WorldWideScience

Sample records for brookhaven high flux beam reactor

  1. Decommissioning of the high flux beam reactor at Brookhaven Lab

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.P. [National Synchrotron Light Source, Brookhaven Laboratory, Upton, NY 11973 (United States); Reciniello, R.N. [Radiological Control Div., Brookhaven Laboratory, Upton, NY 11973 (United States); Holden, N.E. [National Nuclear Data Center, Brookhaven Laboratory, Upton, NY 11973 (United States)

    2011-07-01

    The high-flux beam reactor (HFBR) at the Brookhaven National Laboratory was a heavy water cooled and moderated reactor that achieved criticality on Oct. 31, 1965. It operated at a power level of 40 megawatts. An equipment upgrade in 1982 allowed operations at 60 megawatts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 megawatts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of groundwater from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost three years for safety and environmental reviews. In November 1999 the United States Dept. of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel, is presently under 24/7 surveillance for safety. Detailed dosimetry performed for the HFBR decommissioning during 1996-2009 is described in the paper. (authors)

  2. Decommissioning of the High Flux Beam Reactor at Brookhaven Lab

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2011-05-27

    The High Flux Beam Reactor at the Brookhaven National Laboratory was a heavy water cooled and moderated reactor that achieved criticality on October 31, 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shutdown in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor’s spent fuel pool. The reactor remained shutdown for almost three years for safety and environmental reviews. In November 1999 the United States Department of Energy decided to permanently shutdown the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR cleanup conducted during 1999-2009 will be described in the paper.

  3. Structural biology facilities at Brookhaven National Laboratory`s high flux beam reactor

    Energy Technology Data Exchange (ETDEWEB)

    Korszun, Z.R.; Saxena, A.M.; Schneider, D.K. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The techniques for determining the structure of biological molecules and larger biological assemblies depend on the extent of order in the particular system. At the High Flux Beam Reactor at the Brookhaven National Laboratory, the Biology Department operates three beam lines dedicated to biological structure studies. These beam lines span the resolution range from approximately 700{Angstrom} to approximately 1.5{Angstrom} and are designed to perform structural studies on a wide range of biological systems. Beam line H3A is dedicated to single crystal diffraction studies of macromolecules, while beam line H3B is designed to study diffraction from partially ordered systems such as biological membranes. Beam line H9B is located on the cold source and is designed for small angle scattering experiments on oligomeric biological systems.

  4. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.

    Science.gov (United States)

    Liu, H B; Brugger, R M; Rorer, D C; Tichler, P R; Hu, J P

    1994-10-01

    Beams of epithermal neutrons are being used in the development of boron neutron capture therapy for cancer. This report describes a design study in which 235U fission plates and moderators are used to produce an epithermal neutron beam with higher intensity and better quality than the beam currently in use at the Brookhaven Medical Research Reactor (BMRR). Monte Carlo calculations are used to predict the neutron and gamma fluxes and absorbed doses produced by the proposed design. Neutron flux measurements at the present epithermal treatment facility (ETF) were made to verify and compare with the computed results where feasible. The calculations indicate that an epithermal neutron beam produced by a fission-plate converter could have an epithermal neutron intensity of 1.2 x 10(10) n/cm2.s and a fast neutron dose per epithermal neutron of 2.8 x 10(-11) cGy.cm2/nepi plus being forward directed. This beam would be built into the beam shutter of the ETF at the BMRR. The feasibility of remodeling the facility is discussed.

  5. British high flux beam reactor.

    Science.gov (United States)

    Egelstaff, P A

    1970-10-24

    The neutron scattering technique has become an accepted method for the study of condensed matter. Because of the great scientific and technical value of neutron experiments and the growing body of users, several proposals have been made during the past decade for a nuclear reactor devoted primarily to this technique. This article reviews the reasons for and history behind these proposals.

  6. RADIATION DOSIMETRY AT THE BNL HIGH FLUX BEAM REACTOR AND MEDICAL RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN,N.E.

    1999-09-10

    RADIATION DOSIMETRY MEASUREMENTS HAVE BEEN PERFORMED OVER A PERIOD OF MANY YEARS AT THE HIGH FLUX BEAM REACTOR (HFBR) AND THE MEDICAL RESEARCH REACTOR (BMRR) AT BROOKHAVEN NATIONAL LABORATORY TO PROVIDE INFORMATION ON THE ENERGY DISTRIBUTION OF THE NEUTRON FLUX, NEUTRON DOSE RATES, GAMMA-RAY FLUXES AND GAMMA-RAY DOSE RATES. THE MCNP PARTICLE TRANSPORT CODE PROVIDED MONTE CARLO RESULTS TO COMPARE WITH VARIOUS DOSIMETRY MEASUREMENTS PERFORMED AT THE EXPERIMENTAL PORTS, AT THE TREATMENT ROOMS AND IN THE THIMBLES AT BOTH HFBR AND BMRR.

  7. Brookhaven leak reactor to close

    CERN Multimedia

    MacIlwain, C

    1999-01-01

    The DOE has announced that the High Flux Beam Reactor at Brookhaven is to close for good. Though the news was not unexpected researchers were angry the decision had been taken before the review to assess the impact of reopening the reactor had been concluded (1 page).

  8. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN,N.E.; RECINIELLO,R.N.; HU,J.P.; RORER,D.C.

    2002-08-18

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex{trademark} polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup.

  9. Optimization of the epithermal neutron beam for Boron Neutron Capture Therapy at the Brookhaven Medical Research Reactor.

    Science.gov (United States)

    Hu, Jih-Perng; Reciniello, Richard N; Holden, Norman E

    2004-05-01

    The use of epithermal neutron beam in clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumors had been carried out for half a decade at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new BNCT protocols. Details of the conceptual design to produce a highly intensified and focused neutron beam with less gamma and neutron contamination in tissues are presented here for their potential applicability to other reactor facilities. Neutron-photon coupled Monte Carlo calculations were used to predict the flux, current, heating, and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  10. Level 1 Tornado PRA for the High Flux Beam Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bozoki, G.E.; Conrad, C.S.

    1994-05-01

    This report describes a risk analysis primarily directed at providing an estimate for the frequency of tornado induced damage to the core of the High Flux Beam Reactor (HFBR), and thus it constitutes a Level 1 Probabilistic Risk Assessment (PRA) covering tornado induced accident sequences. The basic methodology of the risk analysis was to develop a ``tornado specific`` plant logic model that integrates the internal random hardware failures with failures caused externally by the tornado strike and includes operator errors worsened by the tornado modified environment. The tornado hazard frequency, as well as earlier prepared structural and equipment fragility data, were used as input data to the model. To keep modeling/calculational complexity as simple as reasonable a ``bounding`` type, slightly conservative, approach was applied. By a thorough screening process a single dominant initiating event was selected as a representative initiator, defined as: ``Tornado Induced Loss of Offsite Power.`` The frequency of this initiator was determined to be 6.37E-5/year. The safety response of the HFBR facility resulted in a total Conditional Core Damage Probability of .621. Thus, the point estimate of the HFBR`s Tornado Induced Core Damage Frequency (CDF) was found to be: (CDF){sub Tornado} = 3.96E-5/year. This value represents only 7.8% of the internal CDF and thus is considered to be a small contribution to the overall facility risk expressed in terms of total Core Damage Frequency. In addition to providing the estimate of (CDF){sub Tornado}, the report documents, the relative importance of various tornado induced system, component, and operator failures that contribute most to (CDF){sub Tornado}.

  11. Optimization of the Epithermal Neutron Beam for Boron Neutron Capture Therapy at the Brookhaven Medical Research Reactor

    Science.gov (United States)

    Hu, Jih-Perng; Rorer, David C.; Reciniello, Richard N.; Holden, Norman E.

    2003-06-01

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  12. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  13. [Project for] a high-flux extracted neutron beam reactor [for physicists]; Un [projet de] reacteur a haut flux et faisceaux sortis [pour physiciens

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, P. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-07-01

    French requirements in neutron beams of different energies extracted from a reactor are briefly described. The well-known importance of cold neutrons (above 4 Angstrom) is emphasized. The main characteristics of a reactor suitable for physicists are outlined: They are: 1 - A flux of about 7. 10{sup 14} thermal neutrons in the heavy water of the reflector, 2 - Maximum flexibility obtained by: - physical separation of the core and the reflector, - independence of the different experiments, - possibility of modifying physical experiments up to - and including - the nature of the used reflector, without any appreciable interruption in the operation of the reactor, - reduction of fixed shields to a minimum; ample use of liquid shields (water) and fluid shields (sands). 3 - Technological continuity as far as possible with French research reactors (Siloe, Pegase, Osiris) already existing or under construction. 4 - Safety of operation arising from simplicity of conception. 5 - Minimised construction costs. Lowering of the operating costs is looked for indirectly in the simplification of the solutions and the reduction of operating staff, rather than directly by reducing the consumption of fuel elements and energy. The recommended solution can be described as a closed-core non-pressurized swimming-pool reactor, highly under-moderated by the cooling light water. Surrounding the reactor are a number of 'beam tubes-loops' each consisting of: - a part of the reflector (heavy water in the example described), - a part of neutron extraction beam tube, - the circuits required for their cooling, - the inlet systems of suitable fluids to the beam tube nose (liquid hydrogen in the example described), - the necessary outlets for measurement and control system. The whole 'beam tubes loops' is immersed in the water of the metallic self-supporting swimming-pool. The shielding outside the swimming-pool is composed for the most part by heavy sand in which is the rest of

  14. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  15. Brookhaven highlights

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L. (eds.)

    1992-01-01

    This publication provides a broad overview of the research programs and efforts being conducted, built, designed, and planned at Brookhaven National Laboratory. This work covers a broad range of scientific disciplines. Major facilities include the Alternating Gradient Synchrotron (AGS), with its newly completed booster, the National Synchrotron Light Source (NSLS), the High Flux Beam Reactor (HFBR), and the RHIC, which is under construction. Departments within the laboratory include the AGS department, accelerator development, physics, chemistry, biology, NSLS, medical, nuclear energy, and interdepartmental research efforts. Research ranges from the pure sciences, in nuclear physics and high energy physics as one example, to environmental work in applied science to study climatic effects, from efforts in biology which are a component of the human genome project to the study, production, and characterization of new materials. The paper provides an overview of the laboratory operations during 1992, including staffing, research, honors, funding, and general laboratory plans for the future.

  16. Physics design for the Brookhaven Medical Research Reactor epithermal neutron source.

    Science.gov (United States)

    Wheeler, F J; Parsons, D K; Nigg, D W; Wessol, D E; Miller, L G; Fairchild, R G

    1990-01-01

    A collaborative effort by researchers at the Idaho National Engineering Laboratory and the Brookhaven National Laboratory has resulted in the design and implementation of an epithermal-neutron source at the Brookhaven Medical Research Reactor (BMRR). Large aluminum containers, filled with aluminum oxide tiles and aluminum spacers, were tailored to pre-existing compartments on the animal side of the reactor facility. A layer of cadmium was used to minimize the thermal-neutron component. Additional bismuth was added to the pre-existing bismuth shield to minimize the gamma component of the beam. Lead was also added to reduce gamma streaming around the bismuth. The physics design methods are outlined in this paper. Information available to date shows close agreement between calculated and measured beam parameters. The neutron spectrum is predominantly in the intermediate energy range (0.5 eV - 10 keV). The peak flux intensity is 6.4E + 12 n/(m2.s.MW) at the center of the beam on the outer surface of the final gamma shield. The corresponding neutron current is 3.8E + 12 n/(m2.s.MW). Presently, the core operates at a maximum of 3 MW. The fast-neutron KERMA is 3.6E-15 cGy/(n/m2) and the gamma KERMA is 5.0E-16 cGY/(n/m2) for the unperturbed beam. The neutron intensity falls off rapidly with distance from the outer shield and the thermal flux realized in phantom or tissue is strongly dependent on the beam-delimiter and target geometry.

  17. High flux isotope reactor cold source preconceptual design study report

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Bucholz, J.A.; Burnette, S.E. [and others

    1995-12-01

    In February 1995, the deputy director of Oak Ridge National Laboratory (ORNL) formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced Neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. The anticipated cold source will consist of a cryogenic LH{sub 2} moderator plug, a cryogenic pump system, a refrigerator that uses helium gas as a refrigerant, a heat exchanger to interface the refrigerant with the hydrogen loop, liquid hydrogen transfer lines, a gas handling system that includes vacuum lines, and an instrumentation and control system to provide constant system status monitoring and to maintain system stability. The scope of this project includes the development, design, safety analysis, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube. This project will also include those activities necessary to transport the cold neutron beam to the front face of the present HFIR beam room. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and research and development (R and D), (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the preconceptual phase and establishes the concept feasibility. The information presented includes the project scope, the preliminary design requirements, the preliminary cost and schedule, the preliminary performance data, and an outline of the various plans for completing the project.

  18. Brookhaven highlights, fiscal year 1985, October 1, 1984-September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Activities at Brookhaven National Laboratory are briefly discussed. These include work at the National Synchrotron Light Source, the High Flux Beam Reactor, and the Alternating Gradient Synchrotron. Areas of research include heavy ion reactions, neutrino oscillations, low-level waste, nuclear data, medicine, biology, chemistry, parallel computing, optics. Also provided are general and administrative news, a financial report. (LEW)

  19. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one

  20. High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Buxbaum, Robert

    2010-06-30

    We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

  1. Study of efficient high-power, high-energy neutral beams for the Reference Mirror Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.H.; Barr, W.L.; Hamilton, G.W.

    1976-11-11

    An injector design for the Reference Mirror Reactor is described which uses negative ions created by charge-exchange in a cesium vapor cell and neutralized by photodetachment. Some of the innovations discussed include a continuously operating cathode for an LBL/LLL ion source, a negative ion beam line with cooled grids, a high voltage accelerator configuration with insulators shielded from the neutron and gamma flux, and cryopanels which continuously cycle between pumping and outgassing modes.

  2. Fabrication of control rods for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  3. Neutron Spectral Brightness of Cold Guide 4 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Winn, B L; Robertson, J L; Iverson, E B; Selby, D L, E-mail: winnbl@ornl.gov

    2010-11-01

    The High Flux Isotope Reactor resumed operation in June of 2007 with a supercritical hydrogen cold source in horizontal beam tube 4. Cold guide 4 is a guide system designed to deliver neutrons from this source with a reasonable flux at wavelengths greater than 4 A to several instruments, and includes a 15-m, 96-section, 4-channel bender. A time-of-flight spectrum with calibrated detector was recorded at port C of cold guide 4, and compared to McStas simulations, to generate a brightness spectrum.

  4. Neutron Spectral Brightness of Cold Guide 4 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Winn, B. L. [Brookhaven National Lab. (BNL), Upton, NY (United States). Neutron Scattering Group; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Facilities Development Div.; Robertson, J. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Facilities Development Div.; Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Facilities Development Div.; Selby, D. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Facilities Development Div.

    2009-05-03

    The High Flux Isotope Reactor resumed operation in June of 2007 with a super-critical hydrogen cold source in horizontal beam tube 4. Cold guide 4 is a guide system designed to deliver neutrons from this source at reasonable flux at wavelengths greater than 4 Å to several instruments, and includes a 15-m, 96-section, 4-channel bender. A time-of-flight spectrum with calibrated detector was recorded at port C of cold guide 4, and compared to McStas simulations, to generate a brightness spectrum.

  5. Neutron Spectral Brightness of Cold Guide 4 at the High Flux Isotope Reactor

    Science.gov (United States)

    Winn, B. L.; Robertson, J. L.; Iverson, E. B.; Selby, D. L.

    2010-11-01

    The High Flux Isotope Reactor resumed operation in June of 2007 with a supercritical hydrogen cold source in horizontal beam tube 4. Cold guide 4 is a guide system designed to deliver neutrons from this source with a reasonable flux at wavelengths greater than 4 Å to several instruments, and includes a 15-m, 96-section, 4-channel bender. A time-of-flight spectrum with calibrated detector was recorded at port C of cold guide 4, and compared to McStas simulations, to generate a brightness spectrum.

  6. High Flux Isotope Reactor system RELAP5 input model

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  7. Department of Energy's High Flux Beam Reactor (HFBR), September 15--19, 1980: An independent on-site safety review

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The intent of this on-site safety review was to make a broad management assessment of HFBR operations, rather than conduct a detailed in-depth audit. The result of the review should only be considered as having identified trends or indications. The Team's observations and recommendations for the most part are based upon licensed reactor facility practices used to meet industry standards. These standards form the basis for many of the comments in this report. The Team believes that a uniform minimum standard of performance should be achieved in the operation of DOE reactors. In order to assure that this is accomplished, clear standards are necessary. Consistent with the past AEC and ERDA policy, the team has used the standards of the commercial nuclear power industry. It is recognized that this approach is conservative in that the HFBR reactor has a significantly greater degree of inherent safety (low pressure, temperature, power, etc.) than a licensed reactor.

  8. Progress towards boron neutron capture therapy at the High Flux Reactor Petten.

    Science.gov (United States)

    Moss, R L

    1990-01-01

    During 1988 the first positive steps were taken to proceed with the design and construction of a neutron capture therapy facility on the High Flux Reactor (HFR) at Petten. The immediate aim is to realise within a short time (summer 1989), an epithermal neutron beam for radiobiological and filter optimisation studies on one of the 10 small aperture horizontal beam tubes. The following summer, a much larger neutron beam, i.e., in cross section and neutron fluence rate, will be constructed on one of the two large beam tubes that replaced the old thermal column in 1984. This latter beam tube faces one whole side of the reactor vessel, extending from a 50 x 40 cm input aperture to a 35 x 35 cm exit hole. The radiotherapeutic facility will be housed here, with the intention to start clinical trials at the beginning of 1991. This paper describes the present status of the project and includes: a general description of the pertinent characteristics with respect to NCT of the HFR; results of the recently completed preliminary neutron metrology and computer modeling at the input end of the candidate beam tube; the structure and planning of the proposed Work Programme; and the respective direct and indirect participation and collaboration with the Netherlands Cancer Institute and the European Collaboration Group on BNCT.

  9. High-energy tritium beams as current drivers in tokamak reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams.

  10. A Compact, High-Flux Cold Atom Beam Source

    Science.gov (United States)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis

    2012-01-01

    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  11. Measurement of in-phantom neutron flux and gamma dose in Tehran research reactor boron neutron capture therapy beam line

    OpenAIRE

    Elham Bavarnegin; Alireza Sadremomtaz; Hossein Khalafi; Yaser Kasesaz

    2016-01-01

    Aim: Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam. Materials and Methods: The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter. Results: Different dose components have been measured in a head phantom which has been designed an...

  12. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report.

  13. Dissolution Flowsheet for High Flux Isotope Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Karay, N. S [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy, and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas, allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  14. Dissolution Flowsheet for High Flux Isotope Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Karay, N. S [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the calculated lower

  15. Radiation dosimetry for NCT facilities at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Holden, N.E.; Hu, J.P.; Greenberg, D.D.; Reciniello, R.N.

    1998-12-31

    Brookhaven Medical Research Reactor (BMRR) is a 3 mega-watt (MW) heterogeneous, tank-type, light water cooled and moderated, graphite reflected reactor, which was designed for medical and biological studies and became operational in 1959. Over time, the BMRR was modified to provide thermal and epithermal neutron beams suitable for research studies. NCT studies have been performed at both the epithermal neutron irradiation facility (ENIF) on the east side of the BMRR reactor core and the thermal neutron irradiation facility (TNIF) on the west side of the core. Neutron and gamma-ray dosimetry performed from 1994 to the present in both facilities are described and the results are presented and discussed.

  16. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  17. Radiological environmental monitoring report for Brookhaven National Laboratory 1967--1970

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, C.B.; Hull, A.P.

    1998-10-01

    Brookhaven National Laboratory (BNL) was established in 1947 on the former Army Camp Upton site located in central Long Island, New York. From the very beginning, BNL has monitored the environment on and around the Laboratory site to assess the effects of its operations on the environment. This document summarizes the environmental data collected for the years 1967, 1968, 1969, and 1970. Thus, it fills a gap in the series of BNL annual environmental reports beginning in 1962. The data in this document reflect measurements for those four years of concentrations and/or amounts of airborne radioactivity, radioactivity in streams and ground water, and external radiation levels in the vicinity of BNL. Also included are estimates, made at that time, of BNL`s contribution to radioactivity in the environment. Among the major scientific facilities operated at BNL are the High Flux Beam Reactor, Medical Research Reactor, Brookhaven Graphite Research Reactor, Alternating Gradient Synchrotron, and the 60-inch Cyclotron.

  18. COMPARISON OF COOLING SCHEMES FOR HIGH HEAT FLUX COMPONENTS COOLING IN FUSION REACTORS

    Directory of Open Access Journals (Sweden)

    Phani Kumar Domalapally

    2015-04-01

    Full Text Available Some components of the fusion reactor receives high heat fluxes either during the startup and shutdown or during the operation of the machine. This paper analyzes different ways of enhancing heat transfer using helium and water for cooling of these high heat flux components and then conclusions are drawn to decide the best choice of coolant, for usage in near and long term applications.

  19. High-flux first-wall design for a small reversed-field pinch reactor

    Science.gov (United States)

    Cort, G. E.; Graham, A. L.; Christensen, K. E.

    To achieve the goal of a commercially economical fusion power reactor, small physical size and high power density should be combined with simplicity (minimized use of high technology systems). The Reversed-Field Pinch (RFP) is a magnetic confinement device that promises to meet these requirements with power densities comparable to those in existing fission power plants. To establish feasibility of such an RFP reactor, a practical design for a first wall capable of withstanding high levels of cyclic neutron wall loadings is needed. Associated with the neutron flux in the proposed RFP reactor is a time averaged heat flux of 4.5 MW/sq m with a conservatively estimated transient peak approximately twice the average value. The design for a modular first wall made from a high-strength copper alloy that will meet these requirements of cyclic thermal loading is presented. The heat removal from the wall is by subcooled water flowing in straight tubes at high linear velocities.

  20. Measurement of neutron flux and beam divergence at the cold neutron guide system of the new Munich research reactor FRM-II

    Science.gov (United States)

    Zeitelhack, K.; Schanzer, C.; Kastenmüller, A.; Röhrmoser, A.; Daniel, C.; Franke, J.; Gutsmiedl, E.; Kudryashov, V.; Maier, D.; Päthe, D.; Petry, W.; Schöffel, T.; Schreckenbach, K.; Urban, A.; Wildgruber, U.

    2006-05-01

    A sophisticated neutron guide system has been installed at the new Munich neutron source FRM-II to transport neutrons from the D 2 cold neutron source to several instruments, which are situated in a separate neutron guide hall. The guide system takes advantage of supermirror coatings and includes a worldwide unique "twisted" guide for a desired phase space transformation of the neutron beam. During the initial reactor commissioning in summer 2004, the integral and differential neutron flux as well as the distribution of beam divergence at the exit of two representative and the twisted neutron guide were measured using time-of-flight spectroscopy and gold-foil activation. The experimental results can be compared to extensive simulation calculations based on MCNP and McStas. The investigated guides fulfill the expectations of providing high neutron fluxes and reveal good quality with respect to the reflective coatings and the installation precision.

  1. Measurement of neutron flux and beam divergence at the cold neutron guide system of the new Munich research reactor FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Zeitelhack, K. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany)]. E-mail: karl.zeitelhack@frm2.tum.de; Schanzer, C. [Physik-Department E21, TU Muenchen, D-85747 Garching (Germany); Kastenmueller, A. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Roehrmoser, A. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Daniel, C. [Physik-Department E22, TU Muenchen, D-85747 Garching (Germany); Franke, J. [Max-Planck-Institut fuer Metallforschung, D-70569 Stuttgart (Germany); Gutsmiedl, E. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Kudryashov, V. [GKSS Forschungszentrum GmbH, D-21502 Geesthacht (Germany); Maier, D. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Paethe, D. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Petry, W. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Schoeffel, T. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Schreckenbach, K. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Urban, A. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Wildgruber, U. [Max-Planck-Institut fuer Metallforschung, D-70569 Stuttgart (Germany)

    2006-05-10

    A sophisticated neutron guide system has been installed at the new Munich neutron source FRM-II to transport neutrons from the D{sub 2} cold neutron source to several instruments, which are situated in a separate neutron guide hall. The guide system takes advantage of supermirror coatings and includes a worldwide unique 'twisted' guide for a desired phase space transformation of the neutron beam. During the initial reactor commissioning in summer 2004, the integral and differential neutron flux as well as the distribution of beam divergence at the exit of two representative and the twisted neutron guide were measured using time-of-flight spectroscopy and gold-foil activation. The experimental results can be compared to extensive simulation calculations based on MCNP and McStas. The investigated guides fulfill the expectations of providing high neutron fluxes and reveal good quality with respect to the reflective coatings and the installation precision.

  2. Next generation fuel irradiation capability in the High Flux Reactor Petten

    Energy Technology Data Exchange (ETDEWEB)

    Fuetterer, Michael A., E-mail: michael.fuetterer@jrc.n [European Commission, Joint Research Centre, Institute for Energy (JRC-IE), P.O. Box 2, NL-1755 ZG Petten (Netherlands); D' Agata, Elio; Laurie, Mathias; Marmier, Alain; Scaffidi-Argentina, Francesco [European Commission, Joint Research Centre, Institute for Energy (JRC-IE), P.O. Box 2, NL-1755 ZG Petten (Netherlands); Raison, Philippe [European Commission, Joint Research Centre, Institute for Transuranium Elements (JRC-ITU), D-76334 Eggenstein-Leopoldshafen (Germany); Bakker, Klaas; Groot, Sander de; Klaassen, Frodo [Nuclear Research and consultancy Group (NRG), P.O. Box 25, NL-1755 ZG Petten (Netherlands)

    2009-07-15

    This paper describes selected equipment and expertise on fuel irradiation testing at the High Flux Reactor (HFR) in Petten, The Netherlands. The reactor went critical in 1961 and holds an operating license up to at least 2015. While HFR has initially focused on Light Water Reactor fuel and materials, it also played a decisive role since the 1970s in the German High Temperature Reactor (HTR) development program. A variety of tests related to fast reactor development in Europe were carried out for next generation fuel and materials, in particular for Very High Temperature Reactor (V/HTR) fuel, fuel for closed fuel cycles (U-Pu and Th-U fuel cycle) and transmutation, as well as for other innovative fuel types. The HFR constitutes a significant European infrastructure tool for the development of next generation reactors. Experimental facilities addressed include V/HTR fuel tests, a coated particle irradiation rig, and tests on fast reactor, transmutation and thorium fuel. The rationales for these tests are given, results are provided and further work is outlined.

  3. A conceptual high flux reactor design with scope for use in ADS applications

    Science.gov (United States)

    Pal, Usha; Jagannathan, V.

    2007-02-01

    A 100 MWt reactor design has been conceived to support flux level of the order of 1015 n/cm2/s in selected flux trap zones. The physics design considers high enriched metallic alloy fuel in the form of annular plates placed in a D2O moderator tank in a hexagonal lattice arrangement. By choosing a tight lattice pitch in the central region and double the lattice pitch in the outer region, it is possible to have both high fast flux and thermal flux trap zones. By design the flux level in the seed fuel has been kept lower than in the high flux trap zones so that the burning rate of the seed is reduced. Another important objective of the design is to maximize the time interval of refueling. As against a typical refueling interval of a few weeks in such high flux reactor cores, it is desired to maximize this period to as much as six months or even one year. This is possible to achieve by eliminating the conventional control absorbers and replacing them with a suitable amount of fertile material loading in the reactor. Requisite number of seedless thorium-aluminum alloy plates are placed at regular lattice locations vacated by seed fuel in alternate fuel layers. It is seen that these thorium plates are capable of acquiring asymptotic fissile content of 14 g/kg in about 100 days of irradiation at a flux level of 8 x 1014 n/cm2/s. In summary, the core has a relatively higher fast flux in the central region and high thermal flux in the outer region. The present physics design envisages a flat core excess reactivity for the longest possible cycle length of 6 months to one year. It is also possible to modify the design for constant subcriticality for about the same period or longer duration by considering neutron spallation source at the centre and curtailing the power density in the inner core region by shielding it with a layer of thoria fuel loading.

  4. A conceptual high flux reactor design with scope for use in ADS applications

    Indian Academy of Sciences (India)

    Usha Pal; V Jagannathan

    2007-02-01

    A 100 MWt reactor design has been conceived to support flux level of the order of 1015 n/cm2/s in selected flux trap zones. The physics design considers high enriched metallic alloy fuel in the form of annular plates placed in a D2O moderator tank in a hexagonal lattice arrangement. By choosing a tight lattice pitch in the central region and double the lattice pitch in the outer region, it is possible to have both high fast flux and thermal flux trap zones. By design the flux level in the seed fuel has been kept lower than in the high flux trap zones so that the burning rate of the seed is reduced. Another important objective of the design is to maximize the time interval of refueling. As against a typical refueling interval of a few weeks in such high flux reactor cores, it is desired to maximize this period to as much as six months or even one year. This is possible to achieve by eliminating the conventional control absorbers and replacing them with a suitable amount of fertile material loading in the reactor. Requisite number of seedless thorium–aluminum alloy plates are placed at regular lattice locations vacated by seed fuel in alternate fuel layers. It is seen that these thorium plates are capable of acquiring asymptotic fissile content of 14 g/kg in about 100 days of irradiation at a flux level of 8 × 1014 n/cm2 /s. In summary, the core has a relatively higher fast flux in the central region and high thermal flux in the outer region. The present physics design envisages a flat core excess reactivity for the longest possible cycle length of 6 months to one year. It is also possible to modify the design for constant subcriticality for about the same period or longer duration by considering neutron spallation source at the centre and curtailing the power density in the inner core region by shielding it with a layer of thoria fuel loading.

  5. Partial Safety Analysis for a Reduced Uranium Enrichment Core for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Gehin, Jess C [ORNL

    2009-04-01

    A computational model of the reactor core of the High Flux Isotope Rector (HFIR) was developed in order to analyze non-destructive accidents caused by transients during reactor operation. The reactor model was built for the latest version of the nuclear analysis software package called Program for the Analysis of Reactor Transients (PARET). Analyses performed with the model constructed were compared with previous data obtained with other tools in order to benchmark the code. Finally, the model was used to analyze the behavior of the reactor under transients using a different nuclear fuel with lower enrichment of uranium (LEU) than the fuel currently used, which has a high enrichment of uranium (HEU). The study shows that the presence of fertile isotopes in LEU fuel, which increases the neutron resonance absorption, reduces the impact of transients on the fuel and enhances the negative reactivity feedback, thus, within the limitations of this study, making LEU fuel appear to be a safe alternative fuel for the reactor core.

  6. Neutron Radiography Facility at IBR-2 High Flux Pulsed Reactor: First Results

    Science.gov (United States)

    Kozlenko, D. P.; Kichanov, S. E.; Lukin, E. V.; Rutkauskas, A. V.; Bokuchava, G. D.; Savenko, B. N.; Pakhnevich, A. V.; Rozanov, A. Yu.

    A neutron radiography and tomography facilityhave been developed recently at the IBR-2 high flux pulsed reactor. The facility is operated with the CCD-camera based detector having maximal field of view of 20x20 cm, and the L/D ratio can be varied in the range 200 - 2000. The first results of the radiography and tomography experiments with industrial materials and products, paleontological and geophysical objects, meteorites, are presented.

  7. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Croci, G.; Tardocchi, M. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Rebai, M.; Cippo, E. Perelli; Gorini, G. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Cazzaniga, C. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano (Italy); Palma, M. Dalla; Pasqualotto, R.; Tollin, M. [Consorzio RFX - Associazione Euratom-Enea sulla Fusione, Padova (Italy); Grosso, G.; Muraro, A. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Murtas, F.; Claps, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Roma) (Italy); Cavenago, M. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy)

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  8. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    Science.gov (United States)

    Croci, G.; Rebai, M.; Cazzaniga, C.; Palma, M. Dalla; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Pasqualotto, R.; Cippo, E. Perelli; Tardocchi, M.; Tollin, M.; Cavenago, M.; Gorini, G.

    2014-08-01

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  9. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  10. Application of the successive linear programming technique to the optimum design of a high flux reactor using LEU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mo, S.C.

    1991-01-01

    The successive linear programming technique is applied to obtain the optimum thermal flux in the reflector region of a high flux reactor using LEU fuel. The design variables are the reactor power, core radius and coolant channel thickness. The constraints are the cycle length, average heat flux and peak/average power density ratio. The characteristics of the optimum solutions with various constraints are discussed.

  11. Application of the successive linear programming technique to the optimum design of a high flux reactor using LEU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mo, S.C.

    1991-12-31

    The successive linear programming technique is applied to obtain the optimum thermal flux in the reflector region of a high flux reactor using LEU fuel. The design variables are the reactor power, core radius and coolant channel thickness. The constraints are the cycle length, average heat flux and peak/average power density ratio. The characteristics of the optimum solutions with various constraints are discussed.

  12. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    Science.gov (United States)

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  13. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)

    Science.gov (United States)

    Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  14. Experimental study of thermal crisis in connection with Tokamak reactor high heat flux components

    Science.gov (United States)

    Gallo, D.; Giardina, M.; Castiglia, F.; Celata, G. P.; Mariani, A.; Zummo, G.; Cumo, M.

    2000-04-01

    The results of an experimental research on high heat flux thermal crisis in forced convective subcooled water flow, under operative conditions of interest to the thermal-hydraulic design of TOKAMAK fusion reactors, are here reported. These experiments, carried out in the framework of a collaboration between the Nuclear Engineering Department of Palermo University and the National Institute of Thermal - Fluid Dynamics of the ENEA - Casaccia (Rome), were performed on the STAF (Scambio Termico Alti Flussi) water loop and consisted, essentially, in a high speed photographic study which enabled focusing several information on bubble characteristics and flow patterns taking place during the burnout phenomenology.

  15. Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site

    Energy Technology Data Exchange (ETDEWEB)

    Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

    2010-10-01

    The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

  16. Heat Transfer Calculation on Plate-Type Fuel Assembly of High Flux Research Reactor

    Directory of Open Access Journals (Sweden)

    Daxin Gong

    2015-01-01

    Full Text Available Heat transfer characteristics of fuel assemblies for a high flux research reactor with a neutron trap are numerically investigated in this study. Single-phase turbulence flow is calculated by a commercial code, FLUENT, where the computational objective covers standard and control fuel assemblies. The simulation is carried out with an inlet coolant velocity varying from 4.5 m/s to 7.5 m/s in hot assemblies. The results indicate that the cladding temperature is always lower than the saturation temperature in the calculated ranges. The temperature rise in the control fuel assembly is smaller than that of the standard fuel assembly. Additionally, the assembly with a hot spot is specially studied, and the safety of the research reactor is also approved.

  17. Development of a Scale Model for High Flux Isotope Reactor Cycle 400

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Dan [ORNL

    2012-03-01

    The development of a comprehensive SCALE computational model for the High Flux Isotope Reactor (HFIR) is documented and discussed in this report. The SCALE model has equivalent features and functionality as the reference MCNP model for Cycle 400 that has been used extensively for HFIR safety analyses and for HFIR experiment design and analyses. Numerical comparisons of the SCALE and MCNP models for the multiplication constant, power density distribution in the fuel, and neutron fluxes at several locations in HFIR indicate excellent agreement between the results predicted with the two models. The SCALE HFIR model is presented in sufficient detail to provide the users of the model with a tool that can be easily customized for various safety analysis or experiment design requirements.

  18. Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the National Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)

  19. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD)

    2016-08-19

    FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high-temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C to a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.

  20. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD)

    2016-08-19

    FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C to a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.

  1. Feasibility analyses for HEU to LEU fuel conversion of the LAUE Langivin Institute (ILL) High Flux Reactor (RHF).

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, J.; Tentner. A.; Bergeron, A.; Nuclear Engineering Division

    2010-08-19

    The High Flux Reactor (RHF) of the Laue Langevin Institute (ILL) based in Grenoble, France is a research reactor designed primarily for neutron beam experiments for fundamental science. It delivers one of the most intense neutron fluxes worldwide, with an unperturbed thermal neutron flux of 1.5 x 10{sup 15} n/cm{sup 2}/s in its reflector. The reactor has been conceived to operate at a nuclear power of 57 MW but currently operates at 52 MW. The reactor currently uses a Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most worldwide research and test reactors have already started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on a mixture of uranium and molybdenum (UMo) is expected to allow the conversion of compact high performance reactors like the RHF. This report presents the results of reactor design, performance and steady state safety analyses for conversion of the RHF from the use of HEU fuel to the use of UMo LEU fuel. The objective of this work was to show that is feasible, under a set of manufacturing assumptions, to design a new RHF fuel element that could safely replace the HEU element currently used. The new proposed design has been developed to maximize performance, minimize changes and preserve strong safety margins. Neutronics and thermal-hydraulics models of the RHF have been developed and qualified by benchmark against experiments and/or against other codes and models. The models developed were then used to evaluate the RHF performance if LEU UMo were to replace the current HEU fuel 'meat' without any geometric change to the fuel plates. Results of these direct replacement analyses have shown a significant degradation of the RHF performance, in terms of both neutron flux and cycle

  2. Countercurrent flow limited (CCFL) heat flux in the high flux isotope reactor (HFIR) fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Ruggles, A.E.

    1990-10-12

    The countercurrent flow (CCF) performance in the fuel element region of the HFIR is examined experimentally and theoretically. The fuel element consists of two concentric annuli filled with aluminum clad fuel plates of 1.27 mm thickness separated by 1.27 mm flow channels. The plates are curved as they go radially outward to accomplish constant flow channel width and constant metal-to-coolant ratio. A full-scale HFIR fuel element mock-up is studied in an adiabatic air-water CCF experiment. A review of CCF models for narrow channels is presented along with the treatment of CCFs in system of parallel channels. The experimental results are related to the existing models and a mechanistic model for the annular'' CCF in a narrow channel is developed that captures the data trends well. The results of the experiment are used to calculate the CCFL heat flux of the HFIR fuel assembly. It was determined that the HFIR fuel assembly can reject 0.62 Mw of thermal power in the CCFL situation. 31 refs., 17 figs.

  3. A Simulator for Producing of High Flux Atomic Oxygen Beam by Using ECR Plasma Source

    Institute of Scientific and Technical Information of China (English)

    Shuwang DUO; Meishuan LI; Yaming ZHANG

    2004-01-01

    In order to study the atomic oxygen corrosion of spacecraft materials in low earth orbit environment, an atomic oxygen simulator was established. In the simulator, a 2.45 GHz microwave source with maximum power of 600 W was launched into the circular cavity to generate ECR (electron cyclotron resonance) plasma. The oxygen ion beam moved onto a negatively biased Mo plate under the condition of symmetry magnetic mirror field confine, then was neutralized and reflected to form oxygen atom beam. The properties of plasma density, electron temperature, plasma space potential and ion incident energy were characterized. The atomic oxygen beam flux was calibrated by measuring the mass loss rate of Kapton during the atomic 5~30 eV and a cross section of φ80 mm could be obtained under the operating pressure of 10-1~10-3 Pa. Such a high flux source can provide accelerated simulation tests of materials and coatings for space applications.

  4. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Betzler, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Hirtz, Gregory John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Sunny, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se production capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.

  5. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  6. A Level 1+ Probabilistic Safety Assessment of the High Flux Australian Reactor. Vol 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Department of Industry, Science and Tourism selected PLG, an EQE International Company, to systematically and independently evaluate the safety of the High Flux Australian Reactor (HIFAR), located at Lucas Heights, New South Wales. PLG performed a comprehensive probabilistic safety assessment (PSA) to quantify the risks posed by operation of HIFAR . The PSA identified possible accident scenarios, estimated their likelihood of occurrence, and assigned each scenario to a consequence category; i.e., end state. The accident scenarios developed included the possible release of radioactive material from irradiated nuclear fuel and of tritium releases from reactor coolant. The study team developed a recommended set of safety criteria against which the results of the PSA may be judged. HIFAR was found to exceed one of the two primary safety objectives and two of the five secondary safety objectives. Reactor coolant leaks, earthquakes, and coolant pump trips were the accident initiators that contributed most to scenarios that could result in fuel overheating. Scenarios initiated by earthquakes were the reason the frequency criterion for the one primary safety objective was exceeded. Overall, the plant safety status has been shown to be generally good with no evidence of major safety-related problems from its operation. One design deficiency associated with the emergency core cooling system was identified that should be corrected as soon as possible. Additionally, several analytical issues have been identified that should be investigated further. The results from these additional investigations should be used to determine whether additional plant and procedural changes are required, or if further evaluations of postulated severe accidents are warranted. Supporting information can be found in Appendix A for the seismic analysis and in the Appendix B for selected other external events refs., 139 tabs., 85 figs. Prepared for Department of Industry, Science and Tourism

  7. The wave energy flux of high frequency diffracting beams in complex geometrical optics

    Science.gov (United States)

    Maj, Omar; Mariani, Alberto; Poli, Emanuele; Farina, Daniela

    2013-04-01

    We consider the construction of asymptotic solutions of Maxwell's equations for a diffracting wave beam in the high frequency limit and address the description of the wave energy flux transported by the beam. With this aim, the complex eikonal method is applied. That is a generalization of the standard geometrical optics method in which the phase function is assumed to be complex valued, with the non-negative imaginary part accounting for the finite width of the beam cross section. In this framework, we propose an argument which simplifies significantly the analysis of the transport equation for the wave field amplitude and allows us to derive the wave energy flux. The theoretical analysis is illustrated numerically for the case of electron cyclotron beams in tokamak plasmas by using the GRAY code [D. Farina, Fusion Sci. Technol. 52, 154 (2007)], which is based upon the complex eikonal theory. The results are compared to those of the paraxial beam tracing code TORBEAM [E. Poli et al., Comput. Phys. Commun. 136, 90 (2001)], which provides an independent calculation of the energy flow.

  8. The wave energy flux of high frequency diffracting beams in complex geometrical optics

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Omar; Poli, Emanuele [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Mariani, Alberto [Istituto di Fisica del Plasma ' P. Caldirola,' Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, via R. Cozzi 53, I-20125 Milano (Italy); Universita degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano (Italy); Farina, Daniela [Istituto di Fisica del Plasma ' P. Caldirola,' Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, via R. Cozzi 53, I-20125 Milano (Italy)

    2013-04-15

    We consider the construction of asymptotic solutions of Maxwell's equations for a diffracting wave beam in the high frequency limit and address the description of the wave energy flux transported by the beam. With this aim, the complex eikonal method is applied. That is a generalization of the standard geometrical optics method in which the phase function is assumed to be complex valued, with the non-negative imaginary part accounting for the finite width of the beam cross section. In this framework, we propose an argument which simplifies significantly the analysis of the transport equation for the wave field amplitude and allows us to derive the wave energy flux. The theoretical analysis is illustrated numerically for the case of electron cyclotron beams in tokamak plasmas by using the GRAY code [D. Farina, Fusion Sci. Technol. 52, 154 (2007)], which is based upon the complex eikonal theory. The results are compared to those of the paraxial beam tracing code TORBEAM [E. Poli et al., Comput. Phys. Commun. 136, 90 (2001)], which provides an independent calculation of the energy flow.

  9. The CG-1D Neutron Imaging Beamline at the Oak Ridge National Laboratory High Flux Isotope Reactor

    Science.gov (United States)

    Santodonato, Lou; Bilheux, Hassina; Bailey, Barton; Bilheux, Jean; Nguyen, Phong; Tremsin, Anton; Selby, Doug; Walker, Lakeisha

    The Oak Ridge National Laboratory Neutron Sciences Directorate has installed a neutron imaging beamline at the High Flux Isotope Reactor (HFIR) cold guide hall. CG-1D is one of the three instruments that make up the CG1 instrument suite. The beamline optics and detector have recently been upgraded to meet the needs of the neutron imaging community (better "smoothing" of guide system artifacts, higher flux or spatial resolution). These upgrades comprise a new diffuser/aperture system, two new detectors, a He-filled flight tube and silicon (Si) windows. Shielding inside the flight tube, beam scrapers and a beam stop ensure that biological dose is less than 50 μSv/hr outside of the radiation boundary. A set of diffusers and apertures (pinhole geometry) has been installed at the exit of the guide system to allow motorized L/D variation. Samples sit on a translation/rotation stage for alignment and tomography purposes. Detectors for the CG-1D beamline are (1) an ANDOR DW936 charge coupled device (CCD) camera with a field of view of approximately 7 cm x 7 cm and ∼ 80 microns spatial resolution and 1 frame per second time resolution, (2) a new Micro-Channel Plate (MCP) detector with a 2.8 cm x 2.8 cm field of view and 55 microns spatial resolution, and 5 μs timing capability. 6LiF/ZnS scintillators of thickness varying from 50 to 200 microns are being used at this facility. An overview of the beamline upgrade and preliminary data is presented here.

  10. Utilization of the High Flux Isotope Reactor at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Selby, Douglas L [ORNL; Bilheux, Hassina Z [ORNL; Meilleur, Flora [ORNL; Jones, Amy [ORNL; Bailey, William Barton [ORNL; Vandergriff, David H [ORNL

    2015-01-01

    This paper addresses several aspects of the scientific utilization of the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Topics to be covered will include: 1) HFIR neutron scattering instruments and the formal instrument user program; 2) Recent upgrades to the neutron scattering instrument stations at the reactor, and 3) eMod a new tool for addressing instrument modifications and providing configuration control and design process for scientific instruments at HFIR and the Spallation Neutron Source (SNS). There are 15 operating neutron instrument stations at HFIR with 12 of them organized into a formal user program. Since the last presentation on HFIR instruments at IGORR we have installed a Single Crystal Quasi-Laue Diffractometer instrument called IMAGINE; and we have made significant upgrades to HFIR neutron scattering instruments including the Cold Triple Axis Instrument, the Wide Angle Neutron Diffractometer, the Powder Diffractometer, and the Neutron Imaging station. In addition, we have initiated upgrades to the Thermal Triple Axis Instrument and the Bio-SANS cold neutron instrument detector system. All of these upgrades are tied to a continuous effort to maintain a high level neutron scattering user program at the HFIR. For the purpose of tracking modifications such as those mentioned and configuration control we have been developing an electronic system for entering instrument modification requests that follows a modification or instrument project through concept development, design, fabrication, installation, and commissioning. This system, which we call eMod, electronically leads the task leader through a series of questions and checklists that then identifies such things as ES&H and radiological issues and then automatically designates specific individuals for the activity review process. The system has been in use for less than a year and we are still working out some of the inefficiencies, but we believe that this will become a very

  11. Modeling and Simulations for the High Flux Isotope Reactor Cycle 400

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Ade, Brian J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Sunny, Eva E [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Betzler, Benjamin R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Pinkston, Daniel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)

    2015-03-01

    A concerted effort over the past few years has been focused on enhancing the core model for the High Flux Isotope Reactor (HFIR), as part of a comprehensive study for HFIR conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel. At this time, the core model used to perform analyses in support of HFIR operation is an MCNP model for the beginning of Cycle 400, which was documented in detail in a 2005 technical report. A HFIR core depletion model that is based on current state-of-the-art methods and nuclear data was needed to serve as reference for the design of an LEU fuel for HFIR. The recent enhancements in modeling and simulations for HFIR that are discussed in the present report include: (1) revision of the 2005 MCNP model for the beginning of Cycle 400 to improve the modeling data and assumptions as necessary based on appropriate primary reference sources HFIR drawings and reports; (2) improvement of the fuel region model, including an explicit representation for the involute fuel plate geometry that is characteristic to HFIR fuel; and (3) revision of the Monte Carlo-based depletion model for HFIR in use since 2009 but never documented in detail, with the development of a new depletion model for the HFIR explicit fuel plate representation. The new HFIR models for Cycle 400 are used to determine various metrics of relevance to reactor performance and safety assessments. The calculated metrics are compared, where possible, with measurement data from preconstruction critical experiments at HFIR, data included in the current HFIR safety analysis report, and/or data from previous calculations performed with different methods or codes. The results of the analyses show that the models presented in this report provide a robust and reliable basis for HFIR analyses.

  12. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Adam R [ORNL

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  13. Reactivity Accountability Attributed to Reflector Poisons in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

    2009-12-01

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

  14. Delivery of completed irradiation vehicles and the quality assurance document to the High Flux Isotope Reactor for irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Christian M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.

  15. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

    2009-03-01

    This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

  16. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Sease, John D [ORNL; Guida, Tracey [University of Pittsburgh; Jolly, Brian C [ORNL

    2010-02-01

    This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

  17. High Heat Flux Testing of B4C/Cu and SiC/Cu Functionally Graded Materials Simulated by Laser and Electron Beam

    Institute of Scientific and Technical Information of China (English)

    刘翔; 谌继明; 张斧; 许增裕; 葛昌纯; 李江涛

    2002-01-01

    B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.

  18. Current and future capabilities of the neutron reflectometer MIRROR at Oak Ridge National Laboratory's High Flux Isotope Reactor

    Science.gov (United States)

    Hamilton, W. A.; Smith, G. S.; Taylor, G. B.; Larkins, B. M.; Porcar, L.

    2006-11-01

    The peripatetic ORNL HFIR Center for Neutron Scattering reflectometer instrument MIRROR has recently been re-installed in an interim beam line position in the reactor beam room. In 2006 an upgraded version of the instrument will move to a high intensity guide hall position fed by the new HFIR cold source. In this short note, we present some aspects of current instrument operation-particularly with respect to data reduction from the instrument's linear reflection plane detector-with examples of ongoing research and analysis, and a brief outline of the expected capabilities of the fully upgraded guide hall instrument.

  19. In-situ SEOP polarizer and initial tests on a high flux neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, E., E-mail: e.babcock@fz-juelich.d [Institut Laue Langevin, Grenoble (France); Jeulich Centre for Neutron Science, Garching (Germany); Boag, S. [ISIS, Chilton, Didcot, OX11 QX (United Kingdom); Andersen, K.H.; Becker, M. [Institut Laue Langevin, Grenoble (France); Beecham, C. [ISIS, Chilton, Didcot, OX11 QX (United Kingdom); Institut Laue Langevin, Grenoble (France); Bordenave, F.; Chastagnier, J. [Institut Laue Langevin, Grenoble (France); Chen, W.C. [NIST Gaithersburg, MD (United States); Chung, R. [Institut Laue Langevin, Grenoble (France); Chupp, T.E. [FOCUS, University of Michigan, Ann Arbor, MI (United States); Elmore, S. [ISIS, Chilton, Didcot, OX11 QX (United Kingdom); Fouilloux, P. [Institut Laue Langevin, Grenoble (France); Gentile, T.R. [NIST Gaithersburg, MD (United States); Jullien, D.; Lelievre-Berna, E.; Mouveau, P.; Petoukhov, A.; Revert, M.; Soldner, T. [Institut Laue Langevin, Grenoble (France)

    2009-09-01

    Polarized {sup 3}He has shown its unique characteristics in many areas of polarized neutron scattering, its ability to polarize neutrons at short wavelengths, accept wide-angle and divergent beams and low backgrounds enable new classes of experiments. While polarized {sup 3}He is not a steady state solution as commonly applied, the benefits have been shown to offset the drawbacks of polarizing and refreshing the polarization in the neutron spin filter cells. As an extension of this work, in-situ polarization using the spin-exchange optical pumping (SEOP) method was explored as a means to construct a system which could be used to polarize {sup 3}He in the state used for an effective neutron spin filter to constant polarization while on the neutron beam. An in-situ SEOP polarizer was constructed. This device utilized many devices and principles developed for neutron spin filters which are polarized off the beam line using either SEOP or metastability exchange optical pumping (MEOP) under the same research program. As a collimation of this work effects of extremely high neutron capture flux density >1x10{sup 10}cm{sup -2}s{sup -1} incident on the in-situ polarizer were explored.

  20. Thermal Safety Analyses for the Production of Plutonium-238 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, Christopher J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hobbs, Randy W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maldonado, G. Ivan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    There has been a considerable effort over the previous few years to demonstrate and optimize the production of plutonium-238 (238Pu) at the High Flux Isotope Reactor (HFIR). This effort has involved resources from multiple divisions and facilities at the Oak Ridge National Laboratory (ORNL) to demonstrate the fabrication, irradiation, and chemical processing of targets containing neptunium-237 (237Np) dioxide (NpO2)/aluminum (Al) cermet pellets. A critical preliminary step to irradiation at the HFIR is to demonstrate the safety of the target under irradiation via documented experiment safety analyses. The steady-state thermal safety analyses of the target are simulated in a finite element model with the COMSOL Multiphysics code that determines, among other crucial parameters, the limiting maximum temperature in the target. Safety analysis efforts for this model discussed in the present report include: (1) initial modeling of single and reduced-length pellet capsules in order to generate an experimental knowledge base that incorporate initial non-linear contact heat transfer and fission gas equations, (2) modeling efforts for prototypical designs of partially loaded and fully loaded targets using limited available knowledge of fabrication and irradiation characteristics, and (3) the most recent and comprehensive modeling effort of a fully coupled thermo-mechanical approach over the entire fully loaded target domain incorporating burn-up dependent irradiation behavior and measured target and pellet properties, hereafter referred to as the production model. These models are used to conservatively determine several important steady-state parameters including target stresses and temperatures, the limiting condition of which is the maximum temperature with respect to the melting point. The single pellet model results provide a basis for the safety of the irradiations, followed by parametric analyses in the initial prototypical designs that were necessary due to the

  1. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  2. Main technical options of the Jules Horowitz reactor project to achieve high flux performances and high safety level

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A.; Bergamaschi, Y.; Bouilloux, Y.; Bravo, X.; Guigon, B.; Rommens, M.; Tremodeux, P. [CEA Cadarache, Dir. de l' Energie Nucleaire DEN, 13 - Saint-Paul-lez-Durance (France)]|[CEA Saclay Dir. de l' Energie Nucleaire DEN, 91 - Gif sur Yvette (France)

    2003-07-01

    Since the shutdown of the SILOE reactor in 1997, the OSIRIS reactor has ensured the needs regarding technological irradiation at CEA including those of its industrial partners and customers. The Jules Horowitz Reactor will replace it and will offer a quite larger experimental field. It has the ambition to provide the necessary nuclear data and to maintain a fission research capability in Europe after 2010. The Jules Horowitz Reactor will represent a significant step in terms of performances and experimental capabilities. This paper will present the main design option resulting from the preliminary studies. The choice of the specific power around 600 kW/I for the reference core configuration is a key decision to ensure the required flux level. Consequently many choices have to be made regarding the materials used in the core and the fuel element design. These involve many specific qualifications including codes validation. The main safety options are based on: - A safety approach based upon the defence-in-depth principle. - A strategy of generic approaches to assess experimental risks in the facility. - Internal events analysis taking into account risks linked to reactor and experiments (e.g., radioactive source-term). - Systematic consideration of external hazards (e.g., earthquake, airplane crash) and internal hazards. - Design of containment to manage and mitigate a severe reactor accident (consideration of 'BORAX' accident, according to french safety practice for MTRs, beyond design basis reactivity insertion accident, involving core melting and core destruction phenomena). (authors)

  3. Optimization of a partially non-magnetic primary radiation shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II

    CERN Document Server

    Pyka, N M; Rogov, A

    2002-01-01

    Monte Carlo simulations have been used to optimize the monochromator shielding of the polarized cold-neutron triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. By using the Monte Carlo program MCNP-4B, the density of the total spectrum of incoming neutrons and gamma radiation from the beam tube SR-2 has been determined during the three-dimensional diffusion process in different types of heavy concrete and other absorbing material. Special attention has been paid to build a compact and highly efficient shielding, partially non-magnetic, with a total biological radiation dose of less than 10 mu Sv/h at its outsides. Especially considered was the construction of an albedo reducer, which serves to reduce the background in the experiment outside the shielding. (orig.)

  4. Design Study for a Low-enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Ellis, Ronald James [ORNL; Gehin, Jess C [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL

    2007-11-01

    This report documents progress made during fiscal year 2007 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low enriched uranium fuel (LEU). Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. A high volume fraction U/Mo-in-Al fuel could attain the same neutron flux performance as with the current, HEU fuel but materials considerations appear to preclude production and irradiation of such a fuel. A diffusion barrier would be required if Al is to be retained as the interstitial medium and the additional volume required for this barrier would degrade performance. Attaining the high volume fraction (55 wt. %) of U/Mo assumed in the computational study while maintaining the current fuel plate acceptance level at the fuel manufacturer is unlikely, i.e. no increase in the percentage of plates rejected for non-compliance with the fuel specification. Substitution of a zirconium alloy for Al would significantly increase the weight of the fuel element, the cost of the fuel element, and introduce an as-yet untried manufacturing process. A monolithic U-10Mo foil is the choice of LEU fuel for HFIR. Preliminary calculations indicate that with a modest increase in reactor power, the flux performance of the reactor can be maintained at the current level. A linearly-graded, radial fuel thickness profile is preferred to the arched profile currently used in HEU fuel because the LEU fuel media is a metal alloy foil rather than a powder. Developments in analysis capability and nuclear data processing techniques are underway with the goal of verifying the preliminary calculations of LEU flux performance. A conceptual study of the operational cost of an LEU fuel fabrication facility yielded the conclusion that the annual fuel cost to the HFIR would increase significantly from the current, HEU fuel cycle. Though manufacturing can be accomplished with existing technology

  5. High-Speed Neutron and Gamma Flux Sensor for Monitoring Surface Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs compact nuclear reactors to power future bases on the moon and/or Mars. These reactors require robust automatic control systems using low mass, rapid...

  6. High-Speed Neutron and Gamma Flux Sensor for Monitoring Surface Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs compact nuclear reactors to power future bases on the moon and Mars. These reactors require robust automatic control systems using low mass, rapid...

  7. Brookhaven highlights. [Fiscal year 1992, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L. [eds.

    1992-12-31

    This publication provides a broad overview of the research programs and efforts being conducted, built, designed, and planned at Brookhaven National Laboratory. This work covers a broad range of scientific disciplines. Major facilities include the Alternating Gradient Synchrotron (AGS), with its newly completed booster, the National Synchrotron Light Source (NSLS), the High Flux Beam Reactor (HFBR), and the RHIC, which is under construction. Departments within the laboratory include the AGS department, accelerator development, physics, chemistry, biology, NSLS, medical, nuclear energy, and interdepartmental research efforts. Research ranges from the pure sciences, in nuclear physics and high energy physics as one example, to environmental work in applied science to study climatic effects, from efforts in biology which are a component of the human genome project to the study, production, and characterization of new materials. The paper provides an overview of the laboratory operations during 1992, including staffing, research, honors, funding, and general laboratory plans for the future.

  8. Positron beam facility at Kyoto University Research Reactor

    Science.gov (United States)

    Xu, Q.; Sato, K.; Yoshiie, T.; Sano, T.; Kawabe, H.; Nagai, Y.; Nagumo, K.; Inoue, K.; Toyama, T.; Oshima, N.; Kinomura, A.; Shirai, Y.

    2014-04-01

    A positron beam facility is presently under construction at the Kyoto University Research Reactor (KUR), which is a light-water moderated tank-type reactor operated at a rated thermal power of 5 MW. A cadmium (Cd) - tungsten (W) source similar to that used in NEPOMUC was chosen in the KUR because Cd is very efficient at producing γ-rays when exposed to thermal neutron flux, and W is a widely used in converter and moderator materials. High-energy positrons are moderated by a W moderator with a mesh structure. Electrical lenses and a solenoid magnetic field are used to extract the moderated positrons and guide them to a platform outside of the reactor, respectively. Since Japan is an earthquake-prone country, a special attention is paid for the design of the in-pile positron source so as not to damage the reactor in the severe earthquake.

  9. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  10. Reliable operation of the Brookhaven EBIS for highly charged ion production for RHIC and NSRL

    Science.gov (United States)

    Beebe, E.; Alessi, J.; Binello, S.; Kanesue, T.; McCafferty, D.; Morris, J.; Okamura, M.; Pikin, A.; Ritter, J.; Schoepfer, R.

    2015-01-01

    An Electron Beam Ion Source for the Relativistic Heavy Ion Collider (RHIC EBIS) was commissioned at Brookhaven in September 2010 and since then it routinely supplies ions for RHIC and NASA Space Radiation Laboratory (NSRL) as the main source of highly charged ions from Helium to Uranium. Using three external primary ion sources for 1+ injection into the EBIS and an electrostatic injection beam line, ion species at the EBIS exit can be switched in 0.2 s. A total of 16 different ion species have been produced to date. The length and the capacity of the ion trap have been increased by 20% by extending the trap by two more drift tubes, compared with the original design. The fraction of Au32+ in the EBIS Au spectrum is approximately 12% for 70-80% electron beam neutralization and 8 pulses operation in a 5 Hertz train and 4-5 s super cycle. For single pulse per super cycle operation and 25% electron beam neutralization, the EBIS achieves the theoretical Au32+ fractional output of 18%. Long term stability has been very good with availability of the beam from RHIC EBIS during 2012 and 2014 RHIC runs approximately 99.8%.

  11. Reliable operation of the Brookhaven EBIS for highly charged ion production for RHIC and NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, E., E-mail: beebe@bnl.gov; Alessi, J., E-mail: beebe@bnl.gov; Binello, S., E-mail: beebe@bnl.gov; Kanesue, T., E-mail: beebe@bnl.gov; McCafferty, D., E-mail: beebe@bnl.gov; Morris, J., E-mail: beebe@bnl.gov; Okamura, M., E-mail: beebe@bnl.gov; Pikin, A., E-mail: beebe@bnl.gov; Ritter, J., E-mail: beebe@bnl.gov; Schoepfer, R., E-mail: beebe@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-01-09

    An Electron Beam Ion Source for the Relativistic Heavy Ion Collider (RHIC EBIS) was commissioned at Brookhaven in September 2010 and since then it routinely supplies ions for RHIC and NASA Space Radiation Laboratory (NSRL) as the main source of highly charged ions from Helium to Uranium. Using three external primary ion sources for 1+ injection into the EBIS and an electrostatic injection beam line, ion species at the EBIS exit can be switched in 0.2 s. A total of 16 different ion species have been produced to date. The length and the capacity of the ion trap have been increased by 20% by extending the trap by two more drift tubes, compared with the original design. The fraction of Au{sup 32+} in the EBIS Au spectrum is approximately 12% for 70-80% electron beam neutralization and 8 pulses operation in a 5 Hertz train and 4-5 s super cycle. For single pulse per super cycle operation and 25% electron beam neutralization, the EBIS achieves the theoretical Au{sup 32+} fractional output of 18%. Long term stability has been very good with availability of the beam from RHIC EBIS during 2012 and 2014 RHIC runs approximately 99.8%.

  12. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    Energy Technology Data Exchange (ETDEWEB)

    Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclear Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.

  13. High intensity multi beam design of SANS instrument for Dhruva reactor

    Science.gov (United States)

    Abbas, Sohrab; Désert, S.; Aswal, V. K.

    2016-05-01

    A new and versatile design of Small Angle Neutron Scattering (SANS) instrument based on utilization of multi-beam is presented. The multi-pinholes and multi-slits as SANS collimator for medium flux Dhruva rearctor have been proposed and their designs have been validated using McStas simulations. Various instrument configurations to achieve different minimum wave vector transfers in scattering experiments are envisioned. These options enable smooth access to minimum wave vector transfers as low as ~ 6×10-4 Å-1 with a significant improvement in neutron intensity, allowing faster measurements. Such angularly well defined and intense neutron beam will allow faster SANS studies of agglomerates larger than few tens of nm.

  14. High Fluency Low Flux Embrittlement Models of LWR Reactor Pressure Vessel Embrittlement and a Supporting Database from the UCSB ATR-2 Irradiation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G. Robert [Univ. of California, Santa Barbara, CA (United States)

    2017-01-24

    Reactor pressure vessel embrittlement may limit the lifetime of light water reactors (LWR). Embrittlement is primarily caused by formation of nano-scale precipitates, which cause hardening and a subsequent increase in the ductile-to-brittle transition temperature of the steel. While the effect of Cu has historically been the largest research focus of RPV embrittlement, there is increasing evidence that Mn, Ni and Si are likely to have a large effect at higher fluence, where Mn-Ni-Si precipitates can form, even in the absence of Cu. Therefore, extending RPV lifetimes will require a thorough understanding of both precipitation and embrittlement at higher fluences than have ever been observed in a power reactor. To address this issue, test reactors that irradiate materials at higher neutron fluxes than power reactors are used. These experiments at high neutron flux can reach extended life neutron fluences in only months or several years. The drawback of these test irradiations is that they add additional complexity to interpreting the data, as the irradiation flux also plays a role into both precipitate formation and irradiation hardening and embrittlement. This report focuses on developing a database of both microstructure and mechanical property data to better understand the effect of flux. In addition, a previously developed model that enables the comparison of data taken over a range of neutron flux is discussed.

  15. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    Directory of Open Access Journals (Sweden)

    Imam Mahmoud M.

    2002-01-01

    Full Text Available The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a to provide a thermal neutron flux in the neutron transmutation silicon doping, (b to provide a thermal flux in the neutron activation analysis position, and (c to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, necessary to determine the thermal neutron flux at above mentioned positions. In the present work, the neutron flux in the ET-RR-2 reactor system was calculated by applying the three dimensional diffusion depletion code TRITON. According to these calculations, the reactor system is composed of the core, surrounding external irradiation grid, beryllium block, thermal column and the water reflector in the reactor tank next to the tank wall. As a result of these calculations, the thermal neutron fluxes within the thermal column and at irradiation positions within the thermal column were obtained. Apart from this, the burn up results for the start up core calculated according to the TRITION code were compared with those given by the reactor designer.

  16. Status of high current R&D Energy Recovery LINAC at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kayran, D.; Altinbas Z.; Beavis D.; Ben-Zvi I.; Calaga R.; Gassner D.M.; Hahn H.; Hammons L.; Jain A.; Jamilkowski J.; Lambiase R.; Lederle D.; Litvinenko V.N.; Laloudakis N.; Mahler G.; McIntyre G.; Meng W.; Oerter B.; Pate D.; Phillips D.; Reich J.; Roser T.; Schultheiss C.; Seda T.; Sheehy B.; Srinivasan-Rao T.; Than R.; Tuozzolo J.; Weiss D.; Xu W.; Zaltsman A.

    2011-03-28

    An ampere class 20 MeV superconducting Energy Recovery Linac (ERL) is under construction at Brookhaven National Laboratory (BNL) for testing of concepts relevant for high-energy coherent electron cooling and electron-ion colliders. One of the goals is to demonstrate an electron beam with high charge per bunch ({approx} 5 nC) and low normalized emittance ({approx} 5 mm-mrad) at an energy of 20 MeV. Flexible lattice of ERL loop provides a test-bed for investigating issues of transverse and longitudinal instabilities, and diagnostics for intense CW e-beam. The superconducting 703 MHz RF photoinjector is considered as an electron source for such a facility. We will start with a straight pass (gun - 5 cell cavity - beam stop) test for the SRF Gun performance studies. Later, we will install and test a novel injection line concept for emittance preservation in a lower energy merger. In this paper we present the status and our plans for construction and commissioning of this facility.

  17. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    Science.gov (United States)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F. C.; Geske, M.; Taha, A.; Pelzer, K.; Schlögl, R.

    2006-05-01

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000°C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10ms. A detection time resolution of up to 20ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250°C on a Pt catalyst are presented. The detection of CH3• radicals is successfully demonstrated.

  18. High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    McSkimming, Brian M., E-mail: mcskimming@engineering.ucsb.edu; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States); Chaix, Catherine [RIBER S.A., 3a Rue Casimir Périer, BP 70083, 95873 Bezons Cedex (France)

    2015-09-15

    In the present study, the authors report on a modified Riber radio frequency (RF) nitrogen plasma source that provides active nitrogen fluxes more than 30 times higher than those commonly used for plasma assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) and thus a significantly higher growth rate than has been previously reported. GaN films were grown using N{sub 2} gas flow rates between 5 and 25 sccm while varying the plasma source's RF forward power from 200 to 600 W. The highest growth rate, and therefore the highest active nitrogen flux, achieved was ∼7.6 μm/h. For optimized growth conditions, the surfaces displayed a clear step-terrace structure with an average RMS roughness (3 × 3 μm) on the order of 1 nm. Secondary ion mass spectroscopy impurity analysis demonstrates oxygen and hydrogen incorporation of 1 × 10{sup 16} and ∼5 × 10{sup 17}, respectively. In addition, the authors have achieved PAMBE growth of GaN at a substrate temperature more than 150 °C greater than our standard Ga rich GaN growth regime and ∼100 °C greater than any previously reported PAMBE growth of GaN. This growth temperature corresponds to GaN decomposition in vacuum of more than 20 nm/min; a regime previously unattainable with conventional nitrogen plasma sources. Arrhenius analysis of the decomposition rate shows that samples with a flux ratio below stoichiometry have an activation energy greater than decomposition of GaN in vacuum while samples grown at or above stoichiometry have decreased activation energy. The activation energy of decomposition for GaN in vacuum was previously determined to be ∼3.1 eV. For a Ga/N flux ratio of ∼1.5, this activation energy was found to be ∼2.8 eV, while for a Ga/N flux ratio of ∼0.5, it was found to be ∼7.9 eV.

  19. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-09-30

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are

  20. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    OpenAIRE

    Imam Mahmoud M.; Roushdy Hassan

    2002-01-01

    The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a) to provide a thermal neutron flux in the neutron transmutation silicon doping, (b) to provide a thermal flux in the neutron activation analysis position, and (c) to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, ...

  1. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  2. Neutronics Conversion Analyses of the Laue-Langevin Institute (ILL) High Flux Reactor (RHF)

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Calzavara, Y. [Inst. Laue-Langevin (ILL), Grenoble (France)

    2014-09-30

    The following report describes the neutronics results obtained with the MCNP model of the RHF U7Mo LEU reference design that has been established in 2010 during the feasibility analysis. This work constitutes a complete and detailed neutronics analysis of that LEU design using models that have been significantly improved since 2010 and the release of the feasibility report. When possible, the credibility of the neutronics model is tested by comparing the HEU model results with experimental data or other codes calculations results. The results obtained with the LEU model are systematically compared to the HEU model. The changes applied to the neutronics model lead to better comparisons with experimental data or improved the calculation efficiency but do not challenge the conclusion of the feasibility analysis. If the U7Mo fuel is commercially available, not cost prohibitive, a back-end solution is established and if it is possible to manufacture the proposed element, neutronics analyses show that the performance of the reactor would not be challenged by the conversion to LEU fuel.

  3. Impact of the High Flux Isotope Reactor HEU to LEU Fuel Conversion on Cold Source Nuclear Heat Generation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL

    2014-03-01

    Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the cold source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation product and

  4. High field magnet program at Brookhaven National Laboratory

    CERN Document Server

    Ghosh, A; Muratore, J; Parker, B; Sampson, W; Wanderer, P J; Willen, E

    2000-01-01

    The magnet program at Brookhaven National Laboratory (BNL) is focussed on superconducting magnets for particle accelerators. The effort includes magnet production at the laboratory and in industry, magnet R&D, and test facilities for magnets and superconductors. Nearly 2000 magnets-dipoles, quadrupoles, sextupoles and correctors for the arc and insertion regions-were produced for the Relativistic Heavy Ion Collider (RHIC), which is being commissioned. Currently, production of helical dipoles for the polarized proton program at RHIC, insertion region dipoles for the Large Hadron Collider (LHC) at CERN, and an insertion magnet system for the Hadron-Elektron-Ring- Analage (HERA) collider at Deutsches Elektronen-Synchrotron (DESY) is underway. The R&D effort is exploring dipoles with fields above 10 T for use in post-LHC colliders. Brittle superconductors-Nb/sub 3/Sn or HTS-are being used for these magnets. The superconductor test facility measures short-sample currents and other characteristics of sample...

  5. Conceptual Design of Vacuum Chamber for testing of high heat flux components using electron beam as a source

    Science.gov (United States)

    Khan, M. S.; Swamy, Rajamannar; Khirwadkar, S. S.; Divertors Division, Prototype

    2012-11-01

    A conceptual design of vacuum chamber is proposed to study the thermal response of high heat flux components under energy depositions of the magnitude and durations expected in plasma fusion devices. It is equipped with high power electron beam with maximum beam power of 200 KW mounted in a stationary horizontal position from back side of the chamber. The electron beam is used as a heat source to evaluate the heat removal capacity, material performance under thermal loads & stresses, thermal fatigue etc on actively cooled mock - ups which are mounted on a flange system which is the front side door of the chamber. The tests mock - ups are connected to a high pressure high temperature water circulation system (HPHT-WCS) operated over a wide range of conditions. The vacuum chamber consists of different ports at different angles to view the mock -up surface available for mock -up diagnostics. The vacuum chamber is pumped with different pumps mounted on side ports of the chamber. The chamber is shielded from X - rays which are generated inside the chamber when high-energy electrons are incident on the mock-up. The design includes development of a conceptual design with theoretical calculations and CAD modelling of the system using CATIA V5. These CAD models give an outline on the complete geometry of HHF test chamber, fabrication challenges and safety issues. FEA analysis of the system has been performed to check the structural integrity when the system is subjected to structural & thermal loads.

  6. Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile.

    Science.gov (United States)

    Shibata, Y; Manabe, T; Kajita, S; Ohno, N; Takagi, M; Tsuchiya, H; Morisaki, T

    2014-09-01

    A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ~4 × 10(19) m(-2) s(-1) when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

  7. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  8. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.

  9. Spheromak reactor with poloidal flux-amplifying transformer

    Science.gov (United States)

    Furth, Harold P.; Janos, Alan C.; Uyama, Tadao; Yamada, Masaaki

    1987-01-01

    An inductive transformer in the form of a solenoidal coils aligned along the major axis of a flux core induces poloidal flux along the flux core's axis. The current in the solenoidal coil is then reversed resulting in a poloidal flux swing and the conversion of a portion of the poloidal flux to a toroidal flux in generating a spheromak plasma wherein equilibrium approaches a force-free, minimum Taylor state during plasma formation, independent of the initial conditions or details of the formation. The spheromak plasma is sustained with the Taylor state maintained by oscillating the currents in the poloidal and toroidal field coils within the plasma-forming flux core. The poloidal flux transformer may be used either as an amplifier stage in a moving plasma reactor scenario for initial production of a spheromak plasma or as a method for sustaining a stationary plasma and further heating it. The solenoidal coil embodiment of the poloidal flux transformer can alternately be used in combination with a center conductive cylinder aligned along the length and outside of the solenoidal coil. This poloidal flux-amplifying inductive transformer approach allows for a relaxation of demanding current carrying requirements on the spheromak reactor's flux core, reduces plasma contamination arising from high voltage electrode discharge, and improves the efficiency of poloidal flux injection.

  10. Production of Medical Radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for Cancer Treatment and Arterial Restenosis Therapy after PTCA

    Science.gov (United States)

    Knapp, F. F. Jr.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  11. Production of medical radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for cancer treatment and arterial restenosis therapy after PTCA

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; Beets, A.L.; Mirzadeh, S.; Alexander, C.W.; Hobbs, R.L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  12. Brookhaven highlights - Brookhaven National Laboratory 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report highlights research conducted at Brookhaven National Laboratory in the following areas: alternating gradient synchrotron; physics; biology; national synchrotron light source; department of applied science; medical; chemistry; department of advanced technology; reactor; safety and environmental protection; instrumentation; and computing and communications.

  13. Reactor antineutrino fluxes - status and challenges

    CERN Document Server

    Huber, Patrick

    2016-01-01

    In this contribution we describe the current understanding of reactor antineutrino fluxes and point out some recent developments. This is not intended to be a complete review of this vast topic but merely a selection of observations and remarks, which despite their incompleteness, will highlight the status and the challenges of this field.

  14. Reactor antineutrino fluxes – Status and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Patrick, E-mail: pahuber@vt.edu

    2016-07-15

    In this contribution we describe the current understanding of reactor antineutrino fluxes and point out some recent developments. This is not intended to be a complete review of this vast topic but merely a selection of observations and remarks, which despite their incompleteness, will highlight the status and the challenges of this field.

  15. Neutron flux spectra and radiation damage parameters for the Russian Bor-60 and SM-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karasiov, A.V. [D.V. Efremov Scientific Rresearch Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Greenwood, L.R. [Pacific Northwest Laboratory, Richland, WA (United States)

    1995-04-01

    The objective is to compare neutron irradiation conditions in Russian reactors and similar US facilities. Neutron fluence and spectral information and calculated radiation damage parameters are presented for the BOR-60 (Fast Experimental Reactor - 60 MW) and SM-2 reactors in Russia. Their neutron exposure characteristics are comparable with those of the Experimental Breeder Reactor (ERB-II), the Fast Flux Test Facility (FFTF), and the High Flux Isotope Reactor (HFIR) in the United States.

  16. Production of medical radioisotopes in the ORNL high flux isotope reactor (HFIR) for cancer treatment and arterial restenosis therapy after PICA

    Science.gov (United States)

    Knapp, F. F.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1999-01-01

    The High Flux Isotope Reactor ( HFIR) at the Oak Ridge National Laboratory ( ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. First beginning operation in 1965, the high thermal neutron flux (2.5×1015 neutrons/cm2/sec at 85 MW) and versatile target irradiation and handling facilities provide the opportunity for production of a wide variety of neutron-rich medical radioisotopes of current interest for therapy. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117 m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube ( HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle (22-24 days) and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions ( PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117 m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  17. Brookhaven highlights, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Highlights are given for the research areas of the Brookhaven National Laboratory. These areas include high energy physics, physics and chemistry, life sciences, applied energy science (energy and environment, and nuclear energy), and support activities (including mathematics, instrumentation, reactors, and safety). (GHT)

  18. Production capabilities in US nuclear reactors for medical radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. [Oak Ridge National Lab., TN (United States); Schenter, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  19. Neutron spectra at two beam ports of a TRIGA Mark III reactor loaded with HEU fuel.

    Science.gov (United States)

    Vega-Carrillo, H R; Hernández-Dávila, V M; Aguilar, F; Paredes, L; Rivera, T

    2014-01-01

    The neutron spectra have been measured in two beam ports, one radial and another tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research in Mexico. Measurements were carried out with the reactor core loaded with high enriched uranium fuel. Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a (6)LiI(Eu) scintillator and 2, 3, 5, 8, 10 and 12 in.-diameter high-density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code. For each spectrum total flux, mean energy and ambient dose equivalent were determined. Measured spectra show fission, epithermal and thermal neutrons, being harder in the radial beam port.

  20. Experimental Plan and Irradiation Target Design for FeCrAl Embrittlement Screening Tests Conducted Using the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-26

    The objective of the FeCrAl embrittlement screening tests being conducted through the use of Oak Ridge National Laboratories (ORNL) High Flux Isotope Reactor is to provide data on the radiation-induced changes in the mechanical properties including radiation-induced hardening and embrittlement through systematic testing and analysis. Data developed on the mechanical properties will be supported by extensive microstructural evaluations to assist in the development of structure-property relationships and provide a sound, fundamental understanding of the performance of FeCrAl alloys in intense neutron radiation fields. Data and analysis developed as part of this effort will be used to assist in the determination of FeCrAl alloys as a viable material for commercial light water reactor (LWR) applications with a primary focus as an accident tolerant cladding.

  1. 高通量冷原子束流的实现与测量%Realization and Measurement of a High-flux Atomic Beam

    Institute of Scientific and Technical Information of China (English)

    张玉驰; 亓鲁; 王同雨; 房建成

    2013-01-01

    A high-flux Cesium atomic beam is produced from a 2D+ Magneto-optical trap (MOT).The cald atomic beam has a flux of about 8.5 × 1010 atoms/s,a mean velocity of about 16 m/s,velocity distribution of 4 m/s and has a divergence of 25 mrad.Phase-sensitive time-of-flight method is used to measure the flux of the atomic beam.It is also investigated that how the atomic beam depends on the background alkali pressure,the power of push beam,and the detuning of the cooling beams of 2D+MOT.%我们在实验上基于铯原子的2D+磁光阱获得了通量为8.5×1010原子/s、平均速度与速度分布分别为16 m/s与4 m/s、空间发散角为25 mrad的冷原子束流,通过相敏的飞行时间法对原子束流的通量进行了准确测量,并对背景原子气压、推送光功率以及冷却光失谐等参量对原子束流的影响进行了实验研究与分析.

  2. High Flux Neutral Beams

    Science.gov (United States)

    1990-03-31

    California, Department of Physics Irvine, California 92717 a jid C. E. Wiswall, S. L. Cartier and J. C. Leader McDonnell Douglas Corporation, St. Louis, MO...discharges on hydrocarbon containing polymers , C II and H I emission lines are expected to be the most prominent. In this case, the line width of the Ha...Department of Physics Irvine, California 92717 and S. L. Cartier and C. E. Wiswall McDonnell Douglas Corporation, St. Louis, MO 63166 ABSTRACT Conventional dc

  3. Ion beam analysis of materials in the PBMR reactor

    Science.gov (United States)

    Malherbe, Johan B.; Friedland, E.; van der Berg, N. G.

    2008-04-01

    South Africa is developing a new type of high temperature nuclear reactor, the so-called pebble bed modular reactor (PBMR). The planned reactor outlet temperature of this gas-cooled reactor is approximately 900 °C. This high temperature places some severe restrictions on materials, which can be used. The name of the reactor is derived from the form of the fuel elements, which are in the form of pebbles, each with a diameter of 60 mm. Each pebble is composed of several thousands of coated fuel particles. The coated particle consists of a nucleus of UO2 surrounded by several layers of different carbons and SiC. The diameter of the fuel particles is 0.92 mm. A brief review will be given of the advantages of this nuclear reactor, of the materials in the fuel elements and their analysis using ion beam techniques.

  4. High power 1 MeV neutral beam system and its application plan for the international tokamak experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hemsworth, R.S. [ITER Joint Central Team, Naka, Ibaraki (Japan)

    1997-03-01

    This paper describes the Neutral Beam Injection system which is presently being designed for the International Tokamak Experimental Reactor, ITER, in Europe Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D{sup 0} to the ITER plasma for a pulse length of >1000 s. Each injectors uses a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D{sup -}. This will be neutralized by collisions with D{sub 2} in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. ITER is scheduled to produce its first plasma at the beginning of 2008, and the planning of the R and D, construction and installation foresees the neutral injection system being available from the start of ITER operations. (author)

  5. High-Flux Femtosecond X-Ray Emission from Controlled Generation of Annular Electron Beams in a Laser Wakefield Accelerator.

    Science.gov (United States)

    Zhao, T Z; Behm, K; Dong, C F; Davoine, X; Kalmykov, S Y; Petrov, V; Chvykov, V; Cummings, P; Hou, B; Maksimchuk, A; Nees, J A; Yanovsky, V; Thomas, A G R; Krushelnick, K

    2016-08-26

    Annular quasimonoenergetic electron beams with a mean energy in the range 200-400 MeV and charge on the order of several picocoulombs were generated in a laser wakefield accelerator and subsequently accelerated using a plasma afterburner in a two-stage gas cell. Generation of these beams is associated with injection occurring on the density down ramp between the stages. This well-localized injection produces a bunch of electrons performing coherent betatron oscillations in the wakefield, resulting in a significant increase in the x-ray yield. Annular electron distributions are detected in 40% of shots under optimal conditions. Simultaneous control of the pulse duration and frequency chirp enables optimization of both the energy and the energy spread of the annular beam and boosts the radiant energy per unit charge by almost an order of magnitude. These well-defined annular distributions of electrons are a promising source of high-brightness laser plasma-based x rays.

  6. Multiple species beam production on laser ion source for electron beam ion source in Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M., E-mail: sekine.m.ae@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Riken, Wako, Saitama (Japan); Ikeda, S. [Riken, Wako, Saitama (Japan); Department of Energy Science, Tokyo Institute of Technology, Yokohama, Kanagawa (Japan); Hayashizaki, N. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Kanesue, T.; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-02-15

    Extracted ion beams from the test laser ion source (LIS) were transported through a test beam transport line which is almost identical to the actual primary beam transport in the current electron beam ion source apparatus. The tested species were C, Al, Si, Cr, Fe, Cu, Ag, Ta, and Au. The all measured beam currents fulfilled the requirements. However, in the case of light mass ions, the recorded emittance shapes have larger aberrations and the RMS values are higher than 0.06 π mm mrad, which is the design goal. Since we have margin to enhance the beam current, if we then allow some beam losses at the injection point, the number of the single charged ions within the acceptance can be supplied. For heaver ions like Ag, Ta, and Au, the LIS showed very good performance.

  7. Fuel slugs considered for use in the high flux reactor EL3; Elements combustibles envisages pour la pile a haut flux EL 3

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J.A.; Caillat, R.; Gauthron, M.; Montagne, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    EL3 was designed essentially for the study, under irradiation conditions, of materials used in the construction of atomic reactors. The study schedule allocates considerable time and effort to new types of fuel slugs. The present report described the various types of slug being tested or scheduled for tests. After laboratory study, each slug is tested in an experimental cell in the pile. The best are retained and used to charge the reactor (the present charge is purely provisional to permit first criticality and power rise tests)ren. [French] La pile EL3 est essentiellement destinee a l'etude sous irradiation des materiaux utilises dans la construction des reacteurs atomiques. Dans ce programme, une tres large part est reservee a l'etude de nouveaux elements combustibles. Le present rapport decrit les differentes solutions de cartouches dont l'essai est envisage ou en cours. Apres etude en laboratoire, chacune de ces solutions est testee dans une cellule experimentale en pile. Les meilleures seront retenues pour constituer le chargement normal de la pile (le chargement actuel etant essentiellement une solution provisoire qui a permis la divergence de la pile et les premiers essais de montee en puissance). (auteur)

  8. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.

    Science.gov (United States)

    Wheeler, F J; Nigg, D W; Capala, J; Watkins, P R; Vroegindeweij, C; Auterinen, I; Seppälä, T; Bleuel, D

    1999-07-01

    The potential efficacy of boron neutron capture therapy (BNCT) for malignant glioma is a significant function of epithermal-neutron beam biophysical characteristics as well as boron compound biodistribution characteristics. Monte Carlo analyses were performed to evaluate the relative significance of these factors on theoretical tumor control using a standard model. The existing, well-characterized epithermal-neutron sources at the Brookhaven Medical Research Reactor (BMRR), the Petten High Flux Reactor (HFR), and the Finnish Research Reactor (FiR-1) were compared. Results for a realistic accelerator design by the E. O. Lawrence Berkeley National Laboratory (LBL) are also compared. Also the characteristics of the compound p-Boronophenylaline Fructose (BPA-F) and a hypothetical next-generation compound were used in a comparison of the BMRR and a hypothetical improved reactor. All components of dose induced by an external epithermal-neutron beam fall off quite rapidly with depth in tissue. Delivery of dose to greater depths is limited by the healthy-tissue tolerance and a reduction in the hydrogen-recoil and incident gamma dose allow for longer irradiation and greater dose at a depth. Dose at depth can also be increased with a beam that has higher neutron energy (without too high a recoil dose) and a more forward peaked angular distribution. Of the existing facilities, the FiR-1 beam has the better quality (lower hydrogen-recoil and incident gamma dose) and a penetrating neutron spectrum and was found to deliver a higher value of Tumor Control Probability (TCP) than other existing beams at shallow depth. The greater forwardness and penetration of the HFR the FiR-1 at greater depths. The hypothetical reactor and accelerator beams outperform at both shallow and greater depths. In all cases, the hypothetical compound provides a significant improvement in efficacy but it is shown that the full benefit of improved compound is not realized until the neutron beam is fully

  9. Monoenergetic positron beam at the reactor based positron source at FRM-II

    Science.gov (United States)

    Hugenschmidt, C.; Kögel, G.; Repper, R.; Schreckenbach, K.; Sperr, P.; Straßer, B.; Triftshäuser, W.

    2002-05-01

    The principle of the in-pile positron source at the Munich research reactor FRM-II is based on absorption of high energy prompt γ-rays from thermal neutron capture in 113Cd. For this purpose, a cadmium cap is placed inside the tip of the inclined beam tube SR-11 in the moderator tank of the reactor, where an undisturbed thermal neutron flux up to 2×10 14n cm-2 s-1 is expected. Inside the cadmium cap a structure of platinum foils is placed for converting high energy γ-radiation into positron-electron pairs. Due to the negative positron work function, moderation in annealed platinum leads to emission of monoenergetic positrons. Therefore, platinum will also be used as moderator, since its moderation property seems to yield long-term stability under reactor conditions and it is much easier to handle than tungsten. Model calculations were performed with SIMION-7.0w to optimise geometry and potential of Pt-foils and electrical lenses. It could be shown that the potentials between the Pt-foils must be chosen in the range of 1-10 V to extract moderated positrons. After successive acceleration to 5 keV by four electrical lenses the beam is magnetically guided in a solenoid field of 7.5 mT resulting in a beam diameter of about 25 mm. An intensity of about 10 10 slow positrons per second is expected in the primary positron beam. Outside of the reactor shield a W(1 0 0) single crystal remoderation stage will lead to an improvement of the positron beam brilliance before the positrons are guided to the experimental facilities.

  10. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Aguilar, F.; Paredes, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Rivera M, T., E-mail: fermineutron@yahoo.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2013-10-15

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a {sup 6}Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  11. The Atmospheric Response to High Nonthermal Electron Beam Fluxes in Solar Flares. I. Modeling the Brightest NUV Footpoints in the X1 Solar Flare of 2014 March 29

    Science.gov (United States)

    Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian; Cauzzi, Gianna; Carlsson, Mats

    2017-02-01

    The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramaty High Energy Solar Spectroscopic Imager. We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe ii chromospheric emission line profiles observed in the impulsive phase.

  12. Research and Development of Multiphysics Models in Support of the Conversion of the High Flux Isotope Reactor to Low Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curtis, Franklin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Arimilli, Rao V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ekici, Kivanc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-11-01

    The findings presented in this report are results of a five year effort led by the RRD Division of the ORNL, which is focused on research and development toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the University of Tennessee Knoxville (UTK) team from the Department of Mechanical, Aerospace, and Biomedical Engineering (MABE) that provided expert support in multiphysics modeling of complex problems associated with the LEU conversion of the HFIR reactor. The COMSOL software was used as the main computational modeling tool, whereas Solidworks was also used in support of computer-aided-design (CAD) modeling of the proposed LEU fuel design. The UTK research has been governed by a statement of work (SOW), which was updated annually to clearly define the specific tasks reported herein. Ph.D. student Isaac T. Bodey has focused on heat transfer and fluid flow modeling issues and has been aided by his major professor Dr. Rao V. Arimilli. Ph.D. student Franklin G. Curtis has been focusing on modeling the fluid-structure interaction (FSI) phenomena caused by the mechanical forces acting on the fuel plates, which in turn affect the fluid flow in between the fuel plates, and ultimately the heat transfer, is also affected by the FSI changes. Franklin Curtis has been aided by his major professor Dr. Kivanc Ekici. M.Sc. student Adam R. Travis has focused two major areas of research: (1) on accurate CAD modeling of the proposed LEU plate design, and (2) reduction of the model complexity and dimensionality through interdimensional coupling of the fluid flow and heat transfer for the HFIR plate geometry. Adam Travis is also aided by his major professor, Dr. Kivanc Ekici. We must note that the UTK team, and particularly the graduate students, have been in very close collaboration with Dr. James D. Freels (ORNL technical monitor and mentor) and have

  13. Research and Development of Multiphysics Models in Support of the Conversion of the High Flux Isotope Reactor to Low Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curtis, Franklin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Arimilli, Rao V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ekici, Kivanc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-11-01

    ABSTRACT The findings presented in this report are results of a five year effort lead by the RRD Division of the ORNL, which is focused on research and development toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the University of Tennessee Knoxville (UTK) team from the Department of Mechanical, Aerospace, and Biomedical Engineering (MABE) that provided expert support in multiphysics modeling of complex problems associated with the LEU conversion of the HFIR reactor. The COMSOL software was used as the main computational modeling tool, whereas Solidworks was also used in support of computer-aided-design (CAD) modeling of the proposed LEU fuel design. The UTK research has been governed by a statement of work (SOW), which was updated annually to clearly define the specific tasks reported herein. Ph.D. student Isaac T. Bodey has focused on heat transfer and fluid flow modeling issues and has been aided by his major professor Dr. Rao V. Arimilli. Ph.D. student Franklin G. Curtis has been focusing on modeling the fluid-structure interaction (FSI) phenomena caused by the mechanical forces acting on the fuel plates, which in turn affect the fluid flow in between the fuel plates, and ultimately the heat transfer, is also affected by the FSI changes. Franklin Curtis has been aided by his major professor Dr. Kivanc Ekici. M.Sc. student Adam R. Travis has focused two major areas of research: (1) on accurate CAD modeling of the proposed LEU plate design, and (2) reduction of the model complexity and dimensionality through interdimensional coupling of the fluid flow and heat transfer for the HFIR plate geometry. Adam Travis is also aided by his major professor, Dr. Kivanc Ekici. We must note that the UTK team, and particularly the graduate students, have been in very close collaboration with Dr. James D. Freels (ORNL technical monitor and mentor

  14. Status of neutron beam utilization at the Dalat nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dien, Nguyen Nhi; Hai, Nguyen Canh [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    The 500-kW Dalat nuclear research reactor was reconstructed from the USA-made 250-kW TRIGA Mark II reactor. After completion of renovation and upgrading, the reactor has been operating at its nominal power since 1984. The reactor is used mainly for radioisotope production, neutron activation analysis, neutron beam researches and reactor physics study. In the framework of the reconstruction and renovation project of the 1982-1984 period, the reactor core, the control and instrumentation system, the primary and secondary cooling systems, as well as other associated systems were newly designed and installed by the former Soviet Union. Some structures of the reactor, such as the reactor aluminum tank, the graphite reflector, the thermal column, horizontal beam tubes and the radiation concrete shielding have been remained from the previous TRIGA reactor. As a typical configuration of the TRIGA reactor, there are four neutron beam ports, including three radial and one tangential. Besides, there is a large thermal column. Until now only two-neutron beam ports and the thermal column have been utilized. Effective utilization of horizontal experimental channels is one of the important research objectives at the Dalat reactor. The research program on effective utilization of these experimental channels was conducted from 1984. For this purpose, investigations on physical characteristics of the reactor, neutron spectra and fluxes at these channels, safety conditions in their exploitation, etc. have been carried out. The neutron beams, however, have been used only since 1988. The filtered thermal neutron beams at the tangential channel have been extracted using a single crystal silicon filter and mainly used for prompt gamma neutron activation analysis (PGNAA), neutron radiography (NR) and transmission experiments (TE). The filtered quasi-monoenergetic keV neutron beams using neutron filters at the piercing channel have been used for nuclear data measurements, study on

  15. Reactor Neutrino Flux Uncertainty Suppression on Multiple Detector Experiments

    CERN Document Server

    Cucoanes, Andi; Cabrera, Anatael; Fallot, Muriel; Onillon, Anthony; Obolensky, Michel; Yermia, Frederic

    2015-01-01

    This publication provides a coherent treatment for the reactor neutrino flux uncertainties suppression, specially focussed on the latest $\\theta_{13}$ measurement. The treatment starts with single detector in single reactor site, most relevant for all reactor experiments beyond $\\theta_{13}$. We demonstrate there is no trivial error cancellation, thus the flux systematic error can remain dominant even after the adoption of multi-detector configurations. However, three mechanisms for flux error suppression have been identified and calculated in the context of Double Chooz, Daya Bay and RENO sites. Our analysis computes the error {\\it suppression fraction} using simplified scenarios to maximise relative comparison among experiments. We have validated the only mechanism exploited so far by experiments to improve the precision of the published $\\theta_{13}$. The other two newly identified mechanisms could lead to total error flux cancellation under specific conditions and are expected to have major implications o...

  16. Neutron flux optimization in irradiation channels at NUR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Meftah, B. [Division Reacteur, Centre de Recherche Nucleaire Draria (CRND), BP 43 Sebala DRARIA, Alger (Algeria)]. E-mail: b_meftah@yahoo.com; Zidi, T. [Division Reacteur, Centre de Recherche Nucleaire Draria (CRND), BP 43 Sebala DRARIA, Alger (Algeria); Bousbia-Salah, A. [Dipartimento di Ingegneria Meccanica, Nucleari e della Produzione, Facolta di Ingegneria, Universita di Pisa, Via Diotisalvi, 2 - 56126 Pisa (Italy)

    2006-09-15

    Optimization of neutron fluxes in experimental channels is of great concern in research reactor utilization. The general approach used at the NUR research reactor for neutron flux optimization in irradiation channels is presented. The approach is essentially based upon a judicious optimization of the core configuration combined with the improvement of reflector characteristics. The method allowed to increase the thermal neutron flux for radioisotope production purposes by more than 800%. Increases of up to 60% are also observed in levels of useful fluxes available for neutron diffraction experiments (small angle neutron scattering (SANS), neutron reflectometry, etc.). Such improvements in the neutronic characteristics of the NUR reactor opened new perspectives in terms of its utilization. More particularly, it is now possible to produce at industrial scales major radio-isotopes for medicine and industry and to perform, for the first time, material testing experiments. The cost of the irradiations in the optimized configuration is generally small when compared to those performed in the old configuration and an average reduction factor of about of 10 is expected in the case of production of Molybdenum-99 (isotope required for the manufacturing of Technetium-99 medical kits). In addition to these important results, safety analysis studies showed that the more symmetrical nature of the core geometry leads to a more adequately balanced reactivity control system and contributes quite efficiently to the operational safety of the NUR reactor. Results of comparisons between calculations and measurements for a series of parameters of importance in reactor operation and safety showed good agreement.

  17. The Atmospheric Response to High Nonthermal Electron Beam Fluxes in Solar Flares I: Modeling the Brightest NUV Footpoints in the X1 Solar Flare of 2014 March 29

    CERN Document Server

    Kowalski, Adam F; Daw, Adrian N; Cauzzi, Gianna; Carlsson, Mats

    2016-01-01

    The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from RHESSI. We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from th...

  18. OPAL REACTOR: Calculation/Experiment comparison of Neutron Flux Mapping in Flux Coolant Channels

    Energy Technology Data Exchange (ETDEWEB)

    Barbot, L.; Domergue, C.; Villard, J. F.; Destouches, C. [CEA, Paris (France); Braoudakis, G.; Wassink, D.; Sinclair, B.; Osborn, J. C.; Huayou, Wu [ANSTO, Syeney (Australia)

    2013-07-01

    The measurement and calculation of the neutron flux mapping of the OPAL research reactor are presented. Following an investigation of fuel coolant channels using sub-miniature fission chambers to measure thermal neutron flux profiles, neutronic calculations were performed. Comparison between calculation and measurement shows very good agreement.

  19. Hard alpha-keratin degradation inside a tissue under high flux X-ray synchrotron micro-beam: a multi-scale time-resolved study.

    Science.gov (United States)

    Leccia, Emilie; Gourrier, Aurélien; Doucet, Jean; Briki, Fatma

    2010-04-01

    X-rays interact strongly with biological organisms. Synchrotron radiation sources deliver very intense X-ray photon fluxes within micro- or submicro cross-section beams, resulting in doses larger than the MGy. The relevance of synchrotron radiation analyses of biological materials is therefore questionable since such doses, million times higher than the ones used in radiotherapy, can cause huge damages in tissues, with regard to not only DNA, but also proteic and lipid organizations. Very few data concerning the effect of very high X-ray doses in tissues are available in the literature. We present here an analysis of the structural phenomena which occur when the model tissue of human hair is irradiated by a synchrotron X-ray micro-beam. The choice of hair is supported by its hierarchical and partially ordered keratin structure which can be analysed inside the tissue by X-ray diffraction. To assess the damages caused by hard X-ray micro-beams (1 microm(2) cross-section), short exposure time scattering SAXS/WAXS patterns have been recorded at beamline ID13 (ESRF) after various irradiation times. Various modifications of the scattering patterns are observed, they provide fine insight of the radiation damages at various hierarchical levels and also unexpectedly provide information about the stability of the various hierarchical structural levels. It appears that the molecular level, i.e. the alpha helices which are stabilized by hydrogen bonds and the alpha-helical coiled coils which are stabilized by hydrophobic interactions, is more sensitive to radiation than the supramolecular architecture of the keratin filament and the filament packing within the keratin associated proteins matrix, which is stabilized by disulphide bonds.

  20. Monitoring Akkuyu Nuclear Reactor Using Anti-Neutrino Flux Measurement

    CERN Document Server

    Ozturk, Sertac; Ozcan, V Erkcan; Unel, Gokhan

    2016-01-01

    We present a simulation based study for monitoring Akkuyu Nuclear Power Plant's activity using anti-neutrino flux originating from the reactor core. A water Cherenkov detector has been designed and optimization studies have been performed using Geant4 simulation toolkit. A first study for the design of a monitoring detector facility for Akkuyu Nuclear Power Plant has been discussed in this paper.

  1. Which reactor antineutrino flux may be responsible for the anomaly?

    CERN Document Server

    Giunti, Carlo

    2016-01-01

    We investigate which among the reactor antineutrino fluxes from the decays of the fission products of $^{235}\\text{U}$, $^{238}\\text{U}$, $^{239}\\text{Pu}$, and $^{241}\\text{Pu}$ may be responsible for the reactor antineutrino anomaly. We find that it is the $^{235}\\text{U}$ flux, which contributes to the rates of all reactor neutrino experiments. From the fit of the data we obtain the precise determination $ \\sigma_{^{235}\\text{U}} = ( 6.34 \\pm 0.10 ) \\times 10^{-43} \\, \\text{cm}^2 / \\text{fission} $ of the $^{235}\\text{U}$ cross section per fission, which is more precise than the calculated value and differs from it by $2.0\\sigma$.

  2. High energy beam lines

    Science.gov (United States)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  3. NSLS-II Beam Diagnostics Overview

    Energy Technology Data Exchange (ETDEWEB)

    Singh,O.; Alforque, R.; Bacha, B.; Blednykh, A.; Cameron, P.; Cheng, W.; Dalesio, L. B.; Della Penna, A. J.; doom, L.; Fliller, R. P.; Ganetis, G.; Heese, R.; Hseuh, H-C.; Johnson, E. D.; Kosciuk, b. N.; Kramer, S. L.; Krinsky, S.; Mead, J.; Ozaki, S.; Padrazo, D.; Pinayev, I.; Ravindranath, R. V.; Rose, J.; Shaftan, T.; Sharma, S.; Skaritka, J.; Tanabe, T.; Tian, Y.; Willeke, F. J.; Yu, L-H.

    2009-05-04

    A new 3rd generation light source (NSLS-II) is in the early stages of construction at Brookhaven National Laboratory. The NSLS-II facility will provide ultra high brightness and flux with exceptional beam stability. It presents several challenges for diagnostics and instrumentation, related to the extremely small emittance. In this paper, we present an overview of all planned instrumentation systems, results from research and development activities; and then focus on other challenging aspects.

  4. Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD Core and Addition of New Fuel Elements

    Directory of Open Access Journals (Sweden)

    Aaron E. Craft

    2016-02-01

    Full Text Available The neutron radiography reactor (NRAD is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D = 125 is 5.96 × 106 n/cm2/s with a 2σ standard error of 2.90 × 105 n/cm2/s. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

  5. Neutron flux reduction programs for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, C.S. [Korea Atomic Energy Research Inst. KAERI, 150 Deogjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, B.C. [Korea Reactor Integrity Surveillance Technology KRIST, 150 Deogjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2011-07-01

    The objective of this work is to implement various fast neutron flux reduction programs on the belt-line region of the reactor pressure vessel to reduce the increasing rate of reference temperature for pressurized thermal shock (RT PTS) for Korea Nuclear Unit 1. A pressurized thermal shock (PTS) event is an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel. A PTS concern arises if one of these transients acts in the belt-line region of a reactor vessel where a reduced fracture resistance exists because of neutron irradiation. Generally, the RT PTS value is continuously increasing according to the fast neutron irradiation during the reactor operation, and it can reach the screening criterion prior to the expiration of the operating license. To reduce the increasing rate of RT PTS, various neutron flux reduction programs can be implemented, which are focused on license renewal. In this paper, neutron flux reduction programs, such as low leakage loading pattern strategy, loading of neutron absorber rods, and dummy fuel assembly loading are considered for Korea Nuclear Unit 1, of which the RT PTS value of the leading material (circumferential weld) is going to reach the screening criterion in the near future. To evaluate the effects of the neutron flux reduction programs, plant and cycle specific forward neutron transport calculations for the various neutron flux reduction programs were carried out. For the analysis, all transport calculations were carried out by using the DORT 3.1 discrete ordinate code and BUGLE-96 cross-section library. (authors)

  6. Reactor Antineutrino Flux and Spectrum Shape from Daya Bay

    Science.gov (United States)

    Napolitano, Jim; Daya Bay Collaboration

    2017-01-01

    The Daya Bay Reactor Neutrino Experiment has collected very large samples of νe p ->e+ n events, where the νe are from the cores of six power plant reactors that undergo regular refueling. With 621 days of data, more than 1.2 million events of this type were detected. The collaboration has analyzed these data in terms of the absolute flux (addressing the ``Reactor Neutrino Anomaly''), the spectrum shape (including the excess in the region of 5 MeV prompt energy), and other effects. This talk will summarize the results from our most recent analyses, and discuss new initiatives aimed at continuing to understand the fine detail of the reactor νe spectrum.

  7. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, DIF, F-91297 Arpajon (France); Casoli, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, Valduc, F-21120 Is sur Tille (France); Chappert, F. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, DIF, F-91297 Arpajon (France)

    2013-07-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  8. Laser ion source for high brightness heavy ion beam

    Science.gov (United States)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  9. High-energy gamma-ray beams from Compton-backscattered laser light

    Energy Technology Data Exchange (ETDEWEB)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized ..gamma..-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10/sup 7/ s/sup -1/) of background-free polarized ..gamma.. rays whose energy will be determined to a high accuracy (..delta..E = 2.3 MeV). Initially, 300(420)-MeV ..gamma.. rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the ..gamma..-ray energy up to 700 MeV.

  10. Negative ion source development for a photoneutralization based neutral beam system for future fusion reactors

    Science.gov (United States)

    Simonin, A.; Agnello, R.; Bechu, S.; Bernard, J. M.; Blondel, C.; Boeuf, J. P.; Bresteau, D.; Cartry, G.; Chaibi, W.; Drag, C.; Duval, B. P.; de Esch, H. P. L.; Fubiani, G.; Furno, I.; Grand, C.; Guittienne, Ph; Howling, A.; Jacquier, R.; Marini, C.; Morgal, I.

    2016-12-01

    In parallel to the developments dedicated to the ITER neutral beam (NB) system, CEA-IRFM with laboratories in France and Switzerland are studying the feasibility of a new generation of NB system able to provide heating and current drive for the future DEMOnstration fusion reactor. For the steady-state scenario, the NB system will have to provide a high NB power level with a high wall-plug efficiency (η ˜ 60%). Neutralization of the energetic negative ions by photodetachment (so called photoneutralization), if feasible, appears to be the ideal solution to meet these performances, in the sense that it could offer a high beam neutralization rate (>80%) and a wall-plug efficiency higher than 60%. The main challenge of this new injector concept is the achievement of a very high power photon flux which could be provided by 3 MW Fabry-Perot optical cavities implanted along the 1 MeV D- beam in the neutralizer stage. The beamline topology is tall and narrow to provide laminar ion beam sheets, which will be entirely illuminated by the intra-cavity photon beams propagating along the vertical axis. The paper describes the present R&D (experiments and modelling) addressing the development of a new ion source concept (Cybele source) which is based on a magnetized plasma column. Parametric studies of the source are performed using Langmuir probes in order to characterize and compare the plasma parameters in the source column with different plasma generators, such as filamented cathodes, radio-frequency driver and a helicon antenna specifically developed at SPC-EPFL satisfying the requirements for the Cybele (axial magnetic field of 10 mT, source operating pressure: 0.3 Pa in hydrogen or deuterium). The paper compares the performances of the three plasma generators. It is shown that the helicon plasma generator is a very promising candidate to provide an intense and uniform negative ion beam sheet.

  11. Reactors

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1988-01-01

    This standard applies to the following types of reactors: shunt reactors, current-limiting reactors including neutral-earthing reactors, damping reactors, tuning (filter) reactors, earthing transformers (neutral couplers), arc-suppression reactors, smoothing reactors, with the exception of the following reactors: small reactors with a rating generally less than 2 kvar single-phase and 10 kvar three-phase, reactors for special purposes such as high-frequency line traps or reactors mounted on rolling stock.

  12. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    Energy Technology Data Exchange (ETDEWEB)

    Gryzinski, M.A.; Maciak, M. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock-Swierk (Poland)

    2015-07-01

    MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological research or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2). It is

  13. Brookhaven Highlights, January 1982-March 1983

    Energy Technology Data Exchange (ETDEWEB)

    Kuper, J.B.H.; Rustad, M.C. (eds.)

    1983-01-01

    Research at Brookhaven National Laboratory is summarized. Major headings are high energy physics, physics and chemistry, life sciences, applied energy science, support activities and administration. (GHT)

  14. H particle searches at Brookhaven

    Energy Technology Data Exchange (ETDEWEB)

    Chrien, R.E. [Brookhaven National Lab., Upton, NY (United States). Physics Dept.

    1997-09-01

    Following the suggestion by R.L. Jaffe twenty years ago, researchers have been trying to establish the existence of a six-quark object, termed the H dibaryon, predicted by the phenomenological quark bag model. This object quickly became the focus of experimental searches at several locations, including the AGS. This search still continues, with perhaps the most active program being carried out at the 2.0 GeV/c beam line at the BNL-AGS. The research was considerably enhanced by the writing of two notable papers at BNL by Aerts and Dover, which gave quantitative predictions for H-production cross sections in two very different reaction mechanisms. One of these, the formation of cascade atomic deuterium to form the H by fusion, had been first suggested by P.D. Barnes. The 2.0 GeV/c line at the AGS was specifically designed to provide an adequate kaon flux for double strangeness and charge exchange reactions. It has been used for two H searches, E813 and E836, as well as for several {Lambda}{Lambda} searches, E885 and E906. These four experiments are setting significant limits on H-production. The results of these experiments are discussed, and descriptions of related H searches at Brookhaven are given.

  15. γ-ray fluxes in Oklo natural reactors

    Science.gov (United States)

    Gould, C. R.; Sharapov, E. I.; Sonzogni, A. A.

    2012-11-01

    Background: Uncertainty in the operating temperatures of Oklo reactor zones impacts the precision of bounds derived for time variation of the fine structure constant α. Improved 176Lu/175Lu thermometry has been discussed but its usefulness may be complicated by photoexcitation of the isomeric state 176mLu by 176Lu(γ,γ') fluorescence.Purpose: We calculate prompt, delayed, and equilibrium γ-ray fluxes due to fission of 235U in pulsed mode operation of Oklo zone RZ10.Methods: We use Monte Carlo modeling to calculate the prompt flux. We use improved data libraries to estimate delayed and equilibrium spectra and fluxes.Results: We find γ-ray fluxes as a function of energy and derive values for the coefficients λγ,γ' that describe burn-up of 176Lu through the isomeric 176mLu state.Conclusion: The contribution of the (γ,γ') channel to the 176Lu/175Lu isotopic ratio is negligible in comparison to the neutron burn-up channels. Lutetium thermometry is fully applicable to analyses of Oklo reactor data.

  16. High Flux Calorimetry.

    Science.gov (United States)

    1984-05-05

    These approaches are based on proven principles which have served the thermal test community well for years. Other concepts hold promise of being able to...8217. --......- - ... .... - - The thermal test community has developed instrumentation which is quite suitable for the moderate, and relatively constant, flux...on the maximum phase II system fluence of 400 cal/cm2 . Second, the present thermal test community will have confidence in the performance of an

  17. Calculation with MCNP of capture photon flux in VVER-1000 experimental reactor.

    Science.gov (United States)

    Töre, Candan; Ortego, Pedro

    2005-01-01

    The aim of this study is to obtain by Monte Carlo method the high energy photon flux due to neutron capture in the internals and vessel layers of the experimental reactor LR-0 located in REZ, Czech Republic, and loaded with VVER-1000 fuel. The calclated neutron, photon and photon to neutron flux ratio are compared with experimental measurements performed with a multi-parameter stilbene detector. The results show clear underestimation of photon flux in downcomer and some overestimation at vessel surface and 1/4 thickness but a good fitting for deeper points in vessel.

  18. Design and Fabrication of a Highly Integrated Silicon Detector for the STAR Experiment at Brookhaven National Laboratory

    CERN Document Server

    Buck, Benjamin; Bessuille, Jason; Cepeda, Mario; Johnson, Thomas; Kelsey, James; van Nieuwenhuizen, Gerrit; Visser, Gerard

    2014-01-01

    We present the design of a detector used as a particle tracking device in the STAR experiment at the RHIC collider of Brookhaven National Laboratories. The "stave," 24 of which make up the completed detector, is a highly mechanically integrated design comprised of 6 custom silicon sensors mounted on a Kapton substrate. 4608 wire bonds connect these sensors to 36 analog front-end chips which are mounted on the same substrate. Power and signal connectivity from the hybrid to the front-end chips is provided by wire bonds. The entire circuit is mounted on a carbon fiber base co-cured to the Kapton substrate. We present the unique design challenges for this detector and some novel techniques for overcoming them.

  19. Neutron spectrum measurements at a radial beam port of the NUR research reactor using a Bonner spheres spectrometer.

    Science.gov (United States)

    Mazrou, H; Nedjar, A; Seguini, T

    2016-08-01

    This paper describes the measurement campaign held around the neutron radiography (NR) facility of the Algerian 1MW NUR research reactor. The main objective of this work is to characterize accurately the neutron beam provided at one of the radial channels of the NUR research reactor taking benefit of the acquired CRNA Bonner spheres spectrometer (BSS). The specific objective was to improve the image quality of the NR facility. The spectrometric system in use is based on a central spherical (3)He thermal neutron proportional counter combined with high density polyethylene spheres of different diameters ranging from 3 to 12in. This counting system has good gamma ray discrimination and is able to cover an energy range from thermal to 20MeV. The measurements were performed at the sample distance of 0.6m from the beam port and at a height of 1.2m from the facility floor. During the BSS measurements, the reactor was operating at low power (100W) to avoid large dead times, pulse pileup and high level radiation exposures, in particular, during spheres handling. Thereafter, the neutron spectrum at the sample position was unfolded by means of GRAVEL and MAXED computer codes. The thermal, epithermal and fast neutron fluxes, the total neutron flux, the mean energy and the Cadmium ratio (RCd) were provided. A sensitivity analysis was performed taking into account various defaults spectra and ultimately a different response functions in the unfolding procedure. Overall, from the obtained results it reveals, unexpectedly, that the measured neutron spectrum at the sample position of the neutron radiography of the NUR reactor is being harder with a predominance of fast neutrons (>100keV) by about 60%. Finally, those results were compared to previous and more recent measurements obtained by activation foils detectors. The agreement was fairly good highlighting thereby the consistency of our findings.

  20. High power beam analysis

    Science.gov (United States)

    Aharon, Oren

    2014-02-01

    In various modern scientific and industrial laser applications, beam-shaping optics manipulates the laser spot size and its intensity distribution. However the designed laser spot frequently deviates from the design goal due to real life imperfections and effects, such as: input laser distortions, optical distortion, heating, overall instabilities, and non-linear effects. Lasers provide the ability to accurately deliver large amounts of energy to a target area with very high accuracy. Thus monitoring beam size power and beam location is of high importance for high quality results and repeatability. Depending on the combination of wavelength, beam size and pulse duration , laser energy is absorbed by the material surface, yielding into processes such as cutting, welding, surface treatment, brazing and many other applications. This article will cover the aspect of laser beam measurements, especially at the focal point where it matters the most. A brief introduction to the material processing interactions will be covered, followed by fundamentals of laser beam propagation, novel measurement techniques, actual measurement and brief conclusions.

  1. On flux effects in a low alloy steel from a Swedish reactor pressure vessel

    Science.gov (United States)

    Boåsen, Magnus; Efsing, Pål; Ehrnstén, Ulla

    2017-02-01

    This study aims to investigate the presence of Unstable Matrix Defects in irradiated pressure vessel steel from weldments of the Swedish PWR Ringhals 4 (R4). Hardness tests have been performed on low flux (surveillance material) and high flux (Halden reactor) irradiated material samples in combination with heat treatments at temperatures of 330, 360 and 390 °C in order to reveal eventual recovery of any hardening features induced by irradiation. The experiments carried out in this study could not reveal any hardness recovery related to Unstable Matrix Defects at relevant temperatures. However, a difference in hardness recovery was found between the low and the high flux samples at heat treatments at higher temperatures than expected for the annihilation of Unstable Matrix Defects-the observed recovery is here attributed to differences of the solute clusters formed by the high and low flux irradiations.

  2. Gamma-ray fluxes in Oklo natural reactors

    CERN Document Server

    Gould, C R; Sonzogni, A A; 10.1103/PhysRevC.86.054602

    2012-01-01

    Uncertainty in the operating temperatures of Oklo reactor zones impacts the precision of bounds derived for time variation of the fine structure constant $\\alpha$. Improved $^{176}$Lu/$^{175}$Lu thermometry has been discussed but its usefulness may be complicated by photo excitation of the isomeric state $^{176m}$Lu by $^{176}$Lu($\\gamma,\\gamma^\\prime $) fluorescence. We calculate prompt, delayed and equilibrium $\\gamma$-ray fluxes due to fission of $^{235}$U in pulsed mode operation of Oklo zone RZ10. We use Monte Carlo modeling to calculate the prompt flux. We use improved data libraries to estimate delayed and equilibrium spectra and fluxes. We find $\\gamma$-ray fluxes as a function of energy and derive values for the coefficients $\\lambda_{\\gamma,\\gamma^\\prime}$ that describe burn-up of $^{176}$Lu through the isomeric $^{176m}$Lu state. The contribution of the ($\\gamma,\\gamma^\\prime $) channel to the $^{176}$Lu/$^{175}$Lu isotopic ratio is negligible in comparison to the neutron burn-up channels. Lutetium...

  3. Present status of neutron beam facilities at the research reactor, HANARO, and its future prospect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Hee; Kang, Young-Hwan; Kuk, Il-Hiun [Korea Atomic Energy Research Institute, Taejon (Korea)

    2001-03-01

    Korea has been operating its new research reactor, HANARO, since its first criticality in 1995. It is an open-tank-in-pool type reactor using LEU fuel with thermal neutron flux of 2 x 10{sup 14} nominally at the nose in the D{sub 2}O reflector having 7 horizontal beam ports and a provision of vertical hole for cold neutron source installation. KAERI has pursued an extensive instrument development program since 1992 by the support of the nuclear long-term development program of the government and there are now 4 working instruments. A high resolution powder diffractometer and a neutron radiography facility has been operational since late 1997 and 1996, respectively. A four-circle diffractometer has been fully working since mid 1999 and a small angle neutron spectrometer is just under commissioning phase. With the development of linear position sensitive detector with delay-line readout electronics, we have developed a residual stress instrument as an optional machine to the HRPD for last two years. Around early 1998 informal users program started with friendly users and it became a formal users support program by the ministry of science and technology. Short description for peer group formation and users activities is given. (author)

  4. On-line beam monitoring for neutron capture therapy at the MIT Research Reactor

    Science.gov (United States)

    Harling, Otto K.; Moulin, Damien J.; Chabeuf, Jean-Michel; Solares, Guido R.

    1995-08-01

    Neutron capture therapy sets new requirements on the measurement and monitoring of the radiation fields used in this new form of therapy. Beams used for neutron capture therapy are comprised of mixed radiation fields which include slow, epithermal, and fast neutrons, as well as gamma rays. A computer-based beam monitoring system for epithermal or thermal neutron capture therapy is described. This system provides accurate, sensitive, and rapid on-line readout and recording of the various beam components. Readout of fluxes, fluences, and corresponding doses in the target are provided in color coded graphic analog as well as numerical form on the computer monitors. Variations in neutron spectrum or spatial distribution of the beam can be rapidly diagnosed with the aid of the monitor readout. Redundancy of fluence measurement is provided by an independent system using scalers and timers and by utilizing reactor power measuring instruments.

  5. Neutrino Flux Predictions for the NuMI Beam

    CERN Document Server

    Aliaga, L; Golan, T; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bravar, A; Budd, H; Carneiro, M F; Diaz, G A; Endress, E; Felix, J; Fields, L; Fine, R; Gago, A M; Galindo, R; Gallagher, H; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kiveni, M; Kleykamp, J; Le, T; Maher, E; Mann, W A; Marshall, C M; Caicedo, D A Martinez; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfin, J G; Mousseau, J; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman,; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Salinas, C J Solano; Falero, S Sanchez; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zhang, D

    2016-01-01

    Knowledge of the neutrino flux produced by the Neutrinos at the Main Injector (NuMI) beamline is essential to the neutrino oscillation and neutrino interaction measurements of the MINERvA, MINOS+, NOvA and MicroBooNE experiments at Fermi National Accelerator Laboratory. We have produced a flux prediction which uses all available and relevant hadron production data, incorporating measurements of particle production off of thin targets as well as measurements of particle yields from a spare NuMI target exposed to a 120 GeV proton beam. The result is the most precise flux prediction achieved for a neutrino beam in the one to tens of GeV energy region. We have also compared the prediction to in situ measurements of the neutrino flux and find good agreement.

  6. Planned reactor and beam experiments on Neutrino Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Maury [Argonne National Lab, Argonne IL 60439 (United States)

    2009-08-15

    Current and future neutrino oscillation experiments are discussed with an emphasis on those that will measure or further limit the neutrino oscillation parameter {theta}{sub 13}. Some {nu}{sub e} disappearance experiments are being planned at nuclear reactors, and more ambitious {nu}{sub {mu}}{yields}{nu}{sub e} appearance experiments are being planned using accelerator beams.

  7. Delayed Gamma Measurements in Different Nuclear Research Reactors Bringing Out the Importance of the Delayed Contribution in Gamma Flux Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fourmentel, D.; Radulovic, V.; Barbot, L.; Villard, J-F. [Alternative Energies and Atomic Energy Commission, CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, 13108 Saint- Paul-Lez-Durance (France); Zerovnik, G.; Snoj, L. [Reactor Physics Department, Jozef Stefan Institute, SI-1000 Ljubljana (Slovenia); Tarchalski, M.; Pytel, K. [National Centre for Nuclear Research A. Soltana 7, 05-400 Swierk (Poland); Malouch, F. [Alternative Energies and Atomic Energy Commission - CEA, DEN, DM2S, Saclay, 91191, Gif-sur-Yvette (France)

    2015-07-01

    Neutron and gamma flux levels are key parameters in nuclear research reactors. In Material Testing Reactors, such as the future Jules Horowitz Reactor, under construction at the French Alternative Energies and Atomic Energy Commission (CEA Cadarache, France), the expected gamma flux levels are very high (nuclear heating is of the order of 20 W/g at 100 MWth). As gamma rays deposit their energy in the reactor structures and structural materials it is important to take them into account when designing irradiation devices. There are only a few sensors which allow measurements of the nuclear heating ; a recent development at the CEA Cadarache allows measurements of the gamma flux using a miniature ionization chamber (MIC). The measured MIC response is often compared with calculation using modern Monte Carlo (MC) neutron and photon transport codes, such as TRIPOLI-4 and MCNP6. In these calculations only the production of prompt gamma rays in the reactor is usually modelled thus neglecting the delayed gamma rays. Hence calculations and measurements are usually in better accordance for the neutron flux than for the gamma flux. In this paper we study the contribution of delayed gamma rays to the total MIC signal in order to estimate the systematic error in gamma flux MC calculations. In order to experimentally determine the delayed gamma flux contributions to the MIC response, we performed gamma flux measurements with CEA developed MIC at three different research reactors: the OSIRIS reactor (MTR - 70 MWth at CEA Saclay, France), the TRIGA MARK II reactor (TRIGA - 250 kWth at the Jozef Stefan Institute, Slovenia) and the MARIA reactor (MTR - 30 MWth at the National Center for Nuclear Research, Poland). In order to experimentally assess the delayed gamma flux contribution to the total gamma flux, several reactor shut down (scram) experiments were performed specifically for the purpose of the measurements. Results show that on average about 30 % of the MIC signal is due to

  8. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities.

    Science.gov (United States)

    Mansy, M S; Bashter, I I; El-Mesiry, M S; Habib, N; Adib, M

    2015-03-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5-133keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named "QMNB" was developed in the "MATLAB" programming language to perform the required calculations.

  9. Visual beam tube inspection at the TRIGA reactor Vienna

    Energy Technology Data Exchange (ETDEWEB)

    Boeck, H.; Musilek, A.; Villa, M. [Vienna University of Technology, Atominstitut of the Austrian Universities, Vienna (Austria)], E-mail: boeck@ati.ac.at

    2006-07-01

    Of the four TRIGA beam tubes two have been visually inspected in 1985. Prior to the inspection the reactor was shut down for 3 weeks. The fuel elements around the beam tubes were removed. Stainless steel dummy elements were inserted in the fuel positions to shield the core radiation. The active part of the Fast Rabbit Tube was removed into the beam tube loading device and transferred to an interim storage: Front dose rate was {approx} 50 mSv/h. Generally the beam tube was very clean, after the last inspection about 30 years ago. A1 cm cut was observed at the beam tube front end. A rigid endoscope was used to check the beam tube's inner surface using a 90 degree deflection objective and photo- and video equipment. The direct dose rate in front of the beam tube was about 30 mSv/h. The beam tube was vacuum cleaned. A corroded shielding tank containing boric acid has leaked. A wooden collimator partially disintegrating due to extreme temperature was removed from beam tube D. Documentation of the inspection for visible defects is produced for later comparison.

  10. Linear accelerators for high energies. A report on the 1962 conference at Brookhaven

    Energy Technology Data Exchange (ETDEWEB)

    Blewett, John P.

    1963-01-01

    The linear accelerator was invented very early in the history of particle accelerators, but it has been one of the latest accelerators to be exploited. This is principally because of the very large quantities of radio-frequency power required to attain respectable energies in a reasonable distance. Radar developments during World War II resulted in production of the necessary megawatt oscillators or amplifiers, and linear accelerators, both for electrons and positive ions, are now operating in several centers. The electron linear accelerator has been extended to billion-volt energies, and in the Stanford two-mile version it will soon set new energy records between 20 and 40 BeV. The proton linear accelerator has had a less spectacular history. The highest energy yet achieved in a proton linac is about 70 MeV (at the University of Minnesota). Smaller proton linacs are in use as injectors for proton-synchrotrons, but no machine has been built or is under construction for the range above 100 MeV. This is because synchro-cyclotrons for this energy range are much cheaper and have been preferred for this reason, in spite of the fact that the beam from a synchro-cyclotron cannot be nearly as intense or as well collimated as the beam from a linear accelerator.

  11. UCN sources at external beams of thermal neutrons. An example of PIK reactor

    CERN Document Server

    Lychagin, E V; Muzychka, A Yu; Nekhaev, G V; Nesvizhevsky, V V; Onegin, M S; Sharapov, E I; Strelkov, A V

    2015-01-01

    We consider ultracold neutron (UCN) sources based on a new method of UCN production in superfluid helium (4He). The PIK reactor is chosen as a perspective example of the application of this idea, which consists of installing a 4He UCN source in a beam of thermal or cold neutrons and surrounding the source with a moderator-reflector, which plays the role of a source of cold neutrons (CNs) feeding the UCN source. The CN flux in the source can be several times larger than the incident flux, due to multiple neutron reflections from the moderator-reflector. We show that such a source at the PIK reactor would provide an order of magnitude larger density and production rate than an analogous source at the ILL reactor. We estimate parameters of a 4He source with solid methane (CH4) or/and liquid deuterium (D2) moderator-reflector. We show that such a source with CH4 moderator-reflector at the PIK reactor would provide the UCN density of ~1x10^5 1/cm^3, and the UCN production rate of ~2x10^7 1/s. These values are resp...

  12. Brookhaven Linac Isotope Producer

    Data.gov (United States)

    Federal Laboratory Consortium — The Brookhaven Linac Isoptope Producer (BLIP)—positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis—produces commercially...

  13. A Level 1+ Probabilistic Safety Assessment of the high flux Australian reactor. Vol. 2. Appendix C: System analysis models and results

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This section contains the results of the quantitative system/top event analysis. Section C. 1 gives the basic event coding scheme. Section C.2 shows the master frequency file (MFF), which contains the split fraction names, the top events they belong to, the mean values of the uncertainty distribution that is generated by the Monte Carlo quantification in the System Analysis module of RISKMAN, and a brief description of each split fraction. The MFF is organized by the systems modeled, and within each system, the top events associated with the system. Section C.3 contains the fault trees developed for the system/top event models and the RISKMAN reports for each of the system/top event models. The reports are organized under the following system headings: Compressed/Service Air Supply (AIR); Containment Isolation System (CIS); Heavy Water Cooling System (D20); Emergency Core Cooling System (ECCS); Electric Power System (EPS); Light Water Cooling system (H20); Helium Gas System (HE); Mains Water System (MW); Miscellaneous Top Events (MISC); Operator Actions (OPER) Reactor Protection System (RPS); Space Conditioner System (SCS); Condition/Status Switch (SWITCH); RCB Ventilation System (VENT); No. 1 Storage Block Cooling System (SB)

  14. Power Beaming to Space Using a Nuclear Reactor-Pumped Laser

    Science.gov (United States)

    Lipinski, Ronald J.; Monroe, David K.; Pickard, Paul S.

    1994-07-01

    The present political and environmental climate may slow the inevitable direct utilization of nuclear power in space. In the meantime, there is another approach for using nuclear energy for space power. That approach is to let nuclear energy generate a laser beam in a ground-based nuclear reactor-pumped laser (RPL), and then beam the optical energy into space. Potential space applications for a ground-based RPL include (1) illuminating geosynchronous communication satellites in the earth's shadow to extend their lives, (2) beaming power to orbital transfer vehicles, (3) providing power (from earth) to a lunar base during the long lunar night, and (4) removing space debris. FALCON is a high-power, steady-state, nuclear reactor-pumped laser (RPL) concept which is being developed by the Department of Energy with Sandia National Laboratories as the lead laboratory. The FALCON program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. Frequency-doubling the 1733-nm line would yield a good match for photovoltaic arrays at 867 nm. Preliminary designs of an RPL suitable for power beaming have been completed. The MW- class laser is fairly simple in construction, self-powered, closed-cycle (no exhaust gases), and modular. This paper describes the FALCON program accomplishments and power-beaming applications.

  15. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    Science.gov (United States)

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system.

  16. High Temperature Superconducting Magnets: Revolutionizing Next Generation Accelerators and Other Applications (466th Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ramesh (BNL Superconducting Magnet Division)

    2011-02-16

    BNL has always been a leader in the world of superconducting magnets, which are essential to the great modern ccelerators such as the Relativistic Heavy Ion Collider at BNL, or the Large Hadron Collider at CERN, Switzerland. These magnets are made of material that, cooled to 4 Kelvins (K) (-452° Farenheit) become superconducting, that is, lose essentially all resistance to electricity. For the past decade, however, Lab researchers have been exploring the use of new materials that become superconducting at higher temperatures. These materials can operate at the relatively high temperature of 77 K (-351°F), allowing them to be cooled by cheap, plentiful liquid nitrogen, rather than helium, and can create very high magnetic fields. Now far in the lead of this area of research, BNL scientists are exploring avenues for high temperature superconducting magnets that are energy efficient and have magnetic fields that are a million times stronger than the Earth’s. If successful, these new magnets could potentially revolutionize usage in future accelerators, play a key role in energy efficiency and storage, and make possible new applications such as muon colliders and MRI screening in remote areas.

  17. UCN sources at external beams of thermal neutrons. An example of PIK reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lychagin, E.V., E-mail: lychag@nf.jinr.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation); Mityukhlyaev, V.A., E-mail: victim@pnpi.spb.ru [Petersburg Nuclear Physics Institute, Orlova Roscha, Gatchina 188300 (Russian Federation); Muzychka, A.Yu., E-mail: muz@nf.jinr.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation); Nekhaev, G.V., E-mail: grigorijnekhaev@yandex.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation); Nesvizhevsky, V.V., E-mail: nesvizhevsky@ill.eu [Institut Max von Laue – Paul Langevin, 71 Avenue des Martyrs, Grenoble 38042 (France); Onegin, M.S., E-mail: oneginm@gmail.com [Petersburg Nuclear Physics Institute, Orlova Roscha, Gatchina 188300 (Russian Federation); Sharapov, E.I., E-mail: sharapov@nf.jinr.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation); Strelkov, A.V., E-mail: str@jinr.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation)

    2016-07-01

    We consider ultracold neutron (UCN) sources based on a new method of UCN production in superfluid helium ({sup 4}He). The PIK reactor is chosen as a perspective example of application of this idea, which consists of installing {sup 4}He UCN source in the beam of thermal or cold neutrons and surrounding the source with moderator-reflector, which plays the role of cold neutron (CN) source feeding the UCN source. CN flux in the source can be several times larger than the incident flux, due to multiple neutron reflections from the moderator–reflector. We show that such a source at the PIK reactor would provide an order of magnitude larger density and production rate than an analogous source at the ILL reactor. We estimate parameters of {sup 4}He source with solid methane (CH{sub 4}) or/and liquid deuterium (D{sub 2}) moderator–reflector. We show that such a source with CH{sub 4} moderator–reflector at the PIK reactor would provide the UCN density of ~1·10{sup 5} cm{sup −3}, and the UCN production rate of ~2·10{sup 7} s{sup −1}. These values are respectively 1000 and 20 times larger than those for the most intense UCN user source. The UCN density in a source with D{sub 2} moderator-reflector would reach the value of ~2·10{sup 5} cm{sup −3}, and the UCN production rate would be equal ~8·10{sup 7} s{sup −1}. Installation of such a source in a beam of CNs would slightly increase the density and production rate.

  18. Designing an epithermal neutron beam for boron neutron capture therapy for a DIDO type reactor using MCNP

    Science.gov (United States)

    Ross, D.; Constantine, G.; Weaver, D. R.; Beynon, T. D.

    1993-10-01

    This paper describes work undertaken to design an epithermal neutron beam for a DIDO type reactor for use in boron neutron capture therapy, a form of cancer treatment. It involved extensive use of MCNP, a Monte Carlo computer code. Initially, calculations were made with MCNP to simulate earlier experiments with an epithermal beam on the DIDO reactor. This comparison made it possible both to validate the Monte Carlo modelling of the reactor and to gain an insight into the important features of the simulation. Following this, MCNP was used to design a filtered epithermal neutron beam facility for DIDO's largest beam tube, a 13.7 cm radius horizontal tube which extends radially away from the core. First a selection was made of the optimum filter components for the beam. Then the research concentrated on combining these filter elements to construct a practical epithermal beam design. The results suggest that the optimum method of generating the epithermal neutron source is to employ a filter combination consisting principally of liquid argon with the addition of cadmium, aluminium, titanium and possibly tin. The calculations also show that the resultant neutron beam would have a flux greater than 1.0 × 10 9 n cm -2 s -1 and have sufficiently low fast-neutron and gamma-ray contamination.

  19. Study of filtration of reactor beam of neutrons with cadmium in a multilayer shield containing boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, R.M. (Atomic Energy Establishment, Cairo (Egypt)); El-Kalla, El-Sayed H. (Al-Azhar Univ., Cairo (Egypt)); Esmaiel, M.W. (Ain Shams Univ., Cairo (Egypt))

    1985-08-01

    Experimental measurements have been carried out to study the effect of cadmium on the distribution and attenuation of thermal neutrons emitted from a reactor core and thermal neutrons produced in a heterogeneous shield of water, iron, iron + B/sub 4/C and ordinary concrete. Measurements were performed using a cadmium filtered reactor neutron beam emitted from one of the horizontal channels of ET-RR-1. It was found that the presence of a cadmium sheet at the channel exit causes a marked decrease in the thickness of the shield required for attenuating the thermal neutron flux by a certain factor.

  20. Flux and instrumentation upgrade for the epithermal neutron beam facility at Washington State University.

    Science.gov (United States)

    Nigg, D W; Venhuizen, J R; Wemple, C A; Tripard, G E; Sharp, S; Fox, K

    2004-11-01

    An epithermal neutron beam facility for preclinical neutron capture therapy research has been constructed at the Washington State University TRIGA research reactor installation. Subsequent to a recent upgrade, this new facility offers a high-purity epithermal beam with intensity on the order of 1.2x10(9)n/cm(2)s. Key features include a fluoride-based design for the neutron filtering and moderating components as well as a novel collimator design that allows ease of assembly and disassembly of the beamline components.

  1. Discussion about modeling the effects of neutron flux exposure for nuclear reactor core analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1986-04-01

    Methods used to calculate the effects of exposure to a neutron flux are described. The modeling of the nuclear-reactor core history presents an analysis challenge. The nuclide chain equations must be solved, and some of the methods in use for this are described. Techniques for treating reactor-core histories are discussed and evaluated.

  2. Investigation of Isfahan miniature neutron source reactor (MNSR) for boron neutron capture therapy by MCNP simulation

    OpenAIRE

    S. Z. Kalantari; H Tavakoli; Nami, M.

    2015-01-01

    One of the important neutron sources for Boron Neutron Capture Therapy (BNCT) is a nuclear reactor. It needs a high flux of epithermal neutrons. The optimum conditions of the neutron spectra for BNCT are provided by the International Atomic Energy Agency (IAEA). In this paper, Miniature Neutron Source Reactor (MNSR) as a neutron source for BNCT was investigated. For this purpose, we designed a Beam Shaping Assembly (BSA) for the reactor and the neutron transport from the core of the reactor t...

  3. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  4. Determination flux in the Reactor JEN-1; Medida de flujos de neutrones en el nucleo del Reactor JEN-1

    Energy Technology Data Exchange (ETDEWEB)

    Manas Diaz, L.; Montes Ponce de leon, J.

    1960-07-01

    This report summarized several irradiations that have been made to determine the neutron flux distributions in the core of the JEN-1 reactor. Gold foils of 380 {mu} gr and Mn-Ni (12% de Ni) of 30 mg have been employed. the epithermal flux has been determined by mean of the Cd radio. The resonance integral values given by Macklin and Pomerance have been used. (Author) 9 refs.

  5. Neutron beam studies for a medical therapy reactor.

    Science.gov (United States)

    Neuman, W A

    1990-01-01

    A conceptual design of a Medical Therapy Reactor (MTR) for neutron capture therapy (NCT) has been performed at the Idaho National Engineering Laboratory (INEL). The initial emphasis of the conceptual design was toward the treatment of glioblastoma multiforme and other presently incurable cancers. The design goal of the facility is to provide routine patient treatments both in brief time intervals (approximately 10 minutes) and inexpensively. The conceptual study has shown this goal to be achievable by locating an MTR at a major medical facility. This paper addresses the next step in the conceptual design process: a guide to the optimization of the epithermal-neutron filter and collimator assembly for the treatment of brain tumors. The current scope includes the sensitivity of the treatment beam to variations in filter length, gamma shield length, and collimator lengths as well as exit beam aperture size. The study shows the areas which can provide the greatest latitude in improving beam intensity and quality. Suggestions are given for future areas of optimization of beam filtering and collimation.

  6. High-flux neutron source based on a liquid-lithium target

    Science.gov (United States)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  7. Background radiation measurements at high power research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ashenfelter, J. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Balantekin, B. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Baldenegro, C.X. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Band, H.R. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Barclay, G. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Bass, C.D. [Department of Chemistry and Physics, Le Moyne College, Syracuse, NY 13214 (United States); Berish, D. [Department of Physics, Temple University, Philadelphia, PA 19122 (United States); Bowden, N.S., E-mail: nbowden@llnl.gov [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Bryan, C.D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Cherwinka, J.J. [Physical Sciences Laboratory, University of Wisconsin, Madison, WI 53706 (United States); Chu, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Classen, T. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Davee, D. [Department of Physics, College of William and Mary, Williamsburg, VA 23187 (United States); Dean, D.; Deichert, G. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Dolinski, M.J. [Department of Physics, Drexel University, Philadelphia, PA 19104 (United States); Dolph, J. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Dwyer, D.A. [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Fan, S. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); and others

    2016-01-11

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  8. Background Radiation Measurements at High Power Research Reactors

    CERN Document Server

    Ashenfelter, J; Baldenegro, C X; Band, H R; Barclay, G; Bass, C D; Berish, D; Bowden, N S; Bryan, C D; Cherwinka, J J; Chu, R; Classen, T; Davee, D; Dean, D; Deichert, G; Dolinski, M J; Dolph, J; Dwyer, D A; Fan, S; Gaison, J K; Galindo-Uribarri, A; Gilje, K; Glenn, A; Green, M; Han, K; Hans, S; Heeger, K M; Heffron, B; Jaffe, D E; Kettell, S; Langford, T J; Littlejohn, B R; Martinez, D; McKeown, R D; Morrell, S; Mueller, P E; Mumm, H P; Napolitano, J; Norcini, D; Pushin, D; Romero, E; Rosero, R; Saldana, L; Seilhan, B S; Sharma, R; Stemen, N T; Surukuchi, P T; Thompson, S J; Varner, R L; Wang, W; Watson, S M; White, B; White, C; Wilhelmi, J; Williams, C; Wise, T; Yao, H; Yeh, M; Yen, Y -R; Zhang, C; Zhang, X

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including $\\gamma$-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  9. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  10. Simulation of the SONGS Reactor Antineutrino Flux Using DRAGON

    CERN Document Server

    Jones, C L

    2011-01-01

    For reactor antineutrino experiments, a thorough understanding of the fuel composition and isotopic evolution is of paramount importance for the extraction of $\\theta_{13}$. To accomplish these goals, we employ the deterministic lattice code DRAGON, and analyze the instantaneous antineutrino rate from the San Onofre Nuclear Generating Station (SONGS) Unit 2 reactor in California. DRAGON's ability to predict the rate for two consecutive fuel cycles is examined.

  11. High density operation for reactor-relevant power exhaust

    Science.gov (United States)

    Wischmeier, M.

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  12. HIGH POWER FAST KICKER SYSTEM FOR SNS BEAM EXTRACTION.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,W.; SANDBERG,J.; TSOUPAS,N.; MI,J.; LAMBIASE,R.; LOCKEY,R.; PAI,C.; TUOZZOLO,J.; NEHRING,T.; WARBURTON,D.

    2002-06-30

    A Blumlein topology based high peak power, high repetition rate, and low beam impedance fast extraction kicker system for ORNL Spallation Neutron Source (SNS) is being developed at Brookhaven National Laboratory. The large magnet window size, large deflecting angle, low beam impedance termination and fast deflecting field rise time demand a very strong pulsed power source to drive the SNS extraction fast kicker magnet. This system consists of fourteen high voltage modulators and fourteen lumped kicker magnet sections. All modulators will be located in a service building outside the beam tunnel, which is a revised design requirement adopted in the mid 2000. The high current pulses generated by the high power modulators will be delivered through high voltage pulsed transmission cables to each kicker magnet sections. The designed output capacity of this system, is in multiple GVA. Its first article modulator has been constructed and is being tested. In this paper, we present the system overview, project status and the advantages of this new conceptual design.

  13. Fission reactor flux monitors based on single-crystal CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Almaviva, S.; Marinelli, M.; Prestopino, G.; Tucciarone, A.; Verona, C.; Verona-Rinati, G. [Dipartimento di Ingegneria Meccanica, Universita di Roma ' ' Tor Vergata' ' , Via del Politecnico 1, 00133 Roma (Italy); INFN - Sezione Roma ' ' Tor Vergata' ' (Italy); Milani, E. [INFN - Sezione Roma ' ' Tor Vergata' ' (Italy); Angelone, M.; Lattanzi, D.; Pillon, M. [Associazione EURATOM-ENEA sulla Fusione, Via E. Fermi 45, 00144 Frascati (Roma) (Italy); Rosa, R. [Dipartimento Fusione e Presidio Nucleare ENEA C.R. Casaccia, Via Anguillarese 301, 00123 Roma (Italy)

    2007-09-15

    Diamond based thermal neutron flux monitors have been fabricated using single crystal diamond films, grown by chemical vapour deposition. A 3 {mu}m thick {sup 6}LiF layer was thermally evaporated on the detector surface as a converting material for thermal neutron monitoring via the {sup 6}Li(n, {alpha}) T nuclear reaction. The detectors were tested in a fission nuclear reactor. One of them was positioned 80 cm above the core mid-plane, where the neutron flux is 2.2 x 10{sup 9} neutrons/cm{sup 2}s at 1 MW resulting in a device count rate of about 150000 cps. Good stability and reproducibility of the device output were proved over the whole reactor power range (up to 1 MW). During the irradiation, several pulse height spectra were recorded, in which both products of the {sup 6}Li(n,{alpha})T reaction, e.g. 2.73 MeV tritium and the 2.06 MeV {alpha}, were clearly identified, thus excluding a degradation of the detector response. A comparison with a reference fission chamber monitor pointed out a limitation of the adopted readout electronics at high count rates, due to multiple pile-up processes. However, once this effect is properly accounted for, a good linearity of the diamond flux monitor response is observed as a function of the fission chamber one, as well as an excellent agreement between the temporal behaviour of the two detector response. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Brookhaven highlights for fiscal year 1991, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L.; Kuper, J.B.H.

    1991-01-01

    This report highlights Brookhaven National Laboratory's activities for fiscal year 1991. Topics from the four research divisions: Computing and Communications, Instrumentation, Reactors, and Safety and Environmental Protection are presented. The research programs at Brookhaven are diverse, as is reflected by the nine different scientific departments: Accelerator Development, Alternating Gradient Synchrotron, Applied Science, Biology, Chemistry, Medical, National Synchrotron Light Source, Nuclear Energy, and Physics. Administrative and managerial information about Brookhaven are also disclosed. (GHH)

  15. Brookhaven highlights for fiscal year 1991, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L.; Kuper, J.B.H.

    1991-12-31

    This report highlights Brookhaven National Laboratory`s activities for fiscal year 1991. Topics from the four research divisions: Computing and Communications, Instrumentation, Reactors, and Safety and Environmental Protection are presented. The research programs at Brookhaven are diverse, as is reflected by the nine different scientific departments: Accelerator Development, Alternating Gradient Synchrotron, Applied Science, Biology, Chemistry, Medical, National Synchrotron Light Source, Nuclear Energy, and Physics. Administrative and managerial information about Brookhaven are also disclosed. (GHH)

  16. Design, construction and characterization of a new neutron beam for neutron radiography at the Tehran Research Reactor

    Science.gov (United States)

    Choopan Dastjerdi, M. H.; Khalafi, H.; Kasesaz, Y.; Mirvakili, S. M.; Emami, J.; Ghods, H.; Ezzati, A.

    2016-05-01

    To obtain a thermal neutron beam for neutron radiography applications, a neutron collimator has been designed and implemented at the Tehran Research Reactor (TRR). TRR is a 5 MW open pool light water moderated reactor with seven beam tubes. The neutron collimator is implemented in the E beam tube of the TRR. The design of the neutron collimator was performed using MCNPX Monte Carlo code. In this work, polycrystalline bismuth and graphite have been used as a gamma filter and an illuminator, respectively. The L/D parameter of the facility was chosen in the range of 150-250. The thermal neutron flux at the image plane can be varied from 2.26×106 to 6.5×106 n cm-2 s-1. Characterization of the beam was performed by ASTM standard IQI and foil activation technique to determine the quality of neutron beam. The results show that the obtained neutron beam has a good quality for neutron radiography applications.

  17. High power, high beam quality regenerative amplifier

    Science.gov (United States)

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  18. OVERALL CONTROL SYSTEM FOR HIGH FLUX PILE

    Science.gov (United States)

    Newson, H.W.; Durham, N.C.; Wigner, E.P.; Princeton, N.J.; Epler, E.P.

    1961-05-23

    A control system is given for a high fiux reactor incorporating an anti- scram control feature whereby a neutron absorbing control rod acts as a fine adjustment while a neutron absorbing shim rod, actuated upon a command received from reactor period and level signals, has substantially greater effect on the neutron level and is moved prior to scram conditions to alter the reactor activity before a scram condition is created. Thus the probability that a scram will have to be initiated is substantially decreased.

  19. Design and construction of a thermal neutron beam for BNCT at Tehran Research Reactor.

    Science.gov (United States)

    Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezzati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Amini, Sepideh

    2014-12-01

    An irradiation facility has been designed and constructed at Tehran Research Reactor (TRR) for the treatment of shallow tumors using Boron Neutron Capture Therapy (BNCT). TRR has a thermal column which is about 3m in length with a wide square cross section of 1.2×1.2m(2). This facility is filled with removable graphite blocks. The aim of this work is to perform the necessary modifications in the thermal column structure to meet thermal BNCT beam criteria recommended by International Atomic Energy Agency. The main modifications consist of rearranging graphite blocks and reducing the gamma dose rate at the beam exit. Activation foils and TLD700 dosimeter have been used to measure in-air characteristics of the neutron beam. According to the measurements, a thermal flux is 5.6×10(8) (ncm(-2)s(-1)), a cadmium ratio is 186 for gold foils and a gamma dose rate is 0.57Gy h(-1).

  20. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fourmentel, D., E-mail: damien.fourmentel@cea.fr [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Filliatre, P.; Villard, J.F.; Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Reynard-Carette, C. [Aix-Marseille Université, LISA EA 4672, cedex 20, Marseille 13397 (France); Carcreff, H. [CEA, DEN, DRSN, Saclay, F-91191 Gif-sur-Yvette (France)

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g{sup −1} and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  1. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    Science.gov (United States)

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  2. Flux attenuation at NREL's High-Flux Solar Furnace

    Science.gov (United States)

    Bingham, Carl E.; Scholl, Kent L.; Lewandowski, Allan A.

    1994-10-01

    The High-Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) has a faceted primary concentrator and a long focal-length-to-diameter ratio (due to its off-axis design). Each primary facet can be aimed individually to produce different flux distributions at the target plane. Two different types of attenuators are used depending on the flux distribution. A sliding-plate attenuator is used primarily when the facets are aimed at the same target point. The alternate attenuator resembles a venetian blind. Both attenuators are located between the concentrator and the focal point. The venetian-blind attenuator is primarily used to control the levels of sunlight failing on a target when the primary concentrators are not focused to a single point. This paper will demonstrate the problem of using the sliding-plate attenuator with a faceted concentrator when the facets are not aimed at the same target point. We will show that although the alternate attenuator necessarily blocks a certain amount of incoming sunlight, even when fully open, it provides a more even attenuation of the flux for alternate aiming strategies.

  3. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  4. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    Energy Technology Data Exchange (ETDEWEB)

    Bucholz, J.A.

    2000-07-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

  5. Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    CERN Document Server

    An, F P; Band, H R; Bishai, M; Blyth, S; Cao, D; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J -H; Cheng, J; Cheng, Y P; Cheng, Z K; Cherwinka, J J; Chu, M C; Chukanov, A; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Dolgareva, M; Dove, J; Dwyer, D A; Edwards, W R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, R P; Guo, X H; Guo, Z; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Huo, W; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Joshi, J; Kang, L; Kettell, S H; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lee, J H C; Lei, R T; Leitner, R; Li, C; Li, D J; Li, F; Li, G S; Li, Q J; Li, S; Li, S C; Li, W D; Li, X N; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, S; Lin, S K; Lin, Y -C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, J L; Liu, J C; Loh, C W; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Lv, Z; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Malyshkin, Y; Caicedo, D A Martinez; McDonald, K T; McKeown, R D; Mitchell, I; Mooney, M; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevskiy, A; Pan, H -R; Park, J; Patton, S; Pec, V; Peng, J C; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Treskov, K; Tsang, K V; Tull, C E; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, C -H; Wu, Q; Wu, W J; Xia, D M; Xia, J K; Xing, Z Z; Xu, J Y; Xu, J L; Xu, Y; Xue, T; Yang, C G; Yang, H; Yang, L; Yang, M S; Yang, M T; Ye, M; Ye, Z; Yeh, M; Young, B L; Yu, Z Y; Zeng, S; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, X T; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y B; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2016-01-01

    A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GW$_{\\mathrm{th}}$ nuclear reactors and detected by eight antineutrino detectors deployed in two near (510~m and 560~m flux-weighted baselines) and one far (1580~m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be $0.946\\pm0.020$ ($0.992\\pm0.021$) for the Huber+Mueller (ILL+Vogel) model. A 2.9 $\\sigma$ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6~MeV was found in the measured spectrum, with a local significance of 4.4 $\\sigma$. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent p...

  6. The study of aeroball system for measuring 3D neutron flux distribution in reactor core

    Institute of Scientific and Technical Information of China (English)

    LuoZheng-Pei; LiFu; 等

    1997-01-01

    Aeroball system is attractive in several aspects because it can easily transport the map of neutron flux distribution to be measured from incore to outside of a reactor vessel.However,before the aeroball system is put to practical use in the heating reactor.there are four topics that have to be further studied.They are the stability of the activated positions,enhancement of signal/noise(S/N)ratio,distributed control and data-acquisition system and on-lin nbeutron flux distribution reconstruction.Besides describing the rasons for them,this paper gives out the theory,concept and solution about the first two topics and it is helptul to give the possibility to enhance the reactor-power.

  7. Development of a mono-energetic positron beam line at the Kyoto University Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K. [Research Reactor Institute, Kyoto University, Kumatori-cho, Osaka 590-0494 (Japan); Xu, Q., E-mail: xu@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Kumatori-cho, Osaka 590-0494 (Japan); Yoshiie, T.; Sano, T.; Kawabe, H. [Research Reactor Institute, Kyoto University, Kumatori-cho, Osaka 590-0494 (Japan); Nagai, Y.; Nagumo, K.; Inoue, K.; Toyama, T. [The Oarai Branch, Institute for Materials Research, Tohoku University, Ibaraki 311-1313 (Japan); Oshima, N.; Kinomura, A. [National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568 (Japan); Shirai, Y. [Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2015-01-01

    Positron beam facilities are widely used for solid state physics and material science studies. A positron beam facility has been constructed at the Kyoto University Research Reactor (KUR) in order to expand its application range. The KUR is a light-water-moderated tank-type reactor operated at a rated thermal power of 5 MW. A positron beam has been transported successfully from the reactor to the irradiation chamber. The total moderated positron rate was greater than 1.4 × 10{sup 6}/s while the reactor operated at a reduced power of 1 MW. Special attention was paid for the design of the in-pile position source to prevent possible damage of the reactor in case of severe earthquakes.

  8. Development of a mono-energetic positron beam line at the Kyoto University Research Reactor

    Science.gov (United States)

    Sato, K.; Xu, Q.; Yoshiie, T.; Sano, T.; Kawabe, H.; Nagai, Y.; Nagumo, K.; Inoue, K.; Toyama, T.; Oshima, N.; Kinomura, A.; Shirai, Y.

    2015-01-01

    Positron beam facilities are widely used for solid state physics and material science studies. A positron beam facility has been constructed at the Kyoto University Research Reactor (KUR) in order to expand its application range. The KUR is a light-water-moderated tank-type reactor operated at a rated thermal power of 5 MW. A positron beam has been transported successfully from the reactor to the irradiation chamber. The total moderated positron rate was greater than 1.4 × 106/s while the reactor operated at a reduced power of 1 MW. Special attention was paid for the design of the in-pile position source to prevent possible damage of the reactor in case of severe earthquakes.

  9. Dose monitoring for boron neutron capture therapy using a reactor-based epithermal neutron beam

    Science.gov (United States)

    Raaijmakers, C. P. J.; Nottelman, E. L.; Konijnenberg, M. W.; Mijnheer, B. J.

    1996-12-01

    The aims of this study were (i) to determine the variation with time of the relevant beam parameters of a clinical reactor-based epithermal neutron beam for boron neutron capture therapy (BNCT) and (ii) to test a monitoring system for its applicability to monitor the dose delivered to the dose specification point in a patient treated with BNCT. For this purpose two fission chambers covered with Cd and two GM counters were positioned in the beam-shaping collimator assembly of the epithermal neutron beam. The monitor count rates were compared with in-phantom reference measurements of the thermal neutron fluence rate, the gamma-ray dose rate and the fast neutron dose rate, at a constant reactor power, over a period of 2 years. Differences in beam output, defined as the thermal neutron fluence rate at 2 cm depth in a phantom, of up to 15% were observed between various reactor cycles. A decrease in beam output of about 5% was observed in each reactor cycle. An unacceptable decrease of 50% in beam output due to malfunctioning of the beam filter assembly was detected. For safe and accurate treatment of patients, on-line monitoring of the beam is essential. Using the calibrated monitor system, the standard uncertainty in the total dose at depth due to variations with time of the beam output parameters has been reduced to a clinically acceptable value of 1% (one standard deviation).

  10. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, M. [National Radiation Protection Department - NRPD, Atomic Energy Organization of Iran - AEOI, Tehran (Iran, Islamic Republic of); End of North Kargar st, Atomic Energy Organization of Iran, P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Kasesaz, Y.; Khalafi, H.; Shayesteh, M. [Radiation Application School, Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)

    2015-07-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  11. Neutron flux measurements in the side-core region of Hunterston B advanced gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.A. [Serco, Rutherford House, Quedgeley, Gloucester, GL2 4NF (United Kingdom); Shaw, S.E. [British Energy, Barnett Way, Barnwood, Gloucester, GL4 3RS (United Kingdom); Huggon, A.P.; Steadman, R.J.; Thornton, D.A. [Serco, Rutherford House, Quedgeley, Gloucester, GL2 4NF (United Kingdom); Whiley, G.S. [British Energy, Barnett Way, Barnwood, Gloucester, GL4 3RS (United Kingdom)

    2011-07-01

    The core restraints of advanced gas-cooled reactors are important structural components that are required to maintain the geometric integrity of the cores. A review of neutron dosimetry for the sister stations Hunterston B and Hinkley Point B identified that earlier conservative assessments predicted high thermal neutron dose rates to key components of the restraint structure (the restraint rod welds), with the implication that some of them may be predicted to fail during a seismic event. A revised assessment was therefore undertaken [Thornton, D. A., Allen, D. A., Tyrrell, R. J., Meese, T. C., Huggon, A.P., Whiley, G. S., and Mossop, J. R., 'A Dosimetry Assessment for the Core Restraint of an Advanced Gas Cooled Reactor,' Proceedings of the 13. International Symposium on Reactor Dosimetry (ISRD-13, May 2008), World Scientific, River Edge, NJ, 2009, W. Voorbraak, L. Debarberis, and P. D'hondt, Eds., pp. 679-687] using a detailed 3D model and a Monte Carlo radiation transport program, MCBEND. This reassessment resulted in more realistic fast and thermal neutron dose recommendations, the latter in particular being much lower than had been thought previously. It is now desirable to improve confidence in these predictions by providing direct validation of the MCBEND model through the use of neutron flux measurements. This paper describes the programme of work being undertaken to deploy two neutron flux measurement 'stringers' within the side-core region of one of the Hunterston B reactors for the purpose of validating the MCBEND model. The design of the stringers and the determination of the preferred deployment locations have been informed by the use of detailed MCBEND flux calculations. These computational studies represent a rare opportunity to design a flux measurement beforehand, with the clear intention of minimising the anticipated uncertainties and obtaining measurements that are known to be representative of the neutron fields to which

  12. Performance characterization of the SERI High-Flux Solar Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, A.; Bingham, C. (Solar Energy Research Inst., Golden, CO (United States)); O' Gallagher, J.; Winston, R.; Sagie, D. (Univ. of Chicago, IL (United States))

    1991-12-01

    This paper describes a unique, new solar furnace at the Solar Energy Research Institute (SERI) that can generate a wide range of flux concentrations to support research in areas including materials processing, high-temperature detoxification and high-flux optics. The furnace is unique in that it uses a flat, tracking heliostat along with a long focal length-to-diameter (f/D) primary concentrator in an off-axis configuration. The experiments are located inside a building completely outside the beam between the heliostat and primary concentrator. The long f/D ratio of the primary concentrator was designed to take advantage of a nonimaging secondary concentrator to significantly increase the flux concentration capabilities of the system. Results are reported for both the single-stage and two-stage configurations. (orig.).

  13. Design of a Fast Neutral He Beam System for Feasibility Study of Charge-Exchange Alpha-Particle Diagnostics in a Thermonuclear Fusion Reactor

    CERN Document Server

    Shinto, Katsuhiro; Kitajima, Sumio; Kiyama, Satoru; Nishiura, Masaki; Sasao, Mamiko; Sugawara, Hiroshi; Takenaga, Mahoko; Takeuchi, Shu; Wada, Motoi

    2005-01-01

    For alpha-particle diagnostics in a thermonuclear fusion reactor, neutralization using a fast (~2 MeV) neutral He beam produced by the spontaneous electron detachment of a He- is considered most promising. However, the beam transport of produced fast neutral He has not been studied, because of difficulty for producing high-brightness He- beam. Double-charge-exchange He- sources and simple beam transport systems were developed and their results were reported in the PAC99* and other papers.** To accelerate an intense He- beam and verify the production of the fast neutral He beam, a new test stand has been designed. It consists of a multi-cusp He+

  14. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  15. Scaleable, High Efficiency Microchannel Sabatier Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Microchannel Sabatier Reactor System (MSRS) consisting of cross connected arrays of isothermal or graded temperature reactors is proposed. The reactor array...

  16. Neutron fluence depth profiles in water phantom on epithermal beam of LVR-15 research reactor.

    Science.gov (United States)

    Viererbl, L; Klupak, V; Lahodova, Z; Marek, M; Burian, J

    2010-01-01

    Horizontal channel with epithermal neutron beam at the LVR-15 research reactor is used mainly for boron neutron capture therapy. Neutron fluence depth profiles in a water phantom characterise beam properties. The neutron fluence (approximated by reaction rates) depth profiles were measured with six different types of activation detectors. The profiles were determined for thermal, epithermal and fast neutrons.

  17. Intermediate energy neutron beams from the MURR.

    Science.gov (United States)

    Brugger, R M; Herleth, W H

    1990-01-01

    Several reactors in the United States are potential candidates to deliver beams of intermediate energy neutrons for NCT. At this time, moderators, as compared to filters, appear to be the more effective means of tailoring the flux of these reactors. The objective is to sufficiently reduce the flux of fast neutrons while producing enough intermediate energy neutrons for treatments. At the University of Missouri Research Reactor (MURR), the code MCNP has recently been used to calculate doses in a phantom. First, "ideal" beams of 1, 35, and 1000 eV neutrons were analyzed to determine doses and advantage depths in the phantom. Second, a high quality beam that had been designed to fit in the thermal column of the MURR, was reanalyzed. MCNP calculations of the dose in phantom in this beam confirmed previous calculations and showed that this beam would be a nearly ideal one with neutrons of the desired energy and also a high neutron current. However, installation of this beam will require a significant modification of the thermal column of the MURR. Therefore, a second beam that is less difficult to build and install, but of lower neutron current, has been designed to fit in MURR port F. This beam is designed using inexpensive A1, S, and Pb. The doses calculated in the phantom placed in this beam show that it will be satisfactory for sample tests, animal tests, and possible initial patient trials. Producing this beam will require only modest modifications of the existing tube.

  18. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    CERN Document Server

    Stancari, Giulio

    2014-01-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compens...

  19. Steel slag carbonation in a flow-through reactor system:The role of fluid-flux

    Institute of Scientific and Technical Information of China (English)

    Eleanor J.Berryman; Anthony E.Williams-Jones; Artashes A.Migdisov

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2.As annual steel production continues to grow,the need for effective methods of reducing its carbon footprint increases correspondingly.The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production,in particular its major constituent,lamite {Ca2SiO4},which is a structural analogue of olivine {(MgFe)2SiO4},the main mineral subjected to natural carbonation in peridotites,offers the potential to offset some of these emissions.However,the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood.Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature,fluid flux,and reaction gradient on the dissolution and carbonation of steel slag.The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies.Moreover,they show that fluid flux needs to be optimized in addition to grain size,pressure,and temperature,in order to maximize the efficiency of carbonation.Based on these results,a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation,allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system.

  20. Beyond ITER: Neutral beams for a demonstration fusion reactor (DEMO) (invited)

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, R., E-mail: roy.mcadams@ccfe.ac.uk [EURATOM/CCFE Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2014-02-15

    In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  1. Beyond ITER: neutral beams for a demonstration fusion reactor (DEMO) (invited).

    Science.gov (United States)

    McAdams, R

    2014-02-01

    In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  2. High flux lithium antineutrino source with variable hard spectrum

    CERN Document Server

    Lyashuk, V I

    2016-01-01

    The high flux antineutrino source with hard antineutrino spectrum based on neutron activation of 7Li and subsequent fast beta-decay (T 1/2 = 0.84 s) of the 8Li isotope with emission of antineutrino with energy up to 13 MeV - is discussed. Creation of the intensive isotope neutrino source of hard spectrum will allow to increase the detection statistics of neutrino interaction and it is especially urgent for oscillation experiments. The scheme of the proposed neutrino source is based on the continuous transport of the created 8Li to the neutrino detector, which moved away from the place of neutron activation. Analytical expressions for lithium antineutrino flux is obtained. The discussed source will ensure to increase the cross section for reactions with deuteron from several times to tens compare to the reactor antineutrino spectrum. An another unique feature of the installation is the possibility to vary smoothly the hardness of the antineutrino spectrum.

  3. Silicon detectors for the neutron flux and beam profile measurements of the n_TOF facility at CERN

    Science.gov (United States)

    Musumarra, Agatino; Cosentino, Luigi; Barbagallo, Massimo; Colonna, Nicola; Damone, Lucia; Pappalardo, Alfio; Piscopo, Massimo; Finocchiaro, Paolo

    2016-09-01

    The demand of new and high precision cross section data for neutron-induced reactions is continuously growing, driven by the requirements from several fields of fundamental physics, as well as from nuclear technology, medicine, etc. Several neutron facilities are operational worldwide, and new ones are being built. In the coming years, neutron beam intensities never reached up to now will be available, thus opening new scientific and technological frontiers. Among existing facilities, n_TOF at CERN provides a high intensity pulsed neutron beam in a wide energy range (thermal to GeV) and with an extremely competitive energy resolution that also allows spectroscopy studies. In order to ensure high quality measurements, the neutron beams must be fully characterized as a function of the neutron energy, in particular by measuring the neutron flux and the beam transverse profile with high accuracy. In 2014 a new experimental area (EAR2), with a much higher neutron flux, has been completed and commissioned at n_TOF. In order to characterize the neutron beam in the newly built experimental area at n_TOF, two suitable diagnostics devices have been built by the INFN-LNS group. Both are based on silicon detectors coupled with 6Li converter foils, in particular Single Pad for the flux measurement and Position Sensitive (strips and others) for the beam profile. The devices have been completely characterized with radioactive sources and with the n_TOF neutron beam, fulfilling all the specifications and hence becoming immediately operational. The performances of these devices and their high versatility, in terms of neutron beam intensity, make them suitable to be used in both n_TOF experimental areas. A description of the devices and the main results obtained so far will be presented.

  4. Calculation of the inventory and near-field release rates of radioactivity from neutron-activated metal parts discharged from the high flux isotope reactor and emplaced in solid waste storage area 6 at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kelmers, A.D.; Hightower, J.R.

    1987-05-01

    Emplacement of contaminated reactor components involves disposal in lined and unlined auger holes in soil above the water table. The radionuclide inventory of disposed components was calculated. Information on the composition and weight of the components, as well as reasonable assumptions for the neutron flux fueling use, the time of neutron exposure, and radioactive decay after discharge, were employed in the inventory calculation. Near-field release rates of /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu from control plates and cylinders were calculated for 50 years after emplacement. Release rates of the europium isotopes were uncertain. Two release-rate-limiting models were considered and a range of reasonable values were assumed for the time-to-failure of the auger-hole linear and aluminum cladding and europium solubility in SWSA-6 groundwater. The bounding europium radionuclide near-field release rates peaked at about 1.3 Ci/year total for /sup 152,154,155/Eu in 1987 for the lower bound, and at about 420 Ci/year in 1992 for the upper bound. The near-field release rates of /sup 55/Fe, /sup 59/Ni, /sup 60/Co, and /sup 63/Ni from stainless steel and cobalt alloy components, as well as of /sup 10/Be, /sup 41/Ca, and /sup 55/Fe from beryllium reflectors, were calculated for the next 100 years, assuming bulk waste corrosion was the release-rate-limiting step. Under the most conservative assumptions for the reflectors, the current (1986) total radionuclide release rate was calculated to be about 1.2 x 10/sup -4/ Ci/year, decreasing by 1992 to a steady release of about 1.5 x 10/sup -5/ Ci/year due primarily to /sup 41/Ca. 50 refs., 13 figs., 8 tabs.

  5. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor.

    Science.gov (United States)

    Yavar, A R; Sarmani, S B; Wood, A K; Fadzil, S M; Radir, M H; Khoo, K S

    2011-05-01

    Determination of thermal to fast neutron flux ratio (f(fast)) and fast neutron flux (ϕ(fast)) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f(fast) and subsequently ϕ(fast) were determined using the absolute method. The f(fast) ranged from 48 to 155, and the ϕ(fast) was found in the range 1.03×10(10)-4.89×10(10) n cm(-2) s(-1). These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  6. Neutron Flux Measurement at TAPIRO Fast Reactor for APD's Irradiation Fluence Evaluation

    CERN Document Server

    Angelone, M; Diemoz, Marcella; Festinesi, Armando; Longo, Egidio; Organtini, Giovanni; Rosi, G

    1998-01-01

    The Avalanche Photodiodes ( APD) were chosen as photon sensors for the region of the CMS electromagnetic calorimeter. The LHC will be a hard environment for what concerns the radiation levels in the detectors. The most relevant damage on APDs is caused by neutrons that produce an increase in the dark current of these devices. In the CMS-ECAL collaboration a big effort was indeed done to understand this damage, but the evaluation of the absolute effect was limited by the knowledge of the neutron flux calibration of the various irradiation facilities. This investigation describes the calibration of the neutron flux of the Tapiro reactor in Rome and the calculation of the Non-Ionizing-Energy-Loss on Silicon for this reactor. The damage parameter alpha for the APDs is evaluated to be about 10-11*10^-17 A/cm/neutron at 18C and 2 days after the irradiation. Some cross-checks with other irradiation facilities are also presented.

  7. Ultra high temperature particle bed reactor design

    Science.gov (United States)

    Lazareth, Otto; Ludewig, Hans; Perkins, K.; Powell, J.

    1990-01-01

    A direct nuclear propulsion engine which could be used for a mission to Mars is designed. The main features of this reactor design are high values for I(sub sp) and very efficient cooling. This particle bed reactor consists of 37 cylindrical fuel elements embedded in a cylinder of beryllium which acts as a moderator and reflector. The fuel consists of a packed bed of spherical fissionable fuel particles. Gaseous H2 passes over the fuel bed, removes the heat, and is exhausted out of the rocket. The design was found to be neutronically critical and to have tolerable heating rates. Therefore, this particle bed reactor design is suitable as a propulsion unit for this mission.

  8. Ionization Chambers for Monitoring in High-Intensity Neutrino Beams

    CERN Document Server

    McDonald, J; Velissaris, C; Erwin, A R; Ping, H; Viren, B M; Diwan, M V

    2002-01-01

    Radiation-hard ionization chambers were tested using an intense electron beam from the accelerator test facility (ATF) at the Brookhaven National Laboratory (BNL). The detectors were designed to be used as the basic element for monitoring muons in the Main Injector Neutrino beamline (NuMI) at the Fermi National Accelerator Laboratory (FNAL). Measurements of linearity of response, voltage dependence, and the onset of ionization saturation as a function of gap voltage were performed.

  9. Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

    Science.gov (United States)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.-H.; Cheng, J.; Cheng, Y. P.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, R. P.; Guo, X. H.; Guo, Z.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Joshi, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Lv, Z.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Mooney, M.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2017-01-01

    A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.020 (0.992±0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6 MeV was found in the measured spectrum, with a local significance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions. Supported in part by the Ministry of Science and Technology of China, the United States Department of Energy, the Chinese Academy of Sciences, the CAS Center for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government, the China General Nuclear Power Group, the Research Grants Council of the Hong Kong Special Administrative Region of China, the MOST and MOE in Taiwan, the U.S. National Science Foundation, the Ministry of Education, Youth and Sports of the Czech Republic, the Joint Institute of Nuclear Research in Dubna, Russia, the NSFC-RFBR joint research program, the National Commission for Scientific and Technological Research of Chile

  10. Operational characteristics of the high flux plasma generator Magnum-PSI

    Energy Technology Data Exchange (ETDEWEB)

    Eck, H.J.N. van, E-mail: h.j.n.vaneck@differ.nl [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Abrams, T. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Berg, M.A. van den; Brons, S.; Eden, G.G. van [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Jaworski, M.A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Meiden, H.J. van der; Morgan, T.W.; Pol, M.J. van de; Scholten, J.; Smeets, P.H.M.; De Temmerman, G.; Vries, P.C. de; Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-10-15

    Highlights: •We have described the design and capabilities of the plasma experiment Magnum-PSI. •The plasma conditions are well suited for PSI studies in support of ITER. •Quasi steady state heat fluxes over 10 MW m{sup −2} have been achieved. •Transient heat and particle loads can be generated to simulate ELM instabilities. •Lithium coating can be applied to the surfaces of samples under vacuum. -- Abstract: In Magnum-PSI (MAgnetized plasma Generator and NUMerical modeling for Plasma Surface Interactions), the high density, low temperature plasma of a wall stabilized dc cascaded arc is confined to a magnetized plasma beam by a quasi-steady state axial magnetic field up to 1.3 T. It aims at conditions that enable fundamental studies of plasma–surface interactions in the regime relevant for fusion reactors such as ITER: 10{sup 23}–10{sup 25} m{sup −2} s{sup −1} hydrogen plasma flux densities at 1–5 eV. To study the effects of transient heat loads on a plasma-facing surface, a high power pulsed magnetized arc discharge has been developed. Additionally, the target surface can be transiently heated with a pulsed laser system during plasma exposure. In this contribution, the current status, capabilities and performance of Magnum-PSI are presented.

  11. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    CERN Document Server

    An, F P; Band, H R; Bishai, M; Blyth, S; Butorov, I; Cao, D; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J H; Cheng, J; Cheng, Y P; Cherwinka, J J; Chu, M C; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Dove, J; Draeger, E; Dwyer, D A; Edwards, W R; Ely, S R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, X H; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, L J; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lei, R T; Leitner, R; Leung, K Y; Leung, J K C; Lewis, C A; Li, D J; Li, F; Li, G S; Li, Q J; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, P Y; Lin, S K; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, J C; Liu, S S; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Caicedo, D A Martinez; McDonald, K T; McKeown, R D; Meng, Y; Mitchell, I; Kebwaro, J Monari; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Pan, H -R; Park, J; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, B; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Tsang, K V; Tull, C E; Tung, Y C; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, Q; Xia, D M; Xia, J K; Xia, X; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C G; Yang, L; Yang, M S; Yang, M T; Ye, M; Yeh, M; Young, B L; Yu, G Y; Yu, Z Y; Zang, S L; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, Y M; Zhang, Y X; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y F; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2015-01-01

    This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW$_{th}$ nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579~m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 $\\pm$ 0.04) $\\times$ 10$^{-18}$~cm$^2$/GW/day or (5.92 $\\pm$ 0.14) $\\times$ 10$^{-43}$~cm$^2$/fission. This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is $0.946\\pm0.022$ ($0.991\\pm0.023$) relative to the flux predicted with the Huber+Mueller (ILL+Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2$\\sigma$ over the full energy range with a local significance of up to $\\sim$4$\\sigma$ between 4-6 MeV. A reactor antineutrino spectrum...

  12. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    Science.gov (United States)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Butorov, I.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dove, J.; Draeger, E.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, X. H.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, K. Y.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S. S.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Monari Kebwaro, J.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Tsang, K. V.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zang, S. L.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2016-02-01

    This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWt h nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 ±0.04 ) ×10-18 cm2 GW-1 day-1 or (5.92 ±0.14 ) ×10-43 cm2 fission-1 . This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946 ±0.022 (0.991 ±0.023 ) relative to the flux predicted with the Huber -Mueller (ILL -Vogel ) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2 σ over the full energy range with a local significance of up to ˜4 σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.

  13. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay.

    Science.gov (United States)

    An, F P; Balantekin, A B; Band, H R; Bishai, M; Blyth, S; Butorov, I; Cao, D; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J H; Cheng, J; Cheng, Y P; Cherwinka, J J; Chu, M C; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Dove, J; Draeger, E; Dwyer, D A; Edwards, W R; Ely, S R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, X H; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, L J; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lei, R T; Leitner, R; Leung, K Y; Leung, J K C; Lewis, C A; Li, D J; Li, F; Li, G S; Li, Q J; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, P Y; Lin, S K; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, J C; Liu, S S; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Martinez Caicedo, D A; McDonald, K T; McKeown, R D; Meng, Y; Mitchell, I; Monari Kebwaro, J; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Pan, H-R; Park, J; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, B; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Tsang, K V; Tull, C E; Tung, Y C; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, Q; Xia, D M; Xia, J K; Xia, X; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C G; Yang, L; Yang, M S; Yang, M T; Ye, M; Yeh, M; Young, B L; Yu, G Y; Yu, Z Y; Zang, S L; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y F; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2016-02-12

    This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55±0.04) ×10(-18)  cm(2) GW(-1) day(-1) or (5.92±0.14) ×10(-43)  cm(2) fission(-1). This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946±0.022 (0.991±0.023) relative to the flux predicted with the Huber-Mueller (ILL-Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ∼4σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.

  14. High Energy Electron Reconstruction in the BeamCal

    CERN Document Server

    Sailer, Andre

    2016-01-01

    This note discusses methods of particle reconstruction in the forward region detectors of future e+ e− linear colliders such as ILC or CLIC. At the nominal luminosity the innermost electromagnetic calorimeters undergo high particle fluxes from the beam-induced background. In this prospect, different methods of the background simulation and signal electron reconstruction are described.

  15. Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield

    Energy Technology Data Exchange (ETDEWEB)

    Merz, Stefan [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Djuricic, Mile [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Nuclear Engineering Seibersdorf, 2444 Seibersdorf (Austria); Villa, Mario; Boeck, Helmuth [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Steinhauser, Georg, E-mail: georg.steinhauser@ati.ac.at [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

    2011-11-15

    The activation of the biological shield is an important process for waste management considerations of nuclear facilities. The final activity can be estimated by modeling using the neutron flux density rather than the radiometric approach of activity measurements. Measurement series at the TRIGA reactor Vienna reveal that the flux density next to the biological shield is in the order of 10{sup 9} cm{sup -2} s{sup -1} at maximum power; but it is strongly influenced by reactor installations. The data allow the estimation of the final waste categorization of the concrete according to the Austrian legislation. - Highlights: > Neutron activation is an important process for the waste management of nuclear facilities. > Biological shield of the TRIGA reactor Vienna has been topic of investigation. > Flux values allow a categorization of the concrete concerning radiation protection legislation. > Reactor installations are of great importance as neutron sources into the biological shield. > Every installation shows distinguishable flux profiles.

  16. Preliminary Design of LEU MNSR for BNCT with Excellent Epithermal Neutron Flux Treatment Beam%高额超热中子束流治疗孔道低浓化BNCT堆初步设计方案

    Institute of Scientific and Technical Information of China (English)

    于涛; 钱金栋; 谢金森

    2012-01-01

    Based on the Miniature Neutron Source Reactor (MNSR) with high enrichment uranium (HEU) fuel and accordance with the requirements of BNCT, the 19.5% of enriched fuel UO2 fuel core for BNCT with epithermal neutron treatment beam was primary designed, the reactor core parameters such as epithermal neutron flux density,epithermal neutron flux unit of fast neutron dose rate,epithermal neutron flux unit photon dose rate of γ,epithermal neutron flux ratio of thermal neutron flux, neutron spectrum were calculated and analyzed. The results show that the design program was an excellent epithermal neutron treatment beam.%根据硼中子俘获治疗( BNCT)中子源的要求,在高浓铀为燃料的微型反应堆(MNSR)的基础上,以富集度19.5%的UO2为燃料,将其堆芯低浓化并且添加水平超热中子束流治疗孔道,开展超热中子束流BNCT堆堆芯低浓化初步设计.计算BNCT堆的超热中子注量率、单位超热中子注量的快中子剂量率、单位超热中子注量的γ光子剂量率、超热中子注量与热中子的注量之比、中子束流能谱等关键参数.结果表明,该设计可以得到优良的超热中子束流.

  17. Development and modelling of fission chambers designed for high neutron fluxes: applications at the HFR reactor (ILL) and the MEGAPIE target (PSI); Developpement et modelisation de chambres a fission pour les hauts flux, mise en application au RHF (ILL) et a MEGAPIE (PSI)

    Energy Technology Data Exchange (ETDEWEB)

    Chabod, S

    2006-11-15

    The international project MEGAPIE (MEGAwatt PIlot Experiment) at the Paul Scherrer Institute aims to build and operate the first 1 MW liquid lead-bismuth spallation target. This work is dedicated to the characterization of the neutron flux and the actinide incineration potential of the target. This mission has required the development of an innovating neutron detector (DNM) made of 8 micro fission chambers, installed inside the central rod of the MEGAPIE target. The combination of uranium chambers with chambers without deposit allows an efficient compensation of the gamma radiation background. The optimisation and development work on the MEGAPIE chambers have enabled us to measure the {sigma}{sub f} * {phi} product at each level of the DNM with an uncertainty of less than 3 per cent. We have inferred from these data the value of the epithermal neutron flux (E > 1 eV) at 37 cm away from the window: 3.4*10{sup 13} n.cm{sup -2}.s{sup -1}, and the values of the neutron flux at 50, 60 and 74 cm: 1.2*10{sup 13}, 7.9*10{sup 12} and 3.9*10{sup 12} n.cm{sup -2}.s{sup -1} respectively. All these values are notably less important than those obtained from MCNPX simulations. Thermocouples installed in DMN have enabled us to know the temperature distribution inside the target. For a beam intensity of 1.2 mA, the temperature ranges from 360 to 420 Celsius degrees in the low part of the central rod. The thermal inertia of the system composed of the central rod and DNM has been assessed for brutal changes of the beam intensity and is worth about 60 s. (A.C.)

  18. Neutron flux optimization in irradiation facilities at Peruvian research reactor RP-10

    Energy Technology Data Exchange (ETDEWEB)

    Vela, M.; Arrieta, R.; Salazar, A.; Urcia, A.; Canaza, D.; Felix, J; Veramendi, E.; Ovalle, E.; Giol, R.; Zapata, L.; Ramos, F.; Tordocillo, J. [Instituto Peruano de Energia Nuclear (IPEN), Lima (Peru). Direccion de Instalaciones. Dept. de Reactores]. E-mail: mvela@ipen.gob.pe; rarrieta@ipen.gob.pe

    2005-07-01

    In this work we show the values distribution of the neutron flux at Peruvian Research Reactor RP-10, determined under two different safety and control rods configurations. The method applied was to irradiate small gold foils in irradiation facilities of the core to carry out the nuclear reaction {sup 197}Au(n, {gamma}){sup 198}Au; then using a gamma spectrometry system and the Westcott formalism we obtained the neutron flux. The results confirm the favorable effect of such configurations, increasing the neutron flux, both thermal and epithermal. These results have consistency with the weekly activity reports of radioisotopes lots given by the Radioisotopes Production Plant and Neutron Activation Analysis Group. (author)

  19. Predicting ion flux uniformity at the ion extraction plate in a 3D ICP reactor

    Science.gov (United States)

    Roy, Abhra; Bhoj, Ananth

    2016-09-01

    In order to achieve better control in processing the wafer surface, the ion fluxes in a remote plasma system are often focused through one or more ion extraction plates between the main plasma chamber and the downstream wafer plane. The ion extraction plates are typically of showerhead pattern with multiple holes. The focus of this particular study is to predict the ion flux uniformity over the ion extraction plate for a full 3D inductively coupled discharge reactor model using Argon chemistry. We will use the commercial modeling tool, CFD-ACE +, which can address such a process involving gas flow, heat transfer, plasma physics, reaction chemistry and electromagnetics in a coupled fashion. The plasma characteristics in the chamber and uniformity of the ion fluxes at ion extraction plate are discussed. Parametric studies varying the geometrical dimensions and process conditions to determine the effect on ion flux uniformity are presented. The showerhead-like ion extraction plate will be modeled as a porous media with a specified porosity. Further, a spatially varying porosity of the ion extraction plate is used to simulate ion recombination in order to reduce the ion flux non-uniformity. The goal is to optimize the system maximizing the ion flux while maintaining the uniformity.

  20. Design of epithermal neutron beam for clinical BNCT treatment at Slovenian TRIGA research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maucec, Marko [Jozef Stefan Institute, Reactor Physics Division, Lubljana (Slovenia). E-mail: marko.mauce@ijs.si

    1999-07-01

    The Monte Carlo feasibility study of development of epithermal neutron beam for BNCT clinical trials on Jozef Stefan Institute (JSI) TRIGA reactor is presented. The investigation of the possible use of fission converter for the purpose of enhancement of neutron beam, as well as the set-up of TRIGA reactor core is performed. The optimization of the irradiation facility components is carried out and the configuration with the most favorable cost/performance ratio is proposed. The simulation results prove that a BNCT irradiation facility with performances, comparable to existing beams throughout the world, could be installed in the thermalizing column of the TRIGA reactor, quite suitable for the clinical treatments of human patients. (author)

  1. Neutron spectra in two beam ports of a TRIGA Mark III reactor with HEU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L.; Aguilar, F., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2012-10-15

    Before to change the HEU for Leu fuel of the ININ's TRIGA Mark III nuclear reactor the neutron spectra were measured in two beam ports using 5 and 10 W. Measurements were carried out in a tangential and a radial beam port using a Bonner sphere spectrometer. It was found that neutron spectra are different in the beam ports, in radial beam port the amplitude of thermal and fast neutrons are approximately the same while, in the tangential beam port thermal neutron peak is dominant. In the radial beam port the fluence-to-ambient dose equivalent factors are 131{+-}11 and 124{+-}10 p Sv-cm{sup 2} for 5 and 10 W respectively while in the tangential beam port the fluence-to-ambient dose equivalent factor is 55{+-}4 p Sv-cm{sup 2} for 10 W. (Author)

  2. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  3. Localized fast neutron flux enhancement for damage experiments in a research reactor; Accroissement local du flux rapide pour des experiences de dommages dans un reacteur de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Malouch, F

    2003-06-01

    In irradiation experiments on materials in the core of the Osiris reactor (CEA-Saclay) we seek to increase damage in irradiated samples and to reduce the duration of their stay in the core. Damage is essentially caused by fast neutrons (E {>=} 1 MeV); we have therefore pursued the possibility of a localized increase of their level in an irradiation experiment by using a flux converter device made up of fissile material arranged according to a suitable geometry that allows the converter to receive experiments. We have studied several parameters that are influential in the increase of fast neutron flux within the converter. We have also considered the problem of the converter's cooling in the core and its effect on the operation of the reactor. We have carried out a specific neutron calculation scheme based on the modular 2D-transport code APOLLO2 using a two-level transport method. Experimental validation of the flux calculation scheme was carried out in the ISIS reactor, the mock-up of OSIRIS, by optimizing the loading of fuel elements in the core. The experimental results show that the neutron calculation scheme computes the fluxes in close agreement with the measurements especially the fast flux. This study allows us to master the essential physical parameters needed for the design of a flux converter in an MTR reactor. (author)

  4. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  5. Polarized beams in high energy circular accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1979-05-01

    In recent years, high energy physicists have become increasingly interested in the possible spin effects at high energies. To study those spin effects, it is desirable to have beams with high energy, high intensity and high polarization. In this talk, we briefly review the present status and the prospects for the near future of high energy polarized beams. 30 refs.

  6. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    Science.gov (United States)

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  7. Single-crystal filters for attenuating epithermal neutrons and gamma rays in reactor beams

    DEFF Research Database (Denmark)

    Rustad, B.M.; Als-Nielsen, Jens Aage; Bahnsen, A.

    1965-01-01

    Cross section of representative samples of bismuth and quartz were measured at room and liquid nitrogen temperatures over neutron energy range of 0.0007 to 2.0 ev to obtain data for design of single-crystal 32-cm bismuth filters for attenuating fast neutrons and γ-rays in reactor beams; filters may...... be constructed to optimize beam characteristics for low energy neutron experiments....

  8. High flux film and transition boiling

    Science.gov (United States)

    Witte, L. C.

    1993-02-01

    An investigation was conducted on the potential for altering the boiling curve through effects of high velocity and high subcooling. Experiments using water and Freon-113 flowing over cylindrical electrical heaters in crossflow were made to see how velocity and subcooling affect the boiling curve, especially the film and transition boiling regions. We sought subcooling levels down to near the freezing points of these two liquids to prove the concept that the critical heat flux and the minimum heat flux could be brought together, thereby averting the transition region altogether. Another emphasis was to gain insight into how the various boiling regions could be represented mathematically on various parts of the heating surface. Motivation for the research grew out of a realization that the effects of very high subcooling and velocity might be to avert the transition boiling altogether so that the unstable part of the boiling curve would not limit the application of high flux devices to temperatures less than the burnout temperatures. Summaries of results from the study are described. It shows that the potential for averting the transition region is good and points the way to further research that is needed to demonstrate the potential.

  9. Biological Effects of Particles with Very High Energy Deposition on Mammalian Cells Utilizing the Brookhaven Tandem Van de Graaff Accelerator

    Science.gov (United States)

    Saha, Janapriya; Cucinotta, Francis A.; Wang, Minli

    2013-01-01

    High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of high charge and energy (HZE) nuclei and secondary protons and neutrons, and secondaries from protons in SPE (Solar Particle Event) pose a major health risk to astronauts due to induction of DNA damage and oxidative stress. Experiments with high energy particles mimicking the space environment for estimation of radiation risk are being performed at NASA Space Radiation Laboratory at BNL. Experiments with low energy particles comparing to high energy particles of similar LET are of interest for investigation of the role of track structure on biological effects. For this purpose, we report results utilizing the Tandem Van de Graaff accelerator at BNL. The primary objective of our studies is to elucidate the influence of high vs low energy deposition on track structure, delta ray contribution and resulting biological responses. These low energy ions are of special relevance as these energies may occur following absorption through the spacecraft and shielding materials in human tissues and nuclear fragments produced in tissues by high energy protons and neutrons. This study will help to verify the efficiency of these low energy particles and better understand how various cell types respond to them.

  10. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    Energy Technology Data Exchange (ETDEWEB)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  11. Transverse Laser Beam Shaping in High Brightness Electron Gun at ATF

    CERN Document Server

    Roychowdhury, S

    2005-01-01

    The brightness of electron beams from a photo injector is influenced by the transverse and longitudinal distribution of the laser beam illuminating the cathode. Previous studies at Brookhaven Accelerator Test Facility have shown that formation of an ideal e-beam with lowest transverse emittance requires uniform circular distribution of the emitted electrons. The use of the uniformly distributed power of the laser beam may not lead to that of the emitted electrons because of the non-uniform quantum efficiency. A proper shaping of the laser beam can compensate for this non-uniformity. In this paper we describe the use of digital light processing (DLP) technique based on digital mirror device (DMD) for spatial modulation of the laser beam, for measurements of the quantum efficiency map, and for creating the desirable e-beam density profiles. A DMD is aμelectronic mechanical system (MEMS) comprising of millions of highly reflectiveμmirrors controlled by underlying electronics. We present exper...

  12. Quantitative high dynamic range beam profiling for fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D. [Centre for Advanced Instrumentation and Biophysical Sciences Institute, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.

  13. Thermal Energetic Reactor with High Reproduction of Fission Materials

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2012-01-01

    On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  14. Design of the beryllium window for Brookhaven Linac Isotope Producer

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mapes, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raparia, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.

  15. HOM identification by bead pulling in the Brookhaven ERL cavity

    CERN Document Server

    Hahn, H; Jain, Puneet; Johnson, Elliott C; Xu, Wencan

    2014-01-01

    Exploratory measurements of the Brookhaven Energy Recovery Linac (ERL) cavity at superconducting temperature produced a long list of high order modes (HOMs). The niobium 5-cell cavity is terminated at each end with HOM ferrite dampers that successfully reduce the Q-factors to levels required to avoid beam break up (BBU) instabilities. However, a number of un-damped resonances with Q≥106 were found at 4 K and their mode identification forms the focus of this paper. The approach taken here consists of bead pulling on a copper (Cu) replica of the ERL cavity with dampers involving various network analyzer measurements. Several different S21 transmission measurements are used, including those taken from the fundamental input coupler to the pick-up probe across the cavity, others between beam-position monitor probes in the beam tubes, and also between probes placed into the cells. The bead pull technique suitable for HOM identification with a metallic needle or dielectric bead is detailed. This paper presents the...

  16. HIGH STRENGTH CONTROL RODS FOR NEUTRONIC REACTORS

    Science.gov (United States)

    Lustman, B.; Losco, E.F.; Cohen, I.

    1961-07-11

    Nuclear reactor control rods comprised of highly compressed and sintered finely divided metal alloy panticles and fine metal oxide panticles substantially uniformly distributed theretbrough are described. The metal alloy consists essentially of silver, indium, cadmium, tin, and aluminum, the amount of each being present in centain percentages by weight. The oxide particles are metal oxides of the metal alloy composition, the amount of oxygen being present in certain percentages by weight and all the oxygen present being substantially in the form of metal oxide. This control rod is characterized by its high strength and resistance to creep at elevated temperatures.

  17. Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with $\\gamma$ Beams of High Intensity and Large Brilliance

    CERN Document Server

    Habs, D

    2010-01-01

    We study the production of radioisotopes for nuclear medicine in $(\\gamma,x{\\rm n}+y{\\rm p})$ photonuclear reactions or ($\\gamma,\\gamma'$) photoexcitation reactions with high flux [($10^{13}-10^{15}$)$\\gamma$/s], small diameter $\\sim (100 \\, \\mu$m$)^2$ and small band width ($\\Delta E/E \\approx 10^{-3}-10^{-4}$) $\\gamma$ beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion,$x$n$ + y$p) reactions with (ion=p,d,$\\alpha$) from particle accelerators like cyclotrons and (n,$\\gamma$) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow $\\gamma$ beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). $(\\gamma,\\gamma')$ isomer production via specially selected $\\gamma$ cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground st...

  18. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Sarmani, S.B. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Radir, M.H. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2011-05-15

    Determination of thermal to fast neutron flux ratio (f{sub fast}) and fast neutron flux ({phi}{sub fast}) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f{sub fast} and subsequently {phi}{sub fast} were determined using the absolute method. The f{sub fast} ranged from 48 to 155, and the {phi}{sub fast} was found in the range 1.03x10{sup 10}-4.89x10{sup 10} n cm{sup -2} s{sup -1}. These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  19. Determination of the neutron flux in the reactor zones with the strong neutron absorption and leakage

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan

    2004-01-01

    Full Text Available The procedures for the numerical and experimental determination of the neutron flux in the zones with the strong neutron absorption and leakage are described in this paper. Numerical procedure is based on the application of the SCALE-4.4a code system where the Dancoff factors are determined by the VEGA2DAN code. Two main parts of the experimental methodology are measurement of the activity of irradiated foils and determination of the averaged neutron absorption cross-section in the foils by the SCALE-4.4a calculation procedure. The proposed procedures have been applied for the determination of the neutron flux in the internal neutron converter used with the RB reactor core configuration number 114.

  20. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  1. Beam Dynamics Studies for High-Intensity Beams in the CERN Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2082016; Benedikt, Michael

    With the discovery of the Higgs boson, the existence of the last missing piece of the Standard Model of particle physics (SM) was confirmed. However, even though very elegant, this theory is unable to explain, for example, the generation of neutrino masses, nor does it account for dark energy or dark matter. To shed light on some of these open questions, research in fundamental particle physics pursues two complimentary approaches. On the one hand, particle colliders working at the high-energy frontier, such as the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), located in Geneva, Switzerland, are utilized to investigate the fundamental laws of nature. Alternatively, fixed target facilities require high-intensity beams to create a large flux of secondary particles to investigate, for example, rare particle decay processes, or to create neutrino beams. This thesis investigates limitations arising during the acceleration of high-intensity beams at the CERN Proton Synchrotro...

  2. High heat flux loop heat pipes

    Science.gov (United States)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop Heat Pipes (LHPs) can transport very large thermal power loads, over long distances, through flexible, small diameter tubes and against high gravitational heads. While recent LHPs have transported as much as 1500 W, the peak heat flux through a LHP's evaporator has been limited to about 0.07 MW/m2. This limitation is due to the arrangement of vapor passages next to the heat load which is one of the conditions necessary to ensure self priming of the device. This paper describes work aimed at raising this limit by threefold to tenfold. Two approaches were pursued. One optimized the vapor passage geometry for the high heat flux conditions. The geometry improved the heat flow into the wick and working fluid. This approach also employed a finer pored wick to support higher vapor flow losses. The second approach used a bidisperse wick material within the circumferential vapor passages. The bidisperse material increased the thermal conductivity and the evaporative surface area in the region of highest heat flux, while providing a flow path for the vapor. Proof-of-concept devices were fabricated and tested for each approach. Both devices operated as designed and both demonstrated operation at a heat flux of 0.70 MW/m2. This performance exceeded the known state of the art by a factor of more than six for both conventional heat pipes and for loop heat pipes using ammonia. In addition, the bidisperse-wick device demonstrated boiling heat transfer coefficients up to 100,000 W/m2.K, and the fine pored device demonstrated an orientation independence with its performance essentially unaffected by whether its evaporator was positioned above, below or level with the condenser.

  3. Filter/moderator system for a BNCT beam of epithermal neutrons at nuclear reactor MARIA

    Science.gov (United States)

    Tyminska, Katarzyna

    2009-01-01

    Boron Neutron Capture Therapy is a very promising form of cancer therapy, consisting in irradiating a stable isotope of boron (10B) concentrated in tumor cells with a low energy neutron beam. This technique makes it possible to destroy tumor cells, leaving healthy tissues practically unaffected. In order to carry out the therapy in the proper way, the proper range of the neutron beam energy has to be chosen. In this paper we present a filter/moderator system modeled with MCNP code in order to obtain an epithermal neutron beam for BNCT post at MARIA reactor in Swierk.

  4. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Y., E-mail: yingge.du@pnnl.gov, E-mail: scott.chambers@pnnl.gov; Liyu, A. V. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Droubay, T. C.; Chambers, S. A., E-mail: yingge.du@pnnl.gov, E-mail: scott.chambers@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Li, G. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-04-21

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  5. Self-corrected Sensors Based On Atomic Absorption Spectroscopy For Atom Flux Measurements In Molecular Beam Epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yingge; Droubay, Timothy C.; Liyu, Andrey V.; Li, Guosheng; Chambers, Scott A.

    2014-04-24

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device (CCD) detector in a double-beam configuration, we employ a non-resonant line or a resonant line with lower absorbance from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  6. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    Science.gov (United States)

    Du, Y.; Droubay, T. C.; Liyu, A. V.; Li, G.; Chambers, S. A.

    2014-04-01

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  7. Neutron flux parameters for k{sub 0}-NAA method at the Malaysian nuclear agency research reactor after core reconfiguration

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Sarmani, S. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Masood, Z. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia)

    2011-02-15

    The Malaysian Nuclear Agency (MNA) research reactor, commissioned in 1982, is a TRIGA Mark II swimming pool type reactor. When the core configuration changed in June 2009, it became essential to re-determine such neutron flux parameters as thermal to epithermal neutron flux ratio (f), epithermal neutron flux shape factor ({alpha}), thermal neutron flux ({phi}{sub th}) and epithermal neutron flux ({phi}{sub epi}) in the irradiation positions of MNA research reactor in order to guarantee accuracy in the application of k{sub 0}-neutron activation analysis (k{sub 0}-NAA).The f and {alpha} were determined using the bare bi-isotopic monitor and bare triple monitor methods, respectively; Au and Zr monitors were utilized in present study. The results for four irradiation positions are presented and discussed in the present work. The calculated values of f and {alpha} ranged from 33.49 to 47.33 and -0.07 to -0.14, respectively. The {phi}{sub th} and the {phi}{sub epi} were measured as 2.03 x 10{sup 12} (cm{sup -2} s{sup -1}) and 6.05 x 10{sup 10} (cm{sup -2} s{sup -1}) respectively. These results were compared to those of previous studies at this reactor as well as to those of reactors in other countries. The results indicate a good conformity with other findings.

  8. Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects.

    Science.gov (United States)

    Zhang, Likun; Marston, Philip L

    2011-12-01

    An acoustic vortex in an inviscid fluid and its radiation torque on an axisymmetric absorbing object are analyzed beyond the paraxial approximation to clarify an analogy with an optical vortex. The angular momentum flux density tensor from the conservation of angular momentum is used as an efficient description of the transport of angular momentum. Analysis of a monochromatic nonparaxial acoustic vortex beam indicates that the local ratio of the axial (or radial) flux density of axial angular momentum to the axial (or radial) flux density of energy is exactly equal to the ratio of the beam's topological charge l to the acoustic frequency ω. The axial radiation torque exerted by the beam on an axisymmetric object centered on the beam's axis due to the transfer of angular momentum is proportional to the power absorbed by the object with a factor l/ω, which can be understood as a result of phonon absorption from the beam. Depending on the vortex's helicity, the torque is parallel or antiparallel to the beam's axis.

  9. The new Brookhaven $(g-2)_{\\mu}$ experiment

    CERN Document Server

    Hertzog, D W; Bunce, G M; Carey, R M; Cushman, P B; Danby, G T; Debevec, P T; Deng, H; Deninger, W J; Dhawan, S K; Druzhinin, V P; Duong, L; Earle, W; Efstathiadis, E F; Farley, Francis J M; Fedotovich, G V; Giron, S; Gray, F; Grosse-Perdekamp, M; Grossmann, A; Haeberlen, U; Hare, M; Hazen, E S; Hughes, V W; Iwassaki, M; Jungmann, Klaus; Kawall, D; Kawamura, M; Khazin, B I; Kindem, J; Krienen, F; Kronkvist, I J; Larsen, R; Lee, Y Y; Liu, W; Logashenko, I B; McNabb, R; Meng, W; Mi, J L; Miller, J P; Morse, W M; Onderwater, Gerco; Orlov, Yu F; Pai, C; Polly, C; Pretz, J; Prigl, R; zu Putlitz, Gisbert; Redin, S I; Rind, O; Roberts, B L; Ryskulov, N M; Sanders, R; Sedykh, S N; Semertzidis, Y K; Serednyakov, S I; Shatunov, Yu M; Solodov, E P; Sossong, M; Steinmetz, A; Sulak, Lawrence R; Timmermans, C; Trofimov, A V; Urner, D; Warburton, D; Winn, D; Xu, Q; Yamamoto, A; Zimmerman, D

    1999-01-01

    A new assault on the muon's anomalous magnetic moment has begun with a vigorous effort by the Brookhaven E821 collaboration. The present group has refined the design used in a series of successful CERN experiments in order to lower the systematic uncertainties. Consequently it will be possible to take advantage of the greatly increased muon flux provided for at the AGS. Several novel techniques are employed, of which the most significant is a direct muon injection scheme. Upon reaching the goal of the experiment, comparison with theory will offer sensitive teats of both the electroweak corrections and physics beyond the standard model. At the time of this symposium, data from the first engineering run has been analyzed, yielding a result whose precision and value are comparable to those generated by the last CERN effort. (23 refs).

  10. Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, S., E-mail: ikeda.s.ae@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 216-8502 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Kumaki, M. [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Kanesue, T.; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2016-02-15

    In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL.

  11. Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory

    Science.gov (United States)

    Ikeda, S.; Kumaki, M.; Kanesue, T.; Okamura, M.

    2016-02-01

    In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL.

  12. Splitting of high power, cw proton beams

    CERN Document Server

    Facco, Alberto; Berkovits, Dan; Yamane, Isao

    2007-01-01

    A simple method for splitting a high power, continuous wave (cw) proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line adioactive Ion Beam Facility) design study. The aim of the system is to deliver up to 4 MW of H beam to the main radioactive ion beam production target, and up to 100 kWof proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fractionof the main H- beam, magnetic splitting of H- and H0, and stripping of H0 to H+. The method allowsslow raising and individual fine adjustment of the beam intensity in each branch.

  13. Electron beam induced oxidation of Ni3Al surfaces : electron flux effects

    NARCIS (Netherlands)

    Koch, S.A.; Palasantzas, G.; Agterveld, D.T.L. van; Hosson, J.Th.M. De

    2002-01-01

    Electron beam irradiation of polycrystalline boron doped Ni3Al (at 300 K and under ultrahigh vacuum conditions) induces fast oxidation. The rate and depth of oxidation initially increase with increasing electron flux as indicated by results from Auger electron spectroscopy. Curves of oxygen developm

  14. Experimental reactor regulation: the nuclear safety authority's approach; Le controle des reacteurs experimentaux: la demarche de l'Autorite de surete nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Rieu, J.; Conte, D.; Chevalier, A. [Autorite de Surete Nucleaire, 75 - Paris (France)

    2007-07-15

    French research reactors can be classified into 6 categories: 1) critical scale models (Eole, Minerve and Masurca) whose purpose is the study of the neutron production through the fission reaction; 2) reactors that produce neutron beams (Orphee, and the high flux reactor in Grenoble); 3) reactors devoted to safety studies (Cabri, Phebus) whose purpose is to reproduce accidental configurations of power reactors in reduced scale; 4) experimental reactors (Osiris, Phenix) whose purpose is the carrying-out of irradiation experiments concerning nuclear fuels or structure materials; 5) teaching reactors (Ulysse, Isis); and 6) reactors involved in defense programs (Caliban, Prospero, Apareillage-B). We have to note that 3 research reactors are currently being dismantled: Strasbourg University's reactor, Siloe and Siloette. Research reactors in France are of different types and present different hazards. Even if methods of control become more and more similar to those of power reactors, the French Nuclear Safety Authority (ASN) works to allow the necessary flexibility in the ever changing research reactor field while ensuring a high level of safety. Adopting the internal authorizations for operations of minor safety significance, under certain conditions, is one example of this approach. Another challenge in the coming years for ASN is to monitor the ageing of the French research reactors. This includes periodic safety reviews for each facility every ten years. But ASN has also to regulate the new research reactor projects such as Jules Horowitz Reactor, International Thermonuclear Experimental Reactor, which are about to be built.

  15. Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device

    Science.gov (United States)

    Wei, Zian; Ma, Jinxiu; Li, Yuanrui; Sun, Yan; Jiang, Zhengqi

    2016-11-01

    Plasmas containing ion beams have various applications both in plasma technology and in fundamental research. The ion beam energy and flux are the two factors characterizing the beam properties. Previous studies have not achieved the independent adjustment of these two parameters. In this paper, an ion-beam-background-plasma system was produced with hot-cathode discharge in a double plasma device separated by two adjacent grids, with which the beam energy and flux ratio (the ratio between the beam flux and total ion flux) can be controlled independently. It is shown that the discharge voltage (i.e., voltage across the hot-cathode and anode) and the voltage drop between the two separation grids can be used to effectively control the beam energy while the flux ratio is not affected by these voltages. The flux ratio depends sensitively on hot-filaments heating current whose influence on the beam energy is relatively weak, and thus enabling approximate control of the flux ratio supported by National Natural Science Foundation of China (Nos. 11575183, 11175177)

  16. Observations and diagnostics in high brightness beams

    Energy Technology Data Exchange (ETDEWEB)

    Cianchi, A., E-mail: alessandro.cianchi@roma2.infn.it [University of Rome Tor Vergata and INFN-Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Anania, M.P.; Bisesto, F.; Castellano, M.; Chiadroni, E.; Pompili, R.; Shpakov, V. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy)

    2016-09-01

    The brightness is a figure of merit largely used in the light sources, like FEL (Free Electron Lasers), but it is also fundamental in several other applications, as for instance Compton backscattering sources, beam driven plasma accelerators and THz sources. Advanced diagnostics are essential tools in the development of high brightness beams. 6D electron beam diagnostics will be reviewed with emphasis on emittance measurement.

  17. Influence of high flux hydrogen-plasma exposure on the thermal shock induced crack formation in tungsten

    NARCIS (Netherlands)

    Wirtz, M.; Linke, J.; Pintsuk, G.; Rapp, J.; Wright, G. M.

    2012-01-01

    The influence of high flux hydrogen-plasma on the thermal shock behaviour of tungsten was investigated in a combined experiment using the linear plasma device Pilot-PSI and the electron beam facility JUDITH 1. Tungsten targets were exposed to high flux hydrogen plasma, cyclic thermal shock tests and

  18. High energy laser beam dump

    Science.gov (United States)

    Halpin, John

    2004-09-14

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  19. Fusion reactors-high temperature electrolysis (HTE)

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J.A. (ed.)

    1978-01-01

    Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800/sup 0/C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400/sup 0/C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) ($1000/KW(E) equivalent), the H/sub 2/ energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10/sup 6/ scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen.

  20. High Performance Photocatalytic Oxidation Reactor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Pioneer Astronautics proposes a technology program for the development of an innovative photocatalytic oxidation reactor for the removal and mineralization of...

  1. Neutrino mass hierarchy and precision physics with medium-baseline reactors: Impact of energy-scale and flux-shape uncertainties

    Science.gov (United States)

    Capozzi, F.; Lisi, E.; Marrone, A.

    2015-11-01

    Nuclear reactors provide intense sources of electron antineutrinos, characterized by few-MeV energy E and unoscillated spectral shape Φ (E ). High-statistics observations of reactor neutrino oscillations over medium-baseline distances L ˜O (50 ) km would provide unprecedented opportunities to probe both the long-wavelength mass-mixing parameters (δ m2 and θ12) and the short-wavelength ones (Δ mee 2 and θ13), together with the subtle interference effects associated with the neutrino mass hierarchy (either normal or inverted). In a given experimental setting—here taken as in the JUNO project for definiteness—the achievable hierarchy sensitivity and parameter accuracy depend not only on the accumulated statistics but also on systematic uncertainties, which include (but are not limited to) the mass-mixing priors and the normalizations of signals and backgrounds. We examine, in addition, the effect of introducing smooth deformations of the detector energy scale, E →E'(E ), and of the reactor flux shape, Φ (E )→Φ'(E ), within reasonable error bands inspired by state-of-the-art estimates. It turns out that energy-scale and flux-shape systematics can noticeably affect the performance of a JUNO-like experiment, both on the hierarchy discrimination and on precision oscillation physics. It is shown that a significant reduction of the assumed energy-scale and flux-shape uncertainties (by, say, a factor of 2) would be highly beneficial to the physics program of medium-baseline reactor projects. Our results also shed some light on the role of the inverse-beta decay threshold, of geoneutrino backgrounds, and of matter effects in the analysis of future reactor oscillation data.

  2. Neutron flux mapping of Argonauta reactor in the new configuration of its reactor core; Mapeamento do fluxo de neutrons do reator Argonauta na nova configuracao do seu nucleo

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Maria Ines Silvani; Furieri, Rosanne Cefaly de Aranda Amado [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2000-07-01

    Whenever tasks involving the use of a nuclear reactor are carried out, e.g., radioisotope production, activation analysis, neutrongraphy, etc., it is necessary to know the magnitude of the associate neutron flux. The Argonauta reactor operating in Rio de Janeiro, at Instituto de Engenharia Nuclear - IEN/CNEN, was submitted to some modifications in its core, which made necessary to measure again its new neutronic characteristics, not only in the core itself, but also at the irradiation pads. In this type of research reactor, the neutrons are energetically distributed from values below 1 eV, to values reaching the magnitude of MeV. Therefore, depending on the kind of experiment to be conducted, it may become necessary to know the integrated neutron flux within certain energy ranges. In this work, the neutron flux for thermal and epithermal regions were determined by using the foil activation method. To accomplish this goal, two different techniques were applied. In the first technique {beta}-{gamma} gamma coincidence measurements were performed using a proportional 4{pi}{beta} gaseous detector and a NaI(Tl) scintillation detector, while in the second one, gamma spectroscopy was carried out using Hp-Ge and NaI(Tl) detectors. In both cases, the flux was computed using the FLUXO software, specially developed for this purpose. (author)

  3. Comparison of neutron spectrum measurement methods used for the epithermal beam of the LVR-15 research reactor.

    Science.gov (United States)

    Viererbl, L; Klupák, V; Lahodová, Z; Marek, M

    2012-07-01

    The LVR-15 research reactor's horizontal channel with its epithermal neutron beam is used mainly for boron neutron capture therapy. Neutrons from the reactor core pass through a special filter before the collimator and the beam outlet. Neutron fluence and spectrum are the basic characteristics of an epithermal neutron beam. Three methods used to measure the beam's neutron spectrum are described: the activation method, a Bonner sphere spectrometer with gold activation detectors and a Bonner sphere spectrometer with LiI(Eu) scintillation detector. Examples of results are compared and discussed.

  4. Decision no. 2011-DC-0216 of the French nuclear safety authority from May 5, 2011, ordering the Laue Langevin Institute to proceed to a complementary safety evaluation of its basic nuclear facility (high flux reactor - INB no. 67) in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0216 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant a l'Institut Laue Langevin (ILL) de proceder a une evaluation complementaire de la surete de son installation nucleaire de base (Reacteur a Haut Flux - INB n.67) au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the Laue Langevin Institute, operator of the high flux research reactor (RHF) of Grenoble (France). (J.S.)

  5. GEANT4 used for neutron beam design of a neutron imaging facility at TRIGA reactor in Morocco

    Science.gov (United States)

    Ouardi, A.; Machmach, A.; Alami, R.; Bensitel, A.; Hommada, A.

    2011-09-01

    Neutron imaging has a broad scope of applications and has played a pivotal role in visualizing and quantifying hydrogenous masses in metallic matrices. The field continues to expand into new applications with the installation of new neutron imaging facilities. In this scope, a neutron imaging facility for computed tomography and real-time neutron radiography is currently being developed around 2.0MW TRIGA MARK-II reactor at Maamora Nuclear Research Center in Morocco (Reuscher et al., 1990 [1]; de Menezes et al., 2003 [2]; Deinert et al., 2005 [3]). The neutron imaging facility consists of neutron collimator, real-time neutron imaging system and imaging process systems. In order to reduce the gamma-ray content in the neutron beam, the tangential channel was selected. For power of 250 kW, the corresponding thermal neutron flux measured at the inlet of the tangential channel is around 3×10 11 ncm 2/s. This facility will be based on a conical neutron collimator with two circular diaphragms with diameters of 4 and 2 cm corresponding to L/D-ratio of 165 and 325, respectively. These diaphragms' sizes allow reaching a compromise between good flux and efficient L/D-ratio. Convergent-divergent collimator geometry has been adopted. The beam line consists of a gamma filter, fast neutrons filter, neutron moderator, neutron and gamma shutters, biological shielding around the collimator and several stages of neutron collimator. Monte Carlo calculations by a fully 3D numerical code GEANT4 were used to design the neutron beam line ( http://www.info.cern.ch/asd/geant4/geant4.html[4]). To enhance the neutron thermal beam in terms of quality, several materials, mainly bismuth (Bi) and sapphire (Al 2O 3) were examined as gamma and neutron filters respectively. The GEANT4 simulations showed that the gamma and epithermal and fast neutron could be filtered using the bismuth (Bi) and sapphire (Al 2O 3) filters, respectively. To get a good cadmium ratio, GEANT 4 simulations were used to

  6. Critical Heat Flux Phenomena at HighPressure & Low Mass Fluxes: NEUP Final Report Part I: Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States); Wu, Qiao [Oregon State Univ., Corvallis, OR (United States)

    2015-04-30

    This report is a preliminary document presenting an overview of the Critical Heat Flux (CHF) phenomenon, the High Pressure Critical Heat Flux facility (HPCHF), preliminary CHF data acquired, and the future direction of the research. The HPCHF facility has been designed and built to study CHF at high pressure and low mass flux ranges in a rod bundle prototypical of conceptual Small Modular Reactor (SMR) designs. The rod bundle is comprised of four electrically heated rods in a 2x2 square rod bundle with a prototypic chopped-cosine axial power profile and equipped with thermocouples at various axial and circumferential positions embedded in each rod for CHF detection. Experimental test parameters for CHF detection range from pressures of ~80 – 160 bar, mass fluxes of ~400 – 1500 kg/m2s, and inlet water subcooling from ~30 – 70°C. The preliminary data base established will be further extended in the future along with comparisons to existing CHF correlations, models, etc. whose application ranges may be applicable to the conditions of SMRs.

  7. Critical heat flux in natural convection cooled TRIGA reactors with hexagonal bundle

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Avery, M.; De Angelis, M.; Anderson, M.; Corradini, M. [Univ. of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States); Feldman, E. E.; Dunn, F. E.; Matos, J. E. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2012-07-01

    A three-rod bundle Critical Heat Flux (CHF) study at low flow, low pressure, and natural convection condition has been conducted, simulating TRIGA reactors with the hexagonally configured core. The test section is a custom-made trefoil shape tube with three identical fuel pin heater rods located symmetrically inside. The full scale fuel rod is electrically heated with a chopped-cosine axial power profile. CHF experiments were carried out with the following conditions: inlet water subcooling from 30 K to 95 K; pressure from 110 kPa to 230 kPa; mass flux up to 150 kg/m{sup 2}s. About 50 CHF data points were collected and compared with a few existing CHF correlations whose application ranges are close to the testing conditions. Some tests were performed with the forced convection to identify the potential difference between the CHF under the natural convection and forced convection. The relevance of the CHF to test parameters is investigated. (authors)

  8. High-energy fluxes of atmospheric neutrinos

    CERN Document Server

    Sinegovskaya, T S; Sinegovsky, S I

    2013-01-01

    High-energy neutrinos from decays of mesons, produced in collisions of cosmic ray particles with air nuclei, form unavoidable background for detection of astrophysical neutrinos. More precise calculations of the high-energy neutrino spectrum are required since measurements in the IceCube experiment reach the intriguing energy region where a contribution of the prompt neutrinos and/or astrophysical ones should be discovered. Basing on the referent hadronic models QGSJET II-03, SIBYLL 2.1, we calculate high-energy spectra, both of the muon and electron atmospheric neutrinos, averaged over zenith-angles. The computation is made using three parameterizations of cosmic ray spectra which include the knee region. All calculations are compared with the atmospheric neutrino measurements by Frejus and IceCube. The prompt neutrino flux predictions obtained with thequark-gluon string model (QGSM) for the charm production by Kaidalov & Piskunova do not contradict to the IceCube measurements and upper limit on the astr...

  9. Improvements in electron beam monitoring and heat flux flatness at the JUDITH 2-facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas, E-mail: weber.th@gmx.de [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Bürger, Andreas; Dominiczak, Karsten; Pintsuk, Gerald [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Banetta, Stefano; Bellin, Boris [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Mitteau, Raphael; Eaton, Russell [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • Monitoring of the much faster electron beam motion by IR camera through a synchronized frame triggering. • Estimation of the heat flux generated by electron beam guns based on calorimetry and FEM simulations. • Consideration of the inclined electron beam loading of rectangular-shaped objects. - Abstract: Three beryllium-armoured small-scale mock-ups and one semi-prototype for the ITER first wall were tested by the electron beam facility JUDITH 2 at Forschungszentrum Jülich. Both testing campaigns with cyclic loads up to 2.5 MW/m{sup 2} are carried out in compliance with the extensive quality and management specifications of ITER Organization (IO) and Fusion for Energy (F4E). Several dedicated calibration experiments were performed before the actual testing in order to fulfil the testing requirements and tolerances. These quality requests have been the motivation for several experimental setup improvements. The most relevant results of these activities, being the electron beam monitoring and the heat flux flatness verification, will be presented.

  10. Prototype detectors for measuring poloidal magnetic flux with an ion beam probe

    Science.gov (United States)

    Crowley, T. P.; Demers, D. R.; Fimognari, P. J.; Kile, T. D.

    2016-10-01

    Development of a detector and associated techniques to determine the localized magnetic flux, and therefore poloidal magnetic field and current density profile, in an axisymmetric plasma device is underway. This will provide invaluable information on equilibrium, transport and stability studies of fusion plasmas. A singly charged ion beam is injected into the plasma and the detector located outside the plasma measures doubly charged ions created within a cm-scale sample volume of the plasma. The ions are split into beamlets at the detector. The toroidal angle of the beam's velocity is determined by measuring the fraction of the beamlets that strike detection plates and wires. The corresponding angle is used to determine the beam's toroidal velocity component. Due to canonical momentum conservation, that toroidal velocity is proportional to the poloidal flux function in the sample volume. We have built several prototype detectors and measured the angle of a 45 keV potassium ion beam. The cross-section of the plasma that can be studied will be maximized and system costs will be minimized if the detector has a direct view of the plasma and is operated close to it. However, this subjects the detector to noise due to UV-induced photoelectrons and plasma particles. We have conducted experiments that demonstrate reductions of this noise to facilitate measurement of ion beam signals. Experimental and design results will be presented. This work is supported by US DoE Award No. DE-SC0006077.

  11. Achromatic beam transport of High Current Injector

    Science.gov (United States)

    Kumar, Sarvesh; Mandal, A.

    2016-02-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time.

  12. Time-resolved scanning Kerr microscopy of flux beam formation in hard disk write heads

    Science.gov (United States)

    Valkass, Robert A. J.; Spicer, Timothy M.; Burgos Parra, Erick; Hicken, Robert J.; Bashir, Muhammad A.; Gubbins, Mark A.; Czoschke, Peter J.; Lopusnik, Radek

    2016-06-01

    To meet growing data storage needs, the density of data stored on hard disk drives must increase. In pursuit of this aim, the magnetodynamics of the hard disk write head must be characterized and understood, particularly the process of "flux beaming." In this study, seven different configurations of perpendicular magnetic recording (PMR) write heads were imaged using time-resolved scanning Kerr microscopy, revealing their detailed dynamic magnetic state during the write process. It was found that the precise position and number of driving coils can significantly alter the formation of flux beams during the write process. These results are applicable to the design and understanding of current PMR and next-generation heat-assisted magnetic recording devices, as well as being relevant to other magnetic devices.

  13. High heat flux engineering in solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.

    1993-07-01

    Solar thermal energy systems can produce heat fluxes in excess of 10,000 kW/m{sup 2}. This paper provides an introduction to the solar concentrators that produce high heat flux, the receivers that convert the flux into usable thermal energy, and the instrumentation systems used to measure flux in the solar environment. References are incorporated to direct the reader to detailed technical information.

  14. Influence of MeV H+ ion beam flux on cross-linking and blister formation in PMMA resist

    Directory of Open Access Journals (Sweden)

    Somrit Unai

    2012-02-01

    Full Text Available In soft lithography, a pattern is produced in poly(dimethylsiloxane (PDMS elastomer by casting from a master mould. The mould can be made of poly(methylmethacrylate (PMMA resist by utilising either its positive or negative tone induced by an ion beam. Here we have investigated the irradiation conditions for achieving complete cross-linking and absence of blister formation in PMMA so that its negative characteristic can be used in making master moulds. PMMA thin films approximately 9 µm thick on Si were deposited by spin coating. The 2-MeV H+ ion beam was generated using a 1.7-MV tandem Tandetron accelerator. The beam was collimated to a 500×500 µm2 cross section using programmable proximity aperture lithography system with a real-time ion beam monitoring system and a high precision current integrator. The irradiated areas were investigated by a standard scanning electron microscope and a profilometer. It was found that both the ion beam flux and the stopping power of the ions in the polymer have a critical influence on the blister formation.

  15. Anisotropic flux pinning in high Tc superconductors

    Science.gov (United States)

    Koleśnik, S.; Igalson, J.; Skośkiewicz, T.; Szymczak, R.; Baran, M.; Pytel, K.; Pytel, B.

    1995-02-01

    In this paper we present a comparison of the results of FC magnetization measurements on several PbSr(Y,Ca)CuO crystals representing various levels of flux pinning. The pinning centers in our crystals have been set up during the crystal growth process or introduced by neutron irradiation. Some possible explanations of the observed effects, including surface barrier, flux-center distribution and sample-shape effects, are discussed.

  16. Effect of Gamma-Ray Beaming on the Fluxes of Gamma-Ray Pulsars

    Institute of Scientific and Technical Information of China (English)

    JIANG Ze-Jun; ZHANG Li

    2005-01-01

    @@ We study the effect ofγ-ray beaming on γ-ray emission of the pulsars in a self-sustained outer gap model. In this model, averaged γ-ray flux is a function of period, magnetic field, magnetic inclination angle and solid angle of γ-ray beaming for a γ-ray pulsar. We generate a sample of γ-ray pulsars with their ages less than 106 years by using the Monte Carlo method, and then study the γ-ray beaming effect. The comparison of distributions of periods, magnetic fields, distances, γ-ray energy fluxes and period derivatives of the simulated γ-ray pulsars with those of observed γ-ray pulsars by the detector EGRET shows that γ-ray beaming has an important role on the detection ofγ-ray pulsars. Furthermore, possible γ-ray pulsars observed by the detector GLAST are predicted.PACS: 97. 60. Gb, 95. 85. Pw, 97. 10. Yp

  17. High spin isomer beam line at RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, T.; Ideguchi, E.; Wu, H.Y. [Institute of Physical and Chemical Research, Saitama (Japan)] [and others

    1996-12-31

    Nuclear high spin states have been the subject of extensive experimental and theoretical studies. For the production of high spin states, fusion reactions are usually used. The orbital angular momentum brought in the reaction is changed into the nuclear spin of the compound nucleus. However, the maximum induced angular momentum is limited in this mechanism by the maximum impact parameter of the fusion reaction and by the competition with fission reactions. It is, therefore, difficult to populate very high spin states, and as a result, large {gamma}-detector arrays have been developed in order to detect subtle signals from such very high spin states. The use of high spin isomers in the fusion reactions can break this limitation because the high spin isomers have their intrinsic angular momentum, which can bring the additional angular momentum without increasing the excitation energy. There are two methods to use the high spin isomers for secondary reactions: the use of the high spin isomers as a target and that as a beam. A high spin isomer target has already been developed and used for several experiments. But this method has an inevitable shortcoming that only {open_quotes}long-lived{close_quotes} isomers can be used for a target: {sup 178}Hf{sup m2} (16{sup +}) with a half-life of 31 years in the present case. By developing a high spin isomer beam, the authors can utilize various short-lived isomers with a short half-life around 1 {mu}s. The high spin isomer beam line of RIKEN Accelerator Facility is a unique apparatus in the world which provides a high spin isomer as a secondary beam. The combination of fusion-evaporation reaction and inverse kinematics are used to produce high spin isomer beams; in particular, the adoption of `inverse kinematics` is essential to use short-lived isomers as a beam.

  18. Neutron dosimetry and radiation damage calculations for HFBR

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Ratner, R.T. [Pacific Northwest National Lab., TN (United States)

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  19. Core Physics of Pebble Bed High Temperature Nuclear Reactors

    NARCIS (Netherlands)

    Auwerda, G.J.

    2014-01-01

    To more accurately predict the temperature distribution inside the reactor core of pebble bed type high temperature reactors, in this thesis we investigated the stochastic properties of randomly stacked beds and the effects of the non-homogeneity of these beds on the neutronics and thermal-hydraulic

  20. Tritium permeation behavior through pyrolytic carbon in tritium production using high-temperature gas-cooled reactor for fusion reactors

    Directory of Open Access Journals (Sweden)

    H. Ushida

    2016-12-01

    Full Text Available Under tritium production method using a high-temperature gas-cooled reactor loaded Li compound, Li compound has to be coated by ceramic materials in order to suppress the spreading of tritium to the whole reactor. Pyrolytic carbon (PyC is a candidate of the coating material because of its high resistance for gas permeation. In this study, hydrogen permeation experiments using a PyC-coated isotropic graphite tube were conducted and hydrogen diffusivity, solubility and permeability were evaluated. Tritium permeation behavior through PyC-coated Li compound particles was simulated by using obtained data. Hydrogen permeation flux through PyC in a steady state is proportional to the hydrogen pressure and is larger than that through Al2O3 which is also candidate coating material. However, total tritium leak within the supposed reactor operation period through the PyC-coated Li compound particles is lower than that through the Al2O3-coated ones because the hydrogen absorption capacity in PyC is considerably larger than that in Al2O3.

  1. The High Energy Neutrino Nuisance at a Medium Baseline Reactor Experiment

    CERN Document Server

    Ciuffoli, Emilio; Zhang, Xinmin

    2012-01-01

    10 years from now medium baseline reactor experiments will attempt to determine the neutrino mass hierarchy from the differences (RL+PV) between the extrema of the Fourier transformed neutrino spectra. Recently Qian et al. have claimed that this goal may be impeded by the strong dependence of the difference parameter RL+PV on the reactor neutrino flux and on slight variations of Delta M^2_32. We demonstrate that this effect results from a spurious dependence of the difference parameter on the very high energy (8+ MeV) tail of the reactor neutrino spectrum. This dependence is spurious because the high energy tail depends upon decays of exotic isotopes and is insensitive to the mass hierarchy. An energy-dependent weight in the Fourier transform not only eliminates this spurious dependence but in fact increases the chance of correctly determining the hierarchy.

  2. Low Energy High Brilliance Beam Characterization

    CERN Document Server

    Bähr, J

    2005-01-01

    Low energy high brilliance beam characterization plays an important role for electron sources and injectors of Free Electron Lasers (FELs) and electron linear accelerators as for example the future ILC project. The topic is discussed basing on solutions of the PITZ facility (PhotoInjector Test facility Zeuthen) which are compared with methods applied at other facilities. The properties of an electron beam produced at a laser-driven rf-gun is mainly influenced also by characteristics of the laser beam and the electron gun itself. Therefore aspects of diagnostics will be also discussed for the laser, laser beam line and gun as well. The main properties of the electron beam are transverse and longitudinal phase space and charge as well. The measurement of transverse beam size and position, transverse emittance, charge, beam current, and longitudinal phase space will be discussed in detail. The measurements of the transverse emittance at PITZ is based on a single slit method. The measurement of the longitudinal p...

  3. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  4. High Resolution Muon Computed Tomography at Neutrino Beam Facilities

    CERN Document Server

    Suerfu, Burkhant

    2015-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pio...

  5. Evaluation of ultra-fine grained tungsten under transient high heat flux by high-intensity pulsed ion beam%强流脉冲离子束作用下超细晶钨的抗瞬态热负荷性能评价

    Institute of Scientific and Technical Information of China (English)

    谈军; 周张健; 朱小鹏; 郭双全; 屈丹丹; 雷明凯; 葛昌纯

    2012-01-01

    采用高能球磨和放电等离子体烧结技术制备纯钨、氧化物弥散强化钨和碳化物弥散强化钨.为了评价钨在瞬态热冲击下的性能,采用强流脉冲离子束,在热流密度高达160 MW/(m2·s-1/2)的条件下对4种不同晶粒尺寸的钨进行抗热冲击试验.与商品钨相比,弥散强化钨在瞬态高热流作用下显现出不同的行为.氧化物弥散强化钨显现出较差的抗热冲击性能,这主要是由于低熔点的第二相Ti和Y2O3的引入,从而使得钨的表面发生熔融、起泡和开裂.而碳化物弥散强化钨合金则显现出较好的抗热冲击性能.%Pure tungsten,oxide dispersion strengthened tungsten and carbide dispersion strengthened tungsten were fabricated by high-energy ball milling and spark plasma sintering process.In order to evaluate the properties of the tungsten alloys under transient high heat flues,four tungsten samples with different grain sizes were tested by high-intensity pulsed ion beam with a heat flux as high as 160 MW/(m2·s-1/2).Compared with the commercial tungsten,the surface modification of the oxide dispersion strengthened tungsten by high-intensity pulsed ion beam is completely different.The oxide dispersion strengthened tungsten shows inferior thermal shock response due to the low melting point second phase of Ti and Y2O3,which results in the surface melting,boiling bubbles and cracking.While the carbide dispersion strengthened tungsten shows better thermal shock response than the commercial tungsten.

  6. Modeling and design of a new core-moderator assembly and neutron beam ports for the Penn State Breazeale Nuclear Reactor (PSBR)

    Science.gov (United States)

    Ucar, Dundar

    modeling, the amount of heat generated by the fuel is assumed to be transferred totally into the coolant. Therefore, the surface heat flux is applied to the fuel cladding outer surface by considering the depleted fuel composition of each individual fuel rod under a reference core loading condition defined as; 53H at 1MW full power. In order to model the entire PSBR reactor, fine mesh discretization was achieved with 22 millions structured and unstructured computational meshes. The conductive heat transfer inside the fuel rods was ignored in order to decrease the computational mesh requirement. Since the PSBR core operates in the subcooled nucleate boiling region, the CFD simulation of new PSBR design was completed utilizing an Eulerian-Eulerian multiphase flow formulation and RPI wall boiling model. The simulation results showed that the new moderator tank geometry results in secondary flow entering into the core due to decrease in the cross-flow area. Notably, the radial flow improves the local heat transfer conditions by providing radial-mixing in the core. Bubble nucleation occurs on the heated fuel rods but bubbles are collapsing in the subcooled fluid. Furthermore, the bulk fluid properties are not affected by the bubble formation. Yet, subcooled boiling enhances the heat transfer on the fuel rods. Five neutron beam ports are designed for the new reactor. The geometrical configuration, filter and collimator system designs of each neutron beam ports are selected based on the requirements of the experimental facilities. A cold neutron beam port which utilizes cold neutrons from three curved guide tubes is considered. Therefore, there will be seven neutron beams available in the new facility. The neutronic analyses of the new beam port designs were achieved by using MCNP5 code and Burned Coupled Simulation Tool for the PSBR. The MCNP simulation results showed that thermal neutron flux was increased by a factor of minimum 1.23 times and maximum 2.68 times in the new beam

  7. Final safeguards analysis, high temperature lattice test reactor. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Hanthorn, H.E.; Brown, W.W.; Clark, R.G.; Heineman, R.E.; Humes, R.M.

    1966-01-01

    The PMACS `reactor-normal` signal signifies that important process variables do not exceed their set points, that various interlocks are properly set, that functional tests of the computer operation are satisfactory, and that the reactor flux level and period derived from two additional, independent, and dissimilar channels are within set limits. This safety circuit combines the features of redundancy, dissimilar components, and frequent testing which are required for best reliability. The experimental equipment auxiliary to the reactor includes two oscillator mechanisms, one to move the test cell or the adjoining cell into and out of position, the other to move small specimens in the test cell or adjoining cells. They have cooling chambers for the removal of specimens from the test cell without the necessity of cooling the reactor. A neutron chopper and time-of-flight spectrometer are provided; the neutron detectors, at the end of a 25-meter flight tube, are in an adjoining small building. Test cores may be assembled on a core dolly have a load capacity of 14,000 lb. Two wire traverse mechanisms are provided for measurements of flux distribution.

  8. Flux pinning characteristics and irreversibility line in high temperature superconductors

    Science.gov (United States)

    Matsushita, T.; Ihara, N.; Kiuchi, M.

    1995-01-01

    The flux pinning properties in high temperature superconductors are strongly influenced by thermally activated flux motion. The scaling relation of the pinning force density and the irreversibility line in various high temperature superconductors are numerically analyzed in terms of the flux creep model. The effect of two factors, i.e., the flux pinning strength and the dimensionality of the material, on these properties are investigated. It is speculated that the irreversibility line in Bi-2212 superconductors is one order of magnitude smaller than that in Y-123, even if the flux pinning strength in Bi-2212 is improved up to the level of Y-123. It is concluded that these two factors are equally important in determination of the flux pinning characteristics at high temperatures.

  9. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  10. High-temperature reactor developments in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Schram, R.P.C.; Cordfunke, E.H.P.; Heek, A.I. van

    1996-01-01

    The high-temperature reactor development in the Netherland is embedded in the WHITE reactor program, in which several Dutch research institutes and engineering companies participate. The activities within the WHITE program are focused on the development of a small scale HTS for combined heat and power generation. In 1995, design choices for a pebble bed reactor were made at ECN. The first concept HTR will gave a closed cycle helium turbine and a power level of 40 MWth. It is intended to make the market introduction of a commercially competitive HTR feasible. The design will be an optimization of the Peu-a-Peu (PAP) concept of KFA Juelich. Computer codes necessary for the evaluation of reactor physics aspects of this reactor are developed in cooperation with international partners. An evaluation of a 20 MWth PAP concept showed that the maximum fuel termmperature after depressurization does not exceed 1300 C. (orig.).

  11. Holographic generation of highly twisted electron beams

    CERN Document Server

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano; Karimi, Ebrahim; Boyd, Robert W

    2014-01-01

    Free electrons can possess an intrinsic orbital angular momentum, similar to those in an electron cloud, upon free-space propagation. The wavefront corresponding to the electron's wavefunction forms a helical structure with a number of twists given by the \\emph{angular speed}. Beams with a high number of twists are of particular interest because they carry a high magnetic moment about the propagation axis. Among several different techniques, electron holography seems to be a promising approach to shape a \\emph{conventional} electron beam into a helical form with large values of angular momentum. Here, we propose and manufacture a nano-fabricated phase hologram for generating a beam of this kind with an orbital angular momentum up to 200$\\hbar$. Based on a novel technique the value of orbital angular momentum of the generated beam are measured, then compared with simulations. Our work, apart from the technological achievements, may lead to a way of generating electron beams with a high quanta of magnetic momen...

  12. Development of high quality electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kando, Masaki; Dewa, Hideki; Kotaki, Hideyuki; Kondo, Shuji; Hosokai, Tomonao; Kanazawa, Shuhei; Yokoyama, Takashi; Nakajima, Kazuhisa [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Institute, Kizu, Kyoto (Japan)

    2000-03-01

    A design study on a high quality electron beam accelerator is described. This accelerator will be used for second generation experiments of laser wakefield acceleration, short x-ray generation, and other experiments of interaction of high intensity laser with an electron beam at Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Institute. The system consists of a photocathode rf gun and a race-track microtron (RTM). To combine these two components, injection and extraction beamlines are designed employing transfer matrix and compute codes. A present status of the accelerator system is also presented. (author)

  13. Performance predictions for a laser intensified thermal beam for use in high resolution Focused Ion Beam instruments

    CERN Document Server

    Wouters, S H W; Notermans, R P M J W; Debernardi, N; Mutsaers, P H A; Luiten, O J; Vredenbregt, E J D

    2014-01-01

    Photo-ionization of a laser-cooled and compressed atomic beam from a high-flux thermal source can be used to create a high-brightness ion beam for use in Focus Ion Beam (FIB) instruments. Here we show using calculations and Doppler cooling simulations that an atomic rubidium beam with a brightness of $2.1 \\times 10^7 A/(m^2\\,sr\\,eV)$ at a current of 1 nA can be created using a compact 5 cm long 2D magneto-optical compressor which is more than an order of magnitude better than the current state of the art Liquid Metal Ion Source.

  14. Periods of High Intensity Solar Proton Flux

    Science.gov (United States)

    Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adams, James H.; Dietrich, William F.

    2012-01-01

    Analysis is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.

  15. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marland, S. [Tennessee Univ., Knoxville, TN (United States)

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stress calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.

  16. BEAM COUPLING PHENOMENA IN FAST KICKER SYSTEMS.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,W.; AHRENS,L.A.; GLENN,J.; SANDBERG,J.; TSOUPAS,N.

    2001-06-18

    Beam coupling phenomena have been observed in most fast kicker systems through out Brookhaven Collider-Accelerator complex. With ever-higher beam intensity, the signature of the beam becomes increasingly recognizable. The beam coupling at high intensity produced additional heat dissipation in high voltage modulator, thyratron grids, thyratron driver circuit sufficient to damage some components, and causes trigger instability. In this paper, we will present our observations, basic coupling mode analysis, relevance to the magnet structures, issues related to the existing high voltage modulators, and considerations of the future design of the fast kicker systems.

  17. FASTER test reactor preconceptual design report summary

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, Steven [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-29

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  18. FASTER Test Reactor Preconceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-31

    The FASTER test reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  19. Charged particle's flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam

    CERN Document Server

    Agodi, C; Bellini, F; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Di Domenico, A; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Muraro, S; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Vitale, E; Voena, C

    2012-01-01

    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements done with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a Poly-methyl methacrylate target. Charged secondary particles, produced at 90$\\degree$ with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight has been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time of flight in...

  20. High energy electron beams for ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E. [Sandia National Labs., Albuquerque, NM (United States); Clifford, J.R. [Titan Corp., Albuquerque, NM (United States)

    1994-12-31

    Joining of structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for high temperature joining. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the ceramic. We have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 MPa have been measured. This strength is comparable to that reported in the literature for bonding silicon nitride to molybdenum with copper-silver-titanium braze, but weaker than that reported for Si{sub 3}N{sub 4}-Si{sub 3}N{sub 4} with gold-nickel braze. The bonding mechanism appears to be a thin silicide layer.

  1. Thermal evaluation of uranium silicide miniplates irradiated at high heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Post Guillen, Donna, E-mail: Donna.Guillen@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3710 (United States)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Best estimate of thermal conditions during irradiation experiment. Black-Right-Pointing-Pointer Thermal evaluation of 25% enriched, high-density U{sub 3}Si{sub 2}/Al dispersion fuel miniplates. Black-Right-Pointing-Pointer Predictions of heat flux and temperature for as-run, high heat flux conditions. Black-Right-Pointing-Pointer Finite-element analysis uses measured values of hydroxide layer thickness. - Abstract: The Gas Test Loop (GTL)-1 irradiation experiment was conducted in the Advanced Test Reactor (ATR) to assess corrosion performance of proposed booster fuel at heat flux levels {approx}30% above the design operating condition. Sixteen miniplates fabricated from 25% enriched, high-density (4.8 g U/cm{sup 3}) U{sub 3}Si{sub 2}/Al dispersion fuel with 6061 aluminum cladding were subjected to peak beginning of cycle (BOC) heat fluxes ranging from 411 to 593 W/cm{sup 2}. No adverse impacts to the miniplates were observed at these high heat flux levels. A detailed finite element model was constructed to calculate temperatures and heat flux for an as-run cycle average effective ATR south lobe power of 25.4 MW(t). Miniplate heat flux levels and fuel, cladding, hydroxide, and coolant-hydroxide interface temperatures were calculated using the average hydroxide thickness on each miniplate measured during post-irradiation examination. The purpose of this study was to obtain a best estimate of the as-run experiment temperatures to aid in establishing acceptable heat flux levels and designing fuel qualification experiments for this fuel type.

  2. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  3. The Jules Horowitz Reactor - A new High Performance European Material Testing Reactor open to International Users Present Status and Objectives

    Energy Technology Data Exchange (ETDEWEB)

    Iracane, Daniel; Bignan, Gilles [CEA Atomic Energy Commission Saclay Batiment 121- 91191 Gif Sur Yvette (France); Lindbaeck, Jan-Erik; Blomgren, Jan [VATTENFALL AB Nuclear Power Jaemtlandsgatan 99 SE-16287 Stockholm (Sweden)

    2010-07-01

    The development of sustainable nuclear energy requires R and D on fuel and material behaviour under irradiation with a high level of performance in order to meet the needs and challenges for the benefit of industry, research and public bodies. These stakes require a sustainable and secured access to an up-to-date high performance Material Testing Reactor. Following a broad survey within the European Research Area, the international community agreed that the need for Material Test Reactors in support of nuclear power plant safety and operation will continue in the context of sustainable nuclear energy. The Jules Horowitz Reactor project (JHR) copes with this context. JHR is designed as a user facility addressing the needs of the international community. This means: - flexibility with irradiation loops able to reproduce a large variation in operation conditions of different power reactor technologies, - high flux capacity to address Generations II, III, and IV needs. JHR is designed, built and operated as an international user facility because: - Given the maturity and globalization of the industry, domestic tools have no more the required level of economic and technical efficiency. Meanwhile, countries with nuclear energy need an access to high performance irradiation experimental capabilities to support technical skill and guarantee the competitiveness and safety of nuclear energy. - Many research items related to safety or public policy (waste management, etc.) require international cooperation to share costs and benefits of resulting consensus. JHR design is optimised for offering high performance material and fuel irradiation capability for the coming decades. This project is driven and funded by an international consortium gathering vendors, utilities and public stakeholders. This consortium has been set up in March 2007 when the construction began. The construction is in progress and the start of operation is scheduled for 2014. The JHR is a research

  4. Total absorption spectroscopy study of $^{92}$Rb decay: a major contributor to reactor antineutrino flux

    CERN Document Server

    Zakari-Issoufou, A -A; Porta, A; Algora, A; Tain, J L; Valencia, E; Rice, S; Bui, V M; Cormon, S; Estienne, M; Agramunt, J; Äystö, J; Bowry, M; Briz, J A; Caballero-Folch, R; Cano-Ott, D; Cucoanes, A; Elomaa, V -V; Eronen, T; Estévez, E; Farrelly, G F; Garcia, A R; Gelletly, W; Gomez-Hornillos, M B; Gorlychev, V; Hakala, J; Jokinen, A; Jordan, M D; Kankainen, A; Karvonen, P; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Molina, F; Moore, I; Perez, A; Podolyák, Zs; Penttilä, H; Regan, P H; Reponen, M; Rissanen, J; Rubio, B; Shiba, T; Sonzogni, A A; Weber, C

    2015-01-01

    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. $^{92}$Rb makes the dominant contribution to the reactor spectrum in the 5-8 MeV range but its decay properties are in question. We have studied $^{92}$Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.

  5. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  6. Scientists at Brookhaven contribute to the development of a better electron accelerator

    CERN Multimedia

    2004-01-01

    Scientists working at Brookhaven have developed a compact linear accelerator called STELLA (Staged Electron Laser Acceleration). Highly efficient, it may help electron accelerators become practical tools for applications in industry and medicine, such as radiation therapy (1 page)

  7. BROOKHAVEN NATIONAL LABORATORY WILDLIFE MANAGEMENT PLAN.

    Energy Technology Data Exchange (ETDEWEB)

    NAIDU,J.R.

    2002-10-22

    The purpose of the Wildlife Management Plan (WMP) is to promote stewardship of the natural resources found at the Brookhaven National Laboratory (BNL), and to integrate their protection with pursuit of the Laboratory's mission.

  8. Charged particle's flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam.

    Science.gov (United States)

    Agodi, C; Battistoni, G; Bellini, F; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Domenico, A Di; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Muraro, S; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Vitale, E; Voena, C

    2012-09-21

    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose-monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose-monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements carried out with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a poly-methyl methacrylate target. Charged secondary particles, produced at 90° with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight have been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time-of-flight information, and their emission region has been reconstructed backtracking from the drift chamber to the target. Moreover, a position scan of the target indicates that the reconstructed emission region follows the movement of the expected Bragg peak position. Exploiting the reconstruction of the emission region, an accuracy on the Bragg peak determination in the submillimeter range has been obtained. The measured differential production rate for protons produced with E(Prod)(kin) > 83 MeV and emitted at 90° with respect to the beam line is dN(P)/(dN(C)dΩ) (E(Prod)(kin) > 83 MeV, θ = 90°) = (2.69 ± 0.08(stat) ± 0.12(sys)) × 10⁻⁴ sr⁻¹.

  9. Sensitivity of Displaced-Beam Scintillometer Measurements of Area-Average Heat Fluxes to Uncertainties in Topographic Heights

    CERN Document Server

    Gruber, Matthew; Hartogensis, Oscar

    2014-01-01

    Displaced-beam scintillometer measurements of the turbulence inner-scale length $l_o$ and refractive index structure function $C_n^2$ resolve area-average turbulent fluxes of heat and momentum through the Monin-Obukhov similarity equations. Sensitivity studies have been produced for the use of displaced-beam scintillometers over flat terrain. Many real field sites feature variable topography. We develop here an analysis of the sensitivity of displaced-beam scintillometer derived sensible heat fluxes to uncertainties in spacially distributed topographic measurements. Sensitivity is shown to be concentrated in areas near the center of the beam and where the underlying topography is closest to the beam height. Uncertainty may be decreased by taking precise topographic measurements in these areas.

  10. Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel vortex beam of progressive waves.

    Science.gov (United States)

    Mitri, F G

    2016-09-01

    Energy and angular momentum flux density characteristics of an optical nondiffracting nonparaxial vector Bessel vortex beam of fractional order are examined based on the dual-field method for the generation of symmetric electric and magnetic fields. Should some conditions determined by the polarization state, the half-cone angle as well as the beam-order (or topological charge) be met, the axial energy and angular momentum flux densities vanish (representing Poynting singularities), before they become negative. These negative counterintuitive properties suggest retrograde (negative) propagation as well as a rotation reversal of the angular momentum with respect to the beam handedness. These characteristics of nondiffracting nonparaxial Bessel fractional vortex beams of progressive waves open new capabilities in optical tractor beam tweezers, optical spanners, invisibility cloaks, optically engineered metamaterials, and other applications.

  11. Monte Carlo Calculation of Core Reactivity and Fluxes for the Development of the BNCT Neutron Source at the Kyiv Research Reactor

    Science.gov (United States)

    Gritzay, Olena; Kalchenko, Oleksandr; Klimova, Nataliya; Razbudey, Volodymyr; Sanzhur, Andriy; Binney, Stephen

    2005-05-01

    The presented results show our consecutive steps in developing a neutron source with parameters required by Boron Neutron Capture Therapy (BNCT) at the Kyiv Research Reactor (KRR). The main goal of this work was to analyze the influence of installation of different types of uranium converters close to the reactor core on neutron beam characteristics and on level of reactor safety. The general Monte Carlo radiation transport code MCNP, version 4B, has been used for these calculations.

  12. Proliferation resistance assessment of high temperature gas reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chikamatsu N, M. A. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Santa Fe, Av. Carlos Lazo No. 100, Santa Fe, 01389 Mexico D. F. (Mexico); Puente E, F., E-mail: midori.chika@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The Generation IV International Forum has established different objectives for the new generation of reactors to accomplish. These objectives are focused on sustain ability, safety, economics and proliferation resistance. This paper is focused on how the proliferation resistance of the High Temperature Gas Reactors (HTGR) is assessed and the advantages that these reactors present currently. In this paper, the focus will be on explaining why such reactors, HTGR, can achieve the goals established by the GIF and can present a viable option in terms of proliferation resistance, which is an issue of great importance in the field of nuclear energy generation. The reason why the HTGR are being targeted in this writing is that these reactors are versatile, and present different options from modular reactors to reactors with the same size as the ones that are being operated today. Besides their versatility, the HTGR has designed features that might improve on the overall sustain ability of the nuclear reactors. This is because the type of safety features and materials that are used open up options for industrial processes to be carried out; cogeneration for instance. There is a small section that mentions how HTGR s are being developed in the international sector in order to present the current world view in this type of technology and the further developments that are being sought. For the proliferation resistance section, the focus is on both the intrinsic and the extrinsic features of the nuclear systems. The paper presents a comparison between the features of Light Water Reactors (LWR) and the HTGR in order to be able to properly compare the most used technology today and one that is gaining international interest. (Author)

  13. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Karsten M. [Yale Univ., New Haven, CT (United States)

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  14. ATLAS Overview Week at Brookhaven

    CERN Multimedia

    Pilcher, J

    Over 200 ATLAS participants gathered at Brookhaven National Laboratory during the first week of June for our annual overview week. Some system communities arrived early and held meetings on Saturday and Sunday, and the detector interface group (DIG) and Technical Coordination also took advantage of the time to discuss issues of interest for all detector systems. Sunday was also marked by a workshop on the possibilities for heavy ion physics with ATLAS. Beginning on Monday, and for the rest of the week, sessions were held in common in the well equipped Berkner Hall auditorium complex. Laptop computers became the norm for presentations and a wireless network kept laptop owners well connected. Most lunches and dinners were held on the lawn outside Berkner Hall. The weather was very cooperative and it was an extremely pleasant setting. This picture shows most of the participants from a view on the roof of Berkner Hall. Technical Coordination and Integration issues started the reports on Monday and became a...

  15. Reactor target from metal chromium for "pure" high-intensive artificial neutrino source

    Science.gov (United States)

    Gavrin, V. N.; Kozlova, Yu. P.; Veretenkin, E. P.; Logachev, A. V.; Logacheva, A. I.; Lednev, I. S.; Okunkova, A. A.

    2017-01-01

    The paper presents the first results of development of manufacturing technology of metallic chromium targets from highly enriched isotope 50Cr for irradiation in a high flux nuclear reactor to obtain a compact high intensity neutrino source with low content of radionuclide impurities and minimum losses of enriched isotope. The main technological stages are the hydrolysis of chromyl fluoride, the electrochemical reduction of metallic chromium, the hot isostatic pressing of chromium powder and the electrical discharge machining of chromium bars. The technological stages of hot isostatic pressing of chromium powder and of electrical discharge machining of Cr rods have been tested.

  16. Coherent beam combining of high powerfiber lasers: Progress and prospect

    Institute of Scientific and Technical Information of China (English)

    LIU; ZeJin; ZHOU; Pu; XU; XiaoJun; WANG; XiaoLin; MA; YanXing

    2013-01-01

    The recent research progress of coherent beam combining of high power fiber lasers is reviewed. Key technologies like coherently combinable fiber laser, phase control of multiple beams and beam tilling are specially analyzed. Prospects for single coherently combinable high power fiber amplifier, beam tilling and target-in-the-loop control for propagation in real atmosphere are presented.

  17. Conceptual design of a clinical BNCT beam in an adjacent dry cell of the Jozef Stefan Institute TRIGA reactor

    NARCIS (Netherlands)

    Maucec, M

    2000-01-01

    The MCNP4B Monte Carlo transport code is used in a feasibility study of the epithermal neutron boron neutron capture therapy facility in the thermalizing column of the 250-kW TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). To boost the epithermal neutron flux at the reference irradiation

  18. Doses delivered to normal brain under different treatment protocols at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J.; Coderre, J.A.; Liu, H.B. [and others

    1996-12-31

    As of October 31, 1996, 23 glioblastoma multiforme patients underwent BNCT under several treatment protocols at the Brookhaven Medical Research Reactor. For treatment planning and dosimetry purposes, these protocols may be divided into four groups. The first group comprises protocols that used an 8-cm collimator and allowed a peak normal brain dose of 10.5 Gy-Eq to avolume of 1 cm{sup 3} were the thermal neutron flux was maximal (even if it happened to be in the tumor volume). The second group differs from the first in that it allowed a peak normal brain dose of 12.6 Gy-Eq. The protocols of the third and fourth groups allowed the prescribed peak normal brain dose of 12.6 Gy-Eq to be outside of the tumor volume, used a 12-cm collimator and, respectively, uni- or bilateral irradiations. We describe the treatment planning procedures and report the doses delivered to various structures of the brain.

  19. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Adonin, A. A., E-mail: a.adonin@gsi.de; Hollinger, R. [Linac and Operations/Ion Sources, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany)

    2014-02-15

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  20. High Torque Density Transverse Flux Machine without the Need to Use SMC Material for 3D Flux Paths

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Wu, Weimin

    2015-01-01

    This paper presents a new transverse flux permanent magnet machine. In a normal transverse flux machine, complicated 3-D flux paths often exist. Such 3-D flux paths would require the use of soft magnetic composites material instead of laminations for construction of the machine stator. In the new...... machine topology proposed in this paper, by advantageously utilizing the magnetic flux path provided by an additional rotor, use of laminations that allow 2-D flux paths only will be sufficient to accomplish the required 3-D flux paths. The machine also has a high torque density and is therefore...

  1. Relation of middle molecules levels and oxidative stress to erythropoietin requirements in high-flux versus low-flux hemodialysis

    Directory of Open Access Journals (Sweden)

    Hala S El-Wakil

    2013-01-01

    Full Text Available The objective of this study is to investigate the serum beta-2-microglobulin (B2MG and advanced oxidation protein products (AOPP as middle molecule uremic toxins and protein carbonyl (PCO as oxidative stress marker in uremic patients undergoing high-flux versus low-flux hemodialysis (HD and to correlate their levels to the erythropoietin requirements for those patients. Twenty patients on chronic low-flux HD were recruited in the study. At the start of the study, all patients underwent high-flux HD for eight weeks, followed by low-flux HD for two weeks as a washout period. The patients were then subjected to another eight weeks of low-flux HD. Blood samples were obtained at the beginning and at the end of the high-flux period and the low-flux period. The mean erythropoietin dose for patients using high-flux HD was significantly lower than that for low-flux HD (P = 0.0062. Post-high flux, the B2MG and PCO levels were significantly lower than the pre-high-flux levels (P = 0.026 and 0.0005, respectively, but no significant change was observed in AOPP (P = 0.68. Post-low flux, the B2MG, AOPP and PCO were significantly higher than the pre-low-flux levels (P = 0.0002, 0.021 and <0.0001, respectively. Post-low flux, the B2MG and PCO were significantly higher than the post-high-flux levels (P <0.0001, but no significant difference was observed in AOPP (P = 0.11. High-flux HD results in reduction of some of the middle molecule toxins and PCO levels better than low-flux HD, and is associated with a better response to erythropoietin.

  2. High heat flux transport by microbubble emission boiling

    Science.gov (United States)

    Suzuki, Koichi

    2007-10-01

    In highly subcooled flow boiling, coalescing bubbles on the heating surface collapse to many microbubbles in the beginning of transition boiling and the heat flux increases higher than the ordinary critical heat flux. This phenomenon is called Microbubble Emission Boiling, MEB. It is generated in subcooled flow boiling and the maximum heat flux reaches about 1 kW/cm2(10 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s for a small heating surface of 10 mm×10 mm which is placed at the bottom surface of horizontal rectangular channel. The high pressure in the channel is observed at collapse of the coalescing bubbles and it is closely related the size of coalescing bubbles. Periodic pressure waves are observed in MEB and the heat flux increases linearly in proportion to the pressure frequency. The frequency is considered the frequency of liquid-solid exchange on the heating surface. For the large sized heating surface of 50 mm length×20 mm width, the maximum heat flux obtained is 500 W/cm2 (5 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s. This is considerably higher heat flux than the conventional cooling limit in power electronics. It is difficult to remove the high heat flux by MEB for a longer heating surface than 50 mm by single channel type. A model of advanced cooling device is introduced for power electronics by subcooled flow boiling with impinging jets. Themaxumum cooling heat flux is 500 W/cm2 (5 MW/m2). Microbubble emission boiling is useful for a high heat flux transport technology in future power electronics used in a fuel-cell power plant and a space facility.

  3. The Status of the US High-Temperature Gas Reactors

    Directory of Open Access Journals (Sweden)

    Andrew C. Kadak

    2016-03-01

    Full Text Available In 2005, the US passed the Energy Policy Act of 2005 mandating the construction and operation of a high-temperature gas reactor (HTGR by 2021. This law was passed after a multiyear study by national experts on what future nuclear technologies should be developed. As a result of the Act, the US Congress chose to develop the so-called Next-Generation Nuclear Plant, which was to be an HTGR designed to produce process heat for hydrogen production. Despite high hopes and expectations, the current status is that high temperature reactors have been relegated to completing research programs on advanced fuels, graphite and materials with no plans to build a demonstration plant as required by the US Congress in 2005. There are many reasons behind this diminution of HTGR development, including but not limited to insufficient government funding requirements for research, unrealistically high temperature requirements for the reactor, the delay in the need for a “hydrogen” economy, competition from light water small modular light water reactors, little utility interest in new technologies, very low natural gas prices in the US, and a challenging licensing process in the US for non-water reactors.

  4. Spatial distributions of the energy and energy flux density of partially coherent electromagnetic beams in atmospheric turbulence.

    Science.gov (United States)

    Li, Jianlong; Lü, Baida; Zhu, Shifu

    2009-07-06

    The formulas of the energy and energy flux density of partially coherent electromagnetic beams in atmospheric turbulence are derived by using Maxwell's equations. Expressions expressed by elements of electric cross spectral density matrixes of the magnetic and the mutual cross spectral density matrix are obtained for the partially coherent electromagnetic beams. Taken the partially coherent Cosh-Gaussian (ChG) electromagnetic beam as a typical example, the spatial distributions of the energy and energy flux density in atmospheric turbulence are numerically calculated. It is found that the turbulence shows a broadening effect on the spatial distributions of the energy and energy flux density. Some interesting results are obtained and explained with regard to their physical nature.

  5. Neutral beam injection in a D-{sup 3}He FRC reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Hugo; Farengo, Ricardo [Centro Atomico Bariloche (CNEA) and Instituto Balseiro (UNC-CNEA) 8400 S. C. de Bariloche, RN (Argentina)

    2007-06-15

    The use of neutral beam injection (NBI) to sustain a fraction of the plasma current in a field reversed configuration (FRC) reactor operating with the D-{sup 3}He reaction is studied. A Monte Carlo code already used to study NBI in medium size FRCs is employed (Lifschitz A F, Farengo R and Arista N R 2002 Nucl. Fusion 42 863, Lifschitz A F, Farengo R and Arista N R 2002 Plasma Phys. Control. Fusion 44 1979, Lifschitz A F, Farengo R and Hoffman A L 2004 Nucl. Fusion 44 1015) and the plasma parameters are similar to those proposed in the ARTEMIS (Momota H, Ishida A, Kohzaki Y, Miley G, Ohi S, Ohnishi M, Sato K, Steinhauer L, Tomita Y and Tuszewki M 1992 Fusion Technol. 21 2307) conceptual reactor design. A simple analysis shows that the driven current cannot reach the values quoted in the ARTEMIS project and a procedure to search for plasma parameters that result in higher efficiencies is presented.

  6. Liquid-phase catalytic reactor combined with measurement of hot electron flux and chemiluminescence

    Science.gov (United States)

    Nedrygailov, Ievgen I.; Lee, Changhwan; Moon, Song Yi; Lee, Hyosun; Park, Jeong Young

    2016-11-01

    Understanding the role of electronically nonadiabatic interactions during chemical reactions on metal surfaces in liquid media is of great importance for a variety of applications including catalysis, electrochemistry, and environmental science. Here, we report the design of an experimental apparatus for detection of the highly excited (hot) electrons created as a result of nonadiabatic energy transfer during the catalytic decomposition of hydrogen peroxide on thin-film metal-semiconductor nanodiodes. The apparatus enables the measurement of hot electron flows and related phenomena (e.g., surface chemiluminescence) as well as the corresponding reaction rates at different temperatures. The products of the chemical reaction can be characterized in the gaseous phase by means of gas chromatography. The combined measurement of hot electron flux, catalytic activity, and light emission can lead to a fundamental understanding of the elementary processes occurring during the heterogeneous catalytic reaction.

  7. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of

  8. High-irradiance reactors with unfolded aplanatic optics.

    Science.gov (United States)

    Feuermann, Daniel; Gordon, Jeffrey M

    2008-11-01

    Reconstituting the intense irradiance of short-arc discharge lamps at a remote target, at high radiative efficiency, represents a central challenge in the design of high-temperature chemical reactors, heightened by the need for high numerical aperture at both the target and the source. Separating the optical system from both the source and the reactor allows pragmatic operation, monitoring, and control. We explore near-field unfolded aplanats as feasible solutions and report measurements for a prototype that constitutes a double-ellipsoid mirror. We also propose compound unfolded aplanats that collect lamp emission over all angles (in lieu of light recycling optics) and irradiate the reactor over nearly its full circumference.

  9. Ionization chambers for monitoring in high-intensity charged particle beams

    CERN Document Server

    McDonald, J; Viren, B; Diwan, M; Erwin, A R; Naples, D; Ping, H

    2003-01-01

    Radiation-hard ionization chambers were tested using an intense electron beam from the accelerator test facility at the Brookhaven National Laboratory. The detectors were designed to be used as the basic element for monitoring muons in the Main Injector Neutrino beamline at the Fermi National Accelerator Laboratory. Measurements of linearity of response, voltage dependence, and the onset of ionization saturation as a function of gap voltage were performed.

  10. Reactor G1: high power experiments; Experiences a forte puissance

    Energy Technology Data Exchange (ETDEWEB)

    Laage, F. de; Teste du Baillet, A.; Veyssiere, A.; Wanner, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Retel, H. [Societe Rateau, D.E.A. (France)

    1957-07-01

    The experiments carried out in the starting-up programme of the reactor G1 comprised a series of tests at high power, which allowed the following points to be studied: 1- Effect of poisoning by Xenon (absolute value, evolution). 2- Temperature coefficients of the uranium and graphite for a temperature distribution corresponding to heating by fission. 3- Effect of the pressure (due to the coiling system) on the reactivity. 4- Calibration of the security rods as a function of their position in the pile (1). 5- Temperature distribution of the graphite, the sheathing, the uranium and the air leaving the canals, in a pile running normally at high power. 6- Neutron flux distribution in a pile running normally at high power. 7- Determination of the power by nuclear and thermodynamic methods. These experiments have been carried out under two very different pile conditions. From the 1. to the 15. of August 1956, a series of power increases, followed by periods of stabilisation, were induced in a pile containing uranium only, in 457 canals, amounting to about 34 tons of fuel. A knowledge of the efficiency of the control rods in such a pile has made it possible to measure with good accuracy the principal effects at high temperatures, that is, to deal with points 1, 2, 3, 5. Flux charts giving information on the variations of the material Laplacian and extrapolation lengths in the reflector have been drawn up. Finally the thermodynamic power has been measured under good conditions, in spite of some installation difficulties. On September 16, the pile had its final charge of 100 tons. All the canals were loaded, 1,234 with uranium and 53 (i.e. exactly 4 per cent of the total number) with thorium uniformly distributed in a square lattice of 100 cm side. Since technical difficulties prevented the calibration of the control rods, the measurements were limited to the determination of the thermodynamic power and the temperature distributions (points 5 and 7). This report will

  11. Investigating the use of nanofluids to improve high heat flux cooling systems

    CERN Document Server

    Barrett, T R; Flinders, K; Sergis, A; Hardalupas, Y

    2013-01-01

    The thermal performance of high heat flux components in a fusion reactor could be enhanced significantly by the use of nanofluid coolants, suspensions of a liquid with low concentrations of solid nanoparticles. However, before they are considered viable for fusion, the long-term behaviour of nanofluids must be investigated. This paper reports an experiment which is being prepared to provide data on nanofluid stability, settling and erosion in a HyperVapotron device. Procedures are demonstrated for nanofluid synthesis and quality assessment, and the fluid sample analysis methods are described. The end results from this long-running experiment are expected to allow an initial assessment of the suitability of nanofluids as coolants in a fusion reactor.

  12. Design method for automotive high-beam LED optics

    Science.gov (United States)

    Byzov, Egor V.; Moiseev, Mikhail A.; Doskolovich, Leonid L.; Kazanskiy, Nikolay L.

    2015-09-01

    New analytical method for the calculation of the LED secondary optics for automotive high-beam lamps is presented. Automotive headlamps should illuminate the road and the curb at the distance of 100-150 meters and create a bright, flat, relatively powerful light beam. To generate intensity distribution of this kind we propose to use TIR optical element (collimator working on the total internal reflection principle) with array of microlenses (optical corrector) on the upper surface. TIR part of the optical element enables reflection of the side rays to the front direction and provides a collimated beam which incidents on the microrelief. Microrelief, in its turn, dissipates the light flux in horizontal direction to meet the requirements of the Regulations 112, 113 and to provide well-illuminated area across the road in the far field. As an example, we computed and simulated the optical element with the diameter of 33 millimeters and the height of 22 millimeters. Simulation data shows that three illuminating modules including Cree XP-G2 LED and lens allow generating an appropriate intensity distribution for the class D of UNECE Regulations.

  13. High precision photon flux determination for photon tagging experiments

    Science.gov (United States)

    Teymurazyan, A.; Ahmidouch, A.; Ambrozewicz, P.; Asratyan, A.; Baker, K.; Benton, L.; Burkert, V.; Clinton, E.; Cole, P.; Collins, P.; Dale, D.; Danagoulian, S.; Davidenko, G.; Demirchyan, R.; Deur, A.; Dolgolenko, A.; Dzyubenko, G.; Ent, R.; Evdokimov, A.; Feng, J.; Gabrielyan, M.; Gan, L.; Gasparian, A.; Glamazdin, A.; Goryachev, V.; Hardy, K.; He, J.; Ito, M.; Jiang, L.; Kashy, D.; Khandaker, M.; Kolarkar, A.; Konchatnyi, M.; Korchin, A.; Korsch, W.; Kosinov, O.; Kowalski, S.; Kubantsev, M.; Kubarovsky, V.; Larin, I.; Lawrence, D.; Li, X.; Martel, P.; Matveev, V.; McNulty, D.; Mecking, B.; Milbrath, B.; Minehart, R.; Miskimen, R.; Mochalov, V.; Nakagawa, I.; Overby, S.; Pasyuk, E.; Payen, M.; Pedroni, R.; Prok, Y.; Ritchie, B.; Salgado, C.; Shahinyan, A.; Sitnikov, A.; Sober, D.; Stepanyan, S.; Stevens, W.; Underwood, J.; Vasiliev, A.; Vishnyakov, V.; Wood, M.; Zhou, S.

    2014-12-01

    The Jefferson Laboratory PrimEx Collaboration has developed and implemented a method to control the tagged photon flux in photoproduction experiments at the 1% level over the photon energy range from 4.9 to 5.5 GeV. This method has been successfully implemented in a high precision measurement of the neutral pion lifetime. Here, we outline the experimental equipment and the analysis techniques used to accomplish this. These include the use of a total absorption counter for absolute flux calibration, a pair spectrometer for online relative flux monitoring, and a new method for post-bremsstrahlung electron counting.

  14. A High-Speed Baseline Restorer for Neutron Flux Detection in ITER

    Institute of Scientific and Technical Information of China (English)

    曹宏睿; 李世平; 徐修峰; 袁国梁; 杨青巍; 阴泽杰

    2012-01-01

    A neutron flux monitor .(NFM) is a key diagnostic system in the International Ther- monuclear Experimental Reactor (ITER), and may provide readings of a series of important parameters in fusion reaction processes. As a valuable part of the main electronics system of the NFM, the high-speed baseline restorer we designed is an important signal conversion plug-in which can restore the input signal baseline offset to a zero level, while keeping the output pulse signal waveform from the preamplifier basically unchanged.

  15. Comparing changes in plasma and skin autofluorescence in low-flux versus high-flux hemodialysis

    NARCIS (Netherlands)

    Ramsauer, Bernd; Engels, Gerwin; Arsov, Stefan; Hadimeri, Henrik; Sikole, Aleksandar; Graaff, Reindert; Stegmayr, Bernd

    2015-01-01

    Background: Tissue advanced glycation end products (AGE) are increased in hemodialysis (HD) patients, especially those with cardiovascular complications. Skin autofluorescence (skin-AF) can noninvasively estimate the accumulation of AGE in tissue. The aim was to clarify whether HD using a high-flux

  16. Deuteron beam interaction with lithium jet in a neutron source test facility

    Science.gov (United States)

    Hassanein, A.

    1996-10-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium—lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (≥ 14 MeV) neutrons required to simulate a fusion environment via the Li (d, n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities.

  17. Monte Carlo methods of neutron beam design for neutron capture therapy at the MIT Research Reactor (MITR-II).

    Science.gov (United States)

    Clement, S D; Choi, J R; Zamenhof, R G; Yanch, J C; Harling, O K

    1990-01-01

    Monte Carlo methods of coupled neutron/photon transport are being used in the design of filtered beams for Neutron Capture Therapy (NCT). This method of beam analysis provides segregation of each individual dose component, and thereby facilitates beam optimization. The Monte Carlo method is discussed in some detail in relation to NCT epithermal beam design. Ideal neutron beams (i.e., plane-wave monoenergetic neutron beams with no primary gamma-ray contamination) have been modeled both for comparison and to establish target conditions for a practical NCT epithermal beam design. Detailed models of the 5 MWt Massachusetts Institute of Technology Research Reactor (MITR-II) together with a polyethylene head phantom have been used to characterize approximately 100 beam filter and moderator configurations. Using the Monte Carlo methodology of beam design and benchmarking/calibrating our computations with measurements, has resulted in an epithermal beam design which is useful for therapy of deep-seated brain tumors. This beam is predicted to be capable of delivering a dose of 2000 RBE-cGy (cJ/kg) to a therapeutic advantage depth of 5.7 cm in polyethylene assuming 30 micrograms/g 10B in tumor with a ten-to-one tumor-to-blood ratio, and a beam diameter of 18.4 cm. The advantage ratio (AR) is predicted to be 2.2 with a total irradiation time of approximately 80 minutes. Further optimization work on the MITR-II epithermal beams is expected to improve the available beams.

  18. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  19. Study of the beam-induced neutron flux and required shielding for DIANA

    Energy Technology Data Exchange (ETDEWEB)

    Best, Andreas, E-mail: abest1@nd.edu [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Couder, Manoel [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Famiano, Michael [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Lemut, Alberto [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Wiescher, Michael [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2013-11-01

    Low energy accelerators in underground locations have emerged as a powerful tool for the measurement of critical nuclear reactions for the study of energy production and element synthesis in astrophysics. While cosmic ray induced background is substantially reduced, beam induced background on target impurities and depositions on target and collimator materials remain a matter of serious concern. The Dual Ion Accelerator for Nuclear Astrophysics (DIANA) is proposed to operate as a low-level background facility in an underground location. One of the main goals of DIANA is the study of neutron sources in stellar helium burning. For these experiments DIANA is a neutron radiation source which may affect other nearby low background level experiments. We therefore investigated the required laboratory layout to attenuate the neutron flux generated in a worst-case scenario to a level below the natural background in the underground environment. Detailed Monte Carlo calculations of the neutron propagation in the laboratory show that a neutron flux many orders of magnitude above expected values gets attenuated below the natural background rate using a 1 m thick water-shielded door as well as an emergency access/egress maze.

  20. Visualization Study on High Heat Flux Boiling and Critical Heat Flux

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Satbyoul; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    In this study, an integrated visible and infrared-based experimental method is introduced to simultaneously measure the details of high-resolution liquid-vapor phase and heat transfer distributions on a heated wall. The dynamics and heat transfer at high heat flux boiling and critical heat flux were observed. The experiment was conducted in pool of saturated water under atmospheric pressure. There have been many studies to examine the physical mechanisms of nucleation boiling and critical heat flux over several decades. Several visible and infrared-based optical techniques for time-resolved high resolution measurements for liquid-vapor phase and heater surface temperature during boiling have been introduced to understand the characteristics and mechanisms of them. Liquid-vapor phase, temperature, and heat flux distributions on the heated surface were measured during pool boiling of water using the integrated total reflection and infrared thermometry technique. Qualitative examination of the data for high heat flux boiling and CHF was performed. The main contributions of this work are summarized below. The existence and behavior of dry patches lead the way toward CHF condition. Therefore, the mechanistic modeling of the CHF phenomenon necessarily needs to include the physical parameters related to dynamics of the large dry patch such as life time and size. In addition to the dynamic behavior of the dry patch, the thermal behavior of the hot patch is also important. Even though the dry area was rewetted, the stored thermal energy in the hot patch can be remained if the rewetting time is short and the subsequent dry patch is regenerated quickly.

  1. Evaluation of the thermal neutron flux in the core of IPEN/MB-01 reactor using the code Monte Carlo (MCNP)

    Energy Technology Data Exchange (ETDEWEB)

    Salome, Jean A.D.; Cardoso, Fabiano; Faria, Rochkhudson B.; Pereira, Claubia, E-mail: jadsalome@yahoo.com.br, E-mail: fabinuclear@yahoo.com.br, E-mail: rockdefaria@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2015-07-01

    The IPEN/MB-01 reactor, located in the city of Sao Paulo - Brazil, reached its first criticality on the year of 1988. The reactor is characterized by a low output power of 100 W only, even because its purpose is to produce knowledge about nuclear power plants on a smaller geometric scale without the requirement of an extremely complex cooling system. The use of devices such as this it is very interesting because it achieves the demands of nuclear engineering about the neutronic parameters needed in the design of large nuclear plants through relatively simple and inexpensive methods. In this paper, the computational mathematical code MCNP5 is used to perform the calculation of the thermal neutron flux in the core of the IPEN/MB-01 reactor. To do this is used an experiment from the LEU-COMP-THERM-077 benchmark that represents the standard rectangular configuration of the IPEN/MB-01 reactor. The thermal neutron flux is calculated at some axial planes of different heights and, after that, axial profiles of the thermal neutron flux are done and compared to experimental results issued previously. The experimental values used as reference refer to a cylindrical configuration of the core of the reactor. Finally, the pertinence and relevance of the results are checked. With this work is expected to produce more knowledge about the dynamics of neutron flux in the core of the IPEN/MB-01 reactor. (author)

  2. Geothermal materials development at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E. [Brookhaven National Lab., Upton, NY (United States)

    1997-12-31

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R&D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O&M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R&D, most of which is performed as cost-shared efforts with U.S. geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  3. Geothermal materials development at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E.

    1997-06-01

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R and D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O and M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R and D, most of which is performed as cost-shared efforts with US geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  4. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  5. Beam Diagnostics Instrumentation for the High Energy Beam Transport Line of I.P.H.I.

    CERN Document Server

    Ausset, P; Coacolo, J L; Lesrel, J; Maymon, J N; Olivier, A; Rouviere, N; Solal-Cohen, M; Vatrinet, L; Yaniche, J F

    2005-01-01

    I.P.H.I. is a High Intensity Proton Injector under construction at Saclay (C.N.R.S/ I.N.2P.3; C.E.A. / D.A.P.N.I.A and C.E.R.N. collaboration). An E.C.R. produces a 100 keV, 100 mA C.W. proton beam which will be accelerated at 3 MeV by a 4 vanes R.F.Q. operating at 352.2 MHz. Finally, a High Energy Beam Transport Line (H.E.B.T.) will deliver the beam to a beam stopper and will be equipped with appropriate beam diagnostics to carry intensity; centroïd beam transverse position, transverse beam profiles, beam energy and energy spread measurements for the commissioning of I.P.H.I. These beam diagnostics will operate under both pulsed and C.W. operation. Transverse beam profile measurements will be acquired under low and high duty factor pulsed beam operation using a slow wire scanner and a C.C.D. camera to image the beam-induced fluorescence. The beam instrumentation of the H.E.B.T. is reviewed and preliminary obtained transverse profile measurements at 100 keV are described.

  6. Beam diagnostics instrumentation for the high energy beam transfer line of I.P.H.I

    Energy Technology Data Exchange (ETDEWEB)

    Ausset, P.; Berthelot, S.; Coacolo, J.L.; Lesrel, J.; Maymon, J.N.; Olivier, A.; Rouviere, N.; Solal, M.; Vatrinet, L.; Yaniche, J.F. [Institut de Physique Nucleaire, (IN2P3/CNRS) 91 - Orsay (France); Belyaev, G.; Roudskoy, I. [I.T.E.P. Moscow (Russian Federation)

    2005-07-01

    I.P.H.I. is a High Intensity Proton Injector under construction at Saclay. An E.C.R. source produces a 100 keV, 100 mA C.W. proton beam which will be accelerated at 3 MeV by a 4 vanes R.F.Q. operating at 352.2 MHz. Finally, a High Energy Beam Transport Line (H.E.B.T.) will deliver the beam to a beam stopper and will be equipped with appropriate beam diagnostics to carry intensity, centroid beam transverse position, transverse beam profiles, beam energy and energy spread measurements for the commissioning of I.P.H.I. These beam diagnostics will operate under both pulsed and C.W. operation. Transverse beam profile measurements will be acquired under low and high duty factor pulsed beam operation using a slow wire scanner and a C.C.D. camera to image the beam-induced fluorescence. The beam instrumentation of the H.E.B.T. is reviewed and preliminary obtained transverse profile measurements at 100 keV are described. (authors)

  7. Remote field eddy current technique for gap measurement of horizontal flux detector guide tube in pressurized heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hoon; Jung, Hyun Kyu; Yang, Dong Ju; Cheong, Yong Moo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2004-11-15

    The fuel channels including the pressure tube(PT) and the calandria tube(CT) are important components of the pressurized heavy water reactor(PHWR). A sagging of fuel channel increases by heat and radiation exposure with the increasing operation time. The contact of fuel channel to the Horizontal flux Detector(HFD) guide tube is needed for the power plant safety. In order to solve this safety issue, the electromagnetic technique was applied to measure the status of the guide tube. The Horizontal flux Detector(HFD) guide tube and the Calandria tube(CT) in the Pressurized Heavy Water Reactor(PHWR) are cross-aligned horizontally. The remote field eddy current(RFEC) technology is applied for gap measurement between the HFD guide tube and the CT HFD guide tube can be detected by inserting the RFEC probe into pressure tube(PT) at the crossing point directly. The RFEC signals using the volume integral method(VIM) were simulated for obtaining the optimal inspection parameters. This paper shows that the simulated eddy current signals and the experimental results in variance with the CT/HFD gap.

  8. Microscopic Deformation of Tungsten Surfaces by High Energy and High Flux Helium/Hydrogen Particle Bombardment with Short Pulses

    Science.gov (United States)

    Tokitani, Masayuki; Yoshida, Naoaki; Tokunaga, Kazutoshi; Sakakita, Hajime; Kiyama, Satoru; Koguchi, Haruhisa; Hirano, Yoichi; Masuzaki, Suguru

    The neutral beam injection facility in the National Institute of Advanced Industrial Science and Technology was used to irradiate a polycrystalline tungsten specimen with high energy and high flux helium and hydrogen particles. The incidence energy and flux of the beam shot were 25 keV and 8.8 × 1022 particles/m2 s, respectively. The duration of each shot was approximately 30 ms, with 6 min intervals between each shot. Surface temperatures over 1800 K were attained. In the two cases of helium irradiation, total fluence of either 1.5 × 1022 He/m2 or 4.0 × 1022 He/m2 was selected. In the former case, large sized blisters with diameter of 500 nm were densely observed. While, the latter case, the blisters were disappeared and fine nanobranch structures appeared instead. Cross-sectional observations using a transmission electron microscope (TEM) with the focused ion beam (FIB) technique were performed. According to the TEM image, after irradiation with a beam shot of total fluence 4.0 × 1022 He/m2 , there were very dense fine helium bubbles in the tungsten of sizes 1-50 nm. As the helium bubbles grew the density of the tungsten matrix drastically decreased as a result of void swelling. These effects were not seen in hydrogen irradiation case.

  9. Control rod drive for high temperature gas cooled reactor

    Institute of Scientific and Technical Information of China (English)

    DengJun-Xian; XuJi-Ming; 等

    1998-01-01

    This control rod drive is developed for HTR-10 high temperature gas cooled test reactor.The stepmotor is prefered to improve positioning of the control rod and the scram behavior.The preliminary test in 1600170 ambient temperature shows that the selected stepmotor and transmission system can meet the main operation function requirements of HTR-10.

  10. The Founding of the Brookhaven National Laboratory - Associated Universities, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    BROOKHAVEN NATIONAL LABORATORY

    1948-01-15

    At the end of the war it became apparent that the teamwork of government and scientific institutions, which had been so effective in wartime work, must somehow be perpetuated in order to insure the continued progress of nuclear science in peace time. The enormous expense of the tools needed to pursue the next steps in this research -- nuclear reactors and high energy accelerators -- and the shortage of scientifically trained personnel pointed towards the establishment of a cooperative laboratory. Such a laboratory, using government funds, could carry out a comprehensive research program that would benefit the many interested research groups throughout the country. As a result of the wartime programs under the Manhattan District, centers of research in nuclear science were already active at the Radiation Laboratory in Berkeley, California, at Los Alamos in New Mexico, at the Clinton Laboratories in Oak Ridge, Tennessee and at the Argonne Laboratory in Chicago. No analogous nuclear research laboratories, however, had developed in the Northeast, and since so much of the nation's scientific talent and industrial activities are concentrated in the northeastern states, it was proposed that a new laboratory be established near New York City. As a result of this plan, the Brookhaven National Laboratory is now in operation at Upton, Long Island. The work of this Laboratory is performed under a contract between the Atomic Energy Commission (AEC) and a corporation, Associated Universities, Inc. (AUI) , formed by representatives of nine of the larger private universities in the northeast: Columbia, Cornell, Harvard, Johns Hopkins, the Massachusetts Institute of Technology, the University of Pennsylvania, Princeton, the University of Rochester, and Yale. The purpose of this laboratory is the advancement of knowledge in the fundamentals of nuclear science, the extension of its application to other fields, and the training of young scientists in these new subjects. This

  11. Data acquisition system used in radiation induced electrical degradation experiments

    Energy Technology Data Exchange (ETDEWEB)

    White, D.P. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    Radiation induced electrical degradation (RIED) of ceramic materials has recently been reported and is the topic of much research at the present time. The object of this report is to describe the data acquisition system for an experiment designed to study RIED at the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory.

  12. Flux pinning properties of MgB{sub 2} thin films on Ti buffered substrate prepared by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, K., E-mail: kenji@st.cs.kumamoto-u.ac.j [Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860-8555 (Japan); Kugo, A.; Fujiyoshi, T.; Sueyoshi, T. [Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860-8555 (Japan); Harada, Y. [JST Satellite Iwate, 3-35-2, Iiokashinden Morioka, Iwate 020-0852 (Japan); Yoshizawa, M.; Ikeda, T. [Department of Materials Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate 020-8551 (Japan); Awaji, S.; Watanabe, K. [Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2010-11-01

    Transport properties of the MgB{sub 2} thin films on Si, MgO and ZnO substrates with Ti buffer layer prepared by molecular beam epitaxy were investigated to clarify effects of the substrates and the Ti buffer layer on flux pinning. The critical current density J{sub c} of each sample shows different dependence on magnetic fields parallel to c-axis. However, the scaling analysis of the macroscopic pinning force for all the measured samples implies that the grain boundaries work as the dominant pinning centers for B//c. The pinning parameter for MgB{sub 2}/Ti/Si estimated from the electric field E vs. the current density J characteristics shows the highest value among all the measured samples. This result is attributed to the high density of grain boundaries caused by the effect of both the Ti buffer and Si substrate in the growth process. Therefore, the selection of substrates and buffer layer strongly affects the flux pining properties of MgB{sub 2} thin films and plays an important role in the determination of performance for superconducting devices and wires.

  13. Neutron spectra measurement and comparison of the HFR and THOR BNCT beams.

    Science.gov (United States)

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-07-01

    This paper aims to measure the spectra of HB11 (high flux reactor, HFR) and the Tsing Hua open-pool reactor (THOR) boron neutron capture therapy (BNCT) beams by multiple activation foils. The self-shielding corrections were made with the aid of MCNP calculations. The initial spectra were adjusted by a sophisticated process named coarse-scaling adjustment using SAND-EX, which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with excellent continuity. The epithermal neutron flux of the THOR beam is about three times of HB11. The thermal neutron flux, boron and gold reaction rates along the central axis of a PMMA phantom are calculated for both adjusted spectra for comparison.

  14. Electrogravitational Resonance of a Gaussian Beam to a High-Frequency Relic Gravitational Wave

    Institute of Scientific and Technical Information of China (English)

    李芳昱; 唐孟希

    2001-01-01

    We consider the resonant response of a Gaussian beam passing through a static magnetic field to a high-frequency relic gravitational wave (GW). It is found that under the synchroresonance condition, the first-order perturbative electromagnetic energy fluxes will contain a "left circular wave" and a "right circular wave" around the symmetrical axis of the Gaussian beam, but the perturbative effects produced by the + and × polarization of the GW have a different physical behaviour. For the high-frequency relic GW with vg = 1010 Hz, h = l0-30, recently expected by the quintessential inflationary models, the corresponding perturbative photon flux passing through the region 10-2 m2 would be expected to be 104 s-1. This is the largest perturbative photon flux we have recently analysed and estimated using the typical laboratory parameters.

  15. High Field Seeking State Atom Laser and Properties of Flux

    Institute of Scientific and Technical Information of China (English)

    XIA Lin; XIONG Wei; YANG Fan; YI Lin; ZHOU Xiao-Ji; CHEN Xu-Zong

    2008-01-01

    We present an experimental study on the continuous atom laser. The experiments show that a high field seeking state atom laser with stable flux can be formed by increasing the strength of outcoupling before large density fluctuations appear. It is easy to obtain a long length or high speed output with this kind of atom laser.

  16. Thermal shock behaviour of tungsten after high flux H-plasma loading

    Science.gov (United States)

    Wirtz, M.; Linke, J.; Pintsuk, G.; De Temmerman, G.; Wright, G. M.

    2013-11-01

    Previous studies have shown that transient thermal shock loads induce crack networks on tungsten samples especially at low base temperatures. To achieve test conditions which are more relevant for the performance of tungsten-armoured plasma facing components in next step thermonuclear fusion devices tungsten tiles were exposed to high flux hydrogen-plasma in the linear plasma generator Pilot-PSI and the high heat flux ion beam test facility MARION. Subsequently, the cyclic transient heat load tests were done in the electron beam facility JUDITH 1. The induced damages after these combined tests were examined by microscopically means, profilometry and metallography. The comparison of the obtained results and damage characteristics with those obtained after thermal shock loading show that the preloading of tungsten targets with high flux hydrogen-plasma has significant influence on the thermal shock behaviour of tungsten in terms of crack distance, width, and depth as well as cracked area. Furthermore the plasma parameters, in particular pulse duration and sample temperature during loading, have strong impact on the damage pattern after thermal shock loading.

  17. A high resolution pneumatic stepping actuator for harsh reactor environments

    Science.gov (United States)

    Tippetts, Thomas B.; Evans, Paul S.; Riffle, George K.

    1993-01-01

    A reactivity control actuator for a high-power density nuclear propulsion reactor must be installed in close proximity to the reactor core. The energy input from radiation to the actuator structure could exceed hundreds of W/cc unless low-cross section, low-absorptivity materials are chosen. Also, for post-test handling and subsequent storage, materials should not be used that are activated into long half-life isotopes. Pneumatic actuators can be constructed from various reactor-compatible materials, but conventional pneumatic piston actuators generally lack the stiffness required for high resolution reactivity control unless electrical position sensors and compensated electronic control systems are used. To overcome these limitations, a pneumatic actuator is under development that positions an output shaft in response to a series of pneumatic pulses, comprising a pneumatic analog of an electrical stepping motor. The pneumatic pulses are generated remotely, beyond the strong radiation environment, and transmitted to the actuator through tubing. The mechanically simple actuator uses a nutating gear harmonic drive to convert motion of small pistons directly to high-resolution angular motion of the output shaft. The digital nature of this actuator is suitable for various reactor control algorithms but is especially compatible with the three bean salad algorithm discussed by Ball et al. (1991).

  18. Fermilab main injector: High intensity operation and beam loss control

    Science.gov (United States)

    Brown, Bruce C.; Adamson, Philip; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K.; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-07-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  19. Flux attenuation at NREL`s High-Flux Solar Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C E; Scholl, K L; Lewandowski, A A

    1994-10-01

    The High-Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) has a faceted primary concentrator and a long focal-length-to-diameter ratio (due to its off-axis design). Each primary facet can be aimed individually to produce different flux distributions at the target plane. Two different types of attenuators are used depending on the flux distribution. A sliding-plate attenuator is used primarily when the facets are aimed at the same target point. The alternate attenuator resembles a venetian blind. Both attenuators are located between the concentrator and the focal point. The venetian-blind attenuator is primarily used to control the levels of sunlight failing on a target when the primary concentrators are not focused to a single point. This paper will demonstrate the problem of using the sliding-plate attenuator with a faceted concentrator when the facets are not aimed at the same target point. We will show that although the alternate attenuator necessarily blocks a certain amount of incoming sunlight, even when fully open, it provides a more even attenuation of the flux for alternate aiming strategies.

  20. Brookhaven highlights. Report on research, October 1, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.S.; Belford, M.; Cohen, A.; Greenberg, D.; Seubert, L. [eds.

    1993-12-31

    This report highlights the research activities of Brookhaven National Laboratory during the period dating from October 1, 1992 through September 30, 1993. There are contributions to the report from different programs and departments within the laboratory. These include technology transfer, RHIC, Alternating Gradient Synchrotron, physics, biology, national synchrotron light source, applied science, medical science, advanced technology, chemistry, reactor physics, safety and environmental protection, instrumentation, and computing and communications.

  1. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of

  2. Development activities of the high heat flux scraper element

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max Planck Institute for Plasma Physics, Garching (Germany); Lore, J.; Lumsdaine, A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Maier, M. [Max Planck Institute for Plasma Physics, Garching (Germany); McGinnis, D. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Peacock, A.; Tretter, J. [Max Planck Institute for Plasma Physics, Garching (Germany)

    2015-10-15

    The function of the high heat flux scraper element is to reduce the heat loads on the element ends of the actively cooled divertor of Wendelstein 7-X. The scraper element is actively water cooled to remove up to 550 kW steady state power load, with localized heat fluxes as high as 20 MW/m{sup 2}. Its surface area, 0.17 m{sup 2}, is contoured to optimally intercept both upstream and downstream particle fluxes. The plasma facing surface is made of 24 individual scraper fingers based on the monoblock technology. Each scraper finger is 247 mm long and 28 mm wide and has 13 monoblocks made of CFC NB31 bonded by hot isostatic pressing onto a CuCrZr cooling tube equipped with a copper twisted tape. Development activities, described here, include the design and fabrication of prototypes to validate the different technologies selected for the scraper element design to prepare a possible production.

  3. Model biases in high-burnup fast reactor simulations

    Energy Technology Data Exchange (ETDEWEB)

    Touran, N.; Cheatham, J.; Petroski, R. [TerraPower LLC, 11235 S.E. 6th St, Bellevue, WA 98004 (United States)

    2012-07-01

    A new code system called the Advanced Reactor Modeling Interface (ARMI) has been developed that loosely couples multiscale, multiphysics nuclear reactor simulations to provide rapid, user-friendly, high-fidelity full systems analysis. Incorporating neutronic, thermal-hydraulic, safety/transient, fuel performance, core mechanical, and economic analyses, ARMI provides 'one-click' assessments of many multi-disciplined performance metrics and constraints that historically require iterations between many diverse experts. The capabilities of ARMI are implemented in this study to quantify neutronic biases of various modeling approximations typically made in fast reactor analysis at an equilibrium condition, after many repetitive shuffles. Sensitivities at equilibrium that result in very high discharge burnup are considered ( and >20% FIMA), as motivated by the development of the Traveling Wave Reactor. Model approximations discussed include homogenization, neutronic and depletion mesh resolution, thermal-hydraulic coupling, explicit control rod insertion, burnup-dependent cross sections, fission product model, burn chain truncation, and dynamic fuel performance. The sensitivities of these approximations on equilibrium discharge burnup, k{sub eff}, power density, delayed neutron fraction, and coolant temperature coefficient are discussed. (authors)

  4. Process heat cogeneration using a high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Gustavo, E-mail: gustavoalonso3@gmail.com [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ramirez, Ramon [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Valle, Edmundo del [Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Castillo, Rogelio [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico)

    2014-12-15

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU.

  5. Burning high-level TRU waste in fusion fission reactors

    Science.gov (United States)

    Shen, Yaosong

    2016-09-01

    Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.

  6. Characterization of coplanar grid CZT detectors with highly collimated x-ray beam

    Science.gov (United States)

    Carini, Gabriella A.; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Wright, Gomez W.; De Geronimo, Gianluigi; Siddons, D. P.; James, Ralph B.

    2004-10-01

    CdZnTe detectors demonstrated great potentials for detection of gamma radiation. However, energy resolution of CdZnTe detectors is significantly affected by uncollected holes which have low mobility and short lifetime. To overcome this deleterious effects upon energy resolution special detector designs have to be implemented. The most practical of them are the small pixel effect device, the co-planar grid device, and the virtual Frisch-grid device. We routinely use a highly collimated high-intensity X-ray beams provided by National Synchrotron Light Source (NSLS) facility at Brookhaven National Laboratory to study of CdZnTe material and performances of the different types of devices on the micron-scale. This powerful tool allows us to evaluate electronic properties of the material, device performance, uniformity of the detector responses, effects related to the device's contact pattern and electric field distribution, etc. In particular, in this paper we present new results obtained from the performance studies of 15 x 15 x 7.5 mm3 coplanar-grid devices coupled to readout ASIC. We observed the effect of the strip contacts comprising the grids on the energy resolution of the coplanar-grid device.

  7. Preliminary Demonstration Reactor Point Design for the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Development of the Fluoride Salt-Cooled High-Temperature Reactor (FHR) Demonstration Reactor (DR) is a necessary intermediate step to enable commercial FHR deployment through disruptive and rapid technology development and demonstration. The FHR DR will utilize known, mature technology to close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include tristructural-isotropic (TRISO) particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell heat exchangers. This report provides an update on the development of the FHR DR. At this writing, the core neutronics and thermal hydraulics have been developed and analyzed. The mechanical design details are still under development and are described to their current level of fidelity. It is anticipated that the FHR DR can be operational within 10 years because of the use of low-risk, near-term technology options.

  8. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, K.L. (ed.)

    1985-10-01

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

  9. Applied programs at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This document overviews the areas of current research at Brookhaven National Laboratory. Technology transfer and the user facilities are discussed. Current topics are presented in the areas of applied physics, chemical science, material science, energy efficiency and conservation, environmental health and mathematics, biosystems and process science, oceanography, and nuclear energy. (GHH)

  10. On the energy gain enhancement of DT+D3He fuel configuration in nuclear fusion reactor driven by heavy ion beams

    Directory of Open Access Journals (Sweden)

    S Khoshbinfar

    2016-09-01

    Full Text Available It is expected that advanced fuels be employed in the second generation of nuclear fusion reactors. Theoretical calculations show that in such a fuel, a high plasma temperature about 100 keV is a requisite for reaction rate improvement of nuclear fusion. However, creating such a temporal condition requires a more powerful driver than we have today. Here, introducing an optimal fuel configuration consisting of DT and D-3He layers, suitable for inertial fusion reactors and driven by heavy ion beams, the optimal energy gain conditions have been simulated and derived for 1.3 MJ system. It was found that, in this new fuel configuration, the ideal energy gain, is 22 percent more comparing with energy gain in corresponding single DT fuel layer. Moreover, the inner DT fuel layer contributed as an ignition trigger, while the outer D3He fuel acts as particle and radiation shielding as well as fuel layer.

  11. Studies of low temperature, low flux radiation embrittlement of nuclear reactor structural materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G.R.; Lucas, G.E.

    1993-06-01

    There are several existing research programs which have components pertinent to the issue of low flux/low temperature embrittlement; in particular, examination of the Shippingport shield tank which has been exposed to low flux and relatively low temperature is being performed by ANL, and evaluation of low temperature embrittlement in A508 and A533B steels in support of the HTGR is currently being performed by ORNL. However, these programs are not specifically directed at the broader issue of low flux/low temperature embrittlement in a range of structural steels. Hence, the authors coordinated their effort with these programs so that their investigations were complementary to existing programs, and they focused on a set of materials which expand the data base developed in these programs. In particular, the authors have investigated embrittlement phenomena in steels that are similar to those used in support structure.

  12. High temperature reactors for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  13. Alcohol synthesis in a high-temperature slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1995-12-31

    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system can be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.

  14. High conductivity Be-Cu alloys for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lilley, E.A. [NGK Metals Corp., Reading, PA (United States); Adachi, Takao; Ishibashi, Yoshiki [NGK Insulators, Ltd., Aichi-ken (Japan)

    1995-09-01

    The optimum material has not yet been identified. This will result in heat from plasma to the first wall and divertor. That is, because of cracks and melting by thermal power and shock. Today, it is considered to be some kinds of copper, alloys, however, for using, it must have high conductivity. And it is also needed another property, for example, high strength and so on. We have developed some new beryllium copper alloys with high conductivity, high strength, and high endurance. Therefore, we are introducing these new alloys as suitable materials for the heat sink in fusion reactors.

  15. Formation of compressed flat electron beams with high transverse-emittance ratios

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J. [Fermilab; Institute of Fluid Physics, CAEP, China; Piot, P. [Northern Illinois University; Fermilab; Mihalcea, D. [Northern Illinois University; Prokop, C. R. [Northern Illinois University

    2014-08-01

    Flat beams—beams with asymmetric transverse emittances—have important applications in novel light-source concepts and advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat beam generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of Fermilab’s Advanced Superconducting Test Accelerator. The optimizations of the flat beam generation and compression at Advanced Superconducting Test Accelerator were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC, and 20 pC at ~37 MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25 μm (emittance ratio is ~400), 0.13 μm, 15 nm before compression, and 0.41 μm, 0.20 μm, 16 nm after full compression, respectively, with peak currents as high as 5.5 kA for a 3.2-nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.

  16. Baseline Concept Description of a Small Modular High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  17. Baseline Concept Description of a Small Modular High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  18. High power electron and ion beam research and technology

    Energy Technology Data Exchange (ETDEWEB)

    Nation, J.A.; Sudan, R.N. (eds.)

    1977-01-01

    Topics covered in volume II include: collective accelerators; microwaves and unneutralized E-beams; technology of high-current E-beam accelerators and laser applications of charged-particle beams. Abstracts of twenty-nine papers from the conference were prepared for the data base in addition to six which appeared previously. (GHT)

  19. High energy ion beam analysis at ARRONAX

    Energy Technology Data Exchange (ETDEWEB)

    Koumeir, C.; Haddad, F.; Michel, N. [Subatech, Nantes (France); GIP ARRONAX, Saint-Herblain (France); Guertin, A.; Metivier, V.; Michel, N.; Ragreb, D.; Servagent, N. [Subatech, Nantes (France)

    2013-07-01

    Full text: ARRONAX, acronym for 'Accelerator for Research in Radiochemistry and Oncology at Nantes' is a high energy cyclotron. It is characterized by the acceleration of several types of particle beams: 68 MeV alpha, 15-35 MeV deuterons and 30-68 MeV protons. A platform was implemented on ARRONAX to perform non-destructive materials analysis with X and gamma rays emission (PIXE-PIGE). A proper selection of the projectile type and beam energy allows to analyze heavy and light elements in thin and thick samples. Our research activities are oriented along three axes: 1) Measurements of K X-ray production cross section for various elements to complement the databases at high energy. A first experiment has been conducted to measure these cross sections for copper and gold with protons energy between 34 and 68 MeV. 2) Study of the detection sensitivity which depends on the nuclear background and the Bremsstrahlung radiations. A dedicated shielding has been developed and detection limits below tens of μg/g/μC have been assessed using different referenced samples from IAEA. 3) Determination of concentration profile as function of the depth in a thick target. Using layered samples, we have showed for a target consisting of three different layers, the possibility to determine the sequence and thickness of each layer by using X and gamma rays measured respectively during and after irradiation. During this talk, I will present the characteristics and the capabilities of our platform. In the near future we intend to install the PIGE technique and use it with 15 MeV deuterons to analyze lightweight elements. (author)

  20. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Swanson

    2005-08-30

    The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was

  1. Heat flux limits on the plasma-facing components for a commercial fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.R.; Tillack, M.S. [Univ. of California, San Diego, La Jolla, CA (United States); Sze, D.K. [Argonne National Lab., IL (United States); Wong, C.P.C. [General Atomics, San Diego, CA (United States)

    1995-12-31

    In this work, the heat flux limits of conventional plasma-facing components (PFC) were examined. The limits are based on maximum allowable temperature and stress levels in the structures. The substrate materials considered were V, SiC composite and HT-9. The use of Cu also was considered. However, low temperature limits, activation and very limited radiation damage life time, make the using of Cu in a commercial power plant unattractive. With selected heat transfer enhancement, the heat flux allowable is about 5.3 MW/m{sup 2} for lithium-cooled V-alloy, 2.7 MW/m{sup 2} for helium-cooled SiC composite, and 2.7 MW/m{sup 2} for helium/water-cooled HT-9. Compared with the maximum heat flux attainable with Cu and cold water (13.4 MW/m{sup 2}), acceptable power plant materials place severe restrictions on heat removal. The thermal conductivity of SiC composite at 1,000 C and after irradiation is a factor of several lowered than the value the authors used. This indicates a need to examine the heat transfer problems associated with PFC, in terms of material development and enhancement in heat transfer. Physics regimes which can provide low peak and average heat flux should be pursued.

  2. Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence.

    Science.gov (United States)

    Eyink, Gregory; Vishniac, Ethan; Lalescu, Cristian; Aluie, Hussein; Kanov, Kalin; Bürger, Kai; Burns, Randal; Meneveau, Charles; Szalay, Alexander

    2013-05-23

    The idea of 'frozen-in' magnetic field lines for ideal plasmas is useful to explain diverse astrophysical phenomena, for example the shedding of excess angular momentum from protostars by twisting of field lines frozen into the interstellar medium. Frozen-in field lines, however, preclude the rapid changes in magnetic topology observed at high conductivities, as in solar flares. Microphysical plasma processes are a proposed explanation of the observed high rates, but it is an open question whether such processes can rapidly reconnect astrophysical flux structures much greater in extent than several thousand ion gyroradii. An alternative explanation is that turbulent Richardson advection brings field lines implosively together from distances far apart to separations of the order of gyroradii. Here we report an analysis of a simulation of magnetohydrodynamic turbulence at high conductivity that exhibits Richardson dispersion. This effect of advection in rough velocity fields, which appear non-differentiable in space, leads to line motions that are completely indeterministic or 'spontaneously stochastic', as predicted in analytical studies. The turbulent breakdown of standard flux freezing at scales greater than the ion gyroradius can explain fast reconnection of very large-scale flux structures, both observed (solar flares and coronal mass ejections) and predicted (the inner heliosheath, accretion disks, γ-ray bursts and so on). For laminar plasma flows with smooth velocity fields or for low turbulence intensity, stochastic flux freezing reduces to the usual frozen-in condition.

  3. Non-Fourier Heat Conduction Effects During High-Energy Beam Metalworking

    Institute of Scientific and Technical Information of China (English)

    张海泉; 张彦华; 赵海燕

    2004-01-01

    Non-Fourier heat conduction induced by ultrafast heating of metals with a high-energy density beam was analyzed. The non-Fourier effects during high heat flux heating were illustrated by comparing the transient temperature response to different heat flux and material relaxation times. Based on the hyperbolic heat conduction equation for the non-Fourier heat conduction law, the equation was solved using a hybrid method combining an analytical solution and numerical inversion of the Laplace transforms for a semi-infinite body with the heat flux boundary. Analysis of the temperature response and distribution led to a criterion for the applicability of the non-Fourier heat conduction law. The results show that at a relatively large heat flux, such as greater than 108 W/cm2, the heat-affected zone in the metal material experiences a strong thermal shock as the non-Fourier effects cause a large step increase in the surface temperature. The results provide a method for analyzing transient heat conduction problems using a high-energy density beam, such as electron beam deep penetration welding.

  4. Advanced High Temperature Reactor Systems and Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Qualls, A L [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience

  5. A high performance neutron powder diffractometer at 3 MW Triga Mark-II research reactor in Bangladesh

    Science.gov (United States)

    Kamal, I.; Yunus, S. M.; Datta, T. K.; Zakaria, A. K. M.; Das, A. K.; Aktar, S.; Hossain, S.; Berliner, R.; Yelon, W. B.

    2016-07-01

    A high performance neutron diffractometer called Savar Neutron Diffractometer (SAND) was built and installed at radial beam port-2 of TRIGA Mark II research reactor at AERE, Savar, Dhaka, Bangladesh. Structural studies of materials are being done by this technique to characterize materials crystallograpohically and magnetically. The micro-structural information obtainable by neutron scattering method is very essential for determining its technological applications. This technique is unique for understanding the magnetic behavior in magnetic materials. Ceramic, steel, electronic and electric industries can be benefited from this facility for improving their products and fabrication process. This instrument consists of a Popovicimonochromator with a large linear position sensitive detector array. The monochromator consists of nine blades of perfect single crystal of silicon with 6mm thickness each. The monochromator design was optimized to provide maximum flux on 3mm diameter cylindrical sample with a relatively flat angular dependence of resolution. Five different wave lengths can be selected by orienting the crystal at various angles. A sapphire filter was used before the primary collimator to minimize the first neutron. The detector assembly is composed of 15 linear position sensitive proportional counters placed at either 1.1 m or 1.6 m from the sample position and enclosed in a air pad supported high density polythene shield. Position sensing is obtained by charge division using 1-wide NIM position encoding modules (PEM). The PEMs communicate with the host computer via USB. The detector when placed at 1.1 m, subtends 30˚ (2θ) at each step and covers 120˚ in 4 steps. When the detector is placed at 1.6 m it subtends 20˚ at each step and covers 120˚ in 6 steps. The instrument supports both low and high temperature sample environment. The instrument supports both low and high temperature sample environment. The diffractometer is a state-of-the art technology

  6. A new efficient empirical correlation for filtrate flux in slurry bubble column reactor of a gas-to-liquid process

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Mohammad Reza [Entekhab Petrochemical Co., Tehran (Iran, Islamic Republic of); Khodagholi, Mohammad Ali [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of)

    2015-12-15

    Gas to Liquid has recently become of great interest. In this technology slurry bubble column reactors are favored for many reasons. Separation of liquid wax from the slurry is still a major problem that may be done by internal or external filtration. A system of sintered metal candle filters are designed and operated to collect experimental data of internal filtration. Data for 4 and 8 micron filter elements with different pressure differences and kinematic viscosity were collected. Data analysis revealed that these data could be correlated as a simple function of time, pressure drop and kinematic viscosity. This new and efficient correlation shows excellent ability to reproduce original data at moderate filtration conditions, but it is less precious in severe conditions. It was understood that main reason for this behavior is different filtrate flux regimes through filter media pores, led to inability of a single correlation to fit both regimes properly.

  7. Heat flux mitigation by impurity seeding in high-field tokamaks

    Science.gov (United States)

    Reinke, M. L.

    2017-03-01

    The ability for tokamaks to exhaust power in the boundary via impurity radiation is explored using empirical scalings and a simple 0D exhaust model, focusing on the scaling with toroidal field and major radius. By combining a scaling for the heat flux width and the L-H threshold power, the parallel heat flux in the SOL is shown to scale strongly with magnetic field, {{q}\\parallel}∼ B\\text{T}2.52 while having little to no scaling with machine size, {{q}\\parallel}∼ {{R}0.16} . Despite the increased heat flux at high field, it is shown that target temperatures relevant to detachment can be reached with finite main-ion dilution for a variety of impurity seeding gases, although non-equilibrium ionization balance is required in most cases. The necessary impurity fractions are estimated to scale like {{f}Z}∼ B\\text{T}0.88{{R}1.33} , a result that is facilitated by an increase in upstream temperature at high {{q}\\parallel} relative to peaks in the impurity cooling-curves. This scaling indicates that for optimizing reactors, minimizing device size while maximizing toroidal field, an approach shown to be consistent with energy confinement scaling, will also maximize the feasibility of reaching detachment at the lowest dilution. Despite this, analysis suggests an increase in the impurity fractions relative to existing devices will be required to exhaust power in a reactor-scale tokamak, with validation of impurity radiation physics required before both simple and detailed models can make reliable predictions of absolute f Z .

  8. Self-similar approach to the explosion of droplets by a high energy laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Chitanvis, S.M.

    1987-09-25

    We have constructed a model in which a small droplet is exploded by the absorption of energy from a high energy laser beam. The beam flux is so high that we assume the formation of a plasma. We have a single-fluid model of a plasma droplet interacting with laser radiation. Selfsimilarity is invoked to reduce the spherically symmetric problem involving hydrodynamics and Maxwell's equations to quadrature. We show analytically that our model reproduces in a qualitative manner certain features observed experimentally by Eickmans et al.

  9. Rapid Photocatalytic Degradation of Methylene Blue under High Photon Flux UV Irradiation: Characteristics and Comparison with Routine Low Photon Flux

    OpenAIRE

    2012-01-01

    This study examined the photocatalytic degradation efficiency under high UV photon flux (intensity normalized by photon energy) irradiation; the incident UV photon flux was 1 . 7 1 × 1 0 − 6 − 3 . 1 3 × 1 0 − 6 einstein c m − 2   s − 1 made by a super high-intensity UV apparatus. A comparative study between high photon flux photocatalytic process and routine low photon flux photocatalytic process for methylene blue degradation has been made in aqueous solution. The experimental results showed...

  10. BVOC ecosystem flux measurements at a high latitude wetland site

    Directory of Open Access Journals (Sweden)

    T. Holst

    2010-02-01

    Full Text Available In this study, we present summertime concentrations and fluxes of biogenic volatile organic compounds (BVOCs measured at a sub-arctic wetland in northern Sweden using a disjunct eddy-covariance (DEC technique based on a proton transfer reaction mass spectrometer (PTR-MS. The vegetation at the site was dominated by Sphagnum, Carex and extit{Eriophorum} spp. The measurements reported here cover a period of 50 days (1 August to 19 September 2006, approximately one half of the growing season at the site, and allowed to investigate the effect of day-to-day variation in weather as well as of vegetation senescence on daily BVOC fluxes, and on their temperature and light responses. The sensitivity drift of the DEC system was assessed by comparing H3O+-ion cluster formed with water molecules (H3O+(H2O at m37 with water vapour concentration measurements made using an adjacent humidity sensor, and the applicability of the DEC method was analysed by a comparison of sensible heat fluxes for high frequency and DEC data obtained from the sonic anemometer. These analyses showed no significant PTR-MS sensor drift over a period of several weeks and only a small flux-loss due to high-frequency spectrum omissions. This loss was within the range expected from other studies and the theoretical considerations.

    Standardised (20 °C and 1000 μmol m−2 s−1 PAR summer isoprene emission rates found in this study of 329 μg C m−2 (ground area h−1 were comparable with findings from more southern boreal forests, and fen-like ecosystems. On a diel scale, measured fluxes indicated a stronger temperature dependence than emissions from temperate or (subtropical ecosystems. For the first time, to our knowledge, we report ecosystem methanol fluxes from a sub-arctic ecosystem. Maximum daytime emission fluxes were around 270 μg m−2 h−1

  11. Flux lattice behavior in high- T sub c materials studied by neutron depolarization

    Energy Technology Data Exchange (ETDEWEB)

    Crow, M.L.; Goyette, R.J.; Nunes, A.C.; Pickart, S.J. (University of Rhode Island, Kingston, Rhode Island 02881 (USA)); McGuire, T.R.; Shinde, S.; Shaw, T.M. (IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (USA))

    1990-05-01

    The depolarization of a neutron beam passing through a sample of the high-{ital T}{sub {ital c}} superconductor YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} has been measured as a function of temperature and applied field. The difference in behavior between field-cooled and zero-field-cooled states, the observation of hysteresis correlated with {ital H}{sub {ital c}1}, and the disappearance of the effect near 55 K (below {ital T}{sub {ital c}}) suggest an explanation in terms of vortex line lattice formation with possible connection to recently proposed flux line entanglement and melting.

  12. High Pressure, High Gradient RF Cavities for Muon Beam Cooling

    CERN Document Server

    Johnson, R P

    2004-01-01

    High intensity, low emittance muon beams are needed for new applications such as muon colliders and neutrino factories based on muon storage rings. Ionization cooling, where muon energy is lost in a low-Z absorber and only the longitudinal component is regenerated using RF cavities, is presently the only known cooling technique that is fast enough to be effective in the short muon lifetime. RF cavities filled with high-pressure hydrogen gas bring two advantages to the ionization technique: the energy absorption and energy regeneration happen simultaneously rather than sequentially, and higher RF gradients and better cavity breakdown behavior are possible than in vacuum due to the Paschen effect. These advantages and some disadvantages and risks will be discussed along with a description of the present and desired RF R&D efforts needed to make accelerators and colliders based on muon beams less futuristic.

  13. A high-flux BEC source for mobile atom interferometers

    CERN Document Server

    Rudolph, Jan; Grzeschik, Christoph; Sternke, Tammo; Grote, Alexander; Popp, Manuel; Becker, Dennis; Müntinga, Hauke; Ahlers, Holger; Peters, Achim; Lämmerzahl, Claus; Sengstock, Klaus; Gaaloul, Naceur; Ertmer, Wolfgang; Rasel, Ernst M

    2015-01-01

    Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BEC) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a technological challenge. Here we report on the realization of a miniaturized setup, generating a flux of $4 \\times 10^5$ quantum degenerate $^{87}$Rb atoms every 1.6 s. Ensembles of $1 \\times 10^5$ atoms can be produced at a 1 Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based experiments while offering significantly higher repetition rates. The compact and robust design allows for mobile operation in a variety of...

  14. Uncertainty of calorimeter measurements at NREL's high flux solar furnace

    Science.gov (United States)

    Bingham, C. E.

    1991-12-01

    The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/sq cm). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6/sq cm) exit aperture, corresponding to a flux of about 2 kW/sq cm. This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/sq cm) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty.

  15. Uncertainty of calorimeter measurements at NREL's high flux solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.E.

    1991-12-01

    The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.

  16. UH-FLUX: Compact, Energy Efficient Superconducting Asymmetric Energy Recovery LINAC for Ultra-high Fluxes of X-ray and THz Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Konoplev, Ivan [Univ. of Oxford (United Kingdom). JAI, Dept. of Physics; Ainsworth, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Burt, Graeme [Lancaster Univ. (United Kingdom). Cockcroft Inst.; Seryi, Andrei [Univ. of Oxford (United Kingdom). JAI, Dept. of Physics

    2016-06-01

    The conventional ERLs have limited peak beam current because increasing the beam charge and repetition rate leads to appearance of the beam break-up instabilities. At this stage the highest current, from the SRF ERL, is around 300 mA. A single-turn (the beam will be transported through the accelerating section, interaction point and deceleration section of the AERL only once) Asymmetric Energy Recovery LINAC (AERL) is proposed. The RF cells in different sections of the cavity are tuned in such a way that only operating mode is uniform inside all of the cells. The AERL will drive the electron beams with typical energies of 10 - 30 MeV and peak currents above 1 A, enabling the generation of high flux UV/X-rays and high power coherent THz radiation. We aim to build a copper prototype of the RF cavity for a compact AERL to study its EM properties. The final goal is to build AERL based on the superconducting RF cavity. Preliminary design for AERL's cavity has been developed and will be presented. The results of numerical and analytical models and the next steps toward the AERL operation will also be discussed.

  17. UH-FLUX: Compact, Energy Efficient Superconducting Asymmetric Energy Recovery LINAC for Ultra-high Fluxes of X-ray and THz Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Konoplev, Ivan [JAI, UK; Ainsworth, Robert [Fermilab; Burt, Graeme [Lancaster U.; Seryi, Andrei [JAI, UK

    2016-06-01

    The conventional ERLs have limited peak beam current because increasing the beam charge and repetition rate leads to appearance of the beam break-up instabilities. At this stage the highest current, from the SRF ERL, is around 300 mA. A single turn (the beam will be transported through the accelerating section, interaction point and deceleration section of the AERL only once) Asymmetric Energy Recovery LINAC (AERL) is proposed. The RF cells in different sections of the cavity are tuned in such a way that only operating mode is uniform inside all of the cells. The AERL will drive the electron beams with typical energies of 10 - 30 MeV and peak currents above 1 A, enabling the generation of high flux UV/X-rays and high power coherent THz radiation. We aim to build a copper prototype of the RF cavity for a compact AERL to study its EM properties. The final goal is to build AERL based on the superconducting RF cavity. Preliminary design for AERL's cavity has been developed and will be presented. The results of numerical and analytical models and the next steps toward the AERL operation will also be discussed.

  18. Measurements of thermal- and slow-neutron dose distributions in ordinary concrete shield using a reactor neutron beam of different energy ranges

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, R.M.; Makarious, A.S.; El-Kolaly, M.A.; Afifi, Y.A.

    1980-01-01

    Experimental studies on the distribution and attenuation of thermal and slow neutron doses in ordinary concrete shield have been carried-out. A collimated beam of reactor neutrons emitted from one of the horizontal channels of the ET-RR-1 reactor was used. Measurements were performed using, a direct beam, cadmium filtered beam and boron carbide filtered beam. The neutron doses were measured using thermolumin-escent Li/sub 2/B/sub 4/O/sub 7/ detectors. The measured data have been analyzed and a group of attenuation curves were given for beams of reactor neutrons of different energy. These curves show that cadmium and boron carbide filters tend to decrease the neutron doses specially at the beginning of penetration. The data were transformed to that which would be obtained using neutron sources of different geometries.

  19. Beam dynamics in a rebunching CH cavity with high space charge

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Malte; Heilmann, Manuel; Meusel, Oliver; Noll, Daniel; Podlech, Holger; Ratzinger, Ulrich; Seibel, Anja [Institute for Applied Physics, Goethe-University, Frankfurt am Main (Germany)

    2013-07-01

    The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) will provide ultra short neutron pulses at high intensities and repetition rates. The facility is under construction with expected first beam in 2013. It will allow research on nucleosynthesis of elements in stars by the s-process as well as on neutron capture cross sections for activation experiments providing knowledge gain on transmutation of radioactive waste and fusion reactor materials. The 5-gap CH rebuncher is installed behind a coupled RFQ/IH-DTL combination and completes the LINAC section. It will be used for varying the output energy between 1.8 and 2.2 MeV as well as for focusing the proton beam bunch longitudinally to compensate the huge space charge forces at high currents up to 200 mA. Therefore beam dynamics and beam transport performance research on this CH cavity is under progress. It includes benchmarking of different beam dynamic codes like LORASR, TraceWin and a new particle-in-cell tracking code for non-relativistic beams currently under development at IAP as well as validation of the results by measurements. Furthermore, this CH rebuncher serves as prototype for CH cavity operation at MYRRHA (Mol, Belgium), an Accelerator Driven System (ADS) for transmutation of high level nuclear waste.

  20. Gold nanoparticles production using reactor and cyclotron based methods in assessment of (196,198)Au production yields by (197)Au neutron absorption for therapeutic purposes.

    Science.gov (United States)

    Khorshidi, Abdollah

    2016-11-01

    Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of (197)Au(n,γ)(196,198)Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. (197)Au nano-solution, including 20nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E+13n/cm(2)/s for (196,198)Au activity and production yield estimations. Meanwhile, the yield was examined using 30MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF2 reflector enclosed the moderator region. Transmutation in (197)Au nano-solution samples were explored at 15 and 25cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method.

  1. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas

    Energy Technology Data Exchange (ETDEWEB)

    West, Michael D.; Charles, Christine; Boswell, Rod W. [Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2009-05-15

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 {mu}N. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  2. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas

    Science.gov (United States)

    West, Michael D.; Charles, Christine; Boswell, Rod W.

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5mN with a resolution of 15μN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  3. Neutron radiography and tomography facility at IBR-2 reactor

    Science.gov (United States)

    Kozlenko, D. P.; Kichanov, S. E.; Lukin, E. V.; Rutkauskas, A. V.; Belushkin, A. V.; Bokuchava, G. D.; Savenko, B. N.

    2016-05-01

    An experimental station for investigations using neutron radiography and tomography was developed at the upgraded high-flux pulsed IBR-2 reactor. The 20 × 20 cm neutron beam is formed by the system of collimators with the characteristic parameter L/D varying from 200 to 2000. The detector system is based on a 6LiF/ZnS scintillation screen; images are recorded using a high-sensitivity video camera based on the high-resolution CCD matrix. The results of the first neutron radiography and tomography experiments at the developed facility are presented.

  4. High-accuracy determination of the neutron flux at n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Barbagallo, M.; Colonna, N.; Mastromarco, M.; Meaze, M.; Tagliente, G.; Variale, V. [Sezione di Bari, INFN, Bari (Italy); Guerrero, C.; Andriamonje, S.; Boccone, V.; Brugger, M.; Calviani, M.; Cerutti, F.; Chin, M.; Ferrari, A.; Kadi, Y.; Losito, R.; Versaci, R.; Vlachoudis, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); National Technical University of Athens (NTUA), Athens (Greece); Tarrio, D.; Duran, I.; Leal-Cidoncha, E.; Paradela, C. [Universidade de Santiago de Compostela, Santiago (Spain); Altstadt, S.; Goebel, K.; Langer, C.; Reifarth, R.; Schmidt, S.; Weigand, M. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (Germany); Andrzejewski, J.; Marganiec, J.; Perkowski, J. [Uniwersytet Lodzki, Lodz (Poland); Audouin, L.; Leong, L.S.; Tassan-Got, L. [Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay (France); Becares, V.; Cano-Ott, D.; Garcia, A.R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S. [Charles University, Prague (Czech Republic); Belloni, F.; Fraval, K.; Gunsing, F.; Lampoudis, C.; Papaevangelou, T. [Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthoumieux, E.; Chiaveri, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Billowes, J.; Ware, T.; Wright, T. [University of Manchester, Manchester (United Kingdom); Bosnar, D.; Zugec, P. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia); Calvino, F.; Cortes, G.; Gomez-Hornillos, M.B.; Riego, A. [Universitat Politecnica de Catalunya, Barcelona (Spain); Carrapico, C.; Goncalves, I.F.; Sarmento, R.; Vaz, P. [Universidade Tecnica de Lisboa, Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Lisboa (Portugal); Cortes-Giraldo, M.A.; Praena, J.; Quesada, J.M.; Sabate-Gilarte, M. [Universidad de Sevilla, Sevilla (Spain); Diakaki, M.; Karadimos, D.; Kokkoris, M.; Vlastou, R. [National Technical University of Athens (NTUA), Athens (Greece); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Dressler, R.; Kivel, N.; Schumann, D.; Steinegger, P. [Paul Scherrer Institut, Villigen PSI (Switzerland); Dzysiuk, N.; Mastinu, P.F. [Laboratori Nazionali di Legnaro, INFN, Rome (Italy); Eleftheriadis, C.; Manousos, A. [Aristotle University of Thessaloniki, Thessaloniki (Greece); Ganesan, S.; Gurusamy, P.; Saxena, A. [Bhabha Atomic Research Centre (BARC), Mumbai (IN); Griesmayer, E.; Jericha, E.; Leeb, H. [Technische Universitaet Wien, Atominstitut, Wien (AT); Hernandez-Prieto, A. [European Organization for Nuclear Research (CERN), Geneva (CH); Universitat Politecnica de Catalunya, Barcelona (ES); Jenkins, D.G.; Vermeulen, M.J. [University of York, Heslington, York (GB); Kaeppeler, F. [Institut fuer Kernphysik, Karlsruhe Institute of Technology, Campus Nord, Karlsruhe (DE); Koehler, P. [Oak Ridge National Laboratory (ORNL), Oak Ridge (US); Lederer, C. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE); University of Vienna, Faculty of Physics, Vienna (AT); Massimi, C.; Mingrone, F.; Vannini, G. [Universita di Bologna (IT); INFN, Sezione di Bologna, Dipartimento di Fisica, Bologna (IT); Mengoni, A.; Ventura, A. [Agenzia nazionale per le nuove tecnologie, l' energia e lo sviluppo economico sostenibile (ENEA), Bologna (IT); Milazzo, P.M. [Sezione di Trieste, INFN, Trieste (IT); Mirea, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Mondalaers, W.; Plompen, A.; Schillebeeckx, P. [Institute for Reference Materials and Measurements, European Commission JRC, Geel (BE); Pavlik, A.; Wallner, A. [University of Vienna, Faculty of Physics, Vienna (AT); Rauscher, T. [University of Basel, Department of Physics and Astronomy, Basel (CH); Roman, F. [European Organization for Nuclear Research (CERN), Geneva (CH); Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Rubbia, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Laboratori Nazionali del Gran Sasso dell' INFN, Assergi (AQ) (IT); Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE)

    2013-12-15

    The neutron flux of the n{sub T}OF facility at CERN was measured, after installation of the new spallation target, with four different systems based on three neutron-converting reactions, which represent accepted cross sections standards in different energy regions. A careful comparison and combination of the different measurements allowed us to reach an unprecedented accuracy on the energy dependence of the neutron flux in the very wide range (thermal to 1 GeV) that characterizes the n{sub T}OF neutron beam. This is a pre-requisite for the high accuracy of cross section measurements at n{sub T}OF. An unexpected anomaly in the neutron-induced fission cross section of {sup 235}U is observed in the energy region between 10 and 30keV, hinting at a possible overestimation of this important cross section, well above currently assigned uncertainties. (orig.)

  5. A cost-effective high-flux source of cold ytterbium atoms

    Science.gov (United States)

    Song, Bo; Zou, Yueyang; Zhang, Shanchao; Cho, Chang-woo; Jo, Gyu-Boong

    2016-10-01

    We report a cost-effective way to prepare high-flux slow ytterbium atoms with extremely low-power 399-nm light suitable for the production of quantum degenerate ytterbium gases. By collimating an atomic beam through an array of micro-capillary tubes, we obtain a bright atomic beam through the Zeeman slower operating at low light power of only 15 mW for the source. We achieve the loading rate of 2 × 107 s-1 into the intercombination magneto-optical trap (MOT) and a sufficient steady-state MOT atom number of 2 × 108 for 174Yb atoms. Our apparatus highlights an efficient method to obtain slow ytterbium atoms using a simple low-power 399-nm laser system.

  6. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Beach, N. J.; Knapp, S. M. M.; Landis, C. R.

    2015-10-01

    The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from -90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor to be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround.

  7. CFD simulation on critical heat flux of flow boiling in IVR-ERVC of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang, E-mail: zhangxiang3@snptc.com.cn [State Nuclear Power Technology Research & Development Center, South Area, Future Science and Technology Park, Chang Ping District, Beijing 102209 (China); Hu, Teng [State Nuclear Power Technology Research & Development Center, South Area, Future Science and Technology Park, Chang Ping District, Beijing 102209 (China); Chen, Deqi, E-mail: chendeqi@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, 400044 (China); Zhong, Yunke; Gao, Hong [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, 400044 (China)

    2016-08-01

    Highlights: • CFD simulation on CHF of boiling two-phase flow in ERVC is proposed. • CFD simulation result of CHF agrees well with that of experimental result. • The characteristics of boiling two-phase flow and boiling crisis are analyzed. - Abstract: The effectiveness of in-vessel retention (IVR) by external reactor vessel cooling (ERVC) strongly depends on the critical heat flux (CHF). As long as the local CHF does not exceed the local heat flux, the lower head of the pressure vessel can be cooled sufficiently to prevent from failure. In this paper, a CFD simulation is carried out to investigate the CHF of ERVC. This simulation is performed by a CFD code fluent couple with a boiling model by UDF (User-Defined Function). The experimental CHF of ERVC obtained by State Nuclear Power Technology Research and Development Center (SNPTRD) is used to validate this CFD simulation, and it is found that the simulation result agrees well with the experimental result. Based on the CFD simulation, detailed analysis focusing on the pressure distribution, velocity distribution, void fraction distribution, heating wall temperature distribution are proposed in this paper.

  8. Numerical simulation of the processes of small-diameter high-current electron beam shaping and injection

    CERN Document Server

    Gordeev, V S; Myskov, G A

    2001-01-01

    With the aid of BEAM 25 program there was carried out the numerical simulation of the non-stationary process of shaping a small-diameter (<= 20mm) high-current hollow electron beam in a diode with magnetic insulation,as well as of the process of beam injection into the accelerating LIA track. The diode configuration for the purpose of eliminating the leakage of electron flux to the anode surface was update. Presented are the results of calculation of the injected beam characteristics (amplitude-time parameters of a current pulse, space-angle distributions of electrons etc.) depending on diode geometric parameters.

  9. LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.

    Energy Technology Data Exchange (ETDEWEB)

    WANG, S.; WEI, J.; BROWN, K.; GARDNER, C.; LEE, Y.Y.; LOWENSTEIN, D.; PEGGS, S.; SIMOS, N.

    2006-06-23

    Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.

  10. High-Density Plasma Reactors: Simulations for Design

    Science.gov (United States)

    Hash, David B.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1998-01-01

    The development of improved and more efficient plasma reactors is a costly process for the semiconductor industry. Until five years ago, the Industry made most of its advancements through a trial and error approach. More recently, the role of computational modeling in the design process has increased. Both conventional computational fluid dynamics (CFD) techniques like Navier-Stokes solvers as well as particle simulation methods are used to model plasma reactor flowfields. However, since high-density plasma reactors generally operate at low gas pressures on the order of 1 to 10 mTorr, a particle simulation may be necessary because of the failure of CFD techniques to model rarefaction effects. The direct simulation Monte Carlo method is the most widely accepted and employed particle simulation tool and has previously been used to investigate plasma reactor flowfields. A plasma DSMC code is currently under development at NASA Ames Research Center with its foundation as the object-oriented parallel Cornell DSMC code, MONACO. The present investigation is a follow up of a neutral flow investigation of the effects of process parameters as well as reactor design on etch rate and etch rate uniformity. The previous work concentrated on silicon etch of a chlorine flow in a configuration typical of electron cyclotron resonance (ECR) or helical resonator type reactors. The effects of the plasma on the dissociation chemistry were modeled by making assumptions about the electron temperature and number density. The electrons or ions themselves were not simulated.The present work extends these results by simulating the charged species.The electromagnetic fields are calculated such that power deposition is modeled self-consistently. Electron impact reactions are modeled along with mechanisms for charge exchange. An bipolar diffusion assumption is made whereby electrons remain tied to the ions. However, the velocities of tile electrons are allowed to be modified during collisions

  11. Simulations of the high energy beam transport section (HEBT) at FRANZ

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichs, Ole; Claessens, Christine; Heilmann, Manuel; Meusel, Oliver; Noll, Daniel; Reifarth, Rene; Schmidt, Stefan; Schwarz, Malte; Sonnabend, Kerstin [Goethe-Universitaet Frankfurt (Germany)

    2014-07-01

    The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) currently under construction will deliver a proton beam of up to 20 mA constant current with energies between 1.8 MeV and 2.2 MeV. This facility aims at exploring proton- and neutron-induced reactions of astrophysical interest. The high proton flux is well suited for studying nuclear reactions related to the nucleosynthesis of the p-nuclei, which might yield hints on the physics of type Ia supernovae. Furthermore, FRANZ will offer the opportunity to measure radiative neutron capture reactions for unstable branch point nuclei of the s-process. We will present the current status of the beam line up to the BaF{sub 2} calorimeter. This contribution focuses on simulations to optimise beam transport and phase space distribution with respect to an optimised beam spot size.

  12. Recent progress of high-power negative ion beam development for fusion plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kazuhiro; Akino, Noboru; Aoyagi, Tetsuo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-03-01

    A negative-ion-based neutral beam injector (N-NBI) has been constructed for JT-60U. The N-NBI is designed to inject 500 keV, 10 MW neutral beams using two ion sources, each producing a 500 keV, 22 A D{sup -} ion beam. Beam acceleration test started in July, 1995 using one ion source. In the preliminary experiment, D{sup -} ion beam of 13.5 A has been successfully accelerated with an energy of 400 keV (5.4 MW) for 0.12 s at an operating pressure of 0.22 Pa. This is the highest D{sup -} beam current and power in the world. Co-extracted electron current was effectively suppressed to the ratio of Ie/I{sub D}- <1. The highest energy beam of 460 keV, 2.4 A, 0.44 s has also been obtained. Neutral beam injection starts in March, 1996 using two ion sources. To realize 1 MeV class NBI system for ITER (International Thermonuclear Experimental Reactor), demonstration of ampere class negative ion beam acceleration up to 1 MeV is an important mile stone. To achieve the mile stone, a high energy test facility called MeV Test Facility (MTF) was constructed. The system consists of a 1 MV, 1 A acceleration power supply and a 100 kW power supply system for negative ion production. Up to now, an H{sup -} ion beam was accelerated up to the energy of 805 keV with an acceleration drain current of 150 mA for 1 s in a five stage electrostatic multi-aperture accelerator. (author)

  13. Total Reflection X-ray Fluorescence Analysis (TXRF) using the high flux SAXS camera

    CERN Document Server

    Wobrauschek, P; Pepponi, G; Bergmann, A; Glatter, O

    2002-01-01

    Combining the high photon flux from a rotating anode X-ray tube with an X-ray optical component to focus and monochromatize the X-ray beam is the most promising instrumentation for best detection limits in the modern XRF laboratory. This is realized by using the design of a high flux SAXS camera in combination with a 4 kW high brilliant rotating Cu anode X-ray tube with a graded elliptically bent multilayer and including a new designed module for excitation in total reflection geometry within the beam path. The system can be evacuated thus reducing absorption and scattering of air and removing the argon peak in the spectra. Another novelty is the use of a Peltier cooled drift detector with an energy resolution of 148 eV at 5.9 keV and 5 mm sup 2 area. For Co detection limits of about 300 fg determined by a single element standard have been achieved. Testing a real sample NIST 1643d led to detection limits in the range of 300 ng/l for the medium Z.

  14. The Amtex DAMA Project: The Brookhaven contribution

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, A.M.

    1995-01-01

    The Amtex Partnership organized in 1993 as a Technology Transfer Collaboration among members of the integrated textile industry, the DOE National Laboratories, a number of universities, and several research/education/technology transfer organizations (RETTs). Under the Amtex umbrella organization, a number of technology areas were defined and individual projects were launched addressing various aspects of improving the health and competitiveness of the American textile industry. The first and, to date, the largest of these has been the computer-based Demand Activated Manufacturing Architecture (DAMA) project. Brookhaven National Laboratory became involved in DAMA beginning in March of 1993 and remained an active participant through January of 1995. It was staffed almost exclusively with personnel of the Computing and Communications Division. This document summarizes the activities and accomplishments of the Brookhaven team in working with the larger collaboration. Detailed information about the Amtex Partnership, the DAMA Project, and specific BNL contributions are documented elsewhere.

  15. Overview of results of the first phase of validation activities for the IFMIF High Flux Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: frederik.arbeiter@kit.edu [Karlsruhe Institute of Technology, Karlsruhe (Germany); Chen Yuming; Dolensky, Bernhard; Freund, Jana; Heupel, Tobias; Klein, Christine; Scheel, Nicola; Schlindwein, Georg [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Validation of computational fluid dynamics (CFD) modeling approach for application in the IFMIF High Flux Test Module. Black-Right-Pointing-Pointer Fabrication of prototypes of the irradiation capsules of the IFMIF High Flux Test Module. - Abstract: The international fusion materials irradiation facility (IFMIF) is projected to create an experimentally validated database of material properties relevant for fusion reactor designs. The IFMIF High Flux Test Module is the dedicated experiment to irradiate alloys in the temperature range 250-550 Degree-Sign C and up to 50 displacements per atom per irradiation cycle. The High Flux Test Module is developed to maximize the specimen payload in the restricted irradiation volume, and to minimize the temperature spread within each specimen bundle. Low pressure helium mini-channel cooling is used to offer a high integration density. Due to the demanding thermo-hydraulic and mechanical conditions, the engineering design process (involving numerical neutronic, thermo-hydraulic and mechanical analyses) is supported by extensive experimental validation activities. This paper reports on the prototype manufacturing, thermo-hydraulic modeling experiments and component tests, as well as on mechanical testing. For the testing of the 1:1 prototype of the High Flux Test Module, a dedicated test facility, the Helium Loop Karlsruhe-Low Pressure (HELOKA-LP) has been taken into service.

  16. High Tc Superconductor Theoretical Models and Electromagnetic Flux Characteristics

    Institute of Scientific and Technical Information of China (English)

    JIN Jian-xun

    2006-01-01

    High Tc Superconductors (HTS) have special electromagnetic characteristics and phenomena. Effort has been made in order to theoretically understand the applied HTS superconductivity and HTS behaviors for practical applications, various theoretical models related to the HTS electromagnetic properties have been developed. The theoretical models and analytic methods are summarized with regard to understanding the HTS magnetic flux characteristic which is one of the most critical issues related to HTS applications such as for HTS magnetic levitation application.

  17. High flux inductors for the rapid heating of steel products

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, R.; Griffay, G.; Galbrun, F. [Institut de Recherches de la Siderurgie Francaise (IRSID), 78 - Saint-Germain-en-Laye (France); Hellegouaec`h, J.; Prost, G.

    1995-03-01

    To reduce investment and operating costs of electroheating processes of long products by induction, we developed a new multilayed inductor with high flux density which represents a real technological step in regard of conventional technics: 4 MV/m{sup 2} instead of 1MW/m{sup 2}, efficiency of 85% instead of 55%, compacity and low costs of maintenance. The new technology can also be used with success in flat products plants. (authors). 10 figs., 1 tab.

  18. Determination of the neutron flux in the reactor zones with the strong neutron absorption and leakage

    OpenAIRE

    Ljubenov Vladan; Milošević Miodrag 1

    2004-01-01

    The procedures for the numerical and experimental determination of the neutron flux in the zones with the strong neutron absorption and leakage are described in this paper. Numerical procedure is based on the application of the SCALE-4.4a code system where the Dancoff factors are determined by the VEGA2DAN code. Two main parts of the experimental methodology are measurement of the activity of irradiated foils and determination of the averaged neutron absorption cross-section in the foils by t...

  19. The Brookhaven electron analogue, 1953--1957

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, M.

    1991-12-18

    The following topics are discussed on the Brookhaven electron analogue: L.J. Haworth and E.L. VanHorn letters; Original G.K. Green outline for report; General description; Parameter list; Mechanical Assembly; Alignment; Degaussing; Vacuum System; Injection System; The pulsed inflector; RF System; Ferrite Cavity; Pick-up electrodes and preamplifiers; Radio Frequency power amplifier; Lens supply; Controls and Power; and RF acceleration summary.

  20. The Status of the US High-Temperature Gas Reactors

    OpenAIRE

    2016-01-01

    In 2005, the US passed the Energy Policy Act of 2005 mandating the construction and operation of a high-temperature gas reactor (HTGR) by 2021. This law was passed after a multiyear study by national experts on what future nuclear technologies should be developed. As a result of the Act, the US Congress chose to develop the so-called Next-Generation Nuclear Plant, which was to be an HTGR designed to produce process heat for hydrogen production. Despite high hopes and expectations, the current...

  1. Design and construction of an automatic measurement electronic system and graphical neutron flux for the subcritical reactor; Diseno y construccion de un sistema electronico automatico de medicion y graficado del flujo neutronico para el reactor subcritico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, J.L.; Balderas, E.G.; Rivero G, T. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The National Institute of Nuclear Research (ININ) has in its installations with a nuclear subcritical reactor which was designed and constructed with the main purpose to be used in the nuclear sciences education in the Physics areas and Reactors engineering. Within the nuclear experiments that can be realized in this reactor are very interesting those about determinations of neutron and gamma fluxes spectra, since starting from these some interesting nuclear parameters can be obtained. In order to carry out this type of experiments different radioactive sources are used which exceed the permissible doses by far to human beings. Therefore it is necessary the remote handling as of the source as of detectors used in different experiments. In this work it is presented the design of an electronic system which allows the different positions inside of the tank of subcritical reactor at ININ over the radial and axial axes in manual or automatic ways. (Author)

  2. Coherent beam combiner for a high power laser

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd A.

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  3. Vacuum laser acceleration using a radially polarized CO sub 2 laser beam

    CERN Document Server

    Liu, Y; He, P

    1999-01-01

    Utilizing the high-power, radially polarized CO sub 2 laser and high-quality electron beam at the Brookhaven Accelerator Test Facility, a vacuum laser acceleration scheme is proposed. In this scheme, optics configuration is simple, a small focused beam spot size can be easily maintained, and optical damage becomes less important. At least 0.5 GeV/m acceleration gradient is achievable by 1 TW laser power.

  4. GRCop-84: A High Temperature Copper-based Alloy For High Heat Flux Applications

    Science.gov (United States)

    Ellis, David L.

    2005-01-01

    While designed for rocket engine main combustion chamber liners, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) offers potential for high heat flux applications in industrial applications requiring a temperature capability up to approximately 700 C (1292 F). GRCop-84 is a copper-based alloy with excellent elevated temperature strength, good creep resistance, long LCF lives and enhanced oxidation resistance. It also has a lower thermal expansion than copper and many other low alloy copper-based alloys. GRCop-84 can be manufactured into a variety of shapes such as tubing, bar, plate and sheet using standard production techniques and requires no special production techniques. GRCop-84 forms well, so conventional fabrication methods including stamping and bending can be used. GRCop-84 has demonstrated an ability to be friction stir welded, brazed, inertia welded, diffusion bonded and electron beam welded for joining to itself and other materials. Potential applications include plastic injection molds, resistance welding electrodes and holders, permanent metal casting molds, vacuum plasma spray nozzles and high temperature heat exchanger applications.

  5. Energy flux density and angular momentum density of Pearcey-Gauss vortex beams in the far field

    Science.gov (United States)

    Cheng, K.; Lu, G.; Zhong, X.

    2017-02-01

    The longitudinal and transverse energy flux density (EFD) and angular momentum density (AMD) of a Pearcey-Gauss vortex beam in the far field are studied using the vector angular spectrum representation and stationary phase method, where the influence of topological charge, noncanonical strength and off-axis distance of the embedded optical vortex on far-field vectorial structures of the corresponding beam is emphasized. For comparison, the EFD and AMD of the Pearcey-Gauss beam with non-vortex in the far field are also discussed. The results show that the longitudinal EFDs of the Pearcey-Gauss vortex beam exhibit parabolic patterns, and the number of parabolic dark zones equals the absolute value of topological charge of the embedded optical vortex in the input plane. While for the Pearcey-Gauss beam, the dark zones are not found owing to the non-vortex in the input plane. The motion of zero-intensity spot of whole beam appears by varying the off-axis distance. Noncanonical strength and off-axis distance both can adjust the magnitudes and directions of transverse EFD and control the spatial energy distributions of longitudinal EFD, but not change the net AMD.

  6. Epithermal neutron beam for BNCT research at the Washington State University TRIGA research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D.W.; Venhuizen, J.R.; Wheeler, F.J.; Wemple, C.A. [Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (United States); Tripard, G.E.; Gavin, P.R. [Washington State University, Pullman, WA (United States)

    2000-10-01

    A new epithermal-neutron beam facility for BNCT (Boron Neutron Capture Therapy) research and boronated agent screening in animal models is in the final stages of construction at Washington State University (WSU). A key distinguishing feature of the design is the incorporation of a new, high-efficiency, neutron moderating and filtering material, Fluental, developed by the Technical Research Centre of Finland. An additional key feature is the provision for adjustable filter-moderator thickness to systematically explore the radiobiological consequences of increasing the fast-neutron contamination above the nominal value associated with the baseline system. (author)

  7. Brookhaven highlights, July 1976-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    Some of the most significant research accomplishments during this 27-month period are presented. Although some data are given, this report is primarily descriptive in outlook; detailed information on completed work should be sought from the references cited herein or from the usual sources of physics research information. The report is organized as follows: High-energy Physics (general introduction, physics research, accelerators, ISABELLE); Nuclear and Solid State Physics, and Chemistry; Life Sciences (biology, medicine); Applied Energy Science (energy and the environment, reactor systems and safety, National Nuclear Data Center, nuclear materials safeguards); Support Activities (applied mathematics, instrumentation, reactors, safety and environmental protection); and General and Administrative. 117 figures, 16 tables, 315 references. (RWR)

  8. Thermal hydraulic test for reactor safety system - Critical heat flux experiment and development of prediction models

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Baek, Won Pil; Yang, Soo Hyung; No, Chang Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    2000-04-01

    To acquire CHF data through the experiments and develop prediction models, research was conducted. Final objectives of research are as follows: 1) Production of tube CHF data for low and middle pressure and mass flux and Flow Boiling Visualization. 2) Modification and suggestion of tube CHF prediction models. 3) Development of fuel bundle CHF prediction methodology base on tube CHF prediction models. The major results of research are as follows: 1) Production of the CHF data for low and middle pressure and mass flux. - Acquisition of CHF data (764) for low and middle pressure and flow conditions - Analysis of CHF trends based on the CHF data - Assessment of existing CHF prediction methods with the CHF data 2) Modification and suggestion of tube CHF prediction models. - Development of a unified CHF model applicable for a wide parametric range - Development of a threshold length correlation - Improvement of CHF look-up table using the threshold length correlation 3) Development of fuel bundle CHF prediction methodology base on tube CHF prediction models. - Development of bundle CHF prediction methodology using correction factor. 11 refs., 134 figs., 25 tabs. (Author)

  9. Output beam analysis of high power COIL

    Institute of Scientific and Technical Information of China (English)

    Deli Yu(于德利); Fengting Sang(桑凤亭); Yuqi Jin(金玉奇); Yizhu Sun(孙以珠)

    2003-01-01

    As the output power of a chemical oxygen iodine laser (COIL) increases, the output laser beam instabilityappears as the far-field beam spot drift and deformation for the large Fresnel number unstable resonator.In order to interpret this phenomenon, an output beam mode simulation code was developed with the fastFourier transform method. The calculation results show that the presence of the nonuniform gain in COILproduces a skewed output intensity distribution, which causes the mirror tilt and bulge due to the thermalexpansion. With the output power of COIL increases, the mirror surfaces, especially the back surface ofthe scraper mirror, absorb more and more heat, which causes the drift and deformation of far field beamspot seriously. The initial misalignment direction is an important factor for the far field beam spot driftingand deformation.

  10. Thermal effects in high power cavities for photoneutralization of D- beams in future neutral beam injectors

    Science.gov (United States)

    Fiorucci, Donatella; Feng, Jiatai; Pichot, Mikhaël; Chaibi, Walid

    2015-04-01

    Photoneutralization may represent a key issue in the neutral beam injectors for future fusion reactors. In fact, photodetachment based neutralization combined with an energy recovery system increase the injector overall efficiency up to 60%. This is the SIPHORE injector concept in which photoneutralization is realized in a refolded cavity [1]. However, about 1 W of the several megaWatts intracavity power is absorbed by the mirrors coatings and gives rise to important thermoelastic distortions. This is expected to change the optical behavior of the mirrors and reduce the enhancement factor of the cavity. In this paper, we estimate these effects and we propose a thermal system to compensate it.

  11. Filtration behavior of casein glycomacropeptide (CGMP) in an enzymatic membrane reactor: fouling control by membrane selection and threshold flux operation

    DEFF Research Database (Denmark)

    Luo, Jianquan; Morthensen, Sofie Thage; Meyer, Anne S.

    2014-01-01

    . In this study, the filtration performance and fouling behavior during ultrafiltration (UF) of CGMP for the enzymatic production of 3′-sialyllactose were investigated. A 5kDa regenerated cellulose membrane with high anti-fouling performance, could retain CGMP well, permeate 3′-sialyllactose, and was found...... concentration on the threshold flux were studied based on the resistance-in-series model. Higher hydrophilicity of the membrane, elevated pH and agitation, and lower CGMP concentration were found to increase the threshold flux and decrease membrane fouling....

  12. A racetrack microtron with high brightness beams

    Science.gov (United States)

    Shvedunov, V. I.; Barday, R. A.; Frolov, D. A.; Gorbachev, V. P.; Gribov, I. V.; Knapp, E. A.; Novikov, G. A.; Pakhomov, N. I.; Shvedunov, I. V.; Skachkov, V. S.; Sobenin, N. P.; Trower, W. P.; Tyurin, S. A.; Vetrov, A. A.; Yailijan, V. R.; Zayarny, D. A.

    2004-10-01

    Here we describe a racetrack microtron that provides electron beams at 12 energies from 4.85 to 34.2 MeV with ˜150 pC/bunch in ˜5 ps bunches having ˜10 mm mrad normalized transverse emittance. Our compact, inexpensive accelerator in addition to its external electron beams can generate electromagnetic radiation from ˜3 mm to ˜0.3 nm by a variety of mechanisms.

  13. A racetrack microtron with high brightness beams

    Energy Technology Data Exchange (ETDEWEB)

    Shvedunov, V.I.; Barday, R.A.; Frolov, D.A.; Gorbachev, V.P.; Gribov, I.V.; Knapp, E.A.; Novikov, G.A.; Pakhomov, N.I.; Shvedunov, I.V.; Skachkov, V.S.; Sobenin, N.P.; Trower, W.P. E-mail: trower@naxs.net; Tyurin, S.A.; Vetrov, A.A.; Yailijan, V.R.; Zayarny, D.A

    2004-10-01

    Here we describe a racetrack microtron that provides electron beams at 12 energies from 4.85 to 34.2 MeV with {approx}150 pC/bunch in {approx}5 ps bunches having {approx}10 mm mrad normalized transverse emittance. Our compact, inexpensive accelerator in addition to its external electron beams can generate electromagnetic radiation from {approx}3 mm to {approx}0.3 nm by a variety of mechanisms.

  14. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  15. Beam-beam simulation code BBSIM for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab

    2011-01-01

    A highly efficient, fully parallelized, six-dimensional tracking model for simulating interactions of colliding hadron beams in high energy ring colliders and simulating schemes for mitigating their effects is described. The model uses the weak-strong approximation for calculating the head-on interactions when the test beam has lower intensity than the other beam, a look-up table for the efficient calculation of long-range beam-beam forces, and a self-consistent Poisson solver when both beams have comparable intensities. A performance test of the model in a parallel environment is presented. The code is used to calculate beam emittance and beam loss in the Tevatron at Fermilab and compared with measurements. They also present results from the studies of stwo schemes proposed to compensate the beam-beam interactions: (a) the compensation of long-range interactions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider (LHC) at CERN with a current carrying wire, (b) the use of a low energy electron beam to compensate the head-on interactions in RHIC.

  16. Calculation of neutron and gamma fluxes in support to the interpretation of measuring devices irradiated in the core periphery of the OSIRIS Material Testing Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Malouch, Fadhel [Alternative Energies and Atomic Energy Commission - CEA, Saclay Center, DEN/DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette Cedex (France)

    2015-07-01

    Technological irradiations carried out in material testing reactors (MTRs) are used to study the behavior of materials under irradiation conditions required by different types of nuclear power plants (NPPs). For MTRs, specific instrumentation is required for the experiment monitoring and for the characterization of irradiation conditions, in particular the flux of neutrons and photons. To measure neutron and photon flux in experimental locations, different sensors can be used, such as SPNDs (self-powered neutron detectors), SPGDs (self-powered gamma detectors) and ionization chambers. These sensors involve interactions producing ultimately a measurable electric current. Various sensors have been recently tested in the core periphery of the OSIRIS reactor (located at the CEA-Saclay center) in order to qualify their responses to the neutron and the photon flux. One of the key input data for this qualification is to have a relevant evaluation of neutron and gamma fluxes at the irradiation location. The objective of this work is to evaluate the neutron and the gamma flux in the core periphery of the OSIRIS reactor. With this intention, specific neutron-photonic three-dimensional calculations have been performed and are mainly based on the TRIPOLI-4{sup R} three-dimensional continuous-energy Monte Carlo code, developed by CEA (Saclay Center) and extensively validated against reactor dosimetry benchmarks. In the case of the OSIRIS reactor, TRIPOLI-4{sup R} code has been validated against experimental results based on neutron flux and nuclear heating measurements performed in ex-core and in-core experiments. In this work, simultaneous contribution of neutrons and gamma photons in the core periphery is considered using neutron-photon coupled transport calculations. Contributions of prompt and decay photons have been taken into account for the gamma flux calculation. Specific depletion codes are used upstream to provide the decay-gamma sources required by TRIPOLI-4

  17. The final power calibration of the IPEN/MB-01 nuclear reactor for various configurations obtained from the measurements of the absolute average neutron flux

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandre Fonseca Povoa da, E-mail: alexandre.povoa@mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Lima, Ana Cecilia de Souza; Betti, Flavio; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The use of neutron activation foils is a widely spread technique applied to obtain nuclear parameters then comparing the results with those calculated using specific methodologies and available nuclear data. By irradiation of activation foils and subsequent measurement of its induced activity, it is possible to determine the neutron flux at the position of irradiation. The power level during operation of the reactor is a parameter which is directly proportional to the average neutron flux throughout the core. The objective of this work is to gather data from irradiation of gold foils symmetrically placed along a cylindrically configured core which presents only a small excess reactivity in order to derive the power generated throughout the spatial thermal and epithermal neutron flux distribution over the core of the IPEN/MB-01 Nuclear Reactor, eventually lending to a proper calibration of its nuclear channels. The foils are fixed in a Lucite plate then irradiated with and without cadmium sheaths so as to obtain the absolute thermal and epithermal neutron flux. The correlation between the average power neutron flux resulting from the gold foils irradiation, and the average power digitally indicated by the nuclear channel number 6, allows for the calibration of the nuclear channels of the reactor. The reactor power level obtained by thermal neutron flux mapping was (74.65 ± 2.45) watts to a mean counting per seconds of 37881 cps to nuclear channel number 10 a pulse detector, and 0.719.10{sup -5} ampere to nuclear linear channel number 6 (a non-compensated ionization chamber). (author)

  18. High Energy Atmospheric Neutrino Fluxes From a Realistic Primary Spectrum

    Science.gov (United States)

    Campos Penha, Felipe; Dembinski, Hans; Gaisser, Thomas K.; Tilav, Serap

    2016-03-01

    Atmospheric neutrino fluxes depend on the energy spectrum of primary nucleons entering the top of the atmosphere. Before the advent of AMANDA and the IceCube Neutrino Observatory, measurements of the neutrino fluxes were generally below ~ 1TeV , a regime in which a simple energy power law sufficed to describe the primary spectrum. Now, IceCube's muon neutrino data extends beyond 1PeV , including a combination of neutrinos from astrophysical sources with background from atmospheric neutrinos. At such high energies, the steepening at the knee of the primary spectrum must be accounted for. Here, we describe a semi-analytical approach for calculating the atmospheric differential neutrino fluxes at high energies. The input is a realistic primary spectrum consisting of 4 populations with distinct energy cutoffs, each with up to 7 representative nuclei, where the parameters were extracted from a global fit. We show the effect of each component on the atmospheric neutrino spectra, above 10TeV . The resulting features follow directly from recent air shower measurements included in the fit. Felipe Campos Penha gratefully acknowledges financial support from CAPES (Processo BEX 5348/14-5), CNPq (Processo 142180/2012-2), and the Bartol Research Institute.

  19. Characterization of the neutron flux in the Hohlraum of the thermal column of the TRIGA Mark III reactor of the ININ; Caracterizacion del flujo neutronico en el Hohlraum de la columna termica del reactor TRIGA Mark III del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Delfin L, A.; Palacios, J.C.; Alonso, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: adl@nuclear.inin.mx

    2006-07-01

    Knowing the magnitude of the neutron flux in the reactor irradiation facilities, is so much importance for the operation of the same one, like for the investigation developing. Particularly, knowing with certain precision the spectrum and the neutron flux in the different positions of irradiation of a reactor, it is essential for the evaluation of the results obtained for a certain irradiation experiment. The TRIGA Mark III reactor account with irradiation facilities designed to carry out experimentation, where the reactor is used like an intense neutron source and gamma radiation, what allows to make irradiations of samples or equipment in radiation fields with components and diverse levels in the different facilities, one of these irradiation facilities is the Thermal Column where the Hohlraum is. In this work it was carried out a characterization of the neutron flux inside the 'Hohlraum' of the irradiation facility Thermal Column of the TRIGA Mark III reactor of the Nuclear Center of Mexico to 1 MW of power. It was determined the sub cadmic neutron flux and the epi cadmic by means of the neutron activation technique of thin sheets of gold. The maps of the distribution of the neutron flux for both energy groups in three different positions inside the 'Hohlraum' are presented, these maps were obtained by means of the irradiation of undressed thin activation sheets of gold and covered with cadmium in arrangements of 10 x 12, located parallel to 11.5 cm, 40.5 cm and 70.5 cm to the internal wall of graphite of the installation in inverse address to the position of the reactor core. Starting from the obtained values of neutron flux it was found that, for the same position of the surface of irradiation of the experimental arrangement, the relative differences among the values of neutron flux can be of 80%, and that the differences among different positions of the irradiation surfaces can vary until in a one order of magnitude. (Author)

  20. Focused ion beams using a high-brightness plasma source

    Science.gov (United States)

    Guharay, Samar

    2002-10-01

    High-brightness ion beams, with low energy spread, have merits for many new applications in microelectronics, materials science, and biology. Negative ions are especially attractive for the applications that involve beam-solid interactions. When negative ions strike a surface, especially an electrically isolated surface, the surface charging voltage is limited to few volts [1]. This property can be effectively utilized to circumvent problems due to surface charging, such as device damage and beam defocusing. A compact plasma source, with the capability to deliver either positive or negative ion beams, has been developed. H- beams from this pulsed source showed brightness within an order of magnitude of the value for beams from liquid-metal ion sources. The beam angular intensity is > 40 mAsr-1 and the corresponding energy spread is 1 Acm-2 and a spot size of 100 nm. Such characteristics of focused beam parameters, using a dc source, will immediately open up a large area of new applications. [1] P. N. Guzdar, A. S. Sharma, S. K. Guharay, "Charging of substrates irradiated by particle beams" Appl. Phys. Lett. 71, 3302 (1997). [2] S. K. Guharay, E. Sokolovsky, J. Orloff, "Characteristics of ion beams from a Penning source for focused ion beam applications" J. Vac. Sci Technol. B17, 2779 (1999).

  1. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  2. Protective coatings for very high temperature reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Cabet, C.; Guerre, C. [Service de la Corrosion et du Comportement des Materiaux dans leur Environnement, DEN/DANS/DPC, CEA Saclay, 91191 Gif sur Yvette (France); Thieblemont, F. [Optoelectronics Materials Laboratory, Materials and Interfaces Department, Weizmann Institute of Science, Rehovot (Israel)

    2008-07-15

    The future very high temperature reactors (VHTR) are nuclear systems that shall operate at a maximum temperature of about 950 C. Primary circuit materials thus require good creep and corrosion resistance on very long time. Use of high-strength alloys with protective coatings could significantly improve the service life of high temperature reactor components. However, coating systems are mainly designed for shorter term purposes, often under extremely aggressive atmospheres, that cannot be extrapolated to the VHTR environment. We present our first investigations on the environmental resistance of Alloy 800H coated with two different protective systems under VHTR representative conditions: NiAl(Pt)/EBPVD ZrO{sub 2}(Y) and NiCrAl(Y)/CVD ZrO{sub 2}(Y). Isothermal exposures were carried out up to 1000 h at 950 C in impure helium. This specific atmosphere was shown to induce formation of a surface oxide scale together with carburisation of the bare Alloy 800H. After high temperature exposure to impure helium, the microstructure of the coated specimens has changed due to both thermal ageing and corrosion. Performances of the two coating systems are compared regarding the VHTR application. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  3. Reactor

    Science.gov (United States)

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  4. Detailed studies of Minor Actinide transmutation-incineration in high-intensity neutron fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Al Mahamid, I. [Lawrence Berkeley National Laboratory, E.H. and S. Div., CA (United States); Blandin, C. [CEA/Cadarache/DEN/DER/SPEX, Saint-Paul-lez-Durances (France); Chabod, S. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Chartier, F. [CEA/Cadarache/DEN/DPC/SECR, Gif-sur-Yvette (France); Dupont, E.; Fioni, G. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Isnard, H. [CEA/Cadarache/DEN/DPC/SECR, Gif-sur-Yvette (France); Letourneau, A.; Marie, F. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Mutti, P. [Institut Laue-Langevin, Grenoble (France); Oriol, L. [CEA/Cadarache/DEN/DER/SPEX, Saint-Paul-lez-Durances (France); Panebianco, S.; Veyssiere, C. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France)

    2006-07-01

    The Mini-INCA project is dedicated to the measurement of incineration-transmutation chains and potentials of minor actinides in high-intensity thermal neutron fluxes. In this context, new types of detectors and methods of analysis have been developed. The {sup 241}Am and {sup 232}Th transmutation-incineration chains have been studied and several capture and fission cross sections measured very precisely, showing some discrepancies with existing data or evaluated data. An impact study was made on different based-like GEN-IV reactors. It underlines the necessity to proceed to precise measurements for a large number of minor-actinides that contribute to these future incineration scenarios. (authors)

  5. Achieving a long-lived high-beta plasma state by energetic beam injection.

    Science.gov (United States)

    Guo, H Y; Binderbauer, M W; Tajima, T; Milroy, R D; Steinhauer, L C; Yang, X; Garate, E G; Gota, H; Korepanov, S; Necas, A; Roche, T; Smirnov, A; Trask, E

    2015-04-23

    Developing a stable plasma state with high-beta (ratio of plasma to magnetic pressures) is of critical importance for an economic magnetic fusion reactor. At the forefront of this endeavour is the field-reversed configuration. Here we demonstrate the kinetic stabilizing effect of fast ions on a disruptive magneto-hydrodynamic instability, known as a tilt mode, which poses a central obstacle to further field-reversed configuration development, by energetic beam injection. This technique, combined with the synergistic effect of active plasma boundary control, enables a fully stable ultra-high-beta (approaching 100%) plasma with a long lifetime.

  6. Diagnostics for ion beam driven high energy density physics experiments.

    Science.gov (United States)

    Bieniosek, F M; Henestroza, E; Lidia, S; Ni, P A

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K(+) beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  7. Beam Test Results of High Q CBPM prototype for SXFEL

    CERN Document Server

    Chen, Jian; Yu, Luyang; Lai, Longwei; Yuan, Renxian

    2016-01-01

    Aiming at high precision beam position measurement of micron or sub-micron for Shanghai Soft X-ray free electron laser (SXFEL) facility which is being built in site of the Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics has developed a high Q cavity beam position monitor (CBPM) that the resonant frequency is 4.7 GHz and relevant BPM electronics include dedicated RF front-end and home-made digital BPM (DBPM) also has been done. The cavity design, cold test, system architecture and the beam test with three adjacent pickups has been performed in Shanghai Deep ultraviolet free electron laser(SDUV-FEL) facility are included. The beam experiment results show that the physical design of our CBPM is consistent with the expectations basically and the beam position resolution can fulfill the resolution requirements for the SXFEL project if we optimize the beam conditions.

  8. Design of measurement equipment for high power laser beam shapes

    DEFF Research Database (Denmark)

    Hansen, K. S.; Olsen, F. O.; Kristiansen, Morten;

    2013-01-01

    To analyse advanced high power beam patterns, a method, which is capable of analysing the intensity distribution in 3D is needed. Further a measuring of scattered light in the same system is preferred. This requires a high signal to noise ratio. Such a system can be realised by a CCD......-chip implemented in a camera system. Most available CCD-based systems do however suffer from a low maximum intensity threshold. Therefore attenuation is needed. This paper describes the construction of such a beam analysing system where beam patterns produced by single mode fiber laser on a diffractic optical...... element can be evaluated using a CCD based camera. The system is tested with various DOE’s for evaluation of efficiency and measurement of scattered light with success. Also tests with capturing beam caustics of focused laser beams from which beam parameters has been fitted and compared with measurements...

  9. Multi-scale Control and Enhancement of Reactor Boiling Heat Flux by Reagents and Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Manglik, R M; Athavale, A; Kalaikadal, D S; Deodhar, A; Verma, U

    2011-09-02

    The phenomenological characterization of the use of non-invasive and passive techniques to enhance the boiling heat transfer in water has been carried out in this extended study. It provides fundamental enhanced heat transfer data for nucleate boiling and discusses the associated physics with the aim of addressing future and next-generation reactor thermal-hydraulic management. It essentially addresses the hypothesis that in phase-change processes during boiling, the primary mechanisms can be related to the liquid-vapor interfacial tension and surface wetting at the solidliquid interface. These interfacial characteristics can be significantly altered and decoupled by introducing small quantities of additives in water, such as surface-active polymers, surfactants, and nanoparticles. The changes are fundamentally caused at a molecular-scale by the relative bulk molecular dynamics and adsorption-desorption of the additive at the liquid-vapor interface, and its physisorption and electrokinetics at the liquid-solid interface. At the micro-scale, the transient transport mechanisms at the solid-liquid-vapor interface during nucleation and bubblegrowth can be attributed to thin-film spreading, surface-micro-cavity activation, and micro-layer evaporation. Furthermore at the macro-scale, the heat transport is in turn governed by the bubble growth and distribution, macro-layer heat transfer, bubble dynamics (bubble coalescence, collapse, break-up, and translation), and liquid rheology. Some of these behaviors and processes are measured and characterized in this study, the outcomes of which advance the concomitant fundamental physics, as well as provide insights for developing control strategies for the molecular-scale manipulation of interfacial tension and surface wetting in boiling by means of polymeric reagents, surfactants, and other soluble surface-active additives.

  10. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  11. Aging study of boiling water reactor high pressure injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Conley, D.A.; Edson, J.L.; Fineman, C.F. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  12. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T. (University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering); Liu, P.K.T. (Aluminum Co. of America, Pittsburgh, PA (United States)); Webster, I.A. (Unocal Corp., Los Angeles, CA (United States))

    1992-01-01

    Membrane reactors are today finding extensive applications for gas and vapor phase catalytic reactions (see discussion in the introduction and recent reviews by Armor [92], Hsieh [93] and Tsotsis et al. [941]). There have not been any published reports, however, of their use in high pressure and temperature liquid-phase applications. The idea to apply membrane reactor technology to coal liquid upgrading has resulted from a series of experimental investigations by our group of petroleum and coal asphaltene transport through model membranes. Coal liquids contain polycyclic aromatic compounds, which not only present potential difficulties in upgrading, storage and coprocessing, but are also bioactive. Direct coal liquefaction is perceived today as a two-stage process, which involves a first stage of thermal (or catalytic) dissolution of coal, followed by a second stage, in which the resulting products of the first stage are catalytically upgraded. Even in the presence of hydrogen, the oil products of the second stage are thought to equilibrate with the heavier (asphaltenic and preasphaltenic) components found in the feedstream. The possibility exists for this smaller molecular fraction to recondense with the unreacted heavy components and form even heavier undesirable components like char and coke. One way to diminish these regressive reactions is to selectively remove these smaller molecular weight fractions once they are formed and prior to recondensation. This can, at least in principle, be accomplished through the use of high temperature membrane reactors, using ceramic membranes which are permselective for the desired products of the coal liquid upgrading process. An additional incentive to do so is in order to eliminate the further hydrogenation and hydrocracking of liquid products to undesirable light gases.

  13. Beam optical design of in-flight fragment separator for high-power heavy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Yun, C.C.; Kim, Mi-Jung; Kim, D.G.; Song, J.S.; Kim, Myeong-Jin [Rare Isotope Science Project, Institute for Basic Science, Daejeon 305-811 (Korea, Republic of); Kim, J.W., E-mail: jwkim@ibs.re.kr [Rare Isotope Science Project, Institute for Basic Science, Daejeon 305-811 (Korea, Republic of); Kim, J.R. [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Wan, W. [Accelerator Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States)

    2013-12-15

    Highlights: • An in-flight fragment separator is designed in beam optics using GICOSY, COSY Infinity, LISE++ and MOCADI. • High power primary beam is removed in the pre-separator employing four dipole magnets. • Different charge states of the primary and unwanted isotope beams help in reducing peak power density at the beam dump. -- Abstract: An in-flight fragment separator has been designed for the rare isotope science project (RISP) in Korea. A beam used for the design is {sup 238}U in the energy of 200 MeV/u with the maximum beam power of 400 kW. The use of high-power beam requires careful removal of the primary beam by pre-separator, for which its configuration was revised to employ four dipole magnets instead of two. Different configurations of the separator have been tested in search of optimal design in non-linear optics, which was complicated by the space needed for the target, beam dump and radiation shielding. Non-linear optical calculations have been carried out using GICOSY and COSY Infinity including the fringe fields of large-aperture quadrupole magnets. Correction of non-linear terms is made with multipole coils located inside the superconducting quadrupole magnets and by external multipole magnets. Beam simulations using LISE++ and MOCADI have been performed to consider the effects of multiple charge states of the primary and isotope beams produced at the target. Layout of the separator is being finalized, and detailed optics simulation will continue to refine its design.

  14. Determination of nitrogen in wheat flour through Activation analysis using Fast neutron flux of a Thermal nuclear reactor; Determinacion de nitrogeno en harina de trigo mediante analisis por activacion empleando el flujo de neutrones rapidos de un reactor nuclear termico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, T

    1976-07-01

    In this work is done a technical study for determining Nitrogen (protein) and other elements in wheat flour Activation analysis, with Fast neutrons from a Thermal nuclear reactor. Initially it is given an introduction about the basic principles of the methods of analysis. Equipment used in Activation analysis and a brief description of the neutron source (Thermal nuclear reactor). The realized experiments for determining the flux form in the irradiation site, the half life of N-13 and the interferences due to the sample composition are included too. Finally, the obtained results by Activation and the Kjeldahl method are tabulated. (Author)

  15. NEET Enhanced Micro Pocket Fission Detector for High Temperature Reactors - FY15 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy [Idaho National Lab. (INL), Idaho Falls, ID (United States); McGregor, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ugorowski, Phil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reichenberger, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ito, Takashi [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A new project, that is a collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core parallel plate fission chamber and thermocouple. As discussed within this report, the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year one of this three year project. Highlights from research accomplishments include: A joint collaboration was initiated between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. An updated HT MPFD design was developed. New high temperature-compatible materials for HT MPFD construction were procured. Construction methods to support the new design were evaluated at INL. Laboratory evaluations of HT MPFD were initiated. Electrical contact and fissile material plating has been performed at KSU. Updated detector electronics are undergoing evaluations at KSU. A

  16. Measurement of the muon beam direction and muon flux for the T2K neutrino experiment

    CERN Document Server

    Suzuki, K; Ariga, A; Ariga, T; Bay, F; Bronner, C; Ereditato, A; Friend, M; Hartz, M; Hiraki, T; Ichikawa, A K; Ishida, T; Ishii, T; Juget, F; Kikawa, T; Kobayashi, T; Kubo, H; Matsuoka, K; Maruyama, T; Minamino, A; Murakami, A; Nakadaira, T; Nakaya, T; Nakayoshi, K; Oyama, Y; Pistillo, C; Sakashita, K; Sekiguchi, T; Suzuki, S Y; Tada, S; Yamada, Y; Yamamoto, K; Yokoyama, M

    2014-01-01

    The Tokai-to-Kamioka (T2K) neutrino experiment measures neutrino oscillations by using an almost pure muon neutrino beam produced at the J-PARC accelerator facility. The T2K muon monitor was installed to measure the direction and stability of the muon beam which is produced together with the muon neutrino beam. The systematic error in the muon beam direction measurement was estimated, using data and MC simulation, to be 0.28 mrad. During beam operation, the proton beam has been controlled using measurements from the muon monitor and the direction of the neutrino beam has been tuned to within 0.3 mrad with respect to the designed beam-axis. In order to understand the muon beam properties,measurement of the absolute muon yield at the muon monitor was conducted with an emulsion detector. The number of muon tracks was measured to be $(4.06\\pm0.05)\\times10^4$ cm$^{-2}$ normalized with $4\\times10^{11}$ protons on target with 250 kA horn operation. The result is in agreement with the prediction which is corrected ba...

  17. On the way to high dynamic range beam profile measurements

    Energy Technology Data Exchange (ETDEWEB)

    Egberts, Jan; Artikova, Sayyora [Max-Planck-Institut fuer Kernphysik (Germany); Welsch, Carsten [University of Liverpool (United Kingdom); Cockcroft Institute of Accelerator Science and Technology (United Kingdom)

    2009-07-01

    A thorough understanding of halo formation and its possible control is highly desirable for essentially all particle accelerators. Particles outside the beam core are not only lost for further experiments, they are also likely to hit the drift chamber and thereby activate the beam pipe, which makes work on the accelerator costly and time consuming. A well-established technique for transverse beam profile measurements is synchrotron radiation (SR) for high energy and high luminosity accelerators like the LHC or CTF3. At much lower beam energies, an alternative for transverse beam profile measurements based on the direct measurement of light is optical transition radiation (OTR) or the insertion of a luminescent screen. What applies for essentially all these light generation processes, is that the light intensity is over a wide range proportional to the particle density, which makes the optical analysis of such light an ideal tool for beam profile measurements. A particular challenge, however, is to distinguish the particles in the tail regions of the beam distribution from the much more intense beam core. In this contribution, we present results from laboratory measurements on two different devices that might form the technical base of a future beam halo monitor: the novel SpectraCam XDR camera system and a flexible masking technique based on a DMD micro mirror array.

  18. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  19. MCNP Calculations for the Shielding Design of a Beam Tube to Be Installed at the Portuguese Research Reactor

    Science.gov (United States)

    Gonçalves, I. F.; Ramalho, A. G.; Gonçalves, I. C.; Salgado, J.

    The work presented concerns the calculation of the external biological shielding for a neutron beam tube that will be installed at the Portuguese Research Reactor, RPI. This tube will have enough versatility to be used in fields so different as the analysis of the composition of samples or research work in Boron Neutron Capture Therapy, BNCT. The calculation was made by using the MCNP code. This code is a well validated and widely used code, and has therefore become an important tool in the design and optimisation work of experiences related to neutrons and gamma radiation.

  20. High-speed tomography using pink beam at GeoSoilEnviroCARS

    Science.gov (United States)

    Rivers, Mark L.

    2016-10-01

    Synchrotron microtomography typically uses monochromatic beams, because these avoid beam-hardening artifacts and allow imaging above and below the absorption edges of specific elements. However, the monochromator greatly reduces the flux on the sample, and thus increases the data collection time. An alternative is to eliminate the monochromator, instead using absorbers to remove low-energy x-rays and reflection from a mirror to remove high-energy x-rays. This produces a pink beam with a large energy bandwidth and more than 1000 times greater flux. This is useful for dynamic studies, where an entire 3-D dataset can be collected in just a few seconds. We have implemented pink beam tomography at the 13-BM-D beamline at the GeoSoilEnviroCARS sector 13 at the Advanced Photon Source. A key component of such a system is a high-speed detector that can collect over 100 frames/s with excellent signal/noise. We are using a new generation of inexpensive CMOS detectors with very low read noise, large full-well capacity, and high speed. The system performs well, and first experiments in studying fluid imbibition and drainage are presented.

  1. Reactor Neutrinos

    OpenAIRE

    Soo-Bong Kim; Thierry Lasserre; Yifang Wang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  2. Modelling polychromatic high energy photon beams by superposition.

    Science.gov (United States)

    Metcalfe, P E; Hoban, P W; Murray, D C; Round, W H

    1989-09-01

    A unified three dimensional superposition approach to dose calculations used in treatment planning of polychromatic high energy photon beams in radiotherapy is developed. The approach we have used involves computing the dose at all points in a medium by superposing the dose spread array (DSA) from the interaction of a photon at a point in the medium with an array of data representing the TERMA (photon fluence times the photon energy) at points in the beam. The polychromatic nature of the beam is accounted for by modelling the beam as having ten spectral components. A "polychromatic dose spread array" (PDSA) for an interaction from a beam with this spectrum was derived. The TERMA array is calculated from a weighted average of the TERMA arrays for the ten photon energies to give a "polychromatic TERMA array". Thus the method accounts for the effect of beam hardening of the TERMA. But it does not account for the effect of beam hardening on the PDSA since a single PDSA (usually for the spectrum at the surface of the medium) is used at all depths. However, by considering measured and calculated beam central axis data, this model is shown to be adequate for computing depth doses for beams in a homogeneous medium penetrating to extreme radiological depths. A computation time advantage is gained because only one superposition per beam is required.

  3. High Temperature Gas-Cooled Test Reactor Options Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Preliminary scoping calculations are being performed for a 100 MWt gas-cooled test reactor. The initial design uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to identify some reactor design features to investigate further. Current status of the effort is described.

  4. Brookhaven superconducting cable test facility

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, E.B.; Gibbs, R.J.

    1976-08-17

    Construction has started on an outdoor testing station for flexible ac superconducting power transmission cables. It is intended to serve as an intermediate step between laboratory-scale experiments and qualification testing of prototype-scale cables. The permanent equipment includes a 500 W supercritical helium refrigerator using a screw compressor and multistage turbine expanders. Helium storage for 250,000 cu ft of helium at 250 psi is provided. Initially, the cables will be tested in a horizontal cryostat some 250 ft long. High-voltage 60 Hz tests will be performed with the cable in a series resonant mode with a maximum line to ground capability of 240 kV, this is adequate for a 138 kV system design. Impulse testing up to about 650 kV is planned. The cable conductor will be energized by current transformers, initially at about 4 kA and later up to fault levels of 40 kA. The refrigerator is now at the site and testing on a dummy load will commence in the Fall of 1976. The cryostat will be installed in 1977 followed about a year later by the first cable tests.

  5. Brookhaven National Laboratory site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A. [eds.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

  6. Precise determination of the degree of polarization of a cold neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Nastoll, H.; Schreckenbach, K. (Institut Laue - Langevin, 38 - Grenoble (France)); Baglin, C.; Bussiere, A.; Guillaud, J.P.; Kossakowski, R.; Liaud, P. (LAPP Annecy, 74 - Annecy (France))

    1991-08-15

    A cold neutron beam at the ILL High Flux Reactor was used to produce highly polarized neutrons by means of a bent supermirror polarizer. A following current sheet spin flipper allowed the change of the neutron spin direction relative to the guiding magnetic fields. The degree of polarization of the beam was measured as a function of the neutron velocity in the range 300-1500 m/s achieving an accuracy of 0.2% at typically 98% polarization. Two spin flippers and the permutation of three supermirror polarizers as polarizer/analyzer were employed. (orig.).

  7. Laboratory Measurement of Enthalpy Flux in High Winds

    Science.gov (United States)

    Jeong, D.; Haus, B. K.; Donelan, M. A.; Zhang, J.

    2006-12-01

    The intensity of tropical cyclones is sensitive to the rates at which enthalpy and momentum are transferred between sea and air in the high-wind core of the storm. Present models of the wind dependence of these transfer rates, does not allow for storms of greater than marginal hurricane intensity. Recent studies have shown that there is a saturation of the bulk drag coefficient in high winds, however more information on the enthalpy flux is required. In particular the role that sea spray plays in enhancing the enthalpy transfer at very high wind speeds is not known. The coefficients for sensible and latent heat transfer (Stanton and Dalton numbers) were measured in the 15-m wind-wave facility at the University of Miami's Air-Sea Interaction Saltwater Tank (ASIST). The wind speed (referred to 10m) was explored over a range of 0 to 45 m/s, covering a full range of aerodynamic conditions from smooth to fully rough. Experiments were designed with water temperatures set between 2 and 5° C above/below the air temperature, with precision thermistors (± 0.002° C) to monitor temperature and Li-Cor infra-red absorption devices to monitor specific humidity changes at upstream and downstream ends of the wave tank during the experiment. The calorimetric use of a wind-wave tank gave precise flux estimates, and experiments were repeated at different Bowen ratios to allow the separation of the heat and moisture parts of the transfer. The effect of spray on the moisture flux was reflected in the drop in temperature along the air path from upstream to downstream and this made it possible to estimate the total spray evaporated in the air column.

  8. Electron beam damage in high temperature polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. (Dayton Univ., OH (USA). Research Inst.); Adams, W.W. (Air Force Materials Lab., Wright-Patterson AFB, OH (USA))

    1990-01-01

    Electron microscopic studies of polymers are limited due to beam damage. Two concerns are the damage mechanism in a particular material, and the maximum dose for a material before damage effects are observed. From the knowledge of the dose required for damage to the polymer structure, optimum parameters for electron microscopy imaging can be determined. In the present study, electron beam damage of polymers has been quantified by monitoring changes in the diffraction intensity as a function of electron dose. The beam damage characteristics of the following polymers were studied: poly(p-phenylene benzobisthiazole) (PBZT); poly(p-phenylene benzobisoxazole) (PBO); poly(benzoxazole) (ABPBO); poly(benzimidazole) (ABPBI); poly(p-phenylene terephthalamide) (PPTA); and poly(aryl ether ether ketone) (PEEK). Previously published literature results on polyethylene (PE), polyoxymethylene (POM), nylon-6, poly(ethylene oxide) (PEO), PBZT, PPTA, PPX, iPS, poly(butylene terephthalate) (PBT), and poly(phenylene sulphide) (PPS) were reviewed. This study demonstrates the strong dependence of the electron beam resistivity of a polymer on its thermal stability/melt temperature. (author).

  9. High purity pion beam at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Arevalo, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Blecher, M. [Physics Department, Virginia Tech., Blacksburg, VA 24061 (United States); Bryman, D.A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Comfort, J. [Arizona State University, Tempe, AZ 85287 (U