dwarfs were controlled by 1 pair, a few by 2 pairs of recessive genes, only one by 1 pair recessive and 1 pair incomplete dominant genes. Allele frequence at the known dwarf gene uz locus was very high in Chinese barley dwarfs. Most monogenic and 2 digenic barley dwarfs had allelic relationships with uz. A monogenic barley dwarf 11012.2 from India and a digenic dwarf Yan 66 were found allelic to the known dwarf gene sdw. But no dwarfs had allelic relationship with the known dwarf genes br and denso. Monogenic dwarf mutants 91G318, 91D27 and 93-597 carried 1 pair of new recessive dwarf genes respectively. Digenic dwarf mutant 1974E possessed 1 pair of new incomplete dominant dwarf genes. Besides, 4 pairs of new recessive dwarf genes were indentified in 6 Tibetan barley dwarfs.

  9. THE WIRED SURVEY. III. AN INFRARED EXCESS AROUND THE ECLIPSING POST-COMMON ENVELOPE BINARY SDSS J030308.35+005443.7

    Energy Technology Data Exchange (ETDEWEB)

    Debes, John H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Hoard, D. W. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Farihi, Jay [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Wachter, Stefanie [IPAC, California Institute of Technology, Pasadena, CA (United States); Leisawitz, David T. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Cohen, Martin [Monterey Institute for Research in Astronomy, Marina, CA 93933 (United States)

    2012-11-01

    We present the discovery with WISE of a significant infrared excess associated with the eclipsing post-common envelope binary SDSS J030308.35+005443.7, the first excess discovered around a non-interacting white dwarf+main-sequence M dwarf binary. The spectral energy distribution of the white dwarf+M dwarf companion shows significant excess longward of 3 {mu}m. A T {sub eff} of 8940 K for the white dwarf is consistent with a cooling age >2 Gyr, implying that the excess may be due to a recently formed circumbinary dust disk of material that extends from the tidal truncation radius of the binary at 1.96 R {sub Sun} out to <0.8 AU, with a total mass of {approx}10{sup 20} g. We also construct WISE and follow-up ground-based near-infrared light curves of the system and find variability in the K band that appears to be in phase with ellipsoidal variations observed in the visible. The presence of dust might be due to (1) material being generated by the destruction of small rocky bodies that are being perturbed by an unseen planetary system or (2) dust condensing from the companion's wind. The high inclination of this system and the presence of dust make it an attractive target for M dwarf transit surveys and long-term photometric monitoring.

  10. SIM's Search for Planets Orbiting White Dwarfs

    Science.gov (United States)

    Subasavage, John P., Jr.

    2009-01-01

    Once launched, The Space Interferometry Mission (SIM) will be the most precise astrometric instrument ever developed. These capabilities are vital to exoplanetary studies, in particular, for low-mass, Earthlike planets. I propose to use SIM to observe a sample ( 25-50) of nearby white dwarfs in hopes of detecting planetary companions with masses in the 10 Earth mass range on average. Because of the nature of white dwarfs' spectral signatures (a few broad, if any, absorption lines), current radial velocity planet hunting techniques are not viable. Astrometry is currently the only technique capable of detecting low mass planets around white dwarfs and SIM would be the best suited astrometric instrument to do so. Planetary detections around white dwarfs would better enable us to probe planetary formation theory as well as planetary evolution theory in conjunction with stellar evolution. Because astrometric signatures are inversely related to distance, the closer the system, the larger the signature (all else being equal). Because most stars will eventually end their lives as white dwarfs, these objects are plentiful and on average, closer to the Sun than more rare objects. Thus, a number of white dwarfs are close enough to the Sun to permit low mass planetary signature detections. Given that white dwarfs are the remnants of main-sequence dwarfs with spectral classes from B to K (thus far), we could better understand planetary formation over a broader range of objects than those currently investigated using radial velocity techniques (F, G, and K stars primarily).

  11. Dwarf mistletoes: Biology, pathology, and systematics

    Science.gov (United States)

    Frank G. Hawksworth; Delbert Wiens

    1996-01-01

    Arceuthobium (dwarf mistletoes), a well defined but morphologically reduced genus of the family Viscaceae, is parasitic on Pinaceae in the Old and New Worlds and on Cupressaceae in the Old World. Although conifer forests in many parts of the Northern Hemisphere are infested with dwarf mistletoes, those most commonly infested are in western North...

  12. Do dwarf chameleons ( Bradypodion ) show developmental plasticity?

    African Journals Online (AJOL)

    The phenomenon of phenotype–genotype uncoupling (plasticity) causes problems in species delineations, and has been suggested as a cause underlying a mismatch between morphology and genetics between the Natal Midlands dwarf chameleon (Bradypodion thamnobates) and the KwaZulu dwarf chameleon ...

  13. Stars at Low Metallicity in Dwarf Galaxies

    NARCIS (Netherlands)

    Tolstoy, Eline; Battaglia, Giuseppina; Cole, Andrew; Hunt, LK; Madden, S; Schneider, R

    2008-01-01

    Dwarf galaxies offer an opportunity to understand the properties of low metallicity star formation both today and at the earliest times at the, epoch of the formation of the first stars. Here we concentrate on two galaxies in the Local Group: the dwarf irregular galaxy Leo A, which has been the

  14. Metals and ionizing photons from dwarf galaxies

    NARCIS (Netherlands)

    Salvadori, S.; Tolstoy, E.; Ferrara, A.; Zaroubi, S.

    We estimate the potential contribution of M <10(9)M(circle dot) dwarf galaxies to the reionization and early metal enrichment of the Milky Way environment, or circum-Galactic medium. Our approach is to use the observed properties of ancient stars ()under tilde>12 Gyr old) measured in nearby dwarf

  15. Kinematically Decoupled Cores in Dwarf (Elliptical) Galaxies

    NARCIS (Netherlands)

    Toloba, E.; Peletier, R. F.; Guhathakurta, P.; van de Ven, G.; Boissier, S.; Boselli, A.; Brok, M. d.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Paudel, S.; Ryś, A.; Salo, H.

    An overview is given of what we know about the frequency of kinematically decoupled cores in dwarf elliptical galaxies. New observations show that kinematically decoupled cores happen just as often in dwarf elliptical as in ordinary early-type galaxies. This has important consequences for the

  16. Electron Capture Supernovae from Close Binary Systems

    Science.gov (United States)

    Poelarends, Arend J. T.; Wurtz, Scott; Tarka, James; Cole Adams, L.; Hills, Spencer T.

    2017-12-01

    We present the first detailed study of the Electron Capture Supernova Channel (ECSN Channel) for a primary star in a close binary star system. Progenitors of ECSN occupy the lower end of the mass spectrum of supernova progenitors and are thought to form the transition between white dwarf progenitors and core-collapse progenitors. The mass range for ECSN from close binary systems is thought to be wider than the range for single stars, because of the effects of mass transfer on the helium core. Using the MESA stellar evolution code, we explored the parameter space of initial primary masses between 8 and 17 {M}⊙ , using a large grid of models. We find that the initial primary mass and the mass transfer evolution are important factors in the final fate of stars in this mass range. Mass transfer due to Roche lobe overflow during and after carbon burning causes the core to cool down so that it avoids neon ignition, even in helium-free cores with masses up to 1.52 {M}⊙ , which in single stars would ignite neon. If the core is able to contract to high enough densities for electron captures to commence, we find that, for the adopted Ledoux convection criterion, the initial mass range for the primary to evolve into an ECSN is between 13.5 and 17.6 {M}⊙ . The mass ratio, initial period, and mass-loss efficiency only marginally affect the predicted ranges.

  17. Testing MOG, non-local gravity and MOND with rotation curves of dwarf galaxies

    Science.gov (United States)

    Zhoolideh Haghighi, M. H.; Rahvar, S.

    2017-07-01

    Modified gravity (MOG) and non-local gravity (NLG) are two alternative theories to general relativity. They are able to explain the rotation curves of spiral galaxies and clusters of galaxies without including dark matter. In the weak-field approximation, these two theories have similar forms, with an effective gravitational potential that has two components: (I) Newtonian gravity with the gravitational constant enhanced by a factor (1 + α) and (II) a Yukawa-type potential that produces a repulsive force with length-scale 1/μ. In this work, we compare the rotation curves of dwarf galaxies in the LITTLE THINGS catalogue with predictions of MOG, NLG and modified Newtonian dynamics (MOND). We find that the universal parameters of the MOG and NLG theories can fit the rotation curves of dwarf galaxies only at the expense of systematically high stellar mass-to-light ratios at 3.6 μm. For instance, in MOG, half of the galaxies have best-fitting stellar M/L ratios larger than 10. It seems that such a big stellar mass-to-light ratio is in contradiction with observations of nearby stars in the Milky Way and with stellar population synthesis models; however, the stellar mass-to-light ratio of dwarf galaxies is not observed directly by the astrophysical methods. Future observations of binary stars in the dwarf galaxies will identify M/L and consequently examine different modified gravity models.

  18. Double White Dwarf Merger Rates

    Science.gov (United States)

    Toonen, Silvia; Nelemans, Gijs; Portegies Zwart, Simon

    2013-01-01

    Type Ia supernovae (SNe Ia) are very successfully used as standard candles on cosmological distance scales, but so far the nature of the progenitor(s) is unclear. A possible scenario for SNe Ia are merging carbon/oxygen white dwarfs with a combined mass exceeding the Chandrasekhar mass. We determine the theoretical rates and delay time distribution of these mergers for two different common envelope prescriptions and metallicities. The shape of the delay time distributions is rather insensitive to the assumptions. The normalization is a factor ~3-13 too low compared to observations.

  19. BINARY MINOR PLANETS

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the...

  20. White Dwarfs Cosmological and Galactic Probes

    CERN Document Server

    Sion, Edward M; Vennes, Stéphane

    2005-01-01

    The emphasis on white dwarf stars and cosmology arises from the most recent advances in cosmological and galactic structure research in which white dwarf stars are playing a very prominent role. Examples are Type Ia supernovae (i.e. white dwarf supernovae), the origin and evolution of the universe, the age of the galactic disk, cosmochronology using white dwarfs in globular clusters and galactic clusters, and the physics of accretion onto compact (very dense) stars. As an assisting guide to the reader, we have included, by invitation, comprehensive review articles in each of the four major areas of the book, white dwarf supernovae, cosmology, accretion physics and galactic structure. The reviews include introductory material that they build upon. The book is suitable and most useful to advanced undergraduates, graduate students and scientific professionals (e.g. astronomers, astrophysicists, cosmologists, physicists).

  1. Binary and Millisecond Pulsars

    OpenAIRE

    Lorimer, D. R.

    2005-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic b...

  2. 30+ New & Known SB2s in the SDSS-III/APOGEE M Dwarf Ancillary Science Project Sample

    Science.gov (United States)

    Skinner, Jacob; Covey, Kevin; Bender, Chad; De Lee, Nathan Michael; Chojnowski, Drew; Troup, Nicholas; Badenes, Carles; Mahadevan, Suvrath; Terrien, Ryan

    2018-01-01

    Close stellar binaries can drive dynamical interactions that affect the structure and evolution of planetary systems. Binary surveys indicate that the multiplicity fraction and typical orbital separation decrease with primary mass, but correlations with higher order architectural parameters such as the system's mass ratio are less well constrained. We seek to identify and characterize double-lined spectroscopic binaries (SB2s) among the 1350 M dwarf ancillary science targets with APOGEE spectra in the SDSS-III Data Release 13. We quantitatively measure the degree of asymmetry in the APOGEE pipeline cross-correlation functions (CCFs), and use those metrics to identify a sample of 44 high-likelihood candidate SB2s. Extracting radial velocities (RVs) for both binary components from the CCF, we then measure mass ratios for 31 SB2s; we also use Bayesian techniques to fit orbits for 4 systems with 8 or more distinct APOGEE observations. The (incomplete) mass ratio distribution of this sample rises quickly towards unity. Two-sided Kolmogorov-Smirnov (K-S) tests find probabilities of 13.8% and 14.2% that the M dwarf mass ratio distribution is consistent with those measured by Pourbaix et al. (2004) and Fernandez et al. (2017), respectively. The samples analyzed by Pourbaix et al. and Fernandez et al. are dominated by higher-mass solar type stars; this suggests that the mass ratio distribution of close binaries is not strongly dependent on primary mass.

  3. Angular Momentum of Dwarf Galaxies

    Science.gov (United States)

    Butler, Kirsty M.; Obreschkow, Danail; Oh, Se-Heon

    2017-01-01

    We present measurements of baryonic mass {M}{{b}} and specific angular momentum (sAM) {j}{{b}} in 14 rotating dwarf Irregular (dIrr) galaxies from the LITTLE THINGS sample. These measurements, based on 21 cm kinematic data from the Very Large Array and stellar mass maps from the Spitzer Space Telescope, extend previous AM measurements by more than two orders of magnitude in {M}{{b}}. The dwarf galaxies show systematically higher {j}{{b}} values than expected from the {j}{{b}}\\propto {M}{{b}}2/3 scaling of spiral galaxies, representative of a scale-free galaxy formation scenario. This offset can be explained by decreasing baryon mass fractions {f}{{M}}={M}{{b}}/{M}{dyn} (where {M}{dyn} is the dynamical mass) with decreasing {M}{{b}} (for {M}{{b}}< {10}11 {M}⊙ ). We find that the sAM of neutral atomic hydrogen (H I) alone is about 2.5 times higher than that of the stars. The M-j relation of H I is significantly steeper than that of the stars, as a direct consequence of the systematic variation of the H I fraction with {M}{{b}}.

  4. X-RAY SOURCES IN THE DWARF SPHEROIDAL GALAXY DRACO

    Energy Technology Data Exchange (ETDEWEB)

    Sonbas, E. [University of Adiyaman, Department of Physics, 02040 Adiyaman (Turkey); Rangelov, B.; Kargaltsev, O.; Dhuga, K. S.; Hare, J.; Volkov, I., E-mail: edasonbas@yahoo.com [Department of Physics, The George Washington University, Washington, DC 20052 (United States)

    2016-04-10

    We present the spectral analysis of an 87 ks XMM-Newton observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with active galactic nuclei, few of them possess the characteristics of low-mass X-ray binaries (LMXBs) and cataclysmic variable (CVs). Our analysis places constraints on the population of X-ray sources with L{sub X} > 3 × 10{sup 33} erg s{sup −1} in Draco, suggesting that there are no actively accreting black hole and neutron star binaries. However, we find four sources that could be quiescent state LMXBs/CVs associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5 keV.

  5. X-Ray Emissions from Accreting White Dwarfs: A Review

    Science.gov (United States)

    Mukai, K.

    2017-01-01

    Interacting binaries in which a white dwarf accretes material from a companion-cataclysmic variables (CVs) in which the mass donor is a Roche-lobe filling star on or near the main sequence, and symbiotic stars in which the mass donor is a late type giant-are relatively commonplace. They display a wide range of behaviors in the optical, X-rays, and other wavelengths, which still often baffle observers and theorists alike. Here I review the existing body of research on X-ray emissions from these objects for the benefits of both experts and newcomers to the field. I provide introductions to the past and current X-ray observatories, the types of known X-ray emissions from these objects, and the data analysis techniques relevant to this field. I then summarize of our knowledge regarding the X-ray emissions from magnetic CVs, non-magnetic CVs and symbiotic stars, and novae in eruption. I also discuss space density and the X-ray luminosity functions of these binaries and their contribution to the integrated X-ray emission from the Galaxy. I then discuss open questions and future prospects.

  6. Formation of Millisecond Pulsars with Heavy White Dwarf Companions: Extreme Mass Transfer on Subthermal Timescales.

    Science.gov (United States)

    Tauris; van Den Heuvel EP; Savonije

    2000-02-20

    We have performed detailed numerical calculations of the nonconservative evolution of close X-ray binary systems with intermediate-mass (2.0-6.0 M middle dot in circle) donor stars and a 1.3 M middle dot in circle accreting neutron star. We calculated the thermal response of the donor star to mass loss in order to determine its stability and follow the evolution of the mass transfer. Under the assumption of the "isotropic reemission model," we demonstrate that in many cases it is possible for the binary to prevent a spiral-in and survive a highly super-Eddington mass transfer phase (1millisecond pulsars with heavy CO white dwarfs and relatively short orbital periods (3-50 days). However, we conclude that to produce a binary pulsar with a O-Ne-Mg white dwarf or Porb approximately 1 day (e.g., PSR B0655+64) the above scenario does not work, and a spiral-in phase is still considered the most plausible scenario for the formation of such a system.

  7. Transformation of a star into a planet in a millisecond pulsar binary.

    Science.gov (United States)

    Bailes, M; Bates, S D; Bhalerao, V; Bhat, N D R; Burgay, M; Burke-Spolaor, S; D'Amico, N; Johnston, S; Keith, M J; Kramer, M; Kulkarni, S R; Levin, L; Lyne, A G; Milia, S; Possenti, A; Spitler, L; Stappers, B; van Straten, W

    2011-09-23

    Millisecond pulsars are thought to be neutron stars that have been spun-up by accretion of matter from a binary companion. Although most are in binary systems, some 30% are solitary, and their origin is therefore mysterious. PSR J1719-1438, a 5.7-millisecond pulsar, was detected in a recent survey with the Parkes 64-meter radio telescope. We show that this pulsar is in a binary system with an orbital period of 2.2 hours. The mass of its companion is near that of Jupiter, but its minimum density of 23 grams per cubic centimeter suggests that it may be an ultralow-mass carbon white dwarf. This system may thus have once been an ultracompact low-mass x-ray binary, where the companion narrowly avoided complete destruction.

  8. A Model for the Galactic Population of Symbiotic Stars with White Dwarf Accretors

    Science.gov (United States)

    Yungelson, L.; Livio, M.; Tutukov, A.; Kenyon, S. J.

    1995-07-01

    By means of a population synthesis code, we investigate the formation of symbiotic systems in which the hot components are assumed to be white dwarfs which are either burning hydrogen steadily or are in a post-nova plateau" phase, in the evolution of exploding white dwarfs. Our estimate for the total number of symbiotic systems in the Galaxy, ˜3000-30,000 (depending on different model assumptions), is compatible with observational estimates. The crucial parameter for the determination of the birthrate and number of symbiotic stars is the mass of the hydrogen layer which the white dwarf can accumulate prior to hydrogen ignition. We model the distributions of symbiotic stars over orbital periods, masses of the components, mass-loss rates by the cool components, and brightness of components, and we obtain a reasonable agreement with observations. We show that in systems which are the most efficient in producing the symbiotic phenomenon, the accretors have to capture up to ˜30% of the matter lost by the cool component via a stellar wind. If the fraction of captured matter is significantly lower, it becomes impossible to explain even the lowest observational estimates of the number of symbiotic stars. The theoretical estimate of the average rate of symbiotic novae is ˜0.1 yr-1, compatible with the observed one. The apparent normal chemical composition of symbiotic novae can be explained if the white dwarfs in these systems, which have systematically lower masses than in cataclysmic binaries, manage to preserve "buffer" helium layers between their CO cores and the accreted hydrogen envelopes. Mass exchange in symbiotic systems does not lead to SN Ia's via the accumulation of a Chandrasekhar mass. However, if sub-Chandrasekhar-mass, double-detonation models indeed produce SN Ia's, then symbiotic systems can be the progenitors of ≲⅓ of the events. According to the model, SN Ia's in symbiotic binaries belong to young and intermediate-age populations (t ≲ 6 × 109

  9. Primordial main equence binary stars in the globular cluster M71

    Science.gov (United States)

    Yan, Lin; Mateo, Mario

    1994-01-01

    We report the identification of five short-period variables near the center of the metal-rich globular cluster M71. Our observations consist of multiepoch VI charge coupled device (CCD) images centered on the cluster and covering a 6.3 min x 6.3 min field. Four of these variables are contact eclipsing binaries with periods between 0.35 and 0.41 days; one is a detached or semidetached eclipsing binary with a period of 0.56 days. Two of the variables were first identified as possible eclipsing binaries in an earlier survey by Hodder et al. (1992). We have used a variety of arguments to conclude that all five binary stars are probable members of M71, a result that is consistent with the low number (0.15) of short-period field binaries expected along this line of sight. Based on a simple model of how contact binaries evolve from initially detached binaries, we have determined a lower limit of 1.3% on the frequency of primordial binaries in M71 with initial orbital periods in the range 2.5 - 5 days. This implies that the overall primordial binary frequency, f, is 22(sup +26)(sub -12)% assuming df/d log P = const ( the 'flat' distribution), or f = 57(sup +15)(sub -8)% for df/d log P = 0.032 log P + const as observed for G-dwarf binaries in the solar neighborhood (the 'sloped' distribution). Both estimates of f correspond to binaries with initial periods shorter than 800 yr since any longer-period binaries would have been disrupted over the lifetime of the cluster. Our short-period binary frequency is in excellent agreement with the observed frequency of red-giant binaries observed in globulars if we adopt the flat distribution. For the sloped distribution, our results significantly overestimate the number of red-giant binaries. All of the short-period M71 binaries lie within 1 mag of the luminosity of the cluster turnoff in the color-magnitude diagram despite the fact we should have easily detected similar eclipsing binaries 2 - 2.5 mag fainter than this. We discuss the

  10. Numerical calculations of mass transfer flow in semi-detached binary systems. [of stars

    Science.gov (United States)

    Edwards, D. A.; Pringle, J. E.

    1987-01-01

    The details of the mass transfer flow near the inner Lagrangian point in a semidetached binary system are numerically calculated. A polytropic equation of state with n = 3/2 is used. The dependence of the mass transfer rate on the degree to which the star overfills its Roche lobe is calculated, and good agreement with previous analytic estimates is found. The variation of mass transfer rate which occurs if the binary system has a small eccentricity is calculated and is used to cast doubt on the model for superhumps in dwarf novae proposed by Papaloizou and Pringle (1979).

  11. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  12. Binary Neutron Star Mergers.

    Science.gov (United States)

    Faber, Joshua A; Rasio, Frederic A

    2012-01-01

    We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-)hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.

  13. Binary Neutron Star Mergers

    Directory of Open Access Journals (Sweden)

    Joshua A. Faber

    2012-07-01

    Full Text Available We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.

  14. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    Science.gov (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  15. ON THE FORMATION OF ECCENTRIC MILLISECOND PULSARS WITH HELIUM WHITE-DWARF COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, John, E-mail: antoniadis@dunlap.utoronto.ca [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada)

    2014-12-20

    Millisecond pulsars (MSPs) orbiting helium white dwarfs (WDs) in eccentric orbits challenge the established binary-evolution paradigm that predicts efficient orbital circularization during the mass-transfer episode that spins up the pulsar. Freire and Tauris recently proposed that these binary MSPs may instead form from the rotationally delayed accretion-induced collapse of a massive WD. However, their hypothesis predicts that eccentric systems preferably host low-mass pulsars and travel with small systemic velocities—in tension with new observational constraints. Here, I show that a substantial growth in eccentricity may alternatively arise from the dynamical interaction of the binary with a circumbinary disk. Such a disk may form from ejected donor material during hydrogen flash episodes, when the neutron star is already an active radio pulsar and tidal forces can no longer circularize the binary. I demonstrate that a short-lived (10{sup 4}-10{sup 5} yr) disk can result in eccentricities of e ≅ 0.01-0.15 for orbital periods between 15 and 50 days. Finally, I propose that, more generally, the disk hypothesis may explain the lack of circular binary pulsars for the aforementioned orbital-period range.

  16. Pluto: Planet or "Dwarf Planet"?

    Science.gov (United States)

    Voelzke, M. R.; de Araújo, M. S. T.

    2010-09-01

    In August 2006 during the XXVI General Assembly of the International Astronomical Union (IAU), taken place in Prague, Czech Republic, new parameters to define a planet were established. According to this new definition Pluto will be no more the ninth planet of the Solar System but it will be changed to be a "dwarf planet". This reclassification of Pluto by the academic community clearly illustrates how dynamic science is and how knowledge of different areas can be changed and evolves through the time, allowing to perceive Science as a human construction in a constant transformation, subject to political, social and historical contexts. These epistemological characteristics of Science and, in this case, of Astronomy, constitute important elements to be discussed in the lessons, so that this work contributes to enable Science and Physics teachers who perform a basic education to be always up to date on this important astronomical fact and, thereby, carry useful information to their teaching.

  17. Binary and Millisecond Pulsars.

    Science.gov (United States)

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  18. Modelling binary data

    CERN Document Server

    Collett, David

    2002-01-01

    INTRODUCTION Some Examples The Scope of this Book Use of Statistical Software STATISTICAL INFERENCE FOR BINARY DATA The Binomial Distribution Inference about the Success Probability Comparison of Two Proportions Comparison of Two or More Proportions MODELS FOR BINARY AND BINOMIAL DATA Statistical Modelling Linear Models Methods of Estimation Fitting Linear Models to Binomial Data Models for Binomial Response Data The Linear Logistic Model Fitting the Linear Logistic Model to Binomial Data Goodness of Fit of a Linear Logistic Model Comparing Linear Logistic Models Linear Trend in Proportions Comparing Stimulus-Response Relationships Non-Convergence and Overfitting Some other Goodness of Fit Statistics Strategy for Model Selection Predicting a Binary Response Probability BIOASSAY AND SOME OTHER APPLICATIONS The Tolerance Distribution Estimating an Effective Dose Relative Potency Natural Response Non-Linear Logistic Regression Models Applications of the Complementary Log-Log Model MODEL CHECKING Definition of Re...

  19. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  20. Surface Magnetic Field Strengths: New Tests of Magnetoconvective Models of M Dwarfs

    Science.gov (United States)

    MacDonald, James; Mullan, D. J.

    2014-05-01

    Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. In a recent paper, Torres has identified four prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict by several percent. These four systems potentially provide the most challenging tests of precision evolutionary models of cool dwarfs at the present time. We have previously modeled M dwarfs in the context of a criterion due to Gough & Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. In the present paper, we apply our magnetoconvective approach to the four prime systems in the Torres list. Going a step beyond what we have already modeled in CM Dra (one of the four Torres systems), we note that new constraints on magnetoconvective models of M dwarfs are now available from empirical estimates of magnetic field strengths on the surfaces of these stars. In the present paper, we consider how well our magnetoconvective models succeed when confronted with this new test of surface magnetic field strengths. Among the systems listed by Torres, we find that plausible magnetic models work well for CM Dra, YY Gem, and CU Cnc. (The fourth system in Torres's list does not yet have enough information to warrant magnetic modeling.) Our magnetoconvection models of CM Dra, YY Gem, and CU Cnc yield predictions of the magnetic fluxes on the stellar surface which are consistent with the observed correlation between magnetic flux and X-ray luminosity.

  1. The Potential of Planets Orbiting Red Dwarf Stars to Support Oxygenic Photosynthesis and Complex Life

    OpenAIRE

    Gale, Joseph; Wandel, Amri

    2015-01-01

    We review the latest findings on extra-solar planets and their potential to support Earth-like life. Focusing on planets orbiting Red Dwarf (RD) stars, the most abundant stellar type, we show that including RDs as potential host stars could increase the probability of finding biotic planets by a factor of up to a thousand, and reduce the estimate of the distance to our nearest biotic neighbor by up to 10. We argue that binary and multiple star systems need to be taken into account when discus...

  2. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Duncan R. Lorimer

    1998-09-01

    Full Text Available Our knowledge of binary and millisecond pulsars has greatly increased in recent years. This is largely due to the success of large-area surveys which have brought the known population of such systems in the Galactic disk to around 50. As well as being interesting as a population of astronomical sources, many pulsars turn out to be superb celestial clocks. In this review we summarise the main properties of binary and millisecond pulsars and highlight some of their applications to relativistic astrophysics.

  3. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  4. Transit probabilities for debris around white dwarfs

    Science.gov (United States)

    Lewis, John Arban; Johnson, John A.

    2017-01-01

    The discovery of WD 1145+017 (Vanderburg et al. 2015), a metal-polluted white dwarf with an infrared-excess and transits confirmed the long held theory that at least some metal-polluted white dwarfs are actively accreting material from crushed up planetesimals. A statistical understanding of WD 1145-like systems would inform us on the various pathways for metal-pollution and the end states of planetary systems around medium- to high-mass stars. However, we only have one example and there are presently no published studies of transit detection/discovery probabilities for white dwarfs within this interesting regime. We present a preliminary look at the transit probabilities for metal-polluted white dwarfs and their projected space density in the Solar Neighborhood, which will inform future searches for analogs to WD 1145+017.

  5. Astronomy: Ring detected around a dwarf planet

    Science.gov (United States)

    Sickafoose, Amanda A.

    2017-10-01

    Observations of the distant dwarf planet Haumea constrain its size, shape and density, and reveal an encircling planetary ring. The discovery suggests that rings are not as rare in the Solar System as previously thought. See Letter p.219

  6. A progenitor binary and an ejected mass donor remnant of faint type Ia supernovae

    Science.gov (United States)

    Geier, S.; Marsh, T. R.; Wang, B.; Dunlap, B.; Barlow, B. N.; Schaffenroth, V.; Chen, X.; Irrgang, A.; Maxted, P. F. L.; Ziegerer, E.; Kupfer, T.; Miszalski, B.; Heber, U.; Han, Z.; Shporer, A.; Telting, J. H.; Gänsicke, B. T.; Østensen, R. H.; O'Toole, S. J.; Napiwotzki, R.

    2013-06-01

    Type Ia supernovae (SN Ia) are the most important standard candles for measuring the expansion history of the universe. The thermonuclear explosion of a white dwarf can explain their observed properties, but neither the progenitor systems nor any stellar remnants have been conclusively identified. Underluminous SN Ia have been proposed to originate from a so-called double-detonation of a white dwarf. After a critical amount of helium is deposited on the surface through accretion from a close companion, the helium is ignited causing a detonation wave that triggers the explosion of the white dwarf itself. We have discovered both shallow transits and eclipses in the tight binary system CD-30°11223 composed of a carbon/oxygen white dwarf and a hot helium star, allowing us to determine its component masses and fundamental parameters. In the future the system will transfer mass from the helium star to the white dwarf. Modelling this process we find that the detonation in the accreted helium layer is sufficiently strong to trigger the explosion of the core. The helium star will then be ejected at such high velocity that it will escape the Galaxy. The predicted properties of this remnant are an excellent match to the so-called hypervelocity star US 708, a hot, helium-rich star moving at more than 750 km s-1, sufficient for it to leave the Galaxy. The identification of both progenitor and remnant provides a consistent picture of the formation and evolution of underluminous SNIa.

  7. DWARF BUNT: politics, identification, and biology.

    Science.gov (United States)

    Mathre, D E

    1996-01-01

    Dwarf bunt is a disease of wheat caused by the smut fungus Tilletia controversa Kuhn. Winter wheat (Triticum aestivum L.) is the primary host of economic significance. Although the total acreage affected by dwarf bunt is small relative to total wheat production worldwide, the disease has assumed attention disproportionate to its economic impact because it has become a matter of contention in world trade in cereals. This review describes the political and economic issues underlying the study and identification of T. controversa.

  8. Temperate Earth-sized planets transiting a nearby ultracool dwarf star

    Science.gov (United States)

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M.; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam; Triaud, Amaury H. M. J.; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K.; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2017-01-01

    Stellar-like objects with effective temperatures of 2700K and below are referred to as “ultracool dwarfs”1. This heterogeneous group includes both extremely low-mass stars and brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15% of the stellar-like objects in the vicinity of the Sun2. Based on the small masses and sizes of their protoplanetary disks3,4, core-accretion theory for ultracool dwarfs predicts a large, but heretofore undetected population of close-in terrestrial planets5, ranging from metal-rich Mercury-sized planets6 to more hospitable volatile-rich Earth-sized planets7. Here we report the discovery of three short-period Earth-sized planets transiting an ultracool dwarf star 12 parsecs away using data collected by the TRAPPIST8 telescope as part of an ongoing prototype transit survey9. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star10. Eleven orbits remain possible for the third planet based on our data, the most likely resulting in an irradiation significantly smaller than Earth's. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system. PMID:27135924

  9. ON THE EVOLUTION OF MAGNETIC WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, P.-E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Fontaine, G.; Brassard, P. [Département de Physique, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7 (Canada); Freytag, B. [Department of Physics and Astronomy at Uppsala University, Regementsvägen 1, Box 516, SE-75120 Uppsala (Sweden); Steiner, O. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Ludwig, H.-G. [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany); Steffen, M. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Wedemeyer, S., E-mail: tremblay@stsci.edu [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2015-10-10

    We present the first radiation magnetohydrodynamic simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-β parameter, the thermal-to-magnetic-pressure ratio, becomes smaller than unity. The critical field strength that inhibits convection in the photosphere of white dwarfs is in the range B = 1–50 kG, which is much smaller than the typical 1–1000 MG field strengths observed in magnetic white dwarfs, implying that these objects have radiative atmospheres. We have employed evolutionary models to study the cooling process of high-field magnetic white dwarfs, where convection is entirely suppressed during the full evolution (B ≳ 10 MG). We find that the inhibition of convection has no effect on cooling rates until the effective temperature (T{sub eff}) reaches a value of around 5500 K. In this regime, the standard convective sequences start to deviate from the ones without convection due to the convective coupling between the outer layers and the degenerate reservoir of thermal energy. Since no magnetic white dwarfs are currently known at the low temperatures where this coupling significantly changes the evolution, the effects of magnetism on cooling rates are not expected to be observed. This result contrasts with a recent suggestion that magnetic white dwarfs with T{sub eff} ≲ 10,000 K cool significantly slower than non-magnetic degenerates.

  10. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  11. Binary tense and modality

    NARCIS (Netherlands)

    Broekhuis, H.; Verkuyl, H.J

    2014-01-01

    The present paper adopts as its point of departure the claim by Te Winkel (1866) and Verkuyl (2008) that mental temporal representations are built on the basis of three binary oppositions: Present/Past, Synchronous/Posterior and Imperfect/Perfect. Te Winkel took the second opposition in terms of the

  12. Cloudless Atmospheres for L/T Dwarfs and Extrasolar Giant Planets

    Science.gov (United States)

    Tremblin, P.; Amundsen, D. S.; Chabrier, G.; Baraffe, I.; Drummond, B.; Hinkley, S.; Mourier, P.; Venot, O.

    2016-01-01

    The admitted, conventional scenario to explain the complex spectral evolution of brown dwarfs (BDs) since their first detection 20 years ago has always been the key role played by micron-size condensates, called "dust" or "clouds," in their atmosphere. This scenario, however, faces major problems, in particular the J-band brightening and the resurgence of FeH absorption at the L to T transition, and a physical first-principle understanding of this transition is lacking. In this Letter, we propose a new, completely different explanation for BD and extrasolar giant planet (EGP) spectral evolution, without the need to invoke clouds. We show that, due to the slowness of the CO/ CH4 and N2/NH3 chemical reactions, brown dwarf (L and T, respectively) and EGP atmospheres are subject to a thermo-chemical instability similar in nature to the fingering or chemical convective instability present in Earth oceans and at the Earth core/mantle boundary. The induced small-scale turbulent energy transport reduces the temperature gradient in the atmosphere, explaining the observed increase in near-infrared J-H and J-K colors of L dwarfs and hot EGPs, while a warming up of the deep atmosphere along the L to T transition, as the CO/CH4 instability vanishes, naturally solves the two aforementioned puzzles, and provides a physical explanation of the L to T transition. This new picture leads to a drastic revision of our understanding of BD and EGP atmospheres and their evolution.

  13. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  14. An observer's guide to the (Local Group) dwarf galaxies: predictions for their own dwarf satellite populations

    Science.gov (United States)

    Dooley, Gregory A.; Peter, Annika H. G.; Yang, Tianyi; Willman, Beth; Griffen, Brendan F.; Frebel, Anna

    2017-11-01

    A recent surge in the discovery of new ultrafaint dwarf satellites of the Milky Way has inspired the idea of searching for faint satellites, 103 M⊙ field galaxies in the Local Group. Such satellites would be subject to weaker environmental influences than Milky Way satellites, and could lead to new insights on low-mass galaxy formation. In this paper, we predict the number of luminous satellites expected around field dwarf galaxies by applying several abundance-matching models and a reionization model to the dark-matter only Caterpillar simulation suite. For three of the four abundance-matching models used, we find a >99 per cent chance that at least one satellite with stellar mass M* > 105 M⊙ exists around the combined five Local Group field dwarf galaxies with the largest stellar mass. When considering satellites with M* > 104 M⊙, we predict a combined 5-25 satellites for the five largest field dwarfs, and 10-50 for the whole Local Group field dwarf population. Because of the relatively small number of predicted dwarfs, and their extended spatial distribution, a large fraction each Local Group dwarf's virial volume will need to be surveyed to guarantee discoveries. We compute the predicted number of satellites in a given field of view of specific Local Group galaxies, as a function of minimum satellite luminosity, and explicitly obtain such values for the Solitary Local dwarfs survey. Uncertainties in abundance-matching and reionization models are large, implying that comprehensive searches could lead to refinements of both models.

  15. An observer's guide to the (Local Group) dwarf galaxies: predictions for their own dwarf satellite populations

    Science.gov (United States)

    Dooley, Gregory A.; Peter, Annika H. G.; Yang, Tianyi; Willman, Beth; Griffen, Brendan F.; Frebel, Anna

    2017-11-01

    A recent surge in the discovery of new ultrafaint dwarf satellites of the Milky Way has inspired the idea of searching for faint satellites, 103 M⊙ satellites would be subject to weaker environmental influences than Milky Way satellites, and could lead to new insights on low-mass galaxy formation. In this paper, we predict the number of luminous satellites expected around field dwarf galaxies by applying several abundance-matching models and a reionization model to the dark-matter only Caterpillar simulation suite. For three of the four abundance-matching models used, we find a >99 per cent chance that at least one satellite with stellar mass M* > 105 M⊙ exists around the combined five Local Group field dwarf galaxies with the largest stellar mass. When considering satellites with M* > 104 M⊙, we predict a combined 5-25 satellites for the five largest field dwarfs, and 10-50 for the whole Local Group field dwarf population. Because of the relatively small number of predicted dwarfs, and their extended spatial distribution, a large fraction each Local Group dwarf's virial volume will need to be surveyed to guarantee discoveries. We compute the predicted number of satellites in a given field of view of specific Local Group galaxies, as a function of minimum satellite luminosity, and explicitly obtain such values for the Solitary Local dwarfs survey. Uncertainties in abundance-matching and reionization models are large, implying that comprehensive searches could lead to refinements of both models.

  16. Response of dwarf mistletoe-infested ponderosa pine to thinning: 2. Dwarf mistletoe propagation.

    Science.gov (United States)

    Lewis F. Roth; James W. Barrett

    1985-01-01

    Propagation of dwarf mistletoe in ponderosa pine saplings is little influenced by thinning overly dense stands to 250 trees per acre. Numerous plants that appear soon after thinning develop from formerly latent plants in the suppressed under-story. Subsequently, dwarf mistletoe propagates nearly as fast as tree crowns enlarge but the rate differs widely among trees....

  17. Wind-accelerated orbital evolution in binary systems with giant stars

    Science.gov (United States)

    Chen, Zhuo; Blackman, Eric G.; Nordhaus, Jason; Frank, Adam; Carroll-Nellenback, Jonathan

    2018-01-01

    Using 3D radiation-hydrodynamic simulations and analytic theory, we study the orbital evolution of asymptotic giant branch (AGB) binary systems for various initial orbital separations and mass ratios, and thus different initial accretion modes. The time evolution of binary separations and orbital periods are calculated directly from the averaged mass-loss rate, accretion rate and angular momentum loss rate. We separately consider spin-orbit synchronized and zero-spin AGB cases. We find that the angular momentum carried away by the mass loss together with the mass transfer can effectively shrink the orbit when accretion occurs via wind-Roche lobe overflow. In contrast, the larger fraction of mass lost in Bondi-Hoyle-Lyttleton accreting systems acts to enlarge the orbit. Synchronized binaries tend to experience stronger orbital period decay in close binaries. We also find that orbital period decay is faster when we account for the non-linear evolution of the accretion mode as the binary starts to tighten. This can increase the fraction of binaries that result in common envelope, luminous red novae, Type Ia supernovae and planetary nebulae with tight central binaries. The results also imply that planets in the habitable zone around white dwarfs are unlikely to be found.

  18. Tracking an Exodus: Lost Children of the Dwarf Planet Haumea

    Science.gov (United States)

    Maggard, Steven; Ragozzine, Darin

    2017-10-01

    The orbital properties of Kuiper Belt Objects (KBOs) refine our understanding of the formation of the solar system. One object of particular interest is the dwarf planet Haumea which experienced a collision in the early stages of our solar system that ejected shards form its surface and spread them over a localized part of the Kuiper Belt. Detailed orbital integrations are required to determine the dynamical distances between family members, in the form of "Delta v" as measured from conserved proper orbital elements (Ragozzine & Brown 2007). In the past 10 years, the number of known KBOs has tripled; here, we perform dynamical integrations to triple the number of candidate Haumea family members. The resulting improved understanding of Haumea's family will bring us closer to understanding its formation. In order to place more secure estimates on the dynamical classification of Haumea family members (and KBOs generally), we use OpenOrb to perform rigorous Bayesian uncertainty propagation from observational uncertainty into orbital elements and then into dynamical classifications. We will discuss our methodology, the new Haumea family members, and some implications for the Haumea family.

  19. Metallic Winds in Dwarf Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Valdez, F.; Rodríguez-González, A.; Hernández-Martínez, L.; Esquivel, A., E-mail: fatima.robles@correo.nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, 04510, Mexico City (Mexico)

    2017-02-01

    We present results from models of galactic winds driven by energy injected from nuclear (at the galactic center) and non-nuclear starbursts. The total energy of the starburst is provided by very massive young stellar clusters, which can push the galactic interstellar medium and produce an important outflow. Such outflow can be a well or partially mixed wind, or a highly metallic wind. We have performed adiabatic 3D N -Body/Smooth Particle Hydrodynamics simulations of galactic winds using the gadget-2 code. The numerical models cover a wide range of parameters, varying the galaxy concentration index, gas fraction of the galactic disk, and radial distance of the starburst. We show that an off-center starburst in dwarf galaxies is the most effective mechanism to produce a significant loss of metals (material from the starburst itself). At the same time, a non-nuclear starburst produces a high efficiency of metal loss, in spite of having a moderate to low mass loss rate.

  20. Point Source Polarimetry with the Gemini Planet Imager: Sensitivity Characterization with T5.5 Dwarf Companion HD 19467 B

    Science.gov (United States)

    Jensen-Clem, Rebecca; Millar-Blanchaer, Max; Mawet, Dimitri; Graham, James R.; Wallace, J. Kent; Macintosh, Bruce; Hinkley, Sasha; Wiktorowicz, Sloane J.; Perrin, Marshall D.; Marley, Mark S.; hide

    2016-01-01

    Detecting polarized light from self-luminous exoplanets has the potential to provide key information about rotation, surface gravity, cloud grain size, and cloud coverage. While field brown dwarfs with detected polarized emission are common, no exoplanet or substellar companion has yet been detected in polarized light. With the advent of high contrast imaging spectro-polarimeters such as GPI and SPHERE, such a detection may now be possible with careful treatment of instrumental polarization. In this paper, we present 28 minutes of H-band GPI polarimetric observations of the benchmark T5.5 companion HD 19467 B. We detect no polarization signal from the target, and place an upper limit on the degree of linear polarization of pCL99:73% less than 1:7%. We discuss our results in the context of T dwarf cloud models and photometric variability.

  1. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    Science.gov (United States)

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  2. Binary Orbits as the Driver of Gamma-Ray Emission and Mass Ejection in Classical Novae

    Science.gov (United States)

    Chomiuk, Laura; Linford, Justin D.; Yang, Jun; O'Brien, T. J.; Paragi, Zsolt; Mioduszewski, Amy J.; Beswick, R. J.; Cheung, C. C.; Mukai, Koji; Nelson, Thomas

    2014-01-01

    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel about 10 (sup -4) solar masses of material at velocities exceeding 1,000 kilometers per second.However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of thermonuclear energy, prolonged optically thick winds or binary interaction with the nova envelope. Classical novae are now routinely detected at giga-electronvolt gamma-ray wavelengths, suggesting that relativistic particles are accelerated by strong shocks in the ejecta. Here we report high-resolution radio imaging of the gamma-ray-emitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion..At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters.

  3. How brown is brown fat that we can see?

    Science.gov (United States)

    Kolonin, Mikhail G

    2014-04-01

    There are many unanswered questions related to the heterogeneity of adipose tissue depots and the paucity of their function, development, and organization at the cellular level. Much effort has been directed at studying white adipose tissue (WAT), the driver of obesity and the associated metabolic disease. In recent years, the importance of brown adipose tissue (BAT) has also been appreciated. While BAT depots are prominent in many small mammal species, their detection in adult humans has been technically challenging and the identity of brown human adipocytes found within depots of WAT has remained controversial. We recently reported a peptide probe that binds to BAT vasculature and, when coupled with a near-infrared fluorophore, can be used to detect BAT in whole body imaging. This probe reliably discriminates between endothelium associated with brown or brown-like (beige/brite) adipocytes and endothelium of visceral WAT. Improved probes based on this approach could aid in assessing human adipose tissue body distribution and remodeling, which is a process underlying various pathologies. This commentary aims at discussing open questions that need to be addressed before full clinical advantage can be taken from adipose tissue imaging, as well as its metabolic activation strategies.

  4. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Rune Hansen, Esben; Srinivasa Rao, S.; Tiedemann, Peter

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1......-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances....

  5. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1......-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances...

  6. Binary Masking & Speech Intelligibility

    OpenAIRE

    Boldt, Jesper

    2010-01-01

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined i...

  7. Rapid Rotation of a Heavy White Dwarf

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    New Kepler observations of a pulsating white dwarf have revealed clues about the rotation of intermediate-mass stars.Learning About ProgenitorsStars weighing in at under 8 solar masses generally end their lives as slowly cooling white dwarfs. By studying the rotation of white dwarfs, therefore, we are able to learn about the final stages of angular momentum evolution in these progenitor stars.Most isolated field white dwarfs cluster in mass around 0.62 solar masses, which corresponds to a progenitor mass of around 2.2 solar masses. This abundance means that weve already learned a good deal about the final rotation of low-mass (13 solar-mass) stars. Our knowledge about the angular momentum of intermediate-mass (38 solar-mass) stars, on the other hand, remains fairly limited.Fourier transform of the pulsations from SDSSJ0837+1856. The six frequencies of stellar variability, marked with red dots, reveal a rotation period of 1.13 hours. [Hermes et al. 2017]Record-Breaking FindA newly discovered white dwarf, SDSSJ0837+1856, is now helping to shed light on this mass range. SDSSJ0837+1856 appears to be unusually massive: its measured at 0.87 solar masses, which corresponds to a progenitor mass of roughly 4.0 solar masses. Determining the rotation of this white dwarf would therefore tell us about the final stages of angular momentum in an intermediate-mass star.In a new study led by J.J. Hermes (Hubble Fellow at University of North Carolina, Chapel Hill), a team of scientists presents a series of measurements of SDSSJ0837+1856 that suggest its the highest-mass and fastest-rotating isolated pulsating white dwarf known.Histogram of rotation rates determined from the asteroseismology of pulsating white dwarfs (marked in red). SDSSJ0837+1856 (indicated in black) is more massive and rotates faster than any other known pulsating white dwarf. [Hermes et al. 2017]Rotation from PulsationsWhy pulsating? In the absence of measurable spots and other surface features, the way we

  8. Tidal Dwarf Galaxies and Missing Baryons

    Directory of Open Access Journals (Sweden)

    Frederic Bournaud

    2010-01-01

    Full Text Available Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” kno