WorldWideScience

Sample records for brown coal liquefaction

  1. Efficient direct coal liquefaction of a premium brown coal catalyzed by cobalt-promoted fumed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Trautmann, M.; Loewe, A.; Traa, Y. [Stuttgart Univ. (Germany). Inst. of Chemical Technology

    2013-11-01

    The search for alternatives in the fuel sector is an important technological challenge. An interim solution could be provided by direct coal liquefaction. Hydrogen economy and the lack of an efficient catalyst are the main obstacles for this process. We used a premium German brown coal with a high H/C molar ratio of 1.25 and nanostructured cobalt catalysts to improve the efficiency of direct coal liquefaction. We were able to recover and recycle the catalyst efficiently and reached good brown coal conversions and oil yields with single-stage coal liquefaction. The oil quality observed almost reached that of a conventional crude oil considering higher heating value (HHV), H/C molar ratio and aliphatic content. (orig.)

  2. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  3. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1992-01-01

    Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  4. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  5. Japan's Sunshine Project 1988 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Describes work carried out during the year on coal liquefaction and gasification technologies, bituminous and brown coal liquefaction, development of machinery and materials for coal liquefaction plant, coal type selection studies, data collection and processing, utilization and upgrading technology of coal derived products, toxicological and environmental effects of liquefied coal, coal-based hydrogen production technology and technology for entrained flow coal gasification.

  6. Coal liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Baker, N.R.; Blazek, C.F.; Tison, R.R.

    1979-07-01

    Coal liquefaction is an emerging technology receiving great attention as a possible liquid fuel source. Currently, four general methods of converting coal to liquid fuel are under active development: direct hydrogenation; pyrolysis/hydrocarbonization; solvent extraction; and indirect liquefaction. This work is being conducted at the pilot plant stage, usually with a coal feed rate of several tons per day. Several conceptual design studies have been published recently for large (measured in tens of thousands of tons per day coal feed rate) commercial liquefaction plants, and these reports form the data base for this evaluation. Products from a liquefaction facility depend on the particular method and plant design selected, and these products range from synthetic crude oils up through the lighter hydrocarbon gases, and, in some cases, electricity. Various processes are evaluated with respect to product compositions, thermal efficiency, environmental effects, operating and maintenance requirements, and cost. Because of the large plant capacities of current conceptual designs, it is not clear as to how, and on what scale, coal liquefaction may be considered appropriate as an energy source for Integrated Community Energy Systems (CES). Development work, both currently under way and planned for the future, should help to clarify and quantify the question of applicability.

  7. Cooperative research in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Sendlein, L.V.A. (eds.)

    1991-05-28

    Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

  8. Coal liquefaction technology: studies of coal liquefaction, and of product upgrading and utilization

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Experimental liquefaction is reported of subbituminous Taiheiyo coal with tetralin solvent and a red mud-sulfur catalyst, at 440 C and 85 kg/cm/sup 2/ initial hydrogen pressure. A study was made of the dependence of production composition and liquids yield on residence time. The results obtained were compared with corresponding results for Miike coal and Yallourn brown coal. Studies were also made of the influence of hydrotreating conditions on the properties of the hydrotreated oil, and of the hydrotreating of Taiheiyo coal SRC liquids. Possible uses for the hydrotreated product are diesel fuel, gas oil, hydrotreated oil with cetane number 45-60, and kerosene. 22 figs., 2 tabs.

  9. Japan`s sunshine project. 17.. 1992 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report describes the achievement of coal liquefaction and gasification technology development in the Sunshine Project for FY 1992. It presents the research and development of coal liquefaction which includes studies on reaction mechanism of coal liquefaction and catalysts for coal liquefaction, the research and development of coal gasification technologies which includes studies on gasification characteristics of various coals and improvement of coal gasification efficiency, the development of bituminous coal liquefaction which includes engineering, construction and operation of a bituminous coal liquefaction pilot plant and research by a process supporting unit (PSU), the development of brown coal liquefaction which includes research on brown coal liquefaction with a pilot plant and development of techniques for upgrading coal oil from brown coal, the development of common base technologies which includes development of slurry letdown valves and study on upgrading technology of coal-derived distillates, the development of coal-based hydrogen production technology with a pilot plant, the development of technology for entrained flow coal gasification, the assessment of coal hydrogasification, and the international co-operation. 4 refs., 125 figs., 39 tabs.

  10. Surfactant-Assisted Coal Liquefaction

    Science.gov (United States)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    Obtaining liquid fuels from coal which are economically competitive with those obtained from petroleum based sources is a significant challenge for the researcher as well as the chemical industry. Presently, the economics of coal liquefaction are not favorable because of relatively intense processing conditions (temperatures of 430 degrees C and pressures of 2200 psig), use of a costly catalyst, and a low quality product slate of relatively high boiling fractions. The economics could be made more favorable by achieving adequate coal conversions at less intense processing conditions and improving the product slate. A study has been carried out to examine the effect of a surfactant in reducing particle agglomeration and improving hydrodynamics in the coal liquefaction reactor to increase coal conversions...

  11. Separation of solids from coal liquefaction products using sonic waves

    Energy Technology Data Exchange (ETDEWEB)

    Slomka, B.J.

    1994-10-01

    Product streams containing solids are generated in both direct and indirect coal liquefaction processes. This project seeks to improve the effectiveness of coal liquefaction by novel application of sonic and ultrasonic energy to separation of solids from coal liquefaction streams.

  12. Coal liquefaction with preasphaltene recycle

    Science.gov (United States)

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  13. Progress in Coal Liquefaction Technologies

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Worldwide primary energy consumption is entering an era of pluralism and high quality under the influence of rapid economic development, increasing energy shortage and strict environmental policies. Although renewable energy technology is developing rapidly, fossil fuels (coal, oil and gas) are still the dominant energy sources in the world. As a country rich in coal but short ofoil and gas, China's oil imports have soared in the past few years. Government, research organizations and enterprises in China are paying more and more attention to the processes of converting coal into clean liquid fuels. Direct and indirect coal liquefaction technologies are compared in this paper based on China's current energy status and technological progress not only in China itself but also in the world.

  14. Steam pretreatment for coal liquefaction

    Science.gov (United States)

    Ivanenko, Olga

    The objectives of this work are to test the application of steam pretreatment to direct coal liquefaction, to investigate the reaction of model compounds with water, and to explore the use of zeolites in these processes. Previous work demonstrated the effectiveness of steam pretreatment in a subsequent flash pyrolysis. Apparently, subcritical steam ruptures nearly all of the ether cross links, leaving a partially depolymerized structure. It was postulated that very rapid heating of the pretreated coal to liquefaction conditions would be required to preserve the effects of such treatment. Accordingly, a method was adopted in which coal slurry is injected into a hot autoclave containing solvent. Since oxygen is capable of destroying the pretreatment effect, precautions were taken for its rigorous exclusion. Tests were conducted with Illinois No. 6 coal steam treated at 340sp°C, 750 psia for 15 minutes. Both raw and pretreated samples were liquified in deoxygenated tetralin at high severity (400sp°C, 30 min.) and low severity (a: 350sp°C, 30 min., and b: 385sp°C, 15 min.) conditions under 1500 psia hydrogen. Substantial improvement in liquid product quality was obtained and the need for rapid heating and oxygen exclusion demonstrated. Under low severity conditions, the oil yield was more than doubled, going from 12.5 to 29 wt%. Also chemistry of the pretreatment process was studied using aromatic ethers as model compounds. alpha-Benzylnaphthyl ether (alpha-BNE), alpha-naphthylmethyl phenyl (alpha-NMPE), and 9-phenoxyphenanthrene were exposed to steam and inert gas at pretreatment conditions and in some cases to liquid water at 315sp°C. alpha-BNE and alpha-NMPE showed little difference in conversion in inert gas and in steam. Hence, these compounds are poor models for coal in steam pretreatment. Thermally stable 9-phenoxyphenanthrene, however, was completely converted in one hour by liquid water at 315sp°C. At pretreatment conditions mostly rearranged starting

  15. Cooperative Research Program in coal liquefaction. Technical report, May 1, 1994--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Progress reports are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts.

  16. Cooperative research program in coal liquefaction. Quarterly report, August 1, 1991--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1991-12-31

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  17. Cooperative research program in coal liquefaction. Quarterly report, November 1, 1991--January 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1992-06-01

    Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  18. Cooperative research program in coal liquefaction. Quarterly report, August 1, 1991--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1991-12-31

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  19. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  20. Catalytic coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Weller, S W

    1981-01-01

    Monolith catalysts of MoO/sub 3/-CoO-Al/sub 2/O/sub 3/ were prepared and tested for coal liquefaction in a stirred autoclave. In general, the monolith catalysts were not as good as particulate catalysts prepared on Corning alumina supports. Measurement of O/sub 2/ chemisorption and BET surface area has been made on a series of Co/Mo/Al/sub 2/O/sub 3/ catalysts obtained from PETC. The catalysts were derived from Cyanamid 1442A and had been tested for coal liquefaction in batch autoclaves and continuous flow units. MoO/sub 3/-Al/sub 2/O/sub 3/ catalysts over the loading range 3.9 to 14.9 wt % MoO/sub 3/ have been studied with respect to BET surface (before and after reduction), O/sub 2/ chemisorption at -78/sup 0/C, redox behavior at 500/sup 0/C, and activity for cyclohexane dehydrogenation at 500/sup 0/C. In connection with the fate of tin catalysts during coal liquefaction, calculations have been made of the relative thermodynamic stability of SnCl/sub 2/, Sn, SnO/sub 2/, and SnS in the presence of H/sub 2/, HCl, H/sub 2/S and H/sub 2/O. Ferrous sulfate dispersed in methylnaphthalene has been shown to be reduced to ferrous sulfide under typical coal hydroliquefaction conditions (1 hour, 450/sup 0/C, 1000 psi initial p/sub H/sub 2//). This suggests that ferrous sulfide may be the common catalytic ingredient when either (a) ferrous sulfate impregnated on powdered coal, or (b) finely divided iron pyrite is used as the catalyst. Old research on impregnated ferrous sulfate, impregnated ferrous halides, and pyrite is consistent with this assumption. Eight Co/Mo/Al/sub 2/O/sub 3/ catalysts from commercial suppliers, along with SnCl/sub 2/, have been studied for the hydrotreating of 1-methylnaphthalene (1-MN) in a stirred autoclave at 450 and 500/sup 0/C.

  1. Potential environmental regulations for coal liquefaction facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dauzvardis, P.; Gasper, J.; Surles, T.

    1979-12-01

    Although this report deals with potential regulatory constraints only on development of coal liquids, it should be noted that every basic industry in the national economy is constrained by a myriad of state, local, and federal laws, and many of these existing laws may eventually affect coal liquids development. The American Petroleum Institute has prepared a list of the 12 most generally applicable environmental laws; these are summarized. For the present study, the most comprehensive constraining regulations likely to apply to coal liquefaction were chosen from this list. The choices depended in part upon which laws could be complied with by appropriate facility design. Therefore, for this study, the regulations examined were those covering solid and hazardous wastes and emissions of air and water pollutants. It should be noted that there are at present no emission regulations pertaining specifically to coal liquefaction. A survey of such analogous industries was conducted to identify regulations on air and water pollutants and solid waste disposal that might pertain to coal synfuel plants. The Federal New Source Performance Standards (NSPS) for air and water pollutants were specified where applicable. Wherever federal standards for a particular emission source or pollutant did not exist but appeared necessary, appropriate standards were specified on the basis of state regulations.Estimates of emission and effluent standards that may be applicable to coal liquefaction facilities are presented. Emission standards are defined for coal driers, boilers, process, and combustion equipment and for Claus sulfur plants. Effluent standards are provided for process, boiler, and miscellaneous waste streams. Sources of solid wastes from coal liquefaction and proposed disposal regulations for hazardous wastes are also described.

  2. Coal liquefaction and gas conversion: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  3. Co-liquefaction of micro algae with coal. 2; Bisai sorui to sekitan no kyoekika hanno. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, C.; Matsui, T.; Otsuki, M.; Ikenaga, N.; Suzuki, T. [Kansai University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    For the removal and recycle of CO2, a global warming gas, utilization of photosynthesis by micro algae is investigated. Formed micro algae are decomposed into CO2, H2O and CH4 again, which does not result in the permanent fixation. For the effective utilization of these micro algae, creation of petroleum alternate energy was tried through the co-liquefaction of micro algae with coal. Were investigated influences of the reaction temperature during the co-liquefaction and influences of catalysts, such as Fe(CO)5-S, Ru(CO)12, and Mo(CO)6-S, which are effective for the coal liquefaction. Micro algae, such as chlorella, spirulina, and littorale, and Yallourn brown coal were tested. It was found that co-liquefaction of micro algae with coal can be successfully proceeded under the same conditions as the liquefaction of coal. The oil yield obtained from the co-liquefaction in the presence of Fe(CO)5-S, an effective catalyst for coal liquefaction, agreed appropriately with the arithmetical mean value from separate liquefaction of coal and micro algae. It was suggested that pyrrhotite, an active species for coal liquefaction, was sufficiently formed by increasing the addition of sulfur. 2 refs., 7 figs., 1 tab.

  4. Mongolian coal liquefaction test; Mongorutan no ekika tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Kubo, H. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Tsedevsuren, T. [National Research Center of Chemistry and Technology of Coal in Mongoria (Mongolia)

    1996-10-28

    This paper describes the results of liquefaction tests of Mongolian coals using an autoclave and a flow micro reactor. Uvdughudag coal, Hootiinhonhor coal, and Shivee-Ovoo coal were used for liquefaction tests with an autoclave. Oil yields of Uvdughudag and Hootiinhonhor coals were 55.56 wt% and 55.29 wt%, respectively, which were similar to that of Wyoming coal. Similar results were obtained, as to produced gas and water yields. These coals were found to be suitable for coal liquefaction. Lower oil yield, 42.55 wt% was obtained for Shivee-Ovoo coal, which was not suitable for liquefaction. Liquefaction tests were conducted for Uvdughudag coal with a flow micro reactor. The oil yield was 55.7 wt%, which was also similar to that of Wyoming coal, 56.1 wt%. Hydrogen consumption of Uvdughudag coal was also similar to that of Wyoming coal. From these, Uvdughudag coal can be a prospective coal for liquefaction. From the distillation distribution of oil, distillate fraction yield below 350{degree}C of Uvdughudag coal was 50.7 wt%, which was much higher than that of Wyoming coal, 35.6 wt%. Uvdughudag coal is a coal with high light oil fraction yield. 2 figs., 5 tabs.

  5. Coal liquefaction process streams characterization and evaluation:

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, R.; McMillen, D.F. (SRI International, Menlo Park, CA (United States)); Burke, F.P.; Winschel, R.A.; Brandes, S.D. (Consolidation Coal Co., Library, PA (United States). Research and Development Dept.)

    1992-01-01

    SRI International evaluated two analytical methods for application to coal liquefaction. These included field ionization mass spectrometry and a technique employing iodotrimethylsilane for the derivatization of oxygen bound to alkyl carbon (alkyl ethers). The full report authored by the SRI researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal-derived materials. These results will be incorporated by Consol into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of this contract. (VC)

  6. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.A.; Linehan, J.C.; Robins, W.H. (Battelle Pacific Northwest Lab., Richland, WA (United States))

    1992-07-01

    Under contract from the DOE , and in association with CONSOL Inc., Battelle, Pacific Northwest Laboratory (PNL) evaluated four principal and several complementary techniques for the analysis of non-distillable direct coal liquefaction materials in support of process development. Field desorption mass spectrometry (FDMS) and nuclear magnetic resonance (NMR) spectroscopic methods were examined for potential usefulness as techniques to elucidate the chemical structure of residual (nondistillable) direct coal liquefaction derived materials. Supercritical fluid extraction (SFE) and supercritical fluid chromatography/mass spectrometry (SFC/MS) were evaluated for effectiveness in compound-class separation and identification of residual materials. Liquid chromatography (including microcolumn) separation techniques, gas chromatography/mass spectrometry (GC/MS), mass spectrometry/mass spectrometry (MS/MS), and GC/Fourier transform infrared (FTIR) spectroscopy methods were applied to supercritical fluid extracts. The full report authored by the PNL researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal liquefaction materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of CONSOL's contract.

  7. Supercritical Water Liquefaction of Coal and Waste Tires

    National Research Council Canada - National Science Library

    Prapan KUCHONTHARA; Yukihiko MATSUMURA

    2001-01-01

      Supercritical water liquefaction of scrap tire rubber and Ishikari coal, separately and in mixtures was investigated to study the possible synergetic effects of coliquefaction between the feedstocks...

  8. EXPLORATORY RESEARCH ON NOVEL COAL LIQUEFACTION CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Winschel, R.A.

    1998-11-30

    The report presents a summary the work performed under DOE Contract No. DE-AC22-95PC95050. Investigations performed under Task 4--Integrated Flow Sheet Testing are detailed. In this program, a novel direct coal liquefaction technology was investigated by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Approaches to reduce costs for a conceptual commercial plant were recommended at the conclusion of Task 3. These approaches were investigated in Task 4. The economic analysis of the process as it was defined at the conclusion of Task 4, indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies.

  9. Coal liquefaction and gas conversion contractors review conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This volume contains 55 papers presented at the conference. They are divided into the following topical sections: Direct liquefaction; Indirect liquefaction; Gas conversion (methane conversion); and Advanced research liquefaction. Papers in this last section deal mostly with coprocessing of coal with petroleum, plastics, and waste tires, and catalyst studies. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  10. Coal liquefaction. Quarterly report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    Progress on seventeen projects related to coal liquefaction or the upgrading of coal liquids and supported by US DOE is reported with emphasis on funding, brief process description history and current progress. (LTN)

  11. Coal liquefaction process streams characterization and evaluation. FIMS analysis of direct coal liquefaction process streams

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, R.; McMillen, D.F. [SRI International, Menlo Park, CA (United States)

    1994-03-01

    This study was designed to apply the method of field ionization mass spectrometry (FIMS) for the analysis of direct coal liquefaction process-stream samples. The FIMS method was shown to have a high potential for application to direct coal liquefaction-derived samples in a Phase 1 project in this program. In this Phase 3 project, the FIMS method was applied to a set of samples produced in HRI bench-scale liquefaction Runs CC-15 and CC-16. FIMS was used to obtain the molecular weight profile of the samples and to identify specific prominent peaks in the low end (160--420 Da) region of the molecular weight profile. In the samples examined in this study, species were identified which previously were recognized as precursors to the formation of high molecular weight structures associated with the formation of coke in petroleum vacuum gas oils.

  12. Chemical aspects of coal liquefaction by oxygen in alkaline slurries

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, R.; Caprio, V.; Insola, A.

    1988-03-01

    Coal liquefaction by oxygen in alkaline slurries is reviewed from the chemical point of view. Available information is considered in the light of questions relating to coal liquefaction. A lack of chemical knowledge in this area is noted, especially on model compounds. 72 refs.

  13. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-08-01

    This is the tenth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Process oils from Wilsonville Run 262 were analyzed to provide information on process performance. Run 262 was operated from July 10 through September 30, 1991, in the thermal/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) configuration with ash recycle. The feed coal was Black Thunder Mine subbituminous coal. The high/low temperature sequence was used. Each reactor was operated at 50% of the available reactor volume. The interstage separator was in use throughout the run. The second-stage reactor was charged with aged Criterion 324 catalyst (Ni/Mo on 1/16 inch alumina extrudate support). Slurry catalysts and sulfiding agent were fed to the first-stage reactor. Molyvan L is an organometallic compound which contains 8.1% Mo, and is commercially available as an oil-soluble lubricant additive. It was used in Run 262 as a dispersed hydrogenation catalyst precursor, primarily to alleviate deposition problems which plagued past runs with Black Thunder coal. One test was made with little supported catalyst in the second stage. The role of phenolic groups in donor solvent properties was examined. In this study, four samples from direct liquefaction process oils were subjected to O-methylation of the phenolic groups, followed by chemical analysis and solvent quality testing.

  14. Coal liquefaction process with increased naphtha yields

    Science.gov (United States)

    Ryan, Daniel F.

    1986-01-01

    An improved process for liquefying solid carbonaceous materials wherein the solid carbonaceous material is slurried with a suitable solvent and then subjected to liquefaction at elevated temperature and pressure to produce a normally gaseous product, a normally liquid product and a normally solid product. The normally liquid product is further separated into a naphtha boiling range product, a solvent boiling range product and a vacuum gas-oil boiling range product. At least a portion of the solvent boiling-range product and the vacuum gas-oil boiling range product are then combined and passed to a hydrotreater where the mixture is hydrotreated at relatively severe hydrotreating conditions and the liquid product from the hydrotreater then passed to a catalytic cracker. In the catalytic cracker, the hydrotreater effluent is converted partially to a naphtha boiling range product and to a solvent boiling range product. The naphtha boiling range product is added to the naphtha boiling range product from coal liquefaction to thereby significantly increase the production of naphtha boiling range materials. At least a portion of the solvent boiling range product, on the other hand, is separately hydrogenated and used as solvent for the liquefaction. Use of this material as at least a portion of the solvent significantly reduces the amount of saturated materials in said solvent.

  15. Liquefaction and/or solubilization of Spanish coals by newly isolated microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Monistrol, I.F.; Laborda, F. (Universidad de Alcala de Henares, Alcala de Henares (Spain). Dept. de Microbiologia Parasitologia)

    1994-11-01

    A screening procedure has been set up for isolating microorganisms capable of liquefying coal. Spanish coals were used in the tests, namely a brown lignite from Galicia, sub-bituminous coal from Teruel and hard coal from Minas Figaredo S.A. (Asturias). Among the isolated strains several microorganisms proved capable of liquefying untreated lignite. When lignites were pretreated a more intense and rapid liquefaction was achieved, chelating agents being among the best pretreatment. None of the isolated microorganisms could satisfactorily liquefy sub-bituminous and hard coals in solid media. On the other hand, some fungi grew specifically on the untreated coals, engulfing them and in many cases a soft slurry was obtained. Several of the isolated microorganisms were able to solubilize all three untreated Spanish coals in liquid media. Coal solubilization was measured spectrophotometrically at 300, 400 and 450 nm. 5 refs., 10 figs., 3 tabs.

  16. Liquefaction/solubilization processes of Spanish coals by microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Laborda, F.; Monistrol, I.F.; Luna, N.; Fernandez, M. [Madrid Univ. (Spain). Dept. de Microbiologia y Parasitologia

    1997-12-31

    Several fundamental aspects of microbial coal liquefaction/solubilization have been studied in this work. The first one is the mechanisms implicated on coal transformation. During coal solubilization, fungal cells produced extracellular peroxidase, esterase and some times phenol oxidase enzymes which appear to be involved in solubilization. Moreover, the analysis of liquefaction/solubilization products was done. In this regard, a reduction on the average size of humic acids derived from lignite was observed, probably due to depolymerization caused by microorganisms. Finally, microorganisms showed a specific adherence to the coal surface, that seems to promote the microbial attack to coal. (orig.)

  17. Coal liquefaction. Quarterly report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The status of coal liquefaction pilot plants supported by US DOE is reviewed under the following headings: company involved, location, contract, funding, process name, process description, flowsheet, history and progress during the July-September 1979 quarter. Supporting projects such as test facilities, refining and upgrading coal liquids, catalyst development, and gasification of residues from coal gasification plants are discussed similarly. (LTN)

  18. Coal liquefaction. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    Current ERDA work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly. (LTN)

  19. Studies of initial stage in coal liquefaction. Effect of decomposition of oxygen-functional groups on coal liquefaction; Ekika hanno no shoki katei ni kansuru kenkyu. 3. Gansanso kannoki no bunkai kyodo to ekika hanno eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Komeiji, A.; Kaneko, T.; Shimazaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    Pretreatment of brown coal in oil was conducted using 1-methyl naphthalene or mixture of tetralin and 1-methyl naphthalene as solvent at temperatures ranging from 300 to 430{degree}C under nitrogen atmosphere. Effects of the solvent properties on the structural change of oxygen-functional groups (OFG) and coal liquefaction were investigated by means of quantitative analysis of OFG and solid state {sup 13}C-NMR measurement. When hydrogen transfer from solvent was insufficient, it was suggested that brown coal molecules loose their hydrogen to be aromatized. While, at lower temperatures ranging from 300 to 350{degree}C, hydrogen contained in brown coal molecules was consumed for the stabilization of pyrolytic radicals, and the deterioration of liquefaction was not observed. When hydrogen transfer from solvent was insufficient at higher temperatures above 400{degree}C in nitrogen atmosphere during pretreatment in oil, crosslinking like benzofuran type was formed by dehydration condensation of hydroxyl group in brown coal, to deteriorate the liquefaction, remarkably. The addition of donor solvent like tetralin decreased the formation of crosslinking like benzofuran type, which suppressed the deterioration of liquefaction. 8 refs., 5 figs.

  20. U.S. DOE indirect coal liquefaction program: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J.; Schmetz, E.; Winslow, J.; Tischer, R. [Dept. of Energy, Germantown, MD (United States); Srivastava, R.

    1997-12-31

    Coal is the most abundant domestic energy resource in the United States. The Fossil Energy Organization within the US Department of Energy (DOE) has been supporting a coal liquefaction program to develop improved technologies to convert coal to clean and cost-effective liquid fuels to complement the dwindling supply of domestic petroleum crude. The goal of this program is to produce coal liquids that are competitive with crude at $20 to $25 per barrel. Indirect and direct liquefaction routes are the two technologies being pursued under the DOE coal liquefaction program. This paper will give an overview of the DOE indirect liquefaction program. More detailed discussions will be given to the F-T diesel and DME fuels which have shown great promises as clean burning alternative diesel fuels. The authors also will briefly discuss the economics of indirect liquefaction and the hurdles and opportunities for the early commercial deployment of these technologies. Discussions will be preceded by two brief reviews on the liquid versus gas phase reactors and the natural gas versus coal based indirect liquefaction.

  1. Case studies on direct liquefaction of low rank Wyoming coal

    Energy Technology Data Exchange (ETDEWEB)

    Adler, P.; Kramer, S.J.; Poddar, S.K. [Bechtel Corp., San Francisco, CA (United States)

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  2. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Lancet, M.S.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the eleventh Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: (1) The results of a study designed to determine the effects of the conditions employed at the Wilsonville slurry preheater vessel on coal conversion is described. (2) Stable carbon isotope ratios were determined and used to source the carbon of three product samples from Period 49 of UOP bench-scale coprocessing Run 37. The results from this coprocessing run agree with the general trends observed in other coprocessing runs that we have studied. (3) Microautoclave tests and chemical analyses were performed to calibrate'' the reactivity of the standard coal used for determining donor solvent quality of process oils in this contract. (4) Several aspects of Wilsonville Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) resid conversion kinetics were investigated; results are presented. Error limits associated with calculations of deactivation rate constants previously reported for Runs 258 and 261 are revised and discussed. A new procedure is described that relates the conversions of 850[degrees]F[sup +] , 1050[degrees]F[sup +], and 850 [times] 1050[degrees]F material. Resid conversions and kinetic constants previously reported for Run 260 were incorrect; corrected data and discussion are found in Appendix I of this report.

  3. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. (Auburn Univ., AL (United States)); Gutterman, C. (Foster Wheeler Development Corp., Livingston, NJ (United States)); Chander, S. (Pennsylvania State Univ., University Park, PA (United States))

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  4. PLASMA PYROLYSIS OF BROWN COAL

    OpenAIRE

    Plotczyk, W.; Resztak, A.; A.; Szymanski

    1990-01-01

    The specific energy of the substrate is defined as the ratio of the plasma jet energy to the mass of the coal. The influence of the specific energy of the brown coal (10 - 35 MJ/kg) on the yield and selectivity of the gaseous products formation was determined. The pyrolysis was performed in d.c. arc hydrogen plasma jet with the 25 kW power delivered to it. The higher specific energies of coal correlated to the higher conversion degrees of the substrates to C2H2 and CO as well as to the higher...

  5. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Michael T. Klein

    2000-01-01

    Using a reactor in which the coal is physically separated from the solid catalyst by a porous wall permeable to the hydrogen donor solvent, it was shown that direct contact between the catalyst and the coal is not required for catalyzed coal liquefaction. This occurs however only when there is a hydrogen atmosphere, as liquefaction with catalyst participation does not occur in a nitrogen atmosphere. Liquefaction by hydrogen transfer from the donor solvent itself does occur. This suggests that there is transfer of hydrogen from the catalyst to the coal via the solvent. The character of the solvent makes a significant difference, the better solvents being good hydrogen donors. These results indicate that the role of the catalyst may be to regenerate the spent hydrogen donor solvent during the liquefaction process. The peak temperature for volatiles evolution has been shown to be a reproducible measure of the coal rank. This was shown by an excellent correlation (R2 = 0.998) between peak volatiles temperatures (by TGA) and vitrinite reflectance. Using TG/MS, the volatiles contents of coals of a wide range of ranks was determined. The low rank coals emit largely phenols and some other oxygen compounds and olefins. The higher rank coals emit largely aromatic hydrocarbons and some olefins.

  6. Processes of liquefaction/solubilization of Spanish coals by microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Laborda, F.; Monistrol, I.F.; Luna, N.; Fernandez, M. [Universidad de Alcala de Henares, Madrid (Spain). Dept. de Microbiologia y Parasitologia

    1999-07-01

    Several fundamental aspects of microbial coal liquefaction/solubilization were studied. The liquefied/solubilized products from coal by microorganisms were analysed. The liquid products analysed by IR titration and UV/visible spectrometry showed some alterations with regard to the original coal. Humic acids extracted from the liquefied lignite showed a reduction in the average molecular weight and a increase in the condensation index, probably due to depolymerization caused by microorganisms. The mechanisms implicated in coal biosolubilization by two fungal strains, M2 (Trichoderma sp.) and M4 (Penicillium sp.) were also studied. Extracellular peroxidase, esterase and phenoloxidase enzymes appear to be involved in coal solubilization. (orig.)

  7. SURFACE-MODIFIED COALS FOR ENHANCED CATALYST DISPERSION AND LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah

    1999-09-01

    This is the final report of the Department of Energy Sponsored project DE-FGF22-95PC95229 entitled, surface modified coals for enhanced catalyst dispersion and liquefaction. The aims of the study were to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on the coal and to train and educate minority scientists in catalysts and separation science. Illinois No. 6 Coal (DEC-24) was selected for the study. The surfactants investigated included dodecyl dimethyl ethyl ammonium bromide (DDAB), a cationic surfactant, sodium dodecyl sulfate, an anionic surfactant, and Triton x-100, a neutral surfactant. Ammonium molybdate tetrahydrate was used as the molybdenum catalyst precursor. Zeta potential, BET, FTIR, AFM, UV-Vis and luminescence intensity measurements were undertaken to assess the surface properties and the liquefaction activities of the coal. The parent coal had a net negative surface charge over the pH range 2-12. However, in the presence of DDAB the negativity of the surface charge decreased. At higher concentrations of DDAB, a positive surface charge resulted. In contrast to the effect of DDAB, the zeta potential of the coal became more negative than the parent coal in the presence of SDS. Adsorption of Triton reduced the net negative charge density of the coal samples. The measured surface area of the coal surface was about 30 m{sup 2}/g compared to 77m{sup 2}/g after being washed with deionized water. Addition of the surfactants decreased the surface area of the samples. Adsorption of the molybdenum catalyst increased the surface area of the coal sample. The adsorption of molybdenum on the coal was significantly promoted by preadsorption of DDAB and SDS. Molybdenum adsorption showed that, over a wide range of concentrations and pH values, the DDAB treated coal adsorbed a higher amount of molybdenum than the samples treated with SDS. The infrared spectroscopy (FTIR) and the atomic force

  8. SURFACE-MODIFIED COALS FOR ENHANCED CATALYST DISPERSION AND LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah

    1999-09-01

    This is the final report of the Department of Energy Sponsored project DE-FGF22-95PC95229 entitled, surface modified coals for enhanced catalyst dispersion and liquefaction. The aims of the study were to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on the coal and to train and educate minority scientists in catalysts and separation science. Illinois No. 6 Coal (DEC-24) was selected for the study. The surfactants investigated included dodecyl dimethyl ethyl ammonium bromide (DDAB), a cationic surfactant, sodium dodecyl sulfate, an anionic surfactant, and Triton x-100, a neutral surfactant. Ammonium molybdate tetrahydrate was used as the molybdenum catalyst precursor. Zeta potential, BET, FTIR, AFM, UV-Vis and luminescence intensity measurements were undertaken to assess the surface properties and the liquefaction activities of the coal. The parent coal had a net negative surface charge over the pH range 2-12. However, in the presence of DDAB the negativity of the surface charge decreased. At higher concentrations of DDAB, a positive surface charge resulted. In contrast to the effect of DDAB, the zeta potential of the coal became more negative than the parent coal in the presence of SDS. Adsorption of Triton reduced the net negative charge density of the coal samples. The measured surface area of the coal surface was about 30 m{sup 2}/g compared to 77m{sup 2}/g after being washed with deionized water. Addition of the surfactants decreased the surface area of the samples. Adsorption of the molybdenum catalyst increased the surface area of the coal sample. The adsorption of molybdenum on the coal was significantly promoted by preadsorption of DDAB and SDS. Molybdenum adsorption showed that, over a wide range of concentrations and pH values, the DDAB treated coal adsorbed a higher amount of molybdenum than the samples treated with SDS. The infrared spectroscopy (FTIR) and the atomic force

  9. Cooperative research in coal liquefaction. Final report, May 1, 1990-- April 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1992-02-15

    The Consortium for Fossil Fuel Liquefaction Science (CFFLS) is currently engaged in a three year contract with the US Department of Energy investigating a range of research topics dealing with direct coal liquefaction. This report summarizes the results of this program in its second year, from May 1, 1990 to April 30, 1991. Accomplishments for this period are presented for the following tasks: Iron-based catalysts for coal liquefaction, exploratory research on coal conversion, novel coal liquefaction concepts, and novel catalysts for coal liquefaction.

  10. Direct liquefaction of low-rank coals under mild conditions

    Energy Technology Data Exchange (ETDEWEB)

    Braun, N.; Rinaldi, R. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    2013-11-01

    Due to decreasing of petroleum reserves, direct coal liquefaction is attracting renewed interest as an alternative process to produce liquid fuels. The combination of hydrogen peroxide and coal is not a new one. In the early 1980, Vasilakos and Clinton described a procedure for desulfurization by leaching coal with solutions of sulphuric acid/H{sub 2}O{sub 2}. But so far, H{sub 2}O{sub 2} has never been ascribed a major role in coal liquefaction. Herein, we describe a novel approach for liquefying low-rank coals using a solution of H{sub 2}O{sub 2} in presence of a soluble non-transition metal catalyst. (orig.)

  11. Coal liquefaction. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The United States has more energy available in coal than in petroleum, natural gas, oil shale, and tar sands combined. Nationwide energy shortages, together with the availability of abundant coal reserves, make commercial production of synthetic fuels from coal vital to the Nation's total supply of clean energy. In response to this need, the Office of Fossil Energy of the Energy Research and Development Administration (ERDA) is conducting a research and development program to provide technology that will permit rapid commercialization of processes for converting coal to synthetic liquid and gaseous fuels and for improved direct combustion of coal. These fuels must be storable and suitable for power generation, transportation, and residential and industrial uses. ERDA's program for the conversion of coal to liquid fuels was begun by two of ERDA's predecessor agencies: Office of Coal Research (OCR) in 1962, and Bureau of Mines, U.S. Department of the Interior, in the 1930's. Current work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly

  12. Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1994-10-01

    Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterize a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.

  13. Coal Liquefaction by Using Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Wang, Qiuying; Wu, Peng; Gu, Fan

    2013-07-01

    An innovative method for coal liquefaction by using dielectric barrier discharge (DBD) plasma in a short reaction time was developed. Using tetralin as the reaction medium, DBD plasma as the energy source, and a reaction time of 10 min at 140°C, up to 10% of coal was converted to liquid material. The results showed the feasibility of coal's liquefaction by DBD plasma under relatively moderate conditions. Simultaneously, it was clarified that the effect of DBD plasma treatment was opposed to the thermal effect of heating. An acid plasma sheath could be formed on the coal powder surface in DBD conditions, liquefied reactions could be carried out in the absence of inorganic acid, and the products were nearly neutral and with low causticity.

  14. SLURRY PHASE IRON CATALYSTS FOR INDIRECT COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Abhaya K. Datye

    1998-11-19

    This report describes research conducted to support the DOE program in indirect coal liquefaction. Specifically, they have studied the attrition behavior of iron Fischer-Tropsch catalysts, their interaction with the silica binder and the evolution of iron phases in a synthesis gas conversion process. The results provide significant insight into factors that should be considered in the design of catalysts for converting coal based syngas into liquid fuels.

  15. Direct liquefaction of plastics and coprocessing of coal with plastics

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Feng, Z.; Mahajan, V. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  16. Technology for advanced liquefaction processes: Coal/waste coprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandia National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.

  17. Technical, Energetics, and Economic Comparison of NRL Oxidative Coal Liquefaction Process with some Developed Coal Liquefaction Processes.

    Science.gov (United States)

    1980-03-05

    the synthesis step becomes two processes. synthesis CO + H2 catalyst ) methanol conversion methanol catalyst > gasoline + water Wiser states that...structure illustrates the main types of linkage between ring clusters and also some of the heteroatom forms that are found in coal. 20 APPENDIX II...used more widely as petroleum and natural gas resources are depleted and hydrogen for coal liquefaction processes will be produced predominantly from

  18. Rationale for continuing R&D in indirect coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Gray, D.; Tomlinson, G. [MITRE Corp., McLean, VA (United States)

    1995-12-31

    The objective of this analysis is to use the world energy demand/supply model developed at MITRE to examine future liquid fuels supply scenarios both for the world and for the United States. This analysis has determined the probable extent of future oil resource shortages and the likely time frame in which the shortages will occur. The role that coal liquefaction could play in helping to alleviate this liquid fuels shortfall is also examined. The importance of continuing R&D to improve process performance and reduce the costs of coal-derived transportation fuel is quantified in terms of reducing the time when coal liquids will become competitive with petroleum.

  19. Effects of coal rank on the chemical composition and toxicological activity of coal liquefaction materials

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Dauble, D.D.

    1986-05-01

    This report presents data from the chemical analysis and toxicological testing of coal liquefaction materials from the EDS and H-Coal processes operated using different ranks of coal. Samples of recycle solvent from the bottoms recycle mode of the EDS direct coal liquefaction process derived from bituminous, sub-bituminous, and lignite coals were analyzed. In addition, the H-Coal heavy fuel oils derived from bituminous and sub-bituminous coals were analyzed. Chemical methods of analysis included adsoprtion column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. The toxicological activity of selected samples was evaluated using the standard microbial mutagenicity assay, an initiation/promotion assay for mouse-skin tumorigenicity, and a static bioassy with Daphnia magna for aquatic toxicity of the water-soluble fractions. 22 refs., 16 figs., 14 tabs.

  20. Coal liquefaction. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    ERDA's program for the conversion of coal to liquid fuels is aimed at improved process configurations for both catalytic and noncatalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids also have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Responsibility for the design, construction, and operation of these facilities is given and progress in the quarter is summarized. Several supporting or complementary projects are described similarly. (LTN)

  1. Colombian coal liquefaction and its coprocessing with Venezuelan crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, R.; Nagaishi, H. [Hokkaido National Industrial Research Institute, Sapporo (Japan); Ishiguro, H. [Nippon Kokan K.K. Kawasaki (JP)] (and others)

    1999-09-01

    Titiribi coal from Colombia shows an excellent reactivity to liquefaction and coprocessing. Anthracene oil was excellent as a vehicle oil to facilitate the liquefaction reaction during the initial stage at 400{sup o}C. In the case of coprocessing with Morichal crude oil and red-mud/sulfur catalyst, the maximum conversion of Titiribi coal was ca. 79 wt% daf at 400{sup o}C and ca. 93 wt% daf at 450{sup o}C. The hydrogen consumption in the presence of Morichal crude oil is lower than that in the presence of anthracene oil. It is considered to be the effect of hydrogen sulfide and the hydrogen donor ability of Morichal crude oil. (author)

  2. Hydrorefining distillates from coal liquefaction using intermetallic compound hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kadiev, Kh.M.; Pivovarova, N.A.; Askhabova, Kh.N.; Taramov, Kh.K.

    1986-07-01

    Investigations are discussed into hydrorefining of coal liquefaction distillate using ZrNi intermetallic compound hydride as catalyst. The paper shows that 70-75% reduction in content of unsaturated and sulfur-containing compounds takes place in the presence of this catalyst at low temperature (200-250 C) and pressure (0.1 MPa), and establishes that preliminary preparation of starting material (removal of phenols and nitrous bases) produces significant effect on hydrorefining results and product stability. Tests have also shown that although intermetallic compound hydride catalyst has fairly low stability, it is capable of recovering its catalytic properties on reduction-oxidation treatment. Description of the tests and characteristics of hydrorefining products of coal liquefaction distillate are given. 8 references.

  3. Proximate and ultimate analysis of coal and products from coal liquefaction and pyrolysis processes

    Energy Technology Data Exchange (ETDEWEB)

    Murray, C.; Iacchelli, A.; Selucky, M.L.

    1982-01-01

    Procedures are given for analysis of coal, coal liquefaction products, and coal pyrolysis products. Proximate analysis (determination of moisture, ash, volatile matter and fixed carbon) using the Fisher Coal Analyzer Model 490, and ultimate analysis (determination of C, H, N, S, O, and occasionally Cl) using the Perkin-Elmer Elemental Analyzer are described. Determination of calorific value of coal using the oxygen bomb calorimeter is also detailed, as well as procedures for trace element analysis and for removal of halogenated solvents from gravity separation fractions of coal. 4 refs., 1 tab.

  4. Health and environmental effects document for direct coal liquefaction - 1981.

    Energy Technology Data Exchange (ETDEWEB)

    Mellinger, P.J.; Wilson, B.W.; Mahlum, D.D.; Sever, L.E.; Olsen, A.R.

    1982-09-01

    This document presents initial estimates of potential human health effects from inhalation of nonmethane hydrocarbons (NMHC) that may be released from a future hypothetical industry producing about 600,000 bb1/day of synthetic fuel by direct liquefaction of coal. The assessment approach starts wth general assumptions that are then refined in a tiered sequence that considers available epidemiological, environmental and chemical data. The uncertainties involved in such an evaluation have been quantified where possible at this early stage of health risk analysis. Many surrogate data bases were considered for application to coal liquefaction including coke oven, British gas retort, roofing tar and asphalts, and cigarette smoke. The coke oven data base was selected for this assessment because the chemical and physical nature of coke oven emissions are judged to more closely approximate potential coal liquefaction emissions. Utilizing the extensive epidemiological data base for coke oven workers as a surrogate model, health effects from release of coal liquefaction NMHC may be quantified. This method results in estimates of about 1 x 10/sup -3/ excess cancer deaths/yr to an industrial work force of 7800 persons and 5 x 10/sup -2/ excess cancer deaths/yr in the U.S. population as a whole from NMHC that boil above 600/sup 0/F. Sources of uncertainty in the estimates are listed. Using these uncertainties, it is estimated that from 2 x 10/sup -4/ to 5 x 10/sup -3/ lung cancer deaths/yr may occur in the industrial work force and from 1 x 10/sup -2/ to 2.5 x 10/sup -1/ lung cancer deaths/yr in the U.S. population as a whole. On an individual basis, the excess lifetime risk to occupationally exposed workers is estimated to be 500 times greater than to members of the U.S. public.

  5. Development of computer simulator for coal liquefaction reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yawata, T.; Kobayashi, M.; Ohi, S.; Itho, H.; Hiraide, M. [Nippon Oil Co., Ltd., Tokyo (Japan)

    1995-12-31

    The computer simulator for a coal liquefaction reactor is a useful engineering tool to analyse the data of such reactors. The authors applied this technique to a reactor in the NEDOL process to predict the performance of the reactor, and to assist in the design of a reactor for demonstration plant. The development program of the simulator and its utilization plan are discussed. 4 figs., 2 tabs.

  6. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, G.P. [ed.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  7. Coal slurry - a problem of the brown coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, H.; Hielscher, R.; Mohry, J.

    1983-01-01

    Technological and economic aspects are examined for processing coal-containing waste water from brown coal preparation plants in the German Democratic Republic. In 1979, 106.8 Mm/sup 3/ of coal slurry were produced by the GDR brown coal industry, with a coal fine content ranging between 7.8 g/l and 20.4 g/l. This amounts to 2.6 Mt/y of coal which is 1% of the annual brown coal production. Technological variants of processing and utilizing coal slurry are discussed. At a number of major coal preparation plants, coal slurry is flushed into sedimentation lakes. After a 2 to 3 year drying period, a 6 to 10 m thick layer of coal is recovered. Technologies of coal slurry processing with the aim of recovering coal fines are enumerated. Equipment for these processes include, filters, centrifuges, dryers, etc. Recovered coal can be used as fuel or processed into fertilizer in combination with fly ash and other waste products. 12 references.

  8. Low severity coal liquefaction promoted by cyclic olefins

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.

    1992-01-01

    Low severity coal liquefaction promoted by cyclic olefins offers a means of liquefying coal at low severity conditions. Lower temperature, 350[degrees]C, and lower hydrogen pressure, 500 psi, have been used to perform liquefaction reactions. The presence of the cyclic olefin, hexahydroanthracene, made a substantial difference in the conversion of Illinois No. 6 coal at these low severity conditions. The Researchperformed this quarter was a parametric evaluation of the effect of different parameters on the coal conversion and product distribution from coal. The effect of the parameters on product distribution from hexahydroanthracene was also determined. The work planned for next quarter includes combining the most effective parametric conditions for the low severity reactions and determining their effect. The second part ofthe research performed this quarter involved performing Fourier transform infrared (FTIR) spectroscopy using cyclic olefins. The objective of this study was to determine the feasibility of using FTIR and a heated cell to determine the reaction pathway that occurs in the hydrogen donation reactions from cyclic olefins. The progress made to date includes evaluating the FTIR spectra of cyclic olefins and their expected reaction products. This work is included in this progress report.

  9. Briquetting of Coke-Brown Coal Mixture

    Directory of Open Access Journals (Sweden)

    Ïurove Juraj

    1998-09-01

    Full Text Available The paper presents the results of the research of briquetting a coke-brown coal composite The operation consists of the feeding crushed coal and coke to moulds and pressing into briquettes which have been made in the Laboratories at the Mining Faculty of Technical University of Košice (Slovakia. In this research, all demands will be analyzed including the different aspects of the mechanical quality of briquettes, the proportion of fine pulverulent coal and coke in bricks, the requirements for briquetting the coke-brown coal materials.

  10. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, R.F.; Coless, L.A.; Davis, S.M. [and others

    1995-12-31

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263. Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.

  11. Coal liquefaction technology. (Latest citations from the NTIS Bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The bibliography contains citations concerning the technologies and processes for converting coal to liquid chemicals and fuels. Topics include materials characterization of liquefaction processes, catalysis, pyrolysis, depolymerization, coprocessing, and integrated liquefaction. Also discussed are liquid fuel use in automobiles and power generation, low-temperature carbonization technology, multi-stage liquefaction, cost benefit analysis, and commercialization of liquefaction technology. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. The Dual Role of Oxygen Functions in Coal Pretreatment and Liquefaction: Crosslinking and Cleavage Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Michael Serio; Erik Kroo; Sylvie Charpenay; Peter Solomon

    1993-09-30

    The overall objective of this project was to elucidate and model the dual role of oxygen functions in thermal pretreatment and liquefaction of low rank coals through the application of analytical techniques and theoretical models. The project was an integrated study of model polymers representative of coal structures, raw coals of primarily low rank, and selectively modified coals in order to provide specific information relevant to the reactions of real coals. The investigations included liquefaction experiments in microautoclave reactors, along with extensive analysis of intermediate solid, liquid and gaseous products. Attempts were made to incorporate the results of experiments on the different systems into a liquefaction model.

  13. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Michael T. Klein

    2000-01-01

    There are several aspects of the Direct Coal Liquefaction process which are not fully understood and which if better understood might lead to improved yields and conversions. Among these questions are the roles of the catalyst and the solvent. While the solvent is known to act by transfer of hydrogen atoms to the free radicals formed by thermal breakdown of the coal in an uncatalyzed system, in the presence of a solid catalyst as is now currently practiced, the yields and conversions are higher than in an uncatalyzed system. The role of the catalyst in this case is not completely understood. DOE has funded many projects to produce ultrafine and more active catalysts in the expectation that better contact between catalyst and coal might result. This approach has met with limited success probably because mass transfer between two solids in a fluid medium i.e. the catalyst and the coal, is very poor. It is to develop an understanding of the role of the catalyst and solvent in Direct Liquefaction that this project was initiated. Specifically it was of interest to know whether direct contact between the coal and the catalyst was important. By separating the solid catalyst in a stainless steel basket permeable to the solvent but not the coal in the liquefaction reactor, it was shown that the catalyst still maintains a catalytic effect on the liquefaction process. There is apparently transfer of hydrogen atoms from the catalyst through the basket wall to the coal via the solvent. Strong hydrogen donor solvents appear to be more effective in this respect than weak hydrogen donors. It therefore appears that intimate contact between catalyst and coal is not a requirement, and that the role of the catalyst may be to restore the hydrogen donor strength to the solvent as the reaction proceeds. A range of solvents of varying hydrogen donor strength was investigated. Because of the extensive use of thermogravimetric analysis in this laboratory in was noted that the peak

  14. Subtask 3.9 - Direct Coal Liquefaction Process Development

    Energy Technology Data Exchange (ETDEWEB)

    Aulich, Ted; Sharma, Ramesh

    2012-07-01

    The Energy and Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from ExxonMobil, undertook Subtask 3.9 to design, build, and preliminarily operate a bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. Fabrication and installation of the DCL system and an accompanying distillation system for off-line fractionation of raw coal liquids into 1) a naphtha middle distillate stream for upgrading and 2) a recycle stream was completed in May 2012. Shakedown of the system was initiated in July 2012. In addition to completing fabrication of the DCL system, the project also produced a 500-milliliter sample of jet fuel derived in part from direct liquefaction of Illinois No. 6 coal, and submitted the sample to the Air Force Research Laboratory (AFRL) at Wright Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with all U.S. Air Force-prescribed alternative aviation fuel initial screening criteria.

  15. Cooperative research in coal liquefaction infratechnology and generic technology development: Final report, October 1, 1985 to December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Sendlein, L.V.A.

    1987-06-29

    During the first year of its research program, the Consortium for Fossil Fuel Liquefaction Science has made significant progress in many areas of coal liquefaction and coal structure research. Research topics for which substantial progress has been made include integrated coal structure and liquefaction studies, investigation of differential liquefaction processes, development and application of sophisticated techniques for structural analysis, computer analysis of multivariate data, biodesulfurization of coal, catalysis studies, co-processing of coal and crude oil, coal dissolution and extraction processes, coal depolymerization, determination of the liquefaction characteristics of many US coals for use in a liquefaction database, and completion of a retrospective technology assessment for direct coal liquefaction. These and related topics are discussed in considerably more detail in the remainder of this report. Individual projects are processed separately for the data base.

  16. SHORT CONTACT TIME DIRECT COAL LIQUEFACTION USING A NOVEL BATCH REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Michael T. Klein; William H. Calkins

    1997-10-29

    The overall goal of this research is to develop an understanding of the Direct Coal Liquefaction process at the molecular level. Many approaches have been used to study this process including kinetic studies, study of the liquefaction products, study of the effect of reaction variables, such as temperature, solvent type and composition, the changing nature and composition of the coal during liquefaction, and the distribution in the liquefaction products of the hydrogen consumed. While all these studies have contributed to our growing knowledge of the liquefaction process, an adequate understanding of direct liquefaction still eludes us. This is due to many reasons including: the complexity and variable nature of coal itself and the many different chemical reactions which are occurring simultaneously during direct coal liquefaction. We believe that a study of the liquefaction process at the very early stages will avoid the complexities of secondary reactions associated with free radical high temperature processes that are clearly involved in direct coal liquefaction. This prompted us to devise a reactor system which avoids long heat up and cool-down times associated with previous kinetic studies, and allows kinetic measurements even at as short as the first few seconds of the liquefaction reaction.

  17. Colombian (Titiribi) coal liquefaction and its co-processing with Venezuelan (Morichal) crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, R.; Ishiguro, H.; Maekawa, Y.; Mondragon, F. (Government Industrial Development Laboratory, Hokkaido (Japan))

    1989-10-01

    The reactivity in the liquefaction of Titiribi coal from Colombia was studied without a vehicle oil and with Morichal crude oil from Venezuela and anthracene oil derived from coal as a vehicle oil in a batch autoclave in order to obtain fundamental data on the liquefaction and co-processing characteristics. 9 refs., 4 figs., 1 tab.

  18. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  19. A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    G.A. Robbins; S.D. Brandes; D.J. Pazuchanics; D.G. Nichols; R.A. Winschel

    1999-02-01

    This is the Technical Progress Report for the sixteenth quarter of activities under DOE Contract No. DE-AC22-94PC93054. It covers the period April 1 through June 30, 1998. Described in this report are the following activities: (1) CONSOL characterized nine process stream samples received from Exxon Recycle Coal Liquefaction Unit (RCLU) operations conducted in 1994 with Rawhide Mine Wyoming subbituminous coal and all-dispersed Fe and Mo catalysts. (2) The University of Delaware subcontract related to resid reactivity was completed with issuance of the Topical Report covering work performed by Delaware. (3) Computational studies of the coal liquefaction resid models developed at the University of Delaware were continued at CONSOL R and D. The two reaction models, consisting of the reaction optimization and reaction once-through programs, were the focus of these studies. The updated resid structure data and results were used in the reaction models to predict percent conversion values that were compared with the experimentally-measured values from the University of Delaware. (4) Small samples of high-sulfur Hondo resid and anthracene oil were shipped to John Verkade of Iowa State University at his request. Verkade is testing a desulfurization method.

  20. Characteristics estimation of coal liquefaction residue; Sekitan ekika zansa seijo no suisan ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Itonaga, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Okada, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    The paper studied a possibility of estimating characteristics of coal liquefaction residue from liquefaction conditions in the case of fixing coal kind in the NEDOL process coal liquefaction PSU. Wyoming coal was used for the study, and the already proposed simplified liquefaction reaction models were used. Among material balances explained by the models, those of asphaltene, preasphaltene, THF insoluble matters are concerned with residue composition. Ash content is separately calculated from ash balance. Reaction velocity constants of simplified liquefaction reaction models which influence the residue composition were obtained by the multiple regression method from experimental results in the past. The estimation expression of residue viscosity was introduced from residue ash/composition. When the residue composition is estimated by the model from liquefaction conditions, and the residue viscosity is obtained using it, the higher the liquefaction temperature is, the higher the residue viscosity is. The result obtained well agreed the measuring result. The simplified liquefaction model of a certain coal kind has been established, and characteristics of residue can be estimated even at liquefaction conditions which have never been experienced before if there is a certain amount of the accumulated data on residue composition/characteristics. 4 refs., 4 figs., 4 tabs.

  1. Coal liquefaction. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    DOE's program for the conversion of coal to liquid fuels was begun by two of DOE's predecessor agencies: Office of Coal Research (OCR) in 1962, and Bureau of Mines, US Department of the Interior, in the 1930's. Current work is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, especially boiler fuel, distillate fuel oil, and gasoline, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is supporting the development of several conversion processes that are currently in the pilot plant stage. DOE, together with the Electric Power Research Institue, has contracted with fourteen projects are described brieflly: funding, description, status, history, and progress in the current quarter. (LTN)

  2. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  3. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan, Song; Kirby, S.; Schmidt, E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-12-31

    The objective of this project is to explore bimetallic dispersed catalysts for more efficient coal liquefaction. Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting various aromatic units and the reactions of various oxygen functional groups. This paper describes recent results on (1) hydrodeoxygenation of O-containing polycyclic model compounds using novel organometallic catalyst precursors; and (2) activity and selectivity of dispersed Fe catalysts from organometallic and inorganic precursors for hydrocracking of 4-(1-naphthylmethyl) bibenzyl. The results showed that some iron containing catalysts have higher activity in the sulfur-free form, contrary to conventional wisdom. Adding sulfur to Fe precursors with Cp-ligands decreased the activity of the resulting catalyst. This is in distinct contrast to the cases with iron pentacarbonyl and superfine Fe{sub 2}O{sub 3}, where S addition increased their catalytic activity substantially. A positive correlation between sulfur addition and increased activity can be seen, but a reversed trend between Fe cluster size and hydrocracking conversion could be observed, for carbonyl-type Fe precursors. It is apparent that the activity and selectivity of Fe catalysts for NMBB conversion depends strongly on both the type of ligand environment, the oxidation state and the number of intermetal bonds in the molecular precursor.

  4. Japan`s New Sunshine Project. 20. 1995 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The paper described a summary of the 1995 study on coal liquefaction and gasification under the New Sunshine Project. As for coal liquefaction, a study was made of liquefaction characteristics and catalysts of various coals. Also studied were liquefaction conditions for quality improvement of liquefaction products, an evaluation method of quality of coal liquid, and a utilization method of coal liquid. In order to prevent carbonization and realize effective liquefaction, a study was conducted for elucidation of the reaction mechanism of high pressure hydrogenation. In a 150t/d pilot plant using hydrogen transfer hydrogenation solvents, the NEDOL method was studied using various catalysts and kinds of coals. This is a step prior to data acquisition for engineering, actual construction of equipment and operation. A 1t/d process supporting unit is a unit to support it. The unit conducts studies on slurry letdown valves and synthetic iron sulfide catalysts, screening of Chinese coals, etc. As to coal gasification, the paper added to the basic research the combined cycle power generation using entrained flow coal gasification for improvement of thermal efficiency and environmental acceptability and the HYCOL method for hydrogen production. 68 refs., 40 figs.

  5. Subtask 3.3 - Feasibility of Direct Coal Liquefaction in the Modern Economic Climate

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin Oster; Joshua Strege; Marc Kurz; Anthony Snyder; Melanie Jensen

    2009-06-15

    Coal liquefaction provides an alternative to petroleum for the production of liquid hydrocarbon-based fuels. There are two main processes to liquefy coal: direct coal liquefaction (DCL) and indirect coal liquefaction (ICL). Because ICL has been demonstrated to a greater extent than DCL, ICL may be viewed as the lower-risk option when it comes to building a coal liquefaction facility. However, a closer look, based on conversion efficiencies and economics, is necessary to determine the optimal technology. This report summarizes historical DCL efforts in the United States, describes the technical challenges facing DCL, overviews Shenhua's current DCL project in China, provides a DCL conceptual cost estimate based on a literature review, and compares the carbon dioxide emissions from a DCL facility to those from an ICL facility.

  6. Biomedical implications of altered product composition in advanced coal liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Mahlum, D.D.; Pelroy, R.A.

    1986-04-01

    Chemical and toxicologic characteristics of direct coal liquefaction materials are highly dependent upon the specific process operations by which the coal liquids were produced, including, in particular, those that affect boiling point range and degree of hydrogen incorporation. Recent advances in direct coal liquefaction technology, such as the use of catalytic hydrogenation, reduced liquefaction severity and lowering the upper temperature cut point for the distillation of fuels, have resulted in products with higher hydrogen-to-carbon ratios and lower heteroatom content. These higher-quality fuels tend to be less mutagenic and carcinogenic in laboratory assays than earlier coal liquefaction products. It is likely that application of postproduction hydrotreatment, as well as restriction of upper distillation temperature, for coal-based fuel products could result in materials that exhibit mutagenic or carcinogenic activity which is no greater than that of their petroleum-derived counterparts. 2 figs., 3 tabs., 46 refs.

  7. Coal liquefaction process solvent characterization and evaluation: Second annual report, January 1--December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Winschel, R. A.; Robbins, G. A.; Burke, F. P.

    1987-06-01

    In 1986, work under this contract concentrated on support of the liquefaction process development activities of the Advanced Coal Liquefaction Test Facility at Wilsonville, AL, and at the Hydrocarbon Research, Inc., (HRI) process development unit (PDU) in Lawrenceville, NJ, on two potential process improvements for coal liquefaction, and on a stable carbon isotope method for quantifying the separate contributions of coal and petroleum to coprocessing products. The several most-significant results and conclusions obtained under this contract in 1986 are highlighted below. 32 refs., 12 figs., 24 tabs.

  8. A characterization and evaluation of coal liquefaction process streams. The kinetics of coal liquefaction distillation resid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.; Calkins, W.H.; Huang, H.; Wang, S.; Campbell, D.

    1998-03-01

    Under subcontract from CONSOL Inc., the University of Delaware studied the mechanism and kinetics of coal liquefaction resid conversion. The program at Delaware was conducted between August 15, 1994, and April 30, 1997. It consisted of two primary tasks. The first task was to develop an empirical test to measure the reactivity toward hydrocracking of coal-derived distillation resids. The second task was to formulate a computer model to represent the structure of the resids and a kinetic and mechanistic model of resid reactivity based on the structural representations. An introduction and Summary of the project authored by CONSOL and a report of the program findings authored by the University of Delaware researchers are presented here.

  9. Nickel-catalyzed hydroliquefaction of Morwell brown coal at low temperatures using phenolic compounds as solvents

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Y.; Saito, Y.; Okada, K.; Koinuma, Y.

    To attain a more effective coal liquefaction process, low-temperature (230-270 degrees C) coal hydroliquefaction was performed by using 15 kinds of single- or double-ring phenolic compounds as solvents and nickel acetate as a catalyst precursor. The role of the phenolic compound in the liquefaction reaction is discussed. With selected compounds, such as 1,7-dihydroxynaphthalene and resorcinol, Morwell brown coal was catalytically liquefied in a batch autoclave under H/sub 2/ pressure (10 MPa, cold) to give the coversions of the coal (to benzene/ethanol mixture solubles), which are higher than 70 wt%, at 270 degrees C for 1 h. Among three dihydroxybenzenes, resorcinol showed the highest efficiency for the Ni-catalyzed hydroliquefaction of the coal, though the capability of resorcinol to dissolve coal is the lowest in the absence of H/sub 2/. Capabilities of o-phenylphenol and its related compounds to dissolve the coal at 250 degrees C under Ar pressure (10 MPa, cold) and to hydroliquefy the coal at 270 degrees C under H/sub 2/ pressure (10 MPa, cold) were quantified. The respective orders of the conversion of the coal with these compounds are as follows: o-phenylphenol approximately equal to o-cyclohexylphenol > biphenyl approximately equal to cyclohexylbenzene. At this temperature, the solvent effect of phenolic functionality is larger than that of the hydroaromatic one. The same result is found with 1-naphthol and 5,6,7,8-tetrahydro-1-naphthol. 20 refs., 4 tabs.

  10. Effect of Recycle Solvent Hydrotreatment on Oil Yield of Direct Coal Liquefaction

    Directory of Open Access Journals (Sweden)

    Shansong Gao

    2015-07-01

    Full Text Available Effects of the recycle solvent hydrotreatment on oil yield of direct coal liquefaction were carried out in the 0.18 t/day direct coal liquefaction bench support unit of National Engineering Laboratory for Direct Coal Liquefaction (China. Results showed that the hydrogen-donating ability of the hydrogenated recycle solvent improved and the hydrogen consumption of solvent hydrotreatment was increased by decreasing liquid hourly space velocity (LHSV from 1.5 to 1.0 h−1 and increasing reaction pressure from 13.7 to 19.0 MPa. The hydrogen-donating ability of the hydrogenated recycle solvent was enhanced, thus promoting the oil yield and coal conversion of the liquefaction reaction. The coal conversion and distillates yield of coal liquefaction were increased from 88.74% to 88.82% and from 47.41% to 49.10%, respectively, with the increase in the solvent hydrotreatment pressure from 13.7 to 19.0 MPa. The coal conversion and distillates of coal liquefaction were increased from 88.82% to 89.27% and from 49.10% to 54.49%, respectively, when the LHSV decreased from 1.5 to 1.0 h−1 under the solvent hydrotreatment pressure of 19.0 MPa.

  11. Coal liquefaction: A research and development needs assessment: Final report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, H.D.; Burke, F.P.; Chao, K.C.; Davis, B.H.; Gorbaty, M.L.; Klier, K.; Kruse, C.W.; Larsen, J.W.; Lumpkin, R.E.; McIlwain, M.E.; Wender, I.; Stewart, N.

    1989-03-01

    The DOE Coal Liquefaction Research Needs (COLIRN) Panel reviewed, developed, and assessed R and D needs for the development of coal liquefaction for the production of transportation fuels. Technical, economics, and environmental considerations were important components of the panel's deliberations. The panel examined in some depth each of the following technologies: direct liquefaction of coal, indirect liquefaction via conversion of coal-derived synthesis gas, pyrolysis, coprocessing of combined coal/oil feedstocks, and bioconversion of coal and coal-derived materials. In this assessment particular attention was given to highlighting the fundamental and applied research which has revealed new and improved liquefaction mechanisms, the potentially promising innovative processes currently emerging, and the technological and engineering improvements necessary for significant cost reductions. As the result of this assessment, the COLIRN panel developed a list of prioritized research recommendations needed to bring coal liquefaction to technical and economic readiness in the next 5--20 years. The findings and the research recommendations generated by the COLIRN panel are summarized in this publication. 107 figs., 63 tabs.

  12. Characteristics of process oils from HTI coal/plastics co-liquefaction runs

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A. [and others

    1995-12-31

    The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are presented. During a few operating periods of Run POC-2, HTI co-liquefied mixed plastics with coal, and tire rubber with coal. Although steady-state operation was not achieved during these brief tests periods, the results indicated that a liquefaction plant could operate with these waste materials as feedstocks. CONSOL analyzed 65 process stream samples from coal-only and coal/waste portions of the run. Some results obtained from characterization of samples from Run POC-2 coal/plastics operation are presented.

  13. Research on co-liquefaction of highly volatile coal and waste polymer

    Institute of Scientific and Technical Information of China (English)

    宋书宇; 赵鸣

    2002-01-01

    In the paper, the reaction pattern and technological requirement of the co-processing of coal with waste polymer are studied in a 50 ml reactor. The results showed that adding waste polymers during the liquefaction of coal could effectively improve coal conversion, increase oil yield, reduce the cost of hydrogen, and require less strict reaction conditions.

  14. Applied research and evaluation of process concepts for liquefaction and gasification of western coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W. H.

    1980-09-01

    Fourteen sections, including five subsections, of the final report covering work done between June 1, 1975 to July 31, 1980 on research programs in coal gasification and liquefaction have been entered individually into EDB and ERA. (LTN)

  15. Rapid pyrolysis of Serbian soft brown coals

    Directory of Open Access Journals (Sweden)

    Jankes Goran

    2009-01-01

    Full Text Available Soft brown coals of the open coal fields of Kolubara and Kostolac are the main domestic energy sources of Serbia. This paper presents the results of investigations on rapid devolatilization of these two coals which have covered kinetics of devolatilization (based on total volatile yield, forms of sulphur and petrographic analysis of coal and char. Experiments of devolatilization were performed in inert gas (N2 at atmospheric pressure and in batch-type hot-wire screen reactor. The mass-loss values of both coals at selected final reaction temperatures (300-900°C and retention times (3-28 s were obtained. Anthony and Howard's kinetic model was applied over two temperature ranges (300-500 and 700-900°C. The types of sulphur as monosulphide, sulphate, pyritic, and organic sulphur were determined for chars and original coals. Strong transformation of pyrite was evident even at low temperatures (300°C. Devolatilization of all types of sulphur has started over 600 and at 900°C the content of sulphur in char remained only 66% of total sulphur in original coal. Microscopic investigations were carried out on samples prepared for reflected light measurements. The petrographic analysis included: the ratio of unchanged and changed coal, maceral types, the share of cenosferes, isotropic mixed carbonized grains, mixed grains, small fragments, clay, and pyrite. The change of the structure of devolatilized coal was also observed.

  16. Rapid pyrolysis of Serbian soft brown coals

    Energy Technology Data Exchange (ETDEWEB)

    Goran G. Jankes; Olga Cvetkovic; Nebojsa M. Milovanovic; Marko Ercegovaci Ercegovac; Miroljub Adzic; Mirjana Stamenic [University of Belgrade, Belgrade (Serbia). Faculty of Mechanical Engineering

    2009-07-01

    Soft brown coals of the open coal fields of Kolubara and Kostolac are the main domestic energy sources of Serbia. This paper presents the results of investigations on rapid devolatilization of these two coals which have covered kinetics of devolatilization (based on total volatile yield), forms of sulphur and petrographic analysis of coal and char. Experiments of devolatilization were performed in inert gas (N{sub 2}) at atmospheric pressure and in batch-type hot-wire screen reactor. The mass-loss values of both coals at selected final reaction temperatures (300-900{sup o}C) and retention times (3-28 s) were obtained. Anthony and Howard's kinetic model was applied over two temperature ranges (300-500 and 700-900{sup o}C). The types of sulphur as monosulphide, sulphate, pyritic, and organic sulphur were determined for chars and original coals. Strong transformation of pyrite was evident even at low temperatures (300{sup o}C). Devolatilization of all types of sulphur has started over 600 and at 900{sup o}C the content of sulphur in char remained only 66% of total sulphur in original coal. Microscopic investigations were carried out on samples prepared for reflected light measurements. The petrographic analysis included: the ratio of unchanged and changed coal, maceral types, the share of cenospheres, isotropic mixed carbonized grains, mixed grains, small fragments, clay, and pyrite. The change of the structure of devolatilized coal was also observed. 20 refs., 10 figs., 6 tabs.

  17. Direct coal liquefaction baseline design and system analysis

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlying assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.

  18. Direct coal liquefaction baseline design and system analysis

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlying assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.

  19. Low Severity Coal Liquefaction Promoted by Cyclic Olefins

    Energy Technology Data Exchange (ETDEWEB)

    Christine W. Curtis

    1998-04-09

    The development of the donor solvent technology for coal liquefaction has drawn a good deal of attention over the last three decades. The search for better hydrogen donors led investigators to a class of compounds known as cyclic olefins. Cyclic olefins are analogues of the conventional hydroaromatic donor species but do not contain aromatic rings. The cyclic olefins are highly reactive compounds which readily release their hydrogen at temperatures of 200 C or higher. Considerable effort has been o expended toward understanding the process of hydrogen donation. Most of this work was conducted in bomb reactors, with product analysis being carried out after the reaction was complete. Efforts directed towards fundamental studies of these reactions in situ are rare. The current work employs a high temperature and high pressure infrared cell to monitor in situ the concentrations of reactants and products during hydrogen release from hydrogen donor compounds.

  20. Effects of pretreatment by organic reduction on coal liquefaction (3). [Partial

    Energy Technology Data Exchange (ETDEWEB)

    Yuzu, Satoshi; Fujimoto, Tatsuya; Miyake, Mikio; Nomura, Masakatsu

    1986-10-23

    In this experiment, Akabira coal pretreated by the reductive hydrogenation was liquefied using the red mud-sulfur (ratio by weight: 9/1) catalyst to determine the effect of the partial reductive hydrogenation as the pretreatment on the coal liquefaction. The reduced coal was prepared by the reductive hydrogenation using sodium in liquid ammonia or by the pretreatment using molten potassium under reflux of tetra-hydrofuran. A 50 ml-autoclave was used for the liquefaction. The result indicates that hydrogen is introduced into the aromatic nucleus in the molecule of coal by the partial hydrogenation and the partial cleavages of C-C and C-O bonds in the structure of coal take place. Since the liquefaction of partially hydrogenated coal is accelerated by introducing hydrogen, the consumption of hydrogen is reduced and the efficiency of reaction is enhanced. (4 figs, 2 tabs, 3 refs)

  1. Assessment of Long-Term Research Needs for Coal-Liquefaction Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1980-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of J.M. Deutch (Under Secretary of DOE), E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has studied and reviewed currently funded coal-liquefaction technologies. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term development of coal-liquefaction technologies. This report summarizes the findings and research recommendations of FERWG.

  2. Study on the mechanism of coal liquefaction reaction and a new process concept

    Institute of Scientific and Technical Information of China (English)

    SHI Shi-dong; LI Wen-bo; WANG Yong; GUO Zhi; LI Ke-jian

    2008-01-01

    The coal hydrogenation reaction process is simply considered as three steps. In the first step, the smaller molecules associated with coal structure units are released as some gases and water in the condition of solvent and heating. In this step, some weaker bonds of the coal structure units are ruptured to form free radicals. The radicals are stabi-lized by hydrogen atoms from donor solvent and/or H2. In the second step, chain reaction occurs quickly. In the process of chain reaction, the covalent bonds of coal structure units are attacked by the radicals to form some asphaltenes. In the third step, asphaltenes are hydrogenated form more liquids and some gases. In coal liquefaction, the second step of coal hydrogenation reaction should be controlled to avoid integration of radicals, and the third step of coal hydrogenation should be accelerated to increase the coal conversion and the oil yield. A new concept of coal liquefaction process named as China direct coal lique-faction (CDCL) process is presented based on the mechanism study of coal liquefaction.

  3. Coal liquefaction and gas conversion: Proceedings. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume II contains papers presented at the following sessions: Indirect Liquefaction (oxygenated fuels); and Indirect Liquefaction (Fischer-Tropsch technology). Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  4. The role of recycle oil in direct coal liquefaction process development

    Energy Technology Data Exchange (ETDEWEB)

    Burke, F.P.

    1995-08-01

    It has long been recognized that use of a recycle oil is a convenient and perhaps necessary feature of a practical direct coal liquefaction process. The recycle oil performs a number of important functions. It serves as a vehicle to convey coal into the liquefaction reactor and products from the reactor. It is a medium for mass and heat transfer among the solid, liquid, and gaseous components of the reactor inventory. It can act as a reactant or intermediate in the liquefaction process. Therefore, the nature of the recycle oil can have a determining effect on process configuration and performance, and the characterization of recycle oil composition and chemistry has been the subject of considerable interest. This paper discusses recycle oil characterization and its influence on the industrial development of coal liquefaction technology,

  5. A Characterization and Evaluation of Coal Liquefaction Process Streams

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.

    1997-03-31

    This is the Technical Progress Report for the tenth quarter of activities under DOE Contract No. DE-AC22-94PC93054. It covers the period October 1 through December 31, 1996. Described in this report are the following activities: (1) CONSOL characterized two HTI coal/petroleum coprocessing samples for Ni and V concentrations, as requested by DOE. The results are reported in Appendix 1. (2) CONSOL began work to evaluate the potential for producing alkylphenyl ethers, and specifically ethylphenyl ethers, from coal liquefaction phenols. The work includes a literature review and experimentation. The status of this ongoing work is described in this report. (3) A set of samples was requested from HTI Run ALC-2 (Appendix 2). (4) The University of Delaware is conducting resid reactivity tests and is developing a kinetic mechanistic model of resid reactivity. A summary of Delaware`s progress is appended to this report (Appendix 3). (5) A paper was submitted for presentation at the 213th National Meeting of the American Chemical Society, April 13-17, 1997, in San Francisco, CA, (Appendix 4).

  6. Thermodestruction of brown coals of different genetic types

    Energy Technology Data Exchange (ETDEWEB)

    Butuzova, Ludmila; Isaeva, Lubov [L.M. Litvinenko Institute of Physical Organic and Coal Chemistry, National Academy of Sciences of the Ukraine, 70 R. Luxemburg str., 83114 Donetsk (Ukraine); Turchanina, Oksana [Donetsk National Technical University, 48 Artema str., 83000 Donetsk (Ukraine); Krzton, Andrzej [Institute of Coal Chemistry, Polish Academy of Sciences, 5 Sowinskiego, 44-102, Gliwice (Poland)

    2002-06-20

    The influence of brown coal genetic type and method of chemical pre-treatment on its behavior in pyrolysis processes has been shown. An important role of brown coal reductivity in coal thermal decomposition has been ascertained. It has been found that chemical pre-treatment permits variation of the rate of pyrolysis, the yields of pyrolysis products and structure of semi-cokes.

  7. Kinetics assisted design of catalysts for coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.; Foley, H.C.; Calkins, W.H.; Scouten, C.

    1998-02-01

    The thermal and catalytic reactions of 4-(1-naphthylmethyl)bibenzyl (NBBM), a resid and coal model compound, were examined. Catalytic reaction of NBBM was carried out at 400 C under hydrogen with a series of transition metal-based catalytic materials including Fe(CO){sub 4}PPh{sub 3}, Fe(CO){sub 3}(PPh{sub 3}){sub 2}, Fe(CO){sub 2}(PPh{sub 3}){sub 2}CS{sub 2}, Fe(CO){sub 5}, Mo(CO){sub 6}, Mn{sub 2}(CO){sub 10}, Fe{sub 2}O{sub 3} and MoS{sub 2}. Experimental findings and derived mechanistic insights were organized into molecular-level reaction models for NBBM pyrolysis and catalysis. Hydropyrolysis and catalysis reaction families occurring during NBBM hydropyrolysis at 420 C were summarized in the form of reaction matrices which, upon exhaustive application to the components of the reacting system, yielded the mechanistic reaction model. Each reaction family also had an associated linear free energy relationship (LFER) which provided an estimate of the rate constant k{sub i} given a structural property of species i or its reaction. Including the catalytic reaction matrices with those for the pyrolysis model provided a comprehensive NBBM catalytic reaction model and allowed regression of fundamental LFER parameters for the catalytic reaction families. The model also allowed specification of the property of an optimal catalyst. Iron, molybdenum and palladium were predicted to be most effective for model compound consumption. Due to the low costs associated with iron and its disposal, it is a good choice for coal liquefaction catalysis and the challenge remains to synthesize small particles able to access the full surface area of the coal macromolecule.

  8. Using gas chromatography to characterize a direct coal liquefaction naphtha.

    Science.gov (United States)

    Omais, Badaoui; Courtiade, Marion; Charon, Nadège; Roullet, Christophe; Ponthus, Jérémie; Thiébaut, Didier

    2012-02-24

    Speciation of oxygenated compounds in direct coal liquefaction naphthas is essential considering their important roles in coal conversion reactions. This study attempts to characterize them as fully as possible using gas chromatographic systems. Firstly, GC-MS was deployed allowing the identification of a few ketones, alcohols, and phenols. This conventional analysis was complemented by the application of GC-GC-FID aiming to overcome the coelutions highlighted when using one-dimensional gas chromatography. Heart-cutting and comprehensive two-dimensional gas chromatography were used and the comprehensive system led to better performances as expected considering the complexity of the matrix. In fact, it allowed the identification of more than a hundred of oxygenated compounds belonging to five chemical families: alcohols, ketones, furans, acids and phenols. Average response factors of each of these families were determined by GC×GC-FID using calibration curves and vary from 1 (hydrocarbons) to 2.50 (carboxylic acids). Thanks to a breakthrough columns set involving a trifluoropropyl stationary phase, alcohols and phenols which represent around 14% of the sample were fully identified. A detailed quantification of these species was carried out for the first time in such matrices using the determined response factors. It was concluded that 90% (w/w) of the alcohols are aromatic (phenols), 5% (w/w) are cyclic and 5% (w/w) are linear. A quantification of hydrocarbon families was also achieved and shows that the matrix is mostly naphthenic (56%, w/w), but also contains aromatics (22%, w/w) and paraffins (8%, w/w). This detailed characterization leads to a better understanding of coal conversion processes and is essential to convert them into synthetic fuels. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Cooperative Research Program in Coal-Waste Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Huffman

    2000-03-31

    The results of a feasibility study for a demonstration plant for the liquefaction of waste plastic and tires and the coprocessing of these waste polymers with coal are presented. The study was conducted by a committee that included nine representatives from the CFFS, six from the U.S. Department of Energy - Federal Energy Technology Center (FETC), and four from Burns and Roe, Inc. The study included: (1) An assessment of current recycling practices, particularly feedstock recycling in Germany; (2) A review of pertinent research, and a survey of feedstock availability for various types of waste polymers; and (3) A conceptual design for a demonstration plant was developed and an economic analysis for various feedstock mixes. The base case for feedstock scenarios was chosen to be 200 tons per day of waste plastic and 100 tons per day of waste tires. For this base case with oil priced at $20 per barrel, the return on investment (ROI) was found to range from 9% to 20%, using tipping fees for waste plastic and tires typical of those existing in the U.S. The most profitable feedstock appeared to waste plastic alone, with a plant processing 300 t/d of plastic yielding ROI's from 13 to 27 %, depending on the tipping fees for waste plastic. Feedstock recycling of tires was highly dependent on the price that could be obtained for recovered carbon. Addition of even relatively small amounts (20 t/d) of coal to waste plastic and/or coal feeds lowered the ROI's substantially. It should also be noted that increasing the size of the plant significantly improved all ROI's. For example, increasing plant size from 300 t/d to1200 t/d approximately doubles the estimated ROI's for a waste plastic feedstock.

  10. A study on the hydrotreating of coal hydro liquefaction residue and its kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.; Lu, X.; Zhang, D.; Gao, J. [Department of Chemical Engineering for Energy Resources, East China University of Science and Technology, Shanghai (China)

    2010-09-15

    Hydro-conversion of coal hydro liquefaction residue obtained from a 6 t/day pilot plant of Shenhua Group in Shanghai was carried out under the hydrotreating condition. The coal hydro liquefaction residue and its product were extracted in sequence with n-hexane, toluene and tetrahydrofuran in a Soxhlet apparatus. The n-hexane soluble fractions increased with the increase of reaction temperature and time. Its amount increased from 14.14% to a maximum of 40.86% under the conditions of 470 {sup o}C and 30 min, which meant that moderate extension of coal residence time in the coal hydro liquefaction reactor is beneficial to the increase of oil yield. A 4-lumped kinetic model of coal hydro liquefaction residue hydro-conversion was performed using solubility-based lumped fractions. In the model, the tetrahydrofuran insoluble fractions were classified into two parts: easily reactive part and unreactive part. The kinetic parameters were estimated by a fourth-order Runge-Kutta method and a nonlinear least squares method, and the apparent activation energies were calculated according to the Arrhenius Equation. A large quantity of total catalyst consisting of remained liquefaction catalyst, part of the mineral from raw coal and additive Fe-based catalyst could considerably reduce the apparent activation energy of hydro-conversion for the toluene insoluble/tetrahydrofuran insoluble fractions to 36.79 kJ-mol{sup -1}. The calculated values of the model coincided well with the experimental values. (authors)

  11. Biological liquefaction characteristics of Jurassic weak & non-stick coal in Hengshan, North Shaanxi Province

    Institute of Scientific and Technical Information of China (English)

    DU Mei-li; CHEN Hong-gui; JIANG Su-rong

    2008-01-01

    Jurassic weak & non-stick coal in Hengshan of North Shaanxi Province waspretreated by the nitric acid. Then, it was biodegraded by Phanerochaete chrysosporium.The biodegradation role of the white-rot fungus for coal is extremely significant. Orthogo-nal test demonstrate that liquefied time, liquefaction temperature and the amount of fun-gus liquids etc. are the main factors affecting the coal biodegradation rate. The best tech-nical condition of the coal biological liquefaction was got. Comparing the coal sample be-fore biodegradation with that after biodegradation, it is found that the ash of the coal resi-due after biodegradation reduces significantly, H and O contents increase, C and N con-tents decrease. The biodegradation change the coal macromolecular structure.

  12. Liquefaction behavior of finely pulverized coal. Chobifunsaitan no ekika hanno kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y.; Kamo, T.; Miki, K.; Yamamoto, Y. (National Institute for Resources and Environment, Tsukuba (Japan))

    1992-11-05

    The reaction process of coal liquefaction which uses ultrafine pulverized coal having a particle diameter of several micrometers was investigated in order to improve the catalytic efficiency between coal and catalyst. Two kinds of samples were prepared by crushing Taiheiyo-coal into less than 100-mesh by usual technique and further pulverizing the crushed coal to several [mu]m. When iron oxide catalyst, sulfur and tetralin solvent were used, pulverizing does not bring a significant improvement in conversion rate and the yield of liquefaction oil capable of being distillated. This is considered to be due to the coagulation between fine particles before or during reaction, suggesting the importance of selecting reaction conditions etc. In the case of pulverized coal, hydrogen consumption is high and hydrogenation of heavy fractions such as SRC proceeds. When liquefaction-oil circulating solvent and red mud-sulfur-based catalyst were used, gas yield was low in pulverized coal, but no significant improvement was not shown in oil yield of liquefaction oil. The conversion rate and SRC yield were somewhat high in the case of pulverized coal. 3 figs., 2 tabs.

  13. 3rd international conference on coal gasification and liquefaction, University of Pittsburgh

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-01-01

    The third annual international conference on ''Coal Gasification and Liquefaction: What Needs to be Done Now'' was held at the University of Pittsburgh, Pittsburgh, PA on August 3-5, 1976. The majority of the papers dealt with coal gasification and liquefaction (often on the basis of process pilot plant experience) and on flue gas desulfurization by a variety of processes; fewer papers involved fluidized bed combustion, combined cycle power plants, coal desulfurization, government policy on environmental effects and on synthetic fuels, etc. Twenty-eight papers have been entered individually into EDB and ERA. (LTN)

  14. A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    G.A. Robbins; G.W. Heunisch; R.A. Winschel; S.D. Brandes

    1998-04-01

    This is the Technical Progress Report for the eleventh quarter of activities under DOE Contract No. DE-AC22-94PC93054. It covers the period January 1 through March 31, 1997. Described in this report are the following activities: (1) CONSOL characterized process stream samples from HTI Run ALC-2, in which Black Thunder Mine coal was liquefied using four combinations of dispersed catalyst precursors. These results are described in the Results and Discussion section of this report. (2) Oil assays were completed on the HT I Run PB-05 product blend. Background information is presented in the Results and Discussion section of this report. The results are presented in Appendix 1. (3) Fractional distillation of the net product oil of HTI Run POC-1 was completed. Background information is presented in the Results and Discussion section of this report. The results are presented in Appendix 2. (4) CONSOL completed an evaluation of the potential for producing alkylphenyl ethers from coal liquefaction phenols. Those results are described briefly in the Results and Discussion section of this report. The full report is presented in Appendix 3. (5) At the request of DOE, various coal liquid samples and relevant characterization data were supplied to the University of West Virginia and the Federal Energy Technology Center. These activities are described in Appendix 4. (6) The University of Delaware is conducting resid reactivity tests and is completing the resid reaction computer model. A summary of Delaware's progress is provided in the Results and Discussion section. (7) The University of Delaware was instructed on the form in which the computer model is to be delivered to CONSOL (Appendix 5). (8) The University of Delaware submitted a paper on the resid reactivity work for presentation at the 213th National Meeting of the American Chemical Society, April 13-17, 1997 in San Francisco, California. The paper, ''Kinetics of Hydroprocessing of Coal-Derived Vacuum

  15. Exploratory Research on Novel Coal Liquefaction Concept - Task 2: Evaluation of Process Steps.

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Winschel, R.A.

    1997-05-01

    A novel direct coal liquefaction technology is being investigated in a program being conducted by CONSOL Inc. with the University of Kentucky, Center for Applied Energy Research and LDP Associates under DOE Contract DE-AC22-95PC95050. The novel concept consists of a new approach to coal liquefaction chemistry which avoids some of the inherent limitations of current high-temperature thermal liquefaction processes. The chemistry employed is based on hydride ion donation to solubilize coal at temperatures (350-400{degrees}C) significantly lower than those typically used in conventional coal liquefaction. The process concept being explored consists of two reaction stages. In the first stage, the coal is solubilized by hydride ion donation. In the second, the products are catalytically upgraded to acceptable refinery feedstocks. The program explores not only the initial solubilization step, but integration of the subsequent processing steps, including an interstage solids-separation step, to produce distillate products. A unique feature of the process concept is that many of the individual reaction steps can be decoupled, because little recycle around the liquefaction system is expected. This allows for considerable latitude in the process design. Furthermore, this has allowed for each key element in the process to be explored independently in laboratory work conducted under Task 2 of the program.

  16. Properties of Direct Coal Liquefaction Residue Modified Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-01-01

    Full Text Available The objectives of this paper are to use Direct Coal Liquefaction Residue (DLCR to modify the asphalt binders and mixtures and to evaluate the performance of modified asphalt mixtures. The dynamic modulus and phase angle of DCLR and DCLR-composite modified asphalt mixture were analyzed, and the viscoelastic properties of these modified asphalt mixtures were compared to the base asphalt binder SK-90 and Styrene-Butadiene-Styrene (SBS modified asphalt mixtures. The master curves of the asphalt mixtures were shown, and dynamic and viscoelastic behaviors of asphalt mixtures were described using the Christensen-Anderson-Marasteanu (CAM model. The test results show that the dynamic moduli of DCLR and DCLR-composite asphalt mixtures are higher than those of the SK-90 and SBS modified asphalt mixtures. Based on the viscoelastic parameters of CAM models of the asphalt mixtures, the high- and low-temperature performance of DLCR and DCLR-composite modified asphalt mixtures are obviously better than the SK-90 and SBS modified asphalt mixtures. In addition, the DCLR and DCLR-composite modified asphalt mixtures are more insensitive to the frequency compared to SK-90 and SBS modified asphalt mixtures.

  17. Improving performance of direct coal liquefaction through swelling with solvent under the radiation of ultrasonic wave

    Institute of Scientific and Technical Information of China (English)

    NI Xian-zhi; LI Ke-jian; WANG Li

    2004-01-01

    Three kinds of lower rank bituminous coals from Yanzhou mine and Tengxian mine from Shandong Province were treated and hydrogenated in the study. The test results show that the performance of hydrogenation liquefaction of the pretreated coals is improved markedly. Under the test condition of H2 initial pressure 8.2 MPa, addition of the oil yield of pretreated YZ1 coal is 69.76% compared with 62.53% of oil yield of untreated YZ1. Seminally the oil yield of pretreated YZ2 coal is 55.43% compared with20.88% of untreated YZ2 coal. The results of tests also prove that the improving degree of hydrogenation liquefaction of the pretreated coals is related with radiation duration when the radiation frequency and radiation power of ultrasonic wave are fixed.

  18. Characterization of the impregnated iron based catalyst for direct coal liquefaction by EXAFS

    Institute of Scientific and Technical Information of China (English)

    JianliYang; JishengZhun; 等

    2001-01-01

    Catalyst plays an important role in direct cola liquefaction(DCL)[1],Due to relatively high activity,low cost and environmentally benign for disposal,iron catalysts are regarded as the most attractive catalysts for DCL.To maximize catalytic effect and minimize catalyst usage,ultra-fine size catalysts are preferred.The most effective catalysts are found to be those impregnated onto coal because of their high dispersion on coal surface and intimate contact with coal particles.

  19. Status of health and environmental research relative to direct coal liquefaction: 1976 to the present

    Energy Technology Data Exchange (ETDEWEB)

    Gray, R.H.; Cowser, K.E. (eds.)

    1982-06-01

    This document describes the status of health and environmental research efforts, supported by the US Department of Energy (DOE), to assist in the development of environmentally acceptable coal liquefaction processes. Four major direct coal liquefaction processes are currently in (or have been investigated at) the pilot plant stage of development. Two solvent refined coal processes (SRC-I and -II), H-coal (a catalytic liquefaction process) and Exxon donor solvent (EDS). The Pacific Northwest Laboratory was assigned responsibility for evaluating SRC process materials and prepared comprehensive health and environmental effects research program plans for SRC-I and -II. A similar program plan was prepared for H-coal process materials by the Oak Ridge National Laboratory. A program has been developed for EDS process materials by Exxon Research and Engineering Co. The program includes short-term screening of coal-derived materials for potential health and ecological effects. Longer-term assays are used to evaluate materials considered most representative of potential commercial practice and with greatest potential for human exposure or release to the environment. Effects of process modification, control technologies and changing operational conditions on potential health and ecological effects are also being evaluated. These assessments are being conducted to assist in formulating cost-effective environmental research programs and to estimate health and environmental risks associated with a large-scale coal liquefaction industry. Significant results of DOE's health and environmental research efforts relative to coal liquefaction include the following: chemical characterization, health effects, ecological fate and effects, amelioration and risk assessment.

  20. Catalyst system and process for benzyl ether fragmentation and coal liquefaction

    Science.gov (United States)

    Zoeller, Joseph Robert

    1998-04-28

    Dibenzyl ether can be readily cleaved to form primarily benzaldehyde and toluene as products, along with minor amounts of bibenzyl and benzyl benzoate, in the presence of a catalyst system comprising a Group 6 metal, preferably molybdenum, a salt, and an organic halide. Although useful synthetically for the cleavage of benzyl ethers, this cleavage also represents a key model reaction for the liquefaction of coal; thus this catalyst system and process should be useful in coal liquefaction with the advantage of operating at significantly lower temperatures and pressures.

  1. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, April--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, S.R.; Martin, S.C.; Song, Chunshan; Schobert, H.H.

    1996-08-01

    This quarterly report describes our recent work on two related subjects: effect of using organometallic catalyst precursor on hydrodeoxygenation under coal liquefaction conditions, and the effect of mineral matters in liquefaction reactions of coals. Oxygen functionalities, especially phenols, are undesirable components of coal derived liquids. Removal of these compounds from the products of coal liquefaction is required. A beneficial alternative would be the removal of these functionalities, or the prevention of their formation, during the liquefaction process. Organometallic precursors of Co, Ni and Mo have been studied as catalysts. To ascertain the hydrodeoxygenation properties of these catalysts under liquefaction conditions, model compounds were investigated. Anthrone, Dibutylmethyl phenol, dinaphthyl ether and xanthene were studied to provide a comparison of conversions to deoxygenated products. Studies of the deoxygenating abilities of these catalyst precursors in coal liquefaction systems have also been performed. Improvements in conversion and product quality are observed. Both these factors are dependent on the coal used. It is also considered that some mineral matters in coal may have catalytic actions. Demineralization by successive HCl/HF treatments of a low rank coal has demonstrated that removal of the inherent mineral matter imparts no serious detrimental effect upon low temperature liquefaction. It appears that elimination of such species allows for better access for gaseous H{sub 2}, as suggested by previous studies.

  2. Coal liquefaction: A research and development needs assessment: Final report, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, H.D.; Burke, F.P.; Chao, K.C.; Davis, B.H.; Gorbaty, M.L.; Klier, K.; Kruse, C.W.; Larsen, J.W.; Lumpkin, R.E.; McIlwain, M.E.; Wender, I.; Stewart, N.

    1989-03-01

    Volume II of this report on an assessment of research needs for coal liquefaction contains reviews of the five liquefaction technologies---direct, indirect, pyrolysis, coprocessing, and bioconversion. These reviews are not meant to be encyclopedic; several outstanding reviews of liquefaction have appeared in recent years and the reader is referred to these whenever applicable. Instead, these chapters contain reviews of selected topics that serve to support the panel's recommendations or to illustrate recent accomplishments, work in progress, or areas of major research interest. At the beginning of each of these chapters is a brief introduction and a summary of the most important research recommendations brought out during the panel discussions and supported by the material presented in the review. A review of liquefaction developments outside the US is included. 594 refs., 100 figs., 60 tabs.

  3. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  4. Mild coal pretreatment to improve liquefaction reactivity. Final technical report, September 1990--February 1994

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.; Shams, K.G.

    1994-07-01

    Recent research efforts in direct coal liquefaction are focused on lowering the level of reaction severity, identification and determination of the causes of retrogressive reactions, and improving the economics of the process. Ambient pretreatment of coals using methanol and a trace amount of hydrochloric acid was extensively studied in connection with low severity coal liquefaction. Ambient pretreatment of eight Argonne coals using methanol/HCl improved THF-soluble conversions 24.5 wt % (maf basis) for Wyodak subbituminous coal and 28.4 wt % for Beulah-Zap lignite with an average increase of 14.9 wt % for the eight Argonne coals at 623 K (350{degrees}C) reaction temperature and 30 minutes reaction time. Optimal pretreatment conditions were determined using Wyodak and Illinois No. 6 coals. Acid concentration was the most important pretreatment variable studied; liquefaction reactivity increased with increasing acid concentration up to 2 vol %. The FTIR spectra of treated and untreated Wyodak coal samples demonstrated formation of carboxylic functional groups during pretreatment, a result of divalent (Ca, Mg) cationic bridge destruction. The extent of liquefaction reactivity directly correlated with the amount of calcium removed during pretreatment, and results from calcium ``addback`` experiments supported the observation that calcium adversely affected coal reactivity at low severity reaction conditions. Model compound studies using benzyl phenyl ether demonstrated that calcium cations catalyzed retrogressive reactions, inhibited hydrogenation reactions at low severity reaction conditions, and were more active at higher reaction temperatures. Based on kinetic data, mechanisms for hydrogenation-based inhibition and base-catalyzed retrogressive reactions are proposed. The base-catalyzed retrogressive reactions are shown to occur via a hydrogen abstraction mechanism where hydrogenation inhibition reactions are shown to take place via a surface quenching mechanism.

  5. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Oleg

    2013-12-31

    Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

  6. Japan`s New Sunshine Project. 1996 Annual Summary of Coal Liquefaction and Gasification; 1996 nendo new sunshine keikaku seika hokokusho gaiyoshu. Sekitan no ekika gasuka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    In reference to the results of the research and development under the fiscal 1996 New Sunshine Project, a report was summed up on coal liquefaction and coal gasification. As to the R and D of coal liquefaction technology, researches were conducted on liquefaction characteristics and engineering properties by coal kind, catalysts for coal liquefaction, liquefaction reaction of coal and reformation utilization of the liquefied products, liquefaction reaction mechanism and coking mechanism, solubility of coal in solvent and catalytic reaction mechanism, solvent reaction mechanism by hydrogen donor solvent, etc. Concerning the R and D of coal gasification technology, made were the basic study of eco-technology adaptable gasification technology and the study of coal gasification enhancing technology. Further, as to the development of bituminous coal liquefaction technology, carried out were the study in pilot plants and the support study of pilot plants. Additionally, R and D were done of the basic technology of coal liquefaction such as upgrading technology and environmentally acceptable coal liquefaction technology, and of coal hydrogasification technology. 3 refs., 81 figs., 25 tabs.

  7. Design of generic coal conversion facilities: Indirect coal liquefaction, Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    A comprehensive review of Fischer-Tropsch (F-T) technology, including fixed, fluidized, and bubble column reactors, was undertaken in order to develop an information base before initiating the design of the Fischer-Tropsch indirect liquefaction PDU as a part of the Generic Coal Conversion Facilities to be built at the Pittsburgh Energy Technology Center (PETC). The pilot plant will include a fixed bed and slurry bubble column reactor for the F-T mode of operation. The review encompasses current status of both these technologies, their key variables, catalyst development, future directions, and potential improvement areas. However, more emphasis has been placed on the slurry bubble column reactor since this route is likely to be the preferred technology for commercialization, offering process advantages and, therefore, better economics than fixed and fluidized bed approaches.

  8. Laboratory studies of briquetting and coking of hard brown coals

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, R.; Basanshaw, B.

    1988-01-01

    Assesses feasibility of producing lumpy, high strength coke from hard brown coal unsuitable for conventional briquetting and coking technologies. Laboratory studies used brown coal with 11.5 to 23.5% ash content and 11.8 to 48% coal moisture from the Adun-tschulun, Scharin-gol, Baga-nur and Nalaich deposits in Mongolia. Two experimental briquetting technologies (briquetting of pregranulated coal dust, briquetting of dried coal from slurry comminution) were applied. Resulting briquets were coked at maximum 1,000 C temperature. Graphs provide briquetting and coking results. Influence of major briquetting and coking parameters is evaluated. The highest briquet compression strength obtained ranged between 15.2 and 34.3 MPa, the highest coke compression strength was 32.0 up to 87.0 MPa. Studies proved that suitable coke for use in the metallurgical and chemical industry can be produced from various types of hard brown coal. 6 refs.

  9. Extraction of organic compounds from brown coal

    Directory of Open Access Journals (Sweden)

    Slavomír Hredzák

    2005-11-01

    Full Text Available The paper presents the study on the extraction of organic compounds (low-molecular weight - diterpenes, high-molecular weight - fullerenes and humic acids from Handlová brown coal and pyrolytic soot. It was confirmed that the coal extract with a diterpene content - 16 β (H kaurene was obtained by the supercritical fluid extraction (using CO2 and modificator - tetrahydrofurane/acetone, 8:2 w/w at T = 90 oC and p = 30 MPa. The occurrence of fullerenes in the toluene extract of solid carbon product has confirmed by the MALDI - TOF - MS and UV-VIS spectroscopy. In the extraction process of GACL (Grinding Aqueous Caustic Leaching at the concentration of 0.1 % NaOH, the content of humic acids (HK in the physically untreated and pretreated sample increased by 6.09 and 4.57 times, respectively. In the case of higher leaching agent concentration (2 % NaOH, the content of HK in the physically untreated and pretreated sample increased by 8,67 and 8,21 times, respectively.

  10. Coal liquefaction. Quarterly report, January--March 1978. [Brief summary of 15 pilot plant projects supported by US DOE

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is sponsoring the development of several conversion processes currently in the pilot plant stage. Fifteen coal liquefaction projects supported by US DOE are described briefly, with flowsheets, funding, history and progress during the quarter. (LTN)

  11. Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Technical progress report, Run 243 with Illinois 6 coal

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    This report presents the operating results for Run 243 at the Advanced Coal Liquefaction R and D Facility in Wilsonville, Alabama. This run was made in an Integrated Two-Stage Liquefaction (ITSL) mode using Illinois 6 coal from the Burning Star mine. The primary objective was to demonstrate the effect of a dissolver on the ITSL product slate, especially on the net C/sub 1/-C/sub 5/ gas production and hydrogen consumption. Run 243 began on 3 February 1983 and continued through 28 June 1983. During this period, 349.8 tons of coal was fed in 2947 hours of operation. Thirteen special product workup material balances were defined, and the results are presented herein. 29 figures, 19 tables.

  12. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)] [and others

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff has been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.

  13. Coal liquefaction process streams characterization and evaluation:. Characterization of coal liquids by field ionization mass spectrometry and iodotrimethylsilane derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, R.; McMillen, D.F. [SRI International, Menlo Park, CA (United States); Burke, F.P.; Winschel, R.A.; Brandes, S.D. [Consolidation Coal Co., Library, PA (United States). Research and Development Dept.

    1992-01-01

    SRI International evaluated two analytical methods for application to coal liquefaction. These included field ionization mass spectrometry and a technique employing iodotrimethylsilane for the derivatization of oxygen bound to alkyl carbon (alkyl ethers). The full report authored by the SRI researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal-derived materials. These results will be incorporated by Consol into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of this contract. (VC)

  14. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report No. 7, April 1993--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States); Gutterman, C.

    1994-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases. This effect is also demonstrated by improved catalyst precursor impregnation with increased contact temperature. Laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent.

  15. Biological production of alcohols from coal through indirect liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S.; Prieto, S.; Harrison, S.B.; Clausen, E.C.; Gaddy, J.L.

    1988-08-01

    The purpose of this project is to demonstrate the feasibility of producing liquid fuels from the components of synthesis gas through biological indirect liquefaction. The results of pure culture and natural source screening studies aimed at finding organisms capable of carrying out the conversions are presented and discussed. 17 refs., 2 figs., 8 tabs.

  16. Coal liquefaction in an inorganic-organic medium. [DOE patent application

    Science.gov (United States)

    Vermeulen, T.; Grens, E.A. II; Holten, R.R.

    Improved process for liquefaction of coal by contacting pulverized coal in an inorganic-organic medium solvent system containing a ZnCl/sub 2/ catalyst, a polar solvent with the structure RX where X is one of the elements O, N, S, or P, and R is hydrogen or a lower hydrocarbon radical; the solvent system can contain a hydrogen donor solvent (and must when RX is water) which is immiscible in the ZnCl/sub 2/ and is a hydroaromatic hydrocarbon selected from tetralin, dihydrophenanthrene, dihydroanthracene or a hydrogenated coal derived hydroaromatic hydrocarbon distillate fraction.

  17. Development of liquefaction process of coal and biomass in supercritical water; Chorinkaisui wo mochiita sekitan biomass doji ekika process no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, H.; Matsumura, Y.; Tsutsumi, A.; Yoshida, K. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Masuno, Y.; Inaba, A. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    Liquefaction of coal and biomass in supercritical water has been investigated, in which strong solubilization force of supercritical water against hydrocarbons is utilized. Free radicals are formed through the cleavage of covalent bonds in coal under the heating condition at around 400{degree}C during coal liquefaction. It is important to stabilize these unstable intermediate products by hydrogen transfer. On the other hand, hydrogen is not required for the liquefaction of biomass having higher H/C atomic ratio and oxygen content than those of coal. Co-liquefaction of coal and biomass was conducted using supercritical water, in which excess hydrogen from the liquefaction of biomass would be transferred to coal, resulting in the effective liquefaction of coal. Mixture of coal and cellulose was liquefied in supercritical water at 390{degree}C under the pressure of 25 MPa using a semi-continuous reactor, and the results were compared with those from the separate liquefaction of them. The co-liquefaction of coal and cellulose did not show any difference in the residue yield from the separate liquefaction of these, but led to the increased production of compounds with lower molecular weight. The liquefaction was completed in 15 minutes. 5 refs., 3 figs., 3 tabs.

  18. EVALUATION OF BROWN COAL SPONTANEOUS COMBUSTION AND SOURCES GENESIS PROGNOSES

    Directory of Open Access Journals (Sweden)

    Vlastimil MONI

    2014-10-01

    Full Text Available This article presents summarizing information about the solution of partial part of research problem of prognoses of deposited brown coal spontaneous combustion sources genesis as a part of project TA01020351 – program ALFA. We will gradually describe the results of long term measurements carried out on selected brown coal heaps realized from 2011 to 2013. The attention is devoted to characterization of key parameters. These parameters influence the genesis of combustion. The second problem is the comparison of results of thermal imaging with laboratory results of gas and coal samples sampled in situ, with the influence of atmospheric conditions (insolation, aeration, rainfall, atmospheric pressure changes etc., with influence of coal mass degradation, physical and chemical factors and another failure factors to brown coal spontaneous combustion processes.

  19. Geological occurrence response to trace elemental migration in coal liquefaction based on SPSS: take no. 11 coalbed in Antaibao mine for example

    Science.gov (United States)

    Xia, Xiaohong; Qin, Yong; Yang, Weifeng

    2013-03-01

    Coal liquefaction is an adoptable method to transfer the solid fossil energy into liquid oil in large scale, but the dirty material in which will migrate to different step of liquefaction. The migration rule of some trace elements is response to the react activity of macerals in coal and the geological occurrence of the element nature of itself. In this paper, from the SPSS data correlation analysis and hierarchical clustering dendrogram about the trace elements with macerals respond to coal liquefaction yield, it shows the trace elements in No.11 Antaibao coal seam originated from some of lithophile and sulphophle elements. Correlation coefficient between liquefaction yield of three organic macerals and migration of the elements in liquefaction residue indicated that the lithophile are easy to transfer to residue, while sulphophle are apt to in the liquid products. The activated macerals are response to sulphophle trace elements. The conclusion is useful to the coal blending and environmental effects on coal direct liquefaction.

  20. Non-catalytic transfer hydrogenation in supercritical CO2 for coal liquefaction

    Science.gov (United States)

    Elhussien, Hussien

    This thesis presents the results of the investigation on developing and evaluating a low temperature (coal dissolution in supercritical CO2. The main idea behind the thesis was that one hydrogen atom from water and one hydrogen atom from the hydrogen transfer agent (HTA) were used to hydrogenate the coal. The products of coal dissolution were non-polar and polar while the supercritical CO2, which enhanced the rates of hydrogenation and dissolution of the non-polar molecules and removal from the reaction site, was non-polar. The polar modifier (PM) for CO2 was added to the freed to aid in the dissolution and removal of the polar components. The addition of a phase transfer agent (PTA) allowed a seamless transport of the ions and by-product between the aqueous and organic phases. DDAB, used as the PTA, is an effective phase transfer catalyst and showed enhancement to the coal dissolution process. COAL + DH- +H 2O → COAL.H2 + DHO-- This process has a great feature due to the fact that the chemicals were obtained without requir-ing to first convert coal to CO and H2 units as in indirect coal liquefaction. The experiments were conducted in a unique reactor set up that can be connected through two lines. one line to feed the reactor with supercritical CO 2 and the other connected to gas chromatograph. The use of the supercritical CO2 enhanced the solvent option due to the chemical extraction, in addition to the low environmental impact and energy cost. In this thesis the experiment were conducted at five different temperatures from atmos-pheric to 140°C, 3000 - 6000 psi with five component of feed mixture, namely water, HTA, PTA, coal, and PM in semi batch vessels reactor system with a volume of 100 mL. The results show that the chemicals were obtained without requiring to first convert coal to CO and H2 units as in indirect coal liquefaction. The results show that the conversion was found to be 91.8% at opti-mum feed mixtures values of 3, 1.0 and 5.4 for water: PM

  1. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-09-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. The paper describes activities carried out this quarter. 11 refs., 21 figs., 17 tabs.

  2. Studies on characteristics of fluid dynamics in the coal liquefaction reactor; Sekitan ekika hanno tonai no ryudo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sakawaki, K.; Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Mochizuki, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Tachikawa, N.; Moki, T.; Ishikawa, I. [Japan Atomic Energy Research Institute, Tokyo (Japan)

    1996-10-28

    To design the coal liquefaction reactor of large scale plant in future, it is important to understand characteristics of fluid dynamics within the coal liquefaction reactor. In this study, to measure the fluid dynamics of liquid phase within the coal liquefaction reactor operated under high temperature and high pressure coal liquefaction condition, neutron attenuating tracer (NAT) technique, one of the tracer test methods, was applied using 1 t/d coal treating PSU. The residence time of liquid phase within the reactor can be measured by utilizing property of neutron of being absorbed by materials. The tracer was injected at the inlets of first and third reactors, and the neutron was counted at each outlet. The concentration of tracer was derived from the discrete value, to determine the residence time distribution of liquid phase. The mean residence time of liquid phase in the single first reactor and in the total three reactors were prolonged under the severe operation conditions of liquefaction. The more severe the liquefaction operation condition was, the more active the mixing of liquid phase was in the first reactor. It was found that the progress of reaction was accelerated. 2 refs., 5 figs., 1 tab.

  3. Trace component analysis of process hydrogen streams at the Wilsonville Advanced Coal Liquefaction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bronfenbrenner, J.C.

    1983-09-01

    This report summarizes subcontracted work done by the Radian Corporation to analyze trace components in process hydrogen streams at the Advanced Coal Liquefaction Facility in Wilsonville, Alabama. The data will be used to help define whether the gas streams to be treated in the hydrogen processing unit in the SRC-I Demonstration Plant will require further treatment to remove trace contaminants that could be explosive under certain conditions. 2 references.

  4. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  5. Evaluation of coal minerals and metal residues as coal-liquefaction catalysts

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-02-01

    Under DOE Contract No. DE-AC22-79ET14806, Air Products and Chemicals, Inc., subcontracted Auburn University Coal Conversion Laboratory to perform exploratory studies on the use of minerals and by-product metallic wastes in coal liquefaction. Under this program Auburn University conducted an extensive screening program on numerous materials from which the more active or interesting ones were further investigated in the continuous process development units (PDU) at Air Products. In Volume 1 of the final report a number of the results from those tests are summarized for comparison with the PDU results. Because of the very extensive and detailed work performed at Auburn University, a portion of that work is not included in Volume 1. Therefore, in order to fulfill the requirements of the contract with DOE, a compilation of the work performed by Auburn University is submitted in Volume 2. The information from the Auburn University work was compiled from a sequence of monthly reports submitted to air Products and Chemicals, Inc., during the course of the program. Because of the very large numbers of screening runs conducted at Auburn, the overlap between these reports is minimal. This work presents in some detail the various stages of development of screening procedures and analytical methods that were developed. The reader should also find them extremely informative as to the generation of ideas that developed during this program. The work reported in this volume went beyond simple screening runs. Extensive exploratory studies as well as basic studies on the behavior of reactants and catalysts were performed. These results from the basic and exploratory studies impacted on the overall direction of this program.

  6. Coal liquefaction process streams characterization and evaluation: Application of liquid chromatographic separation methods to THF-soluble portions of integrated two-stage coal liquefaction resids

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.B.; Pearson, C.D.; Young, L.L.; Green, J.A. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States))

    1992-05-01

    This study demonstrated the feasibility of using non-aqueous ion exchange liquid chromatography (NIELC) for the examination of the tetrahydrofuran (THF)-soluble distillation resids and THF-soluble whole oils derived from direct coal liquefaction. The technique can be used to separate the material into a number of acid, base, and neutral fractions. Each of the fractions obtained by NIELC was analyzed and then further fractionated by high-performance liquid chromatography (HPLC). The separation and analysis schemes are given in the accompanying report. With this approach, differences can be distinguished among samples obtained from different process streams in the liquefaction plant and among samples obtained at the same sampling location, but produced from different feed coals. HPLC was directly applied to one THF-soluble whole process oil without the NIELC preparation, with limited success. The direct HPLC technique used was directed toward the elution of the acid species into defined classes. The non-retained neutral and basic components of the oil were not analyzable by the direct HPLC method because of solubility limitations. Sample solubility is a major concern in the application of these techniques.

  7. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.

    1992-12-31

    Low severity coal liquefaction promoted by cyclic olefins offers a means of liquefying coal at low severity conditions. Lower temperature, 350{degrees}C, and lower hydrogen pressure, 500 psi, have been used to perform liquefaction reactions. The presence of the cyclic olefin, hexahydroanthracene, made a substantial difference in the conversion of Illinois No. 6 coal at these low severity conditions. The Researchperformed this quarter was a parametric evaluation of the effect of different parameters on the coal conversion and product distribution from coal. The effect of the parameters on product distribution from hexahydroanthracene was also determined. The work planned for next quarter includes combining the most effective parametric conditions for the low severity reactions and determining their effect. The second part ofthe research performed this quarter involved performing Fourier transform infrared (FTIR) spectroscopy using cyclic olefins. The objective of this study was to determine the feasibility of using FTIR and a heated cell to determine the reaction pathway that occurs in the hydrogen donation reactions from cyclic olefins. The progress made to date includes evaluating the FTIR spectra of cyclic olefins and their expected reaction products. This work is included in this progress report.

  8. Mutagenicity of products from coal gasification and liquefaction in the Salmonella/microsome assay.

    Science.gov (United States)

    Schoeny, R; Warshawsky, D; Hollingsworth, L; Hund, M; Moore, G

    1981-01-01

    As a first step in the assessment of their possible bio-effects, coal-related materials were tested for mutagenicity in the Salmonella/microsome assay. Of three coal gasification by-products tested, only a tar was mutagenic for any of four Salmonella strains. The following liquefaction materials were mutagenic for strains TA1538, TA98, and/or TA100: A liquefaction vehicle oil and coal hydrogenation filtered liquid, separated bottoms, vacuum overhead, and vacuum bottoms. Neither powdered coal nor water produced as a by-product of the hydrogenation process was positive in the Salmonella test. No coal-related material was mutagenic for the missense mutant TA1535 or for any strain in the absence of metabolic activation provided by rat hepatic homogenates (S9). In all but one instance Aroclor 1254-induced S9 provided the maximum activation for mutagenesis. Fractionation of all samples was undertaken by serial extraction with organic solvents of increasing polarity (hexane, toluene, methylene chloride, acetonitrile). Highly mutagenic materials were found in fractions of the hydrogenation filtered liquid, vacuum overhead, and vacuum bottoms. Thus far non-mutagenic samples have not yielded mutagenic components upon fractionation.

  9. Studies of the effect of selected nondonor solvents on coal liquefaction yields

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R. L.; Rodgers, B. R.; Benjamin, B. M.; Poutsma, M. L.; Douglas, E. C.; McWhirter, D. A.

    1983-09-01

    The objective of this research program was to evaluate the effectiveness of selected nondonor solvents (i.e., solvents that are not generally considered to have hydrogen available for hydrogenolysis reactions) for the solubilization of coals. Principal criteria for selection of candidate solvents were that the compound should be representative of a major chemical class, should be present in reasonable concentration in coal liquid products, and should have the potential to participate in hydrogen redistribution reactions. Naphthalene, phenanthrene, pyrene, carbazole, phenanthridine, quinoline, 1-naphthol, and diphenyl ether were evaluated to determine their effect on coal liquefaction yields and were compared with phenol and two high-quality process solvents, Wilsonville SRC-I recycle solvent and Lummus ITSL heavy oil solvent. The high conversion efficacy of 1-naphthol may be attributed to its condensation to binaphthol and the consequent availability of hydrogen. The effectiveness of both the nitrogen heterocycles and the polycyclic aromatic hydrocarbon (PAH) compounds may be due to their polycyclic aromatic nature (i.e., possible hydrogen shuttling or transfer agents) and their physical solvent properties. The relative effectiveness for coal conversion of the Lummus ITSL heavy oil solvent as compared with the Wilsonville SRC-I process solvent may be attributed to the much higher concentration of 3-, 4-, and 5-ring PAH and hydroaromatic constituents in Lummus solvent. The chemistry of coal liquefaction and the development of recycle, hydrogen donor, and nondonor solvents are reviewed. The experimental methodology for tubing-bomb tests is outlined, and experimental problem areas are discussed.

  10. Cooperative research in coal liquefaction. Final report, May 1, 1992--April 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1996-03-01

    Research on sulfate and metal (Mo, Sn) promoted Fe{sub 2}O{sub 3} catalysts in the current year focused on optimization of conditions. Parameters varied included temperature, solvent, solvent-to-coal ratio, and the effect of presulfiding versus in situ sulfiding. Oil yields were found to increase approximately proportionately with both temperature and solvent-to-coal ratio. The donor solvent, tetralin, proved to give better total conversion and oil yields than either 1-methylnaphthalene or Wilsonville recycle oil. A significant enhancement of both total liquefaction yields and oil yields from lignites and subbituminous coals has been achieved by incorporating iron into the coal matrix by cation exchange. A study has been conducted on the synthesis of iron, molybdenum, and tungsten catalysts using a laser pyrolysis technique.

  11. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Final technical report, October 1990--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Boakye, E.; Vittal, M. [and others

    1995-04-01

    This report described the synthesis of Molybdenum Sulfides in microemulsions by acidification of ammonium tetrathiomolybdate. Molybdenum Sulfides have been shown to be potential coal liquefaction catalysts. The importance of particle size, temperature effects, and coal surface chemistry to impregnation are discussed.

  12. Cooperative research in coal liquefaction. Final report, May 1, 1991--April 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1996-03-01

    Extensive research continued on catalysts based on novel anion-treated (mainly sulfated) oxides and oxyhydroxides of iron [Fe{sub x}O{sub y}/SO{sub 4}]. In addition, sulfated oxides of tin as well as molybdenum promoted iron oxides were used. Incorporation of small amounts of sulfate, molybdate, or tungstate anions by wet precipitation/impregnation methods was found to increase the surface acidic character of iron oxides; more importantly, it reduced the grain sizes significantly with corresponding increases in specific surface areas. These anion-treated iron and tin oxides were more active for direct coal liquefaction and coal-heavy oil coprocessing than their untreated counterparts. With these catalyst systems, higher conversion levels are obtained as compared to the soluble precursors of iron and molybdenum at the same catalyst metalloading (3500 ppm iron and 50 ppm molybdenum with respect to coal). Sulfated iron oxides and oxyhydroxides were equally active as coal liquefaction catalysts. The sulfate, molybdate, and tungstate anions were found to have similar promotional effects on the properties and activities of iron oxides. One step in the synthesis of anion-treated iron and tin oxides is precipitation as hydroxides using either urea or ammonium hydroxide. The catalysts prepared using urea as a precipitation agent were more reproducible than those using ammonium, hydroxide in terms of activities and properties. These catalysts/catalyst precursors were characterized by several techniques to determine their physical (size and structure related) and chemical (acidity) properties. Sulfated and molybdated iron oxides were found to have grain sizes as small as 10-20 nm. An attempt was made to correlate the physicochemical properties of these catalysts with their activity for coal liquefaction.

  13. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 1, Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., (United States)

    1994-12-31

    The overall objective of this project was to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrated coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. Heterofunctional solvents were the most effective in swelling coals. Also solvent blends such as isopropanol/water were more effective than pure solvents alone. Impregnating slurry catalysts simultaneously during coal swelling showed that better uptake was achieved with nonswelling solvent and higher impregnation temperature. Some enhancement in initial coal conversion was seen liquefying SO{sub 2}-treated Black Thunder coal with slurry catalysts, and also when hydrogen donor liquefaction solvents were used. Noncatalytic reactions showed no benefit from SO{sub 2} treatment. Coupling coal swelling and SO{sub 2} treatment with slurry catalysts was also not beneficial, although high conversion was seen with continuous operation and long residence time, however, similar high conversion was observed with untreated coal. SO{sub 2} treatment is not economically attractive unless it provides about 17% increase in coal reactivity. In most cases, the best results were obtained when the coal was untreated and the slurry catalyst was added directly into the reactor. Foster Wheeler`s ASCOT process had better average liquid yields than either Wilsonville`s vacuum tower/ROSE combination or delayed coking process. This liquid product also had good quality.

  14. Behavior of catalyst and mineral matter in coal liquefaction; Sekitan ekika hannochu no kobusshitsu to shokubai no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, K.; Wang, J.; Tomita, A. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    Mineral matter in coals is important in various senses for coal liquefaction. It is possible that the catalytic activity is affected by the interaction between catalyst and mineral matter. Iron-based catalyst forms pyrrhotite in the process of liquefaction, but the interaction between it and mineral matter is not known in detail. In this study, the interaction between mineral matter and catalyst and the selective reaction between them were investigated. Tanito Harum coal was used for this study. This coal contains a slight amount of siderite and jarosite besides pyrite as iron compounds. Liquefaction samples were obtained from the 1 t/d NEDOL process PSU. The solid deposits in the reactor mainly contained pyrrhotite and quartz. A slight amount of kaolinite was observed, and pyrite was little remained. It was found that the catalyst (pyrrhotite) often coexisted with quartz, clay and calcite. 8 figs., 2 tabs.

  15. The dual role of oxygen functions in coal pretreatment and liquefaction: Crosslinking and cleavage reactions. First annual report, April 1, 1991--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Serio, M.A.; Kroo, E.; Teng, H.; Charpenay, S.; Solomon, P.R.

    1992-08-01

    The overall objective of this project is elucidate and model the dual role of oxygen functions in thermal pretreatment and liquefaction of low rank coals through the application of analytical techniques and theoretical models. The project will be an integrated study of model polymers representative of coal structures, raw coals of primarily low rank, and selectivity modified coals in order to provide specific information relevant to the reactions of real coals. The investigations will include liquefaction experiments in microautoclave reactors along with extensive analysis of intermediate solid, liquid and gaseous products. Attempts will be made to incorporate the results of experiments on the different systems into a liquefaction model.

  16. ECONOMIC EFFICIENCY IN USAGE OF BELARUSIAN BROWN COAL DEPOSITS

    Directory of Open Access Journals (Sweden)

    V. V. Kravchenko

    2011-01-01

    Full Text Available Methodology for economic evaluation of the effective use of the Belarusian brown coal deposits has been developed on the basis of systematic analysis of scientific, statistical and economic data. The obtained methodology allows to perform multi-variant optimization calculations under various uncertainty level without reduction to the same energy effect that is especially important while developing economic forecasts and programs for the long term perspective. Using this methodology evaluation of various directions pertaining to usage of the Belarusian brown coal has been done and recommendations on their possible application have been given in the paper.

  17. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

    1995-04-01

    Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

  18. Benefit-cost analysis of selected DOE/OHER investments in coal liquefaction.

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, J.M.; Fillo, J.P.; Gray, R.H.; Felix, W.D.; Mahlum, D.D.

    1982-09-01

    Based in large part of the lack of specific information about the nature and magnitude of health impacts that could occur from commercialization of a coal liquefaction industry, DOE initiated a broad-based program to study the potential health and environmental fate and effects of process streams from several coal liquefaction process options. Responsibility for this research was assigned to OHER. Specific results of this research program that are important for the purpose of this analysis include findings that: the toxicity and teratogenic potential of coal liquids boiling below 450/sup 0/F is small; mutagenic and carcinogenic activity is typically expressed in coal liquids boiling above 750/sup 0/F; and mutagenic and carcinogenic activity increases markedly in coal liquids boiling above 800/sup 0/F. Based on the above findings, OHER funded research to evaluate the effect of various hydrotreatment levels on the biological activity of coal-derived liquids. Studies using the Ames assay or mammalian cell transformation assays indicated that hydrotreatment was effective in reducing biological activity of coal-derived liquids. Skin-painting studies demonstrated that carcinogenicity was also reduced by hydrotreatment. Studies in progress are evaluating the effects of hydrotreatment severity on biological activity. However, it appears reasonably clear that health risks can be reduced by hydrotreating only materials that boil above 750/sup 0/F. Materials boiling below 750/sup 0/ could be marketed directly without significant risk to individuals exposed to these products. The benefit-cost analysis presented is based on the premise that the cost differential between full and partial hydrotreatment provides the basis for approximating the potential benefits associated with the relevant OHER research investments.

  19. Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Final report, September 20, 1991--September 19, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    One of the main goals for competitive coal liquefaction is to decrease gas yields to reduce hydrogen consumption. Complexing this element as methane and ethane decreases process efficiently and is less cost effective. To decrease the gas yield and increase the liquid yield, an effective preconversion process has been explored on the basis of the physically associated molecular nature of coal. Activities have been focused on two issues: (1) maximizing the dissolution of associated coal and (2) defining the different reactivity associated with a wide molecular weight distribution. Two-step soaking at 350{degrees}C and 400{degrees}C in a recycle oil was found to be very effective for coal solubilization. No additional chemicals, catalysts, and hydrogen are required for this preconversion process. High-volatile bituminous coals tested before liquefaction showed 80--90% conversion with 50--55% oil yields. New preconversion steps suggested are as follows: (1) dissolution of coal with two-step high-temperature soaking, (2) separation into oil and heavy fractions of dissolved coal with vacuum distillation, and (3) selective liquefaction of the separated heavy fractions under relatively mild conditions. Laboratory scale tests of the proposed procedure mode using a small autoclave showed a 30% increase in the oil yield with a 15--20% decrease in the gas yield. This batch operation projects a substantial reduction in the ultimate cost of coal liquefaction.

  20. Fractionally distilled SRC-I, SRC-II, EDS, H-Coal and ITSL direct coal liquefaction process materials: a comparative summary of chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.; Dauble, D.D.; Wilson, B.W.

    1985-07-01

    This document reports and compares the results compiled from chemical analyses and biological testing of coal liquefaction process materials which were fractionally distilled, after production, into various comparable boiling-point range cuts. Comparative analyses were performed on solvent refined coal (SRC)-I, SRC-II, H-Coal, EDS an integrated two-stage liquefaction (ITSL) distillate materials. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative, chemical and biological assessments. Where possible, results obtained from the distillate cuts are compared to those from coal liquefaction materials with limited boiling ranges. Work reported here was conducted by investigators in the Biology and Chemistry Department at the Pacific Northwest Laboratory (PNL), Richland, WA. 38 refs., 16 figs., 27 tabs.

  1. Analysis of the relationship between the coal properties and their liquefaction characteristics by using the coal data base; Tanshu data base ni yoru tanshitsu to ekika tokusei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kanbayashi, Y.; Okada, K. [Coal Mining Research Center, Tokyo (Japan)

    1996-10-28

    The relationship between coal properties and liquefaction or gasification characteristics was analyzed by using the analysis and test results and liquefaction characteristics in the coal data base. On liquefaction reaction, the close relation between an oil yield and coal constituent composition or a coal rank is well-known. Various multivariable regression analyses were conducted by using 6 factors as variables such as calorific value, volatile component, O/C and H/C atomic ratios, exinite+vitrinite content and vitrinite reflectance, and liquefaction characteristics as variate. On liquefaction characteristics, the oil yield of dehydrated and deashed coals, asphaltene yield, hydrogen consumption, produced water and gas quantities, and oil+asphaltene yield were predicted. The theoretical gasification efficiency of each specimen was calculated to evaluate the liquefaction reaction obtained. As a result, the oil yield increased with H/C atomic ratio, while the theoretical gasification efficiency increased with O/C atomic ratio. 5 figs., 1 tab.

  2. A characterization and evaluation of coal liquefaction process streams. Quarterly report, January 1--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Heunisch, G.W.; Winschel, R.A.

    1998-08-01

    Described in this report are the following activities: CONSOL characterized process stream samples from HTI Run ALC-2, in which Black Thunder Mine coal was liquefied using four combinations of dispersed catalyst precursors. Oil assays were completed on the HTI Run PB-05 product blend. Fractional distillation of the net product oil of HTI Run POC-1 was completed. CONSOL completed an evaluation of the potential for producing alkylphenyl ethers from coal liquefaction phenols. At the request of DOE, various coal liquid samples and relevant characterization data were supplied to the University of West Virginia and the Federal Energy Technology Center. The University of Delaware is conducting resid reactivity tests and is completing the resid reaction computer model. The University of Delaware was instructed on the form in which the computer model is to be delivered to CONSOL.

  3. Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Hampden-Smith, M.; Kawola, J.S.; Martino, A.; Sault, A.G.; Yamanaka, S.A.

    1999-01-05

    The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

  4. A characterization and evaluation of coal liquefaction process streams. Status assessment

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.

    1995-07-01

    A review of the literature dealing with the modeling of fossil-fuel resid conversion to product oils and an updated assessment of the physico-chemical analytical methodology applicable to coal-liquefaction product streams is presented in this document. Analytical methodologies included here are either those which are different than those previously surveyed or are improvements on, or significantly different applications of methods previously surveyed. The literature cited spans the time period from 1991 to the present. The literature was examined from the 1960s through the present. When possible, for each model described, the methodology for deriving the model and the relative quality of the kinetic parameters derived is discussed. Proposed reaction schemes used for constructing coal-conversion models, in many cases, include the conversion of a resid intermediate to light products. These models are, therefore, also of interest, and are included here. Analytical techniques were identified that were shown to be useful for providing physico-chemical information of coal-liquefaction resids. These techniques are nuclear magnetic resonance spectroscopy, mass spectrometry (especially the technique of field ionization mass spectrometry), electron spin resonance spectroscopy coupled to thermogravimetric analysis, and a suite of petroleum inspection tests. It is recommended that these techniques be used in the present contract. 76 refs.

  5. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, January 1--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-08-01

    This is the tenth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Process oils from Wilsonville Run 262 were analyzed to provide information on process performance. Run 262 was operated from July 10 through September 30, 1991, in the thermal/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) configuration with ash recycle. The feed coal was Black Thunder Mine subbituminous coal. The high/low temperature sequence was used. Each reactor was operated at 50% of the available reactor volume. The interstage separator was in use throughout the run. The second-stage reactor was charged with aged Criterion 324 catalyst (Ni/Mo on 1/16 inch alumina extrudate support). Slurry catalysts and sulfiding agent were fed to the first-stage reactor. Molyvan L is an organometallic compound which contains 8.1% Mo, and is commercially available as an oil-soluble lubricant additive. It was used in Run 262 as a dispersed hydrogenation catalyst precursor, primarily to alleviate deposition problems which plagued past runs with Black Thunder coal. One test was made with little supported catalyst in the second stage. The role of phenolic groups in donor solvent properties was examined. In this study, four samples from direct liquefaction process oils were subjected to O-methylation of the phenolic groups, followed by chemical analysis and solvent quality testing.

  6. Pyrolysis of brown coal mixed with heavy products of coal and petroleum processing

    Energy Technology Data Exchange (ETDEWEB)

    Vikhorev, A.A.; Syroezhko, A.M.; Proskuryakov, V.A.; Akhmedov, N.A.

    1987-03-01

    Investigates effect of various additives on yield of liquid product from pyrolysis of Kansk-Achinsk (Berezovsk deposit) brown coal mixed with organic additives: waste from caprolactam plant consisting mostly of saturated oxygen containing compounds and mono- and di-carboxylic acid esters, waste from sabatic acid plant consisting predominantly of unsaturated acids, distillation residue of synthetic fatty acids, heavy residue from Arlansk oil refineries containing mainly condensed naphtheno-aromatic systems and heavy tar from rapid pyrolysis of Kansk-Achinsk coal. Finds that joint pyrolysis of brown coal with organic additives increases yield of liquid products and that intensive decomposition begins at lower temperatures. 4 refs.

  7. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E.; Song, C.; Schobert, H.H.

    1994-01-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts can be superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. The primary objective of this research is to explore novel bimetallic dispersed catalysts from heterometallic molecular precursors, that can be used in low concentrations but exhibit high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. This quarterly report describes the preparation of two precursors. The first is a heterometallic complex consisting of two transition metals, Mo and Ni, and sulfur in a single molecule synthesized. The second is a thiocubane type cluster consisting of iron and sulfur.

  8. The use of mixed pyrrhotite/pyrite catalysts for co-liquefaction of coal and waste rubber tires

    Energy Technology Data Exchange (ETDEWEB)

    Dadyburjor, D.B.; Zondlo, J.W.; Sharma, R.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The overall objective of this research program is to determine the optimum processing conditions for tire/coal co-liquefaction. The catalysts used will be a ferric-sulfide-based materials, as well as promising catalysts from other consortium laboratories. The intent here is to achieve the maximum coal+tire conversion at the mildest conditions of temperature and pressure. Specific objectives include an investigation of the effects of time, temperature, pressure, catalyst and co-solvent on the conversion and product slate of the co-liquefaction. Accomplishments and conclusions are discussed.

  9. Coal liquefaction studies using phosphoric acid at moderate temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    McLean, J.B.; Vermeulen, T.

    1977-12-01

    Concentrated phosphoric acid solutions (65-100% H/sub 3/PO/sub 4/) were studied as a potential homogenous catalytic medium for coal liquefaction at temperatures of up 250/sup 0/C and hydrogen pressures up to 600 psig. Possible catalytic additives, both organic and inorganic, were investigated. Sulfuric acid and molten phosphate and sulfate salt systems were also briefly studied. Sodium pyrophosphate was found to be a beneficial additive to phosphoric acid, in that it reduces the tendency toward foaming upon contacting coal with hot acid, and was used in all subsequent experiments. The materials were relatively ineffective in liquefying coals, except with certain organic additives. Approximately 30% of the sulfur in coal is removed by phosphoric acid treatment, while no effect on nitrogen content is evidenced. Some deashing occurs, with AlCa components most affected. Phosphorus is chemically incorporated into the product coal at levels of 2% or less with most of the incorporated P ending up in the pyridine extract. B.E.T. surface area and scanning electron microscope studies indicate that increased extraction yields of product coals are due more to chemical effects than simply to exposure of more surface area to the extraction solvent used.

  10. The current status of coal liquefaction technologies - Panorama 2008; La liquefaction du charbon: ou en est-on aujourd'hui? - Panorama 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    In 2008, a first coal liquefaction unit to produce motor fuel (20,000 BPSD) will come on-stream in Shenhua, China (in the Ercos region of Inner Mongolia). Other, more ambitious projects have been announced in China for between now and 2020. Since oil production is expected to peak in the medium term, this technology may develop regionally in the next 20 years to cover ever-increasing demand for motor fuel.

  11. Biogeneration of iron-based catalyst precursors by Acidianus brierleyi on high- and low-pyrite coals for direct liquefaction.

    Energy Technology Data Exchange (ETDEWEB)

    Murty, M.V.S.; Huggins, F.E.; Aleem, M.I.H.; Kermode, R.I.; Bhattacharyya, D. [University of Kentucky, Lexington, KY (United States). Dept. of Chemical Engineering

    1995-03-01

    Treatment of high-pyrite, high-sulphur Illinois (IBS) coals and pyrite-free Blind Canyon (DECS) coal with added pyrite in the presence of {ital Acidianus brierleyi} showed formation of iron oxyhydroxide (FeOOH) particles and subsequent sulphiding caused enhancement in liquefaction and oil yield. IBC No. 101 and 105, and DECS No. 17 containing different amounts of pyrite were treated with {ital A. brierleyi} to evaluate its effect on FeOOH formation. Chemical analysis of the liquid phase and Moessbauer analysis of the coals revealed that all the biotreated coals showed significant reduction in pyrite after 21 days (or less with pH alteration in the middle of IBC No. 105 coal run) of incubation. Further data on bioprocessed coals obtained from Moessbauer spectroscopy verified the formation of an FeOOH phase, which acts as a catalyst precursor for direct coal liquefaction (DCL). The direct liquefaction conversion and oil yield of the biotreated DECS No. 17 coal with added pyrite increased by 14 and 5% respectively, over the control which did not contain {ital A. brierleyi}. 40 refs., 8 figs., 2 tabs.

  12. Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Topical report No. 14. Catalyst activity trends in two-stage coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    The Two Stage Coal Liquefaction process became operational at Wilsonville in May 1981, with the inclusion of an H-OIL ebullated-bed catalytic reactor. The two stage process was initially operated in a nonintegrated mode and has recently been reconfigurated to fully integrate the thermal and the catalytic stages. This report focuses on catalyst activity trends observed in both modes of operation. A literature review of relevant catalyst screening studies in bench-scale and PDU units is presented. Existing kinetic and deactivation models were used to analyze process data over an extensive data base. Based on the analysis, three separate, application studies have been conducted. The first study seeks to elucidate the dependence of catalyst deactivation rate on type of coal feedstock used. A second study focuses on the significance of catalyst type and integration mode on SRC hydrotreatment. The third study presents characteristic deactivation trends observed in integrated operation with different first-stage thermal severities. In-depth analytical work was conducted at different research laboratories on aged catalyst samples from Run 242. Model hydrogenation and denitrogenation activity trends are compared with process activity trends and with changes observed in catalyst porosimetric properties. The accumulation of metals and coke deposits with increasing catalyst age, as well as their distribution across a pellet cross-section, are discussed. The effect of catalyst age and reactor temperature on the chemical composition of flashed bottoms product is addressed. Results from regenerating spent catalysts are also presented. 35 references, 31 figures, 18 tables.

  13. Studies of initial stage in coal liquefaction. Effect of prethermal treatment condition with process solvent to increase oil yields; Ekika hanno no shoki katei ni kansuru kenkyu. Sekitan no maeshori joken to yozai koka

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, T.; Komatsu, N.; Kishimoto, M.; Okui, T.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. ltd., Tokyo (Japan)

    1996-10-28

    Process solvent was hydrogenated in the brown coal liquefaction, to investigate the influence of it on the prethermal treatment and liquefaction. Consequently, it was found that the n-hexane soluble (HS) yield was improved. In this study, capacity of hydrogen transfer from solvent during prethermal treatment and effects of catalyst were investigated. Since prethermal treatment in oil was effective for improving the oil yield in the presence of hydrogen/catalyst or high hydrogen-donor solvent, influence of hydrogen-donor performance of solvent or addition of catalyst on the hydrogenation behavior of coal and the characteristics of products during prethermal treatment were investigated in relation to successive liquefaction results. As a result, it was found that the increase of HS yield was due to the acceleration of conversion of THF-insoluble using high hydrogen-donor solvent and/or by adding catalyst. It was also found that the use of high hydrogen-donor solvent and highly active catalyst at the stage of prethermal treatment before the successive liquefaction was effective for improving the HS yield, i.e., liquefied oil yield. 2 refs., 5 figs., 1 tab.

  14. Microbial recovery of metals from spent coal liquefaction catalysts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sperl, P.L.; Sperl, G.T.

    1995-07-01

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types were the subject of the contract. The first was a Ni-No catalyst support on alumina (Shell 324), the catalyst used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. The second material was an unsupported ammonium molybdate catalyst used in a pilot process by the Department of Energy at the Pittsburgh Energy Technology Center. This material was obtained in late February 1990 but has not been pursued since the Mo content of this particular sample was too low for the current studies and the studies at the Pittsburgh Energy Technology Center have been discontinued. The object of the contract was to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans , but also other Thiobacillus spp. and possibly Sulfolobus and other potential microorganisms, to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which could be readily recovered by conventional techniques.

  15. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-12-31

    The experimental study of coal swelling ratios have been determined with a wide variety of solvents. Only marginal levels of coal swelling were observed for the hydrocarbon solvents, but high levels were found with solvents having heteroatom functionality. Blends were superior to pure solvents. The activity of various catalyst precursors for pyrene hydrogenation and coal conversion was measured. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively. Bottoms processing consists of a combination of the ASCOT process coupling solvent deasphalting with delayed coking. Initial results indicate that a blend of butane and pentane used near the critical temperature of butane is the best solvent blend for producing a yield/temperature relationship of proper sensitivity and yet retaining an asphalt phase of reasonable viscosity. The literature concerning coal swelling, both alone and in combination with coal liquefaction, and the use of dispersed or unsupported catalysts in coal liquefaction has been updated.

  16. Dispersed catalysts for co-processing and coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, B.; Parfitt, D.; Miller, R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second area of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.

  17. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Steven Markovich

    2010-06-30

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  18. Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. [Effect of preconversion heat soak with coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    A study of the high-temperature soaking started in this quarter, following the installation of reactors in the previous quarter. Two high-volatile bituminous coals and three coal liquids, which were identified in the previous report, were used. A cross-linked, three-dimensional macromolecular model has been widely accepted f or the structure of coal, but there is no direct evidence to prove this model. The conventional coal structure model has been recently re-examined by this investigator because of the importance of relatively strong intra- and intermolecular interactions in bituminous coals. It was reasonable to deduce that significant portions were physically associated after a study of multistep extractions, associative equilibria, the irreversibility and the dependence of coal concentration on solvent swelling, and consideration of the monophase concept. Physical dissociation which may be significant above 300{degree}C should be utilized for the treatment before liquefaction. The high-temperature soaking in a recycle oil was proposed to dissociate coal complexes.

  19. Chemical analysis and mutational assay of distilled oils from the H-coal direct liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Later, D.W.; Wright, C.W.; Stewart, D.L.

    1985-01-01

    Samples from the H-Coal process, a catalytic, single-stage, coal liquefaction technology, were chemically characterized and screened for microbial mutagenicity. For these investigations, a blend of light and heavy H-Coal process oils was fractionally distilled into 50/sup 0/F boiling point cuts. The chemical analyses and biological testing results presented in this status report deal primarily with the blended material and the distillate fractions boiling above 650/sup 0/F. Results from the microbial mutagenicity assays indicated that onset of biological activity in the crude materials occurred above 700/sup 0/F. Similar trends have been observed for Solvent Refined Coal (SRC) I, SRC II, Integrated Two-Stage Liquefaction (ITSL) and Exxon EDS process materials. After chemical class fractionation, the primary source of microbial mutagenicity of the crude boiling point cuts was the nitrogen-containing polycyclic aromatic compound (N-PAC) fractions. Amino polycyclic aromatic hydrocarbons (amino-PAH) were present at sufficient concentration levels in the N-PAC fractions to account for the observed mutagenic responses. In general, the chemical composition of the H-Coal materials studied was similar to that of other single-stage liquefaction materials. The degree of alkylation in these materials was determined to be greater than in the SRC and less than in the EDS process distillate cuts. 13 references, 8 figures, 11 tables.

  20. Chemical analysis and mutational assay of distilled oils from the H-coal direct liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Later, D.W.; Wright, C.W.; Stewart, D.L.

    1985-01-01

    Samples from the H-Coal process, a catalytic, single-stage, coal liquefaction technology, were chemically characterized and screened for microbial mutagenicity. For these investigations, a blend of light and heavy H-Coal process oils was fractionally distilled into 50/sup 0/F boiling point cuts. The chemical analyses and biological testing results presented in this status report deal primarily with the blended material and the distillate fractions boiling above 650/sup 0/F. Results from the microbial mutagenicity assays indicated that onset of biological activity in the crude materials occurred above 700/sup 0/F. Similar trends have been observed for Solvent Refined Coal (SRC) I, SRC II, Integrated Two-Stage Liquefaction (ITSL) and Exxon EDS process materials. After chemical class fractionation, the primary source of microbial mutagenicity of the crude boiling point cuts was the nitrogen-containing polycyclic aromatic compound (N-PAC) fractions. Amino polycyclic aromatic hydrocarbons (amino-PAH) were present at sufficient concentration levels in the N-PAC fractions to account for the observed mutagenic responses. In general, the chemical composition of the H-Coal materials studied was similar to that of other single-stage liquefaction materials. The degree of alkylation in these materials was determined to be greater than in the SRC and less than in the EDS process distillate cuts. 13 references, 8 figures, 11 tables.

  1. Basic properties of Japanese and foreign coals selected for liquefaction. 1. A consideration of the method for proximate analysis of coals

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, R.

    1984-10-01

    The use of thermogravimetry for the proximate analysis of coals is compared with the Japanese Standard method (JIS M8812). The thermogravimetric method was found to be applicable to a wide range of brown coals, lignites and bituminous coals providing a rapid and simple method requiring only a small sample and giving a direct determination of fixed carbon.

  2. Direct coal liquefaction baseline design and system analysis. Quarterly report, January--March 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlying assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.

  3. Direct coal liquefaction baseline design and system analysis. Quarterly report, May--August 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlying assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.

  4. Chemical Compositional Analysis of Catalytic Hydroconversion Products of Heishan Coal Liquefaction Residue

    Directory of Open Access Journals (Sweden)

    Xiaoming Yue

    2017-01-01

    Full Text Available Liquefaction residue of Heishan bituminous coal (HLR was subject to two hydroconversion reactions under 5 MPa initial pressure of hydrogen at 300°C for 3 h, without catalyst and with acid supported catalyst (ASC, respectively. The reaction products were analyzed with gas chromatography/mass spectrometer (GC/MS. The results show that 222 organic compounds were detected totally in the products and they can be divided into alkanes, aromatic hydrocarbons (AHCs, phenols, ketones, ethers, and other species (OSs. The yield of hydroconversion over the ASC is much higher than that without catalyst. The most abundant products are aromatic hydrocarbons in the reaction products from both catalytic and noncatalytic reactions of HLR. The yield of aromatic hydrocarbons in the reaction product from hydroconversion with the ACS is considerably higher than that from hydroconversion without a catalyst.

  5. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, January 1--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1993-12-01

    Process oil samples from HRI Catalytic Two-Stage Liquefaction (CTSL) Bench Unit Run CC-16 (227-76) were analyzed to provide information on process performance. Run CC-16 was operated in December 1992 with Burning Star 2 Mine (Illinois 6 seam) coal to test and validate Akzo EXP-AO-60 Ni/Mo catalyst (1/16 in. extrudate). Results were compared with those of four previous HRI CTSL bench unit runs made with Ni/Mo catalysts. Major conclusions from this work are summarized. (1) Akzo EXP-AO-60 gave process oil characteristics in Run CC-16 similar to those of other Ni/Mo catalysts tested in Runs I-13, I-16, I-17, and I-18 (by our analytical and empirical test methods). No distinct performance advantage for any of the catalysts emerges from the process oil characteristics and plant performance. Thus, for commercial coal liquefaction, a number of equivalent catalysts are available from competitive commercial sources. The similarity of run performance and process oil characteristics indicates consistent performance of HRI`s bench unit operations over a period of several years; (2) Dominant effects on process oil properties in Run CC-16 were catalyst age and higher temperature operation in Periods 10--13 (Condition 2). Properties affected were the aromaticities and phenolic -OH concentrations of most streams and the asphaltene and preasphaltene concentrations of the pressure-filter liquid (PFL) 850{degrees}F{sup +} resid. The trends reflect decreasing hydrogenation and defunctionalization of the process streams with increasing catalyst age. Operation at higher temperature conditions seems to have partially offset the effects of catalyst age.

  6. Coal Liquefaction characteristics and chemical structure of product oil; Sekitan ekika hanno tokusei to seiseibutsu no kagaku kozo

    Energy Technology Data Exchange (ETDEWEB)

    Endo, H.; Sato, M.; Chiba, T.; Hattori, H. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology; Sasaki, M. [Hokkaido National Industrial Research Institute, Sapporo (Japan)

    1996-10-28

    Through the hydrogenolysis of Wandoan coal and Tanito Harum coal which are used for the NEDOL process, differences of liquefaction characteristics between them were found. The purpose of this study is to grasp these differences as differences of chemical structures of oil fractions. The compound type analysis was conducted for oil fractions obtained at varied reaction temperature for varied reaction time. Coal liquefaction characteristics of these coals were discussed by relating oil yields and chemical structures. For Tanito Harum coal, yields of gas and oil were considered to be lower than those for Wandoan coal, which reflected that the contents of partially hydrogenated hydroaromatics in oil fraction from the former were lower than those from the latter, and that the remarkable change of composition did not occur with the progress of the reaction. For both the coals, the remarkable changes in the average molecular weight of oil fraction were not observed with the progress of the reaction. While, the content of methane gradually increased with the progress of the reaction, which suggested that oil was gradually dealkylated. 5 figs.

  7. Coal liquefaction process streams characterization and evaluation: The application of {sup 252}Cf-plasma desorption mass spectrometry to analysis of direct coal liquefaction heavy products

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Lapucha, A.R.

    1992-10-01

    This study demonstrated the feasibility of using {sup 252}Cf PDMS, GPC, and MPLC for the examination of the tetrahydrofuran (THF)-soluble portion of distillation resid materials derived from direct coal liquefaction. The {sup 252}Cf-PDMS technique was used to determine molecular weight distributions of twenty-five THF-soluble resids. In order to detemine if {sup 252}Cf-PDMS responds differently to different chemical classes of compounds, Lehigh separated five of the samples into chemically distinct fractions by MPLC, then analyzed the parent samples, their fractions, and the re-mixed fractions by {sup 252}Cf-PDMS and GPC. Irreversible alteration of the samples upon separation was noted by Lehigh. This was confirmed by use of gas chromatographic (GC) analyses. The noted irreversible alterations prevented a direct comparison of the remixed materials and the original samples. Thus, the selective response of {sup 252}Cf-PDMS to different chemical classes of compounds could not be confirmed or ruled out. The number average molecular weights (M{sub n}) obtained by {sup 252}Cf-PDMS and GPC agreed well. However, the weight average molecular weights (M{sub w}) obtained by GPC are always higher than the corresponding {sup 252}Cf-PDMS results. Number average molecular weights and weight average molecular weights obtained with {sup 252}Cf-PDMS and GPC were compared with those obtained by field ionization mass spectrometry (FIMS), previously reported by SRI International for the parent resid samples from which the Lehigh THF-soluble samples were derived.

  8. Coal liquefaction process streams characterization and evaluation: The application of [sup 252]Cf-plasma desorption mass spectrometry to analysis of direct coal liquefaction heavy products

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Lapucha, A.R.

    1992-10-01

    This study demonstrated the feasibility of using [sup 252]Cf PDMS, GPC, and MPLC for the examination of the tetrahydrofuran (THF)-soluble portion of distillation resid materials derived from direct coal liquefaction. The [sup 252]Cf-PDMS technique was used to determine molecular weight distributions of twenty-five THF-soluble resids. In order to detemine if [sup 252]Cf-PDMS responds differently to different chemical classes of compounds, Lehigh separated five of the samples into chemically distinct fractions by MPLC, then analyzed the parent samples, their fractions, and the re-mixed fractions by [sup 252]Cf-PDMS and GPC. Irreversible alteration of the samples upon separation was noted by Lehigh. This was confirmed by use of gas chromatographic (GC) analyses. The noted irreversible alterations prevented a direct comparison of the remixed materials and the original samples. Thus, the selective response of [sup 252]Cf-PDMS to different chemical classes of compounds could not be confirmed or ruled out. The number average molecular weights (M[sub n]) obtained by [sup 252]Cf-PDMS and GPC agreed well. However, the weight average molecular weights (M[sub w]) obtained by GPC are always higher than the corresponding [sup 252]Cf-PDMS results. Number average molecular weights and weight average molecular weights obtained with [sup 252]Cf-PDMS and GPC were compared with those obtained by field ionization mass spectrometry (FIMS), previously reported by SRI International for the parent resid samples from which the Lehigh THF-soluble samples were derived.

  9. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, April 1--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Lancet, M.S.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the eleventh Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: (1) The results of a study designed to determine the effects of the conditions employed at the Wilsonville slurry preheater vessel on coal conversion is described. (2) Stable carbon isotope ratios were determined and used to source the carbon of three product samples from Period 49 of UOP bench-scale coprocessing Run 37. The results from this coprocessing run agree with the general trends observed in other coprocessing runs that we have studied. (3) Microautoclave tests and chemical analyses were performed to ``calibrate`` the reactivity of the standard coal used for determining donor solvent quality of process oils in this contract. (4) Several aspects of Wilsonville Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) resid conversion kinetics were investigated; results are presented. Error limits associated with calculations of deactivation rate constants previously reported for Runs 258 and 261 are revised and discussed. A new procedure is described that relates the conversions of 850{degrees}F{sup +} , 1050{degrees}F{sup +}, and 850 {times} 1050{degrees}F material. Resid conversions and kinetic constants previously reported for Run 260 were incorrect; corrected data and discussion are found in Appendix I of this report.

  10. Pyrolysis of Compositions of Mixtures of Combustible Shales and Brown Coals Deposited in Belarus

    Science.gov (United States)

    Lishtvan, I. I.; Dudarchik, V. M.; Kraiko, V. M.; Belova, Yu. V.

    2013-11-01

    This paper presents the results of investigating the pyrolysis of compositions of mixtures of brown coals and combustible shales in a close-packed and a moving layer and the yield dynamics of the pyrolysis gas and resin. A comparative analysis of the quality of pyrolysis products obtained from combustible shales and brown coal and from their mixtures has been performed.

  11. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October 1995--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Cooke, W.S.; Schmidt, E.; Schobert, H.H.

    1996-02-01

    Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. Here in this quarterly, we report on the catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds in the reactions of dibenzothiophene (DBT) with hydrogen under conditions related to coal liquefaction. The catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds have been examined in the hydrogenation and hydrodesulfurization reactions of dibenzothiophene (DBT) under conditions related to coal liquefaction. The metal compounds are candidate catalyst precursors for direct coal liquefaction. The reactions were carried out in batch microautoclave reactors at 400{degrees}C for 30 minutes with 6.9 MPa (cold) hydrogen pressure, and tridecane solvent. A metal loading of 0.5 mol% resulted in low conversion and only hydrogenation. Addition of sulfur in 4:1 molar ratio led only to a minor increase in conversion and hydrodesulfurization. The use of a higher boiling solvent (octadecane vs. tridecane) was beneficial in providing increased conversion, hydrodesulfurization, and hydrogenation. An increase in metal compound loading to 36.2 mol% led to a dramatic increase in conversion, hydrodesulfurization, and hydrocracking. Molybdenum hexacarbonyl at 36 mol% loading, with added sulfur at 6:1 ratio and octadecane solvent, gave 100% conversion of dibenzothiophene to other products with 100% hydrodesulfurization. Ammonium tetrathiomolybdate and molybdenum(III) chloride are less active under similar conditions. A cobalt-molybdenum thiocubane complex gave unexpectedly low conversions. Iron and cobalt carbonyls also provided very low conversions, even with added sulfur.

  12. Brown Coal Dewatering Using Poly (Acrylamide-Co-Potassium Acrylic Based Super Absorbent Polymers

    Directory of Open Access Journals (Sweden)

    Sheila Devasahayam

    2015-09-01

    Full Text Available With the rising cost of energy and fuel oils, clean coal technologies will continue to play an important role during the transition to a clean energy future. Victorian brown coals have high oxygen and moisture contents and hence low calorific value. This paper presents an alternative non evaporative drying technology for high moisture brown coals based on osmotic dewatering. This involves contacting and mixing brown coal with anionic super absorbent polymers (SAP which are highly crossed linked synthetic co-polymers based on a cross-linked copolymer of acryl amide and potassium acrylate. The paper focuses on evaluating the water absorption potential of SAP in contact with 61% moisture Loy Yang brown coal, under varying SAP dosages for different contact times and conditions. The amount of water present in Loy Yang coal was reduced by approximately 57% during four hours of SAP contact. The extent of SAP brown coal drying is directly proportional to the SAP/coal weight ratio. It is observed that moisture content of fine brown coal can readily be reduced from about 59% to 38% in four hours at a 20% SAP/coal ratio.

  13. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, July--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Yoshiharu; Wei, B.; Reddy, K.M.; Song, C.; Schobert, H.H.

    1997-01-01

    This quarterly report describes recent work on two related subjects: (1) effect of dispersed molybdenum catalyst precursor and the influence of water addition on C-O bond cleavage, aromatic hydrogenation and hydrodeoxygenation under coal liquefaction conditions, and (2) the effect of dispersed molybdenum catalyst precursor on the molecular weight reduction and desulfurization of petroleum resids related to coal/petroleum resids coprocessing. Technical progress on the C-O bond cleavage of 2,2{prime}-dinaphthyl ether and high temperature simulated distillation GC and HDS study on catalytic upgrading of atmospheric and vacuum resids.

  14. Study of initial stage in coal liquefaction. Increase in oil yield with suppression of retrogressive reaction during initial stage; Ekika hanno no shoki katei ni kansuru kenkyu. 1.

    Energy Technology Data Exchange (ETDEWEB)

    Uesugi, K.; Kanaji, M.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    For the coal liquefaction, improvement of liquefaction conditions and increase of liquefied oil yield are expected by suppressing the recombination through rapid stabilization of pyrolytic radicals which are formed at the initial stage of liquefaction. Two-stage liquefaction combining prethermal treatment and liquefaction was performed under various conditions, to investigate the effects of reaction conditions on the yields and properties of products as well as to increase liquefied oil yield. Consequently, it was found that the catalyst contributes greatly to the hydrogen transfer to coal at the prethermal treatment. High yield of n-hexane soluble fraction with products having low condensation degree could be obtained by combining the prethermal treatment in the presence of hydrogen and catalyst with the concentration of slurry after the treatment. This was considered to be caused by the synergetic effect between the improvement of liquefaction by suppressing polymerization/condensation at the initial stage of reaction through the prethermal treatment and the effective hydrogen transfer accompanied with the improvement of contact efficiency of coal/catalyst by the concentration of slurry at the stage of liquefaction. 4 refs., 8 figs.

  15. Effect of sulfur or hydrogen sulfide on initial stage of coal liquefaction in tetralin; Sekitan ekika shoki katei ni okeru io to ryuka suiso no hatasu yakuwari

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, M. [Government Industrial Research Institute, Kyushu, Saga (Japan)

    1996-10-28

    It is well known that the solubilization of coal can be accelerated by adding sulfur or hydrogen sulfide during direct liquefaction of difficult coals. From the studies of authors on the coal liquefaction under the conditions at rather low temperatures between 300 and 400{degree}C, liquefaction products with high quality can be obtained by suppressing the aromatization of naphthene rings, but it was a problem that the reaction rate is slow. For improving this point, results obtained by changing solvents have been reported. In this study, to accelerate the liquefaction reaction, Illinois No.6 coal was liquefied in tetralin at temperature range from 300 to 400{degree}C by adding a given amount of sulfur or hydrogen sulfide at the initial stage of liquefaction. The addition of sulfur or hydrogen sulfide provided an acceleration effect of liquefaction reaction at temperature range between 300 and 400{degree}C. The addition of sulfur or hydrogen sulfide at 400{degree}C increased the oil products. At 370 and 400{degree}C, the liquid yield by adding sulfur was slightly higher than that by adding hydrogen sulfide, unexpectedly. The effects of sulfur and hydrogen sulfide were reversed when increasing the hydrogen pressure. 5 figs., 1 tab.

  16. Coal liquefaction in early stage of NEDOL process 1t/d PSU; 1t/d PSU ni okeru ekika shoki hanno ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Kawabata, M.; Mochizuki, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    To investigate the behavior of coal liquefaction reaction in early stage as a part of studies on the coal liquefaction characteristics using NEDOL process 1 t/d process supporting unit (PSU), coal slurry sample was taken from the outlet of slurry preheater located in the upflow of liquefaction reactors, and was tested. Tanito Harum coal was used for liquefaction. Preheater was operated under the condition of pressure of 170 kg/cm{sup 2}, gas flow rate of 64 Nm{sup 3}/hr, and at temperature up to 410{degree}C at the outlet, in response to the standard test condition. The slurry sample was discharged into a high temperature separator with temperature of 250{degree}C. Liquefaction was not proceeded at the outlet of preheater. Solid residue yielded around 80%, and liquid yielded around 15%. Gases, CO and CO2, and water yielded also small amount around 3%. The solid sample contained much IOM fraction (tetrahydrofuran-insoluble and ash), and the liquid contained much heavy oil fraction. Hydrogenation was not proceeded, and the hydrogen consumption was very low showing below one-tenth of that at the usual operation. Hydrogen sulfide gas was formed at early stage, which suggested that the change of iron sulfide catalyst occur at early stage of liquefaction. 1 ref., 5 figs., 2 tabs.

  17. Reconfigured, close-coupled reconfigured, and Wyodak coal integrated two-stage coal liquefaction process materials from the Wilsonville facility: Chemical and toxicological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.

    1987-03-01

    This document reports the results of the chemical analysis and toxicological testing of process materials sampled during the operation of the Advanced Coal Liquefaction Research and Development Facility (Wilsonville, AL) in the reconfigured, integrated (RITSL run No. 247), the close-coupled, reconfigured, integrated (CCRITSL run No. 249), and the Wyodak coal integrated (ITSL run No. 246) two-stage liquefaction operating modes. Chemical methods of analysis included proton nuclear magnetic resonance spectroscopy, adsorption column chromatography, high resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. Toxicological evaluation of the process materials included a histidine reversion assay for microbial mutagenicity, an initiation/promotion assay for tumorigenicity in mouse skin, and an aquatic toxicity assay using Daphnia magna. The results of these analyses and tests are compared to the previously reported results derived from the Illinois No. 6 coal ITSL and nonintegrated two-stage liquefaction (NTSL) process materials from the Wilsonville facility. 21 refs., 13 figs., 21 tabs.

  18. Hydrogeologic investigation of the Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, F.G.; Kearl, P.M.; Mumby, M.E.; Rogers, S.

    1996-09-01

    This document describes the geology and hydrogeology at the former Advanced Coal Liquefaction Research and Development (ACLR&D) facility in Wilsonville, Alabama. The work was conducted by personnel from the Oak Ridge National Laboratory Grand Junction office (ORNL/GJ) for the U.S. Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC). Characterization information was requested by PETC to provide baseline environmental information for use in evaluating needs and in subsequent decision-making for further actions associated with the closeout of facility operations. The hydrogeologic conceptual model presented in this report provides significant insight regarding the potential for contaminant migration from the ACLR&D facility and may be useful during other characterization work in the region. The ACLR&D facility is no longer operational and has been dismantled. The site was characterized in three phases: the first two phases were an environmental assessment study and a sod sampling study (APCO 1991) and the third phase the hydraulic assessment. Currently, a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation (RI) to address the presence of contaminants on the site is underway and will be documented in an RI report. This technical memorandum addresses the hydrogeologic model only.

  19. Hydrogeologic investigation of the Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, F.G.; Kearl, P.M.; Mumby, M.E.; Rogers, S.

    1996-09-01

    This document describes the geology and hydrogeology at the former Advanced Coal Liquefaction Research and Development (ACLR&D) facility in Wilsonville, Alabama. The work was conducted by personnel from the Oak Ridge National Laboratory Grand Junction office (ORNL/GJ) for the U.S. Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC). Characterization information was requested by PETC to provide baseline environmental information for use in evaluating needs and in subsequent decision-making for further actions associated with the closeout of facility operations. The hydrogeologic conceptual model presented in this report provides significant insight regarding the potential for contaminant migration from the ACLR&D facility and may be useful during other characterization work in the region. The ACLR&D facility is no longer operational and has been dismantled. The site was characterized in three phases: the first two phases were an environmental assessment study and a sod sampling study (APCO 1991) and the third phase the hydraulic assessment. Currently, a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation (RI) to address the presence of contaminants on the site is underway and will be documented in an RI report. This technical memorandum addresses the hydrogeologic model only.

  20. Coal conversion rate in 1t/d PSU liquefaction reactor; 1t/d PSU ekika hannoto ni okeru sekitan tenka sokudo no kento

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    To investigate the coal liquefaction characteristics, coal slurry samples were taken from the outlets of the reactors and slurry preheater of NEDOL process 1 t/d process supporting unit (PSU), and were analyzed. Tanito Harum coal was used for liquefaction, and the slurry was prepared with recycle solvent. Liquefaction was performed using synthetic iron sulfide catalyst at reaction temperatures, 450 and 465{degree}C. Solubility of various solid samples was examined against n-hexane, toluene, and tetrahydrofuran (THF). When considering the decrease of IMO (THF-insoluble and ash) as a characteristic of coal conversion reaction, around 20% at the outlet of the slurry preheater, around 70% within the first reactor, and several percents within the successive second and third reactors were converted against supplied coal. Increase of reaction temperature led to the increase of evaporation of oil fraction, which resulted in the decrease of actual slurry flow rate and in the increase of residence time. Thus, the conversion of coal was accelerated by the synergetic effect of temperature and time. Reaction rate constant of the coal liquefaction was around 2{times}10{sup -1} [min{sup -1}], which increased slightly with increasing the reaction temperature from 450 to 465{degree}C. 3 refs., 5 figs., 1 tab.

  1. Comparative analysis for performance of brown coal combustion in a vortex furnace with improved design

    Science.gov (United States)

    Krasinsky, D. V.

    2016-09-01

    Comparative study of 3D numerical simulation of fluid flow and coal-firing processes was applied for flame combustion of Kansk-Achinsk brown coal in a vortex furnace of improved design with bottom injection of secondary air. The analysis of engineering performance of this furnace was carried out for several operational modes as a function of coal grinding fineness and coal input rate. The preferable operational regime for furnace was found.

  2. Catalytic Two-Stage Liquefaction (CTSL) process bench studies with bituminous coal. Final report, [October 1, 1988--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.; Stalzer, R.H.; Smith, T.O.

    1993-03-01

    Reported herein are the details and results of Laboratory and Bench-Scale experiments using bituminous coal concluded at Hydrocarbon Research, Inc., under DOE contract during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with the application of coal cleaning methods and solids separation methods to the Catalytic Two-Stage Liquefaction (CTSL) Process. Additionally a predispersed catalyst was evaluated in a thermal/catalytic configuration, and an alternative nickel molybdenum catalyst was evaluated for the CTSL process. Three coals were evaluated in this program: Bituminous Illinois No. 6 Burning Star and Sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The tests involving the Illinois coal are reported herein, and the tests involving the Wyoming and New Mexico coals are described in Topical Report No. 1. On the laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects are reported in Topical Report No. 3. Other microautoclave tests, such as tests on rejuvenated catalyst, coker liquids, and cleaned coals, are described in the Bench Run sections to which they refer. The microautoclave tests conducted for modelling the CTSL process are described in the CTSL Modelling section of Topical Report No. 3 under this contract.

  3. Japan`s Sunshine Project. 1991 annual summary of coal liquefaction and gasification; 1991 nendo sunshine keikaku seika hokokusho gaiyoshu. Sekitan no ekika gas ka

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    Out of the research and development on the 1991 Sunshine Project, the results of coal liquefaction/gasification are reported. The basic research of coal liquefaction/gasification is conducted. The research plan for a 150 ton/day scale pilot plant (PP) is worked out for the development of bituminous coal liquefaction technology by NEDOL process. Data of PSU (Process Support Units) operation, especially, are studied. Concerning the data obtained through dismantling of the 50 ton/day PP in Australia which uses Australian Victoria coal due to completion of its operation and also obtained from its support research, they are reflected in the design of a demonstration plant, and the results are arranged for study. Research and development on refining technology of coal-derived liquid such as Illinois coal liquid and on application technology of its products are made. For the development of coal-use hydrogen production technology, conducted is the research of a high temperature gasification PP by entrained flow bed process which is the core of the coal gasification technology. Elementary study with a 2 ton/day furnace is made for the development of the entrained flow bed coal gasification combined cycle power generation system. Also conducted are PP construction, adjusting operation and the overall research operation.

  4. Characterization of selected Ohio coals to predict their conversion behavior relative to 104 North American Coals. [Factors correlating with liquefaction behavior

    Energy Technology Data Exchange (ETDEWEB)

    Whitacre, T. P.; Hunt, T. J.; Kneller, W. A.

    1982-02-01

    Twenty-six coal samples from Ohio were collected as washed and seam samples, and lithobodies within the seams. Characterization of these samples included determination of % maceral, % anti R/sub max/, LTA, chlorine content and proximate/ultimate and qualitative mineral analyses. These data were compared to data from a similar project by Yarzab, R.F., et al., 1980 completed at Pennsylvania State University using tetralin as the hydrogen donor solvent. The characteristics of these coals were correlated with liquefaction conversion and other data accrued on 104 North American coals by statistical analyses. Utilizing percent carbon, sulfur, volatile matter, reflectance, vitrinite and total reactive macerals, Q-mode cluster analysis demonstrated that Ohio coals are more similar to the coals of the Interior province than to those of the Appalachian province. Linear multiple regression analysis for the 104 North American coals provided a prediction equation for conversion (R = .96). The predicted conversion values for the samples range from 58.8 to 79.6%, with the Lower Kittanning (No. 5) and the Middle Kittanning (No. 6) coal seams showing the highest predicted percent conversion (respectively, 73.4 and 72.2%). The moderately low FSI values for the No. 5 and No. 6 coals (respectively, 2.5 and 3) and their moderately high alkaline earth content (respectively, 0.69 and 0.74%) suggest that these coals possess the best overall properties for conversion. Stepwise regression has indicated that the most important coal characteristics affecting conversion are, in decreasing order of importance: % volatile matter, % vitrinite and % total sulfur. Conversion processes can be expected to produce higher yields with Ohio coals due to the presence of such mineral catalysts as pyrite and kaolinite. It is believed that the presence of these disposable catalysts increases the marketability of Ohio coals.

  5. New interpretations of the facies of the Rhenish brown coal of West Germany

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, H.W.; Wolf, M.

    1987-05-01

    New ideas concerning the understanding of the facies of the Rhenish brown coal of West Germany are discussed. These new interpretations are based on a significantly larger number of samples and refined procedures for analysis within the field of paleobotany, palynology, coal petrology and organic geochemistry than were available to P.W. Thomson and M. Teichmuller. The light and dark bands in the coal are mainly the result of different degrees of plant decomposition. The influence of the peat-forming plant communities plays a subordinate role in the petrographical composition of these particular strata of the Rhenish brown coal. 28 refs.

  6. The prospects of hard and brown coal in Poland and in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Gawlik, Lidia; Majchrzak, Henryk; Mokrzycki, Eugeniusz; Uliasz-Bochenczyk, Alicja

    2010-09-15

    Poland possess significant reserves of hard and brown coal and is an important producer of these fuels, for that reason coal has a dominant position in Polish energy balance. The government document describing energy policy of Poland up to the year 2030 treats Polish coal as an stabilizer of national energy safety. The progress in clean coal technologies development is a key element to determine the role of Polish coal both in Polish and EU economy. The possibilities of prospective use of coal pointing at the main direction of clean technology development has also been discussed in the paper.

  7. Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Quarterly report, January 1, 1992--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    A study of the high-temperature soaking started in this quarter, following the installation of reactors in the previous quarter. Two high-volatile bituminous coals and three coal liquids, which were identified in the previous report, were used. A cross-linked, three-dimensional macromolecular model has been widely accepted f or the structure of coal, but there is no direct evidence to prove this model. The conventional coal structure model has been recently re-examined by this investigator because of the importance of relatively strong intra- and intermolecular interactions in bituminous coals. It was reasonable to deduce that significant portions were physically associated after a study of multistep extractions, associative equilibria, the irreversibility and the dependence of coal concentration on solvent swelling, and consideration of the monophase concept. Physical dissociation which may be significant above 300{degree}C should be utilized for the treatment before liquefaction. The high-temperature soaking in a recycle oil was proposed to dissociate coal complexes.

  8. Application of Biologically Activated Brown Coal in Cu(II Sorption

    Directory of Open Access Journals (Sweden)

    Andrea Beňová

    2004-12-01

    Full Text Available The removal of heavy metal ions from wastewaters using different adsorbents is currently of great interest. Adsorption of cooper ions from aqueous solutions on biologically activated brown coal was investigated. Four families of adsorbents were prepared from brown coal by microorganisms activity. There were used soi microfungi such as Aspergillus niger, Aspergillus clavatus, Penicillium glabrum and Trichoderma viride. The equilibrium of the adsorption process was well described by the Langmuir isotherm and the maximum capacity of the sorbents was determined.

  9. Effects of alkali halide doping on hydrogen bonding interaction in brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, H.; Sato, N.; Sanada, Y.; Nakamura, K.; Sasaki, M.; Kotanigawa, T. [Hokkaido University, Sapporo (Japan)

    1994-12-31

    The effects of alkali halide doping on hydrogen bonding interactions in brown coal have been investigated by means of thermogravimetric analysis, FT-IR and UV-visible spectroscopy, differential scanning calorimeter (DSC) and solvent swelling. With lithium iodide (LiI) doping, volatile matter evolution of brown coal increased from 24.6 wt% to 43.9%, and the activation energy decreased from 54 kJ/mol to 31 kJ/mol. FT-IR spectra of pyrolysis residue obtained from raw and LiI doped brown coal indicate that LiI doped in coal control the formation of cross-link structures, such as ether linkage (-C-O-C-), during pyrolysis. Since LiI interacts with hydroxyl functional group, it can be concluded that doping coal with LiI results in declining hydrogen bonding interaction and increasing evolution of volatile matter. 4 refs., 5 figs., 3 tabs.

  10. Co-pyrolysis of a Ukrainian low-grade coal (brown) with plastics

    Energy Technology Data Exchange (ETDEWEB)

    V.N. Shevkoplyas [National Academy of Sciences of Ukraine, Donetsk (Ukraine)

    2003-07-01

    An effective pathway of the wastes plastics utilization can be its co-pyrolysis with a low-grade (brown) coal. The Dneprovsky deposit brown coal (Ukraine) and waste plastics as a polyethyleneterephthalate in this investigation were taken. The brown coal-plastics mixed used: 19:1; 9:1 and 4:1 ratio that was as 5, 10 and 20 % plastics additive to the brown coal. The co-pyrolysis mix prepared in the temperature region 450-800{sup o}C in a fixed bed reactor has been carried out. The process time was 0, 60 and 120 min., heating rate - 25{sup o}C/min. The influence plastics additive on the co-pyrolysis yield has been estimated. The influence of the co-pyrolysis isothermal time on the yield and properties of the tars produced has been studied. The mass balances of co-pyrolysis brown coal with plastics have been calculated. It was concluded that the co-pyrolysis brown coal with plastics is a way to utilize organic pollutants. 3 refs., 1 fig., 6 tabs.

  11. Influence of additives on the increase of the heating value of Bayah's coal with upgrading brown coal (UBC) method

    Science.gov (United States)

    Heriyanto, Heri; Widya Ernayati, K.; Umam, Chairul; Margareta, Nita

    2015-12-01

    UBC (upgrading brown coal) is a method of improving the quality of coal by using oil as an additive. Through processing in the oil media, not just the calories that increase, but there is also water repellent properties and a decrease in the tendency of spontaneous combustion of coal products produced. The results showed a decrease in the water levels of natural coal bayah reached 69%, increase in calorific value reached 21.2%. Increased caloric value and reduced water content caused by the water molecules on replacing seal the pores of coal by oil and atoms C on the oil that is bound to increase the percentage of coal carbon. As a result of this experiment is, the produced coal has better calorific value, the increasing of this new calorific value up to 23.8% with the additive waste lubricant, and the moisture content reduced up to 69.45%.

  12. Effect of intermolecular cohesion on coal liquefaction. 3. Reactivity of oxygen methylated coal; Sekitan teibunshika hanno ni okeru bunshikan gyoshuryoku no koka. 3. O-methyl ka tan no hanno tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, M.; Nagaishi, H.; Yoshida, T. [Hokkaido National Industrial Research Institute, Sapporo (Japan)

    1996-10-28

    The reactivity of oxygen methylated coal was studied to control hydrogen bond in bituminous coal liquefaction and intermolecular cohesion such as van der Waals force. In experiment, crushed and dried Illinois coal of 100mesh or less was used as specimen, and oxygen methylated coal was prepared by Liotta`s method using tetrabutylammonium halide. Coal liquefaction was conducted in an electromagnetic agitation autoclave using tetralin solvent under initial hydrogen pressure of 100kg/cm{sup 2} while heating. The molecular weight distribution of the products obtained was measured by gel permeation chromatography (GPC) analysis. The experimental results are as follows. The effect of intermolecular cohesion in bituminous coal on the reactivity is mainly derived from decomposing reaction from preasphaltene to oil. Yields of oil fraction by methylation increase corresponding to release of intermolecular cohesion. Since the thermal release is promoted with temperature rise, the difference in yield due to different treatments decreases. 5 refs., 3 figs., 1 tab.

  13. Effects of pretreatment in steam on the pyrolysis behavior of Loy Yang brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Cai Zeng; George Favas; Hongwei Wu; Alan L. Chaffee; Jun-ichiro Hayashi; Chun-Zhu Li [Monash University, Vic. (Australia). CRC for Clean Power from Lignite, Department of Chemical Engineering

    2006-02-01

    Dewatering/drying of Victorian brown coal will be an integral part of future brown coal utilization processes aimed at the reduction of greenhouse gas emissions. This study aims to investigate the effects of the thermal pretreatment of brown coal in the presence of steam/water on its subsequent pyrolysis behavior. A Victorian (Loy Yang) brown coal was thermally pretreated in pressurized steam and inert atmospheres. The pyrolysis behavior of these pretreated coal samples was investigated in a wire-mesh reactor. While the pretreatment in steam at temperatures higher than 250{sup o}C increased the char yield of the steam-treated coal, it did not affect the overall pyrolysis char yield at 1000{sup o} C s{sup -1} if the weight loss during the pretreatment in steam was also considered. However, the tar yield decreased significantly after the pretreatment in the presence of steam. The UV-fluorescence spectroscopy of tars revealed that the release of large aromatic systems from the steam-treated coal was only affected by the pretreatment in steam if the treatment temperature was very high (e.g. 350{sup o}C). The loss of NaCl and the use of high pressure during the pretreatment of brown coal in steam were not the main reasons for the changes in the observed tar yield. The hydrolysis of O-containing structures such as ethers, esters, and carboxylates during the pretreatment in the presence of steam plays an important role in the fates of these O-containing structures during pretreatment and subsequent pyrolysis, leading to changes in the pyrolysis behavior of the brown coal. 36 refs., 8 figs.

  14. Capital investment at North Bohemian Brown Coal Mines

    Energy Technology Data Exchange (ETDEWEB)

    Vavrecka, S.

    1987-03-01

    Various categories of investment are discussed to be undertaken by North Bohemian Brown Coal Mines: State Plan projects, such as new extraction capacity at Most and Vrsany mines; other construction work, such as schools and recreation facilities, housing construction; underground mine workings; equipment and machinery not included in other categories; restoration work, such as the Ervenicky road/rail/water corridor; work to remove obstacles hindering future mining operations. Investments are briefly summarizes since the beginning of the 5th Five Year Plan as being concerned mainly with the shift in emphasis from underground mining to surface mining at 8 large-scale mines (Merkur, Brezno, Vrsany, Sverma, VCSA, Most, VMG, Chabrovice). An analysis of investment procedures conducted in 1980 is briefly discussed, the results of which had 4 main themes: investment control systems should be strengthened, communications between general directorate and individual departments should be improved, links between specialist institutes should be improved and these recommendations should be built into the organizational structure.

  15. Co-pyrolysis of hydrothermally upgraded brown coal and wax prepared from waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Kouichi Miura; Susan A. Roces; Monthicha Pattatapanusak; Hiroyuki Nakagawa; Ryuichi Ashida; Masato Morimoto [Kyoto University, Kyoto (Japan). Department of Chemical Engineering

    2007-07-01

    We have recently presented a hydrothermal extraction method that not only removes water from brown coal but also upgrades the coal and extracts low molecular mass compounds simultaneously. The upgraded coal contained much less oxygen than the raw coal. However, it still needs to be further upgraded to be utilized as a substitute for bituminous coal. In this study co-pyrolysis of the upgraded coals and waxes formed from waste plastics was investigated for this purpose. Waxes were prepared through pyrolysis of polyethylene, polypropylene, and polyethylene terephtalate. Upgraded coals were then impregnated with the waxes in an autoclave at 200{sup o}C under pressure. The mixtures of coal and wax were rapidly heated up to 1040{sup o}C at about 3000{sup o}C/s using a Curie point pyrolyzer in an inert atmosphere. The char yield was greatly enhanced by a factor of 1.1 to 1.3 compared to the char yield obtained when the upgraded coals and waxes were pyrolyzed independently. Even under a slower heating rate (0.17{sup o}C/s) the char yields increased by a factor of 1.2 for the all mixtures of the upgraded coal and waxes. Since no such effect was found when the raw brown coal was impregnated with waxes, it was suggested that the modification of the structure of brown coal by the hydrothermal extraction could enhance interactions between the coal and the wax when co-pyrolyzed. Effect of wax mixing ratio on co-pyrolysis behavior was also examined. The char yield dramatically increased when the ratio exceeded about 0.3 g/g for the pyrolysis of both under slow and rapid heating rates. This trend coincided with that of the swelling ratio of the upgraded coal impregnated with wax, indicating that some physical change by wax-impregnation affected the co-pyrolysis behavior. 5 refs., 14 figs., 3 tabs.

  16. Application of principal-component analysis to the interpretation of brown coal properties

    Energy Technology Data Exchange (ETDEWEB)

    Tesch, S.; Otto, M. [TU Bergakademie, Freiberg (Germany). Institute for Analytical Chemistry

    1995-07-01

    The characterization of coal properties using principal-component analysis is described. The aim is to obtain correlations between a large number of chemical and technological parameters as well as FT-i.r. spectroscopic data. A database on 44 brown coals from different deposits was interpreted. After computation of the principal components, scatterplots and component-weight plots are presented for the first two or three principal components. The overlap of the component-weights plot and the scatterplot (biplot) shows how it is possible to classify brown coals by means of selected characteristics. 14 refs., 6 figs., 1 tab.

  17. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  18. Development of continuous bench scale unit for direct liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Wang Lai [Korea Inst. of Energy and Resources, Daeduk (Korea, Republic of)

    1995-12-31

    Batch coal liquefaction experiments using tubing bombs and continuous experiments by cell liquefaction test facility were carried out. The main purpose was to maximize the coal liquefaction yields by improving the activity of coal dissolution catalysts which are oil soluble transition metal naphthenate and to supplement the incomplete research results. In the meantime, the study on the reaction characteristics of coal liquefaction and coal liquid upgrading catalyst upon sulfiding conditions and phosphorous addition have been conducted (author). 102 refs., 35 figs.

  19. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lili [Pennsylvania State Univ., University Park, PA (United States); Schobert, Harold H. [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.

  20. Brown coal conversion by microwave plasma reactions under successive supply of methane

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, O.; Onoe, K.; Marushima, W.; Yamaguchi, T. [Chiba institute of Technology, Chiba (Japan). Dept. of Industrial Chemistry

    1998-10-01

    To develop an innovative method for directly converting brown coal to relatively important fuels and synthesis gases in a single step, while simultaneously upgrading the carbon content of the residue, microwave plasma technology was applied to the direct conversion of brown coal (Yallourn). Methane under reduced pressure was supplied through a quartz reactor into the irradiation zone and reacted with the coal bed placed downstream. Both the coal conversion and the carbon content of the residue were increased with an increase of irradiation time. The yield of oily products showed a maximum value (18 wt.%) at 2 min irradiation, and the fuels were composed mainly of aliphatic hydrocarbons in the range from C{sub 13} to C{sub 34}. Furthermore, carbon monoxide and hydrogen accompanied by a molar fraction of {lt} 16% of acetylene were mainly produced when the irradiation time was varied from 1 to 10 min. 4 refs., 5 figs., 1 tab.

  1. Laser pyrolysis of brown coal in the field of low energies

    Energy Technology Data Exchange (ETDEWEB)

    Galkin, G.A.; Grigoriev, V.A.

    1981-01-01

    The authors studied thermal decomposition of Irsha-Borodinsky brown coal under pulse laser radiation within the energy density range from 2.5 to 25 J. cm /sub -2/ . It has been shown that the amount of the gas phase increases monotonously with the increase in the radiation energy density. Alongside the increase of the gas pressure, its composition changes noticeably. Maximum concentration of CH/sub 4/ and C/sub 2/H/sub 4/ is observed with the radiation energy density of 6.4J.cm /sup -2/ . Further increase in the radiation energy density leads to an abrupt increase in acetylene output. The assessment of the brown coal melting point under laser radiation by infrared spectra has been made. It has been shown that thermovacuum processing of a brown coal specimen contributes to a more complete carbonization of coal substance. Thermal processing of the specimen in the open air leads to a more profound thermodestruction of brown coal substance.

  2. Obtaining of gas, liquid, and upgraded solid fuel from brown coals in supercritical water

    Science.gov (United States)

    Vostrikov, A. A.; Fedyaeva, O. N.; Dubov, D. Yu.; Shishkin, A. V.; Sokol, M. Ya.

    2013-12-01

    Two new conversion methods of brown coals in water steam and supercritical water (SCW) are proposed and investigated. In the first method, water steam or SCW is supplied periodically into the array of coal particles and then is ejected from the reactor along with dissolved conversion products. The second method includes the continuous supply of water-coal suspension (WCS) into the vertically arranged reactor from above. When using the proposed methods, agglomeration of coal particles is excluded and a high degree of conversion of coal into liquid and gaseous products is provided. Due to the removal of the main mass of oxygen during conversion in the composition of CO2, the high heating value of fuels obtained from liquid substantially exceeds this characteristic of starting coal. More than half of the sulfur atoms transfer into H2S during the SCW conversion already at a temperature lower than 450°C.

  3. 煤炭间接液化制油能源效率和环境可行性分析%Analysis on Energy Efficiency and Environment Feasibility of Coal Indirect Liquefaction to Oil

    Institute of Scientific and Technical Information of China (English)

    李俊诚; 康有贵; 金嘉璐; 刘万洲

    2012-01-01

    Based on a coal indirect liquefaction(coal to oil) plant with four million ton of coal per year as a model,taking the coal-fired power generation of the most wide applied coal utilization accesses as the references,from the coal comprehensive energy efficiency,solid waste treatment and recovery utilization,water consumption,waste water treatment and drainage,SO2 treatment and emission,CO2 collection and sealing,and others,the energy efficiency and environment feasibility of the coal indirect liquefaction were analyzed.The analysis showed that the coal indirect liquefaction would be a new access with higher energy efficiency and more clean coal utilization and could provide the references to the CO2 collection,sealing and utilization in the future.

  4. Modified Two-Step Dimethyl Ether (DME) Synthesis Simulation from Indonesian Brown Coal

    OpenAIRE

    Dwiwahju Sasongko; Abdurrahman Fadhlil Halim Luthan; Winny Wulandari

    2016-01-01

    A theoretical study was conducted to investigate the performance of dimethyl ether (DME) synthesis from coal. This paper presents a model for two-step DME synthesis from brown coal represented by the following processes: drying, gasification, water-gas reaction, acid gas removal, and DME synthesis reactions. The results of the simulation suggest that a feedstock ratio of coal : oxygen : steam of 1 : 0.13 : 0.821 produces the highest DME concentration. The water-gas reactor simulation at a tem...

  5. Investigation on characterization and liquefaction of coals from Tavan tolgoi deposit

    Directory of Open Access Journals (Sweden)

    B Purevsuren

    2014-10-01

    Full Text Available On the basis of proximate, ultimate, petrographic and IR analysis results have been confirmed that the Tavan tolgoi coal is a high-rank G mark stone coal. The results of X-ray fluorescence analysis of coal ash show that the Tavan tolgoi coal is a subbituminous coal. The ash of Tavan tolgoi coal has an acidic character. The results of pyrolysis of Tavan tolgoi coal at different heating temperatures show that a maximum yield - 5.0% of liquid product can be obtained at 700°C. The results of thermal dissolution of Tavan tolgoi coal in tetralin with constant mass ratio between coal and tetralin (1:1.8 at 450°C show that 50.0% of liquid product can be obtained after thermal decomposition of the COM (coal organic matter. DOI: http://dx.doi.org/10.5564/mjc.v14i0.191 Mongolian Journal of Chemistry 14 (40, 2013, p12-19

  6. Do stable carbon isotopes of brown coal woods record changes in Lower Miocene palaeoecology?

    NARCIS (Netherlands)

    Poole, I.J.; Dolezych, M.; Kool, J.; Burgh, J. van der; Bergen, P.F. van

    2006-01-01

    Stable carbon isotope ratios of fossil wood from the Miocene brown coal deposits in former East Germany are compared with palaeobotanical and sedimentological data to test the use of stable isotopes in determining palaeoenvironment. Significant differences in the chemical composition of samples from

  7. Characteristics of the Thorez open pit brown coal mine in Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Benedek, M.

    1984-01-01

    The Hungarian (VNR) brown coal deposits have a large number of thin and varying quality seams. The problem of selecting optimal equipment and technology for mining is determined by finding the parameters of a rotary complex and then the parameters of the technology.

  8. Biogeographic ecological and stratigraphic relationships of the Miocene brown coal floras, Latrobe Valley, Victoria, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Sluiter, I.R.K.; Kershaw, A.P.; Holdgate, G.R.; Bulman, D. [Department of Conservation and Natural Resources, Mildura, Vic. (Australia)

    1995-11-01

    Palaeobotanical studies of the brown coal deposits of the Latrobe Valley have contributed significantly towards an understanding of the age of the deposits, existing climatic conditions and detailed depositional environments. This paper re-assesses some past reconstructions for the Early to Mid Miocene coals using recent information on plant distributions and their bioclimatic significance and on a marine incursion model for coal lithotype formation. The brown coal flora is composed overwhelmingly of rainforest taxa. The application of a bioclimatic prediction model to these taxa allows the construction of consistent and quantitative estimates of climates during coal-forming phases. It is considered that rainfall in the area was more than twice the 850 mm received today, with significant seasonal variation. The mean annual temperature estimate of about 19{degree}C, indicating a mesothermal or subtropical environment, is some 4-5{degree}C higher than present. The original model of lithotype formation, which suggests that lithotypes conform to a successional sequence from open water in the lightest coloured lithotypes to raised bog in the darkest lithotypes, is considered to be inconsistent with the evidence for lightening upwards sequences within the coals, a central feature of the proposed marine incursion model of coal formation. The two models are reconciled to some degree by a reinterpretation of the palaeobotanical data and by the postulation of climatic rather than autogenic successional control over lithotype formation. 51 refs., 8 figs., 1 tab.

  9. Co-pyrolysis of polymethyl methacrylate with brown coal and effect on monomer production

    Energy Technology Data Exchange (ETDEWEB)

    A. Orinak; L. Halas; I. Amar; J.T. Andersson; M. Adamova [University of P.J. Safarik, Kosice (Slovakia). Faculty of Sciences, Institute of Chemistry

    2006-01-01

    Pyrolysis capillary gas chromatography has been applied to the study of the co-pyrolysis of polymethyl methacrylate (PMMA) with Slovakian brown coal with the aim of finding pyrolysis conditions yielding a maximum amount of methyl methacrylate (MMA). Effects of pyrolysis temperature and PMMA-coal weight ratios were investigated. Capillary gas chromatography coupled with mass spectrometric detector (cGC-MS) was used for MMA identification. The highest yield of MMA in the pyrolysate was obtained at 750{sup o}C. The optimal PMMA-coal weight ratio for maximum MMA production lies in the interval 0.5 mg PMMA and 0.6-0.8 mg brown coal with an MMA yield of 64%. Coal addition to the sample affects species recombination in gaseous phase, augments MMA production at higher temperatures and eliminates degradation products of PMMA and coal pyrolysis. Different conversion diagrams are characteristic for thermal degradation of single PMMA and in the mixture with coal. Detailed mechanism of synergetic effects arisen during co-pyrolysis are not yet known. It was also found that lower pyrolysis temperatures are more suitable to study degradation mechanism and kinetics while higher temperatures are more applicable for identification purposes. MMA decomposes completely at 900{sup o}C. 24 refs., 5 figs., 2 tabs.

  10. Major elements distribution during liquefaction of beneficated coal fractions from hydrocyclone and flotation

    Energy Technology Data Exchange (ETDEWEB)

    Barraza, J. [Universitaria Melendez (Colombia). Dept. de Procesos Quimicos; Cloke, M.; Belghazi, A. [Nottingham Univ. (United Kingdom). Dept. of Chemical Engineering

    1997-12-31

    Beneficiated coal fractions obtained by hydrocyclone and column flotation separation were liquefied in order to determine their effect on the reduction of the major element content in the coal extract liquid prior to hydroprocessing. Results showed that some major elements, mainly Ca, Mn and Ti, were reduced using these beneficiated coal fractions. In general, all the elements exhibit higher reduction using overflow from the cyclone separation compared to the concentrate from the column flotation. (orig.)

  11. Variability of production in the Tito brown coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, S. (Institut za Rudarska Istrazivanja, Tuzla (Yugoslavia))

    1987-05-01

    Examines daily production fluctuations in the Banovici coal basin from 1978-1985, where 2,800-4,100 workers produced 2-2.3x10{sup 6} t/a from underground and surface mines. The underground mine used mechanized longwall mining, surface mines employed shovel excavators, draglines, dumpers and belt conveyors. Statistical data showed large variations (+/- 2.5%, from 4,630 to 7,792 t/day) in daily coal production; evaluation showed close correlations for surface and underground mines. Highest production was achieved on Saturdays and Sundays, lowest on Mondays, Wednesdays and Fridays. It is suggested that these variations may be due to maintenance work in the coal preparation plant, which was usually carried out on Mondays and Fridays. A stereogram of coal and overburden output for both types of mine and detailed statistical computations are included. 7 refs.

  12. Fuel retrofitting possibilities in pulverised brown coal power plants towards reduction of CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Agraniotis, Michalis

    2012-07-01

    The thesis intends to assess the potential of two different brown coal substitution concepts as possible options to reduce CO{sub 2} emissions in existing pulverised brown coal power plants. The substitution of brown coal by Solid Recovered Fuels (SRF) is examined as first concept. The second concept regarded is the integration of a lignite pre-drying system in an existing steam cycle and the substitution of raw brown coal by pre-dried brown coal. SRF co-firing is demonstrated in a 600 MWe pulverised brown coal boiler in Germany, while pre-dried brown coal co-firing is demonstrated in a 75 MWth pulverised lignite boiler in Greece. Specific environmental, technological and economic parameters are used for the evaluation according to a multi-criteria analysis approach. The analysis tools adopted include experimental measurement activities in the industrial and semi industrial scale, 3D numerical simulations (CFD), thermodynamic calculations of power plant steam cycles and financial calculations. (orig.)

  13. PYROLYSIS OF BROWN COAL USING A CATALYST BASED ON W–Ni

    Directory of Open Access Journals (Sweden)

    Lenka Jílková

    2015-10-01

    Full Text Available Tars from pyrolysis of brown coal can be refined to obtain compounds suitable for fuel production. However, it is problematic to refine the liquids from brown coal pyrolysis, because high molecular compounds are produced, and the sample solidifies. Therefore we decided to investigate the possibility of treating the product in the gas phase during pyrolysis, using a catalyst. A two-step process was investigated: thermal-catalytic refining. In the first step, alumina was used as the filling material, and in the second step a catalyst based on W-Ni was used. These materials were placed in two separate layers above the coal, so the volatile products passed through the alumina and catalyst layers. Pyrolysis tests showed that using the catalyst has no significant effect on the mass balance, but it improves the properties of the gas and the properties of the organic part of the liquid pyrolysis products, which will then be processed further.

  14. Integrated system for coal-methanol liquefaction and slurry pipeline transportation. Final report. [In slurry transport

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W.F.; Davidson, J.K.; Horton, J.H.; Summers, C.W.

    1980-03-31

    The engineering economics of an integrated coal-to-methanol conversion system and coal-in-methanol transportation system are examined, under the circumstances of the western coalfields, i.e., long distances from major markets and scarcity of water in the vicinity of the mines. The transportation economics are attractive, indicating tariffs of approximately 40 cents per million Btu per thousand miles for the coal-methanol pipeline vs 60 cents via coal-water pipelines and upwards of a dollar via rail. Energy consumption is also less in the coal-methanol pipeline than in the coal-water pipeline, and about equal to rail. It is also concluded that, by a proper marriage of the synthetic fuel (methanolization) plant to the slurrification plant, most, and in some cases all, of the water required by the synthetic fuel process can be supplied by the natural moisture of the coal itself. Thus, the only technology which presently exists and by which synthetic fuel from western coal can displace petroleum in the automotive fuel market is the integrated methanol conversion and tranportation system. The key element is the ability of the methanol slurry pipeline to accept and to deliver dry (1 to 5% moisture) coal, allowing the natural coal moisture to be used as synthesis feedstock in satisfaction of the large water requirement of any synthetic fuel plant. By virtue of these unique properties, this integrated system is seen as the only means in the foreseeable future whereby western coal can be converted to synthetic fuel and moved to distant markets.

  15. Petrographic and geochemical characterization of pale and dark brown coal from Yunnan Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Q.; Xilin, R.; Dazhong, T.; Jian, X.; Wolf, M. [Aachen University, Aachen (Germany). Lehrstuhl fuer Geologie, Geochemie und Lagerstaetten des Erdoels und der Kohle

    1994-01-01

    Fifteen lignite samples from the province of Yunnan were analysed by organic petrography and geochemistry. Twelve of the samples represent the very pale (yellow) Baipao coal, the other three were normal coals of a medium brown colour. The Baipao coal consists mainly of mineral-bituminous groundmass, whereas the normal coal is characterised by well-preserved tissues derived from gymnosperm wood. Up to 190 mg/g C{sub org} of extract is extractable from the Baipao coal; only 63 mg/g C{sub org} from the normal coal. The n-alkaline fraction of the Baipao coal extract consists of high amounts of hopanes and shows the predominance of nor-abietane within the diterpenoids present. The first group of compounds points to intensive bacterial activity, while the second compound indicates not only that gymnosperms are present but also that a relatively oxygen-rich environment existed at the time of deposition. From the petrographic and organic geochemical characteristics it is concluded that the Baipao coal was formed from the same plant source material as the normal coal, but underwent stronger decay. 22 refs., 11 figs., 2 plates, 8 tabs.

  16. Upgrading of brown coal by slurry-dewatering; Kattan no yuchu dassui ni yoru clean kotai nenryo no seizo

    Energy Technology Data Exchange (ETDEWEB)

    Okuma, O.; Shimizu, T.; Inoue, T.; Shigehisa, T.; Deguchi, T.; Katsushima, S. [Kobe Steel, Ltd., Kobe (Japan)

    1996-10-28

    This paper describes an outline of solid fuel production process from brown coal and the investigation results of its elemental techniques. Dried coal is produced by this process which consists of a dewatering of crushed brown coal in oil-based solvent, a solid and liquid separation of slurry, and a remained oil recovery by heating. This process is characterized by the higher thermal efficiency compared with usual drying and the restraint of spontaneous combustion of product coal. It was revealed that solid fuel with low moisture, low ash, low sulfur, and suppressed spontaneous combustion property can be produced from Australian brown coal through this process. From the comparison between kerosene and fuel oil A, it was confirmed that the oil content during dewatering was smaller and the oil recovery by heating was easier by using a solvent with lower boiling point. It was also confirmed that the spontaneous combustion property can be suppressed using small amount of asphalt by solving asphalt in the solvent and adsorbing asphalt on the surface of brown coal. From these results, low rank coals including brown coal, which are difficult to use, are expected to be used as clean coal with low ash and low sulfur through this process. 2 refs., 7 figs., 2 tabs.

  17. Advanced direct coal liquefaction concepts. Quarterly report, January 1, 1994--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Berger, D.J.; Parker, R.J.; Simpson, P.L. [Canadian Energy Development, Inc., Edmonton, AB (Canada)

    1994-07-01

    A detailed evaluation of the bench unit data on Black Thunder feedstocks was completed. The results show that in a once-through operation using counterflow, reactor technology coal conversions in excess of 90% could be obtained, giving distillable oil yields in the range 60--65 wt % on MAF coal. The remaining non-distillable oil fraction which represents 20--25 wt % on MAF coal is a source of additional distillable oil in further processing, for example, bottoms recycle operation. C{sub 1}-C{sub 3} gas yields were generally in the order of 6--8 wt %. In autoclave studies, Illinois No. 6 coal was found to be much less reactive than Black Thunder coal, and did not respond well to solubilization with carbon monoxide/steam. Process severity was, therefore, increased for bench unit operations on Illinois No. 6 coal, and work has concentrated on the use of hydrogen rather than carbon monoxide for solubilization. Preliminary coking studies on the resid from bench unit runs on Black Thunder coal were also carried out. Distillable liquid yields of 55--60 wt % were obtained. The technical and economic study to be carried out by Kilborn Engineering Company has been initiated.

  18. Long Term Environment and Economic Impacts of Coal Liquefaction in China

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Jerald [West Virginia Univ., Morgantown, WV (United States)

    2014-03-31

    The project currently is composed of six specific tasks – three research tasks, two outreach and training tasks, and one project management and communications task. Task 1 addresses project management and communication. Research activities focused on Task 2 (Describe and Quantify the Economic Impacts and Implications of the Development and Deployment of Coal-to-Liquid Facilities in China), Task 3 (Development of Alternative Coal Gasification Database), and Task 4 (Geologic Carbon Management Options). There also were significant activities related to Task 5 (US-China Communication, Collaboration, and Training on Clean Coal Technologies) as well as planning activity performed in support of Task 6 (Training Programs).

  19. Novel Bimettallic Dispersed Catalysts for Temperature-Programmed Coal Liquefaction: Technical progress report January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Schmidt, E.; Schobert, H.H.

    1996-06-01

    Coal liquefaction may involve cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. Here in this quarterly, we report on the effects of dispersed Mo catalysts and H{sub 2}O addition on hydrogenation and C-C bond hydrocracking of 4-(1- naphthylmethyl)bibenzyl, abbreviated as NMBB. Recent research in this laboratory has demonstrated a strong synergistic effect between a dispersed Mo sulfide catalyst and water in low-severity coal liquefaction reaction. This finding prompted us to examine the effects of dispersed Mo catalysts and H{sub 2}O addition on hydrogenation and C-C bond hydrocracking of 4-(1-naphthylmethyl)bibenzyl, NMBB. Batch studied in microautoclave reactors at 350 and 400{degrees}C for 30 min revealed that active catalysts can be generated in situ from either ammonium tetrathiomolybdate (ATTM) or Mo(CO){sub 6} under the reaction conditions (350 or 400{degrees}C, 30 min), with the main catalysis of the latter for NMBB hydrogenation, but the former for C-C bond cleavage. Water may have strong promoting effect on NMBB conversion in catalytic runs, depending on the conditions. At 350{degrees}C a 50% increase in NMBB conversion was observed upon H{sub 2}O addition to the run using ATTM (1 wt % Mo) as catalyst. However, at 400{degrees}C no major difference in conversion or product distribution was found. Runs of NMBB at 350{degrees}C using Mo(CO){sub 6} lead to tetrahydro-NMBB-derivatives and few cleavage products. Water added to Mo(CO){sub 6} suppressed hydrogenation. The combination of Mo(CO){sub 6} and S lead to almost complete conversion of NMBB. A run with Mo(CO){sub 6}/S/H{sub 2}O gave similar results. It appears that water can increase NMBB conversion with ATTM at 350{degrees}C but decreased conversion for runs at 400{degrees}C. Also contained in this report is mechanistic discussion for hydrocracking and hydrogenation of NMBB.

  20. Simulating isolation of liquid products from brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Somov, A.M.; Ustyuzhanina, G.P.; Proskuryakov, V.A.

    1988-10-20

    A model was constructed describing the volatile release from coal based on the pyrolysis mechanism and identification of the major elements in relation to the conditions. Pyrolysis involves the following stages: heating, primary decomposition, decomposition-product diffusion in the particles, and external mass transfer. The model gives a complete kinetic description for the release of liquid products. The description is dependent on the rate relations and incorporates the nonstationary temperature distribution along with the effect of coal particle diameter on liquid product yield. The model has been used to define parameters and identify two critical particle diameters enabling one to define the semicoking range.

  1. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, October 1993--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Huang, L.; Wenzel, K.A.; Hatcher, P.G.; Schobert, H.H.

    1994-02-01

    In this quarter, progress has been made in the following two aspects: The influences of temperature, dispersed Mo catalyst, and solvent on the liquefaction conversion and composition of products from low-rank coals; and the hydrous pyrolysis of a lignite and spectroscopic characterization of its structural transformation during the hydrous pyrolysis. The analytical work described in this quarter also represents molecular-level characterization of products. The purpose of the first part of the work described in this quarter is to study the influences of temperature, solvent and dispersed Mo catalyst on the liquefaction conversion and chemical composition of the products. Many specialty chemicals, including one- to four-ring aromatics, could potentially be produced by liquefying coal. To achieve this goal, not only a high coal conversion but also a desirable product distribution is necessary. Therefore, it is of great importance to understand the structural changes of the coal during reaction and to investigate the conditions under which the aliphatics or aromatics can be removed from the macromolecular structure of coal. This quarterly report also describes the hydrous pyrolysis of Potapsco lignite and spectroscopic characterization of its structural transformation during the hydrous pyrolysis. This work has some implications both on the structural changes of low-rank coals during pretreatment and on the geochemical reactions during coalification stage. Vitrinite, a major component of most coals, is derived from degraded wood in ancient peat swamps. Organic geochemical studies conducted on a series of coalified wood samples derived mostly from gymnosperms have allowed the development of a chemical reaction series to characterize the major coalification reactions which lignin, the major coal-producing component of wood, undergoes.

  2. Coal liquefaction process streams characterization and evaluation. Characterization of coal-derived materials by field desorption mass spectrometry, two-dimensional nuclear magnetic resonance, supercritical fluid extraction, and supercritical fluid chromatography/mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.A.; Linehan, J.C.; Robins, W.H. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1992-07-01

    Under contract from the DOE , and in association with CONSOL Inc., Battelle, Pacific Northwest Laboratory (PNL) evaluated four principal and several complementary techniques for the analysis of non-distillable direct coal liquefaction materials in support of process development. Field desorption mass spectrometry (FDMS) and nuclear magnetic resonance (NMR) spectroscopic methods were examined for potential usefulness as techniques to elucidate the chemical structure of residual (nondistillable) direct coal liquefaction derived materials. Supercritical fluid extraction (SFE) and supercritical fluid chromatography/mass spectrometry (SFC/MS) were evaluated for effectiveness in compound-class separation and identification of residual materials. Liquid chromatography (including microcolumn) separation techniques, gas chromatography/mass spectrometry (GC/MS), mass spectrometry/mass spectrometry (MS/MS), and GC/Fourier transform infrared (FTIR) spectroscopy methods were applied to supercritical fluid extracts. The full report authored by the PNL researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal liquefaction materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of CONSOL`s contract.

  3. Dependence of liquefaction behavior on coal characteristics. Part VI. Relationship of liquefaction behavior of a set of high sulfur coals to chemical structural characteristics. Final technical report, March 1981 to February 1984

    Energy Technology Data Exchange (ETDEWEB)

    Neill, P. H.; Given, P. H.

    1984-09-01

    The initial aim of this research was to use empirical mathematical relationships to formulate a better understanding of the processes involved in the liquefaction of a set of medium rank high sulfur coals. In all, just over 50 structural parameters and yields of product classes were determined. In order to gain a more complete understanding of the empirical relationships between the various properties, a number of relatively complex statistical procedures and tests were applied to the data, mostly selected from the field of multivariate analysis. These can be broken down into two groups. The first group included grouping techniques such as non-linear mapping, hierarchical and tree clustering, and linear discriminant analyses. These techniques were utilized in determining if more than one statistical population was present in the data set; it was concluded that there was not. The second group of techniques included factor analysis and stepwise multivariate linear regressions. Linear discriminant analyses were able to show that five distinct groups of coals were represented in the data set. However only seven of the properties seemed to follow this trend. The chemical property that appeared to follow the trend most closely was the aromaticity, where a series of five parallel straight lines was observed for a plot of f/sub a/ versus carbon content. The factor patterns for each of the product classes indicated that although each of the individual product classes tended to load on factors defined by specific chemical properties, the yields of the broader product classes, such as total conversion to liquids + gases and conversion to asphaltenes, tended to load largely on factors defined by rank. The variance explained and the communalities tended to be relatively low. Evidently important sources of variance have still to be found.

  4. Exploratory research on novel coal liquefaction concept. [Quarterly report], January 1--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Burke, F.P.; Brandes, S.D.; Winschel, R.A. [CONSOL, Inc., Library, PA (United States). Research and Development Dept.; Derbyshire, F.J.; Kimber, G.; Anderson, R.K.; Carter, S.D. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Peluso, M. [LDP Associates, Hamilton Square, NJ (United States)

    1996-05-09

    Work this quarter concentrated on evaluating the effects of low- severity, first stage reaction conditions on coal conversions, exploring the effect of solvent-to-coal ratio on filtration performance, exploring the effects of pretreatment on dispersed catalysts for hydrotreating tests, and the installation and calibration of a simulated distillation instrument. Additional work included continued review of the technical and patent literature and expansion of the annotated bibliography.

  5. Effects of fractal surface on rheological behavior and combustion kinetics of modified brown coal water slurries

    Institute of Scientific and Technical Information of China (English)

    Zhifang Gao; Shuquan Zhu; Mingdong Zheng; Zhaojin Wu; Huihong Lu; Weiming Liu

    2015-01-01

    The paper reports the effects of surface fractal structures on the rheological behavior and combustion kinetics of raw brown coal and three modified coal water slurries (CWSs). The results show that the fractal structures and physicochemical properties of samples are dependent on various modification processes. The apparent viscosities of the coal water slurries increase with increasing surface fractal dimensions (D), especially with decreasing shear rates. Fur-thermore, it has been proved that the ignition temperatures and apparent activation energies of modified CWSs are lower than that of raw coal water slurry. Compared with the traditional qualitative analysis of the effect of pore structures on CWSs properties, D can more efficiently indicate the quantificational effect of pore structures on the rheological behavior and combustion kinetics of CWSs.

  6. Nanoporosity development in the thermal-shock KOH activation of brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Kucherenko, V.A.; Shendrik, T.G.; Tamarkina, Y.V.; Mysyk, R.D. [LM Litvinenko Institute of Physical Organic & Coal Chemistry, Donetsk (Ukraine)

    2010-12-15

    Thermal-shock KOH activation of brown coal (800 degrees C, KOH/coal ratio 1 g/g) was shown to produce nanoporous activated carbon with more developed surface area than thermally-programmed heating (S-BET up to 1700 vs 1000 m{sup 2}/g). Increasing the KOH/coal ratio (up to 1 g/g) in the activated mixture increases the total pore volume (0.14-1.0 cm{sup 3}/g), the micropore volume (0.03-0.71 cm{sup 3}/g), and also the volume of subnanometer pores (0.01-0.40 cm{sup 3}/g). Thermal shock produces nanoporosity at lower KOH/coal ratios (0.5-1.0 g/g) than respective low-rate heating KOH activation.

  7. Effect of properties of iron compounds on the catalytic activity in direct coal liquefaction; Tetsu kagobutsu no keitai to sekitan ekika kassei

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T.; Tazawa, K. [Mitsubishi Chemical Corp., Tokyo (Japan); Shimasaki, K. [Kobe Steel Ltd. (Japan)

    1998-08-20

    When considering merchandising scale of the coal liquefaction process, it is a preliminary condition that metal used for its catalyst is rich in resource volume, cheap in production cost, without pollution, and so forth, and application of cheap iron ore and ferrous compounds to disposable catalyst is desired. As liquefaction activity of the iron ore was hitherto improved by its micro crushing, its mechanical crush had a limit of about 2 {mu}m in mean particle diameter. However, together with recent crushing technique, crushers with high performance were developed, and then micro crushing by sub-micron became possible industri8ally even for iron ore. In this study, three kinds of Australian iron ores such as limonite of ferric hydroxide type iron ore, pyrite of ferrous sulfide type, and hematite of ferric oxide type were micro crushed to examine coal liquefaction activity and hydrogenation reaction activity of 1-methyl naphthalene (1-MN) and also relationship between properties and activity of catalyst for the latter before and after reaction. 11 refs., 8 figs., 5 tabs.

  8. EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China

    Directory of Open Access Journals (Sweden)

    Zhaoyang Kong

    2015-01-01

    Full Text Available Currently, there are considerable discrepancies between China’s central government and some local governments in attitudes towards coal to liquids (CTL technology. Energy return on investment (EROI analysis of CTL could provide new insights that may help solve this dilemma. Unfortunately, there has been little research on this topic; this paper therefore analyses the EROI of China’s Shenhua Group Direct Coal Liquefaction (DCL project, currently the only DCL commercial project in the world. The inclusion or omission of internal energy and by-products is controversial. The results show that the EROIstnd without by-product and with internal energy is 0.68–0.81; the EROIstnd (the standard EROI without by-product and without internal energy is 3.70–5.53; the EROIstnd with by-product and with internal energy is 0.76–0.90; the EROIstnd with by-product and without internal energy is 4.13–6.14. Furthermore, it is necessary to consider carbon capture and storage (CCS as a means to control the CO2 emissions. Considering the added energy inputs of CCS at the plant level, the EROIs decrease to 0.65–0.77, 2.87–3.97, 0.72–0.85, and 3.20–4.40, respectively. The extremely low, even negative, net energy, which may be due to high investments in infrastructure and low conversion efficiency, suggests CTL is not a good choice to replace conventional energy sources, and thus, Chinese government should be prudent when developing it.

  9. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Quarterly technical progress report, July--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chunshan; Schmidt, E.; Schobert, H.H.

    1996-01-01

    Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. Here in this quarterly, we report on the hydrocracking of 4-(l-naphthylmethyl)bibenzyl in the presence of iron (Fe) catalysts and sulfur and residual wall catalytic effect. Catalytic hydrocracking of 4-(1-naphthylmethyl)bibenzyl (NMBB) predominantly yielded naphthalene and 4-methylbibenzyl. Various iron compounds were examined as catalyst precursors. Sulfur addition to most catalyst precursors led to substantially higher catalyst activity and higher conversion. NMBB was also treated with sulfur in the absence of iron compounds, in concentrations of 1.2-3.4 wt%, corresponding to the conditions present in reactions with added iron compounds. Increasing sulfur concentrations led to higher NMBB conversions. Furthermore, sulfur had a permanent effect on the reactor walls. A black sulfide layer formed on the surface which could not be removed mechanically. The supposed non-catalytic reactions done in the same reactor but after experiments with added sulfur showed higher conversions than comparable experiments done in new reactors. This wall catalytic effect can be reduced by treating the sulfided reactors with hydrochloric acid. The results of this work demonstrate the significant effect of sulfur addition and sulfur-induced residual wall effects on carbon-carbon bond cleavage and hydrogenation of aromatics.

  10. Tasks of engineering geology in brown coal mining - presence and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, F.; Molek, H.; Klengel, K.J.

    1984-01-01

    Engineering geological investigations are necessary for projecting and exposure in open-cast-mining, as well as for carrying out special works of different kinds. As to time they begin with geological investigations proving deposit stores and reach until mining and recultivation. This paper is dealing with the possibilities of rationalizing the engineering geological works in connection with geological exploration, especially noticing tectonical forms and stratification, taking specimens and representiveness of engineering geological indexes. The problems discussed are relating to the old underground mining on brown coals, the future brown coal mining in connection to old salt mines, shapes of slopes in connection to geological situation, tasks of grouting works and using the landscape after mining. Concluding the article deals with the most important tasks of education engineering geologists.

  11. Mechanochemical activation of iron ore-based catalysts for the hydrogenation of brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, P.N.; Kuznetsova, L.I.; Chumakov, V.G.; Moiseeva, G.A. [Rossijskaya Akademiya Nauk, Krasnoyarsk (Russian Federation). Inst. of Chemistry and Chemical Technology

    2000-10-01

    Genesis of pyrrhotite catalysts from different iron ore concentrates and pure iron oxides was investigated using the method of mechanochemical treatment in a planetary mill. The dispersion and fine crystalline structure of oxide and pyrrhotite particles were studied as the function of mechanical load, sulfiding temperature and mode of preparation. Methods for the preparation of high performance iron ore-based catalysts for brown coal hydrogenation have been developed. (orig.)

  12. The immersion freezing behavior of ash particles from wood and brown coal burning

    Science.gov (United States)

    Grawe, Sarah; Augustin-Bauditz, Stefanie; Hartmann, Susan; Hellner, Lisa; Pettersson, Jan B. C.; Prager, Andrea; Stratmann, Frank; Wex, Heike

    2016-11-01

    It is generally known that ash particles from coal combustion can trigger ice nucleation when they interact with water vapor and/or supercooled droplets. However, data on the ice nucleation of ash particles from different sources, including both anthropogenic and natural combustion processes, are still scarce. As fossil energy sources still fuel the largest proportion of electric power production worldwide, and biomass burning contributes significantly to the global aerosol loading, further data are needed to better assess the ice nucleating efficiency of ash particles. In the framework of this study, we found that ash particles from brown coal (i.e., lignite) burning are up to 2 orders of magnitude more ice active in the immersion mode below -32 °C than those from wood burning. Fly ash from a coal-fired power plant was shown to be the most efficient at nucleating ice. Furthermore, the influence of various particle generation methods on the freezing behavior was studied. For instance, particles were generated either by dispersion of dry sample material, or by atomization of ash-water suspensions, and then led into the Leipzig Aerosol Cloud Interaction Simulator (LACIS) where the immersion freezing behavior was examined. Whereas the immersion freezing behavior of ashes from wood burning was not affected by the particle generation method, it depended on the type of particle generation for ash from brown coal. It was also found that the common practice of treating prepared suspensions in an ultrasonic bath to avoid aggregation of particles led to an enhanced ice nucleation activity. The findings of this study suggest (a) that ash from brown coal burning may influence immersion freezing in clouds close to the source and (b) that the freezing behavior of ash particles may be altered by a change in sample preparation and/or particle generation.

  13. MAGNETO-CHEMICAL CHARACTER STUDIES OF NOVEL Fe CATALYSTS FOR COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Murty A. Akundi; Jian H. Zhang; A.N. Murty; S.V. Naidu

    2002-04-01

    The objectives of the present study are: (1) To synthesize iron catalysts: Fe/MoO{sub 3}, and Fe/Co/MoO{sub 3} employing two distinct techniques: Pyrolysis with organic precursors and Co-precipitation of metal nitrates; (2) To investigate the magnetic character of the catalysts before and after exposure to CO and CO+H{sub 2} by (a) Mossbauer study of Iron (b) Zerofield Nuclear Magnetic Resonance study of Cobalt, and (c) Magnetic character of the catalyst composite; (3) To study the IR active surface species of the catalyst while stimulating (CO--Metal, (CO+H{sub 2})--Metal) interactions, by FTIR Spectroscopy; and (4) To analyze the catalytic character (conversion efficiency and product distribution) in both direct and indirect liquefaction Process and (5) To examine the correlations between the magnetic and chemical characteristics. This report presents the results of our investigation on (a) the effect of metal loading (b) the effect of intermetallic ratio and (c) the effect of catalyst preparation procedure on (i) the magnetic character of the catalyst composite (ii) the IR active surface species of the catalyst and (iii) the catalytic yields for three different metal loadings: 5%, 15%, and 25% (nominal) for three distinct intermetallic ratios (Fe/Co = 0.3, 1.5, 3.0).

  14. EDS coal liquefaction process development. Phase V. EDS commercial plant study design update. Illinois coal. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Epperly, W. R.

    1981-03-01

    The objectives of the Study Design Update (SDU) were to identify the technical issues facing a potential commercial-size EDS plant design; to provide a reliable basis for estimating the cost of EDS products; and to furnish research guidance to the EDS Project. The SDU consists of two distinct studies in which different processing schemes are used to produce the hydrogen and fuel gas required by the plant. These studies are referred to as the Base Case and the Market Flexibility Sensitivity Case. In the Base Case, hydrogen is generated by steam reforming of the light hydrocarbon gases produced in the plant. Fuel gas is generated by feeding the bottoms stream from the liquefaction section vacuum pipestill to a FLEXICOKING unit. In the FLEXICOKING unit reactor, the bottoms stream is converted to coke; additional liquid product is also recovered. The coke is converted to low-Btu fuel gas in the FLEXICOKING unit gasifier. In the Market Flexibility Sensitivity (MFS) Case, the bottoms stream from the vacuum pipestill is split, and about half is sent to the FLEXICOKING unit for recovery of additional liquid product and production of fuel gas. The remainder of the bottoms stream is converted to hydrogen in a Partial Oxidation Unit. Hence the MFS Case does not consume light hydrocarbon gases produced and they are available for sale. The study of these two cases has demonstrated the importance of bottoms process selection to the economics and thermal efficiency of an EDS plant. Volume 1 - Main Report has been developed to be a stand-alone document. Both the Base Case and Market Flexibility Sensitivity (MFS) Case are covered. This volume includes an overview and detailed case summaries. It also covers economics, product recovery factors, material and energy balances, cost estimates and enviromental considerations.

  15. Indirect coal liquefaction technology and its research progress%煤间接液化技术及其研究进展

    Institute of Scientific and Technical Information of China (English)

    孙启文; 吴建民; 张宗森; 庞利峰

    2013-01-01

    The principles and typical process of synthesis of liquid fuels from indirect coal liquefaction are discussed. The development history and recent advances in indirect coal liquefaction technology are reviewed. The process routes and critical issues, including gasifier, Fischer-Tropsch synthesis reactor and catalyst are also discussed. The technical economics of the process is analyzed and its commercialization development prospect is presented. The analysis shows that constructing commercial scale indirect coal liquefaction plant is not only technically and economically feasible, but also promoting commercialization of indirect coal liquefaction technology and accelerating the formation of China's technology and industry of energy source conversion.%介绍了煤经合成气间接液化合成液体燃料的原理及典型工艺.综述了煤间接液化技术的发展历程及其最新进展,讨论了国内外煤间接液化技术的工艺流程,重点介绍了煤间接液化过程中的核心问题,主要包括气化炉、费托合成反应器和费托合成催化剂,分析了煤间接液化的技术经济性以及对煤间接液化的工业应用前景进行了展望.分析表明:具有我国自主知识产权的煤间接液化技术建设100万吨级以上工业化装置在技术上可靠、经济上可行,且100万吨级工业化项目的成功实施将带动我国煤间接液化技术的产业化进程,加快形成具有中国特色的能源转化技术和产业.

  16. Influence of additives on the increase of the heating value of Bayah’s coal with upgrading brown coal (UBC) method

    Energy Technology Data Exchange (ETDEWEB)

    Heriyanto, Heri [Chemical Engineering of University Sultan AgengTirtayasa, Indonesia Email: herfais@yahoo.com (Indonesia); Widya Ernayati, K.; Umam, Chairul; Margareta, Nita

    2015-12-29

    UBC (upgrading brown coal) is a method of improving the quality of coal by using oil as an additive. Through processing in the oil media, not just the calories that increase, but there is also water repellent properties and a decrease in the tendency of spontaneous combustion of coal products produced. The results showed a decrease in the water levels of natural coal bayah reached 69%, increase in calorific value reached 21.2%. Increased caloric value and reduced water content caused by the water molecules on replacing seal the pores of coal by oil and atoms C on the oil that is bound to increase the percentage of coal carbon. As a result of this experiment is, the produced coal has better calorific value, the increasing of this new calorific value up to 23.8% with the additive waste lubricant, and the moisture content reduced up to 69.45%.

  17. Effect of hydrogen pressure on free radicals in direct coal liquefaction/coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Seehra, M.S.; Ibrahim, M.M. [West Virginia Univ., Morgantown, WV (United States)

    1995-12-31

    The objective of this study was to investigate the coprocessing of coal with waste tires and commingled plastics and to characterize the relevant catalysts, using high pressure/high temperature in-situ ESR (Electron Spin Resonance) spectroscopy. The recent results from high pressure ESR spectroscopy are emphasized. During this period, considerable progress was made in developing the high pressure capabilities in in-situ ESR spectroscopy and new results carried out in 1000 psi of H{sub 2}gas are presented. In these experiments, sapphire tubes were used to contain the high pressures at temperatures up to 500{degrees}C. Results of the experiments carried out under 1000 psi of H{sub 2} are compared with those under 1000 psi of non-interacting argon and with the earlier experiments in flowing H{sub 2} gas where the volatiles are removed by the flowing gas. In these experiments, the free radical density N of the Blind Canyon coal was measured at each temperature and pressure by double integration of the ESR signal and calibrating it against a standard. The details of the experimental apparatus and procedures have been described in earlier publications.

  18. Changes in brown coal structure caused by coal-solubilizing microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Schmiers, H.; Koepsel, R.; Weber, A.; Winkelhoefer, M.; Grosse, S. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Energieverfahrenstechnik und Chemieingenieurwesen

    1997-12-31

    The phenomenon of coal solubilization caused by microorganisms has been explained by various mechanisms: extraction of non-covalently bonded polar components of the coal substance by biogenic agents (chelating agents, alkaline substances) and enzyme-catalyzed cleavage of covalent bonds by extracellular enzyme systems. For this it is assumed that bond cleavage occurs on the aliphatic carbon (methylene groups, aliphatic bridges or on ester groups). As the coal has usually been treated with oxidizing agents such as H{sub 2}O{sub 2} or HNO{sub 3} before bioconversion, there is a possibility that the result of bioconversion is overlaid with the effect of the chemical treatment. We therefore studied the structural changes in the organic coal substance during pre-oxidation with H{sub 2}O{sub 2}, treatment with MnP and conversion using the fungal strains of Trichoderma and Fusarium oxysporum. (orig.)

  19. Influence of reaction parameters on brown coal-polyolefinic plastic co-pyrolysis behavior

    Energy Technology Data Exchange (ETDEWEB)

    Sharypov, V.I.; Beregovtsova, N.G.; Kuznetsov, B.N. [Institute of Chemistry and Chemical Technology SB RAS, K.Marx Str. 42, 660049 Krasnoyarsk (Russian Federation); Cebolla, V.L. [Instituto de Carboquimica, CSIC, Miguel Luesma, 4, 50015 Zaragoza (Spain); Collura, S.; Finqueneisel, G.; Zimny, T.; Weber, J.V. [Laboratoire de Chimie et Applications, Universite de Metz, rue V.Demange, 57500 Saint-Avold (France)

    2007-03-15

    Co-processing of polyolefinic polymers with Kansk-Achinsk (Russia) brown coal was investigated by thermogravimetry (TG) and autoclave pyrolysis under argon and hydrogen pressure in catalytic conditions (or not). Gas chromatography-mass spectrometry (GC-MS) and high performance thin layer chromatography (HPTLC) were used to analyze the distillate products. Some synergistic effects indicate chemical interaction between the products of thermal decomposition of coal and plastic. In co-pyrolysis under H{sub 2} a significant increasing of coal conversion degree as a function of polymer amount in feedstock was found. Simultaneously the coal promoted formation of distillate products from polymers. Some alkyl aromatic and O-containing substances were detected in co-pyrolysis fraction boiling in the range 180-350 C, indicating interactions between coal and plastic. Iron containing ore materials, modified by mechanochemical treatment, demonstrated a catalytic activity in hydropyrolysis process. In catalytic conditions, increases of the mixtures conversion degree by 9-13 wt.%, of distillate fraction yields by 1.2-1.6 times and a decrease of olefins and polycyclic components were observed. (author)

  20. Emission factors and light absorption properties of brown carbon from household coal combustion in China

    Science.gov (United States)

    Sun, Jianzhong; Zhi, Guorui; Hitzenberger, Regina; Chen, Yingjun; Tian, Chongguo; Zhang, Yayun; Feng, Yanli; Cheng, Miaomiao; Zhang, Yuzhe; Cai, Jing; Chen, Feng; Qiu, Yiqin; Jiang, Zhiming; Li, Jun; Zhang, Gan; Mo, Yangzhi

    2017-04-01

    Brown carbon (BrC) draws increasing attention due to its effects on climate and other environmental factors. In China, household coal burned for heating and cooking purposes releases huge amounts of carbonaceous particles every year; however, BrC emissions have rarely been estimated in a persuasive manner due to the unavailable emission characteristics. Here, seven coals jointly covering geological maturity from low to high were burned in four typical stoves as both chunk and briquette styles. The optical integrating sphere (IS) method was applied to measure the emission factors (EFs) of BrC and black carbon (BC) via an iterative process using the different spectral dependence of light absorption for BrC and BC and using humic acid sodium salt (HASS) and carbon black (CarB) as reference materials. The following results have been found: (i) the average EFs of BrC for anthracite coal chunks and briquettes are 1.08 ± 0.80 and 1.52 ± 0.16 g kg-1, respectively, and those for bituminous coal chunks and briquettes are 8.59 ± 2.70 and 4.01 ± 2.19 g kg-1, respectively, reflecting a more significant decline in BrC EFs for bituminous coals than for anthracites due to briquetting. (ii) The BrC EF peaks at the middle of coal's geological maturity, displaying a bell-shaped curve between EF and volatile matter (Vdaf). (iii) The calculated BrC emissions from China's residential coal burning amounted to 592 Gg (1 Gg = 109 g) in 2013, which is nearly half of China's total BC emissions. (iv) The absorption Ångström exponents (AAEs) of all coal briquettes are higher than those of coal chunks, indicating that the measure of coal briquetting increases the BrC / BC emission ratio and thus offsets some of the climate cooling effect of briquetting. (v) In the scenario of current household coal burning in China, solar light absorption by BrC (350-850 nm in this study) accounts for more than a quarter (0.265) of the total absorption. This implies the significance of BrC to climate

  1. Filtration in coal liquefaction - Influence of filtration conditions in non-hydrogenated systems

    Science.gov (United States)

    Clarke, J. W.; Rantell, T. D.

    1980-01-01

    A series of experiments has been carried out to study the effects of filtration conditions upon the rate of filtration of non-hydrogenated coal digests. The results show the dependence of cake resistivity on both the filtration temperature and pressure. Filter cakes were found to be compressible, resulting in smaller increases in rate with increasing pressure than with incompressible cakes. The filtration temperature determines the packing of residual solids in the cake which in turn affects the cake resistivity. An empirical relation has been derived between filtration temperature and resistivity. With increasing temperature there is an increase in filtration rate due to the reduced viscosity, but a reduction owing to a higher packing density of solids in the filter cake.

  2. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

    1993-03-01

    Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

  3. Effect of molybdenum catalysts on direct Shendong coal liquefaction%钼系催化剂对神东煤直接液化的影响

    Institute of Scientific and Technical Information of China (English)

    艾军; 黄澎; 谷小会; 赵渊

    2011-01-01

    利用间歇式高压釜,采用钼系催化剂钼酸铵、三氧化钼和二硫化钼对神东煤进行煤直接液化性能的研究.研究表明,钼的添加量为0.1%时,钼酸铵的效果最好,转化率和油产率最高,分别为82.14%,39.47%.%Study on direct Shendong coal liquefaction reaction with molybdenum catalysts containing annnonium molybdate, molybdenum trioxide, molybdenum disulfide in batch high-pressure reactor.The results show that molybdenum addition account for 0.1% of dry coal, ammonium molybdate plays well, conversion and oil yield is highest,which is 82.14% and 39.47% ,respectively.

  4. Influence of catalytic activity and reaction conditions on the product distribution in coal liquefaction; Sekitan ekikayu no seiseibutsu bunpu ni taisuru shokubai kassei oyobi hanno joken no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hasuo, H.; Sakanishi, K.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    The NiMo sulfide supported on Ketjen Black (KB) was more effective and yielded lighter oil products containing light fractions with their boiling point below 300{degree}C during the two stage liquefaction combining low temperature and high temperature hydrogenation the conventional NiMo/alumina catalyst and FeS2 catalyst. Although the NiMo/alumina yielded increased oil products during the two stage liquefaction, the lighter oil fractions did not increase and the heavier fractions increased mainly. This suggests that the hydrogenation of aromatic rings and successive cleavage of the rings are necessary for producing the light oil, which is derived from the sufficient hydrogenation of aromatic rings using catalysts. For the two stage reaction with NiMo/KB catalyst, it was considered that sufficient hydrogen was directly transferred to coal molecules at the first stage of the low temperature reaction, which promoted the solubilization of coal and the successive hydrogenation at the high temperature reaction. Thus, high activity of the catalyst must be obtained. It is expected that further high quality distillates can be produced through the optimization of catalysts and solvents at the two stage reaction. 1 ref., 4 figs., 1 tab.

  5. Changes in epigeic spider community in primary succession on a brown-coal dump

    Directory of Open Access Journals (Sweden)

    Pekár, Stanislav

    1997-12-01

    Full Text Available A descriptive model of primary succession of spiders on a brown-coal dump is presented. Multivariate methods (cluster analysis and detrended correspondence analysis, and community indexes were applied to evaluate changes in community composition of epigeic spiders. Two different rehabilitation age stages were investigated. The cluster analysis helped to determine a case of horizontal asynchronous succession. The DCA was able to distinguish divergent trends of succession from the initial stage. Successional trends in species replacements were observed. In all aspects of succession there was found to be directional towards a "ruderal steppe" subclimax.

  6. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.

    Science.gov (United States)

    Chen, Luguang; Bhattacharya, Sankar

    2013-02-05

    Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems.

  7. Soil liquefaction issues at mining dumps at the Lausitz; Bodenverfluessigungsprobleme bei Bergbaukippen in der Lausitz

    Energy Technology Data Exchange (ETDEWEB)

    Kudla, Wolfram [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau und Spezialtiefbau; Weissbach, Joerg; Szczyrba, Sebastian [Technische Univ. Bergakademie Freiberg (Germany)

    2012-11-01

    For more than 100 years in the Lausitz brown coal is dismantled in open-cast mining. During this time, land with an ara of several 100 km{sup 2} was left as a dump or open-cast mining lakes. These areas are redeveloped by the Lausitz and Central-German Mining Administration Company (Senftenberg, Federal Republic of Germany). The authors of the contribution under consideration report on soil liquefaction issues in mining dumps in the Lausitz. This contribution focuses on a renovation to prevent the sudden transitions from a solid to a liquefied state since 1990 as well as on soil liquefaction on interior dumps at Lausitz. Furthermore, the reasons of the increase in soil pore water pressure and the boundary conditions for liquefaction are described.

  8. Exposure to polycyclic aromatic hydrocarbons in coal liquefaction workers: impact of a workwear policy on excretion of urinary 1-hydroxypyrene.

    Science.gov (United States)

    Quinlan, R; Kowalczyk, G; Gardiner, K; Calvert, I

    1995-01-01

    OBJECTIVE--This study was undertaken to assess whether contaminated personal clothing worn beneath a coverall (normal workwear) is a source of potentially significant dermal exposure to polycyclic aromatic hydrocarbons (PAHs) in coal liquefaction workers. METHODS--An intervention study was conducted over a two week period involving 10 workers that reflected the range of activities performed at the factory. A cross over design was used to examine the influence of normal workwear (personal clothing worn beneath a coverall) and intervention workwear (new coverall, shirt, trousers, underwear, socks, and boots) upon excretion of urinary 1-hydroxypyrene (1-OHP) and skin pad deposition of pyrene. RESULTS--The impact of intervention was noted in three ways: (1) A notable reduction (55%) in the mass of 1-OHP excreted on the first day of the intervention phase was found. The median reduction in mass excreted (22.7 nmol) was significant from zero at the 5% level; (95% confidence interval (95% CI) 9.5-40.8 nmol). (2) A notable reduction (82%) in skin pad deposition of pyrene on the first day of the intervention phase was found. The median reduction of 13.20 ng.cm-2 was significant from zero at the 5% level; (95% CI 7.3-26.4 ng.cm-2). (3) About a 50% reduction in 1-OHP concentration over the working week occurred during the intervention phase; an increase of 2.07 mumol/mol creatinine was found from the start to the end of the work period during the intervention phase compared with an increase of 4.06 mumol/mol creatinine during the normal phase. This reduction was not significant at the 5% level. CONCLUSION--The results indicate that on the first day of the working week investigated, significant reductions in absorbtion (as measured by excretion of urinary 1-OHP) and deposition of PAHs (as measured by skin pad deposition of pyrene) can be effected by improvements in workwear policy. The impact of the improved workwear regimen was also detected by reduction in spot urinary 1-OHP

  9. Polycyclic aromatic hydrocarbons in Australian coals. I. Angularly fused pentacyclic tri- and tetraaromatic components of Victorian brown coal

    Science.gov (United States)

    Chaffee, Alan L.; Johns, R. B.

    1983-12-01

    Analysis of the tri- and tetraaromatic hydrocarbon fractions of a brown coal sample from the Latrobe Valley, Victoria, Australia indicate the predominance of pentacyclic hydroaromatic components. Many of these have not been previously reported in the literature, but are obviously diagenetically related to triterpenoids naturally occurring in the biosphere. The components whose molecular structures have been confirmed, together with those for which tentative structural assignments are given, offer strong support for a theory of progressive diagenetic aromatization of C-3 oxygenated triterpenoids, commencing from ring A. Other compounds present in smaller amounts suggest that 1,2-methyl shift reactions also occur prior to or during aromatization. There is a notable absence of polycyclic aromatic hydrocarbons (PAH's) which can be diagenetically related to the steroid or extended-side-chain hopane skeletons.

  10. An annular-furnace boiler for the 660-MW power unit for ultrasupercritical parameters intended for firing brown slagging coals

    Science.gov (United States)

    Serant, F. A.; Belorutskii, I. Yu.; Ershov, Yu. A.; Gordeev, V. V.; Stavskaya, O. I.; Katsel, T. V.

    2013-12-01

    We present the main technical solutions adopted in designing annular-furnace boilers intended for operation on brown coals of the prospective Maikubensk open-cast mine in Kazakhstan as part of 660-MW power units for ultrasupercritical steam conditions. Results from 3D modeling of combustion processes are presented, which clearly show the advantages furnaces of this kind have over a traditional furnace in burning heavily slagging brown coals. The layout of the main and boiler auxiliary equipment in the existing boiler cell of the 500-MW power unit at the Ekibastuz GRES-1 district power station is shown. Appropriate attention is paid to matters concerned with decreasing harmful emissions.

  11. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 2 - hydrogenative and hydrothermal pretreatments and spectroscopic characterization using pyrolysis-GC-MS, CPMAS {sup 13}C NMR and FT-IR

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Hatcher, P.G.; Saini, A.K.; Wenzel, K.A.

    1998-01-01

    It has been indicated by DOE COLIRN panel that low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals. As the second volume of the final report, here we summarize our work on spectroscopic characterization of four raw coals including two subbituminous coals and two bituminous coals, tetrahydrofuran (THF)-extracted but unreacted coals, the coals (THF-insoluble parts) that have been thermally pretreated. in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent, and the coals (THF-insoluble parts) that have been catalytically pretreated in the presence of a dispersed Mo sulfide catalyst in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent.

  12. The issues of the self-fill aquifer in the north Bohemian brown coal basin

    Energy Technology Data Exchange (ETDEWEB)

    Halir, J.; Zizka, L. [Brown Coal Research Inst., Most (Czech Republic)

    2010-07-01

    The brown coal basin in the Czech Republic is located in the northwestern region of the country. Mining activities in the region have led to the flooding of various underground areas. This paper described the dewatering activities conducted as a safety procedure in a mine located in the brown coal basin. Pumping stations were established in various parts of the basin to collect inflows. Average annual pumping for the stations is approximately 990,000 m{sup 3} of mine water. The deepest pumping station in the basin is 90 meters under sea level. The activities are being conducted to ensure that a self-fill system is established to create a large self-filling water horizon after mining activities have stopped. Depressions in the mine will be successively flooded to create reservoirs of self-filling water. A computerized model of the water fluctuation rates in the mine is being prepare to accurately characterize the filling process. 6 refs., 2 figs.

  13. Brown coal phaseout NRW. Which coal mining amounts are necessary from an energy point of view and are possible with respect to climate policy?; Braunkohleausstieg NRW. Welche Abbaumengen sind energiewirtschaftlich notwendig und klimapolitisch moeglich?

    Energy Technology Data Exchange (ETDEWEB)

    Bauknecht, Dierk; Hermann, Hauke; Ritter, David; Vogel, Moritz; Winger, Christian

    2015-04-15

    The study on the brown coal phaseout in NRW covers the following issues: scope of the study, targets on a federal level and review of actual scenario calculations; brown coal demand in Garzweiler in the different scenarios; climate policy targets in Nordrhein-Westfalen; feasibility in the frame of energy production.

  14. Formation of NH{sub 3} during the pyrolysis of a brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.Z.; Pang, Y.; Li, X.G. [Monash Univ., Clayton, Victoria (Australia). Dept. of Chemical Engineering

    1998-12-31

    Emissions of oxides of nitrogen (NO, NO{sub 2} and N{sub 2}O) from power generation using coal are an important environmental problem, contributing to the formation of photochemical smog and acid rain or to the enhancement of greenhouse effects and to the enhanced depletion of stratospheric ozone. During pyrolysis, the nitrogen in coal, as a part of coal organic matter, is converted into NOx precursors (eg. NH{sub 3}, HCN, HNCO and the nitrogen in tar and char). These NOx precursors may then be converted into either NOx or N{sub 2} during subsequent combustion or gasification/combustion. The conversion efficiency of these NOx precursors into NOx depends strongly upon the type of NOx precursor. Knowledge of the formation of these NOx precursors during pyrolysis is therefore essential for the accurate predictions of NOx emissions from large scale power plants, and therefore for the development of optimum strategies for NOx reduction. Formation of NH{sub 3} during the pyrolysis of a Victorian brown coal (Loy Yang) has been studied in a novel reactor. The experimental results obtained suggest that a considerable amount of the nitrogen in the nascent char could be converted into NH{sub 3} if the char is held at high temperatures for a long period of time. The formation of NH{sub 3} from the thermal cracking of char was seen to last for more than an hour even at temperatures as high as 700--900 C. The experimental results seem to suggest that the differences in reactor geometries would account at least partially for some of the discrepancies in the literature regarding the formation of NH{sub 3} during the pyrolysis of coals. It is thought that NH{sub 3} may be formed from the hydrogenation of the N sites in the char by the active hydrogen generated from the thermal cracking of the char.

  15. Modified Two-Step Dimethyl Ether (DME Synthesis Simulation from Indonesian Brown Coal

    Directory of Open Access Journals (Sweden)

    Dwiwahju Sasongko

    2016-08-01

    Full Text Available A theoretical study was conducted to investigate the performance of dimethyl ether (DME synthesis from coal. This paper presents a model for two-step DME synthesis from brown coal represented by the following processes: drying, gasification, water-gas reaction, acid gas removal, and DME synthesis reactions. The results of the simulation suggest that a feedstock ratio of coal : oxygen : steam of 1 : 0.13 : 0.821 produces the highest DME concentration. The water-gas reactor simulation at a temperature of 400°C and a pressure of 20 bar gave the ratio of H2/CO closest to 2, the optimal value for two-step DME synthesis. As for the DME synthesis reactor simulation, high pressure and low temperature promote a high DME concentration. It is predicted that a temperature of 300°C and a pressure of 140 bar are the optimum conditions for the DME synthesis reaction. This study also showed that the DME concentration produced by the two-step route is higher than that produced by one-step DME synthesis, implying that further improvement and research are needed to apply two-step DME synthesis to production of this liquid fuel.

  16. Sequestration of carbon dioxide by indirect mineralization using Victorian brown coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yong; Parikh, Vinay [Department of Chemical Engineering, Monash University, Wellington Road, Clayton, GPO Box 36, Victoria 3800 (Australia); Zhang, Lian, E-mail: lian.zhang@monash.edu [Department of Chemical Engineering, Monash University, Wellington Road, Clayton, GPO Box 36, Victoria 3800 (Australia)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The indirect CO{sub 2} mineralization by brown coal fly ash has been tested. Black-Right-Pointing-Pointer A large CO{sub 2} capture capacity of fly ash under mild conditions was achieved. Black-Right-Pointing-Pointer The kinetic analysis confirmed a fast reaction rate with low activation energy. Black-Right-Pointing-Pointer The fly ash based capture process is highly efficient and cost-effective. - Abstract: The use of an industry waste, brown coal fly ash collected from the Latrobe Valley, Victoria, Australia, has been tested for the post-combustion CO{sub 2} capture through indirect minersalization in acetic acid leachate. Upon the initial leaching, the majority of calcium and magnesium in fly ash were dissolved into solution, the carbonation potential of which was investigated subsequently through the use of a continuously stirred high-pressure autoclave reactor and the characterization of carbonation precipitates by various facilities. A large CO{sub 2} capture capacity of fly ash under mild conditions has been confirmed. The CO{sub 2} was fixed in both carbonate precipitates and water-soluble bicarbonate, and the conversion between these two species was achievable at approximately 60 Degree-Sign C and a CO{sub 2} partial pressure above 3 bar. The kinetic analysis confirmed a fast reaction rate for the carbonation of the brown coal ash-derived leachate at a global activation energy of 12.7 kJ/mol. It is much lower than that for natural minerals and is also very close to the potassium carbonate/piperazine system. The CO{sub 2} capture capacity of this system has also proven to reach maximum 264 kg CO{sub 2}/tonne fly ash which is comparable to the natural minerals tested in the literature. As the fly ash is a valueless waste and requires no comminution prior to use, the technology developed here is highly efficient and energy-saving, the resulting carbonate products of which are invaluable for the use as additive to

  17. Studies in coal liquefaction with application to the SRC and related processes. Quarterly report, August 1981-October 1981. [Using model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tarrer, A. R.; Guin, J. A.; Curtis, C. W.

    1981-01-01

    Model compound reactions were studied to evaluate the effects of mass transfer, solvent type, solvent blending, hydrogen partial pressure, temperature, reactant concentration, additive loading and its preparation, etc. Naphthalene hydrogenation and benzothiophene hydrodesulfurization were investigated under the conditions comparable to commercial coal liquefaction and related processes. Both of these reaction systems were observed to be surface reaction controlled under the reaction conditions used in this work. Certain aromatic compounds were observed to cause a reduction in the reaction rates of naphthalene and benzothiophene. Single stage coal dissolution was investigated using tetralin as a hydrogen donor solvent and a commercial cobalt-molybdate catalyst. A spinning basket system was developed to allow injection of the catalyst at a desired time in the reaction cycle. This catalyst injection technique proved to be reliable for the exploratory work done here. The degree of catalyst deactivation was rated by comparing the activities of the spent catalyst for model compound (naphthalene and cumene) reactivities relative to those of the fresh catalyst. No substantial reduction in deactivation was observed to result with delayed contacting of the catalyst with the coal-tetralin reaction mixture. The effect of reaction temperature on the initial rate of catalyst deactivation was also studied.

  18. Energy balance of the area influenced by brown coal mining in three phases

    Energy Technology Data Exchange (ETDEWEB)

    Hais, M.; Pecharova, M.; Svoboda, I. [South Bohemian University, Ceske Budejovice (Czech Republic). Department of Ecology

    2005-07-01

    The change in the energy flow on land used for brown coal mining is examined. Terrain mapping was used to obtain land use data for a 14 km{sup 2} mining area and its surroundings. The focus is on the proportion of incident solar energy that is changed to latent heat during evapotranspiration. Each land use unit was assigned an average value for evapotranspiration for the growing season. Satellite data of surface temperature and surface wetness values show incident radiation converted to heat. Relationships between evapotranspiration and surface temperature and between wetness index and evapotranspiration were verified. The results confirm the hypothesis that changes in land use can have a significant effect on total average evapotranspiration. 18 refs., 5 figs., 3 tabs.

  19. Improving adsorption properties of semicoke from power and industrial processing of Kansk-Achinsk brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Koz' min, G.V.; Lozhaeva, V.I.; Kim, S.T.; Kalyuzhnyi, V.V.; Nikolaeva, V.A.

    1981-09-01

    Possibility is investigated of improving adsorption properties of semicoke obtained by thermocontact coking from Irsha-Borodinsk brown coal in order to use it for cleaning industrial waste water. Parameters of the porous structures, physical, chemical and adsorption properties of the semicoke are given after subjection to progressive activation by steam at 500-850 C with combustion losses of 11-48 percent. Analysis of the parameters of the porous structure showed that the total volume of micro and mezopores increased from 135 x 10 /SUP/-/SUP/6 to 779 x 10 /SUP/-/SUP/6 m/SUP/3/kg. This is mainly due to the increase in mezopores. Maximum adsorption of iodine is obtained from semicoke activated at a combustion loss of 11 percent. (4 refs.) (In Russian)

  20. Transformation of chlorine in NaCl-loaded Victorian brown coal during the gasification in steam

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu; Mohammad Asadullah; Rosalie Hocking; LIN Jian-ying; LI Chun-zhu

    2012-01-01

    This study is to examine the changes in Cl volatilizations and chemical forms in NaCl-loaded Victorian brown coal during gasification in steam at 800 ℃ using Cl K-edge X-ray absorption near-edge structure (XANES) spectroscopy.The char samples were prepared in a novel one-stage fluidised-bed/fixed-bed quartz reactor at a fast heating rate.The samples were then collected and sealed in an argon-filled bag in order to minimise possible oxidation of char and Cl by air prior to analysis by XANES.Char-steam reactions were found to significantly affect the transformation of Cl,including the possible formation of chlorine-containing organic structures.On the other hand,volatile-char interactions during the gasificauon appeared to enhance the Cl retention and prevent the formation of organic chlorine compounds in chars.

  1. Sequestration of carbon dioxide by indirect mineralization using Victorian brown coal fly ash.

    Science.gov (United States)

    Sun, Yong; Parikh, Vinay; Zhang, Lian

    2012-03-30

    The use of an industry waste, brown coal fly ash collected from the Latrobe Valley, Victoria, Australia, has been tested for the post-combustion CO(2) capture through indirect minersalization in acetic acid leachate. Upon the initial leaching, the majority of calcium and magnesium in fly ash were dissolved into solution, the carbonation potential of which was investigated subsequently through the use of a continuously stirred high-pressure autoclave reactor and the characterization of carbonation precipitates by various facilities. A large CO(2) capture capacity of fly ash under mild conditions has been confirmed. The CO(2) was fixed in both carbonate precipitates and water-soluble bicarbonate, and the conversion between these two species was achievable at approximately 60°C and a CO(2) partial pressure above 3 bar. The kinetic analysis confirmed a fast reaction rate for the carbonation of the brown coal ash-derived leachate at a global activation energy of 12.7 kJ/mol. It is much lower than that for natural minerals and is also very close to the potassium carbonate/piperazine system. The CO(2) capture capacity of this system has also proven to reach maximum 264 kg CO(2)/ton fly ash which is comparable to the natural minerals tested in the literature. As the fly ash is a valueless waste and requires no comminution prior to use, the technology developed here is highly efficient and energy-saving, the resulting carbonate products of which are invaluable for the use as additive to cement and in the paper and pulp industry.

  2. Estimation of Potentially Toxic Elements Contamination in Anthropogenic Soils on a Brown Coal Mining Dumpsite by Reflectance Spectroscopy: A Case Study: e0117457

    National Research Council Canada - National Science Library

    Asa Gholizadeh; Lubos Boruvka; Radim Vasát; Mohammadmehdi Saberioon; Ales Klement; Josef Kratina; Václav Tejnecký; Ondrej Drábek

    2015-01-01

      In order to monitor Potentially Toxic Elements (PTEs) in anthropogenic soils on brown coal mining dumpsites, a large number of samples and cumbersome, time-consuming laboratory measurements are required...

  3. 含氧煤层气流量变化对液化工艺影响的模拟研究%Simulation Study on Influence of Flow Change of Oxygen-contained Coal-bed Methane upon Liquefaction Process

    Institute of Scientific and Technical Information of China (English)

    朱菁; 王长元; 张武; 任小坤

    2014-01-01

    In this paper, simulation calculation wad carried out on the liquefaction process of coal-bed methane by using HYSYS software and analysis was made on influence of the flow change of coal-bed methane upon the energy consumption of liquefaction and the recovery rate of methane. The results showed that the change range of the total liquefaction energy consumption was identical with that of coal-bed methane flow, of which the change range of the nitrogen compression energy consumption was greater than that of coal-bed methane flow and that of the MRC compression energy consumption was smaller than that of coal-bed methane;the flow change increased the liquefaction energy consumption of unit LNG product, but the flow decrease did not affect the recovery rate of coal-bed methane, and only the flow increase may reduce its recovery rate. In actual operation, it’ s better to make the cooling system having 5% margin so as to ensure the security and stability of the liquefaction process.%利用HYSYS软件对煤层气液化工艺进行模拟计算,分析了煤层气流量变化对液化能耗和CH4回收率的影响,结果表明:总液化能耗变化幅度与煤层气流量变化幅度一致,其中氮气压缩功耗变化幅度大于流量变化幅度,混合冷剂压缩功耗变化幅度小于流量变化幅度;煤层气流量变化会使LNG单位产品液化能耗增加,但流量减小不影响CH4回收率,只有流量增加会降低CH4回收率。在实际运行时,应使制冷系统提供的冷量留有5%的余量,以确保工艺过程的安全与稳定。

  4. Studies of initial stage in coal liquefaction. 4. Radical formation and structural change with thermal decomposition of coal; Ekika hanno no shoki katei ni kansuru kenkyu. 4. Netsubunkai ni tomonau radical seisei kyodo to kozo henka

    Energy Technology Data Exchange (ETDEWEB)

    Kanaji, M.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan); Kumagai, H.; Chiba, T. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology

    1996-10-28

    In relation to coal liquefaction reaction, the effect of the coexistence of transferable hydrogen (TH) from process solvent on reduction of radical concentration and the effect of pre-heat treatment on average structure of coals were studied. In experiment, change in radical concentration with temperature rise was measured using the system composed of Yallourn coal and process solvent. The results are as follows. Process solvent with a wide boiling point range of 180-420{degree}C is effective in suppressing an increase in radical concentration even at higher temperature. The effect of hydrogen-donating solvent increases with TH. It was also suggested that high-boiling point constituents in solvent stabilize radicals even over 400{degree}C by vapor phase hydrogenation. The experimental results of pre-heat treatment are as follows. Although the conversion improvement effect of TH is equivalent to that of the model solvent, TH tends to produce soluble products with smaller ring numbers. It was thus suggested that pre-heat treatment in process solvent is effective to inhibit retrogressive reactions. 6 refs., 5 figs., 1 tab.

  5. Development of coal liquefaction technologies (Part 3); Development of common base techniques (Part 4). Development and employment of evaluating approach to liquefied process. Development of data collecting and processing system for coal liquefaction process and etc. Sekitan ekika gijutsu kaihatsu (3); Kyotsu kiban gijutsu no kaihatsu nado (4). Ekika process no hyoka shuho no kaihatsu, unyo. Sekitan ekika process nado no data no shushu, Shori system

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    This research aims to develop the management system of informations concerning coal liquefaction process and etc., to develop data collecting and processing system on pilot plant and supporting researches and to effectively use data to advance to following step such as conceptural design for the demonstration plant. In addition, this research aims to collect many kinds of techniques obtained by the research and development and to arrange and promote the licensing system to practically use this system. Practical results in 1988 were as follows: Conceptural design on basic data base and retrieval or look up system on general technical informations were carried out to develop the data base system for coal liquefaction and to develop the data collecting and processing system for the coal liquefaction process and etc. Data locative leveling was carried out as the conceptural design for basic data base and the basic structures of hardware and software were made up as the basic design for the retrieval system of general technical informations. 4 figs., 1 tab.

  6. Utilisation potential of products of microbial coal liquefaction. Final report; Verwertungspotential der Produkte der mikrobiellen Kohleverfluessigung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Koepsel, R.; Schmiers, H.; Grosse, S.; Weber, A.

    2002-07-01

    Ever since the discovery in the 1980s that microorganisms are capable of converting coal into soluble products research groups all over the world have been exploring the bioconversion of coal. It was at an advance stage of the present integrated project, which initially only involved microbiology research groups, that the need for a chemical working group with knowledge and experience in the area of coal chemistry and structural analysis of coal was recognised. The task of the chemical working group was to provide knowledge on the chemical nature of bioconversion products and the chemical processes of coal bioconversion. This involved identifying structural changes occurring in the feed coal as well as in its constituent humic acids and macromolecular matrix as a result of the activity of coal degrading microorganisms. [German] Nachdem Anfang der achtziger Jahre entdeckt wurde, dass sich Kohlen durch Mikroorganismen in loesliche Produkte ueberfuehren lassen, agieren weltweit Forschergruppen auf dem Gebiet der Biokonversion von Kohle. In einem fortgeschrittenen Bearbeitungsstadium des Verbundprojektes, an dem zunaechst nur mikrobiologische Arbeitsgruppen beteiligt waren, wurde die Notwendigkeit erkannt, eine chemische Arbeitsgruppe mit Kenntnissen und Erfahrungen auf den Gebieten der Kohlechemie und der Strukturanalytik von Kohlen zu integrieren. Aufgabenstellung der chemischen Arbeitsgruppe war und ist es, Erkenntnisse ueber die chemische Natur der Biokonversionsprodukte und die chemischen Ablaeufe der mikrobiellen Kohlekonversion bereitstellen. Die Aufgabenstellung umfasst die Aufklaerung der strukturellen Veraenderung der Einsatzkohle sowie ihrer Komponenten Huminsaeuren und makromolekulare Matrix durch die Einwirkung kohleabbauender Mikroorganismen. (orig.)

  7. TECHNOLOGY AND EFFICIENCY IN USAGE OF BROWN COAL ASH FOR CEMENT AND CONCRETE MIXTURES AT THE LELCHITSKY DEPOSIT

    Directory of Open Access Journals (Sweden)

    G. D. Lyahevich

    2017-01-01

    Full Text Available Modern visions on the role of high-dispersity additives in concrete mixtures reflect a positive effect of optimal amount of ash left after combustion of solid fuel on structure and physico-mechanical characteristics of cement compositions: hardening of contact zone between cement stone and aggregates with formation of “binder – aggregate” clusters due to high surface energy of aggregate particles; reduction of total cement stone porosity in concrete while increasing volumetric concentration and aggregate dispersion; binding of calcium hydroxide by amorphized silicon of pozzolanic aggregates; increase in pozzolanic aggregate activity with its fine grinding, etc. Experimental investigations have ascertained that usage of portland cement clinker ash samples left after brown coal burning at the Lelchitsky deposit contributed to an increase of cement working life and activity. Concrete samples have been obtained that have improved physico-mechanical properties owing to introduction the following components in their composition: 2–14 % (of cement mass of ash left after brown coal burning and 1.6–2.1 % of sodium salt that is a condensation product of sulfur oxidate in aromatic hydrocarbons with formaldehyde. Efficiency of the executed work has been proved by solution of the problems pertaining to an increase of neat cement working life, cement activity, concrete strength. The paper also considers no less important problem concerning protection of the environment from contamination with ash left after burning of high-ash brown coal

  8. Simulation of coal liquefaction process by developing user models on Aspen Plus platform%Aspen Plus用户模型技术的煤直接液化全流程模拟

    Institute of Scientific and Technical Information of China (English)

    单贤根; 常小瑞; 任琼; 江洪波; 翁惠新

    2014-01-01

    Based on six lumped kinetic model, this paper used the BFGS optimization algorithm to obtain kinetic constant of heating-up and isothermal stage of direct coal liquefaction process, and through regression of experimental data to get specific product composition for separation unit of direct coal liquefaction. Then the Aspen Plus user model of direct coal liquefaction was developed and integrated with the Aspen Plus software to achieve an entire process simulation of direct coal liquefaction process in Aspen Plus platform which can make the best use of its powerful databases and simulation calculation ability of separation processes. The calculation value of gas liquid equilibrium in high temperature and low temperature separators for reaction products agreed well with the experiment data. The entire process simulation in Aspen Plus platform can provide technical support for the optimization of direct coal liquefaction reaction and separation conditions.%基于六集总动力学模型,采用BFGS优化算法获得煤直接液化升温阶段和恒温阶段的反应动力学常数,同时通过试验数据回归得到用于煤直接液化分离单元的具体产品组成,并以此为基础开发了煤直接液化反应的Aspen Plus用户模型。在此基础上,将上述煤直接液化用户模型与Aspen Plus流程模拟软件集成在一起,充分利用Aspen Plus软件强大的性质数据库和分离过程模拟计算能力,最终实现了基于Aspen Plus平台的煤直接液化全流程模拟,模拟计算得到的煤直接液化反应产物在高温和低温分离器的气液相平衡数据与实验值较吻合。基于Aspen Plus的全流程模拟可以为煤直接液化反应和分离条件的优化选择提供技术参考。

  9. Chemical constituents and structural characteristic of the combined acids in brown coal resin from Chinese brown coal waxes%褐煤树脂中结合酸的化学组成与结构特征

    Institute of Scientific and Technical Information of China (English)

    李宝才; 傅家谟; 卜贻孙; 黄祖琦; 盛国英

    2001-01-01

    对云南潦浒、寻甸、吉林舒兰褐煤树脂中结合酸进行了GC-MS分析,对其化学组成及结构特征进行了对比研究.结果显示,树脂结合酸均以正构烷酸为主要成分,其分布为C12~C28,高含量的正构烷酸集中在低碳数一端.在潦浒、寻甸树脂结合酸中,C20含量最高,其次为C16,而在舒兰结合酸中,正构烷酸占绝对优势,且C16为最高含量的化合物;去氢松香酸在每个样品中含量均较低,其它三环二萜酸,如松脂酸、三达松脂酸等异构体或立体异构体含量也非常低;具有五环三萜骨架的酸性物质,在潦浒、舒兰结合酸中比较丰富,其含量超过寻甸结合酸;在低碳数一端,存在着各种支链烷酸及苯甲酸、苯酚及取代物.对比树脂烃、树脂游离酸的结果,潦浒树脂结合酸与寻甸树脂结合酸无论从组成和分布上都是极其相似的,故其原料煤成煤植物和成煤环境具有相似性,与舒兰煤之生源和环境存在着本质的差异.%The acids combined to form esters, LHZZS,XDZZS and SLZZS, the fractio ns in brown coal resins from brown coal waxes from Liaohu, Xundian (Yunnan Province) and Shulan(Jilin Province) brown coal respectively, were derived by CH 2N2 to methyl esters and their chemical constituents and structural characteristic were studied on GCMS. The experimental results demonstrate that normal fatty acids from C12 to C28are dominant in combined acid fraction, but concen trated mainly in low carbon number (C16,C18,C20,C22). Fatty acid with highest content both in LHZZS and XDZZS is eicosanoic acid, the next, hexadecanoic acid. In SLZZS, the normal fatty acids are absolutely dominant compositions, hexadecanoic acid with the highest content, the next, benzoic acid; Tricyclic diterpanoic acids and pentacyclic triterpanoic acids, such as dehydroabietic acid, pimaric acid, isopima ric acid, sandaracopimaric acid, tetrahydroabietic acid

  10. 煤制油化工基地式一体化建设模式思考%On the Base-integration Construction Mode of Coal Liquefaction Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    万国杰

    2011-01-01

    Considering the industrial properties of coal liquefaction chemical industry, referring to the other country's exploration of the construction model on coal liquefaction chemical industry, together with the successful experience of domestic constructing demonstration projects on coal liquefaction chemical industry and national reality of diverse energy resources, various techniques and products are synthetically integrated from the systemic view, focus on the coal liquefaction chemical industry to build a circulating eco-industrial park of the base-integration with step conversion of coal to various of products and step utilization of the energy, in the end, to achieve the optimum of integrated ener- gy system. Through the overall planning of the coal mine, processing of coal, coal gasification (including paralysis), syngas processing, IGCC, coal chemical industry, fuels production from coal, byproducts processing and products deep processing, system of public works, system of public logistics and public service systems, with the form of co-production as well as mutual supply on variety of products, taking the advan- tage of the base-integration, while producing dimensions beneficial result, diversify and fine the products are pursued, and economic benefit, products competition, environmental benefit, social benefit are organically combined with the country's industrial policies. An integrated coal liquefaction chemical industry base is to be built with the highest energy efficiency, the best system benefits, refining division, the professional management, large-scale operation, harmonious relationship between local government and coal mining enterprise, and the environment friendly nature.%鉴于煤制油化工的产业特点,借鉴国际上对煤制油化工建设模式的探索,结合我国煤制油化工示范工程建设的成功经验和我国能源结构及分布的国情,从系统的角度综合集成各种技术和产品组合,围绕煤制

  11. Material and structural characterization of alkali activated low-calcium brown coal fly ash.

    Science.gov (United States)

    Skvára, Frantisek; Kopecký, Lubomír; Smilauer, Vít; Bittnar, Zdenek

    2009-09-15

    The waste low-calcium Czech brown coal fly ash represents a considerable environmental burden due to the quantities produced and the potentially high content of leachable heavy metals. The heterogeneous microstucture of the geopolymer M(n) [-(Si-O)(z)-Al-O](n).wH(2)O, that forms during the alkaline activation, was examined by means of microcalorimetry, XRD, TGA, DSC, MIP, FTIR, NMR MAS ((29)Si, (27)Al, (23)Na), ESEM, EDS, and EBSD. The leaching of heavy metals and the evolution of compressive strength were also monitored. The analysis of raw fly ash identified a number of different morphologies, unequal distribution of elements, Fe-rich rim, high internal porosity, and minor crystalline phases of mullite and quartz. Microcalorimetry revealed exothermic reactions with dependence on the activator alkalinity. The activation energy of the geopolymerization process was determined as 86.2kJ/mol. The X-ray diffraction analysis revealed no additional crystalline phases associated with geopolymer formation. Over several weeks, the (29)Si NMR spectrum testified a high degree of polymerization and Al penetration into the SiO(4) tetrahedra. The (23)Na NMR MAS spectrum hypothesized that sodium is bound in the form of Na(H(2)O)(n) rather than Na(+), thus causing efflorescence in a moisture-gradient environment. As and Cr(6+) are weakly bonded in the geopolymer matrix, while excellent immobilization of Zn(2+), Cu(2+), Cd(2+), and Cr(3+) are reported.

  12. Proceedings of the 1978 coal chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Radding, S. B.; Peters, H. M. [eds.

    1978-11-01

    Ten papers from the proceedings have been entered individually into EDB and ERA. They deal with the structural chemical analysis of coal and the chemistry of coal gasification and coal liquefaction. DOE's Fossil Energy Program is discussed in detail and recommendations for further research in coal gasification and coal liquefaction are made. (LTN)

  13. Pressure combustion of Rhenish brown coal. Final report; Druckkohlenstaubverbrennung von rheinischer Braunkohle. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ayar, A.; Fielenbach, C.; Gross, R.; Holfeld, T.; Lockemann, S.; Severin, C.; Thulfaut, C.; Hillemacher, B.

    2003-07-01

    NOx formation and reduction in the coal combustion process was investigated both experimentally and theoretically. The influence of coal grain size described in earlier publications was proved by the measurements at the DKSF test facility at Aachen. While no pressure dependence was established so far for lignite, measurements on Spitzbergen coal at 9 - 13 bar showed a decrease in NOx concentrations with increasing pressure. This effect will be investigated for Rhenish brown coal in further experiments. Modelling by the standard FLUENT code and by the user defined subroutines of the FLUENT code developed by the International Flame Research Foundation (IFRF), Ijmuiden, showed that the different predictions of flame temperatures have a decisive role in the modelling of NOx formation. A more accurate analysis of the NOx models as compared to ther measurements will be carried out in a melting chamber furnace with a stable flame. Additionally, measurements were carried out for investigating the kinetics of homogeneous gaseous phase reactions in flue gases, i.e. the thermal and additive-catalysed degradation of nitrous components was investigated. The kinetics of the process was also described by a code developed at Aachen University. On the base of a sensitivity analysis, a reduction of the detailed modelling of the reaction kinetics is achieved which permits 2D and 3D calculations on the decomposition of different flue gas components using a CFD code like FLUENT. The 1D and 2D calculations and the measurements were found to be in good agreement. [German] Im Rahmen des Forschungsschwerpunkts 3 wurde experimentell und theoretisch die NO{sub x}-Bildung und -Reduktion bei der Druckkohlenstaubverbrennung untersucht. Der zuvor beschriebene Einfluss der Kohlemahlung auf die Flamme konnte auch anhand der NO{sub x}-Messungen an der DKSF-Anlage Aachen bestaetigt werden. Waehrend mit Braunkohle im Staubfeuerungsbetrieb noch keine eindeutige Druckabhaengigkeit nachgewiesen werden

  14. The 3R anthracite clean coal technology: Economical conversion of brown coal to anthracite type clean coal by low temperature carbonization pre-treatment process

    Directory of Open Access Journals (Sweden)

    Someus Edward

    2006-01-01

    Full Text Available The preventive pre-treatment of low grade solid fuels is safer, faster, better, and less costly vs. the "end-of-the-pipe" post treatment solutions. The "3R" (Recycle-Reduce-Reuse integrated environment control technology provides preventive pre-treatment of low grade solid fuels, such as brown coal and contaminated solid fuels to achieve high grade cleansed fuels with anthracite and coke comparable quality. The goal of the 3R technology is to provide cost efficient and environmentally sustainable solutions by preventive pre-treatment means for extended operations of the solid fuel combustion power plants with capacity up to 300 MWe power capacities. The 3R Anthracite Clean Coal end product and technology may advantageously be integrated to the oxyfuel-oxy-firing, Foster Wheeler anthracite arc-fired utility type boiler and Heat Pipe Reformer technologies in combination with CO2 capture and storage programs. The 3R technology is patented original solution. Advantages. Feedstock flexibility: application of pre-treated multi fuels from wider fuel selection and availability. Improved burning efficiency. Technology flexibility: efficient and advantageous inter-link to proven boiler technologies, such as oxyfuel and arcfired boilers. Near zero pollutants for hazardous-air-pollutants: preventive separation of halogens and heavy metals into small volume streams prior utilization of cleansed fuels. >97% organic sulphur removal achieved by the 3R thermal pre-treatment process. Integrated carbon capture and storage (CCS programs: the introduction of monolitic GHG gas is improving storage safety. The 3R technology offers significant improvements for the GHG CCS conditions. Cost reduction: decrease of overall production costs when all real costs are calculated. Improved safety: application of preventive measures. For pre-treatment a specific purpose designed, developed, and patented pyrolysis technology used, consisting of a horizontally arranged externally

  15. CO2 adsorption properties of char produced from brown coal impregnated with alcohol amine solutions.

    Science.gov (United States)

    Baran, Paweł; Zarębska, Katarzyna; Czuma, Natalia

    2016-07-01

    Carbon dioxide (CO2) emission reduction is critical to mitigating climate change. Power plants for heating and industry are significant sources of CO2 emissions. There is a need for identifying and developing new, efficient methods to reduce CO2 emissions. One of the methods used is flue gas purification by CO2 capture through adsorption. This study aimed to develop CO2 adsorbent out of modified brown coal impregnated with solutions of first-, second-, and third-order amines. Low-temperature nitrogen adsorption isotherms and CO2 isotherms were measured for the prepared samples. The results of experiments unexpectedly revealed that CO2 sorption capacity decreased after impregnation. Due to lack of strait trends in CO2 sorption capacity decrease, the results were closely analyzed to find the reason for the inconsistencies. It was revealed that different amines represent different affinities for CO2 and that the size and structure of impregnating factor has influence on the CO2 sorption capacity of impregnated material. The character of a support was also noticeable as well for impregnation results as for the affinity to CO2. The influence of amine concentration used was investigated along with the comparison on how the theoretical percentage of the impregnation on the support influenced the results. The reaction mechanism of tertiary amine was taken into consideration in connection to no presence of water vapor during the experiments. Key findings were described in the work and provide a strong basis for further studies on CO2 adsorption on amine-impregnated support.

  16. The loss of Na and Cl during the pyrolysis of a NaCl-loaded brown coal sample

    Energy Technology Data Exchange (ETDEWEB)

    Mody, D.; Li, C.Z.

    1999-07-01

    A Victorian brown coal was physically loaded with NaCl and pyrolyzed in a quartz fluidized-bed reactor. The fluidized-bed reactor was equipped with a quartz frit in the freeboard zone to enable the total devolatilization of the coal particles. The introduction of NaCl into the coal has caused only minor reductions in the weight loss. A significant amount of chlorine was volatilized during pyrolysis at temperatures as low as 200 C. At temperatures around 400--500 C where the loss of sodium was not very significant, about 70% of chlorine was volatilized from the coal particles. With the volatilization of chlorine at this temperature level, sodium must have been bonded to the char matrix. With increasing temperature, the volatilization of chlorine decreased and then increased again, whereas the volatilization of sodium increased monotonically with increasing temperature. Almost all the Na in coal could be volatilized at temperatures higher than about 800 C. These experimental results clearly indicate that chlorine and Na interacted strongly with coal/char at high temperatures. Na and Cl in the coal did not volatilize as NaCl molecules. Significant amounts of species containing a COO-group such as acetate, formate and oxalate were observed in the pyrolysis products although the exact forms of these species (i.e., as acids, salts or esters) in the pyrolysis product remain unknown. The yields of the species containing a COO-group decreased with increasing temperature, possibly due to the intensified thermal cracking reactions at high temperatures.

  17. Studies in coal liquefaction with application to the SRC and related processes. Quarterly report, May-July 1983

    Energy Technology Data Exchange (ETDEWEB)

    Tarrer, A. R.; Guin, J. A.; Curtis, C. W.

    1984-03-01

    This report examines liquid-phase adsorption as a possible method of studying the interactions between coal liquids and hydrotreating catalysts. The duel purposes of this work are to develop a method to determine specific surface areas of porous catalysts and to examine how compounds commonly found in coal liquids are adsorbed on hydrotreating catalysts. The liquid-phase adsorption studies were performed at room temperature in tubing bomb reactors. Adsorption isotherms obtained from these experiments were assumed to follow Langmuir-type behavior. Compounds used in these studies included PNA compounds, a basic nitrogen containing compound, and an acidic oxygen containing compound. Various commercial grade catalysts as well as presulfided CoMo/Al/sub 2/O/sub 3/ and presulfided iron oxide were used as adsorbents. Experiments have shown that quinoline, a basic nitrogen containing compound, appears to be an excellent compound for surface area determination via liquid-phase adsorption. Adsorption of compounds such as pyrene, a PNA compound, and phenol, an acidic oxygen containing compound, may be used to determine the relative areas of different types of sites on catalyst surfaces. The sensitivity of this liquid-phase adsorption technique was evaluated by adsorbing different solutes on various catalyst surfaces. This technique shows that the adsorptivity of different coal liquids is a distinct function of the individual properties of the adsorbate as well as the properties of adsorbent used. Comparison of the adsorption properties of these coal liquids on various adsorbents may give insights as to how they adsorb on hydrotreating catalysts, how they compete for the active catalyst sites, and what types of sites the adsorbed molecules occupy. 29 references, 37 figures, 41 tables.

  18. Late Cretaceous-Paleogene Palynostratigraphy from the Arkhara-Boguchan Brown Coal Mine of Zeya-Bureya Depression, Russia

    Institute of Scientific and Technical Information of China (English)

    Tatyana V. Kezina

    2003-01-01

    A well-preserved Late Cretaceous-Paleogene palynological flora from the middle member of the Tsagajan Formation and the upper member of the Tsagajan Formation including the Kivda Beds is reported for the first time from the Arkhara-Boguchan brown coal mine, southeastern part of the Zeya-Bureya Basin. Four palynocomplexes were established for the Cretaceous-Tertiary transition. The climate and phytocoenoses were also analyzed,based on the detailed palynological data. The results are coincident with those of mega-flora studied by Akhmetiev et al. (2002).

  19. Thirty five years of North Bohemian brown coal region after liberation of Czechoslovakia by the Soviet army

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, M.

    1980-09-01

    Problems of the North Bohemian brown coal basin are evaluated. In 35 years coal output of the region increased from 40 Mt to nearly 70 Mt in spite of deteriorating mining and geological conditions and shortages of manpower. Output increase was possible as a result of a comprehensive program of modernization and construction of new mines. The following mines are the most productive in the region: Maxim Gorkij, Most, CSA, Jan Sverma, Chabarovice, Merkur, Brezno, Vrsany. Investments in modernizing older mines and constructing new surface mines are evaluated: the investments increased from close to 800 million crowns in 1971 to over 2 billion crowns in 1979. Machines and equipment used in the North Bohemian surface mines are characterized: K 1000, K-800-B, K-300 bucket wheel excavators, D 800, DO 800 and DO 400 bucket chain excavators as well as the high capacity KU 800 bucket wheel excavator.

  20. Analysis of Catalyst Vulcanization of Coal Direct Liquefaction to Oil Hydrogenation Modification Combination%煤直接液化油加氢改质组合催化剂硫化过程分析

    Institute of Scientific and Technical Information of China (English)

    郭贵贵

    2013-01-01

    神华煤直接液化先期工程1.0Mt/a煤直接液化油加氢改质装置在首次工业应用中,采用了中国石化石油化工科学研究院开发的煤直接液化油加氢改质技术(RCHU),以及配套的RGC-1/RNC-2/RCC-1催化剂组合,该技术通过对煤直接液化轻馏分油进行加氢改质,以达到改善产品品质、提高柴油产品十六烷值。本文对煤直接液化油加氢改质装置,首次工业应用开工过程中的催化剂预硫化进行了总结,通过对比催化剂实际上硫量与理论上硫量、实际生成水量与理论生成水量,可知此次开工过程中催化剂的上硫率较高、硫化效果较好。%Shenhua coal direct liquefaction front engineering of the 1.0Mt/a coal direct liquefaction to oil hydrogenation modification unit in the first industrial application was using the coal direct liquefaction oil hydrogenation modified techonlogy (RCHU) and the supporting RGC-1/RNC-2/RCC-1 composition catalyst empoldered by Research Institute of the Petroleum Processing. The technology upgrades the coal direct liquefaction light distillate oil and improves product quality increasing the cetane number of diesel products. This article sum-marizes the catalyst pre-sulfuration process in first commercial application found that the rate of sulfur consumption on the catalyst finally is higher in the process and the sulfuration is successful by comparing sulfur consumed by the catalyst and generated water in fact and theory.

  1. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal.

    Science.gov (United States)

    Roy, Bithi; Chen, Luguang; Bhattacharya, Sankar

    2014-12-16

    This study investigates, for the first time, the NOx, N2O, SO3, and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOx emissions and higher N2O formation were observed in the oxy-fuel atmosphere. These NOx reduction and N2O formations were further enhanced with steam in the combustion environment. The NOx concentration level in the flue gas was within the permissible limit in coal-fired power plants in Victoria. Therefore, an additional NOx removal system will not be required using this coal. In contrast, both SO3 and gaseous mercury concentrations were considerably higher under oxy-fuel combustion compared to that in the air combustion. Around 83% of total gaseous mercury released was Hg(0), with the rest emitted as Hg(2+). Therefore, to control harmful Hg(0), a mercury removal system may need to be considered to avoid corrosion in the boiler and CO2 separation units during the oxy-fuel fluidized-bed combustion using this coal.

  2. Heteroatom speciation in coal liquefaction via FTIR coupled with liquid chromatography. Quarterly progress report, October 1-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.T.

    1984-05-01

    The objectives of the research are (1) evaluate the potential of FT-IR for qualitative functional group detection in chromatographic fractions of highly polar materials, (2) develop separation techniques with the aid of FT-IR detection for concentration of oxygen, nitrogen and sulfur functionalities in synfuels, (3) describe and quantify the various heteroatom functionalities in selected solvent refined coal fractions, (4) place speciation techniques on-line with chromatographic separations, (5) compare quantitative speciation information obtained from LC-FTIR with established fluorine tagging techniques regarding model compounds and synfuels. 23 figures, 5 tables.

  3. Studies in coal liquefaction with application to the SRC and related processes. Quarterly report, May-July 1981

    Energy Technology Data Exchange (ETDEWEB)

    Guin, J. A.; Curtis, C. W.; Tarrer, A. R.

    1981-01-01

    This report discusses a kinetic investigation of the Fe-S-H/sub 2/ system conducted as an outgrowth of current research in the SRC-I (solvent refined coal) process to better understand the effects of naturally occurring iron sulfides in coal hydrogenation and hydrodesulfurization. A total of twelve closed system reactions were carried out in which 48 to 60 mesh pyrite, in the presence of hydrogen gas, underwent transformation to 1C hexagonal pyrrhotite. Reaction temperatures were 350/sup 0/C and 400/sup 0/C with four sample runs at temperature. Initial pressure of hydrogen gas was 1250 psig (8617 KPa). A comparison of the results for each reaction series was evaluated with time and temperature as variables. The transformation rate of pyrite to pyrrhotite was found to increase over the range of reaction temperatures with the 400/sup 0/C samples showing the greatest amount of transformation per unit time. For the 375/sup 0/C and 400/sup 0/C runs pyrrhotite formation decreased after approximately 15 minutes of reaction time due to (1) reduced availability of pyrite, and (2) resistance to diffusion in the topochemical product layer.

  4. Metallization of oxide-ore-containing wastes with the use of brown coal semicoke from Berezovsky deposit of the Kansk- Achinsk Basin

    Science.gov (United States)

    Anikin, A. E.; Galevsky, G. V.; Nozdrin, E. V.; Rudneva, V. V.; Galevsky, S. G.

    2016-09-01

    The research of the metallization process of the roll scale and sludge after gas treatment in the BOF production with the use of brown coal semicoke mined in Berezovsky field of the Kansk-Achinsk Basin was carried out. A flow diagram of “cold” briquetting using a water-soluble binder was offered. The reduction of iron from its oxide Fe2O3 with brown coal semicoke in the laboratory electric-tube furnace in the argon atmosphere was studied. The mathematical models of dependence of the metallization degree on variable factors were developed. The optimal values of technological factors and essential characteristics of the obtained metallized products were revealed.

  5. Autochthonous microbe-assisted phytoremediation of brown coal mine overburden soil

    Science.gov (United States)

    Hamidović, Saud; Teodorović, Smilja; Lalević, Blažo; Karličić, Vera; Jovanović, Ljubinko; Kiković, Dragan; Raičević, Vera

    2015-04-01

    One of the largest brown coal mines in Bosnia and Herzegovina (BiH), Kakanj, has been exploited for over a hundred years. As a consequence of decades of exploitation, severe biocenosis disturbance and degradation of the entire ecosystem have occurred, resulting in overburden soil formation. A significant challenge in remediation of degraded mining areas is difficulty in creating conditions favorable for vegetation growth. Thus, numerous remediation technologies have focused on increasing soil nutrient composition, as well as the number and activity of plant growth-promoting bacteria (PGPB), given that they stimulate host plant growth by increasing the availability of essential nutrients (phosphorus, nitrogen, manganese, iron), producing phytohormones, and providing protection from pathogens. The main objective of this research was to characterize autochthonous plant and microbial overburden communities and access their ability to restore these contaminated soils. Phytocenological analysis of vegetation and plant species was performed according to Flora Europaea (2001), from 2011 - 2013. Our results show that plant species were not detected at mine overburden soil in 2011. However, we detected presence of a single plant species, Amaranthus albus L., in 2012. Further, we recorded the presence of five families (Amaranthaceae, Chenopodiaceae, Convolvulaceae, Poaceae and Polygonaceae) in 2013. Microbial abundance and enzymatic activity were also examined during the same period. The diversity of microbial populations in the first year was rather small. Two Bacillus spp., B. simplex and a B. cereus group member, indigenous to mine overburden were isolated and identified using standard macroscopic and microscopic, as well as molecular techniques (Hamidovic et al., submitted). Phosphate solubilizing activity of bacteria was tested on National Botanical Research Institute's phosphate growth medium (1999). Production of ammonia was determined in peptone water with Nessler

  6. Impact of Calcium on Pyrolysis and Gasification Characteristics of Brown Coal%钙元素对褐煤热解和气化特性的影响

    Institute of Scientific and Technical Information of China (English)

    王磊; 余江龙; 尹丰魁; 王冬梅

    2012-01-01

    综述了钙元素对褐煤热解和气化特性的影响,讨论了钙元素对热解产物中挥发分、焦油产率和气体产物分布的影响,以及对褐煤半焦气化的催化作用.结果表明,与酸洗煤相比,热解过程中,钙元素降低焦油产率,提高半焦产率;气化过程中,钙元素的植入提高褐煤半焦的反应活性,缩短了反应时间.高温时钙元素主要以氧化态的形式存在,低温时则不断与半焦基体键合而参与交联反应,少部分挥发.%This paper provides an overview on the impact of calcium on the pyrolysis and gasification characteristics of brown coal. The impact of calcium on the total volatile matter yield, the tar yield and the distribution of gaseous products during pyrolysis as well as its influences on the catalysis of the gasification of brown coal and chars are discussed. It is shown that the tar yield of the Ca-enriched coal is lower than that of the acid-washed coal and the char yield is higher than that of the acid-washed coal in the pyrolysis process. The reactivity of brown coal is increased and the reaction time is shortened in the gasification process because of the calcium implantation into the brown coal. Calcium oxide is the main form existing in the coal at high temperatures, but it is strongly bonded to the char structure and attends cross linking reactions and a small proportion of volatilizes.

  7. Biological testing and chemical analysis of process materials from an integrated two stage coal liquefaction: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Buhl, P.; Moroni, E.C.

    1983-07-01

    Samples for chemical characterization and biological testing were obtained from ITSL runs 3LCF7, 3LCF8 and 3LCF9. Chemical analysis of these materials showed that SCT products were composed of fewer compounds than analogous materials from Solvent Refined Coal (SRC) processes. Major components in the SCT materials were three-, four-, five- and six-ring neutral polycyclic aromatic hydrocarbons (PAH). Methyl(C/sub 1/) and C/sub 2/ homologs of these compounds were present in relatively low concentrations, compared to their non-alkylated homologs. Organic nitrogen was primarily in the form of tertiary polycyclic aromatic nitrogen heterocycles and carbazoles. Little or no amino PAH (APAH) or cyano PAH were detected in samples taken during normal PDU operations, however, mutagenic APAH were produced during off-normal operation. Microbial mutagenicity appeared to be due mainly to the presence of APAH which were probably formed in the LC finer due to failure of the catalyst to promote deamination following carbon-nitrogen bond scission of nitrogen-containing hydroaromatics. This failure was observed for the off-normal runs where it was likely that the catalyst had been deactivated. Carcinogenic activity of ITSL materials as assessed by (tumors per animal) in the initiation/promotion mouse skin painting assay was slightly reduced for materials produced with good catalyst under normal operation compared to those collected during recycle of the LC Finer feed. Initiation activity of the latter samples did not appear to be significantly different from that of other coal derived materials with comparable boiling ranges. The observed initiation activity was not unexpected, considering analytical data which showed the presence of four-, five- and six-ring PAH in ITSL materials.

  8. Exploration possibilities of Oligocene brown coal seams in the Vertessomio - Majkpuszta - Orosziany region

    Energy Technology Data Exchange (ETDEWEB)

    Gidai, L.

    1986-01-01

    The history of exploration, the stratigraphic conditions of the Oligocene formations together with the tectonics of the region are discussed. Based on exploration borehole data the expected thickness and distribution of the coal seams are presented. As demonstrated by the isopach lines the depth of the Oligocene coal seams varies between 50 and 300 mm below the surface, i.e. the beds lie somewhat higher than the Eocene coal-bearing strata. For this very reason the region seems to be extractable though the thickness of the coal seams falls behind the Eocene ones.

  9. Balance of natural radionuclides in the brown coal based power generation and harmlessness of the residues and side product utilization; Bilanz natuerlicher Radionuklide in der Braunkohleverstromung und Unbedenklichkeit bei der Verwendung von Rueckstaenden und Nebenprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Hartmut; Kunze, Christian; Hummrich, Holger [IAF-Radiooekologie GmbH, Radeberg (Germany)

    2017-04-01

    During brown coal combustion a partial enrichment of natural radionuclides occurs in different residues. Residues and side product from brown coal based power generation are used in different ways, for example filter ashes and gypsum from flue gas desulfurization facilities are used in the construction materials fabrication and slags for road construction. Detailed measurement and accounting of radionuclides in the mass throughputs in coal combustion power plants have shown that the utilized gypsum and filter ashes are harmless in radiologic aspects.

  10. 紫外光谱法分析煤直接液化油族组成%A Quick Quantitative Analysis for Group Composition of Coal Liquefaction Oil by Ultraviolet Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    樊文俊; 吴美香; 郝建树; 冯杰; 李文英

    2015-01-01

    煤液化油组成的测定方法以色谱法为主,但由于样品沸程长,组分性质不均一,色谱法无法实现简便快速地对液化油族组分进行定性/定量。为建立一种快速准确定量煤液化油中的酚类化合物、芳烃、脂肪烃的分析方法,本文选取具有代表性组成的煤液化油180~200℃馏分为研究对象,筛选了环己烷、乙醇、氢氧化钠‐乙醇(50 W t%,简称碱醇溶剂)三种分离溶剂。通过对煤液化油样品在200~400 nm波长间的特征吸收峰分析,发现碱醇溶剂可使芳烃化合物对酚类化合物的干扰减少到最小,可以有效避免吸收峰重叠问题。在此基础上,进一步对比分析了苯酚,间甲酚,邻甲酚,对甲酚等标准化合物与液化油酚类混合物在碱醇溶液中紫外吸收的标准曲线,以定量样品组成。选择间甲酚为标准化合物,根据其在290 nm处的标准曲线,得到煤液化油中酚类化合物的总量为32.14%,测定结果与宏量样品分离、称重、物料平衡后结果基本一致。在得到酚类化合物含量之后,以四氢萘为标准物,获得液化油中芳烃的总量为44.91%,脂肪烃的含量为22.95%。为确定方法的准确性,油样分别加入不同量的间甲酚和四氢萘标准物,酚的加标回收率为104.3~110.75%,芳香烃的加标回收率在84.3~91.75%。综上表明:利用紫外光谱法,以碱醇溶剂排除芳烃对酚吸收的影响,能够快速测定煤液化油中酚类和芳香烃的含量,脂肪烃的含量可差减得到。%Gas chromatography is now the primary analysis method for the coal liquefaction oil .However ,a simple and rapid quantification/qualification of the coal liquefaction oil can hardly be realized ,because the coal liquefaction oil is in a heterogeneous state with a long boiling range .The aim of this study was to establish a rapid and accurate method for the quantification of

  11. Chemistry and catalysis of coal liquefaction catalytic and thermal upgrading of coal liquid and hydrogenation of CO to produce fuels. Quarterly progress report, July-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W.H.

    1981-02-01

    Studies on the basic properties of supported sulfide catalysts showed that different supports have a profound influence on catalytic activities of CoMo catalysts. The three functions of hydrodesulfurization, hydrogenation and cracking were differently affected depending on the support used and the manner of preparation of the catalyst. Also, incorporation of additives to the support showed that the different catalytic functions can be selectively affected. A systematic study concerned with catalytic cracking of coal-derived liquids, viz., an SRC-II middle-heavy distillate and four hydrotreated SRC-II products was carried out in the range of 375 to 500/sup 0/C (LHSV, 0.2 to 3.9 h/sup -1/). Hydrotreatment, even to a limited extent, results in a remarkable improvement in the yield of gasoline-range products from the SRC-II distillate. This improvement is ascribed to: (a) hydrogenolysis reactions leading to lower molecular weight feedstock components and (b) limited hydrogenation of aromatic rings leading to polycyclic feed components with sufficient concentration of hydroaromatic rings needed for effective cracking. The results with model compounds and the data on hydrogen consumption during hydrotreatment of SRC-II liquids indicate that for tricyclic, tetracyclic, and pentacyclic coal-liquid components the optimal concentration of hydroaromatic rings for effective subsequent cracking is at least two rings per molecule.

  12. Advanced direct liquefaction concepts for PETC generic units

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    In the Advance Coal Liquefaction Concept Proposal (ACLCP) carbon monoxide (CO) and water have been proposed as the primary reagents in the pretreatment process. The main objective of this project is to develop a methodology for pretreating coal under mild conditions based on a combination of existing processes which have shown great promise in liquefaction, extraction and pyrolysis studies. The aim of this pretreatment process is to partially depolymerise the coal, eliminate oxygen and diminish the propensity for retograde reactions during subsequent liquefaction. The desirable outcome of the CO pretreatment step should be: (1) enhanced liquefaction activity and/or selectivity toward products of higher quality due to chemical modification of the coal structure; (2) cleaner downstream products; (3) overall improvement in operability and process economics.

  13. Ensuring slagging-free operation of a boiler equipped with hammer mills in firing brown coal with low-melting ash

    Science.gov (United States)

    Arkhipov, A. M.; Dorogoi, G. A.

    2011-04-01

    The possibility of ensuring slagging-free operation of heating surfaces in firing Pereyaslov brown coal is considered taking the PK-38 boiler at the Krasnoyarsk GRES-2 district power station as an example. Retrofitting of burners and nozzles and setting up of a recirculation-vortex flame are recommended.

  14. A new approach to precious metals recovery from brown coals: Correlation of recovery efficacy with the mechanism of metal-humic interactions

    Science.gov (United States)

    Bratskaya, Svetlana Yu.; Volk, Alexandra S.; Ivanov, Vladimir V.; Ustinov, Alexander Yu.; Barinov, Nikolay N.; Avramenko, Valentin A.

    2009-06-01

    The presence of gold and platinum group elements (PGE) in low-rank brown coals around the world has promoted interest in the industrial exploitation of this alternative source of precious metals. However, due to low efficacy of the methods traditionally used for the processing of mineral ores, there exists a high demand for new strategies of precious metal recovery from refractory carbonaceous materials that could significantly increase the economic potential of gold- and PGE-bearing organic resources. Here we discuss the possibility of gold and PGE recovery from alkaline extracts of brown coals using the difference in colloidal stability of bulk organic matter and its fractions enriched with precious metals. This approach enables one to avoid complete oxidation or combustion of brown coals prior to gold recovery, to minimize organic content in gold concentrate, and to obtain a valuable by-product - humic extracts. Using gold-bearing brown coals from several deposits located in the South Far East of Russia, we show that up to 95% of gold can be transferred to alkaline extracts of humic acids (HA) and up to 85% of this gold can be recovered by centrifugation at pH 4.0-6.0, when only 5-15% of HA precipitated simultaneously. We have shown that the high efficacy of gold recovery can be attributed to the occurrence of fine-dispersed elemental gold particles stabilized by HA, which differ significantly in colloidal stability from the bulk organic matter and, thus, can be separated by centrifugation.

  15. Comparative study of cogasification and co-combustion of communal sewage sludge in brown coal fuelled plants; Vergleich der Mitvergasung und Mitverbrennung kommunaler Klaerschlaemme in braunkohlegefeuerten Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, H.P.; Bierbaum, K.; Adlhoch, W.; Thomas, G. [Rheinbraun AG, Koeln (Germany)

    1996-12-31

    Co-combustion and cogasification of sewage sludge in brown coal fuelled plants are compared, and an economic assessment is made. (ABI) [Deutsch] Die Mitverbrennung und Mitvergasung von Klaerschlamm in braunkohlegefeuerten Anlagen werden verglichen und auf ihre Wirtschaftlichkeit hin untersucht. (ABI)

  16. Sequence stratigraphic analysis and the origins of Tertiary brown coal lithotypes, Latrobe Valley, Gippsland Basin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Holdgate, G.R.; Kershaw, A.P.; Sluiter, I.R.K. [Monash University, Clayton, Vic. (Australia). Dept. of Earth Sciences

    1995-11-01

    Sequence analysis methods have been applied to the onshore Gippsland Basin and to the Latrobe Valley Group coal measures. In the east of the Latrobe Valley evidence for marine transgressions into the coal measures are recorded in most of the interseam sediment splits by the presence of contained foraminifer and dinoflagellates. To the west these splits pinch out into continuous coal. However, they can be followed westwards as enhanced organic sulphur levels along sharply defined boundaries between light coal lithotypes below and dark coal lithotypes above. The dark lithotype immediately overlying each of these boundaries contains the highest sulphur value and warmer climate pollen assemblages. Colorimeter and lithotype logging supports an upwards lightening cyclicity to coal colour at 12-20 m intervals through the approx. 100 m thick seams, with cycle boundaries defined at sharp planar to undulating surfaces. The lightening upward lithotype cycles together with their unique boundary conditions are interpreted as parasequences and parasequence boundaries respectively. Each major coal seam can comprise up to five parasequences and is interpreted to represent deposition during an outbuilding high stand systems tract at one of several maximum periods of Tertiary coastal onlap. Stratigraphic correlation of the sequence boundaries identified in the coal measures to the internationally dated marine Seaspray Group, provides a basis for chronostratigraphic correlation of the coal successions to the coastal onlap charts of Haq et al (1989). It appears that each major seam is confined to high standards of third order eustatic cycles. It follows that the lithotype cycles that comprise each seam are related to fourth order eustatic cycles. 49 refs., 11 figs., 1 tab.

  17. Mineral composition of rock in Visonia lignite and Nograd brown coal and its influence on abradability

    Energy Technology Data Exchange (ETDEWEB)

    Szalay, Z.

    1984-01-01

    A study is made of the properties of coals when they are reprocessed in a crusher and tubular furnace at the Gagarin heat and electric power plant and the characteristics of the forming fly ash. The coals are distinguished by high percentages (15-28%) of montmorillonite and kaolinite (3-13%). DTA and x-ray structural analysis of the coals and solid residues were conducted. It is shown that the fly ash is mainly formed from clay minerals and consists of an amorphous mass and modifications of free SiO/sub 2/.

  18. Bioechnology of indirect liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Datta, R.; Jain, M.K.; Worden, R.M.; Grethlein, A.J.; Soni, B.; Zeikus, J.G.; Grethlein, H.

    1990-05-07

    The project on biotechnology of indirect liquefaction was focused on conversion of coal derived synthesis gas to liquid fuels using a two-stage, acidogenic and solventogenic, anaerobic bioconversion process. The acidogenic fermentation used a novel and versatile organism, Butyribacterium methylotrophicum, which was fully capable of using CO as the sole carbon and energy source for organic acid production. In extended batch CO fermentations the organism was induced to produce butyrate at the expense of acetate at low pH values. Long-term, steady-state operation was achieved during continuous CO fermentations with this organism, and at low pH values (a pH of 6.0 or less) minor amounts of butanol and ethanol were produced. During continuous, steady-state fermentations of CO with cell recycle, concentrations of mixed acids and alcohols were achieved (approximately 12 g/l and 2 g/l, respectively) which are high enough for efficient conversion in stage two of the indirect liquefaction process. The metabolic pathway to produce 4-carbon alcohols from CO was a novel discovery and is believed to be unique to our CO strain of B. methylotrophicum. In the solventogenic phase, the parent strain ATCC 4259 of Clostridium acetobutylicum was mutagenized using nitrosoguanidine and ethyl methane sulfonate. The E-604 mutant strain of Clostridium acetobutylicum showed improved characteristics as compared to parent strain ATCC 4259 in batch fermentation of carbohydrates.

  19. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  20. Reduction of sulfur content of brown coals and lignites by hydrothermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, P.; Wolf, G.; Bognar, T.

    1987-01-01

    The hydrothermal experiments were carried out in acid-proof autoclaves. The experimental conditions are described and the results are summarized for different coal types. The heat treatment reduces the organic sulfur content and increases the calorific value. From 300 degrees C the pyritic sulfur can be separated from the other forms of sulfur. By the hydrothermal treatment the bitumen content to be extracted by benzene-alcohol mixture also increased in thermo-coals.

  1. Application of the SELECS methodology to evaluate socioeconomic and environmental impacts of commercial-scale coal liquefaction plants at six potential sites in Kentucky. Final report from the study on development of environmental guidelines for the selection of sites for fossil energy conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Northrop, G. M.; D' Ambra, C. A.

    1980-11-01

    Environmental and socioeconomic impacts likely to occur during the operational phase of two coal liquefaction processes have been evaluated with SELECS (Site Evaluation for Energy Conversion Systems) for each of six potential sites in Kentucky for commercial scale facilities capable of processing about 26,000 tons of coal per stream day. The processes considered in this evaluation are SRC-I, a direct liquefaction route with solid boiler fuel as the principal product, and Coal-to-Methanol-to-Gasoline, an indirect liquefaction route with transportation fuel as the primary product. For comparative purposes, the impacts of a 2-gigawatt coal-fired steam-electric power plant (with coal requirements comparable to the liquefaction facilities) and an automobile parts manufacturing plant (with employment requirements of 849, comparable to the liquefaction facilities) have also been evaluated at each site. At each site, impacts have been evaluated for one or two nearby cities or towns and four to six counties where significant impacts might be expected. The SELECS methodology affords a well-organized and efficient approach to collecting and assessing a large volume of data needed to comprehensively determine the potential socioeconomic and environmental impacts resulting from the implementation of commercial scale synfuel and other energy conversion facilities. This study has also shown that SELECS is equally applicable to determine the impacts of other facilities, such as automobile parts manufacturing. In brief, the SELECS methodology serves the purpose of objectively screening sites in order to choose one at which adverse impacts will be least, and/or to determine what aspect of a proposed facility might be modified to lessen impacts at a specific site.

  2. Investigation into the structure of natural and regenerated humic-acid of high purity obtained from Hungarian brown coals

    Energy Technology Data Exchange (ETDEWEB)

    Korbuly, J.; Lakatos, B.; Sipos, S.

    1977-01-01

    Examines the purification of natural humic-acids obtained from lignites of Gyongyosvisonta and Varpalota, from brown coal of Dudar and that of regenerated humic-acid arising from the nitric acid treatment of lignite of Varpalota and gives detailed investigation into raw materials, intermediate products and purified humic-acids free of metal traces. On the basis of the average molecular weight, of the molecular weight distribution and of the chemical and physico-chemical characteristics significant structural differences of certain purified humic-acid sample can be experienced. These differences can be explained in case of natural humic-acids by the conditions of coalification and by the circumstances of formation of marsh and in case of regenerated humic-acids by the nitric acid treatment of lignite.

  3. SPECIFIC HEAT CAPACITY AND THERMAL CONDUCTIVITY OF HEAT STORAGE MATERIALS BASED ON PARAFFIN, BROWN-COAL WAX AND POLYETHYLENE WAX

    Directory of Open Access Journals (Sweden)

    Snezhkin Yu.

    2014-08-01

    Full Text Available The present paper overviews heat storage materials (HSM with phase change based on organic compounds. They consist of paraffin, brown-coal wax and polyethylene wax. These materials are produced on an industrial scale for the foundry work. It is shown that heat capacity of HSM in the solid and liquid states can be used for heat storage in addition to the heat of phase change. The results of investigations of phase change during heating and cooling HSM are presented. The studies are carried out by differential scanning calorimetry (DSC. The measurement techniques of the specific heat capacity and the coefficient of thermal conductivity are shown. Temperature dependences of the specific heat capacity of HSM in the solid and liquid states are researched by DSC. Values of the coefficient of thermal conductivity are determined by contact stationary technique of the flat plate over the entire temperature range of the operation of heat storage system.

  4. 30 CFR 206.463 - In-situ and surface gasification and liquefaction operations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false In-situ and surface gasification and... gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in-situ or surface gasification or liquefaction technology, the lessee shall propose the value of coal for royalty...

  5. 30 CFR 206.264 - In-situ and surface gasification and liquefaction operations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false In-situ and surface gasification and... gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in-situ or surface gasification or liquefaction technology, the lessee shall propose the value of coal for royalty...

  6. Thermogravimetric study of the combustion of Tetraselmis suecica microalgae and its blend with a Victorian brown coal in O2/N2 and O2/CO2 atmospheres.

    Science.gov (United States)

    Tahmasebi, Arash; Kassim, Mohd Asyraf; Yu, Jianglong; Bhattacharya, Sankar

    2013-12-01

    The combustion characteristics of microalgae, brown coal and their blends under O2/N2 and O2/CO2 atmospheres were studied using thermogravimetry. In microalgae combustion, two peaks at 265 and 485°C were attributable to combustion of protein and carbohydrate with lipid, respectively. The DTG profile of coal showed one peak with maximum mass loss rate at 360°C. Replacement of N2 by CO2 delayed the combustion of coal and microalgae. The increase in O2 concentration did not show any effect on combustion of protein at the first stage of microalgae combustion. However, between 400 and 600°C, with the increase of O2 partial pressure the mass loss rate of microalgae increased and TG and DTG curves of brown coal combustion shifted to lower temperature zone. The lowest and highest activation energy values were obtained for coal and microalgae, respectively. With increased microalgae/coal ratio in the blends, the activation energy increased due to synergy effect.

  7. Liquefaction technology assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    A survey of coal liquefaction technology and analysis of projected relative performance of high potential candidates has been completed and the results are reported here. The key objectives of the study included preparation of a broad survey of the status of liquefaction processes under development, selection of a limited number of high potential process candidates for further study, and an analysis of the relative commercial potential of these candidates. Procedures which contributed to the achievement of the above key goals included definition of the characteristics and development status of known major liquefaction process candidates, development of standardized procedures for assessing technical, environmental, economic and product characteristics for the separate candidates, and development of procedures for selecting and comparing high potential processes. The comparisons were made for three production areas and four marketing areas of the US. In view of the broad scope of the objectives the survey was a limited effort. It used the experience gained during preparation of seven comprehensive conceptual designs/economic evaluations plus comprehensive reviews of the designs, construction and operation of several pilot plants. Results and conclusions must be viewed in the perspective of the information available, how this information was treated, and the full context of the economic comparison results. Comparative economics are presented as ratios; they are not intended to be predictors of absolute values. Because the true cost of constructing and operating large coal conversion facilities will be known only after commercialization, relative values are considered more appropriate. (LTN)

  8. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part IV. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Dimple Mody Quyn; Hongwei Wu; Jun-ichiro Hayashi; Chun-Zhu Li, [Monash University, Monash, Vic. (Australia). CRC for Clean Power from Lignite, Department of Chemical Engineering

    2003-03-01

    The purpose of this study is to investigate the catalytic effects of Na as NaCl or as sodium carboxylates ( COONa) in Victorian brown coal on the char reactivity. A Na-exchanged coal and a set of NaCl-loaded coal samples prepared from a Loy Yang brown coal were pyrolysed in a fluidised-bed/fixed-bed reactor and in a thermogravimetric analyser (TGA). The reactivities of the chars were measured in air at 400{sup o}C using the TGA. The experimental data indicate that the Na in coal as NaCl and as sodium carboxylates ( COONa) had very different catalytic effects on the char reactivity. It is the chemical form and dispersion of Na in char, not in coal, that govern the catalytic effects of Na. For the Na-form (Na-exchanged) coal, the char reactivity increased with increasing pyrolysis temperature from 500 to 700{sup o}C and then decreased with pyrolysis temperature from 700 to 900{sup o}C. The increase in reactivity with pyrolysis temperature (500 700{sup o}C) is mainly due to the changes in the relative distribution of Na in the char matrix and on the pore surface. For the NaCl-loaded coals, when Cl was released during pyrolysis or gasification, the Na originally present in coal as NaCl showed good catalytic effects for the char gasification. Otherwise, Cl would combine with Na in the char to form NaCl during gasification, preventing Na from becoming an active catalyst. Controlling the pyrolysis conditions to favour the release of Cl can be a promising way to transform NaCl in coal into an active catalyst for char gasification. 38 refs., 5 figs.

  9. Supercritical Fluid Extraction of Direct Coal Liquefaction Residue Basing on Hansen Solubility Parameters%基于Hansen溶度参数的煤直接液化残渣超临界萃取

    Institute of Scientific and Technical Information of China (English)

    姜广策; 林雄超; 张生娟; 王中奇; 王永刚; 陈强; 朱豫飞

    2015-01-01

    以丙酮、异丙醇和苯为溶剂在超临界状态下对煤直接液化残渣进行萃取,应用溶度参数分析了超临界萃取环境中溶剂和萃取原料的变化;基于Hansen拓展方法建立了关联Hansen溶度参数和萃取收率的理论方程。结果表明,临界温度较高。以色散力溶度参数为主的苯的萃取收率明显高于其它2种溶剂;液化残渣中可萃出组分的理想溶解度随温度的升高而增大,该效应也是超临界溶剂萃取重质组分时萃取收率提高的重要原因;萃取收率与Hansen溶度参数之间的回归模型与实验结果具有较好的一致性,证明Hansen溶度参数理论和Hansen拓展方法适用于描述煤直接液化残渣的超临界萃取过程。%The supercritical fluid extraction( SFE) of direct coal liquefaction residue using acetone, isopro-panol and benzene as solvents was investigated. The Hansen solubility parameters were used to clarify the variations of both solvent and the solute in SFE process. An empirical equation in terms of the extended Hansen approach was proposed to correlate the extraction capacity with the Hansen solubility parameters of solvents. The results show that the extraction yield using supercritical benzene, of which the dispersive compo-nent is the major in total solubility parameters, obtained the highest extraction yield. The ideal solubility on organic components in direct coal liquefaction residue improved with the extraction temperature increasing. The empirical equation shows high consistency with experimental results. As a consequence, the theory of Hansen solubility parameter and extended Hansen approach are applicable to the study on supercritical fluid extraction of direct coal liquefaction residue.

  10. Investigations of safety measures against rock bursts in Stara Jama of the brown coal mine 'Zenica'

    Energy Technology Data Exchange (ETDEWEB)

    Osmanagic, M.; Kocar, F.; Petkovic, L.; Teskeredzic, S.

    1979-01-01

    This paper provides a detailed historical review, with charts, illustrations and formulae used, of the cause, effect, research done, and safety measures taken concerning rock bursts in the Stara Jama seam of the Zenica brown coal mine in Yugoslavia. The geological conditions of the seam, with high calorific value and strength lying in very hard and elastic limestone and limestone marls, are reviewed. From 1962 onward, systematic recording and classification of rock burst frequency, size, intensity, and location have been carried out. Some observations are: regular mining of the relaxed overlaying seam without leaving pillars proved effective relative to reducing rock burst danger; rate of advance considerably affects the number and intensity of rock bursts; breaking of the basic hanging wall is an important factor; coal pillars between two goafs is dangerous for mining. Partial success has been achieved in forecasting and artificially provoking rock bursts. Stress relaxation by blasting has proved to be the most effective measure. Advances have also been made in reducing stored energy by water injection under high pressure. (14 refs.) (In English)

  11. Selective solvent absorption in coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Lapucha, A.; Lazarov, L.; Amui, J.

    1992-04-01

    The objectives of this project are: (1) to determine the importance of the presence of added hydrogen donor compounds within the coal in the first stage of direct liquefaction processes; and (2) to determine the composition of the solvent absorbed by and present within the coal in the first stage of direct coal liquefaction.

  12. Effects of lithium iodide doping on devolatilization characteristics of brown coals; Yoka lithium no tenka ga kattan no kanetsu henka katei ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, J.; Kumagai, H.; Hayashi, J.; Chiba, T. [Hokkaido University, Sapporo (Japan)

    1996-10-28

    In order to discuss effects of lithium iodide (LiI) doping on condensation structure of brown coals during heating, spectral changes were measured by using an in-situ FT-IR. It was found that the LiI doping accelerates weight reduction due to heating, and the doping effect is affected by coal structure. Both of Loy Yang (LY) coal and its LiI doped coal (DLY) had absorption intensity of the FT-IR spectra decreased with rising temperature, and the absorption center belonging to an OH group shows different shifts between the LY and DLY coals. This indicates that the LiI doping has affected the change in hydrogen bonding patterns associated with heating. Both of South Banko (SB) and LY coals had the absorption spectral intensity in the OH group decreased as the weight reduction (conversion) rate increased. Reduction in the OH groups associated with heating is caused by volatilization and condensation reaction in light-gravity fraction. However, in the case of equal conversion rate, the LiI doped coal shows higher spectral intensity than the original coal, with the LiI doping suppressing reduction in the OH groups. It appears that the doping suppresses the condensation reaction between the OH groups. 2 refs., 6 figs., 1 tab.

  13. Applied coal petrology: the role of petrology in coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    Isabel Suarez-Ruiz; John Crelling [Instituto Nacional del Carbon (INCAR-CSIC), Oviedo (Spain)

    2008-08-15

    This book is an integrated approach towards the applications of coal (organic) petrology and discusses the role of this science in the field of coal and coal-related topics. Contents are: Introduction 2. Basic factors controlling coal quality and technological behaviour of coal 3. Mining and benefication 4. Coal combustion 5. Coal gasification 6. Coal liquefaction 7. Coal carbonisation 8. Coal-derived carbons 9. Coal as a Petroleum source rock and reservoir rock 10. Environmental and health aspects 11. Other applications of coal petrology.

  14. Exploitation of raw materials from the overburden of the Klettwitz brown coal surface mine

    Energy Technology Data Exchange (ETDEWEB)

    Anke, S.; Knuth, M.

    1982-12-01

    The paper discusses mining of clay for the ceramic industry from the overburden of the Klettwitz mine. The clay fulfills the TGL 29317 quality standard for crude ceramic products; the clay layer in the surface mine has an average thickness of 4.7 m. Clay reserves of the mine will last 25 to 30 years for the operation of a new clinker brick factory. Mining losses of 20% of reserves are taken into account. Clay reserves were calculated without the first 0.3 m from the top and bottom of the layer. The clay is mined with a bucket wheel excavator and transported by train to an open air storage yard. The clay stock pile is 13 m high. Liquefaction of the clay occurs after rain causing flows up to 40 m long, thus partially reducing the dump height to between 5 and 7 m. Clay quality from the mine varies; clay blending at the storage yard is therefore required. Various details on legal obligations of clay mining as a measure of complex utilization of resources in surface mines, as well as details on clay delivery contracts made by the mine with the brick factory are outlined. (In German)

  15. 褐煤与煤直接液化残渣共热解产物半焦性能研究%Properties of semi-coke from co-pyrolysis of lignite and direct liquefaction residue of Shendong coal

    Institute of Scientific and Technical Information of China (English)

    李晓红; 马江山; 薛艳利; 李文英

    2015-01-01

    为使煤直接液化残渣得到清洁高效再利用,采用常压固定床反应器,对神东煤直接液化残渣与呼伦贝尔褐煤共热解制取的半焦进行了研究。结合扫描电镜、N2-吸附、X射线衍射、拉曼光谱以及热重分析发现,共热解过程中存在的软化熔融现象导致液化残渣与褐煤相互黏结,共热解半焦比表面积与孔体积减小,半焦结构有序化程度增加。与褐煤单独热解半焦相比,共热解半焦CO2气化反应性能低。%In order to make use of coal direct liquefaction residue efficiently, co-pyrolysis of Hulunbuir lignite and direct liquefaction residue ( DLR) of Shendong coal were conducted in a fixed bed reactor under atmospheric pressure. The physicochemical properties of co-pyrolysis semi-coke were analyzed by scanning electron microscope, nitrogen adsorption-desorption, X-ray diffraction, Raman spectroscopy and thermogravimetric analyzer. The results show that DLR semi-coke and lignite semi-coke are cohered each other, because the DLR is softened and melted during co-pyrolysis. The specific surface area and pore volume of co-pyrolysis semi-coke decrease. Characterization of both XRD and Raman spectroscopy indicate that the order degree of co-pyrolysis semi-coke increases with the addition of DLR. Compared with the lignite semi-coke, the CO2 gasification reactivity of co-pyrolysis semi-coke decreases.

  16. Research results of geotechnical properties of soils at the Podkrušnohorská výsypka dump in Sokolov brown coal field

    OpenAIRE

    Milan MIKOLÁŠ; Štrejbar, Martin; Stavinoha, Josef; Čermák, Ondřej

    2013-01-01

    Open pit brown coal mining in the Sokolov coal field has been suffering with the lack of a space for overburden rocks dumping from its very beginning. The Podkrušnohorská výsypka dump is situated in a geomorphologically highly broken landscape at the Krušné Hory Mountains foot and northern part of Sokolov Basin divide. Dump rock consists of tuffaceous clays vith minimal specific resistance values QST = 0.5 - 1.0 MPa and cypric clays with minimal specific resistance values QST =...

  17. Environmental policy in brown coal mining in accordance with the precautionary measures principle and polluter pays principle; Umweltpolitik gemaess Vorsorge- und Verursacherprinzip im Braunkohlenbergbau

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, R.; Wacker, H.

    1993-02-01

    The precautionary measures principle and the polluter pays principle in brown coal mining are discussed. Ground water subsidence and landscape destruction are local or regional problems and thus easily detectable. If damage cannot be avoided, its authors are known and will pay. In spite of all this, the German brown coal industry is well able to compete on the world market with others who don`t care about the environmental damage they may cause. ((orig./HS)) [Deutsch] Das Vorsorge- und Verursacherprinzip im Braunkohlentagebau werden diskutiert. Grundwasserabsenkungen und Landschaftsverbrauch sind regional eingegrenzte, leicht ueberschaubare Problemfelder. Die Verursacher der Schaedigungen, soweit diese nicht bereits im Vorfeld vermieden werden (koennen), sind bekannt und regulieren die Schaeden. Bei alledem kann die deutsche Braunkohle gegen die Konkurrenz auf dem Weltmarkt bestehen, die sich sehr oft um die Umweltwirkungen, die sie verursacht, nicht kuemmert. (orig./HS)

  18. Liquefaction chemistry and kinetics: Hydrogen utilization studies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.

  19. Molecular modeling of water interactions with fossil wood from Victorian brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Tham Vu; Irene Yarovsky; Alan L. Chaffee [Monash University, Vic. (Australia). School of Chemistry

    2005-07-01

    The chemical structure of a fossil wood sample (Podocarpus sp.) taken from the Latrobe Valley coal measures (Victoria) was probed by {sup 13}C solid-state NMR, ultimate analyses and functional group analyses. This information was then used to create a molecular model (C{sub 100}H{sub 80}O{sub 2}) of fossil wood based on polymerized, but degraded lignin subunits. Molecular dynamics methods were used to observe both static and dynamic aspects of the coal-water interactions at ambient temperature, and to compare these with the analogous interactions for model lignin systems based on both guaiacyl (common to most woods) and syringyl (specific to angiosperms) structural units, as well as with bulk water. Na- and Ca-exchanged forms of the fossil wood model were also considered. The mobility of water was significantly reduced in all systems relative to bulk water, with the fossil wood and guaiacyl systems providing very similar values (global diffusion constants {approximately} 2.2 x 10{sup -5}cm{sup 2}{center_dot}s{sup -1}) and the Ca-exchanged system exhibiting the lowest value of all. A further reduction in the mobility of water molecules was observed in regions where hydrogen bonding could occur. For the fossil wood system, water molecules in the vicinity of carboxylic groups were significantly less mobile than those in the vicinity of OH groups generally. 22 refs., 8 figs., 2 tabs.

  20. Groundwater flowing the forefield of the CSA mine (North Bohemian Brown Coal Basin in the Czech Republic)

    Energy Technology Data Exchange (ETDEWEB)

    Zizka, L.; Halir, J. [Brown Coal Research Inst., Most (Czech Republic)

    2010-07-01

    The North Bohemian Brown Coal Basin is home to one of the largest active open cast mines in the Czech Republic. Groundwater flow in the quaternary sediments is causing stability problems in the upper overburden at the mine. A 3-D geological model was used to simulate groundwater flow in the area. The lithological characteristics and hydrogeological conditions of the mine were also considered in order to identify areas that may pose risks during the extraction of mineral resources. The simulation focused on the characterization of the quaternary and crystalline aquifer collectors located in the region of the mine. The study showed that groundwater flow is influenced by the configuration of the quaternary floor, as well as by the deposition and character of the basin sediments and crystalline rocks. The donation area corresponds with the mountain slopes. Groundwater flow is influenced by disruptions in the crystalline roof with quaternary sediments. The quaternary aquifer will be dewatered in order to ensure the future safety of the mine. 3 refs., 2 figs.

  1. Occupational exposure to rubber vulcanization products during repair of rubber conveyor belts in a brown coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Gromiec, J.P.; Wesolowski, W.; Brzeznicki, S.; Wroblewska-Jakubowska, K.; Kucharska, M. [Nofer Institute of Occupational Medicine, Lodz (Poland)

    2002-12-01

    This study was carried out to identify chemical substances and measure their air concentrations in the repair shop of a brown coal mine in which damaged rubber conveyor belts were repaired. GC-MS and HPLC analysis of stationary air samples resulted in identification of aliphatic and aromatic hydrocarbons to C{sub 12}, PAHs, alcohols, phenols, ketones, heterocyclic nitrogen and sulfur compounds. Quantitative evaluation of occupational exposure included determination of organic compound vapours collected on charcoal (GC-MSD), polycyclic aromatic hydrocarbons (HPLC), N-nitrosoamines and other amines (GC-NPD) and DNPH derivatives of aldehydes (HPLC) in the breathing zone of workers representing all job titles. The concentrations of investigated compounds were very low. Carcinogenic substances: N-nitrosoamines, benzene, and PAHs were not present in workroom air in concentrations exceeding limits of detection of the analytical methods being applied; concentrations of methylisobutylketone, tetrachloroethylene, naphtha, aromatic hydrocarbons, phthalates and aldehydes were much lower than the respective occupational exposure limit values. The results indicate much lower exposure than that reported in the production of tyres and other fabricated rubber products.

  2. Power plant ash and slag waste management technological direction when Kansk-Achinsk brown coal is burned

    Directory of Open Access Journals (Sweden)

    Lihach Snejana A.

    2017-01-01

    Full Text Available Today resource efficiency technology development in all industries where conventional raw material is being replaced by local natural resources and industrial waste is an essential matter. Along with that most producing operations are overload with wide range of waste produced during technological process. Thermal power stations are real world evidence. Their main waste is ash and slag which accumulated in great amounts in often overfull ash dumps. The goal of present work is to find perspective ash dump waste utilization methods. The study will be based on experimentally obtained data: elementary compound and properties of Kansk-Achinsk brown coal. Research methods: experimental, chemical silicate analysis, mineralogical forms identification within samples by using ASM X-ray diffraction analysis. Experiments resulted with the following conclusions: silica is ash main component, and ash has the form of ore concentrate analogy in a number of elements. We think that ASM main properties which make it useful for utilization are: high content of calcium oxide; high ash sorption properties; ASM radiation safety class which makes them safe to be used in materials, goods, and structures production for residence and public buildings construction and reconstruction; sufficiently high content of individual elements.

  3. The direct liquefaction proof of concept program

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Lee, L.K.; Pradhan, V.R.; Stalzer, R.H. [New York & Puritan Avenues, Lawrenceville, NJ (United States)

    1995-12-31

    The goal of the Proof of Concept (POC) Program is to develop Direct Coal Liquefaction and associated transitional technologies towards commercial readiness for economically producing premium liquid fuels from coal in an environmentally acceptable manner. The program focuses on developing the two-stage liquefaction (TSL) process by utilizing geographically strategic feedstocks, commercially feasible catalysts, new prototype equipment, and testing co-processing or alternate feedstocks and improved process configurations. Other high priority objectives include dispersed catalyst studies, demonstrating low rank coal liquefaction without solids deposition, improving distillate yields on a unit reactor volume basis, demonstrating ebullated bed operations while obtaining scale-up data, demonstrating optimum catalyst consumption using new concepts (e.g. regeneration, cascading), producing premium products through on-line hydrotreating, demonstrating improved hydrogen utilization for low rank coals using novel heteroatom removal methods, defining and demonstrating two-stage product properties for upgrading; demonstrating efficient and economic solid separation methods, examining the merits of integrated coal cleaning, demonstrating co-processing, studying interactions between the preheater and first and second-stage reactors, improving process operability by testing and incorporating advanced equipment and instrumentation, and demonstrating operation with alternate coal feedstocks. During the past two years major PDU Proof of Concept runs were completed. POC-1 with Illinois No. 6 coal and POC-2 with Black Thunder sub-bituminous coal. Results from these operations are continuing under review and the products are being further refined and upgraded. This paper will update the results from these operations and discuss future plans for the POC program.

  4. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  5. Fire fighting at longwall face 67 of the Stara Jama brown coal mine in Zenica

    Energy Technology Data Exchange (ETDEWEB)

    Elezovic, V.; Bijelic, V.; Slijepcevic, S.

    1984-10-01

    A case is described of fire fighting at a 100 m long fully mechanized longwall. The fire occurred in the upper end of the longwall working a 9 m thick foot slice of a 18 m thick coal seam, i.e. beneath the goaf of the roof slice which had been outmined by the same sublevel working method. The mine fire was detected by the presence of CO in the outlet stream of mine air. Operation of the longwall was continued without interruption. The longwall crew worked using respirators. In order to extinguish the fire in the goaf, the suction type ventilation for the longwall (495 m/sup 3//min) was substituted by compressive ventilation. Two blowers were used for this purpose (2x250 m/sup 3//min). The pressure of mine air prevented the outflow of CO and enabled operations at the longwall to be continued without interruption. Fire fighting lasted nearly 2 months. A 50 m long zone, endangered by the fire, was outmined.

  6. The 2000/60/EC Water Framework Directive and the Flooding of the Brown Coal Meirama Open Pit (NW Spain)

    Science.gov (United States)

    Delgado, J.; Juncosa, R.

    2009-04-01

    Coal mining in Galicia (NW Spain) has been an important activity which came to an end in December, 2007. Hence, for different reasons, the two large brown coal mines in Galicia (the As Pontes mine, run by ENDESA GENERACIÓN, and the Meirama mine, owned by Lignitos de Meirama, S.A., LIMEISA), have started closure procedures, both of which are considering the flooding of the mine pits to create two large lakes (~8 km2 in As Pontes and ~2 km2 in Meirama). They will be unique in Galicia, a nearly lake-free territory. An important point to consider as regards the flooding of the lignite mine pits in Galicia is how the process of the creation of a body of artificial water will adapt to the strict legal demands put forth in the Water Framework Directive. This problem has been carefully examined by different authors in other countries and it raises the question of the need to adapt sampling surveys to monitor a number of key parameters -priority substances, physical and chemical parameters, biological indicators, etc.- that cannot be overlooked. Flooding, in both cases consider the preferential entrance into the mine holes of river-diverted surface waters, in detriment of ground waters in order to minimize acidic inputs. Although both mines are located in the same hydraulic demarcation (i.e. administrative units that, in Spain, are in charge of the public administration and the enforcement of natural water-related laws) the problems facing the corresponding mine managers are different. In the case of Meirama, the mine hole covers the upper third part of the Barcés river catchment, which is a major source of water for the Cecebre reservoir. That reservoir constitutes the only supply of drinking water for the city of A Coruña (~250.000 inhabitants) and its surrounding towns. In this contribution we will discuss how mine managers and the administration have addressed the uncertainties derived from the implementation of the Water Framework Directive in the particular case of

  7. Deashing of coal liquids by sonically assisted filtration

    Energy Technology Data Exchange (ETDEWEB)

    Slomka, B.J.

    1994-10-01

    This project seeks to improve the effectiveness and reduce the cost of coal liquefaction by novel applications of sonic and ultrasonic energy. The specific purpose of this project is to develop and improve means for the economical removal of dispersed solid particles of ash, unreacted coal, and spent catalyst from direct and indirect coal liquefaction resids by using sonic or ultrasonic waves. Product streams containing solids are generated in both direct and indirect coal liquefaction processes. Direct coal liquefaction processes generate liquid products which contain solids including coal-originated mineral matter, unreacted coal, and spent dispersed catalyst. The removal of these solids from a product stream is one of the most difficult problems in direct coal liquefaction processes. On this report, results are discussed for sonically assisted crossflow filtration of V-1067 resid, diluted with No. 2 fuel oil, and sonically assisted batch filtrations of solids concentrates from continuous cross-flow filtration experiments.

  8. Bare face red-brown bricks manufactured with fly ash from the Narcea (Asturias Coal Power Plan

    Directory of Open Access Journals (Sweden)

    Ayesta, G.

    1999-12-01

    Full Text Available Fly ash, from the Coal Power Plant of Narcea (Asturias, has been used to determine its possible use as a raw material in the bare face red-brown brick manufacture. The correct mould of a ceramic material demands a paste with an adequate plasticity. So, the optimum compositions of humidity, lubricant (talc and binder (white dextrin have been investigated. The samples were made by compressing paste into a mould using varying values of pressure and boiling temperature once the cooling speed had been established. Finally, the cooked pieces were submitted to trials demanded by the Basic Construction Norm, to see if they met the required specifications concerning Water Absorption, Suction, Contraction, Resistance to Freezing, Efflorescence and Compressive Strength.

    Se caracterizan las cenizas volantes de la Central Térmica del Narcea (Asturias para determinar su utilización como materia prima en la obtención de ladrillos cara vista. El moldeo correcto de una pieza cerámica exige trabajar una pasta con una adecuada plasticidad, para ello se investiga cuál ha de ser la composición óptima de la misma, en cuanto a: humedad, cantidad de lubricante (talco y de ligante (dextrina blanca. El conformado de las piezas o ladrillos se realiza por prensado, utilizando distintos valores de presión, así como la temperatura de cocción, una vez establecida la velocidad de enfriamiento. Finalmente, las piezas cocidas se someten a los ensayos exigidos por la Norma Básica de Edificación, para ver si cumplen las especificaciones requeridas en cuanto a: Absorción de agua. Succión, Contracción, Heladicidad, Eflorescencia y Resistencia a la compresión.

  9. Desulfurization and oxidation behavior of ultra-fine CaO particles prepared from brown coal; Kattan wo mochiite choseishita CaO chobiryushi no datsuryu tokusei to sanka tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, G.; Roman, M.; Yamazaki, Y.; Abe, H.; Harano, Y.; Takarada, Y. [Gunma University, Gunma (Japan). Faculty of Engineering

    1996-10-28

    The effect of reaction temperature and oxygen concentration on the desulfurization and oxidation behavior of ion-exchanged brown coal by Ca as new desulfurizing agent was studied. In experiment, Yallourn coal was used for ion- exchange, and limestone produced in Tochigi prefecture was also used for comparative study. Ca-exchanged brown coal was prepared by agitating coal in Ca(OH)2 slurry for 24 hours. The desulfurization behavior of a desulfurizing agent was obtained by measuring H2S and sulfur compounds in outlet gas of a reactor, and the oxidation behavior by measuring SO2 emission in outlet gas after oxidation reaction. As the experimental result, CaO produced from Ca-exchanged brown coal offered the extremely high activity to desulfurization reaction in a temperature range of 850-950{degree}C as compared with limestone. Although the oxidation behavior was dependent on oxidation temperature and oxygen concentration, CaS obtained from Ca-exchanged brown coal was more rapidly converted to CaSO4 than limestone. 3 refs., 8 figs., 2 tabs.

  10. Comparative Studies on the Combustion Kinetics of Chars Prepared from Brown and Bituminous Coals under Air (O_2/N_2) and Oxy-fuel (O_2/CO_2) Conditions

    OpenAIRE

    Kim, Hyun-Seok; Wada, Nozomi; Nozawa, Sohey; Matsushita, Yohsuke; Yamamoto, Tsuyoshi; Oomori, Motohira; Harada, Tatsuro; Miyawaki, Jin; Yoon, Seong-Ho; Mochida, Isao

    2012-01-01

    This paper deals with the application of a solid-gas reaction model which can describe the combustion and gasification mechanism for air (O_2/N_2) and oxy-fuel (O_2/CO_2) conditions. Loy Yang brown coal was used as a sample after pyrolysis, together with Newlands coal as bituminous coal for comparison of coal ranks. By carrying out the thermogravimetric analysis (TGA) run under non-isothermal conditions, chemical reaction rates of partial oxidation reaction and gasification reaction were esti...

  11. 含氧煤层气液化流程爆炸极限分析%Analysis of flammability limits for liquefaction process of oxygen-bearing coal-bed methane

    Institute of Scientific and Technical Information of China (English)

    李秋英; 王莉; 巨永林

    2011-01-01

    大部分含氧煤层气由于技术限制没有被合理利用,而是直接放空,不仅浪费资源.而且污染大气环境.针对某一典型煤层气气源条件和组分特点,设计了一种新型的液化精馏工艺流程,结合HYSYS软件模拟计算结果以及爆炸极限理论,对该液化精馏工艺流程的爆炸极限进行了分析计算,结果表明煤层气中甲烷浓度在压缩、液化以及节流过程中都高于爆炸上限,操作过程安全性比较高.但在精馏塔顶部甲烷浓度开始低于爆炸上限而导致精馏过程存在安全隐患.首先对原料气进行初步脱氧,然后再通过调整精馏塔塔底采出量来控制塔顶杂质气体中甲烷含量,使得其在整个液化及精馏流程中始终高于爆炸上限.分析结果表明,采取安全措施后整个流程都不存在爆炸危险性,甲烷回收率和产品纯度都较高,而且整个流程能耗也比较低.模拟结果显示,所设计的液化及精馏流程对不同气源具有较好的适用性,分析计算结果为含氧煤层气的杂质分离、操作过程的爆炸极限分析以及安全措施的采取提供了一定的参考.%Most of oxygen-bearing coal-bed methane (CBM) has not been utilized due to the limit in technique for production. The discharged gas leads to not only the waste of resources but also environmental pollution. In this study, a liquefaction process is proposed and designed for the typical CBM. HYSYS software is adopted to simulate the process. The flammability limits are analyzed and calculated based on the flammability limit theory and the simulated results of HYSYS. The results indicate that no flammable hazards exist in the processes of compression, liquefaction and throttling but they may appear at the top of the distillation tower. A method, in which oxygen is first removed from the feed gas with the control of the bottom flowrate (flowrate of the liquid product at column bottom), is adopted to ensure that the methane

  12. Development of scientific and technological bases for application of brown coal semi coke in the technology of non- milled silicon carbide

    Science.gov (United States)

    Anikin, A. E.; Galevsky, G. V.; Rudneva, V. V.; Nozdrin, E. V.; Galevsky, S. G.

    2016-09-01

    Thermodynamics is investigated, and the optimum temperature and time modes of carbonization of a briquetted silica fume batch- brown coal semi coke are defined. The complete carbonization of the batch in the conditions of heat treatment is achieved at a temperature of 1923 - 1973 K within 15 - 20 minutes. The conditions and indicators of the chemical enrichment of carbonization products are established. After enrichment, the carbide content is more than 90%. Silicon carbide micro-powder is obtained with a specific surface area 8000 - 9000 m2/kg.

  13. New revision of the TGL 13134/01 standard, issued 9. 85, Solid fuel; extrusion pressed brown coal briquets; technical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rosinski, H.-G. (VE Braunkohlenkombinat, Bitterfeld (German Democratic Republic). Stammbetrieb - ZfS Kohle)

    1988-06-01

    Reviews quality parameters of brown coal briquets according to the TGL 13134/01 industrial standard of the GDR. Briquets are classified into quality groups A to J, depending on calorific value (17 to more than 20 MJ/kg) and compression strength (7 to more than 17 MPa). Quality of household briquets is further assessed: maximum coal moisture of 19 to 22%, calorific value and compression strength. A briquet quality loss is considered if broken briquets exceed a maximum of 3% in deliveries from producers. Loading and storage during supply to customers may damage 2 to 6% of briquets. Household customers are entitled to briquets with maximum 2% breeze content, wholesalers must screen surplus fines. The quality of briquet breeze is classified into 3 groups. Industrial standards to be applied in examining briquet quality are listed.

  14. HOZOP在400万t/a煤炭间接液化中的应用研究%Application Research of HOZOP Software Method to the Air Separation Unit in 4 Million t/a Coal Indirect Liquefaction Project

    Institute of Scientific and Technical Information of China (English)

    马磊; 杨阳

    2014-01-01

    神华宁煤400万t/a煤炭间接液化项目上游10万空分装置初步设计HAZOP分析的目的是,针对杭州杭氧股份有限公司的设计,通过人工HAZOP分析(危险与可操作性分析)的方式,识别初设中存在的不足及风险隐患,帮助设计承包方及时改进和优化设计,以提升整个工艺系统的安全性,为设计承包方的详细设计及后期业主方的生产运营,提供坚实的保障。%According to the related standard requirements of the state and group company, this project should be carried out the HAZOP analysis for the further improvement of the project security level, to identi⁃fy the security issues exist in the design and to ensure the success of the 4 million t/a coal indirect liquefac⁃tion project (hereinafter referred to as the“project”) of Shenhua Ningxia Coal Industry Group, and lay the foundation to realize“secure with optimal”device. The purpose of the ten thousand upstream air separation unit preliminary design of HAZOP analysis of the 4 million t/a coal indirect liquefaction project of Shenhua Ningxia Coal Industry Group is direct at the preliminary design of Hangzhou Hangyang Co., Ltd.. To identify the shortage and potential risks exist in the preliminary design and help design contractors to improve and optimize their design through artificial HAZOP analysis (analysis of risk and operability) method. In order to enhance the security of the entire process system, and it provides solid guarantee for the design contractors detailed design and for the owners later period production and operation.

  15. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, January--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    In the Advance Coal Liquefaction Concept Proposal (ACLCP) carbon monoxide (CO) and water have been proposed as the primary reagents in the pretreatment process. The main objective of this project is to develop a methodology for pretreating coal under mild conditions based on a combination of existing processes which have shown great promise in liquefaction, extraction and pyrolysis studies. The aim of this pretreatment process is to partially depolymerise the coal, eliminate oxygen and diminish the propensity for retograde reactions during subsequent liquefaction. The desirable outcome of the CO pretreatment step should be: (1) enhanced liquefaction activity and/or selectivity toward products of higher quality due to chemical modification of the coal structure; (2) cleaner downstream products; (3) overall improvement in operability and process economics.

  16. HYSYS在含氧煤层气液化分离中的应用研究%Application Research of HYSYS in Liquefaction Separation of Oxygen-contained Coal-bed Methane

    Institute of Scientific and Technical Information of China (English)

    肖娅; 诸林; 靳亮; 邓骥

    2014-01-01

    在煤矿开采过程中采出的煤层气因含有空气难以加工利用,直接放空,不仅污染大气环境,而且浪费燃气资源。针对某典型含氧煤层气气源,设计了一种氮-甲烷膨胀制冷的液化精馏工艺,并利用HYSYS进行了模拟计算,结果显示,该工艺可较彻底除去氮气、氧气等杂质,获得较高浓度的甲烷产品,甲烷回收率达到99.99%。同时分析了回流比、塔板数以及入塔温度对塔底产品含氧量和甲烷含量的影响。%The coal-bed methane ( CBM) extracted during coal mining contains oxygen and is difficult to be processed and utilized, if it is directly vented, it not only pollutes the environment but also causes the resources waste. Based on a typical oxygen-contained CBM source, a liquefaction rectification process by nitrogen-methane expansion refrigeration was designed and simulation computation was made with HYSYS. The results showed that the nitrogen and oxygen in CBM can be completely removed by this process, the methane product with relatively high concentration can be got, and the methane recovery rate can reach 99. 99%. In addition, analysis was made on the influence of the reflux ratio, plate number and feed temperature on the oxygen and methane content in the bottom products.

  17. 煤直接液化减压塔进料球阀失效分析及修复%Failure Analysis and Repair of Feedstock Ball Valve in Direct Coal Liquefaction Vacuum Tower

    Institute of Scientific and Technical Information of China (English)

    龙云飞; 龚宝龙

    2016-01-01

    介绍了煤直接液化工艺流程及其特点。根据减压塔进料球阀的工作参数和功能作用,比照其失效形貌,分析了该球阀发生磨损失效的原因,制定了相应的拆解和修复方案。对修复后的球阀进行检查和试验,以满足标准规范的要求。最后对该球阀的优化运行给出了建议。%The technological process and characteristics of the direct coal liquefaction are introduced. In consideration of the working parameters and functions as well as the failure morphology of the feedstock ball valve in the vacuum tower, the reason of the wear failure is analyzed and the corresponding disassembly and repair scheme are proposed. Then the examinations and tests are performed to meet the requirements of the standards. At last, the advices on the optimal operation are given.

  18. Modeling of pulverized coal combustion processes in a vortex furnace of improved design. Part 2: Combustion of brown coal from the Kansk-Achinsk Basin in a vortex furnace

    Science.gov (United States)

    Krasinsky, D. V.; Salomatov, V. V.; Anufriev, I. S.; Sharypov, O. V.; Shadrin, E. Yu.; Anikin, Yu. A.

    2015-03-01

    This paper continues with the description of study results for an improved-design steam boiler vortex furnace, for the full-scale configuration of which the numerical modeling of a three-dimensional turbulent two-phase reacting flow has been performed with allowance for all the principal heat and mass transfer processes in the torch combustion of pulverized Berezovsk brown coal from the Kansk-Achinsk Basin. The detailed distributions of velocity, temperature, concentration, and heat flux fields in different cross sections of the improved vortex furnace have been obtained. The principal thermoengineering and environmental characteristics of this furnace are given.

  19. Coal conversion. 1977 technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The status and progress in US DOE's projects in coal gasification, liquefaction, and fluidized-bed combustion are reviewed with financing, flowsheets, history, progress and status of each (57 projects). (LTN)

  20. Industrial role of coal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dierk, E.A.; Stadelhofer, J.W.

    1983-02-07

    The paper is concerned with the production of coal-based chemicals either from the by-products of coal carbonization, or from synthesis gas manufactured from coal. The potential of coal tar as a raw material for chemicals synthesis forms the basis of the paper. Koppers-Totzek and Lurgi gasification processes and Fischer-Tropsch synthesis are considered, and, finally, coal liquefaction processes are briefly mentioned.

  1. Experiments for the development of a circulating pressurized gasification plant (brown coal feeding and combustion). Combustion exeriments. Coal feeding experiments. Final report; Verfahrenstechnische Versuche fuer die Entwicklung einer zirkulierenden Druckwirbelschichtfeuerung (Braunkohleeintrag und -verbrennung). Verbrennungsversuche. Kohleeintragsversuche. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    Combustion experiments with moist raw LAUBAG and MIBRAG coal were carried out in the pressurized gasification pilot plant at Friedrichsfeld. The following parameters wre investigated: Ignition and combustion behvaviour of the moist brown coal in a pressurized gasification plant; Emission ratings of CO, N{sub 2}O, NO{sub x}, SO{sub 2} and dust contents of standard coal; Combustion efficiencies at furnace temperatures over 850 C as determined by ash analysis; Measurements of the temperature distribution in the fluidized bed; Brown coal fly ash retention capacity of the hot gas filters; Analysis of ash turnover in order to maintain a stable circulation; Investigation of ash abrasion in circulating operation; Performance tests of secondary systems, e.g. feeding systems, ash removal systems for fly ash and bed ash, and measurement of the thermodynamic data in the ash cooler. [Deutsch] In der Druckwirbelschicht-Versuchsanlage Friedrichsfeld sind Verbrennungsversuche mit rohfeuchter LAUBAG- und rohfeuchter MIBRAG-Kohle durchgefuehrt worden. Bei genereller Verwendung des Aufbaus der Versuchsanlage Friedrichsfeld waren folgende Betriebs-/Auslegungswerte zu ermitteln: Ermittlung des Zuend- und des Ausbrandverhaltens der feuchten Braunkohle in der zirkulierenden Druckwirbelschichtfeuerung; Bestimmung der Emissionswerte wie CO, N{sub 2}O, NO{sub x}, SO{sub 2} und Staubgehalt fuer die Auslegungskohle; Bestimmung der Ausbrandwerte in der Asche bei einer Feuerraumtemperatur von ueber 850 C; Messung der Temepraturverteilung in der Wirbelschicht; Verhalten der Heissgasfilter bei Beaufschlagung mit Braunkohleflugasche; Untersuchung des Aschehaushaltes zur Erhaltung eines stabilen Zirkulationsbetriebes; Untersuchung des Ascheabriebverhaltens im Zirkulationsbetrieb; Pruefung der Funktionstuechtigkeit von Nebenanlagen wie Bekohlungseinrichtungen, Entaschungseinrichtungen fuer Flug- und Bettasche sowie Ermittlung der thermodynamischen Daten im vorhandenen Aschekuehler. (orig./HS)

  2. Watermanagement - related and ecological demands on brown-coal mining. A statement of position; Wasserwirtschaftlich-oekologische Forderungen fuer den Braunkohlenabbau. Positionspapier

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    This statement of position aims to identify influences exerted before, during and after brown-coal open-pit mining activities and to assess them in general terms from a water-management and ecological viewpoint. The form chosen is that of individual, concise postulates. Each of these is followed by an explanation. To illustrate the great variety of potentially arising problems, the major German brown-coal mining districts Lausitz, eastern Germany, and Lower Rhine are dealt with. A particular characteristic of the eastern German and Lausitz mining districts is that as the demand structure abruptly collapsed early in the 90s, closures became necessary on a large scale without preparatory measures having been taken. (orig.) [Deutsch] Mit dem vorliegenden Positionspapier wurde der Versuch unternommen, die Beeinflussungen vor, waehrend und nach dem Abbau von Braunkohle im Tagebaubetrieb inhaltlich zu erfassen und aus wasserwirtschaftlich-oekologischer Sicht verallgemeinernd zu bewerten. Dabei ist die From einzelner kurzgefasster Forderungen gewaehlt worden. Jede dieser Forderungen ist durch eine Erlaeuterung untersetzt. Um die Vielfalt der auftretenden Probleme zu verdeutlichen, werden beispielhaft in einem Anhang die grossen deutschen Braunkohlenreviere in der Lausitz, in Mitteldeutschland und am Niederrhein vorgestellt. Fuer das Mitteldeutsche und das Lausitzer Revier ist besonders anzumerken, dass mit dem schlagartigen Zusammenbruch der Bedarfsstruktur am Anfang der 90er Jahre in grossem Umfang Stillegungen ohne entsprechende Vorarbeiten notwendig wurden. (orig.)

  3. Supercritical solvent extraction of direct liquefaction residue from Shenhua coal%神华煤直接液化残渣超临界溶剂萃取研究

    Institute of Scientific and Technical Information of China (English)

    刘朋飞; 张永奇; 房倚天; 赵建涛

    2012-01-01

    利用甲苯、苯和乙醇三种溶剂在反应釜中对神华煤直接液化残渣进行了超临界溶剂萃取,考察了压力、温度、萃取时间、溶剂/残渣比等对萃取产物收率和重质液体萃取组成的影响.结果表明,以甲苯为溶剂进行萃取时,萃取时间对重质液体产率及HS和A收率的影响不大,而温度、压力以及溶剂/残渣质量比都会影响萃取产物的产率及组成.溶剂超临界萃取过程中,有其他组分向HS组分转化,提高了HS的收率.三种溶剂中,苯显示了和甲苯相似的萃取性能,而乙醇的萃取性能相比苯和甲苯则较差,但乙醇萃取得到的重质液体中轻质组分含量高于苯和甲苯.萃取过程中,残渣中的灰分和硫分主要富集至萃取残渣中.%Extraction of direct liquefaction residue from Shenhua coal with three solvents was investigated in a batch autoclave at supercritical conditions to clarify the impacts of pressure, temperature, and extraction time on the yields of heavy liquid and its compositions. It is found that when toluene is used as a solvent, extract time has no obvious effect on yield of heavy liquid, hexane soluble(HS) and asphaltene( A). Extract temperature, extract pressure and mass ratio of solvent to residue have significant effect on yield and composition of residue extract. During the supercritical solvent extraction of liquefaction residue, some other components are transformed into HS and this results in increasing yield of HS. Benzene shows similar extraction ability to toluene while ethanol is poor in dissolving heavy liquid. There are more light components in heavy liquid extracted by ethanol than those by benzene and toluene. Sulfur and ash are mainly enriched in extract residue during extraction process.

  4. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  5. Surfactant-assisted liquefaction of particulate carbonaceous substances

    Science.gov (United States)

    Hsu, G. C. (Inventor)

    1978-01-01

    A slurry of carbonaceous particles such as coal containing an oil soluble polar substituted oleophilic surfactant, suitably an amine substituted long chain hydrocarbon, is liquefied at high temperature and high hydrogen presence. The pressure of surfactant results in an increase in yield and the conversion product contains a higher proportion of light and heavy oils and less asphaltene than products from other liquefaction processes.

  6. Gas/slurry flow in coal-liquefaction processes (fluid dynamics in a three-phase-flow column). Final technical progress report, 1 October 1979-31 March 1982

    Energy Technology Data Exchange (ETDEWEB)

    Ying, D.H.S.; Sivasubramanian, R.; Moujaes, S.F.; Givens, E.N.

    1982-04-01

    A commercial coal liquefaction plant will employ vertical tubular reactors feeding slurry and gas concurrently upward through these vessels. In the SRC-I plant design the reactor is essentially an empty vessel with only a distributor plate located near the inlet. Because the commercial plant represents a considerable scale-up over Wilsonville or any pilot plant, this program addressed the need for additional data on behavior of three phase systems in large vessels. Parameters that were investigated in this program were studied at conditions that relate directly to projected plant operating conditions. The fluid dynamic behavior of the three-phase upflow system was studied by measuring gas and slurry holdup, liquid dispersion, solids suspension and solids accumulation. The dependent parameters are gas and liquid velocities, solid particle size, solids concentration, liquid viscosity, liquid surface tension and inlet distributor. Within the range of liquid superficial velocity from 0.0 to 0.5 ft/sec, gas holdup is found to be independent of liquid flow which agrees with other investigators. The results also confirm our previous finding that gas holdup is independent of column diameter when the column diameter is 5 inches or larger. The gas holdup depends strongly on gas flow rate; gas holdup increases with increasing gas velocity. The effect of solids particles on gas holdup depends on the gas flow rate. Increasing liquid viscosity and surface tension reduce gas holdup which agrees with other investigators. Because of the complexity of the system, we could not find a single correlation to best fit all the data. The degree of liquid backmixing markedly affects chemical changes occurring in the dissolver, such as sulfur removal, and oil and distillate formation.

  7. Selective solvent absorption in coal conversion. Quarterly report, July 1, 1991--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Lapucha, A.; Lazarov, L.; Amui, J.

    1992-04-01

    The objectives of this project are: (1) to determine the importance of the presence of added hydrogen donor compounds within the coal in the first stage of direct liquefaction processes; and (2) to determine the composition of the solvent absorbed by and present within the coal in the first stage of direct coal liquefaction.

  8. Micro-CT experimental of the thermal cracking of brown coal%褐煤热破裂的显微CT实验

    Institute of Scientific and Technical Information of China (English)

    孟巧荣; 赵阳升; 胡耀青; 冯增朝; 徐素国

    2011-01-01

    Using μCT225kVFCB high precision micro-CT system and a small moveable argon furnace, thermal cracking of brown coal from Pingzhuang mining in Inner Mongolia municipality was studied under different temperature.The results show that for brown coal,the big cracks( >800 μm) occupy leading position at about 100 ℃ ,the medium cracks ( 100 ~ 400 μm) are more important than others at about 200 ℃, the micro-cracks ( < 100 μm)become dominant above 300 ℃ ;threshold temperature of thermal cracking is 300 ℃, more or less;when temperature is lower than 300 ℃, the formation and evolution of crack and pore result mostly from thermal cracking, above 300 ℃, micro-cracks and pores produce mainly because coal pyrolysis produce and release oil gas, and turn coal skeleton into char gradually with temperature.%采用μCT25kVFCB型高精度显微CT试验系统并配以微型气氛炉,研究了内蒙古平庄褐煤热破裂随温度的变化关系.研究结果表明,褐煤在l00℃左右时,大裂隙(>800μm)占主导地位;200℃左右时,中等裂隙(100~400μm)占主导地位;300℃之后微裂隙(<100μm)占主导地位;热破裂的阈值为300℃左右;在300℃之前孔隙裂隙的产生发展主要是因为热破裂,300℃之后,微裂隙和孔隙的产生主要是因为煤体发生热解化学反应,油气逸出,固体骨架逐渐转变为半焦体.

  9. Volatilisation of alkali and alkaline earth metallic species during the gasification of a Victorian brown coal in CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Quyn, Dimple Mody; Li, Chun-Zhu [CRC for Clean Power from Lignite, Department of Chemical Engineering, PO Box 36, Monash University, Victoria 3800 (Australia); Hayashi, Jun-ichiro [Centre for Advanced Research of Energy Conversion Materials, Hokkaido University, N13-W8, Kita-ku, Sapporo 060-8628 (Japan)

    2005-08-25

    A Victorian brown coal was gasified in a bench-scale quartz fluidised-bed/fixed-bed reactor in order to study the volatilisation of Na, Ca, and Mg during devolatilisation and gasification and their roles in the reactivity of chars. It was found that the majority of Na was volatilised at 900 {sup o}C under all conditions and that a Na retention limit was achieved in the char with the progress of CO{sub 2} gasification. In some cases, the presence of CO{sub 2} during devolatilisation enhanced the Na retention in the char. In contrast, the retention of Ca (and Mg) was unaffected by CO{sub 2} during devolatilisation at 900C but decreased drastically upon nascent char gasification. The fundamental differences in volatilisation between the alkali and alkaline earth metallic species are discussed in this paper.

  10. Changes in char reactivity due to char-oxygen and char-steam reactions using Victorian brown coal in a fixed-bed reactor

    Institute of Scientific and Technical Information of China (English)

    Shu Zhang; Yonggang Luo; Chunzhu Li; Yonggang Wang

    2015-01-01

    This study was to examine the influence of reactions of char–O2 and char–steam on the char reactivity evolution. A newly-designed fixed-bed reactor was used to conduct gasification experiments using Victorian brown coal at 800 °C. The chars prepared from the gasification experiments were then collected and subjected to reactivity characterisation (ex-situ reactivity) using TGA (thermogravimetric analyser) in air. The results indicate that the char reactivity from TGA was generally high when the char experienced intensive gasification reactions in 0.3%O2 in the fixed-bed reactor. The addition of steam into the gasification not only enhanced the char conversion sig-nificantly but also reduced the char reactivity dramatical y. The curve shapes of the char reactivity with involve-ment of steam were very different from that with O2 gasification, implying the importance of gasifying agents to char properties.

  11. CO2 GASIFICATION REACTIVITY OF BROWN COAL CHAR%一种褐煤热解煤焦的CO2气化反应特性

    Institute of Scientific and Technical Information of China (English)

    范冬梅; 张海霞; 朱治平; 吕清刚

    2012-01-01

    Based on the step utilization of brown coal pyrolysis, partial gasification, and residual carbon combustion, a brown coal from Shigouyi Coal Mine in Ningxia was chosen as research object to produce the rapid and slow coal chars at temperature of 700 ℃-950 ℃ in a hori- zontal tube furnace. The effect of pyrolysis conditions on carbon microcrystal structure and BET surface area of chars was investigated. The carbon dioxide gasification reactivity was analyzed by thermogravimetric-mass spectrometric technology, and different evolution indexes were used to characterize the reactivity of chars. It is found that the gasification rate of Shigouyi chars increases by more than 50% with the temperature increasing by 50 ℃. When the pyrolysis temperature rises, the carbon microcrystal structure of coal chars becomes more orderly and the BET surface area decreases. However, the gasification reactivity is mainly controlled by gasification temperature. The gasification reactivity of rapid pyrolyzed coal char is better than that of slow pyrolyzed coal char, and the difference between them become greater as gasification temperature rises. Average specific reaction rates of both rapid and slow pyrolyzed chars have a linear relationship with reaction index.%针对褐煤的热解-部分气化-残炭燃烧梯级利用工艺,以宁夏石沟驿褐煤为原料,采用水平管式炉在700℃~950℃温度范围内分别制备快速和慢速热解煤焦,考察了煤焦微晶结构和比表面积随制焦条件的变化.利用热重-质谱联用技术研究煤焦CO2气化反应特性,并采用不同评价指标对煤焦气化活性进行了表征.结果表明:气化温度每升高50℃,煤焦CO2气化反应速率增加50%以上;热解温度升高,虽然煤焦微晶结构的有序化程度加深,比表面积减小,但煤焦CO2气化反应活性主要受气化温度影响;快速热解煤焦的CO2气化反应活性高于慢速热解煤焦,二者的差异随着气化温度升

  12. Estimation of potentially toxic elements contamination in anthropogenic soils on a brown coal mining dumpsite by reflectance spectroscopy: a case study.

    Directory of Open Access Journals (Sweden)

    Asa Gholizadeh

    Full Text Available In order to monitor Potentially Toxic Elements (PTEs in anthropogenic soils on brown coal mining dumpsites, a large number of samples and cumbersome, time-consuming laboratory measurements are required. Due to its rapidity, convenience and accuracy, reflectance spectroscopy within the Visible-Near Infrared (Vis-NIR region has been used to predict soil constituents. This study evaluated the suitability of Vis-NIR (350-2500 nm reflectance spectroscopy for predicting PTEs concentration, using samples collected on large brown coal mining dumpsites in the Czech Republic. Partial Least Square Regression (PLSR and Support Vector Machine Regression (SVMR with cross-validation were used to relate PTEs data to the reflectance spectral data by applying different preprocessing strategies. According to the criteria of minimal Root Mean Square Error of Prediction of Cross Validation (RMSEPcv and maximal coefficient of determination (R2cv and Residual Prediction Deviation (RPD, the SVMR models with the first derivative pretreatment provided the most accurate prediction for As (R2cv = 0.89, RMSEPcv = 1.89, RPD = 2.63. Less accurate, but acceptable prediction for screening purposes for Cd and Cu (0.66 ˂ R2cv ˂ 0.81, RMSEPcv = 0.0.8 and 4.08 respectively, 2.0 ˂ RPD ˂ 2.5 were obtained. The PLSR model for predicting Mn (R2cv = 0.44, RMSEPcv = 116.43, RPD = 1.45 presented an inadequate model. Overall, SVMR models for the Vis-NIR spectra could be used indirectly for an accurate assessment of PTEs' concentrations.

  13. Estimation of potentially toxic elements contamination in anthropogenic soils on a brown coal mining dumpsite by reflectance spectroscopy: a case study.

    Science.gov (United States)

    Gholizadeh, Asa; Borůvka, Luboš; Vašát, Radim; Saberioon, Mohammadmehdi; Klement, Aleš; Kratina, Josef; Tejnecký, Václav; Drábek, Ondřej

    2015-01-01

    In order to monitor Potentially Toxic Elements (PTEs) in anthropogenic soils on brown coal mining dumpsites, a large number of samples and cumbersome, time-consuming laboratory measurements are required. Due to its rapidity, convenience and accuracy, reflectance spectroscopy within the Visible-Near Infrared (Vis-NIR) region has been used to predict soil constituents. This study evaluated the suitability of Vis-NIR (350-2500 nm) reflectance spectroscopy for predicting PTEs concentration, using samples collected on large brown coal mining dumpsites in the Czech Republic. Partial Least Square Regression (PLSR) and Support Vector Machine Regression (SVMR) with cross-validation were used to relate PTEs data to the reflectance spectral data by applying different preprocessing strategies. According to the criteria of minimal Root Mean Square Error of Prediction of Cross Validation (RMSEPcv) and maximal coefficient of determination (R2cv) and Residual Prediction Deviation (RPD), the SVMR models with the first derivative pretreatment provided the most accurate prediction for As (R2cv) = 0.89, RMSEPcv = 1.89, RPD = 2.63). Less accurate, but acceptable prediction for screening purposes for Cd and Cu (0.66 ˂ R2cv) ˂ 0.81, RMSEPcv = 0.0.8 and 4.08 respectively, 2.0 ˂ RPD ˂ 2.5) were obtained. The PLSR model for predicting Mn (R2cv) = 0.44, RMSEPcv = 116.43, RPD = 1.45) presented an inadequate model. Overall, SVMR models for the Vis-NIR spectra could be used indirectly for an accurate assessment of PTEs' concentrations.

  14. Direct liquefaction proof-of-concept facility

    Energy Technology Data Exchange (ETDEWEB)

    Alfred G. Comolli; Peizheng Zhou; HTI Staff

    2000-01-01

    The main objective of the U.S. DOE, Office of Fossil Energy, is to ensure the US a secure energy supply at an affordable price. An integral part of this program was the demonstration of fully developed coal liquefaction processes that could be implemented if market and supply considerations so required, Demonstration of the technology, even if not commercialized, provides a security factor for the country if it is known that the coal to liquid processes are proven and readily available. Direct liquefaction breaks down and rearranges complex hydrocarbon molecules from coal, adds hydrogen, and cracks the large molecules to those in the fuel range, removes hetero-atoms and gives the liquids characteristics comparable to petroleum derived fuels. The current processes being scaled and demonstrated are based on two reactor stages that increase conversion efficiency and improve quality by providing the flexibility to adjust process conditions to accommodate favorable reactions. The first stage conditions promote hydrogenation and some oxygen, sulfur and nitrogen removal. The second stage hydrocracks and speeds the conversion to liquids while removing the remaining sulfur and nitrogen. A third hydrotreatment stage can be used to upgrade the liquids to clean specification fuels.

  15. 铁基催化剂对将军庙煤低压直接液化性能影响%Effect of Iron-based Catalysts on Direct Liquefaction Performance of Coal From Jiangjunmiao, Xinjiang

    Institute of Scientific and Technical Information of China (English)

    王海龙; 廖玲

    2015-01-01

    以将军庙煤为研究对象,催化剂用量按活性金属元素计为3%(wtCoaldaf)、反应温度T=420℃、反应时间τ=75 min、溶煤比S/C=2/1和氢初压PH2=6.5 MPa条件下,首先,以油产率为目标,Fe2O3为主催化剂,S为助催化剂,通过考察S/Fe对煤样直接液化性能的影响,确定了最佳S/Fe=1/1。其次,在S/Fe为1/1和上述反应条件下,考察了一系列铁基催化剂对煤样液化性能的影响。结果表明,以油产率为目标,其活性由高到低为:Fe2O3/S>油溶性Fe3O4/S >油溶性Fe3O4(中试)/S >飞灰/S >纳米Fe3O4/S>黄铁矿/Fe2O3>油酸铁/S > FeSO4/S> Fe(NO3)3/S>β-FeOOH/S >FeCl3/S >还原铁粉/S >FeS。最后,将Fe2O3/S与MoO3/S、FeSO4/S与NiSO4/S和CoSO4/S分别进行了比较。结果表明:Fe2O3/S比MoO3/S更能促进沥青质向油的转化;FeSO4/S与NiSO4/S和CoSO4/S三者油产率相差甚小,均约67%。故此,Fe2O3/S的催化活性最好。%The research objectwasthe coal from Jiangjunmiao. First of all,takingoil yield as the target and Fe2O3as the maincatalyst and S as the sub-catalyst, the best S/Fe=1∶1wasconfirmedby investigating the effect of S/Fe on direct liquefaction performanceof coal sample under the reaction conditions of catalysts 3%( wt), 420℃,reaction time 75 min, solvent/coal=2/1 and H2initial pressure 6.5 MPa. Theneffect of a series of iron-based catalysts on liquefaction performanceof coal sample under S/Fe=1/1andotheraboveconditionswas investigated. The results showthat:the rank ordering of the activity of catalysts according to the oil yield is Fe2O3/S>oil-soluble Fe3O4/S > oil-soluble(pilot plant) Fe3O4/S >fly ash/S >nanometer Fe3O4/S>pyrite/Fe2O3>oleic acid iron/S > FeSO4/S> Fe(NO3)3/S > β-FeOOH/S>FeCl3/S >iron powder/S >FeS. At last,Fe2O3/S and MoO3/S, FeSO4/S and NiSO4/S and CoSO4/Swererespectively compared. Theresults show that:Fe2O3/S can more promote theconversionof asphaltene to oil than MoO3/S;thegap of the oil yieldsamong FeSO4/S

  16. Solvent recyclability in a multistep direct liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    Hetland, M.D.; Rindt, J.R. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-31

    Direct liquefaction research at the Energy & Environmental Research Center (EERC) has, for a number of years, concentrated on developing a direct liquefaction process specifically for low-rank coals (LRCs) through the use of hydrogen-donating solvents and solvents similar to coal-derived liquids, the water/gas shift reaction, and lower-severity reaction conditions. The underlying assumption of all of the research was that advantage could be taken of the reactivity and specific qualities of LRCs to produce a tetrahydrofuran (THF)-soluble material that might be easier to upgrade than the soluble residuum produced during direct liquefaction of high-rank coals. A multistep approach was taken to produce the THF-soluble material, consisting of (1) preconversion treatment to prepare the coal for solubilization, (2) solubilization of the coal in the solvent, and (3) polishing to complete solubilization of the remaining material. The product of these three steps can then be upgraded during a traditional hydrotreatment step. The results of the EERC`s research indicated that additional studies to develop this process more fully were justified. Two areas were targeted for further research: (1) determination of the recyclability of the solvent used during solubilization and (2) determination of the minimum severity required for hydrotreatment of the liquid product. The current project was funded to investigate these two areas.

  17. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...

  18. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...

  19. Comparative investigations into pyrolysis of biomass and brown coal. Material balance and heat requirement in correlation with fuel properties; Vergleichende Untersuchungen zur Pyrolyse von Biomasse und Braunkohle. Stoffbilanzen und Waermebedarf in Korrelation mit Rohstoffeigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, D.; Klinger, M.; Krzack, S.; Meyer, B. [Technische Univ. Bergakademie Freiberg (Germany)

    2011-02-15

    Prediction of product distribution and composition for biomass and coal pyrolysis using thermodynamic simulation software is actually not possible or works not deficiently. Consistent data for pyrolysis product distribution and composition are a basic requirement for the implementation of pyrolysis in models representing thermochemical conversion of biogenous and fossil fuels as well as for the creation of detailed material and energy balances and the evaluation of such processes. Investigations into the pyrolysis behaviour of different biomass materials (wood, straw, silage) and German brown coals (Lusatia, Rhineland) in dependence on process temperature have been done in a lab scale device. Based on the obtained results, material and heat balances have been created taking all pyrolysis products into consideration. To obtain additional information about pyrolysis heat requirement investigations using a TG-DSC thermogravimetric analyser have been carried out. Differences between biomass and brown coal are found especially within the distribution of nitrogen, oxygen and carbon to the pyrolysis products. For the herbaceous biomass a heat release was detected regarding to the energy balance, while spruce wood possesses a relatively constant endothermic heat of reaction in the overall temperature range. This arises from the release of volatile components produced during cellulose decomposition. In the case of brown coal pyrolysis the products show a lower chemically bonded energy than the raw material. The obtained tendencies could be partly confirmed with the DSC investigations. (orig.)

  20. Numerical Simulation on Flow Field of Diameter-reduced Valve in Low-concentration Coal-bed Methane Liquefaction%低浓度煤层气液化中缩径阀门流场的数值模拟

    Institute of Scientific and Technical Information of China (English)

    刘令; 刘利亚; 付耀国; 甘海龙

    2015-01-01

    In this paper,the method of computational fluid dynamics was adopted,the two-equation model with k-εwas used to close the N-S equation,the structure of the diameter-reduced valve was reasonably simplified,and numerical simulation was made on the flow field,the flow stability of fluid and the local resistance coefficient of the diameter-reduced valves with different taper angle and size which were installed in the pipeline of the cryogenic liquefaction equipment of low-concentration coal-bed methane . The simulated results showed that when the angle of the diameter-reduced valve was equal to or larger than 50 o ,the fluid was seriously divorced from the boundary layer,the fluid flow produced vortex,and the diameter-reduced valve had a poor fluid-passing characteristic;under the same conditions,the local resistance coefficient increased with the increase of the taper angle of the diameter-reduced valve. The simulated results can provide reference for the selection of the valves used in the engineering pipeline.%采用计算流体力学的方法,用k—ε两方程模型封闭N—S方程,对缩径阀门结构进行合理简化,对低浓度煤层气深冷液化装备的管线中,不同变径角度和不同通径缩径阀门的流场、流体流动稳定性及局部阻力系数进行了数值模拟。模拟结果表明:缩径阀门的缩径角度在大于等于50°时,流体脱离边界层现象严重,流体流动出现漩涡,缩径阀门具有较差的过流特性;在相同流动条件下,局部阻力系数随着变径角度的增大而增大。模拟计算结果可为项目建设时管线阀的选型提供参考。

  1. Security analysis and measures for the liquefaction process of oxygen-bearing coal-bed methane%含氧煤层气液化流程安全性分析与措施

    Institute of Scientific and Technical Information of China (English)

    邓骥; 诸林; 肖娅; 赵启龙

    2014-01-01

    There is a risk of explosion during purifying the coal-bed methane coming from un-derground drainage ,for the reason that the gas contains oxygen .In this paper ,the results of simulation with HYSYS and the flammability limit theory were combined together to analyze the security of whole process .The results showed that the explosion hazard concentrated at the end of the condensation and on the top of rectification tower .The measure to reduce the compressor outlet pressure or raise the final condensation temperature was proposed .What′s more ,the secu-rity measure was proposed to control the methane content of rectification tower gas above the up-per limit of the explosion strictly ,and then the inerting gas with nitrogen contacts with liquid ni-trogen upstream for further recovery of CH4 .The results indicate that when the value of nitrogen injection ratio is greater than 0 .6 (mole ratio ) ,there is no danger of explosion in liquefaction process ,and both methane yield and process safety are improved greatly in this way .%矿下抽采的煤层气由于混有空气而在液化中存在爆炸危险。通过将HYSYS对常规液化分离流程的模拟结果与爆炸极限理论相结合进行分析计算得出:爆炸危险主要集中在冷凝终了处和精馏塔顶部。进而提出降低压缩机出口压力或提高最终冷凝温度;严格控制精馏塔塔顶气相C H4含量在爆炸上限之上,塔顶气用N2惰化后再与液氮逆流接触以进一步回收C H4。计算表明,当N2注入比达0.6(摩尔比),气相CH4含量曲线将绕过临界点进入安全区。采取措施后CH4有较高收率且液化流程安全性得以提高。

  2. The rise of the mine water level in the area of the former Kohinoor II mine and the influence on the surrounding aquifer systems of abandoned mines in the central part of the North Bohemian Brown Coal Basin

    Directory of Open Access Journals (Sweden)

    Milan Mikoláš

    2011-01-01

    Full Text Available The aim of this article is to evaluate the process of terminating the mine water pumping after the liquidation of the Kohinoor II coal mine, situated in the central part of the North Bohemian Brown Coal Basin (NBB and the subsequent resumption of pumping from the surface after the mine water rise in the area of the former mine to the desired level. We analyzed previously known data, particularly the amount of mine water pumped from the mine area and the surrounding abandoned mines in the past. Further the evaluation of known surrounding abandoned mines aquifer systems, accumulated in the coal seam (underground accumulation of water and the evaluation of the effect of increasing the water level in the Kohinoor II mine, focusing on the enlargement of the central mine aquifers and the evaluation of the effects of changes in the way of pumping on the surrounding coal seam and its mining with continued safe brown coal mining at the nearby Bílina mine, that can be ensured for at least another 25 years.

  3. First test results of the pilot plant for the pressure loaded vapour loaded fluidized bed drying process (DDWT) of brown coals. A pilot plant for 5 t/h dry coal and till 6 bar dryer pressure; Erste Testergebnisse von der Versuchsanlage zur Druckaufgeladenen Dampfwirbelschicht-Trocknung (DDWT) von Braunkohlen. Versuchsanlage fuer 5 t/h Trockenkohle und bis 6 bar Trocknerdruck

    Energy Technology Data Exchange (ETDEWEB)

    Porsche, T.; Thannhaeuser, L.; Hoehne, O.; Martin, J.S. [Vattenfall Europe Generation AG, Cottbus (Germany)

    2009-07-01

    Apart from other promising possibilities for the improvement of the efficiency of fossil fuelled power stations such as the improvement of the steam parameters and optimization of the equipment technology the preliminary drying of coal possesses a very high potential. This results from a more effective combustion of the dried coal in the power station boiler and from the energetic use of the condensation enthalpy of the coal water vapour during processing the power station. Especially, if the vapour steam is on a high level of pressure, the applied evaporation enthalpy completely can be led back into the power station process. Thereby, improvements of the net efficiency of power stations of about 4 to 5 % are attainable. Starting from October 2008, Vattenfall Europe AG (Berlin, Federal Republic of Germany) established a pilot plant for a vapour loaded fluidized bed drying process (DDWT) of brown coals at the site Schwarze Pumpe. The plant is laid out for a dryer performance of 5 t/h dry brown coal. This plant enables tests with a dryer system pressure between 1 and 6 bar. After start-up in the third quarter 2008, the operation of the pilot plant begun. Extensive tests of the plant and components were accomplished, and the procedure proof for DDWT of Lausitz brown coals was furnished. So far, up to 4 t/h dry coal were produced with the accomplished test campaigns. A dryer system pressure of up to 4.5 bar started. The target is to transfer the results and experiences from the test operation into planning and construction of a 250 MW{sub e}l Oxyfuel demonstration power station with upstream coal pressure drying process which is established by Vattenfall Europe AG at the location Jaenschwalde until 2015.

  4. Combustion, pyrolysis, gasification, and liquefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  5. SUMMARY REPORT OF THE DOE DIRECT LIQUEFACTION PROCESS DEVELOPMENT CAMPAIGN OF THE LATE TWENTIETH CENTURY

    Energy Technology Data Exchange (ETDEWEB)

    F.P. Burke; S.D. Brandes; D.C. McCoy; R.A. Winschel; D. Gray; G. Tomlinson

    2001-07-01

    Following the petroleum price and supply disruptions of 1973, the U.S. government began a substantial program to fund the development of alternative fuels. Direct coal liquefaction was one of the potential routes to alternative fuels. The direct coal liquefaction program was funded at substantial levels through 1982, and at much lower levels thereafter. Those processes that were of most interest during this period were designed to produce primarily distillate fuels. By 1999, U.S. government funding for the development of direct coal liquefaction ended. Now that the end of this campaign has arrived, it is appropriate to summarize the process learnings derived from it. This report is a summary of the process learnings derived from the DOE direct coal liquefaction process development campaign of the late twentieth century. The report concentrates on those process development programs that were designed to produce primarily distillate fuels and were largely funded by DOE and its predecessors in response to the petroleum supply and price disruptions of the 1970s. The report is structured as chapters written by different authors on most of the major individual DOE-funded process development programs. The focus of the report is process learnings, as opposed to, say, fundamental coal liquefaction science or equipment design. As detailed in the overview (Chapter 2), DOE's direct coal liquefaction campaign made substantial progress in improving the process yields and the quality of the distillate product. Much of the progress was made after termination by 1983 of the major demonstration programs of the ''first generation'' (SRC-II, H-Coal, EDS) processes.

  6. Hydrochemical and geochemical processes in superficial dump sediments in Zwenkau open brown coal mine; Hydro- und geochemische Prozesse in oberflaechennahen Kippensedimenten des Braunkohlentagebaus Zwenkau

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, U.

    2002-07-01

    The present study was performed as part of a project titled ''Ground and air-based spectrometric studies for the differentiation of reactively altered brown coal open mining areas in Central Germany'' (Project 02 WB 9667/5) which was funded by the Federal Ministry for Education and Research. It was carried out as a cooperation between GeoForschungszentrum Potsdam (GFZ, Potsdam GeoResearch Centre), Deutsches Zentrum for Lust- und Raumfahrt (DLR, German Aerospace Centre), Gesellschaft fuer Angewandte Fernerkundung (GAF, Society for Applied Remote Sensing) and Umweltforschungszentrum Leipzig/Halle GmbH (UFZ, Leipzig/Halle Environmental Research Centre). The idea of the project was to calibrate aerial data obtained by means of spectrometric remote sensing methods using conventional petrographic, mineralogical and geochemical analysis. This would provide the mining industry with a powerful method with low time and staff requirement for reliably classifying the vast dump areas produced by open pit mining, accurately assigning findings to location data and thus identifying suitable uses for different sites. The focus of the present study was on characterising hydrochemical and geochemical alterations in dump sediments of the Zwenkau brown coal open mining area south of Leipzig in Central Germany. The collection of these data plays a decisive role in plans for cultivating and assessing the potential hazard to the open mining landscape. [German] Die vorliegende Arbeit wurde im Rahmen des BMBF-gefoerderten Projektes 'Luft- und bodengestuetzte spektrometrische Untersuchungen zur Differenzierung reaktiv veraenderter Braunkohlentagebaugebiete in Mitteldeutschland' (Vorhaben 02 WB 9667/5) als Kooperation zwischen dem GeoForschungsZentrum Potsdam (GFZ), dem Deutschen Zentrum fuer Luft- und Raumfahrt (DLR), der Gesellschaft fuer Angewandte Fernerkundung (GAF) und dem Umweltforschungszentrum Leipzig/Halle GmbH (UFZ) angefertigt. Idee des Projektes war

  7. Measurements for monitoring ground motion resulting from mining operations in the Rhenish brown coal district; Messungen zur Ueberwachung von bergbaubedingten Bodenbewegungen im rheinischen Braunkohlenbergbau

    Energy Technology Data Exchange (ETDEWEB)

    Duddek, H.; Schaefer, W. [Rheinbraun AG, Koeln (Germany)

    1996-12-31

    Coal mining in the Rhenish brown coal district resulted in loose rock slopes with a total height of more than 350 m. Mining operations caused ground motion in open-cast mines, in the slopes and in the region ahead of the face. Internal dumping caused motions of the floors, the overburden tip and te slopes of the open-cast mines. The deformations were measured by different methods, and the evaluations are presented here. As examples, permanent monitoring of a slope using the GEOROBOT measuring system and continuous subsidence measurements in an overburdan dump by means of hydrostatic measuring systems are presented. GEOROBOT ensures quasi-continuous measurements of slope motion with an error of 5-7 mm. Hydrostatic measuring systems on the basis of pressure sensors were developed for measurements of single overburden dump strata and the overburden dump basis during dumping. (orig.) [Deutsch] In den rheinischen Braunkohlentagebauen entstehen Lockergesteinsboeschungen mit Gesamthoehen von mehr als 350 m. Die Gewinnungstaetigkeiten verursachen Entlastungsbewegungen im Tagebau, in den Boeschungen und im Tagebauvorfeld. Die Innenverkippung fuehrt erneut zu Bodenbewegungen im Liegenden, im Kippenkoerper und im Bereich der Tagebauraender. Die auftretenden Deformationen werden mit verschiedenen Messverfahren erfasst, ausgewertet und dargestellt. Beispielhaft werden die permanente Ueberwachung einer Boeschung mittels des automatischen Messsystems GEOROBOT und kontinuierliche Setzungsmessungen in einer Tagebaukippe mit hydrostatischen Messsystemen vorgestellt. Mit GEOROBOT werden quasi kontinuierlich Boeschungsbewegungsmessungen mit einer Genauigkeit von {+-}5 bis 7 mm durchgefuehrt. Auf der Basis von Drucksensoren wurden hydrostatische Messsysteme konzipiert, mit denen Setzungen einzelner Kippscheiben und der Kippenbasis waehrend des Kippenaufbaues ermittelt werden. (orig.)

  8. 铁元素对褐煤热解及气化特性的影响%Impact of Iron-loading on the Pyrolysis and Gasification Features of the Brown Coal

    Institute of Scientific and Technical Information of China (English)

    杨利; 王冬梅; 尹丰魁; 余江龙

    2011-01-01

    综述了铁元素对褐煤热解及气化的影响方面的研究进展,在褐煤中植入铁元素对褐煤热解和气化的半焦产物、气体产物的影响,分析了铁在褐煤热解和气化过程中的迁移和转化,并与褐煤中植入的其他金属元素产生的影响进行了简单对比.%Poly-generation system based on coal pyrolysis and gasification is one of the options of clean and efficient utilization of coal in China. In this paper, an overview of current status and progress of studies on the effects of iron loading on the pyrolysis and gasification features of brown coals upon heating has been provided with the changes in char and gaseous products because of iron-loading were summarized. The transformation of iron species during pyrolysis and gasification processes is discussed. The effect of iron-loading is also compared with that of other metals loaded into the brown coal.

  9. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  10. Improvement in the adsorption properties of semicoke from the power-cum-technological processing of kansk-achinsk brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Koz' min, G.V.; Mozhaeva, V.I.; Kim, S.T.; Kalyuzhnyi, V.V.; Nikolaeva, V.A.

    1981-01-01

    In the reported experiments, a study has been performed on the progressive activation of the semicoke of Irsha-Borodino coal at burn-offs from 11 to 48%, and experimental samples of carbonaceous adsorbents have been obtained. The parameters of the porous structure of the samples obtained have been studied and it has been shown that with an increase in the degree of burn-off of the semicoke the total volume of micropores and mesopores rises from 135*10/sup -6/ to 779*10/sup -6/ m/sup 3//kg. The increase in the total volume of the pores takes place mainly through the volume of the mesopores. 4 refs.

  11. Elucidation of hydrogen mobility in tetralin under coal liquefaction conditions using a tritium tracer method. Effects of the addition of H2S and H2O; Tritium tracer ho wo mochiita sekitan ekika hanno jokenka deno tetralin no suiso idosei hyoka. Ryuka suiso oyobi mizu no tenka koka

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, M.; Saito, M.; Ishihara, A.; Kabe, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1996-10-28

    It was previously reported that the tritium tracer method is useful for the quantitative consideration of hydrogen behavior in coal during coal liquefaction reaction. Tetralin is excellent hydrogen donating solvent, and is considered as one of the model compounds of coal. In this study, effects of H2S and H2O on the hydrogen exchange reaction between tetralin and gaseous hydrogen labeled by tritium were investigated. It was suggested that the conversion of tetralin and the hydrogen exchange reaction between gaseous hydrogen and tetralin proceed through the radical reaction mechanism with a tetralyl radical as an intermediate product. When H2S existed in this reaction, the hydrogen exchange yield increased drastically without changing the conversion yield. This suggested that the hydrogen exchange reaction proceeds even in the reaction where radical does not give any effect. In the case of H2O addition, the conversion yield and hydrogen exchange rate decreased into a half or one-third. It was suggested that H2O inhibited the formation process of tetralyl radical. 6 refs., 4 figs.

  12. Fiscal 1997 report on the survey for a data book on new energy technology development. Waste power generation, solar energy utilization. geothermal power generation, clean energy vehicles, coal liquefaction/gasification, and traverse themes; 1997 nendo chosa hokokusho. Shin energy gijutsu kaihatsu kankei data shu sakusei chosa (haikibutsu hatsuden, taiyonetsu riyo, chinetsu hatsuden, clean energy jidosha, sekitan ekika gas ka oyobi odanteki theme)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper collected and arranged data on new energy technology. As to the waste power generation, in terms of general waste, 161 places have power generation facilities, 657,000 kW in output, as of the end of FY 1996. Out of them, 100 facilities (scale of output: 555,000 kW) are selling power. In terms of industrial waste, 53 places (209,000 kW) have power generation facilities. The output will be 2 million kW in FY 2000. In relation to the solar energy utilization, the number of solar systems introduced in FY 1996 is 25,000, that of water heating appliances produced in FY 1996 is 170,000. Geothermal power of 494,000 kW and 37,000 kW was introduced for electric power industry use and private use, respectively. Clean energy vehicles have not been so much spread, but the hybrid car was put on sale in 1997. Concerning the coal liquefaction, the R and D were made at a pilot plant of NEDOL process, and operation started in 1997. As to the coal gasification, investigational study and element study on the demonstration plant are being conducted in FY 1997 and 1998, making use of the research results obtained from the existing pilot plant of coal gasification combined power generation

  13. Experiments on the gas production of brown coal degraded by exogenous methanogens%外源产甲烷菌降解褐煤产气实验

    Institute of Scientific and Technical Information of China (English)

    汪涵; 林海; 董颖博; 隋梦琪; 李洋子

    2012-01-01

    To investigate the ability of exogenous bacteria to degrade brown coal, methanogens were enriched from anaerobic sludge and domesticated using brown coal as the single carbon source. After domestication, the lag time of initial gas production is shortened from 12 to 6 days and the CH4 production increases by 29.2% in 30 days. The generated biogas is composed of CH4 and a little CO2, no heavy hydrocarbons are detected. Experiments on gas production influencing factors demonstrate that the best initial pH for the culture medium is 7.0 and the maximum gas production is 1.9 times and 2.4 times higher than that at pH 6.4 and pH 7.4, respectively. The particle size of coal is one of factors influencing the gas production: the general trend is the smaller the particle size, the bigger the gas production, but the variation of gas production is not significant with decreasing particle size. Gas produced by the culture medium accounts for around 50% of the total gas production and it is likely caused by the addition of L-cysteine (0.5 g/L) and yeast extract (1 g/L) to the medium.%为研究外源菌降解褐煤产气能力,从厌氧消解污泥中提取产甲烷菌群,以褐煤为碳源进行菌种驯化,开展产气实验,并对驯化后菌群的产气影响因素进行实验研究.驯化实验发现:驯化后该菌群初始产气时间由驯化前的12 d缩短为6d,且30d内产气总量增加了29.2%;经检测,生成气体主要为CH4和少量CO2,未检测到重烃气.产气影响因素实验表明:该菌群最佳产气初始培养基pH值为7.0,产气量分别约为初始pH值为6.4、7.4时的1.9倍和2.4倍;煤的粒径也是影响产气量的因素之一,表现为粒径越小,产气量越大,但产气量随粒径变小变化不明显;培养基本身产气量约占总产气量的50%,原因可能是其中添加了微量L-半胱氨酸(0.5 g/L)和酵母浸出液(1 g/L).

  14. DIRECT LIQUEFACTION PROOF-OF-CONCEPT PROGRAM - BENCH RUN PB-10 (HTI 227-109)

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-12-30

    This report presents the results of the bench-scale test, PB-10, performed at HTI's facilities under DOE contract (HTI Run No. 227-109). This bench test continues the work that was started in PDU testing 260-007. Previous bench test (PB-09, HTI 227-106) was performed on different seams of Chinese coal (Shenhua Ningtiaota Coal No.2 and No.3). Since another coal, Shangwan coal was selected for the liquefaction plant, PB-10 was made as approved by DOE/COR. The objective of this test was to evaluate the liquefaction performance of Shangwan coal utilizing various backend processing and recycle schemes. Additionally, this test was to collect available process data to allow for the best scale-up process design possible from this particular unit.

  15. Improvement of liquefaction solvent. Increase of light oil yield with a reduction in catalyst addition; Ekika yozai no kairyo kenkyu. Sekitan ekikayu no keishitsuka to shokubai tenkaryo no teigen

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, N.; Yasumuro, M.; Sato, K.; Komatsu, N.; Okui, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    For developing coal liquefaction processes, it is an important problem to improve the light oil yield with increased oil yield. It was previously reported that distillate mainly containing lighter fraction can be produced with high oil yield by reducing the iron/sulfur catalyst addition in slurry, by recycling gas in the process operation, by utilizing these effects, and by using heavy oil as recycling solvent. In this study, the maximum distillate yield of Victorian brown coal was investigated through continuous liquefaction using a bench scale unit. In addition, operation conditions for obtaining sufficient oil yield were investigated under the reduced catalyst addition into one-third. Consequently, it was confirmed that the maximum content of lighter fraction in distillate product was obtained with reduced catalyst addition by using heavy oil as recycling solvent, by adopting new catalyst, and by utilizing effects of CLB recycling and gas recycling in maximum. It was also revealed that lighter distillate can be produced compared with the oil product obtained by recycling conventional solvent. 3 refs., 6 figs., 2 tabs.

  16. Residual Liquefaction under Standing Waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    This paper summarizes the results of an experimental study which deals with the residual liquefaction of seabed under standing waves. It is shown that the seabed liquefaction under standing waves, although qualitatively similar, exhibits features different from that caused by progressive waves....... The experimental results show that the buildup of pore-water pressure and the resulting liquefaction first starts at the nodal section and spreads towards the antinodal section. The number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same...... wave height. Recommendations are made as to how to assess liquefaction potential in standing waves. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE)....

  17. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  18. Liquefaction of crop residues for polyol production

    OpenAIRE

    Wan, C.; Wang, T.; Zhang, L.; Zang, L.; Li, Y; Mao, Z.; Liang, L.

    2006-01-01

    The liquefaction of crop residues in the presence of ethylene glycol, ethylene carbonate, or polyethylene glycol using sulfuric acid as a catalyst was studied. For all experiments, the liquefaction was conducted at 160C and atmospheric pressure. The mass ratio of feedstock to liquefaction solvents used in all the experiments was 30:100. The results show that the acid catalyzed liquefaction process fit a pseudo-first-order kinetics model. Liquefaction yields of 80, 74, and 60% were obtained i...

  19. Bioechnology of indirect liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Datta, R.; Jain, M.K.; Worden, R.M.; Grethlein, A.J.; Soni, B.; Zeikus, J.G.; Grethlein, H.

    1990-05-07

    The project on biotechnology of indirect liquefaction was focused on conversion of coal derived synthesis gas to liquid fuels using a two-stage, acidogenic and solventogenic, anaerobic bioconversion process. The acidogenic fermentation used a novel and versatile organism, Butyribacterium methylotrophicum, which was fully capable of using CO as the sole carbon and energy source for organic acid production. In extended batch CO fermentations the organism was induced to produce butyrate at the expense of acetate at low pH values. Long-term, steady-state operation was achieved during continuous CO fermentations with this organism, and at low pH values (a pH of 6.0 or less) minor amounts of butanol and ethanol were produced. During continuous, steady-state fermentations of CO with cell recycle, concentrations of mixed acids and alcohols were achieved (approximately 12 g/l and 2 g/l, respectively) which are high enough for efficient conversion in stage two of the indirect liquefaction process. The metabolic pathway to produce 4-carbon alcohols from CO was a novel discovery and is believed to be unique to our CO strain of B. methylotrophicum. In the solventogenic phase, the parent strain ATCC 4259 of Clostridium acetobutylicum was mutagenized using nitrosoguanidine and ethyl methane sulfonate. The E-604 mutant strain of Clostridium acetobutylicum showed improved characteristics as compared to parent strain ATCC 4259 in batch fermentation of carbohydrates.

  20. WATER RESERVOIRS UNDER CONSTRUCTION AS A RESULT OF THE ACTIVITIES OF “KONIN” AND “ADAMÓW” BROWN COAL MINES

    Directory of Open Access Journals (Sweden)

    Mirosława Gilewska

    2015-11-01

    Full Text Available Post-exploitation opencast pits constitute a final stage of mining activities and turning them into public utility facilities is taking place now by their water reclamation. They constitute basins without outflows with the depth of 15 to 69 m and areas ranging from 2.5 to 692 ha. The bottoms of these basins are situated in pyrite-containing Miocene formations. Products of Fe2S weathering comprise sulphuric acid and iron compounds – sulphate II and sulphate III. This study presents the basic parameters of the reservoirs constructed in the final opencast pits of the “Konin” and “Adamów” brown coal mine,s as well as the properties of the formations making up the bottoms of two water reservoirs under construction: Lubstów and Władysławów. It is evident from the performed investigations that these formations are characterised by very acid reaction and very high exchangeable acidity. The total sulphur content ranges from 446 to 962 mg·kg-1 of the ground and that of sulphate sulphur – from 71 to 187 mg·kg-1 of the ground. The chemism of these grounds will exert influence on the quality of water accumulating in the opencast pits during the initial period of their spontaneous flooding. Together with the increase of the capacity of these reservoirs, the contact of waters with boulder clays of the Warta River glaciation abounding in calcium compounds will increase and concentrations of calcium ions in the waters of the reservoirs will also grow.

  1. HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.

    1985-12-01

    This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

  2. HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.

    1985-12-01

    This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

  3. Thermodynamic characterisation and modelling of coal liquids

    NARCIS (Netherlands)

    Veen, A.M.H. van der

    1997-01-01

    For the description of the temperature-pressure relationship of coal oils, a model is required that requires as input only data from analytical chemical techniques. Coal oils are obtained during liquefaction and differ in properties from crude oils in their contents of aromatic hydrocarbons. As

  4. Survey for making a data book on the new energy technological development. Waste-fueled power generation, solar heat utilization, geothermal power generation, clean energy vehicles, coal liquefaction/gasification, and traversal themes; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Haikibutsu hatsuden, taiyonetsu riyo, chinetsu hatsuden, clean energy jidosha, sekitan ekika, gas ka oyobi odanteki tema

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The paper concerns the following six fields among the fields of new energy technology: the waste-fueled power generation, solar heat utilization, geothermal power generation, clean energy vehicles, coal liquefaction and coal gasification. The up-to-date data made public were collected and classified into the following items: outline of systems, specific examples of the introduction in Japan and other countries, policies/laws and rules/subsidy systems, production quantity/actual amount of introduction/projected amount of introduction (target), cost, terminology, listing of main related companies and groups, etc. Further, arrangement was traversally conducted on the outlook of the energy introduction by the Japanese government and measures taken for development of new energy by Japan and other countries. Namely, the items of the book are as follows: classification of new energy, outlook for energy supply/demand, cost of new energy technology (power generation) and outlook for the introduction, menus of buying surplus electricity of electric companies, policies/laws and rules/subsidy systems concerning the new energy introduction in Japan and overseas, and a list of organizations engaged in the new energy technological development.

  5. Survey for preparing the database for R and D of new engines. Waste power generation, solar heat system, geothermal power generation, clean energy vehicle, coal liquefaction/gasification, and combined systems; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Haikibutsu hatsuden, taiyonetsu riyo, chinetsu hatsuden, clean energy jidosha, sekitan ekika gas ka oyobi odanteki tema

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The present developmental conditions and issues of new energies are systematically arranged for effective promotion of their diffusion. One hundred and forty six general waste power generation facilities of 558,000kW are in operation in 1995, and among them 89 facilities supplies 1,080 GWh to power companies. 50 industrial waste power facilities of 247,000kW are in operation. 20,000 solar systems and 180,000 hot water heaters are in operation in 1995. Commercial geothermal power generation facilities of 490,000kW and private ones of 36,000kW are in operation. Introduction of expensive clean energy vehicles is making very slow progress. The pilot study on bituminous coal liquefaction is in promotion mainly by NEDO. The experiment of entrained bed coal gasification in Nakoso was successfully completed, and development of a commercial plant is to be expected. Power rates of 10 power companies were reduced in 1996, and unit purchase prices of surplus power of photovoltaic and wind power generation were also revised. The new menu and unit purchase price were announced in 1996 for surplus power of waste power generation and fuel cell. 67 figs., 284 tabs.

  6. Refining and End Use Study of Coal Liquids.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Progress in a study to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids is reported.

  7. Low-rank coal research. Quarterly report, January--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  8. Microbial liquefaction of peat for the production of synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunasekaran, M.

    1988-01-01

    Objectives of this study were: to evaluate the potential of using various microorganisms to hydrolyse and liquify peat; to determine the optimal conditions for peat hydrolysis and liquefaction; to study the co-metabolizable substances; to separate the compounds present in liquified peat by alumina and silica acid chromatography and capillary gas chromatography; and to identify the compounds in liquified peat by capillary GC-Mass spectrometry. Organisms used in the study include: Coprinus comatus, Coriolus hirsutus, Ganoderma lucidum, Lentinus edodes, Lenzites trabea, Phanerochaete chrysosporium, Pleurotus ostreatus, P. sapidus, Polyporus adjustus, Neurospora sitophila, Rhizophus arrhizus, Bacillus subtilis, Acinetobacter sp. and Alcaligenes sp. The fungi were maintained and cultivated in potato dextrose agar at 30 C. The bacteria were maintained in nutrient agar at 30 C. We have also initiated work on coal solubilization in addition to the studies on peat liquefaction. A relatively new substratum or semi-solid base for culture media called Pluronic F-127, or Polyol (BASF, New Jersey). Objectives of this study were: (1) to study the growth patterns of Candida ML 13 on pluronic as substratum; (2) to determine the rate of microbial coal solubilization on pluronic F-127 amended in different growth media; (3) to separate the mycelial mat of Candida ML 13 from unsolubilized coal particles and solubilized coal products from pluronic F-127; (4) to determine the effects of pH on microbial coal solubilization in pluronic F-127 media; (5) the effect of concentration of pluronic F-127 in media on coal solubilization; and, (6) to study the role of extracellular factors secreted by Candida ML 13 on coal solubilization in pluronic F-127 media. Results are discussed. 4 refs.

  9. Free report from Liquefaction Workshop

    Science.gov (United States)

    The technical report Proceedings From the 2nd U.S.-Japan Workshop on Liquefaction, Large Ground Deformation and Their Effects on Lifelines is available free of charge from the National Center for Earthquake Engineering Research, headquartered at the State University of New York at Buffalo. The 499-page proceedings contain more than 30 reports on case studies of liquefaction and earthquake-induced ground deformation from previous earthquakes in the U.S. and Japan.

  10. Secondary liquefaction in ethanol production

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase.......The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase....

  11. Coal demonstration plants. Quarterly report, January-March 1979. [US DOE-supported

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Progress in US DOE-supported demonstration plants for the gasification and liquefaction of coal is reported: company, contract number, process description and flowsheet, history and progress in the current quarter. Related projects involve coal feeders, lock hoppers, values, etc. for feeding coal into high pressure systems, coal grinding equipment and measuring and process control instrumentation. (LTN)

  12. Fundamental studies of retrograde reactions in direct liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Serio, M.A.; Solomon, P.R.; Kroo, E.; Charpenay, S.; Bassilakis, R.

    1991-12-17

    The overall objective of the program was to improve the understanding of retrograde reactions and their dependencies on coal rank and structure, and/or coal modifications and reaction conditions. Because retrograde reactions are competitive with bond breaking reactions, an understanding of both is required to shift the competition in favor of the latter. Related objectives were to clarify the conflicting observations reported in literature on such major topics as the role of oxygen groups in retrograde reactions and to provide a bridge from very fundamental studies on pure compounds to phenomenological studies on actual coal. This information was integrated into the FG-DVC model, which was improved and extended to the liquefaction context.

  13. Application of Algae as Cosubstrate To Enhance the Processability of Willow Wood for Continuous Hydrothermal Liquefaction

    DEFF Research Database (Denmark)

    Sintamarean, Iulia-Maria; Pedersen, Thomas Helmer; Zhao, Xueli

    2017-01-01

    This work proposes a novel strategy to improve the continuous processing of wood slurries in hydrothermal liquefaction systems by coprocessing with algae. Of all algae tested, brown seaweeds and microalgae perform best in preventing slurries dewatering, the main reason for pumpability issues...... with wood slurries. Rheological tests (viscosity–shear rate profile) indicate that the addition of these two algae to the wood slurry causes the highest increase in viscosity, which coincides with improved wood slurries stability and pumpability. Hydrothermal liquefaction of wood-algae slurries at 400 °C...

  14. Coal conversion. 1979 technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Individual reports are made on research programs which are being conducted by various organizations and institutions for the commercial development of processes for converting coal into products that substitute for these derived from oil and natural gas. Gasification, liquefaction, and demonstration processes and plants are covered. (DLC)

  15. Literature survey of properties of synfuels derived from coal

    Science.gov (United States)

    Reynolds, T. W.; Niedzwiecki, R. W.; Clark, J. S.

    1980-02-01

    A literature survey of the properties of synfuels for ground-based gas turbine applications is presented. Four major concepts for converting coal into liquid fuels are described: solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Data on full range syncrudes, various distillate cuts, and upgraded products are presented for fuels derived from various processes, including H-coal, synthoil, solvent-refined coal, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Some typical ranges of data for coal-derived low Btu gases are also presented.

  16. 褐煤本源菌在煤层生物气生成中的微生物学特征%Performance of indigenous bacteria during the biogenic gas generation from brown coal

    Institute of Scientific and Technical Information of China (English)

    王爱宽; 秦勇

    2011-01-01

    为探明微生物菌群在褐煤生物气生成过程中的作用机制,利用厌氧手套箱为操作平台,从云南昭通盆地新鲜褐煤样品中富集培养本源产甲烷菌群,并通过褐煤生物气生成模拟实验,研究了产气过程中发酵细菌、产氢产乙酸菌数量和纤维素酶、辅酶F420活性的变化特征.结果表明:在生物气产生过程中,发酵细菌始终保持着较高活性(大于7.5×106个/mL),产氢产乙酸菌数量和增殖速率明显小于发酵细菌,但其数量变化趋势与发酵细菌相似,两者在营养生态位上显示出明显的承继关系;纤维素酶始终保持较高的活性(0.018~0.023mg/(mL.h));辅酶F420活性会受到产酸发酵菌所产生的酸性物质的抑制,其最低活性值为峰值的55.91%~67.61%;辅酶F420活性在褐煤生物气产出过程中经历了两个高峰期,指示着褐煤的煤层气生成过程具有阶段性.%In order to verify the functional mechanism of microbial community in biogenic gas generation progress from brown coal,we used anaerobic glove chamber as the experimental platform to enrich and cultivate active methanogen flora from freshly collected brown coal samples from Zhaotong basin,Yunnan Province,China.A simulating experiment of biogenic gas from brown coal was conducted with these indigenous bacteria.The amounts of fermentation and syntrophic acetogenic bacteria,and the activities of cellulase and coenzyme F420 were analyzed during the experiment.The results show that the fermentation bacteria kept quite active(≥7.5×106/mL) throughout the biogas generation process;and both the amount and breeding rate of syntrophic acetogenic bacteria were smaller than that of fermentation bacteria.But the amounts of both kinds of bacteria had the same changing trend,which shows significant inherited food chain-related relationship.The activities of cellulase remained fairly(0.018-0.023 mg/(mL·h));while those of coenzyme F420 could

  17. 褐煤本源茵生气特征及其作用机理%Generation and mechanism of gas from brown coal under action of parent bacterium

    Institute of Scientific and Technical Information of China (English)

    王爱宽

    2012-01-01

    ,产甲烷菌和辅酶F420。活性受到酸性物质的抑制。随后,产氢产乙酸菌成为优势茵,它们利用发酵细菌代谢产物产生乙酸和氢,两者之间具有食物链关系。辅酶F420活性在静止期后增长迅速,并在产气高峰期达到最大,体现本源产甲烷茵对褐煤底物的良好适应性,是评价产气量高低的有效指标。通过改变生气条件,研究底物类型、褐煤粒度、矿井水和煤矸石对褐煤生物气生成的影响。结果表明:不同配比的酵母浸出液、甲醇和乙酸钠溶液对生物气生成具有抑制或激活作用,较小粒度褐煤有利于提高生气率,不同比例矿井水的添加能够有效增加次生生物气产量。煤矸石本身不能作为基质被厌氧细菌利用。%Elucidating the characteristics and mechanism of the reaction of microorganisms and organic matter in coal to produce bio-gas is a very important foundation to the further understanding of the genesis of coalbed gas and the in- novation of coalbed gas exploration. So the brown coal in Zhaotong basin was selected as the research object to study the generation of secondary biogenic coalbed gas, and then discussed its generation mechanism. The results show that, the brown coal samples have active anaerobic bacteria, in which cellulose decomposition bacteria are in the majority and sulfate-reducing bacteria are very few. Local methanogen are successfully enrichment cultivated and they are mainly G+ bacillus, and the individual sizes have large differences. Based on that, the local bac- teria and brown coal samples were selected as bacterial sources and substrates to study the generation of secondary bio- genie gas from the brown coal. The results prove that, after resting period, the local anaerobic bacteria could use the brown coal to produce a large amount of biogenic gas. Secondary biogenic coalbed gas has two generation periods. The substrate that is biodegraded to produce gas in the first period is

  18. Analysis of engineering cycles power, refrigerating and gas liquefaction plant

    CERN Document Server

    Haywood, R W

    1991-01-01

    Extensively revised, updated and expanded, the fourth edition of this popular text provides a rigorous analytical treatment of modern energy conversion plant. Notable for both its theoretical and practical treatment of conventional and nuclear power plant, and its studies of refrigerating and gas-liquefaction plant. This fourth edition now includes material on topics of increasing concern in the fields of energy 'saving' and reduction of environmental pollution. This increased coverage deals specifically with the following areas: CHP (cogeneration) plant, studies of both gas and coal burning p

  19. Royal Society, Discussion on New Coal Chemistry, London, England, May 21, 22, 1980, Proceedings

    Science.gov (United States)

    1981-03-01

    A discussion of new coal chemistry is presented. The chemical and physical structure of coal is examined in the first section, including structural studies of coal extracts, metal and metal complexes in coal and coal microporosity. The second section presents new advances in applied coal technology. The development of liquid fuels and chemicals from coal is given especial emphasis, with papers on the Sasol Synthol process, the Shell-Koppers gasification process, liquefaction and gasification in Germany, the Solvent Refined Coal process, the Exxon Donor Solvent liquefaction process and the Mobil Methanol-to-Gasoline process. Finally, some developments that will be part of the future of coal chemistry in the year 2000 are examined in the third section, including coal-based chemical complexes and the use of coal as an alternative source to oil for chemical feedstocks.

  20. Assessment of Research Needs for Coal Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1983-08-01

    The Coal Combustion and Applications Working Group (CCAWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on coal combustion and utilization. The important topical areas of coal gasification and coal liquefaction have been deliberately excluded because R and D needs for these technologies were reviewed previously by the DOE Fossil Energy Research Working Group. The CCAWG studies were performed in order to provide an independent assessment of research areas that affect prospects for augmented coal utilization. In this report, we summarize the findings and research recommendations of CCAWG.

  1. Reaction mechanism of coal liquefaction: hydrogenolysis of model compound using synthetic pyrite as catalysts. 7. Property change of synthetic pyrite catalyst with the time after production; Sekitan ekika hanno kiko (model kagobutsu no hanno). 7. Gosei ryukatetsu shokubai no keiji henka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H.; Meno, H.; Uemaki, O.; Shibata, T.; Tsuji, T. [Hokkaido University, Sapporo (Japan)

    1996-10-28

    Reactions of various model compounds were investigated using synthetic pyrites for coal liquefaction. In this study, successive changes of the catalysts were investigated from the reactions of model compounds by using three different synthetic pyrites with the lapse of time after production. Benzyl phenyl ether, dibenzyl, and n-octylbenzene were used as model compounds. Reactions were conducted in an autoclave, into which sample, catalyst, decalin as solvent, and initial hydrogen pressure 10 MPa were charged. The autoclave was held at 450 or 475{degree}C of reaction temperature for 1 hour. The catalyst with a shorter lapse of time after production acted to hydrogen transfer, and inhibited the formation of condensation products due to the stabilization of decomposed fragment. It also acted to isomerization of materials by cutting alkyl side chains. When adding sulfur to the catalyst with longer lapse of time after production under these reaction conditions, it inhibited the formation of condensation products for the reaction of benzyl phenyl ether. However, it did not provide the effect for the reaction of n-octylbenzene. 5 refs., 3 figs.

  2. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-09-01

    Reported here are the results of Laboratory and Bench- Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE- AC22- 91PC91040 during the period April 1, 1997 to June 30, 1997. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two stage liquefaction process several novel concepts which includes dispersed lower- cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This report includes a data analysis of the ALC- 2 run which was the second continuous run in which Wyodak Black Thunder coal was fed to a two kg/ h bench- scale unit. One of the objectives of that run was to determine the relative activity of several Mo- based coal impregnated catalyst precursors. The precursors included ammonium heptamolybdate (100 mg Mo/ kg dry coal), which was used alone as well as in combination with ferrous sulfate (1% Fe/ dry coal) and nickel sulfate (50 mg Ni/ kg dry coal). The fourth precursor that was tested was phosphomolybdic acid which was used at a level of 100 mg Mo/ kg dry coal. Because of difficulties in effectively separating solids from the product stream, considerable variation in the feed stream occurred. Although the coal feed rate was nearly constant, the amount of recycle solvent varied which resulted in wide variations of resid, unconverted coal and mineral matter in the feed stream. Unfortunately, steady state was not achieved in any of the four conditions that were run. Earlier it was reported that Ni- Mo catalyst appeared to give the best results based upon speculative steady- state yields that were developed.

  3. Advances in Seabed Liquefaction and its Implications for Marine Structures

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2013-01-01

    A review is presented of recent advances in seabed liquefaction and its implications for marine structures. The review is organized in seven sections: Residual liquefaction, including the sequence of liquefaction, mathematical modelling, centrifuge modelling and comparison with standard wave-flum......-flume results; Momentary liquefaction; Floatation of buried pipelines; Sinking of pipelines and marine objects; Liquefaction at gravity structures; Stability of rock berms in liquefied soils; and Impact of seismic-induced liquefaction.......A review is presented of recent advances in seabed liquefaction and its implications for marine structures. The review is organized in seven sections: Residual liquefaction, including the sequence of liquefaction, mathematical modelling, centrifuge modelling and comparison with standard wave...

  4. Assessing the economic impact of indirect liquefaction process improvements: Volume 1, Development of the integrated indirect liquefaction model and baseline case

    Energy Technology Data Exchange (ETDEWEB)

    Gray, D.; Tomlinson, G.C. (Mitre Corp., McLean, VA (USA). Civil Systems Div.)

    1990-10-01

    This report documents the development of an integrated indirect liquefaction system model, which processes input coal to refined liquid products, and the model's application in the analysis of a baseline case. The baseline case uses Shell gasification of coal followed by gas cleaning to produce a clean synthesis gas for slurry-phase Fischer-Tropsch synthesis. The raw liquid products are refined to produce gasoline and diesel. Costs of liquid products have been estimated for the baseline plant. The model also alloys many sensitivity studies to be performed so that the economic impacts of research and development advances can be quantified. When used in this manner, the model can provide research guidance for future indirect liquefaction studies. 18 refs., 12 figs., 12 tabs.

  5. Marine impact on liquefaction processes

    NARCIS (Netherlands)

    Osch, M.M.E. van; Belfroid, S.P.C.; Oldenburg, M.

    2010-01-01

    In the last decade the interest for liquefied natural gas (LNG) is growing. A tendency is to produce and transport LNG on large floating vessels. One important choice in designing such a vessel is the liquefaction process. Several processes have been developed in recent years, ranging from mixed ref

  6. Microbial reactions in coal and coal relevant structures. Part project: fungal and enzymatic depolarisation of brown coal for the production of low-molecular compounds. Interim report; Mikrobielle Umsetzung an Kohle und kohlenrelevanten Strukturen. Teilvorhaben: Pilzliche und enzymatische Depolymerisation von Braunkohle zur Gewinnung niedermolekularer Verbindungen. Zwischenbericht (Berichtszeitraum 01.01.1998 - 31.12.1998)

    Energy Technology Data Exchange (ETDEWEB)

    Ziegenhagen, D.; Bublitz, F.; Sorge, S.; Ullrich, R.; Hofrichter, M.; Fritsche, W.

    1999-04-29

    The present research project involved a study of the depolymerisation of brown coal constituents. The purpose of the depolymerisation experiments, which were carried out with fungi as well as their (acellular) enzymes, was to obtain products with a potential market value. Research focussed on one of the key enzymes of lignocellulose degradation, namely manganese (II) peroxidase (MnP). The effects of this enzyme on the depolymerisation of brown coal was studied in detail in acellular systems. The insights gained in this way then served as a basis for optimising the fungal and enzymatic depolymerisation processes for maximum yields of low-molecular products. The experiments carried out during the period under review were oriented to finding new types of lignolytically active organisms, isolating lignolytic enzymes and immobilising them on natural support materials, and further examining the action spectrum of MnP. Different model substrates were used in order to gain information on what bond types are MnP-cleavable and on possible reaction products. Substrates were either fixed to silica gel as support material or used without support material. The idea of using substrates fixed to support materials was motivated by the need to distinguish between intracellular and extracellular reactions involving the fungal mycelium. [Deutsch] Im Rahmen des Forschungsvorhabens wird die Depolymerisation von Braunkohle-Bestandteilen untersucht. Ziel der sowohl mit Pilzorganismen als auch mit deren Enzymen (zellfrei) durchgefuehrten Depolymerisationsversuche ist die Gewinnung von Produkten mit potentiellem Werkstoffcharakter. Im Mittelpunkt der Forschung steht eines der Schluesselenzyme des Ligninozellulose-Abbaus: Die Mangan(II)-Peroxidase (MnP). Die Wirkung dieses Enzyms bei der Depolymerisation von Braunkohle (Bk) in zellfreien Systemen wird weitergehend untersucht. Auf Grundlage der gewonnenen Erkenntnisse werden die pilzlichen und enzymatischen Depolymerisationsprozesse so

  7. Liquefaction, flow, and associated ground failure

    Science.gov (United States)

    Youd, T. Leslie

    1973-01-01

    Ambiguities in the use of the term liquefaction and in defining the relation between liquefaction and ground failure have led to encumbered communication between workers in various fields and between specialists in the same field, and the possibility that evaluations of liquefaction potential could be misinterpreted or misapplied. Explicit definitions of liquefaction and related concepts are proposed herein. These definitions, based on observed laboratory behavior, are then used to clarify the relation between liquefaction and ground failure. Soil liquefaction is defined as the transformation of a granular material from a solid into a liquefied state as a consequence of increased pore-water pressures. This definition avoids confusion between liquefaction and possible flow-failure conditions after liquefaction. Flow-failure conditions are divided into two types: (1) unlimited flow if pore-pressure reductions caused by dilatancy during flow deformation are not sufficient to solidify the material and thus arrest flow, and (2) limited flow if they are sufficient to solidify the material after a finite deformation. After liquefaction in the field, unlimited flow commonly leads to flow landslides, whereas limited flow leads at most to lateral-spreading landslides. Quick-condition failures such as loss of bearing capacity form a third type of ground failure associated with liquefaction.

  8. Advanced direct liquefaction concepts for PETC generic units. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The Advanced Concepts for Direct Coal Liquefaction program was initiated by the Department of Energy in 1991 to develop technologies that could significantly reduce the cost of producing liquid fuels by the direct liquefaction of coal. The advanced 2-stage liquefaction technology that was developed at Wilsonville over the past 10 years has contributed significantly toward decreasing the cost of producing liquids from coal to about $33/bbl. It remains, however, the objective of DOE to further reduce this cost to a level more competitive with petroleum based products. This project, among others, was initiated to investigate various alternative approaches to develop technologies that might ultimately lead to a 25 % reduction in cost of product. In this project a number of novel concepts were investigated, either individually or in a coupled configuration that had the potential to contribute toward meeting the DOE goal. The concepts included mature technologies or ones closely related to them, such as coal cleaning by oil agglomeration, fluid coking and distillate hydrotreating and dewaxing. Other approaches that were either embryonic or less developed were chemical pretreatment of coal to remove oxygen, and dispersed catalyst development for application in the 2-stage liquefaction process. This report presents the results of this project. It is arranged in four sections which were prepared by participating organizations responsible for that phase of the project. A summary of the overall project and the principal results are given in this section. First, however, an overview of the process economics and the process concepts that were developed during the course of this program is presented.

  9. CHARACTERIZATION OF HEXANE SOLUBLE OILS FROM LIQUEFACTION OF TWO BITUMINOUS COALS%两种烟煤的液化及液化油的组成特征研究

    Institute of Scientific and Technical Information of China (English)

    朱继升; LawrenceP.Norcio

    2001-01-01

    Two high-volatile subbituminous coals, DECS-6 of US and Yanzhou coal of China, were liquefied or co-liquefied with HDPE or PVC at 400?℃, 30?min under 7?MPa hydrogen. The results show that Yanzhou coal is easier to be liquefied or co-liquefied than DECS-6 coal under the experimental conditions used and the hexane-soluble oil from Yanzhou coal has more low boiling point fractions than that from DECS-6 coal. The aromatics in hexane soluble oils mainly consist of alkylbeneze, alkylnaphthalene, phenanthrene-,pyrene-, chrysene-, and benzopyrene- compounds, the polars mainly compose of compounds containing O, S and N etc.%在400 ℃、30 min、7 MPa冷氢压条件下两种煤液化结果表明,兖州煤比DECS-6(美国煤)煤更容易液化或共液化,这可能与兖州煤硫含量比较高有关,但DECS-6煤的油收率要高于兖州煤,表明EDCS-6煤容易裂解生成小分子化合物。同种煤液化油的沸点分布特征基本一致。UV(紫外光谱)特征表明,液化油中单环芳烃主要为烷基取代苯类化合物,二环芳烃组分主要是烷基取代萘类化合物,三环芳烃主要为渺位缩合的菲类化合物,四环芳烃主要为芘、屈艹类化合物,五环芳烃以苯并芘类化合物为主,而极性化合物可归属为含O、S、N的极性芳香化合物。

  10. SHENHUA PLANS EIGHT COAL-TO-OIL PROJECTS IN NORTH CHINA

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ China's biggest coal producer, Shenhua Group, plans to convert coal into 30 million tons ofoil by the year 2020 in four northern provinces. Three of eight projects planned will be completed by 2010, Zhang Yuzhuo, in charge of Shenhua's coal liquefaction business, told an energy forum hosted by the China Energy Research Society in Beijing on June 15.

  11. 浅谈我国低阶煤资源分布及其利用途径%Briefly on the Distribution and Utilization of Low-rank Coals Resources in China

    Institute of Scientific and Technical Information of China (English)

    苏天雄

    2012-01-01

    中国煤炭资源储量相对丰富,查明煤炭资源储量为1892亿t,其中褐煤、长焰煤等低阶煤约占全国煤炭储量的30%。文章简单介绍了我国低阶煤资源的性质及分布,并介绍低阶煤燃烧发电、热解、直接液化、气化等工业利用途径。%The coal reserves of China is relatively rich,the demonstrated reserves is 1892 billion tons,which the low-valence coal such as brown coal、long-flame coal takes up 30 %.The paper briefly introduced the category distribution of low-valence coal resources in China,and several industrial utilization way of the low-valence-coal,such as combustion technology for power generation,pyrolysis,direct coal liquefaction and gasification,are introduced.

  12. 12th international conference on coal science. Coal - contributing to sustainable world development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The theme of the conference was: coal - contributing to sustainable world. Papers dealt with combustion, coal cleaning, surface analysis, coal sustainability and research, metallurgical coke, structural studies, ash utilization, SEM analysis, liquefaction, pulverized coal injection, power plant emissions, analytical techniques, gasification, thermal analysis, weathering, self-heating and dust explosion, low rank coal gasification, geochemistry and trace elements, petrographic studies, CO{sub 2} mitigation, low rank coal pyrolysis, gas sorption, pyrolysis, synthesis gas, low rank coal drying, biomass pyrolysis, gas cleaning, underground gasification, activated carbon, pyrolysis and char reactivity, gasification model studies, agglomerated and slurry fuels, co-pyrolysis, and tar products and effluents. The poster papers are also included. The papers have been abstracted separately on the IEA Clean Coal Centre Coal Abstracts database.

  13. Biotreatment of coals and coal related compounds by hydrogen-utilizing microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Murty, M.V.S.; Aleem, M.I.H.; Kermode, R.I.; Bhattacharyya, D. (University of Kentucky, Lexington, KY (United States). Dept. of Chemical Engineering)

    1994-08-01

    Desulfovibrio desulfuricans and Acidianus brierleyi were used to study hydrogenation of coal, pretreated coal, asphaltenes and model compounds (diphenyl methane (DPM) and fumarate) under anaerobic conditions. This study involved three primary aspects: (1) determination of net hydrogen-uptake, (2) identification of the biohydrogenated product of fumarate, and (3) testing the influence of hydrogen uptake/biohydrogenation of coal in terms of direct liquefaction yield. The net hydrogen uptake values (from Warburg and GC assays) by the coals or the model compounds (controls) were less than that of the biotreated samples. The greatest hydrogen uptake occurred in untreated coal KCER No. 4677 in the presence of D. desulfuricans. The net hydrogen uptake by coals varied depending upon the coal type and the microorganism. Model compound DPM showed its highest hydrogen uptake rate when catalysed by D. desulfuricans. D. desulfuricans also hydrogenated 36% of the fumarate to succinate in the presence of hydrogen. Biotreated coal KCER No. 4677 was subsequently subjected to direct liquefaction. It showed a net increase in liquefaction yield of 5-4% as a result of biotreatment.

  14. Earthquake Risk - MO 2013 Liquefaction Potential (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Soil liquefaction potential was determined using existing geologic and alluvium maps. Quaternary, Tertiary, and Cretaceous-age sediments, and alluvium deposits are...

  15. Evaluation for Earthquake Liquefaction of Loess Sites

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Wang Lanmin; Wang Ping

    2009-01-01

    ugh the sinusoid loading dynamic triaxial test, the liquefaction property of saturated loess and sand selected from a civil airport of Lanzhou, Gansu is examined. Based on the laboratory results, a comprehensive assessment on the earthquake liquefaction potential of the loess and sand is given, using the liquefaction resistance shear stress method and the results of seismic hazard assessment. It is found that under the effect of ground motion with exceedance probability of 10% within 50 years, the loess in the study is more susceptible to liquefaction than sand.

  16. Wave liquefaction in soils with clay content

    DEFF Research Database (Denmark)

    Kirca, Özgür; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    The paper presents the results of an experimental study of the influence of clay content (in silt-clay and sand-clay mixtures) on liquefaction beneath progressive waves. The experiments showed that the influence of clay content is very significant. Susceptibility of silt to liquefaction...... is increased with increasing clay content, up to 30%, beyond which the mixture of silt and clay is not liquefied. Sand may become prone to liquefaction with the introduction of clay, contrary to the general perception that this type of sediment is normally liquefaction resistant under waves....

  17. Quick-response evaluation of energy-related occupational safety and health programs. Task Order 1: mortality study of 50 workers exposed to coal-liquefaction processes at a Union Carbide Plant, Institute, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.

    1977-11-01

    A study was undertaken of 50 Union Carbide employees who had been exposed to high-boiling oils containing polycyclic hydrocarbons, coal tar, and pitch. The exposures occurred as a result of a coal-hydrogenation process initiated at the West Virginia facility in May of 1952. Workers were given annual physical examinations and, beginning in 1955, quarterly skin inspections. A review of the findings does not support the initial hypothesis that those workers exposed to heavy streams of toxic materials who developed cancerous skin lesions were at risk for developing systemic carcinoma. Indeed, there was a marked lack of cancer-related deaths or morbidity in the study group after a latency period of 18 to 20 years. One case of lung cancer was reported in a subject at 60 years of age, after a lifetime of smoking. One case of prostatic cancer was diagnosed at 77 years of age. A review of the five deaths listed indicated all were cardiac related including coronary disease, arteriosclerotic disease, cor pulmonale, and myocardial disease.

  18. CO2 Emission Reduction and Its Utilization Applied in Indirect Coal Liquefaction Project%煤间接液化项目中CO2的减排及利用

    Institute of Scientific and Technical Information of China (English)

    李俊诚; 李龙; 刘万洲; 金嘉璐; 赵金立

    2012-01-01

    The CO2 emitted from large CTL (Coal to Liquid) Projects is high in purity and intensive. Through selection of advanced process technologies, reasonable optimization of processes and use of the heat and the high heat-value tail gas, not only the energy efficiency can be improved, coal consumption reduced, but also the CO2 emission can be reduced. In addition, based on the identification of the CO2 emission sources, its load and concentration, reasonable use of CO2 was identified. Then an economic evaluation model of CO2 from the CTL project applied in EOR (Enhance Oil Recovery) was built to prove its economic feasibility.%针对大型煤炭间接液化项目中CO2纯度高、排放集中的特点,通过技术选择、工艺优化和对工艺过程中产生的余热和高热值尾气进行充分利用,可大幅减少CO2排放.通过对CO2排放源进行识别,有针对性地确定其合理的利用方式;通过建立煤炭间接液化工厂排放CO2用于驱油的经济评价模型,对其应用经济可行性进行了论证.

  19. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  20. Recording-based identification of site liquefaction

    Institute of Scientific and Technical Information of China (English)

    Hu Yuxian; Zhang Yushan; Liang Jianwen; Ray Ruichong Zhang

    2005-01-01

    Reconnaissance reports and pertinent research on seismic hazards show that liquefaction is one of the key sources of damage to geotechnical and structural engineering systems. Therefore, identifying site liquefaction conditions plays an important role in seismic hazard mitigation. One of the widely used approaches for detecting liquefaction is based on the time-frequency analysis of ground motion recordings, in which short-time Fourier transform is typically used. It is known that recordings at a site with liquefaction are the result of nonlinear responses of seismic waves propagating in the liquefied layers underneath the site. Moreover, Fourier transform is not effective in characterizing such dynamic features as time-dependent frequency of the recordings rooted in nonlinear responses. Therefore, the aforementioned approach may not be intrinsically effective in detecting liquefaction. An alternative to the Fourier-based approach is presented in this study,which proposes time-frequency analysis of earthquake ground motion recordings with the aid of the Hilbert-Huang transform (HHT), and offers justification for the HHT in addressing the liquefaction features shown in the recordings. The paper then defines the predominant instantaneous frequency (PIF) and introduces the PIF-related motion features to identify liquefaction conditions at a given site. Analysis of 29 recorded data sets at different site conditions shows that the proposed approach is effective in detecting site liquefaction in comparison with other methods.

  1. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  2. Recording-based identification of site liquefaction

    Science.gov (United States)

    Hu, Yuxian; Zhang, Yushan; Liang, Jianwen; Zhang, Ray Ruichong

    2005-12-01

    Reconnaissance reports and pertinent research on seismic hazards show that liquefaction is one of the key sources of damage to geotechnical and structural engineering systems. Therefore, identifying site liquefaction conditions plays an important role in seismic hazard mitigation. One of the widely used approaches for detecting liquefaction is based on the time-frequency analysis of ground motion recordings, in which short-time Fourier transform is typically used. It is known that recordings at a site with liquefaction are the result of nonlinear responses of seismic waves propagating in the liquefied layers underneath the site. Moreover, Fourier transform is not effective in characterizing such dynamic features as time-dependent frequency of the recordings rooted in nonlinear responses. Therefore, the aforementioned approach may not be intrinsically effective in detecting liquefaction. An alternative to the Fourier-based approach is presented in this study, which proposes time-frequency analysis of earthquake ground motion recordings with the aid of the Hilbert-Huang transform (HHT), and offers justification for the HHT in addressing the liquefaction features shown in the recordings. The paper then defines the predominant instantaneous frequency (PIF) and introduces the PIF-related motion features to identify liquefaction conditions at a given site. Analysis of 29 recorded data sets at different site conditions shows that the proposed approach is effective in detecting site liquefaction in comparison with other methods.

  3. Modeling and simulation of an entrained flow coal gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Govind, R.; Shah, J.

    1984-01-01

    A mathematical model has been developed to simulate the Texaco downflow entrained-bed pilot-plant gasifier using coal liquefaction residues and coal-water slurries as feedstocks. This model describes the physical and chemical processes occurring in an entrained coal gasifier. Parameter studies were made in order to provide a better understanding of the reactor performance for various inlet feed conditions utilising the model.

  4. Applications of polymer extrusion technology to coal processing

    Science.gov (United States)

    Lewis, D. W.

    1981-01-01

    Upon heating, many of the middle-aged bituminous coals exhibit a plasticity very similar to polyethylene for a few minutes. Plastic coal can be extruded, pelletized or molded using common plastics technology and equipment. Investigations concerning the plastic state of coals are conducted with the objective to develop techniques which will make useful commercial applications of this property possible. Experiments which show the characteristics of plastic-state coal are discussed, and problems related to a continuous extrusion of coal are considered. Probably the most significant difference between the continuous extrusion of coal and the extrusion of a thermoplastic polymer is that volatiles are continuously being released from the coal. Attention is given to aspects of dragflow, solids feeding, and melt pumping. Application potentials for plastic coal extrusion might be related to coal gasification, direct liquefaction, and coal combustion.

  5. 煤液化重质产物的催化加氢裂解研究%Study of catalytic hydrocracking of asphaltenes from heavy products of coal liquefaction

    Institute of Scientific and Technical Information of China (English)

    康士刚; 宗志敏; 水恒福; 王知彩; 魏贤勇

    2011-01-01

    为了使煤直接液化的重质产物转化为轻质油类,利用管式高压反应釜,以四氢萘为溶剂、FeS和S为催化剂,对沥青烯进行了加氢裂解研究.考察了催化剂种类及加入量、反应温度和反应压力等因素对沥青烯加氢液化的转化率和产物分布的影响.利用FTIR与元素分析仪对原料沥青烯及残余沥青烯进行了结构表征.结果表明:在一定实验条件下,FeS加硫后使原料的转化率由30.76%增加至53.94%,油+气的产率也由6.01%增至38.39%,而逆向缩合程度减少了9%;两种催化体系下原料的液化转化率均随着温度的升高而增加,但不加硫时增加的幅度为15.20%,明显小于加硫时的23.83%;随着压力的增加,两种催化条件下原料的转化率均增加,而逆向缩合程度在不加硫时随着压力的增加而增加(16.17%,6~30.54%),加硫时则相反.%In order to upgrading the heavy products from Xiaolongtan lignite liquefaction, the hydrocracking experiments of asphaltenes (AS) were carried out with tetralin as solvent and FeS or sulfur as catalyst in a batch micro-autoclave. The effects of types and amount of catalyst, reaction temperature and hydrogen pressure on the distribution of liquefied products were investigated. The elementary and FTIR analyses were used to illustrate the structural characteristics of feedstock AS and residue ASs. The results indicate that under specific conditions,the addition of sulfur into FeS catalyst increases the conversion of feedstock AS from 30. 76 %to 53.94% with the yield of oil+gas from 6.01% to 38.39%. The retrogressive condensation is reduced by 9%. In the two cases, both the conversions of feedstock AS increase with the increasing of reaction temperature. The conversion increment of 15.20% without sulfur addition is distinctly lower than that of 23.83% with sulfur addition. With the increasing of initial H2 pressure, the conversions of feedstock AS increase in the two cases, where

  6. 77 FR 58118 - Freeport LNG Development, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC, FLNG...

    Science.gov (United States)

    2012-09-19

    ... Energy Regulatory Commission Freeport LNG Development, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC, FLNG Liquefaction 3, LLC; Notice of Application Take notice that on August 31, 2012, Freeport LNG... natural gas liquefaction and export facilities will be constructed adjacent to the existing Freeport...

  7. Studies of the coal facies in Eastern Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, Lyudmila; Ivanova, Ariadna; Zhernova, Halina [O. Gonchar str., 55b, Kiev 01054 (Ukraine)

    2004-04-23

    This article is a short review concerning the knowledge of petrographic compositions and origins of the diverse age coals in the eastern Ukraine regions, i.e. the Carboniferous age coals of the Dnieper-Donets Basin and the same age coals of the Donets Basin one as well as the Paleogene coals of Dnieper Brown Coal Basin. It was concluded that the coal-forming conditions depend on the geotectonic situations of the above basins.

  8. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    Alan W. Scaroni; David C. Glick

    1998-08-01

    This project provides coal samples and accompanying analytical data for research by DOE contractors and others. All 56 samples have been purged with argon before storage, and the 33 samples in the DECS series are heat-sealed in foil laminate bags and stored under refrigeration. Eleven DECS samples have been collected under the current contract. Basic characterization, standardized liquefaction analyses and organic geochemical analyses have been completed. Distribution of samples and data is continuing, with processing of samples being performed as needed. Nineteen samples, 90 data printouts, and individual data items from 416 samples were distributed during the quarter. Trends and relationships observed in liquefaction and organic geochemical analyses performed under the contract are summarized in this report. Liquefaction results using tetralin were similar to those using 1-methylnaphthalene under the same run conditions. Properties of individual coals, such as maceral composition and corresponding organic chemical components, were important in explaining liquefaction behavior. NMR and py/gc/ms results illustrated trends based on coal rank, and revealed outliers which might be of special interest, for example low-phenolic coals which limit retrogressive reactions and permit greater liquefaction conversion.

  9. Liquefaction of crop residues for polyol production

    Directory of Open Access Journals (Sweden)

    Wan, C.

    2006-11-01

    Full Text Available The liquefaction of crop residues in the presence of ethylene glycol, ethylene carbonate, or polyethylene glycol using sulfuric acid as a catalyst was studied. For all experiments, the liquefaction was conducted at 160C and atmospheric pressure. The mass ratio of feedstock to liquefaction solvents used in all the experiments was 30:100. The results show that the acid catalyzed liquefaction process fit a pseudo-first-order kinetics model. Liquefaction yields of 80, 74, and 60% were obtained in 60 minutes of reaction when corn stover was liquefied with ethylene glycol, a mixture of polyethylene glycol and glycerol (9:1, w/w, and ethylene carbonate, respectively. When ethylene carbonate was used as solvent, the liquefaction yields of rice straw and wheat straw were 67% and 73%, respectively, which is lower than that of corn stover (80%. When a mixture of ethylene carbonate and ethylene glycol (8:2, w/w was used as solvent, the liquefaction yields for corn stover, rice straw and wheat straw were 78, 68, and 70%, respectively.

  10. Economics of hydrogen production and liquefaction updated to 1980

    Science.gov (United States)

    Baker, C. R.

    1979-01-01

    Revised costs for generating and liquefying hydrogen in mid-1980 are presented. Plant investments were treated as straight-forward escalations resulting from inflation. Operating costs, however, were derived in terms of the unit cost of coal, fuel gas and electrical energy to permit the determination of the influence of these parameters on the cost of liquid hydrogen. Inflationary influence was recognized by requiring a 15% discounted rate of return on investment for Discounted Cash Flow financing analysis, up from 12% previously. Utility financing was revised to require an 11% interest rate on debt. The scope of operation of the hydrogen plant was revised from previous studies to include only the hydrogen generation and liquefaction facilities. On-site fuel gas and power generation, originally a part of the plant complex, was eliminated. Fuel gas and power are now treated as purchased utilities. Costs for on-site generation of fuel gas however, are included.

  11. Simulator for bucket wheel excavators in brown coal open mining of RWE Power AG; Simulator fuer Schaufelradbagger in Braunkohlentagebauen der RWE Power AG

    Energy Technology Data Exchange (ETDEWEB)

    Mittmann, Robert; Niess, Thomas [RWE Power AG, Frechen-Habbelrath (Germany). Technikzentrum Tagebaue / Abt. PCZ-E Betriebsfuehrungssysteme; Rosenberg, Heinrich [RWE Power AG, Koeln (Germany). Tagebauplanung und -genehmigung

    2011-05-15

    In the three large open pits Hambach, Garzweiler and Inden RWE Power AG (Essen, Federal Republic of Germany) uses bucket wheel excavators, conveyor systems and spreaders that provide a continuous mass flow of the production side to the damping site of the opencast mine or the coal bunker respectively. On the world market there hardly exist paragons of solutions for the construction and commissioning of technical innovations of this conveyor technology. Consequently, the eligible technical and technological solutions have to be newly created. Therefore RWE Power AG developed an innovative simulator for bucket wheel excavators. The implementation takes place in a phased approach in which each stage has its own benefits for the company.

  12. Synfuels from coal - an environmentally sound approach

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, J.N. (Sasol Technology Ltd (South Africa))

    1991-01-01

    The Sasol oil from coal process is a two stage process in which indirect liquefaction is used to convert coal to synthesis gas which is then reacted in a second stage to produce hydrocarbon liquids. The process has been used for over 35 years, and has been advanced and modernized to provide almost the same degree of environmental friendliness as some of the new clean coal technologies. A further advantage of the production of transport fuels from coal is that all sulphur is removed prior to processing and the product petrol and diesel fuels are fully sulphur free. Sasol has now diversified into added value products, and today's coal refineries co-produce power, steam, fuel and chemicals from coal. 2 tabs.

  13. Bio-liquefaction/solubilization of low-rank Turkish lignites and characterization of the products

    Energy Technology Data Exchange (ETDEWEB)

    Yesim Basaran; Adil Denizli; Billur Sakintuna; Alpay Taralp; Yuda Yurum [Hacettepe University, Ankara (Turkey). Department of Environmental Sciences

    2003-08-01

    The effect of some white-rot fungi on the bio-liquefaction/solubilization of two low-rank Turkish coals and the chemical composition of the liquid products and the microbial mechanisms of coal conversion were investigated. Turkish Elbistan and Beypazari lignites were used in this study. The white-rot fungi received from various laboratories used in the bio-liquefaction/solubilization of the lignites were Pleurotus sajor-caju, Pleurotus sapidus, Pleurotus florida, Pleurotus ostreatus, Phanerochaete chrysosporium, and Coriolus versicolor. FT-IR spectra of raw and treated coal samples were measured, and bio-liquefied/solubilized coal samples were investigated by FT-IR and LC-MS techniques. The Coriolus versicolor fungus was determined to be most effective in bio-liquefying/solubilizing nitric acid-treated Elbistan lignite. In contrast, raw and nitric acid-treated Beypazari lignite seemed to be unaffected by the action of any kind of white-rot fungi. The liquid chromatogram of the water-soluble bio-liquefied/solubilized product contained four major peaks. Corresponding mass spectra of each peak indicated the presence of very complicated structures. 17 refs., 9 figs., 2 tabs.

  14. Residual liquefaction of seabed under standing waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2013-01-01

    This paper presents the results of an experimental study of the seabed liquefaction beneath standing waves. Silt (with d50 =0.070mm) was used in the experiments. Two kinds of measurements were carried out: pore water pressure measurements and water surface elevation measurements. These measurements...... were synchronized with video recording of the liquefaction process from the side. The ranges of the various quantities in the experiments were wave height H= 5.9-12.0 cm, wave period T= 1.09s, and water depth h=30 cm. The experiments show that the seabed liquefaction under standing waves, although...... with a diffusion coefficient equal to the coefficient of consolidation. The experiments further show that the number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same wave height. © 2013 American Society of Civil Engineers....

  15. Proceedings of the papers of the 33rd Coal Science Conference (1996); Dai 33 kai sekitan kagaku kaigi happyo ronbunshu (1996)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-28

    This is a proceedings of the papers made public in the 33rd (fiscal 1996) Coal Science Conference held by the Japan Institute of Energy. The number of the papers included is 82. The processes such as coal liquefaction, coal gasification and pyrolysis are largely influenced by reaction of the carbon compound in coal. However, coal, which is different in reaction characteristics depending on its producing area, is a comprehensive compound. Therefore, the trial has been made for clarifying the molecular structure and skeleton. In the sense, the following papers are taken notice of: Suzuki and others` Estimation for origin of coals by biomaker analysis; Sugimoto and others` Change of unit skeletons during the artificial coalification; Hirado and others` Study on the correlation between chemical and mineral composition of coal ashes; Okawa and others` Coal structure construction system with construction knowledge and partial energy evaluation; Kanbayashi and others` Analysis of the relationship between coal properties and liquefaction characteristics by using the coal database.

  16. Fe对胜利褐煤焦结构和气化反应性能的影响%Effect of iron on Shengli brown coal char structure and its influence on gasification reactivity

    Institute of Scientific and Technical Information of China (English)

    齐学军; 宋文武; 刘亮

    2015-01-01

    酸洗褐煤负载不同含量的Fe催化剂在固定床反应器上进行热解,然后采用FT-IR、Raman spectra、TPD和TG研究Fe催化剂对煤焦官能团、碳微晶结构、表面活性位和气化反应性的影响。 FT-IR结果表明,催化热解作用下煤焦中-OH、-CH3、-CH2活性官能团数量增加。 Raman光谱测试结果显示,随着Fe含量的增加,IG/Ial由0.095减少到0.087,ID3/Ial由0.090增加至0.097,表明在Fe催化作用下部分大芳香环结构转变为小芳香环结构。 TPD实验结果表明,活性位数量随着煤焦中Fe含量升高而不断增加。在3%含Fe量时煤焦活性位数量随着吸附温度的升高而增加,800℃后煤焦表面活性位数量开始降低。750℃条件下CO2吸附量随着吸附时间的延长而增加,45 min后煤焦达到饱和吸附状态。煤焦-水蒸气等温气化实验表明,煤焦气化反应性与活性位数量有密切的关系,Fe催化剂主要通过增加煤焦表面活性位数量提高煤焦气化反应性。%Acid-washing brown coal samples loaded with different content of iron catalyst were pyrolyzed in a fixed bed reactor. The effect of iron on coal char functional group, carbon crystallite structure, surface active site and gasification reactivity were investigated by FT-IR, Raman spectra,TPD and TG. FT-IR results reveal that the numbers of -OH、-CH3、-CH2 active functional groups increase significantly during catalytic pyrolysis. Raman spectra results show that IG/Ial reduces from 0. 095 to 0. 087 and ID3/Ial increases from 0. 090 to 0. 097 with the increase of iron loading, respectively. It means that partial large polyaromatic ring structures transform into small polyaromatic ring structures under the catalytic action of iron. TPD experimental results indicate that the numbers of active sites increase with the increase of iron loading. With 3% Fe loading, the numbers of active sites rise with the increase of adsorption temperature until 800℃, and then start to

  17. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  18. Low-rank coal research semiannual report, January 1992--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This semiannual report is a compilation of seventeen reports on ongoing coal research at the University of North Dakota. The following research areas are covered: control technology and coal preparation; advanced research and technology development; combustion; liquefaction and gasification. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  19. Thermolysis of phenethyl phenyl ether: A model of ether linkages in low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P.F.; Buchanan, A.C. III; Malcolm, E.A.

    1994-09-01

    Currently, an area of interest and frustration for coal chemists has been the direct liquefaction of low rank coal. Although low rank coals are more reactive than bituminous coals, they are more difficult to liquefy and offer lower liquefaction yields under conditions optimized for bituminous coals. Solomon, Serio, and co-workers have shown that: in the pyrolysis and liquefaction of low rank coals, a low temperature cross-linking reaction associated with oxygen functional groups occurs before tar evolution. A variety of pretreatments (demineralization, alkylation, and ion-exchange) have been shown to reduce these retrogressive reactions and increase tar yields, but the actual chemical reactions responsible for these processes have not been defined. In order to gain insight into the thermochemical reactions leading to cross-linking in low rank coal, we have undertaken a study of the pyrolysis of oxygen containing coal model compounds. Solid state NMR studies suggest that the alkyl aryl ether linkage may be present in modest amounts in low rank coal. Therefore, in this paper, we will investigate the thermolysis of phenethyl phenyl ether (PPE) as a model of 0-aryl ether linkages found in low rank coal, lignites, and lignin, an evolutionary precursor of coal. Our results have uncovered a new reaction channel that can account for 25% of the products formed. The impact of reaction conditions, including restricted mass transport, on this new reaction pathway and the role of oxygen functional groups in cross-linking reactions will be investigated.

  20. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-12-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 are reported for the period July 1, 1997 to September 30, 1997. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two stage liquefaction process several novel concepts which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. Results are reported from experiments in which various methods were tested to activate dispersed Mo precursors. Several oxothiomolybdates precursors having S/Mo ratios from two to six were prepared. Another having a S/Mo ratio of eleven was also prepared that contained an excess of sulfur. In the catalyst screening test, none of these precursors exhibited an activity enhancement that might suggest that adding sulfur into the structure of the Mo precursors would be beneficial to the process. In another series of experiments, AHM impregnated coal slurried in the reaction mixture was pretreated withH S/H under pressure and successively heated for 30 min at 120, 250 2 2 and 360 C. THF conversions in the catalyst screening test were not affected while resid conversions o increased such that pretreated coals impregnated with 100 ppm Mo gave conversions equivalent to untreated coals impregnated with 300 ppm fresh Mo. Cobalt, nickel and potassium phosphomolybdates were prepared and tested as bimetallic precursors. The thermal stability of these compounds was evaluated in TG/MS to determine whether the presence of the added metal would stabilize the Keggin structure at reaction temperature. Coals impregnated with these salts showed the Ni and Co salts gave the same THF conversion as PMA while the Ni salt gave higher

  1. FeCl3的负载对褐煤热解提质中有机硫迁移转化的影响%Effects of FeCl3 Addition on Transformation of Organic Sulfur During the Pyrolysis Upgrading of Ximeng Brown Coal

    Institute of Scientific and Technical Information of China (English)

    常丽萍; 秦政; 王美君; 张玉龙

    2012-01-01

    The removal of organic sulfur and/or water from low-quality coals is the key and foundation in their clean and effective utilization. Ximeng brown coal containing rich organic sulfur was selected as the experimental sample. Effects of the methods and amounts of FeCl3 added into coal on the transformation and release of sulfur were studied in the fixed bed pyrolysis-gas chromatographic analysis apparatus. The results show that methods and amounts of iron added in coal obviously affected the sulfur releasing temperature and the ratio in gases and char. The iron added in coal through mechanical mixing method was mainly dispersed on the surface of coal and had the role of reducing the sulfur released to gas and retaining it in char by formation of Fe1-xS. When iron was added by the method of modified impregnation, it was evenly loaded in coal and ion-exchange occured with the organic functional groups in coal matrix. The action of iron on the transformation of sulfur in the upgrading process of brown coal by pyrolysis changed with the Fe content in impregnation solution. Low content iron promoted the release of sulfur by improving the pyrolysis reactivity of coal, while the role of high loading content iron was mainly to retain sulfur in the char by the reaction between iron and organic sulfur in coal and H2S in gas. Effect of FeCl3 added to coal by different method on the release of COS from the coal pyrolysis primarily presented a promotive action, but the influencing extent was different owing to the distribution of FeCl3 in coal for different methods.%有机硫的脱除与褐煤的提质是低品质煤清洁有效利用的关键.以富含有机硫的锡盟褐煤为研究对象,分别用机械混合和改进的浸渍法负载FeCl3,对其进行固定床热解提质实验研究,以期获得该过程中有机硫的变迁行为及其释放规律.实验结果显示:FeCl3的负载方式及负载量对锡盟褐煤热解提质过程中硫的迁移转化具有较大的影

  2. Fundamental studies of retrograde reactions in direct liquefaction. Final report, September 20, 1988--November 20, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Serio, M.A.; Solomon, P.R.; Kroo, E.; Charpenay, S.; Bassilakis, R.

    1991-12-17

    The overall objective of the program was to improve the understanding of retrograde reactions and their dependencies on coal rank and structure, and/or coal modifications and reaction conditions. Because retrograde reactions are competitive with bond breaking reactions, an understanding of both is required to shift the competition in favor of the latter. Related objectives were to clarify the conflicting observations reported in literature on such major topics as the role of oxygen groups in retrograde reactions and to provide a bridge from very fundamental studies on pure compounds to phenomenological studies on actual coal. This information was integrated into the FG-DVC model, which was improved and extended to the liquefaction context.

  3. Test and survey on a next generation coal liquefying catalyst. Coal molecule scientific test and survey as the base for commercializing the coal liquefying technology; Jisedai sekitan ekika shokubai shiken chosa. Sekitan ekika gijutsu shogyoka kiban to shite no sekitan bunshi kagaku shiken chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The test and survey on a next generation coal liquefying catalyst present a new proposal to raise catalytic activity in coal liquefaction, and perform demonstration experiments in a laboratory scale to search for possibility of developing a new coal liquefying catalyst from various viewpoints. To explain, discussions were given on the catalyst to perform the followings: liquefaction under extremely mild conditions by using ultra strong acids not limited only to metals; ion exchange method and swell carrying method to raise catalyst dispersion very highly, enhance the catalytic activity, and reduce the amount of catalyst to be used; mechanism of producing catalyst activating species to further enhance the activity of iron catalysts; and pursuit of morphological change in the activating species. The coal molecule scientific test and survey as the base for commercializing the coal liquefying technology performed the studies on the following items: pretreatment of coal that can realize reduction of coal liquefaction cost; configuration of the liquefaction reaction, liquefying catalysts, hydrocarbon gas generating mechanism, status of catalysts after liquefaction reaction, and reduction in gas purification cost by using gas separating membranes. Future possibilities were further searched through frank and constructive opinion exchanges among the committee members. (NEDO)

  4. Experimental investigation and mathematical modelling of the combustion of brown coal, refuse and mixed fuels in a circulating fluidized bed combustor; Experimentelle Untersuchung und mathematische Modellierung der Verbrennung von Braunkohle, Abfallstoffen und Mischbrennstoffen in einer zirkulierenden Wirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, W.; Brunne, T.; Hiller, A. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik; Albrecht, J. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany); Quang, N. [Polytechnic Inst., Danang (Viet Nam)

    1998-09-01

    Extensive experiments on combustion of biological materials and residues in fluidized bed combustors and dust combustors have been carried out at the Department of Power Plant Engineering of Dresden University since the early nineties. Particular interest was taken in mixing brown coal with sewage sludge, sugar pulp and waste wood. The experiments were supplemented by modelling in a research project funded jointly by the BMBF and Messrs. Lurgi since early 1997. A combustion cell model designed by Siegen University is being modified for the new mixed fuels, and preliminary investigations were carried out on a batch reactor while the modelling work was continued. (orig.) [Deutsch] An dem Lehrstuhl fuer Kraftwerkstechnik der TU Dresden werden seit Anfang der 90-iger Jahre umfangreiche experimentelle Untersuchungen zur Verbrennung von Bio- und Reststoffen in Wirbelschicht- und Staubfeuerungen durchgefuehrt. Dabei war vor allem die Zufeuerung dieser Stoffe in Waermeerzeugeranlagen auf Braunkohlenbasis von besonderem Interesse. Experimentell konnte nachgewiesen werden, dass sowohl Biobrennstoffe als auch Abfaelle in zirkulierenden Wirbelschichtfeuerungen umweltschonend zur Waermeerzeugung eingesetzt werden koennen. Als Beispiel wird das an Hand von Braunkohle-Klaerschlammgemischen sowie Bagasse- und Holz-Braunkohlegemischen gezeigt. Neben den experimentellen Untersuchungen bietet die Modellierung der Verbrennungsvorgaenge ein geeignetes Mittel um Voraussagen zu anderen Mischungsanteilen sowie anderen geometrischen Abmessungen machen zu koennen. Seit Anfang 1997 wird dazu ein vom BMBF und der Firma Lurgi gefoerdertes Forschungsvorhaben bearbeitet. Ein von der Universitaet Gesamthochschule Siegen fuer die Braunkohleverbrennung konzipiertes Zellenmodell wird auf die neuen Brennstoffgemische erweitert. Da grundsaetzlich andere Stoffzusammensetzungen vorliegen, wurden an einem Batch-Reaktor Voruntersuchungen zum Pyrolyseverhalten der Brennstoffe durchgefuehrt. Erste

  5. Coal mining situation in the Federal Republic of Germany. Year 2015; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. Jahr 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-03-08

    The paper reports on the coal mining in the Federal Republic of Germany in the year 2015. Statistical data are presented for coal market, brown coal mining as well as the hard coal mining. These data consider the supply and demand of coal in Germany, and employees of the German coal industry.

  6. Coal demonstration plants. Quarterly report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The status of two coal liquefaction demonstration plants and of four coal gasification demonstration plants is reviewed under the following headings: company involved, contract number, funding, process name, process description, flowsheet, schedule, history and progress during the July-September quarter, 1979. Supporting projects in coal feeding systems, valves, grinding equipment, instrumentation, process control and water treatment are discussed in a similar way. Conceptual design work on commercial plants for coal to methanol and for a HYGAS high BTU gas plant were continued. (LTN)

  7. Hydrocarbon liquefaction: viability as a peak oil mitigation strategy.

    Science.gov (United States)

    Höök, Mikael; Fantazzini, Dean; Angelantoni, André; Snowden, Simon

    2014-01-13

    Current world capacity of hydrocarbon liquefaction is around 400,000 barrels per day, providing a marginal share of the global liquid fuel supply. This study performs a broad review of technical, economic, environmental and supply chain issues related to coal-to-liquids (CTL) and gas-to-liquids (GTL). We find three issues predominate. First, significant amounts of coal and gas would be required to obtain anything more than a marginal production of liquids. Second, the economics of CTL plants are clearly prohibitive, but are better for GTL. Nevertheless, large-scale GTL plants still require very high upfront costs, and for three real-world GTL plants out of four, the final cost has been so far approximately three times that initially budgeted. Small-scale GTL holds potential for associated gas. Third, both CTL and GTL incur significant environmental impacts, ranging from increased greenhouse gas emissions (in the case of CTL) to water contamination. Environmental concerns may significantly affect growth of these projects until adequate solutions are found.

  8. Preliminary chemical analysis and biological testing of materials from the HRI catalytic two-stage liquefaction (CTSL) process. [Aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Wilson, B.W.

    1985-01-01

    Coal-derived materials from experimental runs of Hydrocarbon Research Incorporated's (HRI) catalytic two-stage liquefaction (CTSL) process were chemically characterized and screened for microbial mutagenicity. This process differs from two-stage coal liquefaction processes in that catalyst is used in both stages. Samples from both the first and second stages were class-fractionated by alumina adsorption chromatography. The fractions were analyzed by capillary column gas chromatography; gas chromatography/mass spectrometry; direct probe, low voltage mass spectrometry; and proton nuclear magnetic resonance spectrometry. Mutagenicity assays were performed with the crude and class fractions in Salmonella typhimurium, TA98. Preliminary results of chemical analyses indicate that >80% CTSL materials from both process stages were aliphatic hydrocarbon and polynuclear aromatic hydrocarbon (PAH) compounds. Furthermore, the gross and specific chemical composition of process materials from the first stage were very similar to those of the second stage. In general, the unfractionated materials were only slightly active in the TA98 mutagenicity assay. Like other coal liquefaction materials investigated in this laboratory, the nitrogen-containing polycyclic aromatic compound (N-PAC) class fractions were responsible for the bulk of the mutagenic activity of the crudes. Finally, it was shown that this activity correlated with the presence of amino-PAH. 20 figures, 9 tables.

  9. Estimation of sand liquefaction based on support vector machines

    Institute of Scientific and Technical Information of China (English)

    苏永华; 马宁; 胡检; 杨小礼

    2008-01-01

    The origin and influence factors of sand liquefaction were analyzed, and the relation between liquefaction and its influence factors was founded. A model based on support vector machines (SVM) was established whose input parameters were selected as following influence factors of sand liquefaction: magnitude (M), the value of SPT, effective pressure of superstratum, the content of clay and the average of grain diameter. Sand was divided into two classes: liquefaction and non-liquefaction, and the class label was treated as output parameter of the model. Then the model was used to estimate sand samples, 20 support vectors and 17 borderline support vectors were gotten, then the parameters were optimized, 14 support vectors and 6 borderline support vectors were gotten, and the prediction precision reaches 100%. In order to verify the generalization of the SVM method, two other practical samples’ data from two cities, Tangshan of Hebei province and Sanshui of Guangdong province, were dealt with by another more intricate model for polytomies, which also considered some influence factors of sand liquefaction as the input parameters and divided sand into four liquefaction grades: serious liquefaction, medium liquefaction, slight liquefaction and non-liquefaction as the output parameters. The simulation results show that the latter model has a very high precision, and using SVM model to estimate sand liquefaction is completely feasible.

  10. Chemistry and structure of coal derived asphaltenes and preasphaltenes. Quarterly progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1980-01-01

    It is the objective of this project to isolate the asphaltene and preasphaltene fractions from coal liquids from a number of liquefaction processes. These processes consist of in general: catalytic hydrogenation, staged pyrolysis and solvent refining. These asphaltene fractions may be further separated by both gradient elution through column chromatography, and molecular size distribution through gel permeation chromatography. Those coal-derived asphaltene and preasphaltene fractions will be investigated by various chemical and physical methods for characterization of their structures. After the parameters are obtained, these parameters will be correlated with the refining and conversion variables which control a given type of liquefaction process. The effects of asphaltene in catalysis, ash or metal removal, desulfurization and denitrification will also be correlated. It is anticipated that understanding the role of asphaltenes in liquefaction processes will enable engineers to both improve existing processes, and to make recommendations for operational changes in planned liquefaction units in the United States. The objective of Phase 1 was to complete the isolation and separation of coal liquid fractions and to initiate their characterization. The objective of Phase 2 is to continue the characterization of coal asphaltenes and other coal liquid fractions by use of physical and instrumental methods. The structural parameters obtained will be used to postulate hypothetical average structures for coal liquid fractions. The objective of Phase 3 is to concentrate on the characterization of the preasphaltene (benzene insoluble fraction) of coal liquid fraction by the available physical and chemical methods to obtain a number of structural parameters.

  11. Biotransformation of Spanish coals by microorganisms; Biotransformacion de Carbones Espanoles por Microorganismos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    some newly isolated microorganisms could solubilized different kinds of Spanish coals (hard coal, subbituminous coal and lignite). Certain fungi and bacteria could solubilized lignite when growing in a mineral medium. However, to solubilized higher rank coals (hard coal and subbituminous coal) microorganisms require a complete medium. Microorganisms, which showed higher capacity to solubilized coal, were incubated in the presence of coal (hard coal, subbituminous coal and lignite) at the optimal conditions to get coal liquefaction/solubilization. The resultant products were analysed by IR and UV/visible spectrometry. No major differences among the original coal, solubilized/liquefied coal and residual coal were detected. However, an increase in metallic carboxylate and a decrease in OH'- carboxylic groups were observed in the liquefied lignite. Humic acids derived from original lignite residual lignite and liquefied/solubilized lignite by microorganisms were analysed. Several differences were observed in the humic acids extracted from the liquefied lignite, such as an increase in the total acidity and in the proportion of the phenolic groups. Differences on the humic acid molecular weight were observed too. Several fungal and bacterial strains were able to grow using humic acids as sole carbon source. Microorganisms growing in humic acid were observed by Scanning Electron Microscopy. Besides, the coal solubilization capacity of several fungal strains (M2, m$ and AGI) growing in different culture media was assayed. In order to get some insight into the mechanisms of the liquefaction/solubilization of Spanish coals (hard coal, subbituminous coal and lignite) by these microorganisms, some features in the culture supernatants were studied: pH values; extracellular specific proteins; enzyme activities possibly related with coal solubilization and the presence of oxalate. M2 and M4 fungal strains grown in the presence of coal produced some specific extracellular

  12. Sulfiding behavior of iron based coal liquefaction catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ikenaga, N.; Taniguchi, H.; Watanabe, A.; Suzuki, T. [Kansai University, Osaka (Japan). Dept. of Chemical Engineering

    2000-03-01

    In order to understand the transformation mechanisms of iron-sulfur catalyst systems to pyrrhotite, the iron catalysts ({gamma}-FeOOH, {alpha}-FeOOH, Fe(CO){sub 5} and Fe{sub 3}(CO){sub 12}) and sulfur compounds (S and H{sub 2}S) were treated at 150-420{degree}C with or without an activated carbon, and then subjected to XRD and XPS analyses. Pyrrhotite (Fe{sub 1-x}S) was the major phase above 200{degree}C in the XRD profiles of all iron-sulfur catalyst systems. However, the formation of pyrite (FeS{sub 2}) from {gamma}-FeOOH and {gamma}-FeOOH on the catalyst surface was observed at 150-325{degree}C by XPS analyses. This result seems to indicate that active species (Fe{sub 1-x}S) would be transformed through FeS{sub 2} as an intermediate, but iron carbonyl complexes were directly transformed into pyrrhotite without the formation of FeS{sub 2}. 28 refs., 8 figs., 1 tab.

  13. Desulfurization of coal and petroleum. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The bibliography contains citations concerning the desulfurization of coal, coal liquids, and crude oil. Flotation heap leaching, oxydesulfurization, metal oxide, microwave process, and chlorination are among the pre-combustion processes discussed. Coal liquefaction and gasification are only included if sulfur removal is stressed. Flue gas desulfurization and other post-combustion sulfur control processes are excluded. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Biomass Indirect Liquefaction Strategy Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-07-01

    This report is based on the proceedings of the U.S. Department of Energy Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop. The workshop, held March 20–21, 2014, in Golden, Colorado, discussed and detailed the research and development needs for biomass indirect liquefaction. Discussions focused on pathways that convert biomass-based syngas (or any carbon monoxide, hydrogen gaseous stream) to liquid intermediates (alcohols or acids) and further synthesize those intermediates to liquid hydrocarbons that are compatible as either a refinery feed or neat fuel.

  15. Decision tree approach for soil liquefaction assessment.

    Science.gov (United States)

    Gandomi, Amir H; Fridline, Mark M; Roke, David A

    2013-01-01

    In the current study, the performances of some decision tree (DT) techniques are evaluated for postearthquake soil liquefaction assessment. A database containing 620 records of seismic parameters and soil properties is used in this study. Three decision tree techniques are used here in two different ways, considering statistical and engineering points of view, to develop decision rules. The DT results are compared to the logistic regression (LR) model. The results of this study indicate that the DTs not only successfully predict liquefaction but they can also outperform the LR model. The best DT models are interpreted and evaluated based on an engineering point of view.

  16. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  17. Low-rank coal research, Task 5.1. Topical report, April 1986--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    This document is a topical progress report for Low-Rank Coal Research performed April 1986 - December 1992. Control Technology and Coal Preparation Research is described for Flue Gas Cleanup, Waste Management, Regional Energy Policy Program for the Northern Great Plains, and Hot-Gas Cleanup. Advanced Research and Technology Development was conducted on Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Combustion Research is described for Atmospheric Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Fuels (completed 10/31/90), Diesel Utilization of Low-Rank Coals (completed 12/31/90), Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications (completed 10/31/90), Nitrous Oxide Emission, and Pressurized Fluidized-Bed Combustion. Liquefaction Research in Low-Rank Coal Direct Liquefaction is discussed. Gasification Research was conducted in Production of Hydrogen and By-Products from Coals and in Sulfur Forms in Coal.

  18. Devolatilization and ignition of coal particles in a two-dimensional fluidized bed

    NARCIS (Netherlands)

    Prins, W.; Siemons, R.; Swaaij, van W.P.M.

    1989-01-01

    In a two-dimensional (15 × 200 × 400 mm) high-temperature fluidized bed, devolatilization ignition and combustion phenomena of single coal particles have been studied. The particles, with diameters of 4–9 mm, were selected from three coal types of widely different rank: brown coal, bituminous coal,

  19. Hydrothermal Liquefaction of the Microalgae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Sigaard Christensen, Per; Peng, Gaël; Vogel, Frédéric

    2014-01-01

    The microalgae Phaeodactylum tricornutum was processed by hydrothermal liquefaction in order to assess the influence of reaction temperature and reaction time on the product and elemental distribution. The experiments were carried out at different reaction times (5 and 15 min) and over a wide range...

  20. Hydrothermal Liquefaction of the Microalgae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Sigaard Christensen, Per; Peng, Gaël; Vogel, Frédéric

    2014-01-01

    The microalgae Phaeodactylum tricornutum was processed by hydrothermal liquefaction in order to assess the influence of reaction temperature and reaction time on the product and elemental distribution. The experiments were carried out at different reaction times (5 and 15 min) and over a wide range...

  1. Liquefaction potential of Nile delta, Egypt

    Science.gov (United States)

    Fergany, Elsayed; Omar, Khaled

    2017-06-01

    Understanding how sedimentary basins respond to seismic-wave energy generated by earthquake events is a significant concern for seismic-hazard estimation and risk analysis. The main goal of this study is assessing the vulnerability index, Kg, as an indicator for liquefaction potential sites in the Nile delta basin based on the microtremor measurements. Horizontal to Vertical spectral ratio analyses (HVSR) of ambient noise data, which was conducted in 2006 at 120 sites covering the Nile delta from south to north were reprocessed using Geopsy software. HVSR factors of amplification, A, and fundamental frequency, F, were calculated and Kg was estimated for each measurement. The Kg value varies widely from south toward north delta and the potential liquefaction places were estimated. The higher vulnerability indices are associated with sites located in southern part of the Nile delta and close to the branches of Nile River. The HVSR factors were correlated with geologic setting of the Nile delta and show good correlations with the sediment thickness and subsurface stratigraphic boundaries. However, we note that sites located in areas that have greatest percentage of sand also yielded relatively high Kg values with respect to sites in areas where clay is abundant. We concluded that any earthquake with ground acceleration more than 50 gal at hard rock can cause a perceived deformation of sandy sediments and liquefaction can take place in the weak zones of Kg ≥ 20. The worst potential liquefaction zones (Kg > 30) are frequently joined to the Damietta and Rosetta Nile River branches and south Delta where relatively coarser sand exists. The HVSR technique is a very sensitive tool for lithological stratigraphy variations in two dimensions and varying liquefaction susceptibility.

  2. King Coal: Facing a troubled resurrection

    Energy Technology Data Exchange (ETDEWEB)

    Ricca, J.

    1979-01-22

    The most economic and efficient uses for coal are direct burning for power generation, gasification, and liquefaction. Coal's resurrection as the primary energy source remains controversial, however, because of environmental problems and a general dislike of its physical properties. The argument is made that natural market forces will guarantee adequate energy supplies, but that years of government interference may have created too big an obstacle. The impact on industry of government regulations on fuels, pollution, and siting means that industries will explore every possible alternative before turning to coal. Companies like General Motors will consider prohibitive regulations and whether electric power supplies are reliable when choosing plant locations. The conflicting goals of the DOE and the Environmental Protection Agency will continue to confuse the issue until they are reconciled or until a decision is made to rely on large-scale coal-fired power, gas, or liquid plants for end-use energy.

  3. Coal facies studies in Denmark and Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Henrik I. [Geological Survey of Denmark and Greenland (GEUS), Department of Reservoir Geology, Oester Voldgade 10, DK-1350 Copenhagen K (Denmark)

    2004-04-23

    Coal of Jurassic age occurs onshore Denmark and in the Danish North Sea, whereas coal of Carboniferous and Miocene age only occurs in the Danish North Sea and onshore Denmark, respectively. The Lower-Middle Jurassic coals are the most widespread and best documented. Onshore Denmark the coals are of low rank while the Jurassic coals in the North Sea are thermally mature and hydrocarbon generating in the Soegne Basin. The Jurassic coals have a maximum thickness of similar2 m and were formed in coastal plain mires and in inland fresh water mires. The Miocene brown coals, up to similar2 m thick, were formed in an overall deltaic setting. Lower Carboniferous and Palaeogene coals occur in northern Greenland, Middle Jurassic coals in northeast Greenland, and Cretaceous coals in western Greenland. The Middle Jurassic low rank coals have been investigated in detail. The up to similar3.5-m-thick coal seams accumulated in coastal mires and they may have an extraordinary resinite-enriched composition. Only a single Cretaceous coal seam has been investigated with regard to the depositional environment; the seam records drowning of a peat mire. The Lower Carboniferous and Palaeogene coals have not been investigated.

  4. Modeling and simulation of an entrained flow coal gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Govind, R.; Shah, J.

    1984-01-01

    A mathematical model has been developed to stimulate the Texaco downflow entrained-bed pilot-plant gasifier using coal liquefaction residues and coal-water slurries as feedstocks. This model describes the physical and chemical processes occurring in an entrained coal gasifier. The gasification kinetics describes different complex reactions occurring in the gasifier and the hydrodynamics describes mass, momentum and energy balances for solid and gas phases. Temperature, concentration and velocity profiles along the reactor height were obtained by solving the mass, momentum and energy balances. Parameter studies were made to provide a better understanding of the reactor performance for various inlet feed conditions utilizing the model.

  5. Direct liquefaction proof-of-concept program: POC bench option run 01 (227-90). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.; Karolkiewicz, W.F.; Popper, G.

    1996-05-01

    This report presents the results of bench-scale work, Bench Run PB-01, conducted under the DOE Proof of Concept-Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. The Bench Run PB-01 was the first of nine runs planned under the POC Bench Option Contract between the US DOE and Hydrocarbon Technologies, Inc. The primary goal of this bench run was to evaluate the most successful of the process improvements concepts, evolving out of the earlier CMSL Project, for conventional direct liquefaction as well as coprocessing of a sub-bituminous Black Thunder mine coal with waste organics such as waste plastics and heavy resid. The interstage separation of light ends and gases was indeed found to reduce the overall light gas-make from the liquefaction process. The organic waste feeds such as mixed plastics and vacuum resid, employed during Bench Run PB-01, in combined processing with coal, resulted in making the overall process more hydrogen efficient by virtue of reducing the light gas make and also decreasing the hydrogen consumption from the process, while at the same time improving the yields and quality of the distillate products. A definite synergy was found during the combined processing of coal with mixtures of vacuum resid and mixed waste plastics. The application of an all dispersed catalyst conversion reactor resulted in higher feed throughput at equivalent process performance, but also necessitated the use of an in-line hydrotreater for improving the quality of IBP-400{degrees}C distillate products. The combination of HTI`s iron gel catalyst and Molyvan-A was found very effective in achieving high levels of process performance; although, in recycled form, these catalysts were not as effective as the freshly added precursors.

  6. Is a renaissance of coal imminent?--challenges for catalysis.

    Science.gov (United States)

    Traa, Yvonne

    2010-04-07

    In the introduction, the reserves and resources of coal and other fossil fuels are discussed, also with regard to the regional distribution and consumption. Then, coalification and the classification of coal are described. The main part of the article is devoted to the most important processes using coal where challenges for catalysis still exist, with a focus on recent literature. First, technologies based on the production of synthesis gas, i.e., Fischer-Tropsch synthesis as well as MTO/MTP (Methanol To Olefins/Methanol To Propylene), are discussed. Secondly, direct coal liquefaction is treated. The last part of the article is devoted to "clean" coal and gives an outlook on the future of coal.

  7. LIQUEFACTION AND DISPLACEMENT OF SATURATED SAND UNDER VERTICAL VIBRATION LOADING

    Institute of Scientific and Technical Information of China (English)

    LU Xiaobing; TAN Qingming; CHENG C.M.; YU Shanbing; CUI Peng

    2004-01-01

    In order to investigate the influence of the vertical vibration loading on the liquefaction of saturated sand, one dimensional model for the saturated sand with a vertical vibration is presented based on the two phase continuous media theory. The development of the liquefaction and the liquefaction region are analyzed. It is shown that the vertical vibration loading could induce liquefaction.The rate of the liquefaction increases with the increase of the initial limit strain or initial porosity or amplitude and frequency of loading, and increases with the decrease of the permeability or initial modulus. It is shown also that there is a phase lag in the sand column. When the sand permeability distribution is non-uniform, the pore pressure and the strain will rise sharply where the permeability is the smallest, and fracture might be induced. With the development of liquefaction, the strength of the soil foundation becomes smaller and smaller. In the limiting case, landslides or debris flows could occur.

  8. Earthquake Risk - MO 2013 Liquefaction Potential St. Louis Area (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Soil liquefaction potential was determined using existing surficial materials and floodplain alluvium maps. Alluvium deposits and artificial deposits are generally...

  9. 石莼与褐煤低温共热解热重分析及动力学%Thermogravimetric analysis and pyrolytic kinetic study onco-pyrolysis of brown coal and ulva

    Institute of Scientific and Technical Information of China (English)

    程晓晗; 何选明; 戴丹; 张杜; 曾宪灿

    2015-01-01

    将不等量的生物质石莼(SC)加入到褐煤(AL)中进行低温干馏实验,实验表明:随石莼的掺混比增加,热解油产率呈先增加后减少的趋势,在石莼掺混比为30%时热解油产率达到最大值12.50%,热解油中烷烃含量在原有基础上增加了23.54%,在一定程度上提高了热解油品质.利用热重分析仪对石莼、褐煤单独热解及30%最佳掺混比的混合样共热解的热解特性进行了研究,结果表明:石莼的加入使褐煤初始热解温度提前,失重速率变快,在 300~700℃之间,实验所得混合样的残重量小于单独热解残重量的理论加权值,表明石莼的添加一定程度上促进了热解反应的进行.混合热解符合一级动力学方程模型,指前因子A和活化能Ea存在补偿效应,共热解时的A和Ea与褐煤单独热解相比均减小.%The low-temperature pyrolysis experiments of brown coal(AL),ulva(SC) and their blends were performed. The results show that pyrolysis oil appears to decrease after the increase trend with SC ratio increasing. When SC ratio is 30%,the yield of pyrolysis oil rises to the highest of 12.50 %. The content of alkanes in pyrolysis oil increased by 23.54% on the basis of original content,improving the quality of pyrolysis oil to a certain degree. The pyrolysis characteristics of SC,AL and the blend was studied by thermogravimetric analyzer. Results show that the presence of SC lowers the initial pyrolysis temperature and fasters the weight loss of AL. The residual weight of blend is less than the calculated value at 300—700℃,indicating the promoting effect of SC on the pyrolysis process. The co-pyrolysis reactions were in accordance with first order kinetic equation model. There exists compensation effect between activation energy(Ea) and pre-exponential factor(A). BothEa andA of co-pyrolysis decrease compared with those of AL pyrolysis alone.

  10. Cryogenic hydrogen-induced air liquefaction technologies

    Science.gov (United States)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  11. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  12. Evaluation Of Bucharest Soil Liquefaction Potential

    Directory of Open Access Journals (Sweden)

    Cristian Arion

    2015-03-01

    Full Text Available The paper contains the experimental research performed in Bucharest like the borehole data (Standard Penetration Test and the data obtained from seismic investigations (down-hole prospecting and surface-wave methods. The evaluation of the soils liquefaction resistance based on the results of the SPT, down-hole prospecting and surface-wave method tests and the use of the earthquake records will be presented.

  13. Investigation of the deposit formation in pipelines connecting liquefaction reactors; 1t/d PSU ni okeru ekika hanno tokan fuchakubutsu no seisei yoin ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Y.; Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Mochizuki, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan)

    1996-10-28

    The liquefaction reaction system of an NEDOL process coal liquefaction 1t/d PSU was opened and checked to investigate the cause of the rise of differential pressure between liquefaction reactors of the PSU. The liquefaction test at a coal concentration of 50 wt% using Tanito Harum coal was conducted, and it was found that the differential pressure between reactors was on the increase. By the two-phase flow pressure loss method, deposition thickness of deposit in pipelines was estimated at 4.4mm at the time of end operation, which agreed with a measuring value obtained from a {gamma} ray. The rise of differential pressure was caused by deposit formation in pipelines connecting reactors. The main component of the deposit is calcite (CaCO3 60-70%) and is the same as the usual one. It is also the same type as the deposit on the reactor wall. Ca in coal ash is concerned with this. To withdraw solid matters deposited in the reactor, there are installed pipelines for the withdrawal at the reactor bottom. The solid matters are regularly purged by reverse gas for prevention of clogging. As the frequency of purge increases, the deposit at the reactor bottom decreases, but the deposit attaches strongly to pipelines connecting reactors. It is presumed that this deposit is what Ca to be discharged out of the system as a form of deposition solid matter naturally in the Ca balance precipitated as calcite in the pipeline connecting the reactor. 3 refs., 5 figs., 4 tabs.

  14. Ecotoxicity of materials from integrated two-stage liquefaction and Exxon Donor Solvent processes

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D.D.; Scott, A.J.; Lusty, E.W.; Thomas, B.L.; Hanf, R.W. Jr.

    1983-05-01

    Coal-derived materials from two coal conversion processes were screened for potential ecological toxicity. We examined the toxicity of materials from different engineering or process options to an aquatic invertebrate and also related potential hazard to relative concentration, composition, and stability of water soluble components. For materials tested from the Integrated Two-Stage Liquefaction (ITSL) process, only the LC finer (LCF) 650/sup 0/F distillate was highly soluble in water at 20/sup 0/C. The LCF feed and Total Liquid Product (TLP) were not in liquid state at 20/sup 0/C and were relatively insoluble in water. Relative hazard to daphnids from ITSL materials was as follows: LCF 650/sup 0/F distillate greater than or equal to LCF feed greater than or equal to TLP. For Exxon Donor Solvent (EDS) materials, process solvent produced in the bottoms recycle mode was more soluble in water than once-through process solvent and, hence, slightly more acutely toxic to daphnids. When compared to other coal liquids or petroleum products, the ITSL or EDS liquids were intermediate in toxicity; relative hazard ranged from 1/7 to 1/13 of the Solvent Refined Coal (SRC)-II distillable blend, but was several times greater than the relative hazard for No. 2 diesel fuel oil or Prudhoe Bay crude oil. Although compositonal differences in water-soluble fractions (WSF) were noted among materials, phenolics were the major compound class in all WSFs and probably the primary contributor to acute toxicity.

  15. 第一代鲁奇炉在褐煤加压气化中的运行状况及技术改进%Running Condition and Technology Improvement in Brown Coal Pressure Gasification of the First Generation of Lurgi Furnace

    Institute of Scientific and Technical Information of China (English)

    王朝文

    2012-01-01

    The running conditions and problems of the first generation of Lurgi Furnace for ammonia preparation by using of low - quality brown coal pressurized gasification was introduced. The main problems and corresponding technology improvements of the first generation of Lurgi Furnace since 1972 have been summarized. The problem and developing trend of Lurgi Furnace was alanalyzed and outlooked.%介绍了国内首套自行设计利用劣质褐煤加压气化制氨工艺鲁奇炉运行的状况及出现的问题。总结了自1972年以来,第一代鲁奇炉在运行中存在的主要问题及相应的技术改造状况,并对鲁奇炉运行存在的问题及发展方向进行了分析和展望。

  16. Liquefaction hazard analysis for infrastructure development in gulf of Jakarta

    Science.gov (United States)

    Dinata, Indra A.; Darlan, Yudi; Sadisun, Imam A.; Pindratno, Haris; Saryanto, Agus

    2016-05-01

    Gulf of Jakarta is an area of active sedimentation. There exist a wide sediment deposition area on the north coast of Jakarta. Generally, these sediments have not been consolidated, so that the conditions in these area is an important factor to determining liquefaction in these area. Liquefaction may occur because of earthquake that cause loss of strength and stiffness in soils. Analysis of liquefaction potential based from SPT data taken at gulf of Jakarta, include susceptibility rate and the factors that triggering. Liquefaction analysis methods compared with each other to get the factor of safety against liquefaction according to the characteristics of the soil. Liquefaction analysis at surface using susceptibility rating factor (SRF). SRF method controled by factors: history, geology, composition, and groundwater. Each factors have parameters that determine the value of SRF.From the analysis, Gulf of Jakarta has susceptibility rating from liquefaction with SRF value 12 - 35. The value shows that Gulf of Jakarta dominated by area that have susceptibility rating from medium to high. High susceptibility rating from liquefaction concentrated at coast area.

  17. Liquefaction at Oceano, California, during the 2003 San Simeon earthquake

    Science.gov (United States)

    Holzer, T.L.; Noce, T.E.; Bennett, M.J.; Tinsley, J. C.; Rosenberg, L.I.

    2005-01-01

    The 2003 M 6.5 San Simeon, California, earthquake caused liquefaction-induced lateral spreading at Oceano at an unexpectedly large distance from the seismogenic rupture. We conclude that the liquefaction was caused by ground motion that was enhanced by both rupture directivity in the mainshock and local site amplification by unconsolidated fine-grained deposits. Liquefaction occurred in sandy artificial fill and undisturbed eolian sand and fluvial deposits. The largest and most damaging lateral spread was caused by liquefaction of artificial fill; the head of this lateral spread coincided with the boundary between the artificial fill and undisturbed eolian sand deposits. Values of the liquefaction potential index, in general, were greater than 5 at liquefaction sites, the threshold value that has been proposed for liquefaction hazard mapping. Although the mainshock ground motion at Oceano was not recorded, peak ground acceleration was estimated to range from 0.25 and 0.28g on the basis of the liquefaction potential index and aftershock recordings. The estimates fall within the range of peak ground acceleration values associated with the modified Mercalli intensity = VII reported at the U.S. Geological Survey (USGS) "Did You Feel It?" web site.

  18. Experimental Liquefaction Study of Southern Yogyakarta Using Shaking Table

    Directory of Open Access Journals (Sweden)

    Lindung Zalbuin Mase

    2017-04-01

    Full Text Available An experimental study using shaking table was conducted to learn liquefaction. Samples used were sandy soils from South of Yogyakarta Special Region Province. Analysis of liquefaction potential was performed by considering several factors, i.e. peak ground acceleration (PGA of 0.3 g to 0.4 g, vibrational frequency of 1.8 Hz, and vibration duration of 8, 16, and 32 seconds which reflect earthquake magnitudes of 5, 6, and 7. The pore water pressure was measured by using a pressure transducer. Liquefaction<